drm/i915: Use fb format modifiers in skylake_update_primary_plane
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
c196e1d6 40#include <drm/drm_atomic_helper.h>
760285e7
DH
41#include <drm/drm_dp_helper.h>
42#include <drm/drm_crtc_helper.h>
465c120c
MR
43#include <drm/drm_plane_helper.h>
44#include <drm/drm_rect.h>
c0f372b3 45#include <linux/dma_remapping.h>
79e53945 46
465c120c
MR
47/* Primary plane formats supported by all gen */
48#define COMMON_PRIMARY_FORMATS \
49 DRM_FORMAT_C8, \
50 DRM_FORMAT_RGB565, \
51 DRM_FORMAT_XRGB8888, \
52 DRM_FORMAT_ARGB8888
53
54/* Primary plane formats for gen <= 3 */
55static const uint32_t intel_primary_formats_gen2[] = {
56 COMMON_PRIMARY_FORMATS,
57 DRM_FORMAT_XRGB1555,
58 DRM_FORMAT_ARGB1555,
59};
60
61/* Primary plane formats for gen >= 4 */
62static const uint32_t intel_primary_formats_gen4[] = {
63 COMMON_PRIMARY_FORMATS, \
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_ABGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_ARGB2101010,
68 DRM_FORMAT_XBGR2101010,
69 DRM_FORMAT_ABGR2101010,
70};
71
3d7d6510
MR
72/* Cursor formats */
73static const uint32_t intel_cursor_formats[] = {
74 DRM_FORMAT_ARGB8888,
75};
76
6b383a7f 77static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 78
f1f644dc 79static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 80 struct intel_crtc_state *pipe_config);
18442d08 81static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 82 struct intel_crtc_state *pipe_config);
f1f644dc 83
e7457a9a
DL
84static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
86static int intel_framebuffer_init(struct drm_device *dev,
87 struct intel_framebuffer *ifb,
88 struct drm_mode_fb_cmd2 *mode_cmd,
89 struct drm_i915_gem_object *obj);
5b18e57c
DV
90static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 92static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
93 struct intel_link_m_n *m_n,
94 struct intel_link_m_n *m2_n2);
29407aab 95static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
96static void haswell_set_pipeconf(struct drm_crtc *crtc);
97static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 98static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 99 const struct intel_crtc_state *pipe_config);
d288f65f 100static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 101 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
102static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
4093561b 414bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 415{
409ee761 416 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
417 struct intel_encoder *encoder;
418
409ee761 419 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
d0737e1d
ACO
426/**
427 * Returns whether any output on the specified pipe will have the specified
428 * type after a staged modeset is complete, i.e., the same as
429 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430 * encoder->crtc.
431 */
432static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433{
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
436
437 for_each_intel_encoder(dev, encoder)
438 if (encoder->new_crtc == crtc && encoder->type == type)
439 return true;
440
441 return false;
442}
443
409ee761 444static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 445 int refclk)
2c07245f 446{
409ee761 447 struct drm_device *dev = crtc->base.dev;
2c07245f 448 const intel_limit_t *limit;
b91ad0ec 449
d0737e1d 450 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 451 if (intel_is_dual_link_lvds(dev)) {
1b894b59 452 if (refclk == 100000)
b91ad0ec
ZW
453 limit = &intel_limits_ironlake_dual_lvds_100m;
454 else
455 limit = &intel_limits_ironlake_dual_lvds;
456 } else {
1b894b59 457 if (refclk == 100000)
b91ad0ec
ZW
458 limit = &intel_limits_ironlake_single_lvds_100m;
459 else
460 limit = &intel_limits_ironlake_single_lvds;
461 }
c6bb3538 462 } else
b91ad0ec 463 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
464
465 return limit;
466}
467
409ee761 468static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 469{
409ee761 470 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
471 const intel_limit_t *limit;
472
d0737e1d 473 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 474 if (intel_is_dual_link_lvds(dev))
e4b36699 475 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 476 else
e4b36699 477 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 480 limit = &intel_limits_g4x_hdmi;
d0737e1d 481 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 482 limit = &intel_limits_g4x_sdvo;
044c7c41 483 } else /* The option is for other outputs */
e4b36699 484 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
485
486 return limit;
487}
488
409ee761 489static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 490{
409ee761 491 struct drm_device *dev = crtc->base.dev;
79e53945
JB
492 const intel_limit_t *limit;
493
bad720ff 494 if (HAS_PCH_SPLIT(dev))
1b894b59 495 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 496 else if (IS_G4X(dev)) {
044c7c41 497 limit = intel_g4x_limit(crtc);
f2b115e6 498 } else if (IS_PINEVIEW(dev)) {
d0737e1d 499 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 500 limit = &intel_limits_pineview_lvds;
2177832f 501 else
f2b115e6 502 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
503 } else if (IS_CHERRYVIEW(dev)) {
504 limit = &intel_limits_chv;
a0c4da24 505 } else if (IS_VALLEYVIEW(dev)) {
dc730512 506 limit = &intel_limits_vlv;
a6c45cf0 507 } else if (!IS_GEN2(dev)) {
d0737e1d 508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
509 limit = &intel_limits_i9xx_lvds;
510 else
511 limit = &intel_limits_i9xx_sdvo;
79e53945 512 } else {
d0737e1d 513 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 514 limit = &intel_limits_i8xx_lvds;
d0737e1d 515 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 516 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
517 else
518 limit = &intel_limits_i8xx_dac;
79e53945
JB
519 }
520 return limit;
521}
522
f2b115e6
AJ
523/* m1 is reserved as 0 in Pineview, n is a ring counter */
524static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 525{
2177832f
SL
526 clock->m = clock->m2 + 2;
527 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return;
fb03ac01
VS
530 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
532}
533
7429e9d4
DV
534static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535{
536 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537}
538
ac58c3f0 539static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 540{
7429e9d4 541 clock->m = i9xx_dpll_compute_m(clock);
79e53945 542 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
543 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544 return;
fb03ac01
VS
545 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
547}
548
ef9348c8
CML
549static void chv_clock(int refclk, intel_clock_t *clock)
550{
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558}
559
7c04d1d9 560#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
561/**
562 * Returns whether the given set of divisors are valid for a given refclk with
563 * the given connectors.
564 */
565
1b894b59
CW
566static bool intel_PLL_is_valid(struct drm_device *dev,
567 const intel_limit_t *limit,
568 const intel_clock_t *clock)
79e53945 569{
f01b7962
VS
570 if (clock->n < limit->n.min || limit->n.max < clock->n)
571 INTELPllInvalid("n out of range\n");
79e53945 572 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 573 INTELPllInvalid("p1 out of range\n");
79e53945 574 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 575 INTELPllInvalid("m2 out of range\n");
79e53945 576 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 577 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
578
579 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580 if (clock->m1 <= clock->m2)
581 INTELPllInvalid("m1 <= m2\n");
582
583 if (!IS_VALLEYVIEW(dev)) {
584 if (clock->p < limit->p.min || limit->p.max < clock->p)
585 INTELPllInvalid("p out of range\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
588 }
589
79e53945 590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 591 INTELPllInvalid("vco out of range\n");
79e53945
JB
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
594 */
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 596 INTELPllInvalid("dot out of range\n");
79e53945
JB
597
598 return true;
599}
600
d4906093 601static bool
a919ff14 602i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
79e53945 605{
a919ff14 606 struct drm_device *dev = crtc->base.dev;
79e53945 607 intel_clock_t clock;
79e53945
JB
608 int err = target;
609
d0737e1d 610 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 611 /*
a210b028
DV
612 * For LVDS just rely on its current settings for dual-channel.
613 * We haven't figured out how to reliably set up different
614 * single/dual channel state, if we even can.
79e53945 615 */
1974cad0 616 if (intel_is_dual_link_lvds(dev))
79e53945
JB
617 clock.p2 = limit->p2.p2_fast;
618 else
619 clock.p2 = limit->p2.p2_slow;
620 } else {
621 if (target < limit->p2.dot_limit)
622 clock.p2 = limit->p2.p2_slow;
623 else
624 clock.p2 = limit->p2.p2_fast;
625 }
626
0206e353 627 memset(best_clock, 0, sizeof(*best_clock));
79e53945 628
42158660
ZY
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 633 if (clock.m2 >= clock.m1)
42158660
ZY
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
639 int this_err;
640
ac58c3f0
DV
641 i9xx_clock(refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645 if (match_clock &&
646 clock.p != match_clock->p)
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err) {
651 *best_clock = clock;
652 err = this_err;
653 }
654 }
655 }
656 }
657 }
658
659 return (err != target);
660}
661
662static bool
a919ff14 663pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
664 int target, int refclk, intel_clock_t *match_clock,
665 intel_clock_t *best_clock)
79e53945 666{
a919ff14 667 struct drm_device *dev = crtc->base.dev;
79e53945 668 intel_clock_t clock;
79e53945
JB
669 int err = target;
670
d0737e1d 671 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 672 /*
a210b028
DV
673 * For LVDS just rely on its current settings for dual-channel.
674 * We haven't figured out how to reliably set up different
675 * single/dual channel state, if we even can.
79e53945 676 */
1974cad0 677 if (intel_is_dual_link_lvds(dev))
79e53945
JB
678 clock.p2 = limit->p2.p2_fast;
679 else
680 clock.p2 = limit->p2.p2_slow;
681 } else {
682 if (target < limit->p2.dot_limit)
683 clock.p2 = limit->p2.p2_slow;
684 else
685 clock.p2 = limit->p2.p2_fast;
686 }
687
0206e353 688 memset(best_clock, 0, sizeof(*best_clock));
79e53945 689
42158660
ZY
690 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691 clock.m1++) {
692 for (clock.m2 = limit->m2.min;
693 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
698 int this_err;
699
ac58c3f0 700 pineview_clock(refclk, &clock);
1b894b59
CW
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
79e53945 703 continue;
cec2f356
SP
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
79e53945
JB
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719}
720
d4906093 721static bool
a919ff14 722g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
723 int target, int refclk, intel_clock_t *match_clock,
724 intel_clock_t *best_clock)
d4906093 725{
a919ff14 726 struct drm_device *dev = crtc->base.dev;
d4906093
ML
727 intel_clock_t clock;
728 int max_n;
729 bool found;
6ba770dc
AJ
730 /* approximately equals target * 0.00585 */
731 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
732 found = false;
733
d0737e1d 734 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 735 if (intel_is_dual_link_lvds(dev))
d4906093
ML
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
744 }
745
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
f77f13e2 748 /* based on hardware requirement, prefer smaller n to precision */
d4906093 749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 750 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
ac58c3f0 759 i9xx_clock(refclk, &clock);
1b894b59
CW
760 if (!intel_PLL_is_valid(dev, limit,
761 &clock))
d4906093 762 continue;
1b894b59
CW
763
764 this_err = abs(clock.dot - target);
d4906093
ML
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
770 }
771 }
772 }
773 }
774 }
2c07245f
ZW
775 return found;
776}
777
a0c4da24 778static bool
a919ff14 779vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
780 int target, int refclk, intel_clock_t *match_clock,
781 intel_clock_t *best_clock)
a0c4da24 782{
a919ff14 783 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 784 intel_clock_t clock;
69e4f900 785 unsigned int bestppm = 1000000;
27e639bf
VS
786 /* min update 19.2 MHz */
787 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 788 bool found = false;
a0c4da24 789
6b4bf1c4
VS
790 target *= 5; /* fast clock */
791
792 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
793
794 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 796 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 797 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 799 clock.p = clock.p1 * clock.p2;
a0c4da24 800 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 801 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
802 unsigned int ppm, diff;
803
6b4bf1c4
VS
804 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805 refclk * clock.m1);
806
807 vlv_clock(refclk, &clock);
43b0ac53 808
f01b7962
VS
809 if (!intel_PLL_is_valid(dev, limit,
810 &clock))
43b0ac53
VS
811 continue;
812
6b4bf1c4
VS
813 diff = abs(clock.dot - target);
814 ppm = div_u64(1000000ULL * diff, target);
815
816 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 817 bestppm = 0;
6b4bf1c4 818 *best_clock = clock;
49e497ef 819 found = true;
43b0ac53 820 }
6b4bf1c4 821
c686122c 822 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 823 bestppm = ppm;
6b4bf1c4 824 *best_clock = clock;
49e497ef 825 found = true;
a0c4da24
JB
826 }
827 }
828 }
829 }
830 }
a0c4da24 831
49e497ef 832 return found;
a0c4da24 833}
a4fc5ed6 834
ef9348c8 835static bool
a919ff14 836chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839{
a919ff14 840 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
841 intel_clock_t clock;
842 uint64_t m2;
843 int found = false;
844
845 memset(best_clock, 0, sizeof(*best_clock));
846
847 /*
848 * Based on hardware doc, the n always set to 1, and m1 always
849 * set to 2. If requires to support 200Mhz refclk, we need to
850 * revisit this because n may not 1 anymore.
851 */
852 clock.n = 1, clock.m1 = 2;
853 target *= 5; /* fast clock */
854
855 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856 for (clock.p2 = limit->p2.p2_fast;
857 clock.p2 >= limit->p2.p2_slow;
858 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860 clock.p = clock.p1 * clock.p2;
861
862 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863 clock.n) << 22, refclk * clock.m1);
864
865 if (m2 > INT_MAX/clock.m1)
866 continue;
867
868 clock.m2 = m2;
869
870 chv_clock(refclk, &clock);
871
872 if (!intel_PLL_is_valid(dev, limit, &clock))
873 continue;
874
875 /* based on hardware requirement, prefer bigger p
876 */
877 if (clock.p > best_clock->p) {
878 *best_clock = clock;
879 found = true;
880 }
881 }
882 }
883
884 return found;
885}
886
20ddf665
VS
887bool intel_crtc_active(struct drm_crtc *crtc)
888{
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 /* Be paranoid as we can arrive here with only partial
892 * state retrieved from the hardware during setup.
893 *
241bfc38 894 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
895 * as Haswell has gained clock readout/fastboot support.
896 *
66e514c1 897 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
898 * properly reconstruct framebuffers.
899 */
f4510a27 900 return intel_crtc->active && crtc->primary->fb &&
6e3c9717 901 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
902}
903
a5c961d1
PZ
904enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905 enum pipe pipe)
906{
907 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
909
6e3c9717 910 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
911}
912
fbf49ea2
VS
913static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
914{
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 u32 reg = PIPEDSL(pipe);
917 u32 line1, line2;
918 u32 line_mask;
919
920 if (IS_GEN2(dev))
921 line_mask = DSL_LINEMASK_GEN2;
922 else
923 line_mask = DSL_LINEMASK_GEN3;
924
925 line1 = I915_READ(reg) & line_mask;
926 mdelay(5);
927 line2 = I915_READ(reg) & line_mask;
928
929 return line1 == line2;
930}
931
ab7ad7f6
KP
932/*
933 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 934 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
935 *
936 * After disabling a pipe, we can't wait for vblank in the usual way,
937 * spinning on the vblank interrupt status bit, since we won't actually
938 * see an interrupt when the pipe is disabled.
939 *
ab7ad7f6
KP
940 * On Gen4 and above:
941 * wait for the pipe register state bit to turn off
942 *
943 * Otherwise:
944 * wait for the display line value to settle (it usually
945 * ends up stopping at the start of the next frame).
58e10eb9 946 *
9d0498a2 947 */
575f7ab7 948static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 949{
575f7ab7 950 struct drm_device *dev = crtc->base.dev;
9d0498a2 951 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 952 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 953 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
954
955 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 956 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
957
958 /* Wait for the Pipe State to go off */
58e10eb9
CW
959 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
960 100))
284637d9 961 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 962 } else {
ab7ad7f6 963 /* Wait for the display line to settle */
fbf49ea2 964 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 965 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 966 }
79e53945
JB
967}
968
b0ea7d37
DL
969/*
970 * ibx_digital_port_connected - is the specified port connected?
971 * @dev_priv: i915 private structure
972 * @port: the port to test
973 *
974 * Returns true if @port is connected, false otherwise.
975 */
976bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
977 struct intel_digital_port *port)
978{
979 u32 bit;
980
c36346e3 981 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 982 switch (port->port) {
c36346e3
DL
983 case PORT_B:
984 bit = SDE_PORTB_HOTPLUG;
985 break;
986 case PORT_C:
987 bit = SDE_PORTC_HOTPLUG;
988 break;
989 case PORT_D:
990 bit = SDE_PORTD_HOTPLUG;
991 break;
992 default:
993 return true;
994 }
995 } else {
eba905b2 996 switch (port->port) {
c36346e3
DL
997 case PORT_B:
998 bit = SDE_PORTB_HOTPLUG_CPT;
999 break;
1000 case PORT_C:
1001 bit = SDE_PORTC_HOTPLUG_CPT;
1002 break;
1003 case PORT_D:
1004 bit = SDE_PORTD_HOTPLUG_CPT;
1005 break;
1006 default:
1007 return true;
1008 }
b0ea7d37
DL
1009 }
1010
1011 return I915_READ(SDEISR) & bit;
1012}
1013
b24e7179
JB
1014static const char *state_string(bool enabled)
1015{
1016 return enabled ? "on" : "off";
1017}
1018
1019/* Only for pre-ILK configs */
55607e8a
DV
1020void assert_pll(struct drm_i915_private *dev_priv,
1021 enum pipe pipe, bool state)
b24e7179
JB
1022{
1023 int reg;
1024 u32 val;
1025 bool cur_state;
1026
1027 reg = DPLL(pipe);
1028 val = I915_READ(reg);
1029 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1030 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1031 "PLL state assertion failure (expected %s, current %s)\n",
1032 state_string(state), state_string(cur_state));
1033}
b24e7179 1034
23538ef1
JN
1035/* XXX: the dsi pll is shared between MIPI DSI ports */
1036static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1037{
1038 u32 val;
1039 bool cur_state;
1040
1041 mutex_lock(&dev_priv->dpio_lock);
1042 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1043 mutex_unlock(&dev_priv->dpio_lock);
1044
1045 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1046 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1047 "DSI PLL state assertion failure (expected %s, current %s)\n",
1048 state_string(state), state_string(cur_state));
1049}
1050#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1051#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1052
55607e8a 1053struct intel_shared_dpll *
e2b78267
DV
1054intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1055{
1056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1057
6e3c9717 1058 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1059 return NULL;
1060
6e3c9717 1061 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1062}
1063
040484af 1064/* For ILK+ */
55607e8a
DV
1065void assert_shared_dpll(struct drm_i915_private *dev_priv,
1066 struct intel_shared_dpll *pll,
1067 bool state)
040484af 1068{
040484af 1069 bool cur_state;
5358901f 1070 struct intel_dpll_hw_state hw_state;
040484af 1071
92b27b08 1072 if (WARN (!pll,
46edb027 1073 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1074 return;
ee7b9f93 1075
5358901f 1076 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1077 I915_STATE_WARN(cur_state != state,
5358901f
DV
1078 "%s assertion failure (expected %s, current %s)\n",
1079 pll->name, state_string(state), state_string(cur_state));
040484af 1080}
040484af
JB
1081
1082static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1083 enum pipe pipe, bool state)
1084{
1085 int reg;
1086 u32 val;
1087 bool cur_state;
ad80a810
PZ
1088 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1089 pipe);
040484af 1090
affa9354
PZ
1091 if (HAS_DDI(dev_priv->dev)) {
1092 /* DDI does not have a specific FDI_TX register */
ad80a810 1093 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1094 val = I915_READ(reg);
ad80a810 1095 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1096 } else {
1097 reg = FDI_TX_CTL(pipe);
1098 val = I915_READ(reg);
1099 cur_state = !!(val & FDI_TX_ENABLE);
1100 }
e2c719b7 1101 I915_STATE_WARN(cur_state != state,
040484af
JB
1102 "FDI TX state assertion failure (expected %s, current %s)\n",
1103 state_string(state), state_string(cur_state));
1104}
1105#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1106#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1107
1108static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1109 enum pipe pipe, bool state)
1110{
1111 int reg;
1112 u32 val;
1113 bool cur_state;
1114
d63fa0dc
PZ
1115 reg = FDI_RX_CTL(pipe);
1116 val = I915_READ(reg);
1117 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1118 I915_STATE_WARN(cur_state != state,
040484af
JB
1119 "FDI RX state assertion failure (expected %s, current %s)\n",
1120 state_string(state), state_string(cur_state));
1121}
1122#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1123#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1124
1125static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1127{
1128 int reg;
1129 u32 val;
1130
1131 /* ILK FDI PLL is always enabled */
3d13ef2e 1132 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1133 return;
1134
bf507ef7 1135 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1136 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1137 return;
1138
040484af
JB
1139 reg = FDI_TX_CTL(pipe);
1140 val = I915_READ(reg);
e2c719b7 1141 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1142}
1143
55607e8a
DV
1144void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
040484af
JB
1146{
1147 int reg;
1148 u32 val;
55607e8a 1149 bool cur_state;
040484af
JB
1150
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
55607e8a 1153 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1154 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1155 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
040484af
JB
1157}
1158
b680c37a
DV
1159void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
ea0760cf 1161{
bedd4dba
JN
1162 struct drm_device *dev = dev_priv->dev;
1163 int pp_reg;
ea0760cf
JB
1164 u32 val;
1165 enum pipe panel_pipe = PIPE_A;
0de3b485 1166 bool locked = true;
ea0760cf 1167
bedd4dba
JN
1168 if (WARN_ON(HAS_DDI(dev)))
1169 return;
1170
1171 if (HAS_PCH_SPLIT(dev)) {
1172 u32 port_sel;
1173
ea0760cf 1174 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1175 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1176
1177 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1178 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1179 panel_pipe = PIPE_B;
1180 /* XXX: else fix for eDP */
1181 } else if (IS_VALLEYVIEW(dev)) {
1182 /* presumably write lock depends on pipe, not port select */
1183 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1184 panel_pipe = pipe;
ea0760cf
JB
1185 } else {
1186 pp_reg = PP_CONTROL;
bedd4dba
JN
1187 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1188 panel_pipe = PIPE_B;
ea0760cf
JB
1189 }
1190
1191 val = I915_READ(pp_reg);
1192 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1193 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1194 locked = false;
1195
e2c719b7 1196 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1197 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1198 pipe_name(pipe));
ea0760cf
JB
1199}
1200
93ce0ba6
JN
1201static void assert_cursor(struct drm_i915_private *dev_priv,
1202 enum pipe pipe, bool state)
1203{
1204 struct drm_device *dev = dev_priv->dev;
1205 bool cur_state;
1206
d9d82081 1207 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1208 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1209 else
5efb3e28 1210 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1211
e2c719b7 1212 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1213 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1214 pipe_name(pipe), state_string(state), state_string(cur_state));
1215}
1216#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1217#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1218
b840d907
JB
1219void assert_pipe(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
b24e7179
JB
1221{
1222 int reg;
1223 u32 val;
63d7bbe9 1224 bool cur_state;
702e7a56
PZ
1225 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226 pipe);
b24e7179 1227
b6b5d049
VS
1228 /* if we need the pipe quirk it must be always on */
1229 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1230 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1231 state = true;
1232
f458ebbc 1233 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1234 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1235 cur_state = false;
1236 } else {
1237 reg = PIPECONF(cpu_transcoder);
1238 val = I915_READ(reg);
1239 cur_state = !!(val & PIPECONF_ENABLE);
1240 }
1241
e2c719b7 1242 I915_STATE_WARN(cur_state != state,
63d7bbe9 1243 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1244 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1245}
1246
931872fc
CW
1247static void assert_plane(struct drm_i915_private *dev_priv,
1248 enum plane plane, bool state)
b24e7179
JB
1249{
1250 int reg;
1251 u32 val;
931872fc 1252 bool cur_state;
b24e7179
JB
1253
1254 reg = DSPCNTR(plane);
1255 val = I915_READ(reg);
931872fc 1256 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1257 I915_STATE_WARN(cur_state != state,
931872fc
CW
1258 "plane %c assertion failure (expected %s, current %s)\n",
1259 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1260}
1261
931872fc
CW
1262#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1264
b24e7179
JB
1265static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267{
653e1026 1268 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1269 int reg, i;
1270 u32 val;
1271 int cur_pipe;
1272
653e1026
VS
1273 /* Primary planes are fixed to pipes on gen4+ */
1274 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1275 reg = DSPCNTR(pipe);
1276 val = I915_READ(reg);
e2c719b7 1277 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1278 "plane %c assertion failure, should be disabled but not\n",
1279 plane_name(pipe));
19ec1358 1280 return;
28c05794 1281 }
19ec1358 1282
b24e7179 1283 /* Need to check both planes against the pipe */
055e393f 1284 for_each_pipe(dev_priv, i) {
b24e7179
JB
1285 reg = DSPCNTR(i);
1286 val = I915_READ(reg);
1287 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1288 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1289 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1290 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1291 plane_name(i), pipe_name(pipe));
b24e7179
JB
1292 }
1293}
1294
19332d7a
JB
1295static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe)
1297{
20674eef 1298 struct drm_device *dev = dev_priv->dev;
1fe47785 1299 int reg, sprite;
19332d7a
JB
1300 u32 val;
1301
7feb8b88
DL
1302 if (INTEL_INFO(dev)->gen >= 9) {
1303 for_each_sprite(pipe, sprite) {
1304 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1305 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1306 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1307 sprite, pipe_name(pipe));
1308 }
1309 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1310 for_each_sprite(pipe, sprite) {
1311 reg = SPCNTR(pipe, sprite);
20674eef 1312 val = I915_READ(reg);
e2c719b7 1313 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1314 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1315 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1316 }
1317 } else if (INTEL_INFO(dev)->gen >= 7) {
1318 reg = SPRCTL(pipe);
19332d7a 1319 val = I915_READ(reg);
e2c719b7 1320 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1321 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1322 plane_name(pipe), pipe_name(pipe));
1323 } else if (INTEL_INFO(dev)->gen >= 5) {
1324 reg = DVSCNTR(pipe);
19332d7a 1325 val = I915_READ(reg);
e2c719b7 1326 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1328 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1329 }
1330}
1331
08c71e5e
VS
1332static void assert_vblank_disabled(struct drm_crtc *crtc)
1333{
e2c719b7 1334 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1335 drm_crtc_vblank_put(crtc);
1336}
1337
89eff4be 1338static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1339{
1340 u32 val;
1341 bool enabled;
1342
e2c719b7 1343 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1344
92f2584a
JB
1345 val = I915_READ(PCH_DREF_CONTROL);
1346 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1347 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1348 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1349}
1350
ab9412ba
DV
1351static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe)
92f2584a
JB
1353{
1354 int reg;
1355 u32 val;
1356 bool enabled;
1357
ab9412ba 1358 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1359 val = I915_READ(reg);
1360 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1361 I915_STATE_WARN(enabled,
9db4a9c7
JB
1362 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1363 pipe_name(pipe));
92f2584a
JB
1364}
1365
4e634389
KP
1366static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1367 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1368{
1369 if ((val & DP_PORT_EN) == 0)
1370 return false;
1371
1372 if (HAS_PCH_CPT(dev_priv->dev)) {
1373 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1374 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
44f37d1f
CML
1377 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
f0575e92
KP
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385}
1386
1519b995
KP
1387static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389{
dc0fa718 1390 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1395 return false;
44f37d1f
CML
1396 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1519b995 1399 } else {
dc0fa718 1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1401 return false;
1402 }
1403 return true;
1404}
1405
1406static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408{
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv->dev)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420}
1421
1422static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424{
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv->dev)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435}
1436
291906f1 1437static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1438 enum pipe pipe, int reg, u32 port_sel)
291906f1 1439{
47a05eca 1440 u32 val = I915_READ(reg);
e2c719b7 1441 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1442 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1443 reg, pipe_name(pipe));
de9a35ab 1444
e2c719b7 1445 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1446 && (val & DP_PIPEB_SELECT),
de9a35ab 1447 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1448}
1449
1450static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, int reg)
1452{
47a05eca 1453 u32 val = I915_READ(reg);
e2c719b7 1454 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1455 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1456 reg, pipe_name(pipe));
de9a35ab 1457
e2c719b7 1458 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1459 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1460 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1461}
1462
1463static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465{
1466 int reg;
1467 u32 val;
291906f1 1468
f0575e92
KP
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1472
1473 reg = PCH_ADPA;
1474 val = I915_READ(reg);
e2c719b7 1475 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1476 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1477 pipe_name(pipe));
291906f1
JB
1478
1479 reg = PCH_LVDS;
1480 val = I915_READ(reg);
e2c719b7 1481 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1482 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1483 pipe_name(pipe));
291906f1 1484
e2debe91
PZ
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1488}
1489
40e9cf64
JB
1490static void intel_init_dpio(struct drm_device *dev)
1491{
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494 if (!IS_VALLEYVIEW(dev))
1495 return;
1496
a09caddd
CML
1497 /*
1498 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1499 * CHV x1 PHY (DP/HDMI D)
1500 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1501 */
1502 if (IS_CHERRYVIEW(dev)) {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1505 } else {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1507 }
5382f5f3
JB
1508}
1509
d288f65f 1510static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1511 const struct intel_crtc_state *pipe_config)
87442f73 1512{
426115cf
DV
1513 struct drm_device *dev = crtc->base.dev;
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515 int reg = DPLL(crtc->pipe);
d288f65f 1516 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1517
426115cf 1518 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1519
1520 /* No really, not for ILK+ */
1521 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1522
1523 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1524 if (IS_MOBILE(dev_priv->dev))
426115cf 1525 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1526
426115cf
DV
1527 I915_WRITE(reg, dpll);
1528 POSTING_READ(reg);
1529 udelay(150);
1530
1531 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1532 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1533
d288f65f 1534 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1535 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1536
1537 /* We do this three times for luck */
426115cf 1538 I915_WRITE(reg, dpll);
87442f73
DV
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
426115cf 1541 I915_WRITE(reg, dpll);
87442f73
DV
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
426115cf 1544 I915_WRITE(reg, dpll);
87442f73
DV
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
1547}
1548
d288f65f 1549static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1550 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1551{
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 int pipe = crtc->pipe;
1555 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1556 u32 tmp;
1557
1558 assert_pipe_disabled(dev_priv, crtc->pipe);
1559
1560 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1561
1562 mutex_lock(&dev_priv->dpio_lock);
1563
1564 /* Enable back the 10bit clock to display controller */
1565 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1566 tmp |= DPIO_DCLKP_EN;
1567 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1568
1569 /*
1570 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1571 */
1572 udelay(1);
1573
1574 /* Enable PLL */
d288f65f 1575 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1576
1577 /* Check PLL is locked */
a11b0703 1578 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1579 DRM_ERROR("PLL %d failed to lock\n", pipe);
1580
a11b0703 1581 /* not sure when this should be written */
d288f65f 1582 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1583 POSTING_READ(DPLL_MD(pipe));
1584
9d556c99
CML
1585 mutex_unlock(&dev_priv->dpio_lock);
1586}
1587
1c4e0274
VS
1588static int intel_num_dvo_pipes(struct drm_device *dev)
1589{
1590 struct intel_crtc *crtc;
1591 int count = 0;
1592
1593 for_each_intel_crtc(dev, crtc)
1594 count += crtc->active &&
409ee761 1595 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1596
1597 return count;
1598}
1599
66e3d5c0 1600static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1601{
66e3d5c0
DV
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 int reg = DPLL(crtc->pipe);
6e3c9717 1605 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1606
66e3d5c0 1607 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1608
63d7bbe9 1609 /* No really, not for ILK+ */
3d13ef2e 1610 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1611
1612 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1613 if (IS_MOBILE(dev) && !IS_I830(dev))
1614 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1615
1c4e0274
VS
1616 /* Enable DVO 2x clock on both PLLs if necessary */
1617 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1618 /*
1619 * It appears to be important that we don't enable this
1620 * for the current pipe before otherwise configuring the
1621 * PLL. No idea how this should be handled if multiple
1622 * DVO outputs are enabled simultaneosly.
1623 */
1624 dpll |= DPLL_DVO_2X_MODE;
1625 I915_WRITE(DPLL(!crtc->pipe),
1626 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1627 }
66e3d5c0
DV
1628
1629 /* Wait for the clocks to stabilize. */
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (INTEL_INFO(dev)->gen >= 4) {
1634 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1635 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1636 } else {
1637 /* The pixel multiplier can only be updated once the
1638 * DPLL is enabled and the clocks are stable.
1639 *
1640 * So write it again.
1641 */
1642 I915_WRITE(reg, dpll);
1643 }
63d7bbe9
JB
1644
1645 /* We do this three times for luck */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
66e3d5c0 1652 I915_WRITE(reg, dpll);
63d7bbe9
JB
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1655}
1656
1657/**
50b44a44 1658 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1659 * @dev_priv: i915 private structure
1660 * @pipe: pipe PLL to disable
1661 *
1662 * Disable the PLL for @pipe, making sure the pipe is off first.
1663 *
1664 * Note! This is for pre-ILK only.
1665 */
1c4e0274 1666static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1667{
1c4e0274
VS
1668 struct drm_device *dev = crtc->base.dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 enum pipe pipe = crtc->pipe;
1671
1672 /* Disable DVO 2x clock on both PLLs if necessary */
1673 if (IS_I830(dev) &&
409ee761 1674 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1675 intel_num_dvo_pipes(dev) == 1) {
1676 I915_WRITE(DPLL(PIPE_B),
1677 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1678 I915_WRITE(DPLL(PIPE_A),
1679 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1680 }
1681
b6b5d049
VS
1682 /* Don't disable pipe or pipe PLLs if needed */
1683 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1684 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1685 return;
1686
1687 /* Make sure the pipe isn't still relying on us */
1688 assert_pipe_disabled(dev_priv, pipe);
1689
50b44a44
DV
1690 I915_WRITE(DPLL(pipe), 0);
1691 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1692}
1693
f6071166
JB
1694static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695{
1696 u32 val = 0;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
e5cbfbfb
ID
1701 /*
1702 * Leave integrated clock source and reference clock enabled for pipe B.
1703 * The latter is needed for VGA hotplug / manual detection.
1704 */
f6071166 1705 if (pipe == PIPE_B)
e5cbfbfb 1706 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1707 I915_WRITE(DPLL(pipe), val);
1708 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1709
1710}
1711
1712static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713{
d752048d 1714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1715 u32 val;
1716
a11b0703
VS
1717 /* Make sure the pipe isn't still relying on us */
1718 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1719
a11b0703 1720 /* Set PLL en = 0 */
d17ec4ce 1721 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1722 if (pipe != PIPE_A)
1723 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
d752048d
VS
1726
1727 mutex_lock(&dev_priv->dpio_lock);
1728
1729 /* Disable 10bit clock to display controller */
1730 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731 val &= ~DPIO_DCLKP_EN;
1732 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1733
61407f6d
VS
1734 /* disable left/right clock distribution */
1735 if (pipe != PIPE_B) {
1736 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739 } else {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1743 }
1744
d752048d 1745 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1746}
1747
e4607fcf
CML
1748void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749 struct intel_digital_port *dport)
89b667f8
JB
1750{
1751 u32 port_mask;
00fc31b7 1752 int dpll_reg;
89b667f8 1753
e4607fcf
CML
1754 switch (dport->port) {
1755 case PORT_B:
89b667f8 1756 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1757 dpll_reg = DPLL(0);
e4607fcf
CML
1758 break;
1759 case PORT_C:
89b667f8 1760 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_D:
1764 port_mask = DPLL_PORTD_READY_MASK;
1765 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1766 break;
1767 default:
1768 BUG();
1769 }
89b667f8 1770
00fc31b7 1771 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1772 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1773 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1774}
1775
b14b1055
DV
1776static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1777{
1778 struct drm_device *dev = crtc->base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
be19f0ff
CW
1782 if (WARN_ON(pll == NULL))
1783 return;
1784
3e369b76 1785 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1786 if (pll->active == 0) {
1787 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788 WARN_ON(pll->on);
1789 assert_shared_dpll_disabled(dev_priv, pll);
1790
1791 pll->mode_set(dev_priv, pll);
1792 }
1793}
1794
92f2584a 1795/**
85b3894f 1796 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1797 * @dev_priv: i915 private structure
1798 * @pipe: pipe PLL to enable
1799 *
1800 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801 * drives the transcoder clock.
1802 */
85b3894f 1803static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1804{
3d13ef2e
DL
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1808
87a875bb 1809 if (WARN_ON(pll == NULL))
48da64a8
CW
1810 return;
1811
3e369b76 1812 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1813 return;
ee7b9f93 1814
74dd6928 1815 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1816 pll->name, pll->active, pll->on,
e2b78267 1817 crtc->base.base.id);
92f2584a 1818
cdbd2316
DV
1819 if (pll->active++) {
1820 WARN_ON(!pll->on);
e9d6944e 1821 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1822 return;
1823 }
f4a091c7 1824 WARN_ON(pll->on);
ee7b9f93 1825
bd2bb1b9
PZ
1826 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1827
46edb027 1828 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1829 pll->enable(dev_priv, pll);
ee7b9f93 1830 pll->on = true;
92f2584a
JB
1831}
1832
f6daaec2 1833static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1834{
3d13ef2e
DL
1835 struct drm_device *dev = crtc->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1837 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1838
92f2584a 1839 /* PCH only available on ILK+ */
3d13ef2e 1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1841 if (WARN_ON(pll == NULL))
ee7b9f93 1842 return;
92f2584a 1843
3e369b76 1844 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1845 return;
7a419866 1846
46edb027
DV
1847 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848 pll->name, pll->active, pll->on,
e2b78267 1849 crtc->base.base.id);
7a419866 1850
48da64a8 1851 if (WARN_ON(pll->active == 0)) {
e9d6944e 1852 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1853 return;
1854 }
1855
e9d6944e 1856 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1857 WARN_ON(!pll->on);
cdbd2316 1858 if (--pll->active)
7a419866 1859 return;
ee7b9f93 1860
46edb027 1861 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1862 pll->disable(dev_priv, pll);
ee7b9f93 1863 pll->on = false;
bd2bb1b9
PZ
1864
1865 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1866}
1867
b8a4f404
PZ
1868static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869 enum pipe pipe)
040484af 1870{
23670b32 1871 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1872 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1874 uint32_t reg, val, pipeconf_val;
040484af
JB
1875
1876 /* PCH only available on ILK+ */
55522f37 1877 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1878
1879 /* Make sure PCH DPLL is enabled */
e72f9fbf 1880 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1881 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1882
1883 /* FDI must be feeding us bits for PCH ports */
1884 assert_fdi_tx_enabled(dev_priv, pipe);
1885 assert_fdi_rx_enabled(dev_priv, pipe);
1886
23670b32
DV
1887 if (HAS_PCH_CPT(dev)) {
1888 /* Workaround: Set the timing override bit before enabling the
1889 * pch transcoder. */
1890 reg = TRANS_CHICKEN2(pipe);
1891 val = I915_READ(reg);
1892 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893 I915_WRITE(reg, val);
59c859d6 1894 }
23670b32 1895
ab9412ba 1896 reg = PCH_TRANSCONF(pipe);
040484af 1897 val = I915_READ(reg);
5f7f726d 1898 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1899
1900 if (HAS_PCH_IBX(dev_priv->dev)) {
1901 /*
1902 * make the BPC in transcoder be consistent with
1903 * that in pipeconf reg.
1904 */
dfd07d72
DV
1905 val &= ~PIPECONF_BPC_MASK;
1906 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1907 }
5f7f726d
PZ
1908
1909 val &= ~TRANS_INTERLACE_MASK;
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1911 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1912 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1913 val |= TRANS_LEGACY_INTERLACED_ILK;
1914 else
1915 val |= TRANS_INTERLACED;
5f7f726d
PZ
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
040484af
JB
1919 I915_WRITE(reg, val | TRANS_ENABLE);
1920 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1921 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1922}
1923
8fb033d7 1924static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1925 enum transcoder cpu_transcoder)
040484af 1926{
8fb033d7 1927 u32 val, pipeconf_val;
8fb033d7
PZ
1928
1929 /* PCH only available on ILK+ */
55522f37 1930 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1931
8fb033d7 1932 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1933 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1934 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1935
223a6fdf
PZ
1936 /* Workaround: set timing override bit. */
1937 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1938 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1939 I915_WRITE(_TRANSA_CHICKEN2, val);
1940
25f3ef11 1941 val = TRANS_ENABLE;
937bb610 1942 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1943
9a76b1c6
PZ
1944 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945 PIPECONF_INTERLACED_ILK)
a35f2679 1946 val |= TRANS_INTERLACED;
8fb033d7
PZ
1947 else
1948 val |= TRANS_PROGRESSIVE;
1949
ab9412ba
DV
1950 I915_WRITE(LPT_TRANSCONF, val);
1951 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1952 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1953}
1954
b8a4f404
PZ
1955static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956 enum pipe pipe)
040484af 1957{
23670b32
DV
1958 struct drm_device *dev = dev_priv->dev;
1959 uint32_t reg, val;
040484af
JB
1960
1961 /* FDI relies on the transcoder */
1962 assert_fdi_tx_disabled(dev_priv, pipe);
1963 assert_fdi_rx_disabled(dev_priv, pipe);
1964
291906f1
JB
1965 /* Ports must be off as well */
1966 assert_pch_ports_disabled(dev_priv, pipe);
1967
ab9412ba 1968 reg = PCH_TRANSCONF(pipe);
040484af
JB
1969 val = I915_READ(reg);
1970 val &= ~TRANS_ENABLE;
1971 I915_WRITE(reg, val);
1972 /* wait for PCH transcoder off, transcoder state */
1973 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1974 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1975
1976 if (!HAS_PCH_IBX(dev)) {
1977 /* Workaround: Clear the timing override chicken bit again. */
1978 reg = TRANS_CHICKEN2(pipe);
1979 val = I915_READ(reg);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(reg, val);
1982 }
040484af
JB
1983}
1984
ab4d966c 1985static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1986{
8fb033d7
PZ
1987 u32 val;
1988
ab9412ba 1989 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1990 val &= ~TRANS_ENABLE;
ab9412ba 1991 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1992 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1993 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1994 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1995
1996 /* Workaround: clear timing override bit. */
1997 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1998 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1999 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2000}
2001
b24e7179 2002/**
309cfea8 2003 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2004 * @crtc: crtc responsible for the pipe
b24e7179 2005 *
0372264a 2006 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2007 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2008 */
e1fdc473 2009static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2010{
0372264a
PZ
2011 struct drm_device *dev = crtc->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2014 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015 pipe);
1a240d4d 2016 enum pipe pch_transcoder;
b24e7179
JB
2017 int reg;
2018 u32 val;
2019
58c6eaa2 2020 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2021 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2022 assert_sprites_disabled(dev_priv, pipe);
2023
681e5811 2024 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2025 pch_transcoder = TRANSCODER_A;
2026 else
2027 pch_transcoder = pipe;
2028
b24e7179
JB
2029 /*
2030 * A pipe without a PLL won't actually be able to drive bits from
2031 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2032 * need the check.
2033 */
2034 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2035 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2036 assert_dsi_pll_enabled(dev_priv);
2037 else
2038 assert_pll_enabled(dev_priv, pipe);
040484af 2039 else {
6e3c9717 2040 if (crtc->config->has_pch_encoder) {
040484af 2041 /* if driving the PCH, we need FDI enabled */
cc391bbb 2042 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2043 assert_fdi_tx_pll_enabled(dev_priv,
2044 (enum pipe) cpu_transcoder);
040484af
JB
2045 }
2046 /* FIXME: assert CPU port conditions for SNB+ */
2047 }
b24e7179 2048
702e7a56 2049 reg = PIPECONF(cpu_transcoder);
b24e7179 2050 val = I915_READ(reg);
7ad25d48 2051 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2052 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2053 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2054 return;
7ad25d48 2055 }
00d70b15
CW
2056
2057 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2058 POSTING_READ(reg);
b24e7179
JB
2059}
2060
2061/**
309cfea8 2062 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2063 * @crtc: crtc whose pipes is to be disabled
b24e7179 2064 *
575f7ab7
VS
2065 * Disable the pipe of @crtc, making sure that various hardware
2066 * specific requirements are met, if applicable, e.g. plane
2067 * disabled, panel fitter off, etc.
b24e7179
JB
2068 *
2069 * Will wait until the pipe has shut down before returning.
2070 */
575f7ab7 2071static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2072{
575f7ab7 2073 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2075 enum pipe pipe = crtc->pipe;
b24e7179
JB
2076 int reg;
2077 u32 val;
2078
2079 /*
2080 * Make sure planes won't keep trying to pump pixels to us,
2081 * or we might hang the display.
2082 */
2083 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2084 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2085 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2086
702e7a56 2087 reg = PIPECONF(cpu_transcoder);
b24e7179 2088 val = I915_READ(reg);
00d70b15
CW
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2091
67adc644
VS
2092 /*
2093 * Double wide has implications for planes
2094 * so best keep it disabled when not needed.
2095 */
6e3c9717 2096 if (crtc->config->double_wide)
67adc644
VS
2097 val &= ~PIPECONF_DOUBLE_WIDE;
2098
2099 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2100 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2101 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2102 val &= ~PIPECONF_ENABLE;
2103
2104 I915_WRITE(reg, val);
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2107}
2108
d74362c9
KP
2109/*
2110 * Plane regs are double buffered, going from enabled->disabled needs a
2111 * trigger in order to latch. The display address reg provides this.
2112 */
1dba99f4
VS
2113void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2114 enum plane plane)
d74362c9 2115{
3d13ef2e
DL
2116 struct drm_device *dev = dev_priv->dev;
2117 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2118
2119 I915_WRITE(reg, I915_READ(reg));
2120 POSTING_READ(reg);
d74362c9
KP
2121}
2122
b24e7179 2123/**
262ca2b0 2124 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2125 * @plane: plane to be enabled
2126 * @crtc: crtc for the plane
b24e7179 2127 *
fdd508a6 2128 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2129 */
fdd508a6
VS
2130static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2131 struct drm_crtc *crtc)
b24e7179 2132{
fdd508a6
VS
2133 struct drm_device *dev = plane->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2136
2137 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2138 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2139
98ec7739
VS
2140 if (intel_crtc->primary_enabled)
2141 return;
0037f71c 2142
4c445e0e 2143 intel_crtc->primary_enabled = true;
939c2fe8 2144
fdd508a6
VS
2145 dev_priv->display.update_primary_plane(crtc, plane->fb,
2146 crtc->x, crtc->y);
33c3b0d1
VS
2147
2148 /*
2149 * BDW signals flip done immediately if the plane
2150 * is disabled, even if the plane enable is already
2151 * armed to occur at the next vblank :(
2152 */
2153 if (IS_BROADWELL(dev))
2154 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2155}
2156
b24e7179 2157/**
262ca2b0 2158 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2159 * @plane: plane to be disabled
2160 * @crtc: crtc for the plane
b24e7179 2161 *
fdd508a6 2162 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2163 */
fdd508a6
VS
2164static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2165 struct drm_crtc *crtc)
b24e7179 2166{
fdd508a6
VS
2167 struct drm_device *dev = plane->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2170
32b7eeec
MR
2171 if (WARN_ON(!intel_crtc->active))
2172 return;
b24e7179 2173
98ec7739
VS
2174 if (!intel_crtc->primary_enabled)
2175 return;
0037f71c 2176
4c445e0e 2177 intel_crtc->primary_enabled = false;
939c2fe8 2178
fdd508a6
VS
2179 dev_priv->display.update_primary_plane(crtc, plane->fb,
2180 crtc->x, crtc->y);
b24e7179
JB
2181}
2182
693db184
CW
2183static bool need_vtd_wa(struct drm_device *dev)
2184{
2185#ifdef CONFIG_INTEL_IOMMU
2186 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2187 return true;
2188#endif
2189 return false;
2190}
2191
ec2c981e 2192int
091df6cb
DV
2193intel_fb_align_height(struct drm_device *dev, int height,
2194 uint32_t pixel_format,
2195 uint64_t fb_format_modifier)
a57ce0b2
JB
2196{
2197 int tile_height;
2198
091df6cb
DV
2199 tile_height = fb_format_modifier == I915_FORMAT_MOD_X_TILED ?
2200 (IS_GEN2(dev) ? 16 : 8) : 1;
2201
a57ce0b2
JB
2202 return ALIGN(height, tile_height);
2203}
2204
127bd2ac 2205int
850c4cdc
TU
2206intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2207 struct drm_framebuffer *fb,
a4872ba6 2208 struct intel_engine_cs *pipelined)
6b95a207 2209{
850c4cdc 2210 struct drm_device *dev = fb->dev;
ce453d81 2211 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2212 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207
KH
2213 u32 alignment;
2214 int ret;
2215
ebcdd39e
MR
2216 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2217
05394f39 2218 switch (obj->tiling_mode) {
6b95a207 2219 case I915_TILING_NONE:
1fada4cc
DL
2220 if (INTEL_INFO(dev)->gen >= 9)
2221 alignment = 256 * 1024;
2222 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2223 alignment = 128 * 1024;
a6c45cf0 2224 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2225 alignment = 4 * 1024;
2226 else
2227 alignment = 64 * 1024;
6b95a207
KH
2228 break;
2229 case I915_TILING_X:
1fada4cc
DL
2230 if (INTEL_INFO(dev)->gen >= 9)
2231 alignment = 256 * 1024;
2232 else {
2233 /* pin() will align the object as required by fence */
2234 alignment = 0;
2235 }
6b95a207
KH
2236 break;
2237 case I915_TILING_Y:
80075d49 2238 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2239 return -EINVAL;
2240 default:
2241 BUG();
2242 }
2243
693db184
CW
2244 /* Note that the w/a also requires 64 PTE of padding following the
2245 * bo. We currently fill all unused PTE with the shadow page and so
2246 * we should always have valid PTE following the scanout preventing
2247 * the VT-d warning.
2248 */
2249 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2250 alignment = 256 * 1024;
2251
d6dd6843
PZ
2252 /*
2253 * Global gtt pte registers are special registers which actually forward
2254 * writes to a chunk of system memory. Which means that there is no risk
2255 * that the register values disappear as soon as we call
2256 * intel_runtime_pm_put(), so it is correct to wrap only the
2257 * pin/unpin/fence and not more.
2258 */
2259 intel_runtime_pm_get(dev_priv);
2260
ce453d81 2261 dev_priv->mm.interruptible = false;
2da3b9b9 2262 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2263 if (ret)
ce453d81 2264 goto err_interruptible;
6b95a207
KH
2265
2266 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2267 * fence, whereas 965+ only requires a fence if using
2268 * framebuffer compression. For simplicity, we always install
2269 * a fence as the cost is not that onerous.
2270 */
06d98131 2271 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2272 if (ret)
2273 goto err_unpin;
1690e1eb 2274
9a5a53b3 2275 i915_gem_object_pin_fence(obj);
6b95a207 2276
ce453d81 2277 dev_priv->mm.interruptible = true;
d6dd6843 2278 intel_runtime_pm_put(dev_priv);
6b95a207 2279 return 0;
48b956c5
CW
2280
2281err_unpin:
cc98b413 2282 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2283err_interruptible:
2284 dev_priv->mm.interruptible = true;
d6dd6843 2285 intel_runtime_pm_put(dev_priv);
48b956c5 2286 return ret;
6b95a207
KH
2287}
2288
1690e1eb
CW
2289void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2290{
ebcdd39e
MR
2291 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2292
1690e1eb 2293 i915_gem_object_unpin_fence(obj);
cc98b413 2294 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2295}
2296
c2c75131
DV
2297/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2298 * is assumed to be a power-of-two. */
bc752862
CW
2299unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2300 unsigned int tiling_mode,
2301 unsigned int cpp,
2302 unsigned int pitch)
c2c75131 2303{
bc752862
CW
2304 if (tiling_mode != I915_TILING_NONE) {
2305 unsigned int tile_rows, tiles;
c2c75131 2306
bc752862
CW
2307 tile_rows = *y / 8;
2308 *y %= 8;
c2c75131 2309
bc752862
CW
2310 tiles = *x / (512/cpp);
2311 *x %= 512/cpp;
2312
2313 return tile_rows * pitch * 8 + tiles * 4096;
2314 } else {
2315 unsigned int offset;
2316
2317 offset = *y * pitch + *x * cpp;
2318 *y = 0;
2319 *x = (offset & 4095) / cpp;
2320 return offset & -4096;
2321 }
c2c75131
DV
2322}
2323
b35d63fa 2324static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2325{
2326 switch (format) {
2327 case DISPPLANE_8BPP:
2328 return DRM_FORMAT_C8;
2329 case DISPPLANE_BGRX555:
2330 return DRM_FORMAT_XRGB1555;
2331 case DISPPLANE_BGRX565:
2332 return DRM_FORMAT_RGB565;
2333 default:
2334 case DISPPLANE_BGRX888:
2335 return DRM_FORMAT_XRGB8888;
2336 case DISPPLANE_RGBX888:
2337 return DRM_FORMAT_XBGR8888;
2338 case DISPPLANE_BGRX101010:
2339 return DRM_FORMAT_XRGB2101010;
2340 case DISPPLANE_RGBX101010:
2341 return DRM_FORMAT_XBGR2101010;
2342 }
2343}
2344
bc8d7dff
DL
2345static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2346{
2347 switch (format) {
2348 case PLANE_CTL_FORMAT_RGB_565:
2349 return DRM_FORMAT_RGB565;
2350 default:
2351 case PLANE_CTL_FORMAT_XRGB_8888:
2352 if (rgb_order) {
2353 if (alpha)
2354 return DRM_FORMAT_ABGR8888;
2355 else
2356 return DRM_FORMAT_XBGR8888;
2357 } else {
2358 if (alpha)
2359 return DRM_FORMAT_ARGB8888;
2360 else
2361 return DRM_FORMAT_XRGB8888;
2362 }
2363 case PLANE_CTL_FORMAT_XRGB_2101010:
2364 if (rgb_order)
2365 return DRM_FORMAT_XBGR2101010;
2366 else
2367 return DRM_FORMAT_XRGB2101010;
2368 }
2369}
2370
5724dbd1
DL
2371static bool
2372intel_alloc_plane_obj(struct intel_crtc *crtc,
2373 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2374{
2375 struct drm_device *dev = crtc->base.dev;
2376 struct drm_i915_gem_object *obj = NULL;
2377 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2378 struct drm_framebuffer *fb = &plane_config->fb->base;
46f297fb
JB
2379 u32 base = plane_config->base;
2380
ff2652ea
CW
2381 if (plane_config->size == 0)
2382 return false;
2383
46f297fb
JB
2384 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2385 plane_config->size);
2386 if (!obj)
484b41dd 2387 return false;
46f297fb 2388
49af449b
DL
2389 obj->tiling_mode = plane_config->tiling;
2390 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2391 obj->stride = fb->pitches[0];
46f297fb 2392
6bf129df
DL
2393 mode_cmd.pixel_format = fb->pixel_format;
2394 mode_cmd.width = fb->width;
2395 mode_cmd.height = fb->height;
2396 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2397 mode_cmd.modifier[0] = fb->modifier[0];
2398 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2399
2400 mutex_lock(&dev->struct_mutex);
2401
6bf129df 2402 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2403 &mode_cmd, obj)) {
46f297fb
JB
2404 DRM_DEBUG_KMS("intel fb init failed\n");
2405 goto out_unref_obj;
2406 }
2407
a071fa00 2408 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2409 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2410
2411 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2412 return true;
46f297fb
JB
2413
2414out_unref_obj:
2415 drm_gem_object_unreference(&obj->base);
2416 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2417 return false;
2418}
2419
afd65eb4
MR
2420/* Update plane->state->fb to match plane->fb after driver-internal updates */
2421static void
2422update_state_fb(struct drm_plane *plane)
2423{
2424 if (plane->fb == plane->state->fb)
2425 return;
2426
2427 if (plane->state->fb)
2428 drm_framebuffer_unreference(plane->state->fb);
2429 plane->state->fb = plane->fb;
2430 if (plane->state->fb)
2431 drm_framebuffer_reference(plane->state->fb);
2432}
2433
5724dbd1
DL
2434static void
2435intel_find_plane_obj(struct intel_crtc *intel_crtc,
2436 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2437{
2438 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2439 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2440 struct drm_crtc *c;
2441 struct intel_crtc *i;
2ff8fde1 2442 struct drm_i915_gem_object *obj;
484b41dd 2443
2d14030b 2444 if (!plane_config->fb)
484b41dd
JB
2445 return;
2446
f55548b5 2447 if (intel_alloc_plane_obj(intel_crtc, plane_config)) {
fb9981aa
DL
2448 struct drm_plane *primary = intel_crtc->base.primary;
2449
2450 primary->fb = &plane_config->fb->base;
2451 primary->state->crtc = &intel_crtc->base;
2452 update_state_fb(primary);
2453
484b41dd 2454 return;
f55548b5 2455 }
484b41dd 2456
2d14030b 2457 kfree(plane_config->fb);
484b41dd
JB
2458
2459 /*
2460 * Failed to alloc the obj, check to see if we should share
2461 * an fb with another CRTC instead
2462 */
70e1e0ec 2463 for_each_crtc(dev, c) {
484b41dd
JB
2464 i = to_intel_crtc(c);
2465
2466 if (c == &intel_crtc->base)
2467 continue;
2468
2ff8fde1
MR
2469 if (!i->active)
2470 continue;
2471
2472 obj = intel_fb_obj(c->primary->fb);
2473 if (obj == NULL)
484b41dd
JB
2474 continue;
2475
2ff8fde1 2476 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
fb9981aa
DL
2477 struct drm_plane *primary = intel_crtc->base.primary;
2478
d9ceb816
JB
2479 if (obj->tiling_mode != I915_TILING_NONE)
2480 dev_priv->preserve_bios_swizzle = true;
2481
66e514c1 2482 drm_framebuffer_reference(c->primary->fb);
fb9981aa
DL
2483 primary->fb = c->primary->fb;
2484 primary->state->crtc = &intel_crtc->base;
5ba76c41 2485 update_state_fb(intel_crtc->base.primary);
2ff8fde1 2486 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2487 break;
2488 }
2489 }
afd65eb4 2490
46f297fb
JB
2491}
2492
29b9bde6
DV
2493static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2494 struct drm_framebuffer *fb,
2495 int x, int y)
81255565
JB
2496{
2497 struct drm_device *dev = crtc->dev;
2498 struct drm_i915_private *dev_priv = dev->dev_private;
2499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2500 struct drm_i915_gem_object *obj;
81255565 2501 int plane = intel_crtc->plane;
e506a0c6 2502 unsigned long linear_offset;
81255565 2503 u32 dspcntr;
f45651ba 2504 u32 reg = DSPCNTR(plane);
48404c1e 2505 int pixel_size;
f45651ba 2506
fdd508a6
VS
2507 if (!intel_crtc->primary_enabled) {
2508 I915_WRITE(reg, 0);
2509 if (INTEL_INFO(dev)->gen >= 4)
2510 I915_WRITE(DSPSURF(plane), 0);
2511 else
2512 I915_WRITE(DSPADDR(plane), 0);
2513 POSTING_READ(reg);
2514 return;
2515 }
2516
c9ba6fad
VS
2517 obj = intel_fb_obj(fb);
2518 if (WARN_ON(obj == NULL))
2519 return;
2520
2521 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2522
f45651ba
VS
2523 dspcntr = DISPPLANE_GAMMA_ENABLE;
2524
fdd508a6 2525 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2526
2527 if (INTEL_INFO(dev)->gen < 4) {
2528 if (intel_crtc->pipe == PIPE_B)
2529 dspcntr |= DISPPLANE_SEL_PIPE_B;
2530
2531 /* pipesrc and dspsize control the size that is scaled from,
2532 * which should always be the user's requested size.
2533 */
2534 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2535 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2536 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2537 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2538 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2539 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2540 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2541 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2542 I915_WRITE(PRIMPOS(plane), 0);
2543 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2544 }
81255565 2545
57779d06
VS
2546 switch (fb->pixel_format) {
2547 case DRM_FORMAT_C8:
81255565
JB
2548 dspcntr |= DISPPLANE_8BPP;
2549 break;
57779d06
VS
2550 case DRM_FORMAT_XRGB1555:
2551 case DRM_FORMAT_ARGB1555:
2552 dspcntr |= DISPPLANE_BGRX555;
81255565 2553 break;
57779d06
VS
2554 case DRM_FORMAT_RGB565:
2555 dspcntr |= DISPPLANE_BGRX565;
2556 break;
2557 case DRM_FORMAT_XRGB8888:
2558 case DRM_FORMAT_ARGB8888:
2559 dspcntr |= DISPPLANE_BGRX888;
2560 break;
2561 case DRM_FORMAT_XBGR8888:
2562 case DRM_FORMAT_ABGR8888:
2563 dspcntr |= DISPPLANE_RGBX888;
2564 break;
2565 case DRM_FORMAT_XRGB2101010:
2566 case DRM_FORMAT_ARGB2101010:
2567 dspcntr |= DISPPLANE_BGRX101010;
2568 break;
2569 case DRM_FORMAT_XBGR2101010:
2570 case DRM_FORMAT_ABGR2101010:
2571 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2572 break;
2573 default:
baba133a 2574 BUG();
81255565 2575 }
57779d06 2576
f45651ba
VS
2577 if (INTEL_INFO(dev)->gen >= 4 &&
2578 obj->tiling_mode != I915_TILING_NONE)
2579 dspcntr |= DISPPLANE_TILED;
81255565 2580
de1aa629
VS
2581 if (IS_G4X(dev))
2582 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2583
b9897127 2584 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2585
c2c75131
DV
2586 if (INTEL_INFO(dev)->gen >= 4) {
2587 intel_crtc->dspaddr_offset =
bc752862 2588 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2589 pixel_size,
bc752862 2590 fb->pitches[0]);
c2c75131
DV
2591 linear_offset -= intel_crtc->dspaddr_offset;
2592 } else {
e506a0c6 2593 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2594 }
e506a0c6 2595
8e7d688b 2596 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2597 dspcntr |= DISPPLANE_ROTATE_180;
2598
6e3c9717
ACO
2599 x += (intel_crtc->config->pipe_src_w - 1);
2600 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2601
2602 /* Finding the last pixel of the last line of the display
2603 data and adding to linear_offset*/
2604 linear_offset +=
6e3c9717
ACO
2605 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2606 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2607 }
2608
2609 I915_WRITE(reg, dspcntr);
2610
f343c5f6
BW
2611 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2612 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2613 fb->pitches[0]);
01f2c773 2614 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2615 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2616 I915_WRITE(DSPSURF(plane),
2617 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2618 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2619 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2620 } else
f343c5f6 2621 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2622 POSTING_READ(reg);
17638cd6
JB
2623}
2624
29b9bde6
DV
2625static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2626 struct drm_framebuffer *fb,
2627 int x, int y)
17638cd6
JB
2628{
2629 struct drm_device *dev = crtc->dev;
2630 struct drm_i915_private *dev_priv = dev->dev_private;
2631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2632 struct drm_i915_gem_object *obj;
17638cd6 2633 int plane = intel_crtc->plane;
e506a0c6 2634 unsigned long linear_offset;
17638cd6 2635 u32 dspcntr;
f45651ba 2636 u32 reg = DSPCNTR(plane);
48404c1e 2637 int pixel_size;
f45651ba 2638
fdd508a6
VS
2639 if (!intel_crtc->primary_enabled) {
2640 I915_WRITE(reg, 0);
2641 I915_WRITE(DSPSURF(plane), 0);
2642 POSTING_READ(reg);
2643 return;
2644 }
2645
c9ba6fad
VS
2646 obj = intel_fb_obj(fb);
2647 if (WARN_ON(obj == NULL))
2648 return;
2649
2650 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2651
f45651ba
VS
2652 dspcntr = DISPPLANE_GAMMA_ENABLE;
2653
fdd508a6 2654 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2655
2656 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2657 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2658
57779d06
VS
2659 switch (fb->pixel_format) {
2660 case DRM_FORMAT_C8:
17638cd6
JB
2661 dspcntr |= DISPPLANE_8BPP;
2662 break;
57779d06
VS
2663 case DRM_FORMAT_RGB565:
2664 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2665 break;
57779d06
VS
2666 case DRM_FORMAT_XRGB8888:
2667 case DRM_FORMAT_ARGB8888:
2668 dspcntr |= DISPPLANE_BGRX888;
2669 break;
2670 case DRM_FORMAT_XBGR8888:
2671 case DRM_FORMAT_ABGR8888:
2672 dspcntr |= DISPPLANE_RGBX888;
2673 break;
2674 case DRM_FORMAT_XRGB2101010:
2675 case DRM_FORMAT_ARGB2101010:
2676 dspcntr |= DISPPLANE_BGRX101010;
2677 break;
2678 case DRM_FORMAT_XBGR2101010:
2679 case DRM_FORMAT_ABGR2101010:
2680 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2681 break;
2682 default:
baba133a 2683 BUG();
17638cd6
JB
2684 }
2685
2686 if (obj->tiling_mode != I915_TILING_NONE)
2687 dspcntr |= DISPPLANE_TILED;
17638cd6 2688
f45651ba 2689 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2690 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2691
b9897127 2692 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2693 intel_crtc->dspaddr_offset =
bc752862 2694 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2695 pixel_size,
bc752862 2696 fb->pitches[0]);
c2c75131 2697 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2698 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2699 dspcntr |= DISPPLANE_ROTATE_180;
2700
2701 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2702 x += (intel_crtc->config->pipe_src_w - 1);
2703 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2704
2705 /* Finding the last pixel of the last line of the display
2706 data and adding to linear_offset*/
2707 linear_offset +=
6e3c9717
ACO
2708 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2709 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2710 }
2711 }
2712
2713 I915_WRITE(reg, dspcntr);
17638cd6 2714
f343c5f6
BW
2715 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2716 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2717 fb->pitches[0]);
01f2c773 2718 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2719 I915_WRITE(DSPSURF(plane),
2720 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2721 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2722 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2723 } else {
2724 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2725 I915_WRITE(DSPLINOFF(plane), linear_offset);
2726 }
17638cd6 2727 POSTING_READ(reg);
17638cd6
JB
2728}
2729
70d21f0e
DL
2730static void skylake_update_primary_plane(struct drm_crtc *crtc,
2731 struct drm_framebuffer *fb,
2732 int x, int y)
2733{
2734 struct drm_device *dev = crtc->dev;
2735 struct drm_i915_private *dev_priv = dev->dev_private;
2736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2737 struct intel_framebuffer *intel_fb;
2738 struct drm_i915_gem_object *obj;
2739 int pipe = intel_crtc->pipe;
2740 u32 plane_ctl, stride;
2741
2742 if (!intel_crtc->primary_enabled) {
2743 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2744 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2745 POSTING_READ(PLANE_CTL(pipe, 0));
2746 return;
2747 }
2748
2749 plane_ctl = PLANE_CTL_ENABLE |
2750 PLANE_CTL_PIPE_GAMMA_ENABLE |
2751 PLANE_CTL_PIPE_CSC_ENABLE;
2752
2753 switch (fb->pixel_format) {
2754 case DRM_FORMAT_RGB565:
2755 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2756 break;
2757 case DRM_FORMAT_XRGB8888:
2758 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2759 break;
2760 case DRM_FORMAT_XBGR8888:
2761 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2762 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2763 break;
2764 case DRM_FORMAT_XRGB2101010:
2765 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2766 break;
2767 case DRM_FORMAT_XBGR2101010:
2768 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2769 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2770 break;
2771 default:
2772 BUG();
2773 }
2774
2775 intel_fb = to_intel_framebuffer(fb);
2776 obj = intel_fb->obj;
2777
2778 /*
2779 * The stride is either expressed as a multiple of 64 bytes chunks for
2780 * linear buffers or in number of tiles for tiled buffers.
2781 */
30af77c4
DV
2782 switch (fb->modifier[0]) {
2783 case DRM_FORMAT_MOD_NONE:
70d21f0e
DL
2784 stride = fb->pitches[0] >> 6;
2785 break;
30af77c4 2786 case I915_FORMAT_MOD_X_TILED:
70d21f0e
DL
2787 plane_ctl |= PLANE_CTL_TILED_X;
2788 stride = fb->pitches[0] >> 9;
2789 break;
2790 default:
2791 BUG();
2792 }
2793
2794 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
8e7d688b 2795 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
1447dde0 2796 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2797
2798 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2799
2800 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2801 i915_gem_obj_ggtt_offset(obj),
2802 x, y, fb->width, fb->height,
2803 fb->pitches[0]);
2804
2805 I915_WRITE(PLANE_POS(pipe, 0), 0);
2806 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2807 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2808 (intel_crtc->config->pipe_src_h - 1) << 16 |
2809 (intel_crtc->config->pipe_src_w - 1));
70d21f0e
DL
2810 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2811 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2812
2813 POSTING_READ(PLANE_SURF(pipe, 0));
2814}
2815
17638cd6
JB
2816/* Assume fb object is pinned & idle & fenced and just update base pointers */
2817static int
2818intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2819 int x, int y, enum mode_set_atomic state)
2820{
2821 struct drm_device *dev = crtc->dev;
2822 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2823
6b8e6ed0
CW
2824 if (dev_priv->display.disable_fbc)
2825 dev_priv->display.disable_fbc(dev);
81255565 2826
29b9bde6
DV
2827 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2828
2829 return 0;
81255565
JB
2830}
2831
7514747d 2832static void intel_complete_page_flips(struct drm_device *dev)
96a02917 2833{
96a02917
VS
2834 struct drm_crtc *crtc;
2835
70e1e0ec 2836 for_each_crtc(dev, crtc) {
96a02917
VS
2837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838 enum plane plane = intel_crtc->plane;
2839
2840 intel_prepare_page_flip(dev, plane);
2841 intel_finish_page_flip_plane(dev, plane);
2842 }
7514747d
VS
2843}
2844
2845static void intel_update_primary_planes(struct drm_device *dev)
2846{
2847 struct drm_i915_private *dev_priv = dev->dev_private;
2848 struct drm_crtc *crtc;
96a02917 2849
70e1e0ec 2850 for_each_crtc(dev, crtc) {
96a02917
VS
2851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2852
51fd371b 2853 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2854 /*
2855 * FIXME: Once we have proper support for primary planes (and
2856 * disabling them without disabling the entire crtc) allow again
66e514c1 2857 * a NULL crtc->primary->fb.
947fdaad 2858 */
f4510a27 2859 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2860 dev_priv->display.update_primary_plane(crtc,
66e514c1 2861 crtc->primary->fb,
262ca2b0
MR
2862 crtc->x,
2863 crtc->y);
51fd371b 2864 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2865 }
2866}
2867
7514747d
VS
2868void intel_prepare_reset(struct drm_device *dev)
2869{
f98ce92f
VS
2870 struct drm_i915_private *dev_priv = to_i915(dev);
2871 struct intel_crtc *crtc;
2872
7514747d
VS
2873 /* no reset support for gen2 */
2874 if (IS_GEN2(dev))
2875 return;
2876
2877 /* reset doesn't touch the display */
2878 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2879 return;
2880
2881 drm_modeset_lock_all(dev);
f98ce92f
VS
2882
2883 /*
2884 * Disabling the crtcs gracefully seems nicer. Also the
2885 * g33 docs say we should at least disable all the planes.
2886 */
2887 for_each_intel_crtc(dev, crtc) {
2888 if (crtc->active)
2889 dev_priv->display.crtc_disable(&crtc->base);
2890 }
7514747d
VS
2891}
2892
2893void intel_finish_reset(struct drm_device *dev)
2894{
2895 struct drm_i915_private *dev_priv = to_i915(dev);
2896
2897 /*
2898 * Flips in the rings will be nuked by the reset,
2899 * so complete all pending flips so that user space
2900 * will get its events and not get stuck.
2901 */
2902 intel_complete_page_flips(dev);
2903
2904 /* no reset support for gen2 */
2905 if (IS_GEN2(dev))
2906 return;
2907
2908 /* reset doesn't touch the display */
2909 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2910 /*
2911 * Flips in the rings have been nuked by the reset,
2912 * so update the base address of all primary
2913 * planes to the the last fb to make sure we're
2914 * showing the correct fb after a reset.
2915 */
2916 intel_update_primary_planes(dev);
2917 return;
2918 }
2919
2920 /*
2921 * The display has been reset as well,
2922 * so need a full re-initialization.
2923 */
2924 intel_runtime_pm_disable_interrupts(dev_priv);
2925 intel_runtime_pm_enable_interrupts(dev_priv);
2926
2927 intel_modeset_init_hw(dev);
2928
2929 spin_lock_irq(&dev_priv->irq_lock);
2930 if (dev_priv->display.hpd_irq_setup)
2931 dev_priv->display.hpd_irq_setup(dev);
2932 spin_unlock_irq(&dev_priv->irq_lock);
2933
2934 intel_modeset_setup_hw_state(dev, true);
2935
2936 intel_hpd_init(dev_priv);
2937
2938 drm_modeset_unlock_all(dev);
2939}
2940
14667a4b
CW
2941static int
2942intel_finish_fb(struct drm_framebuffer *old_fb)
2943{
2ff8fde1 2944 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2945 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2946 bool was_interruptible = dev_priv->mm.interruptible;
2947 int ret;
2948
14667a4b
CW
2949 /* Big Hammer, we also need to ensure that any pending
2950 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2951 * current scanout is retired before unpinning the old
2952 * framebuffer.
2953 *
2954 * This should only fail upon a hung GPU, in which case we
2955 * can safely continue.
2956 */
2957 dev_priv->mm.interruptible = false;
2958 ret = i915_gem_object_finish_gpu(obj);
2959 dev_priv->mm.interruptible = was_interruptible;
2960
2961 return ret;
2962}
2963
7d5e3799
CW
2964static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2965{
2966 struct drm_device *dev = crtc->dev;
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2969 bool pending;
2970
2971 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2972 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2973 return false;
2974
5e2d7afc 2975 spin_lock_irq(&dev->event_lock);
7d5e3799 2976 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2977 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2978
2979 return pending;
2980}
2981
e30e8f75
GP
2982static void intel_update_pipe_size(struct intel_crtc *crtc)
2983{
2984 struct drm_device *dev = crtc->base.dev;
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2986 const struct drm_display_mode *adjusted_mode;
2987
2988 if (!i915.fastboot)
2989 return;
2990
2991 /*
2992 * Update pipe size and adjust fitter if needed: the reason for this is
2993 * that in compute_mode_changes we check the native mode (not the pfit
2994 * mode) to see if we can flip rather than do a full mode set. In the
2995 * fastboot case, we'll flip, but if we don't update the pipesrc and
2996 * pfit state, we'll end up with a big fb scanned out into the wrong
2997 * sized surface.
2998 *
2999 * To fix this properly, we need to hoist the checks up into
3000 * compute_mode_changes (or above), check the actual pfit state and
3001 * whether the platform allows pfit disable with pipe active, and only
3002 * then update the pipesrc and pfit state, even on the flip path.
3003 */
3004
6e3c9717 3005 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3006
3007 I915_WRITE(PIPESRC(crtc->pipe),
3008 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3009 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3010 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3011 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3012 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3013 I915_WRITE(PF_CTL(crtc->pipe), 0);
3014 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3015 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3016 }
6e3c9717
ACO
3017 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3018 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3019}
3020
5e84e1a4
ZW
3021static void intel_fdi_normal_train(struct drm_crtc *crtc)
3022{
3023 struct drm_device *dev = crtc->dev;
3024 struct drm_i915_private *dev_priv = dev->dev_private;
3025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3026 int pipe = intel_crtc->pipe;
3027 u32 reg, temp;
3028
3029 /* enable normal train */
3030 reg = FDI_TX_CTL(pipe);
3031 temp = I915_READ(reg);
61e499bf 3032 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3033 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3034 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3035 } else {
3036 temp &= ~FDI_LINK_TRAIN_NONE;
3037 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3038 }
5e84e1a4
ZW
3039 I915_WRITE(reg, temp);
3040
3041 reg = FDI_RX_CTL(pipe);
3042 temp = I915_READ(reg);
3043 if (HAS_PCH_CPT(dev)) {
3044 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3045 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3046 } else {
3047 temp &= ~FDI_LINK_TRAIN_NONE;
3048 temp |= FDI_LINK_TRAIN_NONE;
3049 }
3050 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3051
3052 /* wait one idle pattern time */
3053 POSTING_READ(reg);
3054 udelay(1000);
357555c0
JB
3055
3056 /* IVB wants error correction enabled */
3057 if (IS_IVYBRIDGE(dev))
3058 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3059 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3060}
3061
1fbc0d78 3062static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3063{
1fbc0d78 3064 return crtc->base.enabled && crtc->active &&
6e3c9717 3065 crtc->config->has_pch_encoder;
1e833f40
DV
3066}
3067
01a415fd
DV
3068static void ivb_modeset_global_resources(struct drm_device *dev)
3069{
3070 struct drm_i915_private *dev_priv = dev->dev_private;
3071 struct intel_crtc *pipe_B_crtc =
3072 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3073 struct intel_crtc *pipe_C_crtc =
3074 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3075 uint32_t temp;
3076
1e833f40
DV
3077 /*
3078 * When everything is off disable fdi C so that we could enable fdi B
3079 * with all lanes. Note that we don't care about enabled pipes without
3080 * an enabled pch encoder.
3081 */
3082 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3083 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3084 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3085 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3086
3087 temp = I915_READ(SOUTH_CHICKEN1);
3088 temp &= ~FDI_BC_BIFURCATION_SELECT;
3089 DRM_DEBUG_KMS("disabling fdi C rx\n");
3090 I915_WRITE(SOUTH_CHICKEN1, temp);
3091 }
3092}
3093
8db9d77b
ZW
3094/* The FDI link training functions for ILK/Ibexpeak. */
3095static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3096{
3097 struct drm_device *dev = crtc->dev;
3098 struct drm_i915_private *dev_priv = dev->dev_private;
3099 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3100 int pipe = intel_crtc->pipe;
5eddb70b 3101 u32 reg, temp, tries;
8db9d77b 3102
1c8562f6 3103 /* FDI needs bits from pipe first */
0fc932b8 3104 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3105
e1a44743
AJ
3106 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3107 for train result */
5eddb70b
CW
3108 reg = FDI_RX_IMR(pipe);
3109 temp = I915_READ(reg);
e1a44743
AJ
3110 temp &= ~FDI_RX_SYMBOL_LOCK;
3111 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3112 I915_WRITE(reg, temp);
3113 I915_READ(reg);
e1a44743
AJ
3114 udelay(150);
3115
8db9d77b 3116 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3117 reg = FDI_TX_CTL(pipe);
3118 temp = I915_READ(reg);
627eb5a3 3119 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3120 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3121 temp &= ~FDI_LINK_TRAIN_NONE;
3122 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3123 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3124
5eddb70b
CW
3125 reg = FDI_RX_CTL(pipe);
3126 temp = I915_READ(reg);
8db9d77b
ZW
3127 temp &= ~FDI_LINK_TRAIN_NONE;
3128 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3129 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3130
3131 POSTING_READ(reg);
8db9d77b
ZW
3132 udelay(150);
3133
5b2adf89 3134 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3135 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3136 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3137 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3138
5eddb70b 3139 reg = FDI_RX_IIR(pipe);
e1a44743 3140 for (tries = 0; tries < 5; tries++) {
5eddb70b 3141 temp = I915_READ(reg);
8db9d77b
ZW
3142 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3143
3144 if ((temp & FDI_RX_BIT_LOCK)) {
3145 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3146 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3147 break;
3148 }
8db9d77b 3149 }
e1a44743 3150 if (tries == 5)
5eddb70b 3151 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3152
3153 /* Train 2 */
5eddb70b
CW
3154 reg = FDI_TX_CTL(pipe);
3155 temp = I915_READ(reg);
8db9d77b
ZW
3156 temp &= ~FDI_LINK_TRAIN_NONE;
3157 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3158 I915_WRITE(reg, temp);
8db9d77b 3159
5eddb70b
CW
3160 reg = FDI_RX_CTL(pipe);
3161 temp = I915_READ(reg);
8db9d77b
ZW
3162 temp &= ~FDI_LINK_TRAIN_NONE;
3163 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3164 I915_WRITE(reg, temp);
8db9d77b 3165
5eddb70b
CW
3166 POSTING_READ(reg);
3167 udelay(150);
8db9d77b 3168
5eddb70b 3169 reg = FDI_RX_IIR(pipe);
e1a44743 3170 for (tries = 0; tries < 5; tries++) {
5eddb70b 3171 temp = I915_READ(reg);
8db9d77b
ZW
3172 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3173
3174 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3175 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3176 DRM_DEBUG_KMS("FDI train 2 done.\n");
3177 break;
3178 }
8db9d77b 3179 }
e1a44743 3180 if (tries == 5)
5eddb70b 3181 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3182
3183 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3184
8db9d77b
ZW
3185}
3186
0206e353 3187static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3188 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3189 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3190 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3191 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3192};
3193
3194/* The FDI link training functions for SNB/Cougarpoint. */
3195static void gen6_fdi_link_train(struct drm_crtc *crtc)
3196{
3197 struct drm_device *dev = crtc->dev;
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3200 int pipe = intel_crtc->pipe;
fa37d39e 3201 u32 reg, temp, i, retry;
8db9d77b 3202
e1a44743
AJ
3203 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3204 for train result */
5eddb70b
CW
3205 reg = FDI_RX_IMR(pipe);
3206 temp = I915_READ(reg);
e1a44743
AJ
3207 temp &= ~FDI_RX_SYMBOL_LOCK;
3208 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3209 I915_WRITE(reg, temp);
3210
3211 POSTING_READ(reg);
e1a44743
AJ
3212 udelay(150);
3213
8db9d77b 3214 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3215 reg = FDI_TX_CTL(pipe);
3216 temp = I915_READ(reg);
627eb5a3 3217 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3218 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3219 temp &= ~FDI_LINK_TRAIN_NONE;
3220 temp |= FDI_LINK_TRAIN_PATTERN_1;
3221 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3222 /* SNB-B */
3223 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3224 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3225
d74cf324
DV
3226 I915_WRITE(FDI_RX_MISC(pipe),
3227 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3228
5eddb70b
CW
3229 reg = FDI_RX_CTL(pipe);
3230 temp = I915_READ(reg);
8db9d77b
ZW
3231 if (HAS_PCH_CPT(dev)) {
3232 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3233 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3234 } else {
3235 temp &= ~FDI_LINK_TRAIN_NONE;
3236 temp |= FDI_LINK_TRAIN_PATTERN_1;
3237 }
5eddb70b
CW
3238 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3239
3240 POSTING_READ(reg);
8db9d77b
ZW
3241 udelay(150);
3242
0206e353 3243 for (i = 0; i < 4; i++) {
5eddb70b
CW
3244 reg = FDI_TX_CTL(pipe);
3245 temp = I915_READ(reg);
8db9d77b
ZW
3246 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3247 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3248 I915_WRITE(reg, temp);
3249
3250 POSTING_READ(reg);
8db9d77b
ZW
3251 udelay(500);
3252
fa37d39e
SP
3253 for (retry = 0; retry < 5; retry++) {
3254 reg = FDI_RX_IIR(pipe);
3255 temp = I915_READ(reg);
3256 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3257 if (temp & FDI_RX_BIT_LOCK) {
3258 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3259 DRM_DEBUG_KMS("FDI train 1 done.\n");
3260 break;
3261 }
3262 udelay(50);
8db9d77b 3263 }
fa37d39e
SP
3264 if (retry < 5)
3265 break;
8db9d77b
ZW
3266 }
3267 if (i == 4)
5eddb70b 3268 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3269
3270 /* Train 2 */
5eddb70b
CW
3271 reg = FDI_TX_CTL(pipe);
3272 temp = I915_READ(reg);
8db9d77b
ZW
3273 temp &= ~FDI_LINK_TRAIN_NONE;
3274 temp |= FDI_LINK_TRAIN_PATTERN_2;
3275 if (IS_GEN6(dev)) {
3276 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3277 /* SNB-B */
3278 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3279 }
5eddb70b 3280 I915_WRITE(reg, temp);
8db9d77b 3281
5eddb70b
CW
3282 reg = FDI_RX_CTL(pipe);
3283 temp = I915_READ(reg);
8db9d77b
ZW
3284 if (HAS_PCH_CPT(dev)) {
3285 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3286 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3287 } else {
3288 temp &= ~FDI_LINK_TRAIN_NONE;
3289 temp |= FDI_LINK_TRAIN_PATTERN_2;
3290 }
5eddb70b
CW
3291 I915_WRITE(reg, temp);
3292
3293 POSTING_READ(reg);
8db9d77b
ZW
3294 udelay(150);
3295
0206e353 3296 for (i = 0; i < 4; i++) {
5eddb70b
CW
3297 reg = FDI_TX_CTL(pipe);
3298 temp = I915_READ(reg);
8db9d77b
ZW
3299 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3300 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3301 I915_WRITE(reg, temp);
3302
3303 POSTING_READ(reg);
8db9d77b
ZW
3304 udelay(500);
3305
fa37d39e
SP
3306 for (retry = 0; retry < 5; retry++) {
3307 reg = FDI_RX_IIR(pipe);
3308 temp = I915_READ(reg);
3309 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3310 if (temp & FDI_RX_SYMBOL_LOCK) {
3311 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3312 DRM_DEBUG_KMS("FDI train 2 done.\n");
3313 break;
3314 }
3315 udelay(50);
8db9d77b 3316 }
fa37d39e
SP
3317 if (retry < 5)
3318 break;
8db9d77b
ZW
3319 }
3320 if (i == 4)
5eddb70b 3321 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3322
3323 DRM_DEBUG_KMS("FDI train done.\n");
3324}
3325
357555c0
JB
3326/* Manual link training for Ivy Bridge A0 parts */
3327static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3328{
3329 struct drm_device *dev = crtc->dev;
3330 struct drm_i915_private *dev_priv = dev->dev_private;
3331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3332 int pipe = intel_crtc->pipe;
139ccd3f 3333 u32 reg, temp, i, j;
357555c0
JB
3334
3335 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3336 for train result */
3337 reg = FDI_RX_IMR(pipe);
3338 temp = I915_READ(reg);
3339 temp &= ~FDI_RX_SYMBOL_LOCK;
3340 temp &= ~FDI_RX_BIT_LOCK;
3341 I915_WRITE(reg, temp);
3342
3343 POSTING_READ(reg);
3344 udelay(150);
3345
01a415fd
DV
3346 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3347 I915_READ(FDI_RX_IIR(pipe)));
3348
139ccd3f
JB
3349 /* Try each vswing and preemphasis setting twice before moving on */
3350 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3351 /* disable first in case we need to retry */
3352 reg = FDI_TX_CTL(pipe);
3353 temp = I915_READ(reg);
3354 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3355 temp &= ~FDI_TX_ENABLE;
3356 I915_WRITE(reg, temp);
357555c0 3357
139ccd3f
JB
3358 reg = FDI_RX_CTL(pipe);
3359 temp = I915_READ(reg);
3360 temp &= ~FDI_LINK_TRAIN_AUTO;
3361 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3362 temp &= ~FDI_RX_ENABLE;
3363 I915_WRITE(reg, temp);
357555c0 3364
139ccd3f 3365 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3366 reg = FDI_TX_CTL(pipe);
3367 temp = I915_READ(reg);
139ccd3f 3368 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3369 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3370 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3371 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3372 temp |= snb_b_fdi_train_param[j/2];
3373 temp |= FDI_COMPOSITE_SYNC;
3374 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3375
139ccd3f
JB
3376 I915_WRITE(FDI_RX_MISC(pipe),
3377 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3378
139ccd3f 3379 reg = FDI_RX_CTL(pipe);
357555c0 3380 temp = I915_READ(reg);
139ccd3f
JB
3381 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3382 temp |= FDI_COMPOSITE_SYNC;
3383 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3384
139ccd3f
JB
3385 POSTING_READ(reg);
3386 udelay(1); /* should be 0.5us */
357555c0 3387
139ccd3f
JB
3388 for (i = 0; i < 4; i++) {
3389 reg = FDI_RX_IIR(pipe);
3390 temp = I915_READ(reg);
3391 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3392
139ccd3f
JB
3393 if (temp & FDI_RX_BIT_LOCK ||
3394 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3395 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3396 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3397 i);
3398 break;
3399 }
3400 udelay(1); /* should be 0.5us */
3401 }
3402 if (i == 4) {
3403 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3404 continue;
3405 }
357555c0 3406
139ccd3f 3407 /* Train 2 */
357555c0
JB
3408 reg = FDI_TX_CTL(pipe);
3409 temp = I915_READ(reg);
139ccd3f
JB
3410 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3411 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3412 I915_WRITE(reg, temp);
3413
3414 reg = FDI_RX_CTL(pipe);
3415 temp = I915_READ(reg);
3416 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3417 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3418 I915_WRITE(reg, temp);
3419
3420 POSTING_READ(reg);
139ccd3f 3421 udelay(2); /* should be 1.5us */
357555c0 3422
139ccd3f
JB
3423 for (i = 0; i < 4; i++) {
3424 reg = FDI_RX_IIR(pipe);
3425 temp = I915_READ(reg);
3426 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3427
139ccd3f
JB
3428 if (temp & FDI_RX_SYMBOL_LOCK ||
3429 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3430 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3431 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3432 i);
3433 goto train_done;
3434 }
3435 udelay(2); /* should be 1.5us */
357555c0 3436 }
139ccd3f
JB
3437 if (i == 4)
3438 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3439 }
357555c0 3440
139ccd3f 3441train_done:
357555c0
JB
3442 DRM_DEBUG_KMS("FDI train done.\n");
3443}
3444
88cefb6c 3445static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3446{
88cefb6c 3447 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3448 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3449 int pipe = intel_crtc->pipe;
5eddb70b 3450 u32 reg, temp;
79e53945 3451
c64e311e 3452
c98e9dcf 3453 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3454 reg = FDI_RX_CTL(pipe);
3455 temp = I915_READ(reg);
627eb5a3 3456 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3457 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3458 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3459 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3460
3461 POSTING_READ(reg);
c98e9dcf
JB
3462 udelay(200);
3463
3464 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3465 temp = I915_READ(reg);
3466 I915_WRITE(reg, temp | FDI_PCDCLK);
3467
3468 POSTING_READ(reg);
c98e9dcf
JB
3469 udelay(200);
3470
20749730
PZ
3471 /* Enable CPU FDI TX PLL, always on for Ironlake */
3472 reg = FDI_TX_CTL(pipe);
3473 temp = I915_READ(reg);
3474 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3475 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3476
20749730
PZ
3477 POSTING_READ(reg);
3478 udelay(100);
6be4a607 3479 }
0e23b99d
JB
3480}
3481
88cefb6c
DV
3482static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3483{
3484 struct drm_device *dev = intel_crtc->base.dev;
3485 struct drm_i915_private *dev_priv = dev->dev_private;
3486 int pipe = intel_crtc->pipe;
3487 u32 reg, temp;
3488
3489 /* Switch from PCDclk to Rawclk */
3490 reg = FDI_RX_CTL(pipe);
3491 temp = I915_READ(reg);
3492 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3493
3494 /* Disable CPU FDI TX PLL */
3495 reg = FDI_TX_CTL(pipe);
3496 temp = I915_READ(reg);
3497 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3498
3499 POSTING_READ(reg);
3500 udelay(100);
3501
3502 reg = FDI_RX_CTL(pipe);
3503 temp = I915_READ(reg);
3504 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3505
3506 /* Wait for the clocks to turn off. */
3507 POSTING_READ(reg);
3508 udelay(100);
3509}
3510
0fc932b8
JB
3511static void ironlake_fdi_disable(struct drm_crtc *crtc)
3512{
3513 struct drm_device *dev = crtc->dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516 int pipe = intel_crtc->pipe;
3517 u32 reg, temp;
3518
3519 /* disable CPU FDI tx and PCH FDI rx */
3520 reg = FDI_TX_CTL(pipe);
3521 temp = I915_READ(reg);
3522 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3523 POSTING_READ(reg);
3524
3525 reg = FDI_RX_CTL(pipe);
3526 temp = I915_READ(reg);
3527 temp &= ~(0x7 << 16);
dfd07d72 3528 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3529 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3530
3531 POSTING_READ(reg);
3532 udelay(100);
3533
3534 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3535 if (HAS_PCH_IBX(dev))
6f06ce18 3536 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3537
3538 /* still set train pattern 1 */
3539 reg = FDI_TX_CTL(pipe);
3540 temp = I915_READ(reg);
3541 temp &= ~FDI_LINK_TRAIN_NONE;
3542 temp |= FDI_LINK_TRAIN_PATTERN_1;
3543 I915_WRITE(reg, temp);
3544
3545 reg = FDI_RX_CTL(pipe);
3546 temp = I915_READ(reg);
3547 if (HAS_PCH_CPT(dev)) {
3548 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3549 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3550 } else {
3551 temp &= ~FDI_LINK_TRAIN_NONE;
3552 temp |= FDI_LINK_TRAIN_PATTERN_1;
3553 }
3554 /* BPC in FDI rx is consistent with that in PIPECONF */
3555 temp &= ~(0x07 << 16);
dfd07d72 3556 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3557 I915_WRITE(reg, temp);
3558
3559 POSTING_READ(reg);
3560 udelay(100);
3561}
3562
5dce5b93
CW
3563bool intel_has_pending_fb_unpin(struct drm_device *dev)
3564{
3565 struct intel_crtc *crtc;
3566
3567 /* Note that we don't need to be called with mode_config.lock here
3568 * as our list of CRTC objects is static for the lifetime of the
3569 * device and so cannot disappear as we iterate. Similarly, we can
3570 * happily treat the predicates as racy, atomic checks as userspace
3571 * cannot claim and pin a new fb without at least acquring the
3572 * struct_mutex and so serialising with us.
3573 */
d3fcc808 3574 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3575 if (atomic_read(&crtc->unpin_work_count) == 0)
3576 continue;
3577
3578 if (crtc->unpin_work)
3579 intel_wait_for_vblank(dev, crtc->pipe);
3580
3581 return true;
3582 }
3583
3584 return false;
3585}
3586
d6bbafa1
CW
3587static void page_flip_completed(struct intel_crtc *intel_crtc)
3588{
3589 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3590 struct intel_unpin_work *work = intel_crtc->unpin_work;
3591
3592 /* ensure that the unpin work is consistent wrt ->pending. */
3593 smp_rmb();
3594 intel_crtc->unpin_work = NULL;
3595
3596 if (work->event)
3597 drm_send_vblank_event(intel_crtc->base.dev,
3598 intel_crtc->pipe,
3599 work->event);
3600
3601 drm_crtc_vblank_put(&intel_crtc->base);
3602
3603 wake_up_all(&dev_priv->pending_flip_queue);
3604 queue_work(dev_priv->wq, &work->work);
3605
3606 trace_i915_flip_complete(intel_crtc->plane,
3607 work->pending_flip_obj);
3608}
3609
46a55d30 3610void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3611{
0f91128d 3612 struct drm_device *dev = crtc->dev;
5bb61643 3613 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3614
2c10d571 3615 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3616 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3617 !intel_crtc_has_pending_flip(crtc),
3618 60*HZ) == 0)) {
3619 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3620
5e2d7afc 3621 spin_lock_irq(&dev->event_lock);
9c787942
CW
3622 if (intel_crtc->unpin_work) {
3623 WARN_ONCE(1, "Removing stuck page flip\n");
3624 page_flip_completed(intel_crtc);
3625 }
5e2d7afc 3626 spin_unlock_irq(&dev->event_lock);
9c787942 3627 }
5bb61643 3628
975d568a
CW
3629 if (crtc->primary->fb) {
3630 mutex_lock(&dev->struct_mutex);
3631 intel_finish_fb(crtc->primary->fb);
3632 mutex_unlock(&dev->struct_mutex);
3633 }
e6c3a2a6
CW
3634}
3635
e615efe4
ED
3636/* Program iCLKIP clock to the desired frequency */
3637static void lpt_program_iclkip(struct drm_crtc *crtc)
3638{
3639 struct drm_device *dev = crtc->dev;
3640 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3641 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3642 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3643 u32 temp;
3644
09153000
DV
3645 mutex_lock(&dev_priv->dpio_lock);
3646
e615efe4
ED
3647 /* It is necessary to ungate the pixclk gate prior to programming
3648 * the divisors, and gate it back when it is done.
3649 */
3650 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3651
3652 /* Disable SSCCTL */
3653 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3654 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3655 SBI_SSCCTL_DISABLE,
3656 SBI_ICLK);
e615efe4
ED
3657
3658 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3659 if (clock == 20000) {
e615efe4
ED
3660 auxdiv = 1;
3661 divsel = 0x41;
3662 phaseinc = 0x20;
3663 } else {
3664 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3665 * but the adjusted_mode->crtc_clock in in KHz. To get the
3666 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3667 * convert the virtual clock precision to KHz here for higher
3668 * precision.
3669 */
3670 u32 iclk_virtual_root_freq = 172800 * 1000;
3671 u32 iclk_pi_range = 64;
3672 u32 desired_divisor, msb_divisor_value, pi_value;
3673
12d7ceed 3674 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3675 msb_divisor_value = desired_divisor / iclk_pi_range;
3676 pi_value = desired_divisor % iclk_pi_range;
3677
3678 auxdiv = 0;
3679 divsel = msb_divisor_value - 2;
3680 phaseinc = pi_value;
3681 }
3682
3683 /* This should not happen with any sane values */
3684 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3685 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3686 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3687 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3688
3689 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3690 clock,
e615efe4
ED
3691 auxdiv,
3692 divsel,
3693 phasedir,
3694 phaseinc);
3695
3696 /* Program SSCDIVINTPHASE6 */
988d6ee8 3697 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3698 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3699 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3700 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3701 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3702 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3703 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3704 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3705
3706 /* Program SSCAUXDIV */
988d6ee8 3707 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3708 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3709 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3710 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3711
3712 /* Enable modulator and associated divider */
988d6ee8 3713 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3714 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3715 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3716
3717 /* Wait for initialization time */
3718 udelay(24);
3719
3720 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3721
3722 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3723}
3724
275f01b2
DV
3725static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3726 enum pipe pch_transcoder)
3727{
3728 struct drm_device *dev = crtc->base.dev;
3729 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3730 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3731
3732 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3733 I915_READ(HTOTAL(cpu_transcoder)));
3734 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3735 I915_READ(HBLANK(cpu_transcoder)));
3736 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3737 I915_READ(HSYNC(cpu_transcoder)));
3738
3739 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3740 I915_READ(VTOTAL(cpu_transcoder)));
3741 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3742 I915_READ(VBLANK(cpu_transcoder)));
3743 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3744 I915_READ(VSYNC(cpu_transcoder)));
3745 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3746 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3747}
3748
1fbc0d78
DV
3749static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3750{
3751 struct drm_i915_private *dev_priv = dev->dev_private;
3752 uint32_t temp;
3753
3754 temp = I915_READ(SOUTH_CHICKEN1);
3755 if (temp & FDI_BC_BIFURCATION_SELECT)
3756 return;
3757
3758 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3759 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3760
3761 temp |= FDI_BC_BIFURCATION_SELECT;
3762 DRM_DEBUG_KMS("enabling fdi C rx\n");
3763 I915_WRITE(SOUTH_CHICKEN1, temp);
3764 POSTING_READ(SOUTH_CHICKEN1);
3765}
3766
3767static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3768{
3769 struct drm_device *dev = intel_crtc->base.dev;
3770 struct drm_i915_private *dev_priv = dev->dev_private;
3771
3772 switch (intel_crtc->pipe) {
3773 case PIPE_A:
3774 break;
3775 case PIPE_B:
6e3c9717 3776 if (intel_crtc->config->fdi_lanes > 2)
1fbc0d78
DV
3777 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3778 else
3779 cpt_enable_fdi_bc_bifurcation(dev);
3780
3781 break;
3782 case PIPE_C:
3783 cpt_enable_fdi_bc_bifurcation(dev);
3784
3785 break;
3786 default:
3787 BUG();
3788 }
3789}
3790
f67a559d
JB
3791/*
3792 * Enable PCH resources required for PCH ports:
3793 * - PCH PLLs
3794 * - FDI training & RX/TX
3795 * - update transcoder timings
3796 * - DP transcoding bits
3797 * - transcoder
3798 */
3799static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3800{
3801 struct drm_device *dev = crtc->dev;
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3804 int pipe = intel_crtc->pipe;
ee7b9f93 3805 u32 reg, temp;
2c07245f 3806
ab9412ba 3807 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3808
1fbc0d78
DV
3809 if (IS_IVYBRIDGE(dev))
3810 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3811
cd986abb
DV
3812 /* Write the TU size bits before fdi link training, so that error
3813 * detection works. */
3814 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3815 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3816
c98e9dcf 3817 /* For PCH output, training FDI link */
674cf967 3818 dev_priv->display.fdi_link_train(crtc);
2c07245f 3819
3ad8a208
DV
3820 /* We need to program the right clock selection before writing the pixel
3821 * mutliplier into the DPLL. */
303b81e0 3822 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3823 u32 sel;
4b645f14 3824
c98e9dcf 3825 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3826 temp |= TRANS_DPLL_ENABLE(pipe);
3827 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3828 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3829 temp |= sel;
3830 else
3831 temp &= ~sel;
c98e9dcf 3832 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3833 }
5eddb70b 3834
3ad8a208
DV
3835 /* XXX: pch pll's can be enabled any time before we enable the PCH
3836 * transcoder, and we actually should do this to not upset any PCH
3837 * transcoder that already use the clock when we share it.
3838 *
3839 * Note that enable_shared_dpll tries to do the right thing, but
3840 * get_shared_dpll unconditionally resets the pll - we need that to have
3841 * the right LVDS enable sequence. */
85b3894f 3842 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3843
d9b6cb56
JB
3844 /* set transcoder timing, panel must allow it */
3845 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3846 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3847
303b81e0 3848 intel_fdi_normal_train(crtc);
5e84e1a4 3849
c98e9dcf 3850 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 3851 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 3852 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3853 reg = TRANS_DP_CTL(pipe);
3854 temp = I915_READ(reg);
3855 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3856 TRANS_DP_SYNC_MASK |
3857 TRANS_DP_BPC_MASK);
5eddb70b
CW
3858 temp |= (TRANS_DP_OUTPUT_ENABLE |
3859 TRANS_DP_ENH_FRAMING);
9325c9f0 3860 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3861
3862 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3863 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3864 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3865 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3866
3867 switch (intel_trans_dp_port_sel(crtc)) {
3868 case PCH_DP_B:
5eddb70b 3869 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3870 break;
3871 case PCH_DP_C:
5eddb70b 3872 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3873 break;
3874 case PCH_DP_D:
5eddb70b 3875 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3876 break;
3877 default:
e95d41e1 3878 BUG();
32f9d658 3879 }
2c07245f 3880
5eddb70b 3881 I915_WRITE(reg, temp);
6be4a607 3882 }
b52eb4dc 3883
b8a4f404 3884 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3885}
3886
1507e5bd
PZ
3887static void lpt_pch_enable(struct drm_crtc *crtc)
3888{
3889 struct drm_device *dev = crtc->dev;
3890 struct drm_i915_private *dev_priv = dev->dev_private;
3891 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 3892 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 3893
ab9412ba 3894 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3895
8c52b5e8 3896 lpt_program_iclkip(crtc);
1507e5bd 3897
0540e488 3898 /* Set transcoder timing. */
275f01b2 3899 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3900
937bb610 3901 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3902}
3903
716c2e55 3904void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3905{
e2b78267 3906 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3907
3908 if (pll == NULL)
3909 return;
3910
3e369b76 3911 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3912 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3913 return;
3914 }
3915
3e369b76
ACO
3916 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3917 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3918 WARN_ON(pll->on);
3919 WARN_ON(pll->active);
3920 }
3921
6e3c9717 3922 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3923}
3924
190f68c5
ACO
3925struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3926 struct intel_crtc_state *crtc_state)
ee7b9f93 3927{
e2b78267 3928 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3929 struct intel_shared_dpll *pll;
e2b78267 3930 enum intel_dpll_id i;
ee7b9f93 3931
98b6bd99
DV
3932 if (HAS_PCH_IBX(dev_priv->dev)) {
3933 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3934 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3935 pll = &dev_priv->shared_dplls[i];
98b6bd99 3936
46edb027
DV
3937 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3938 crtc->base.base.id, pll->name);
98b6bd99 3939
8bd31e67 3940 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3941
98b6bd99
DV
3942 goto found;
3943 }
3944
e72f9fbf
DV
3945 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3946 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3947
3948 /* Only want to check enabled timings first */
8bd31e67 3949 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3950 continue;
3951
190f68c5 3952 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
3953 &pll->new_config->hw_state,
3954 sizeof(pll->new_config->hw_state)) == 0) {
3955 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3956 crtc->base.base.id, pll->name,
8bd31e67
ACO
3957 pll->new_config->crtc_mask,
3958 pll->active);
ee7b9f93
JB
3959 goto found;
3960 }
3961 }
3962
3963 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3964 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3965 pll = &dev_priv->shared_dplls[i];
8bd31e67 3966 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3967 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3968 crtc->base.base.id, pll->name);
ee7b9f93
JB
3969 goto found;
3970 }
3971 }
3972
3973 return NULL;
3974
3975found:
8bd31e67 3976 if (pll->new_config->crtc_mask == 0)
190f68c5 3977 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 3978
190f68c5 3979 crtc_state->shared_dpll = i;
46edb027
DV
3980 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3981 pipe_name(crtc->pipe));
ee7b9f93 3982
8bd31e67 3983 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3984
ee7b9f93
JB
3985 return pll;
3986}
3987
8bd31e67
ACO
3988/**
3989 * intel_shared_dpll_start_config - start a new PLL staged config
3990 * @dev_priv: DRM device
3991 * @clear_pipes: mask of pipes that will have their PLLs freed
3992 *
3993 * Starts a new PLL staged config, copying the current config but
3994 * releasing the references of pipes specified in clear_pipes.
3995 */
3996static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3997 unsigned clear_pipes)
3998{
3999 struct intel_shared_dpll *pll;
4000 enum intel_dpll_id i;
4001
4002 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4003 pll = &dev_priv->shared_dplls[i];
4004
4005 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4006 GFP_KERNEL);
4007 if (!pll->new_config)
4008 goto cleanup;
4009
4010 pll->new_config->crtc_mask &= ~clear_pipes;
4011 }
4012
4013 return 0;
4014
4015cleanup:
4016 while (--i >= 0) {
4017 pll = &dev_priv->shared_dplls[i];
f354d733 4018 kfree(pll->new_config);
8bd31e67
ACO
4019 pll->new_config = NULL;
4020 }
4021
4022 return -ENOMEM;
4023}
4024
4025static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4026{
4027 struct intel_shared_dpll *pll;
4028 enum intel_dpll_id i;
4029
4030 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4031 pll = &dev_priv->shared_dplls[i];
4032
4033 WARN_ON(pll->new_config == &pll->config);
4034
4035 pll->config = *pll->new_config;
4036 kfree(pll->new_config);
4037 pll->new_config = NULL;
4038 }
4039}
4040
4041static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4042{
4043 struct intel_shared_dpll *pll;
4044 enum intel_dpll_id i;
4045
4046 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4047 pll = &dev_priv->shared_dplls[i];
4048
4049 WARN_ON(pll->new_config == &pll->config);
4050
4051 kfree(pll->new_config);
4052 pll->new_config = NULL;
4053 }
4054}
4055
a1520318 4056static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4057{
4058 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4059 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4060 u32 temp;
4061
4062 temp = I915_READ(dslreg);
4063 udelay(500);
4064 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4065 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4066 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4067 }
4068}
4069
bd2e244f
JB
4070static void skylake_pfit_enable(struct intel_crtc *crtc)
4071{
4072 struct drm_device *dev = crtc->base.dev;
4073 struct drm_i915_private *dev_priv = dev->dev_private;
4074 int pipe = crtc->pipe;
4075
6e3c9717 4076 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4077 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4078 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4079 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4080 }
4081}
4082
b074cec8
JB
4083static void ironlake_pfit_enable(struct intel_crtc *crtc)
4084{
4085 struct drm_device *dev = crtc->base.dev;
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 int pipe = crtc->pipe;
4088
6e3c9717 4089 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4090 /* Force use of hard-coded filter coefficients
4091 * as some pre-programmed values are broken,
4092 * e.g. x201.
4093 */
4094 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4095 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4096 PF_PIPE_SEL_IVB(pipe));
4097 else
4098 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4099 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4100 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4101 }
4102}
4103
4a3b8769 4104static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4105{
4106 struct drm_device *dev = crtc->dev;
4107 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4108 struct drm_plane *plane;
bb53d4ae
VS
4109 struct intel_plane *intel_plane;
4110
af2b653b
MR
4111 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4112 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4113 if (intel_plane->pipe == pipe)
4114 intel_plane_restore(&intel_plane->base);
af2b653b 4115 }
bb53d4ae
VS
4116}
4117
4a3b8769 4118static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4119{
4120 struct drm_device *dev = crtc->dev;
4121 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4122 struct drm_plane *plane;
bb53d4ae
VS
4123 struct intel_plane *intel_plane;
4124
af2b653b
MR
4125 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4126 intel_plane = to_intel_plane(plane);
bb53d4ae 4127 if (intel_plane->pipe == pipe)
cf4c7c12 4128 plane->funcs->disable_plane(plane);
af2b653b 4129 }
bb53d4ae
VS
4130}
4131
20bc8673 4132void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4133{
cea165c3
VS
4134 struct drm_device *dev = crtc->base.dev;
4135 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4136
6e3c9717 4137 if (!crtc->config->ips_enabled)
d77e4531
PZ
4138 return;
4139
cea165c3
VS
4140 /* We can only enable IPS after we enable a plane and wait for a vblank */
4141 intel_wait_for_vblank(dev, crtc->pipe);
4142
d77e4531 4143 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4144 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4145 mutex_lock(&dev_priv->rps.hw_lock);
4146 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4147 mutex_unlock(&dev_priv->rps.hw_lock);
4148 /* Quoting Art Runyan: "its not safe to expect any particular
4149 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4150 * mailbox." Moreover, the mailbox may return a bogus state,
4151 * so we need to just enable it and continue on.
2a114cc1
BW
4152 */
4153 } else {
4154 I915_WRITE(IPS_CTL, IPS_ENABLE);
4155 /* The bit only becomes 1 in the next vblank, so this wait here
4156 * is essentially intel_wait_for_vblank. If we don't have this
4157 * and don't wait for vblanks until the end of crtc_enable, then
4158 * the HW state readout code will complain that the expected
4159 * IPS_CTL value is not the one we read. */
4160 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4161 DRM_ERROR("Timed out waiting for IPS enable\n");
4162 }
d77e4531
PZ
4163}
4164
20bc8673 4165void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4166{
4167 struct drm_device *dev = crtc->base.dev;
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169
6e3c9717 4170 if (!crtc->config->ips_enabled)
d77e4531
PZ
4171 return;
4172
4173 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4174 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4175 mutex_lock(&dev_priv->rps.hw_lock);
4176 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4177 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4178 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4179 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4180 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4181 } else {
2a114cc1 4182 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4183 POSTING_READ(IPS_CTL);
4184 }
d77e4531
PZ
4185
4186 /* We need to wait for a vblank before we can disable the plane. */
4187 intel_wait_for_vblank(dev, crtc->pipe);
4188}
4189
4190/** Loads the palette/gamma unit for the CRTC with the prepared values */
4191static void intel_crtc_load_lut(struct drm_crtc *crtc)
4192{
4193 struct drm_device *dev = crtc->dev;
4194 struct drm_i915_private *dev_priv = dev->dev_private;
4195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4196 enum pipe pipe = intel_crtc->pipe;
4197 int palreg = PALETTE(pipe);
4198 int i;
4199 bool reenable_ips = false;
4200
4201 /* The clocks have to be on to load the palette. */
4202 if (!crtc->enabled || !intel_crtc->active)
4203 return;
4204
4205 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4206 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4207 assert_dsi_pll_enabled(dev_priv);
4208 else
4209 assert_pll_enabled(dev_priv, pipe);
4210 }
4211
4212 /* use legacy palette for Ironlake */
7a1db49a 4213 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4214 palreg = LGC_PALETTE(pipe);
4215
4216 /* Workaround : Do not read or write the pipe palette/gamma data while
4217 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4218 */
6e3c9717 4219 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4220 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4221 GAMMA_MODE_MODE_SPLIT)) {
4222 hsw_disable_ips(intel_crtc);
4223 reenable_ips = true;
4224 }
4225
4226 for (i = 0; i < 256; i++) {
4227 I915_WRITE(palreg + 4 * i,
4228 (intel_crtc->lut_r[i] << 16) |
4229 (intel_crtc->lut_g[i] << 8) |
4230 intel_crtc->lut_b[i]);
4231 }
4232
4233 if (reenable_ips)
4234 hsw_enable_ips(intel_crtc);
4235}
4236
d3eedb1a
VS
4237static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4238{
4239 if (!enable && intel_crtc->overlay) {
4240 struct drm_device *dev = intel_crtc->base.dev;
4241 struct drm_i915_private *dev_priv = dev->dev_private;
4242
4243 mutex_lock(&dev->struct_mutex);
4244 dev_priv->mm.interruptible = false;
4245 (void) intel_overlay_switch_off(intel_crtc->overlay);
4246 dev_priv->mm.interruptible = true;
4247 mutex_unlock(&dev->struct_mutex);
4248 }
4249
4250 /* Let userspace switch the overlay on again. In most cases userspace
4251 * has to recompute where to put it anyway.
4252 */
4253}
4254
d3eedb1a 4255static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4256{
4257 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4259 int pipe = intel_crtc->pipe;
a5c4d7bc 4260
fdd508a6 4261 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4262 intel_enable_sprite_planes(crtc);
a5c4d7bc 4263 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4264 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4265
4266 hsw_enable_ips(intel_crtc);
4267
4268 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4269 intel_fbc_update(dev);
a5c4d7bc 4270 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4271
4272 /*
4273 * FIXME: Once we grow proper nuclear flip support out of this we need
4274 * to compute the mask of flip planes precisely. For the time being
4275 * consider this a flip from a NULL plane.
4276 */
4277 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4278}
4279
d3eedb1a 4280static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4281{
4282 struct drm_device *dev = crtc->dev;
4283 struct drm_i915_private *dev_priv = dev->dev_private;
4284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285 int pipe = intel_crtc->pipe;
a5c4d7bc
VS
4286
4287 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc 4288
e35fef21 4289 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4290 intel_fbc_disable(dev);
a5c4d7bc
VS
4291
4292 hsw_disable_ips(intel_crtc);
4293
d3eedb1a 4294 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4295 intel_crtc_update_cursor(crtc, false);
4a3b8769 4296 intel_disable_sprite_planes(crtc);
fdd508a6 4297 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4298
f99d7069
DV
4299 /*
4300 * FIXME: Once we grow proper nuclear flip support out of this we need
4301 * to compute the mask of flip planes precisely. For the time being
4302 * consider this a flip to a NULL plane.
4303 */
4304 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4305}
4306
f67a559d
JB
4307static void ironlake_crtc_enable(struct drm_crtc *crtc)
4308{
4309 struct drm_device *dev = crtc->dev;
4310 struct drm_i915_private *dev_priv = dev->dev_private;
4311 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4312 struct intel_encoder *encoder;
f67a559d 4313 int pipe = intel_crtc->pipe;
f67a559d 4314
08a48469
DV
4315 WARN_ON(!crtc->enabled);
4316
f67a559d
JB
4317 if (intel_crtc->active)
4318 return;
4319
6e3c9717 4320 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4321 intel_prepare_shared_dpll(intel_crtc);
4322
6e3c9717 4323 if (intel_crtc->config->has_dp_encoder)
29407aab
DV
4324 intel_dp_set_m_n(intel_crtc);
4325
4326 intel_set_pipe_timings(intel_crtc);
4327
6e3c9717 4328 if (intel_crtc->config->has_pch_encoder) {
29407aab 4329 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4330 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4331 }
4332
4333 ironlake_set_pipeconf(crtc);
4334
f67a559d 4335 intel_crtc->active = true;
8664281b 4336
a72e4c9f
DV
4337 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4338 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4339
f6736a1a 4340 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4341 if (encoder->pre_enable)
4342 encoder->pre_enable(encoder);
f67a559d 4343
6e3c9717 4344 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4345 /* Note: FDI PLL enabling _must_ be done before we enable the
4346 * cpu pipes, hence this is separate from all the other fdi/pch
4347 * enabling. */
88cefb6c 4348 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4349 } else {
4350 assert_fdi_tx_disabled(dev_priv, pipe);
4351 assert_fdi_rx_disabled(dev_priv, pipe);
4352 }
f67a559d 4353
b074cec8 4354 ironlake_pfit_enable(intel_crtc);
f67a559d 4355
9c54c0dd
JB
4356 /*
4357 * On ILK+ LUT must be loaded before the pipe is running but with
4358 * clocks enabled
4359 */
4360 intel_crtc_load_lut(crtc);
4361
f37fcc2a 4362 intel_update_watermarks(crtc);
e1fdc473 4363 intel_enable_pipe(intel_crtc);
f67a559d 4364
6e3c9717 4365 if (intel_crtc->config->has_pch_encoder)
f67a559d 4366 ironlake_pch_enable(crtc);
c98e9dcf 4367
f9b61ff6
DV
4368 assert_vblank_disabled(crtc);
4369 drm_crtc_vblank_on(crtc);
4370
fa5c73b1
DV
4371 for_each_encoder_on_crtc(dev, crtc, encoder)
4372 encoder->enable(encoder);
61b77ddd
DV
4373
4374 if (HAS_PCH_CPT(dev))
a1520318 4375 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4376
d3eedb1a 4377 intel_crtc_enable_planes(crtc);
6be4a607
JB
4378}
4379
42db64ef
PZ
4380/* IPS only exists on ULT machines and is tied to pipe A. */
4381static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4382{
f5adf94e 4383 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4384}
4385
e4916946
PZ
4386/*
4387 * This implements the workaround described in the "notes" section of the mode
4388 * set sequence documentation. When going from no pipes or single pipe to
4389 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4390 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4391 */
4392static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4393{
4394 struct drm_device *dev = crtc->base.dev;
4395 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4396
4397 /* We want to get the other_active_crtc only if there's only 1 other
4398 * active crtc. */
d3fcc808 4399 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4400 if (!crtc_it->active || crtc_it == crtc)
4401 continue;
4402
4403 if (other_active_crtc)
4404 return;
4405
4406 other_active_crtc = crtc_it;
4407 }
4408 if (!other_active_crtc)
4409 return;
4410
4411 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4412 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4413}
4414
4f771f10
PZ
4415static void haswell_crtc_enable(struct drm_crtc *crtc)
4416{
4417 struct drm_device *dev = crtc->dev;
4418 struct drm_i915_private *dev_priv = dev->dev_private;
4419 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4420 struct intel_encoder *encoder;
4421 int pipe = intel_crtc->pipe;
4f771f10
PZ
4422
4423 WARN_ON(!crtc->enabled);
4424
4425 if (intel_crtc->active)
4426 return;
4427
df8ad70c
DV
4428 if (intel_crtc_to_shared_dpll(intel_crtc))
4429 intel_enable_shared_dpll(intel_crtc);
4430
6e3c9717 4431 if (intel_crtc->config->has_dp_encoder)
229fca97
DV
4432 intel_dp_set_m_n(intel_crtc);
4433
4434 intel_set_pipe_timings(intel_crtc);
4435
6e3c9717
ACO
4436 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4437 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4438 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4439 }
4440
6e3c9717 4441 if (intel_crtc->config->has_pch_encoder) {
229fca97 4442 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4443 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4444 }
4445
4446 haswell_set_pipeconf(crtc);
4447
4448 intel_set_pipe_csc(crtc);
4449
4f771f10 4450 intel_crtc->active = true;
8664281b 4451
a72e4c9f 4452 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4453 for_each_encoder_on_crtc(dev, crtc, encoder)
4454 if (encoder->pre_enable)
4455 encoder->pre_enable(encoder);
4456
6e3c9717 4457 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4458 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4459 true);
4fe9467d
ID
4460 dev_priv->display.fdi_link_train(crtc);
4461 }
4462
1f544388 4463 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4464
bd2e244f
JB
4465 if (IS_SKYLAKE(dev))
4466 skylake_pfit_enable(intel_crtc);
4467 else
4468 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4469
4470 /*
4471 * On ILK+ LUT must be loaded before the pipe is running but with
4472 * clocks enabled
4473 */
4474 intel_crtc_load_lut(crtc);
4475
1f544388 4476 intel_ddi_set_pipe_settings(crtc);
8228c251 4477 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4478
f37fcc2a 4479 intel_update_watermarks(crtc);
e1fdc473 4480 intel_enable_pipe(intel_crtc);
42db64ef 4481
6e3c9717 4482 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4483 lpt_pch_enable(crtc);
4f771f10 4484
6e3c9717 4485 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4486 intel_ddi_set_vc_payload_alloc(crtc, true);
4487
f9b61ff6
DV
4488 assert_vblank_disabled(crtc);
4489 drm_crtc_vblank_on(crtc);
4490
8807e55b 4491 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4492 encoder->enable(encoder);
8807e55b
JN
4493 intel_opregion_notify_encoder(encoder, true);
4494 }
4f771f10 4495
e4916946
PZ
4496 /* If we change the relative order between pipe/planes enabling, we need
4497 * to change the workaround. */
4498 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4499 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4500}
4501
bd2e244f
JB
4502static void skylake_pfit_disable(struct intel_crtc *crtc)
4503{
4504 struct drm_device *dev = crtc->base.dev;
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506 int pipe = crtc->pipe;
4507
4508 /* To avoid upsetting the power well on haswell only disable the pfit if
4509 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4510 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4511 I915_WRITE(PS_CTL(pipe), 0);
4512 I915_WRITE(PS_WIN_POS(pipe), 0);
4513 I915_WRITE(PS_WIN_SZ(pipe), 0);
4514 }
4515}
4516
3f8dce3a
DV
4517static void ironlake_pfit_disable(struct intel_crtc *crtc)
4518{
4519 struct drm_device *dev = crtc->base.dev;
4520 struct drm_i915_private *dev_priv = dev->dev_private;
4521 int pipe = crtc->pipe;
4522
4523 /* To avoid upsetting the power well on haswell only disable the pfit if
4524 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4525 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4526 I915_WRITE(PF_CTL(pipe), 0);
4527 I915_WRITE(PF_WIN_POS(pipe), 0);
4528 I915_WRITE(PF_WIN_SZ(pipe), 0);
4529 }
4530}
4531
6be4a607
JB
4532static void ironlake_crtc_disable(struct drm_crtc *crtc)
4533{
4534 struct drm_device *dev = crtc->dev;
4535 struct drm_i915_private *dev_priv = dev->dev_private;
4536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4537 struct intel_encoder *encoder;
6be4a607 4538 int pipe = intel_crtc->pipe;
5eddb70b 4539 u32 reg, temp;
b52eb4dc 4540
f7abfe8b
CW
4541 if (!intel_crtc->active)
4542 return;
4543
d3eedb1a 4544 intel_crtc_disable_planes(crtc);
a5c4d7bc 4545
ea9d758d
DV
4546 for_each_encoder_on_crtc(dev, crtc, encoder)
4547 encoder->disable(encoder);
4548
f9b61ff6
DV
4549 drm_crtc_vblank_off(crtc);
4550 assert_vblank_disabled(crtc);
4551
6e3c9717 4552 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4553 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4554
575f7ab7 4555 intel_disable_pipe(intel_crtc);
32f9d658 4556
3f8dce3a 4557 ironlake_pfit_disable(intel_crtc);
2c07245f 4558
bf49ec8c
DV
4559 for_each_encoder_on_crtc(dev, crtc, encoder)
4560 if (encoder->post_disable)
4561 encoder->post_disable(encoder);
2c07245f 4562
6e3c9717 4563 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4564 ironlake_fdi_disable(crtc);
913d8d11 4565
d925c59a 4566 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4567
d925c59a
DV
4568 if (HAS_PCH_CPT(dev)) {
4569 /* disable TRANS_DP_CTL */
4570 reg = TRANS_DP_CTL(pipe);
4571 temp = I915_READ(reg);
4572 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4573 TRANS_DP_PORT_SEL_MASK);
4574 temp |= TRANS_DP_PORT_SEL_NONE;
4575 I915_WRITE(reg, temp);
4576
4577 /* disable DPLL_SEL */
4578 temp = I915_READ(PCH_DPLL_SEL);
11887397 4579 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4580 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4581 }
e3421a18 4582
d925c59a 4583 /* disable PCH DPLL */
e72f9fbf 4584 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4585
d925c59a
DV
4586 ironlake_fdi_pll_disable(intel_crtc);
4587 }
6b383a7f 4588
f7abfe8b 4589 intel_crtc->active = false;
46ba614c 4590 intel_update_watermarks(crtc);
d1ebd816
BW
4591
4592 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4593 intel_fbc_update(dev);
d1ebd816 4594 mutex_unlock(&dev->struct_mutex);
6be4a607 4595}
1b3c7a47 4596
4f771f10 4597static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4598{
4f771f10
PZ
4599 struct drm_device *dev = crtc->dev;
4600 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4602 struct intel_encoder *encoder;
6e3c9717 4603 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4604
4f771f10
PZ
4605 if (!intel_crtc->active)
4606 return;
4607
d3eedb1a 4608 intel_crtc_disable_planes(crtc);
dda9a66a 4609
8807e55b
JN
4610 for_each_encoder_on_crtc(dev, crtc, encoder) {
4611 intel_opregion_notify_encoder(encoder, false);
4f771f10 4612 encoder->disable(encoder);
8807e55b 4613 }
4f771f10 4614
f9b61ff6
DV
4615 drm_crtc_vblank_off(crtc);
4616 assert_vblank_disabled(crtc);
4617
6e3c9717 4618 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4619 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4620 false);
575f7ab7 4621 intel_disable_pipe(intel_crtc);
4f771f10 4622
6e3c9717 4623 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4624 intel_ddi_set_vc_payload_alloc(crtc, false);
4625
ad80a810 4626 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4627
bd2e244f
JB
4628 if (IS_SKYLAKE(dev))
4629 skylake_pfit_disable(intel_crtc);
4630 else
4631 ironlake_pfit_disable(intel_crtc);
4f771f10 4632
1f544388 4633 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4634
6e3c9717 4635 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4636 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4637 intel_ddi_fdi_disable(crtc);
83616634 4638 }
4f771f10 4639
97b040aa
ID
4640 for_each_encoder_on_crtc(dev, crtc, encoder)
4641 if (encoder->post_disable)
4642 encoder->post_disable(encoder);
4643
4f771f10 4644 intel_crtc->active = false;
46ba614c 4645 intel_update_watermarks(crtc);
4f771f10
PZ
4646
4647 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4648 intel_fbc_update(dev);
4f771f10 4649 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4650
4651 if (intel_crtc_to_shared_dpll(intel_crtc))
4652 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4653}
4654
ee7b9f93
JB
4655static void ironlake_crtc_off(struct drm_crtc *crtc)
4656{
4657 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4658 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4659}
4660
6441ab5f 4661
2dd24552
JB
4662static void i9xx_pfit_enable(struct intel_crtc *crtc)
4663{
4664 struct drm_device *dev = crtc->base.dev;
4665 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4666 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4667
681a8504 4668 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4669 return;
4670
2dd24552 4671 /*
c0b03411
DV
4672 * The panel fitter should only be adjusted whilst the pipe is disabled,
4673 * according to register description and PRM.
2dd24552 4674 */
c0b03411
DV
4675 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4676 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4677
b074cec8
JB
4678 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4679 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4680
4681 /* Border color in case we don't scale up to the full screen. Black by
4682 * default, change to something else for debugging. */
4683 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4684}
4685
d05410f9
DA
4686static enum intel_display_power_domain port_to_power_domain(enum port port)
4687{
4688 switch (port) {
4689 case PORT_A:
4690 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4691 case PORT_B:
4692 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4693 case PORT_C:
4694 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4695 case PORT_D:
4696 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4697 default:
4698 WARN_ON_ONCE(1);
4699 return POWER_DOMAIN_PORT_OTHER;
4700 }
4701}
4702
77d22dca
ID
4703#define for_each_power_domain(domain, mask) \
4704 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4705 if ((1 << (domain)) & (mask))
4706
319be8ae
ID
4707enum intel_display_power_domain
4708intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4709{
4710 struct drm_device *dev = intel_encoder->base.dev;
4711 struct intel_digital_port *intel_dig_port;
4712
4713 switch (intel_encoder->type) {
4714 case INTEL_OUTPUT_UNKNOWN:
4715 /* Only DDI platforms should ever use this output type */
4716 WARN_ON_ONCE(!HAS_DDI(dev));
4717 case INTEL_OUTPUT_DISPLAYPORT:
4718 case INTEL_OUTPUT_HDMI:
4719 case INTEL_OUTPUT_EDP:
4720 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4721 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4722 case INTEL_OUTPUT_DP_MST:
4723 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4724 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4725 case INTEL_OUTPUT_ANALOG:
4726 return POWER_DOMAIN_PORT_CRT;
4727 case INTEL_OUTPUT_DSI:
4728 return POWER_DOMAIN_PORT_DSI;
4729 default:
4730 return POWER_DOMAIN_PORT_OTHER;
4731 }
4732}
4733
4734static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4735{
319be8ae
ID
4736 struct drm_device *dev = crtc->dev;
4737 struct intel_encoder *intel_encoder;
4738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4740 unsigned long mask;
4741 enum transcoder transcoder;
4742
4743 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4744
4745 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4746 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4747 if (intel_crtc->config->pch_pfit.enabled ||
4748 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4749 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4750
319be8ae
ID
4751 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4752 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4753
77d22dca
ID
4754 return mask;
4755}
4756
77d22dca
ID
4757static void modeset_update_crtc_power_domains(struct drm_device *dev)
4758{
4759 struct drm_i915_private *dev_priv = dev->dev_private;
4760 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4761 struct intel_crtc *crtc;
4762
4763 /*
4764 * First get all needed power domains, then put all unneeded, to avoid
4765 * any unnecessary toggling of the power wells.
4766 */
d3fcc808 4767 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4768 enum intel_display_power_domain domain;
4769
4770 if (!crtc->base.enabled)
4771 continue;
4772
319be8ae 4773 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4774
4775 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4776 intel_display_power_get(dev_priv, domain);
4777 }
4778
50f6e502
VS
4779 if (dev_priv->display.modeset_global_resources)
4780 dev_priv->display.modeset_global_resources(dev);
4781
d3fcc808 4782 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4783 enum intel_display_power_domain domain;
4784
4785 for_each_power_domain(domain, crtc->enabled_power_domains)
4786 intel_display_power_put(dev_priv, domain);
4787
4788 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4789 }
4790
4791 intel_display_set_init_power(dev_priv, false);
4792}
4793
dfcab17e 4794/* returns HPLL frequency in kHz */
f8bf63fd 4795static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4796{
586f49dc 4797 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4798
586f49dc
JB
4799 /* Obtain SKU information */
4800 mutex_lock(&dev_priv->dpio_lock);
4801 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4802 CCK_FUSE_HPLL_FREQ_MASK;
4803 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4804
dfcab17e 4805 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4806}
4807
f8bf63fd
VS
4808static void vlv_update_cdclk(struct drm_device *dev)
4809{
4810 struct drm_i915_private *dev_priv = dev->dev_private;
4811
4812 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4813 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4814 dev_priv->vlv_cdclk_freq);
4815
4816 /*
4817 * Program the gmbus_freq based on the cdclk frequency.
4818 * BSpec erroneously claims we should aim for 4MHz, but
4819 * in fact 1MHz is the correct frequency.
4820 */
6be1e3d3 4821 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4822}
4823
30a970c6
JB
4824/* Adjust CDclk dividers to allow high res or save power if possible */
4825static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4826{
4827 struct drm_i915_private *dev_priv = dev->dev_private;
4828 u32 val, cmd;
4829
d197b7d3 4830 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4831
dfcab17e 4832 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4833 cmd = 2;
dfcab17e 4834 else if (cdclk == 266667)
30a970c6
JB
4835 cmd = 1;
4836 else
4837 cmd = 0;
4838
4839 mutex_lock(&dev_priv->rps.hw_lock);
4840 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4841 val &= ~DSPFREQGUAR_MASK;
4842 val |= (cmd << DSPFREQGUAR_SHIFT);
4843 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4844 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4845 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4846 50)) {
4847 DRM_ERROR("timed out waiting for CDclk change\n");
4848 }
4849 mutex_unlock(&dev_priv->rps.hw_lock);
4850
dfcab17e 4851 if (cdclk == 400000) {
6bcda4f0 4852 u32 divider;
30a970c6 4853
6bcda4f0 4854 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
4855
4856 mutex_lock(&dev_priv->dpio_lock);
4857 /* adjust cdclk divider */
4858 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4859 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4860 val |= divider;
4861 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4862
4863 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4864 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4865 50))
4866 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4867 mutex_unlock(&dev_priv->dpio_lock);
4868 }
4869
4870 mutex_lock(&dev_priv->dpio_lock);
4871 /* adjust self-refresh exit latency value */
4872 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4873 val &= ~0x7f;
4874
4875 /*
4876 * For high bandwidth configs, we set a higher latency in the bunit
4877 * so that the core display fetch happens in time to avoid underruns.
4878 */
dfcab17e 4879 if (cdclk == 400000)
30a970c6
JB
4880 val |= 4500 / 250; /* 4.5 usec */
4881 else
4882 val |= 3000 / 250; /* 3.0 usec */
4883 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4884 mutex_unlock(&dev_priv->dpio_lock);
4885
f8bf63fd 4886 vlv_update_cdclk(dev);
30a970c6
JB
4887}
4888
383c5a6a
VS
4889static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4890{
4891 struct drm_i915_private *dev_priv = dev->dev_private;
4892 u32 val, cmd;
4893
4894 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4895
4896 switch (cdclk) {
4897 case 400000:
4898 cmd = 3;
4899 break;
4900 case 333333:
4901 case 320000:
4902 cmd = 2;
4903 break;
4904 case 266667:
4905 cmd = 1;
4906 break;
4907 case 200000:
4908 cmd = 0;
4909 break;
4910 default:
5f77eeb0 4911 MISSING_CASE(cdclk);
383c5a6a
VS
4912 return;
4913 }
4914
4915 mutex_lock(&dev_priv->rps.hw_lock);
4916 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4917 val &= ~DSPFREQGUAR_MASK_CHV;
4918 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4919 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4920 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4921 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4922 50)) {
4923 DRM_ERROR("timed out waiting for CDclk change\n");
4924 }
4925 mutex_unlock(&dev_priv->rps.hw_lock);
4926
4927 vlv_update_cdclk(dev);
4928}
4929
30a970c6
JB
4930static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4931 int max_pixclk)
4932{
6bcda4f0 4933 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
29dc7ef3 4934
d49a340d
VS
4935 /* FIXME: Punit isn't quite ready yet */
4936 if (IS_CHERRYVIEW(dev_priv->dev))
4937 return 400000;
4938
30a970c6
JB
4939 /*
4940 * Really only a few cases to deal with, as only 4 CDclks are supported:
4941 * 200MHz
4942 * 267MHz
29dc7ef3 4943 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4944 * 400MHz
4945 * So we check to see whether we're above 90% of the lower bin and
4946 * adjust if needed.
e37c67a1
VS
4947 *
4948 * We seem to get an unstable or solid color picture at 200MHz.
4949 * Not sure what's wrong. For now use 200MHz only when all pipes
4950 * are off.
30a970c6 4951 */
29dc7ef3 4952 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4953 return 400000;
4954 else if (max_pixclk > 266667*9/10)
29dc7ef3 4955 return freq_320;
e37c67a1 4956 else if (max_pixclk > 0)
dfcab17e 4957 return 266667;
e37c67a1
VS
4958 else
4959 return 200000;
30a970c6
JB
4960}
4961
2f2d7aa1
VS
4962/* compute the max pixel clock for new configuration */
4963static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4964{
4965 struct drm_device *dev = dev_priv->dev;
4966 struct intel_crtc *intel_crtc;
4967 int max_pixclk = 0;
4968
d3fcc808 4969 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4970 if (intel_crtc->new_enabled)
30a970c6 4971 max_pixclk = max(max_pixclk,
2d112de7 4972 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
4973 }
4974
4975 return max_pixclk;
4976}
4977
4978static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4979 unsigned *prepare_pipes)
30a970c6
JB
4980{
4981 struct drm_i915_private *dev_priv = dev->dev_private;
4982 struct intel_crtc *intel_crtc;
2f2d7aa1 4983 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4984
d60c4473
ID
4985 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4986 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4987 return;
4988
2f2d7aa1 4989 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4990 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4991 if (intel_crtc->base.enabled)
4992 *prepare_pipes |= (1 << intel_crtc->pipe);
4993}
4994
4995static void valleyview_modeset_global_resources(struct drm_device *dev)
4996{
4997 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4998 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4999 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5000
383c5a6a 5001 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
5002 /*
5003 * FIXME: We can end up here with all power domains off, yet
5004 * with a CDCLK frequency other than the minimum. To account
5005 * for this take the PIPE-A power domain, which covers the HW
5006 * blocks needed for the following programming. This can be
5007 * removed once it's guaranteed that we get here either with
5008 * the minimum CDCLK set, or the required power domains
5009 * enabled.
5010 */
5011 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5012
383c5a6a
VS
5013 if (IS_CHERRYVIEW(dev))
5014 cherryview_set_cdclk(dev, req_cdclk);
5015 else
5016 valleyview_set_cdclk(dev, req_cdclk);
738c05c0
ID
5017
5018 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5019 }
30a970c6
JB
5020}
5021
89b667f8
JB
5022static void valleyview_crtc_enable(struct drm_crtc *crtc)
5023{
5024 struct drm_device *dev = crtc->dev;
a72e4c9f 5025 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5027 struct intel_encoder *encoder;
5028 int pipe = intel_crtc->pipe;
23538ef1 5029 bool is_dsi;
89b667f8
JB
5030
5031 WARN_ON(!crtc->enabled);
5032
5033 if (intel_crtc->active)
5034 return;
5035
409ee761 5036 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5037
1ae0d137
VS
5038 if (!is_dsi) {
5039 if (IS_CHERRYVIEW(dev))
6e3c9717 5040 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5041 else
6e3c9717 5042 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5043 }
5b18e57c 5044
6e3c9717 5045 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5046 intel_dp_set_m_n(intel_crtc);
5047
5048 intel_set_pipe_timings(intel_crtc);
5049
c14b0485
VS
5050 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5051 struct drm_i915_private *dev_priv = dev->dev_private;
5052
5053 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5054 I915_WRITE(CHV_CANVAS(pipe), 0);
5055 }
5056
5b18e57c
DV
5057 i9xx_set_pipeconf(intel_crtc);
5058
89b667f8 5059 intel_crtc->active = true;
89b667f8 5060
a72e4c9f 5061 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5062
89b667f8
JB
5063 for_each_encoder_on_crtc(dev, crtc, encoder)
5064 if (encoder->pre_pll_enable)
5065 encoder->pre_pll_enable(encoder);
5066
9d556c99
CML
5067 if (!is_dsi) {
5068 if (IS_CHERRYVIEW(dev))
6e3c9717 5069 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5070 else
6e3c9717 5071 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5072 }
89b667f8
JB
5073
5074 for_each_encoder_on_crtc(dev, crtc, encoder)
5075 if (encoder->pre_enable)
5076 encoder->pre_enable(encoder);
5077
2dd24552
JB
5078 i9xx_pfit_enable(intel_crtc);
5079
63cbb074
VS
5080 intel_crtc_load_lut(crtc);
5081
f37fcc2a 5082 intel_update_watermarks(crtc);
e1fdc473 5083 intel_enable_pipe(intel_crtc);
be6a6f8e 5084
4b3a9526
VS
5085 assert_vblank_disabled(crtc);
5086 drm_crtc_vblank_on(crtc);
5087
f9b61ff6
DV
5088 for_each_encoder_on_crtc(dev, crtc, encoder)
5089 encoder->enable(encoder);
5090
9ab0460b 5091 intel_crtc_enable_planes(crtc);
d40d9187 5092
56b80e1f 5093 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5094 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5095}
5096
f13c2ef3
DV
5097static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5098{
5099 struct drm_device *dev = crtc->base.dev;
5100 struct drm_i915_private *dev_priv = dev->dev_private;
5101
6e3c9717
ACO
5102 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5103 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5104}
5105
0b8765c6 5106static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5107{
5108 struct drm_device *dev = crtc->dev;
a72e4c9f 5109 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5111 struct intel_encoder *encoder;
79e53945 5112 int pipe = intel_crtc->pipe;
79e53945 5113
08a48469
DV
5114 WARN_ON(!crtc->enabled);
5115
f7abfe8b
CW
5116 if (intel_crtc->active)
5117 return;
5118
f13c2ef3
DV
5119 i9xx_set_pll_dividers(intel_crtc);
5120
6e3c9717 5121 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5122 intel_dp_set_m_n(intel_crtc);
5123
5124 intel_set_pipe_timings(intel_crtc);
5125
5b18e57c
DV
5126 i9xx_set_pipeconf(intel_crtc);
5127
f7abfe8b 5128 intel_crtc->active = true;
6b383a7f 5129
4a3436e8 5130 if (!IS_GEN2(dev))
a72e4c9f 5131 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5132
9d6d9f19
MK
5133 for_each_encoder_on_crtc(dev, crtc, encoder)
5134 if (encoder->pre_enable)
5135 encoder->pre_enable(encoder);
5136
f6736a1a
DV
5137 i9xx_enable_pll(intel_crtc);
5138
2dd24552
JB
5139 i9xx_pfit_enable(intel_crtc);
5140
63cbb074
VS
5141 intel_crtc_load_lut(crtc);
5142
f37fcc2a 5143 intel_update_watermarks(crtc);
e1fdc473 5144 intel_enable_pipe(intel_crtc);
be6a6f8e 5145
4b3a9526
VS
5146 assert_vblank_disabled(crtc);
5147 drm_crtc_vblank_on(crtc);
5148
f9b61ff6
DV
5149 for_each_encoder_on_crtc(dev, crtc, encoder)
5150 encoder->enable(encoder);
5151
9ab0460b 5152 intel_crtc_enable_planes(crtc);
d40d9187 5153
4a3436e8
VS
5154 /*
5155 * Gen2 reports pipe underruns whenever all planes are disabled.
5156 * So don't enable underrun reporting before at least some planes
5157 * are enabled.
5158 * FIXME: Need to fix the logic to work when we turn off all planes
5159 * but leave the pipe running.
5160 */
5161 if (IS_GEN2(dev))
a72e4c9f 5162 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5163
56b80e1f 5164 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5165 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5166}
79e53945 5167
87476d63
DV
5168static void i9xx_pfit_disable(struct intel_crtc *crtc)
5169{
5170 struct drm_device *dev = crtc->base.dev;
5171 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5172
6e3c9717 5173 if (!crtc->config->gmch_pfit.control)
328d8e82 5174 return;
87476d63 5175
328d8e82 5176 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5177
328d8e82
DV
5178 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5179 I915_READ(PFIT_CONTROL));
5180 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5181}
5182
0b8765c6
JB
5183static void i9xx_crtc_disable(struct drm_crtc *crtc)
5184{
5185 struct drm_device *dev = crtc->dev;
5186 struct drm_i915_private *dev_priv = dev->dev_private;
5187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5188 struct intel_encoder *encoder;
0b8765c6 5189 int pipe = intel_crtc->pipe;
ef9c3aee 5190
f7abfe8b
CW
5191 if (!intel_crtc->active)
5192 return;
5193
4a3436e8
VS
5194 /*
5195 * Gen2 reports pipe underruns whenever all planes are disabled.
5196 * So diasble underrun reporting before all the planes get disabled.
5197 * FIXME: Need to fix the logic to work when we turn off all planes
5198 * but leave the pipe running.
5199 */
5200 if (IS_GEN2(dev))
a72e4c9f 5201 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5202
564ed191
ID
5203 /*
5204 * Vblank time updates from the shadow to live plane control register
5205 * are blocked if the memory self-refresh mode is active at that
5206 * moment. So to make sure the plane gets truly disabled, disable
5207 * first the self-refresh mode. The self-refresh enable bit in turn
5208 * will be checked/applied by the HW only at the next frame start
5209 * event which is after the vblank start event, so we need to have a
5210 * wait-for-vblank between disabling the plane and the pipe.
5211 */
5212 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5213 intel_crtc_disable_planes(crtc);
5214
6304cd91
VS
5215 /*
5216 * On gen2 planes are double buffered but the pipe isn't, so we must
5217 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5218 * We also need to wait on all gmch platforms because of the
5219 * self-refresh mode constraint explained above.
6304cd91 5220 */
564ed191 5221 intel_wait_for_vblank(dev, pipe);
6304cd91 5222
4b3a9526
VS
5223 for_each_encoder_on_crtc(dev, crtc, encoder)
5224 encoder->disable(encoder);
5225
f9b61ff6
DV
5226 drm_crtc_vblank_off(crtc);
5227 assert_vblank_disabled(crtc);
5228
575f7ab7 5229 intel_disable_pipe(intel_crtc);
24a1f16d 5230
87476d63 5231 i9xx_pfit_disable(intel_crtc);
24a1f16d 5232
89b667f8
JB
5233 for_each_encoder_on_crtc(dev, crtc, encoder)
5234 if (encoder->post_disable)
5235 encoder->post_disable(encoder);
5236
409ee761 5237 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5238 if (IS_CHERRYVIEW(dev))
5239 chv_disable_pll(dev_priv, pipe);
5240 else if (IS_VALLEYVIEW(dev))
5241 vlv_disable_pll(dev_priv, pipe);
5242 else
1c4e0274 5243 i9xx_disable_pll(intel_crtc);
076ed3b2 5244 }
0b8765c6 5245
4a3436e8 5246 if (!IS_GEN2(dev))
a72e4c9f 5247 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5248
f7abfe8b 5249 intel_crtc->active = false;
46ba614c 5250 intel_update_watermarks(crtc);
f37fcc2a 5251
efa9624e 5252 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5253 intel_fbc_update(dev);
efa9624e 5254 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5255}
5256
ee7b9f93
JB
5257static void i9xx_crtc_off(struct drm_crtc *crtc)
5258{
5259}
5260
b04c5bd6
BF
5261/* Master function to enable/disable CRTC and corresponding power wells */
5262void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5263{
5264 struct drm_device *dev = crtc->dev;
5265 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5267 enum intel_display_power_domain domain;
5268 unsigned long domains;
976f8a20 5269
0e572fe7
DV
5270 if (enable) {
5271 if (!intel_crtc->active) {
e1e9fb84
DV
5272 domains = get_crtc_power_domains(crtc);
5273 for_each_power_domain(domain, domains)
5274 intel_display_power_get(dev_priv, domain);
5275 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5276
5277 dev_priv->display.crtc_enable(crtc);
5278 }
5279 } else {
5280 if (intel_crtc->active) {
5281 dev_priv->display.crtc_disable(crtc);
5282
e1e9fb84
DV
5283 domains = intel_crtc->enabled_power_domains;
5284 for_each_power_domain(domain, domains)
5285 intel_display_power_put(dev_priv, domain);
5286 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5287 }
5288 }
b04c5bd6
BF
5289}
5290
5291/**
5292 * Sets the power management mode of the pipe and plane.
5293 */
5294void intel_crtc_update_dpms(struct drm_crtc *crtc)
5295{
5296 struct drm_device *dev = crtc->dev;
5297 struct intel_encoder *intel_encoder;
5298 bool enable = false;
5299
5300 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5301 enable |= intel_encoder->connectors_active;
5302
5303 intel_crtc_control(crtc, enable);
976f8a20
DV
5304}
5305
cdd59983
CW
5306static void intel_crtc_disable(struct drm_crtc *crtc)
5307{
cdd59983 5308 struct drm_device *dev = crtc->dev;
976f8a20 5309 struct drm_connector *connector;
ee7b9f93 5310 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5311
976f8a20
DV
5312 /* crtc should still be enabled when we disable it. */
5313 WARN_ON(!crtc->enabled);
5314
5315 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5316 dev_priv->display.off(crtc);
5317
455a6808 5318 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5319
5320 /* Update computed state. */
5321 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5322 if (!connector->encoder || !connector->encoder->crtc)
5323 continue;
5324
5325 if (connector->encoder->crtc != crtc)
5326 continue;
5327
5328 connector->dpms = DRM_MODE_DPMS_OFF;
5329 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5330 }
5331}
5332
ea5b213a 5333void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5334{
4ef69c7a 5335 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5336
ea5b213a
CW
5337 drm_encoder_cleanup(encoder);
5338 kfree(intel_encoder);
7e7d76c3
JB
5339}
5340
9237329d 5341/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5342 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5343 * state of the entire output pipe. */
9237329d 5344static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5345{
5ab432ef
DV
5346 if (mode == DRM_MODE_DPMS_ON) {
5347 encoder->connectors_active = true;
5348
b2cabb0e 5349 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5350 } else {
5351 encoder->connectors_active = false;
5352
b2cabb0e 5353 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5354 }
79e53945
JB
5355}
5356
0a91ca29
DV
5357/* Cross check the actual hw state with our own modeset state tracking (and it's
5358 * internal consistency). */
b980514c 5359static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5360{
0a91ca29
DV
5361 if (connector->get_hw_state(connector)) {
5362 struct intel_encoder *encoder = connector->encoder;
5363 struct drm_crtc *crtc;
5364 bool encoder_enabled;
5365 enum pipe pipe;
5366
5367 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5368 connector->base.base.id,
c23cc417 5369 connector->base.name);
0a91ca29 5370
0e32b39c
DA
5371 /* there is no real hw state for MST connectors */
5372 if (connector->mst_port)
5373 return;
5374
e2c719b7 5375 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5376 "wrong connector dpms state\n");
e2c719b7 5377 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5378 "active connector not linked to encoder\n");
0a91ca29 5379
36cd7444 5380 if (encoder) {
e2c719b7 5381 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5382 "encoder->connectors_active not set\n");
5383
5384 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5385 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5386 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5387 return;
0a91ca29 5388
36cd7444 5389 crtc = encoder->base.crtc;
0a91ca29 5390
e2c719b7
RC
5391 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5392 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5393 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5394 "encoder active on the wrong pipe\n");
5395 }
0a91ca29 5396 }
79e53945
JB
5397}
5398
5ab432ef
DV
5399/* Even simpler default implementation, if there's really no special case to
5400 * consider. */
5401void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5402{
5ab432ef
DV
5403 /* All the simple cases only support two dpms states. */
5404 if (mode != DRM_MODE_DPMS_ON)
5405 mode = DRM_MODE_DPMS_OFF;
d4270e57 5406
5ab432ef
DV
5407 if (mode == connector->dpms)
5408 return;
5409
5410 connector->dpms = mode;
5411
5412 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5413 if (connector->encoder)
5414 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5415
b980514c 5416 intel_modeset_check_state(connector->dev);
79e53945
JB
5417}
5418
f0947c37
DV
5419/* Simple connector->get_hw_state implementation for encoders that support only
5420 * one connector and no cloning and hence the encoder state determines the state
5421 * of the connector. */
5422bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5423{
24929352 5424 enum pipe pipe = 0;
f0947c37 5425 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5426
f0947c37 5427 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5428}
5429
1857e1da 5430static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5431 struct intel_crtc_state *pipe_config)
1857e1da
DV
5432{
5433 struct drm_i915_private *dev_priv = dev->dev_private;
5434 struct intel_crtc *pipe_B_crtc =
5435 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5436
5437 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5438 pipe_name(pipe), pipe_config->fdi_lanes);
5439 if (pipe_config->fdi_lanes > 4) {
5440 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5441 pipe_name(pipe), pipe_config->fdi_lanes);
5442 return false;
5443 }
5444
bafb6553 5445 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5446 if (pipe_config->fdi_lanes > 2) {
5447 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5448 pipe_config->fdi_lanes);
5449 return false;
5450 } else {
5451 return true;
5452 }
5453 }
5454
5455 if (INTEL_INFO(dev)->num_pipes == 2)
5456 return true;
5457
5458 /* Ivybridge 3 pipe is really complicated */
5459 switch (pipe) {
5460 case PIPE_A:
5461 return true;
5462 case PIPE_B:
5463 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5464 pipe_config->fdi_lanes > 2) {
5465 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5466 pipe_name(pipe), pipe_config->fdi_lanes);
5467 return false;
5468 }
5469 return true;
5470 case PIPE_C:
1e833f40 5471 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
6e3c9717 5472 pipe_B_crtc->config->fdi_lanes <= 2) {
1857e1da
DV
5473 if (pipe_config->fdi_lanes > 2) {
5474 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5475 pipe_name(pipe), pipe_config->fdi_lanes);
5476 return false;
5477 }
5478 } else {
5479 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5480 return false;
5481 }
5482 return true;
5483 default:
5484 BUG();
5485 }
5486}
5487
e29c22c0
DV
5488#define RETRY 1
5489static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5490 struct intel_crtc_state *pipe_config)
877d48d5 5491{
1857e1da 5492 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5493 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5494 int lane, link_bw, fdi_dotclock;
e29c22c0 5495 bool setup_ok, needs_recompute = false;
877d48d5 5496
e29c22c0 5497retry:
877d48d5
DV
5498 /* FDI is a binary signal running at ~2.7GHz, encoding
5499 * each output octet as 10 bits. The actual frequency
5500 * is stored as a divider into a 100MHz clock, and the
5501 * mode pixel clock is stored in units of 1KHz.
5502 * Hence the bw of each lane in terms of the mode signal
5503 * is:
5504 */
5505 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5506
241bfc38 5507 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5508
2bd89a07 5509 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5510 pipe_config->pipe_bpp);
5511
5512 pipe_config->fdi_lanes = lane;
5513
2bd89a07 5514 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5515 link_bw, &pipe_config->fdi_m_n);
1857e1da 5516
e29c22c0
DV
5517 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5518 intel_crtc->pipe, pipe_config);
5519 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5520 pipe_config->pipe_bpp -= 2*3;
5521 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5522 pipe_config->pipe_bpp);
5523 needs_recompute = true;
5524 pipe_config->bw_constrained = true;
5525
5526 goto retry;
5527 }
5528
5529 if (needs_recompute)
5530 return RETRY;
5531
5532 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5533}
5534
42db64ef 5535static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5536 struct intel_crtc_state *pipe_config)
42db64ef 5537{
d330a953 5538 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5539 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5540 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5541}
5542
a43f6e0f 5543static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5544 struct intel_crtc_state *pipe_config)
79e53945 5545{
a43f6e0f 5546 struct drm_device *dev = crtc->base.dev;
8bd31e67 5547 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5548 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5549
ad3a4479 5550 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5551 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5552 int clock_limit =
5553 dev_priv->display.get_display_clock_speed(dev);
5554
5555 /*
5556 * Enable pixel doubling when the dot clock
5557 * is > 90% of the (display) core speed.
5558 *
b397c96b
VS
5559 * GDG double wide on either pipe,
5560 * otherwise pipe A only.
cf532bb2 5561 */
b397c96b 5562 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5563 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5564 clock_limit *= 2;
cf532bb2 5565 pipe_config->double_wide = true;
ad3a4479
VS
5566 }
5567
241bfc38 5568 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5569 return -EINVAL;
2c07245f 5570 }
89749350 5571
1d1d0e27
VS
5572 /*
5573 * Pipe horizontal size must be even in:
5574 * - DVO ganged mode
5575 * - LVDS dual channel mode
5576 * - Double wide pipe
5577 */
409ee761 5578 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5579 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5580 pipe_config->pipe_src_w &= ~1;
5581
8693a824
DL
5582 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5583 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5584 */
5585 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5586 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5587 return -EINVAL;
44f46b42 5588
bd080ee5 5589 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5590 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5591 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5592 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5593 * for lvds. */
5594 pipe_config->pipe_bpp = 8*3;
5595 }
5596
f5adf94e 5597 if (HAS_IPS(dev))
a43f6e0f
DV
5598 hsw_compute_ips_config(crtc, pipe_config);
5599
877d48d5 5600 if (pipe_config->has_pch_encoder)
a43f6e0f 5601 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5602
e29c22c0 5603 return 0;
79e53945
JB
5604}
5605
25eb05fc
JB
5606static int valleyview_get_display_clock_speed(struct drm_device *dev)
5607{
d197b7d3 5608 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5609 u32 val;
5610 int divider;
5611
d49a340d
VS
5612 /* FIXME: Punit isn't quite ready yet */
5613 if (IS_CHERRYVIEW(dev))
5614 return 400000;
5615
6bcda4f0
VS
5616 if (dev_priv->hpll_freq == 0)
5617 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5618
d197b7d3
VS
5619 mutex_lock(&dev_priv->dpio_lock);
5620 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5621 mutex_unlock(&dev_priv->dpio_lock);
5622
5623 divider = val & DISPLAY_FREQUENCY_VALUES;
5624
7d007f40
VS
5625 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5626 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5627 "cdclk change in progress\n");
5628
6bcda4f0 5629 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5630}
5631
e70236a8
JB
5632static int i945_get_display_clock_speed(struct drm_device *dev)
5633{
5634 return 400000;
5635}
79e53945 5636
e70236a8 5637static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5638{
e70236a8
JB
5639 return 333000;
5640}
79e53945 5641
e70236a8
JB
5642static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5643{
5644 return 200000;
5645}
79e53945 5646
257a7ffc
DV
5647static int pnv_get_display_clock_speed(struct drm_device *dev)
5648{
5649 u16 gcfgc = 0;
5650
5651 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5652
5653 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5654 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5655 return 267000;
5656 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5657 return 333000;
5658 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5659 return 444000;
5660 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5661 return 200000;
5662 default:
5663 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5664 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5665 return 133000;
5666 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5667 return 167000;
5668 }
5669}
5670
e70236a8
JB
5671static int i915gm_get_display_clock_speed(struct drm_device *dev)
5672{
5673 u16 gcfgc = 0;
79e53945 5674
e70236a8
JB
5675 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5676
5677 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5678 return 133000;
5679 else {
5680 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5681 case GC_DISPLAY_CLOCK_333_MHZ:
5682 return 333000;
5683 default:
5684 case GC_DISPLAY_CLOCK_190_200_MHZ:
5685 return 190000;
79e53945 5686 }
e70236a8
JB
5687 }
5688}
5689
5690static int i865_get_display_clock_speed(struct drm_device *dev)
5691{
5692 return 266000;
5693}
5694
5695static int i855_get_display_clock_speed(struct drm_device *dev)
5696{
5697 u16 hpllcc = 0;
5698 /* Assume that the hardware is in the high speed state. This
5699 * should be the default.
5700 */
5701 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5702 case GC_CLOCK_133_200:
5703 case GC_CLOCK_100_200:
5704 return 200000;
5705 case GC_CLOCK_166_250:
5706 return 250000;
5707 case GC_CLOCK_100_133:
79e53945 5708 return 133000;
e70236a8 5709 }
79e53945 5710
e70236a8
JB
5711 /* Shouldn't happen */
5712 return 0;
5713}
79e53945 5714
e70236a8
JB
5715static int i830_get_display_clock_speed(struct drm_device *dev)
5716{
5717 return 133000;
79e53945
JB
5718}
5719
2c07245f 5720static void
a65851af 5721intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5722{
a65851af
VS
5723 while (*num > DATA_LINK_M_N_MASK ||
5724 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5725 *num >>= 1;
5726 *den >>= 1;
5727 }
5728}
5729
a65851af
VS
5730static void compute_m_n(unsigned int m, unsigned int n,
5731 uint32_t *ret_m, uint32_t *ret_n)
5732{
5733 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5734 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5735 intel_reduce_m_n_ratio(ret_m, ret_n);
5736}
5737
e69d0bc1
DV
5738void
5739intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5740 int pixel_clock, int link_clock,
5741 struct intel_link_m_n *m_n)
2c07245f 5742{
e69d0bc1 5743 m_n->tu = 64;
a65851af
VS
5744
5745 compute_m_n(bits_per_pixel * pixel_clock,
5746 link_clock * nlanes * 8,
5747 &m_n->gmch_m, &m_n->gmch_n);
5748
5749 compute_m_n(pixel_clock, link_clock,
5750 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5751}
5752
a7615030
CW
5753static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5754{
d330a953
JN
5755 if (i915.panel_use_ssc >= 0)
5756 return i915.panel_use_ssc != 0;
41aa3448 5757 return dev_priv->vbt.lvds_use_ssc
435793df 5758 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5759}
5760
409ee761 5761static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5762{
409ee761 5763 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5764 struct drm_i915_private *dev_priv = dev->dev_private;
5765 int refclk;
5766
a0c4da24 5767 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5768 refclk = 100000;
d0737e1d 5769 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5770 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5771 refclk = dev_priv->vbt.lvds_ssc_freq;
5772 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5773 } else if (!IS_GEN2(dev)) {
5774 refclk = 96000;
5775 } else {
5776 refclk = 48000;
5777 }
5778
5779 return refclk;
5780}
5781
7429e9d4 5782static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5783{
7df00d7a 5784 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5785}
f47709a9 5786
7429e9d4
DV
5787static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5788{
5789 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5790}
5791
f47709a9 5792static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 5793 struct intel_crtc_state *crtc_state,
a7516a05
JB
5794 intel_clock_t *reduced_clock)
5795{
f47709a9 5796 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5797 u32 fp, fp2 = 0;
5798
5799 if (IS_PINEVIEW(dev)) {
190f68c5 5800 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5801 if (reduced_clock)
7429e9d4 5802 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5803 } else {
190f68c5 5804 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5805 if (reduced_clock)
7429e9d4 5806 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5807 }
5808
190f68c5 5809 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 5810
f47709a9 5811 crtc->lowfreq_avail = false;
e1f234bd 5812 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5813 reduced_clock && i915.powersave) {
190f68c5 5814 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 5815 crtc->lowfreq_avail = true;
a7516a05 5816 } else {
190f68c5 5817 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
5818 }
5819}
5820
5e69f97f
CML
5821static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5822 pipe)
89b667f8
JB
5823{
5824 u32 reg_val;
5825
5826 /*
5827 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5828 * and set it to a reasonable value instead.
5829 */
ab3c759a 5830 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5831 reg_val &= 0xffffff00;
5832 reg_val |= 0x00000030;
ab3c759a 5833 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5834
ab3c759a 5835 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5836 reg_val &= 0x8cffffff;
5837 reg_val = 0x8c000000;
ab3c759a 5838 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5839
ab3c759a 5840 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5841 reg_val &= 0xffffff00;
ab3c759a 5842 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5843
ab3c759a 5844 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5845 reg_val &= 0x00ffffff;
5846 reg_val |= 0xb0000000;
ab3c759a 5847 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5848}
5849
b551842d
DV
5850static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5851 struct intel_link_m_n *m_n)
5852{
5853 struct drm_device *dev = crtc->base.dev;
5854 struct drm_i915_private *dev_priv = dev->dev_private;
5855 int pipe = crtc->pipe;
5856
e3b95f1e
DV
5857 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5858 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5859 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5860 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5861}
5862
5863static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5864 struct intel_link_m_n *m_n,
5865 struct intel_link_m_n *m2_n2)
b551842d
DV
5866{
5867 struct drm_device *dev = crtc->base.dev;
5868 struct drm_i915_private *dev_priv = dev->dev_private;
5869 int pipe = crtc->pipe;
6e3c9717 5870 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
5871
5872 if (INTEL_INFO(dev)->gen >= 5) {
5873 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5874 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5875 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5876 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5877 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5878 * for gen < 8) and if DRRS is supported (to make sure the
5879 * registers are not unnecessarily accessed).
5880 */
5881 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 5882 crtc->config->has_drrs) {
f769cd24
VK
5883 I915_WRITE(PIPE_DATA_M2(transcoder),
5884 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5885 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5886 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5887 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5888 }
b551842d 5889 } else {
e3b95f1e
DV
5890 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5891 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5892 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5893 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5894 }
5895}
5896
f769cd24 5897void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2 5898{
6e3c9717
ACO
5899 if (crtc->config->has_pch_encoder)
5900 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 5901 else
6e3c9717
ACO
5902 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5903 &crtc->config->dp_m2_n2);
03afc4a2
DV
5904}
5905
d288f65f 5906static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 5907 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
5908{
5909 u32 dpll, dpll_md;
5910
5911 /*
5912 * Enable DPIO clock input. We should never disable the reference
5913 * clock for pipe B, since VGA hotplug / manual detection depends
5914 * on it.
5915 */
5916 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5917 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5918 /* We should never disable this, set it here for state tracking */
5919 if (crtc->pipe == PIPE_B)
5920 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5921 dpll |= DPLL_VCO_ENABLE;
d288f65f 5922 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5923
d288f65f 5924 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5925 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5926 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5927}
5928
d288f65f 5929static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 5930 const struct intel_crtc_state *pipe_config)
a0c4da24 5931{
f47709a9 5932 struct drm_device *dev = crtc->base.dev;
a0c4da24 5933 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5934 int pipe = crtc->pipe;
bdd4b6a6 5935 u32 mdiv;
a0c4da24 5936 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5937 u32 coreclk, reg_val;
a0c4da24 5938
09153000
DV
5939 mutex_lock(&dev_priv->dpio_lock);
5940
d288f65f
VS
5941 bestn = pipe_config->dpll.n;
5942 bestm1 = pipe_config->dpll.m1;
5943 bestm2 = pipe_config->dpll.m2;
5944 bestp1 = pipe_config->dpll.p1;
5945 bestp2 = pipe_config->dpll.p2;
a0c4da24 5946
89b667f8
JB
5947 /* See eDP HDMI DPIO driver vbios notes doc */
5948
5949 /* PLL B needs special handling */
bdd4b6a6 5950 if (pipe == PIPE_B)
5e69f97f 5951 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5952
5953 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5955
5956 /* Disable target IRef on PLL */
ab3c759a 5957 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5958 reg_val &= 0x00ffffff;
ab3c759a 5959 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5960
5961 /* Disable fast lock */
ab3c759a 5962 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5963
5964 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5965 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5966 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5967 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5968 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5969
5970 /*
5971 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5972 * but we don't support that).
5973 * Note: don't use the DAC post divider as it seems unstable.
5974 */
5975 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5976 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5977
a0c4da24 5978 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5979 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5980
89b667f8 5981 /* Set HBR and RBR LPF coefficients */
d288f65f 5982 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5983 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5984 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5985 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5986 0x009f0003);
89b667f8 5987 else
ab3c759a 5988 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5989 0x00d0000f);
5990
681a8504 5991 if (pipe_config->has_dp_encoder) {
89b667f8 5992 /* Use SSC source */
bdd4b6a6 5993 if (pipe == PIPE_A)
ab3c759a 5994 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5995 0x0df40000);
5996 else
ab3c759a 5997 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5998 0x0df70000);
5999 } else { /* HDMI or VGA */
6000 /* Use bend source */
bdd4b6a6 6001 if (pipe == PIPE_A)
ab3c759a 6002 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6003 0x0df70000);
6004 else
ab3c759a 6005 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6006 0x0df40000);
6007 }
a0c4da24 6008
ab3c759a 6009 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6010 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6011 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6012 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6013 coreclk |= 0x01000000;
ab3c759a 6014 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6015
ab3c759a 6016 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6017 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6018}
6019
d288f65f 6020static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 6021 struct intel_crtc_state *pipe_config)
1ae0d137 6022{
d288f65f 6023 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6024 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6025 DPLL_VCO_ENABLE;
6026 if (crtc->pipe != PIPE_A)
d288f65f 6027 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6028
d288f65f
VS
6029 pipe_config->dpll_hw_state.dpll_md =
6030 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6031}
6032
d288f65f 6033static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6034 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6035{
6036 struct drm_device *dev = crtc->base.dev;
6037 struct drm_i915_private *dev_priv = dev->dev_private;
6038 int pipe = crtc->pipe;
6039 int dpll_reg = DPLL(crtc->pipe);
6040 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 6041 u32 loopfilter, intcoeff;
9d556c99
CML
6042 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6043 int refclk;
6044
d288f65f
VS
6045 bestn = pipe_config->dpll.n;
6046 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6047 bestm1 = pipe_config->dpll.m1;
6048 bestm2 = pipe_config->dpll.m2 >> 22;
6049 bestp1 = pipe_config->dpll.p1;
6050 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
6051
6052 /*
6053 * Enable Refclk and SSC
6054 */
a11b0703 6055 I915_WRITE(dpll_reg,
d288f65f 6056 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6057
6058 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6059
9d556c99
CML
6060 /* p1 and p2 divider */
6061 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6062 5 << DPIO_CHV_S1_DIV_SHIFT |
6063 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6064 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6065 1 << DPIO_CHV_K_DIV_SHIFT);
6066
6067 /* Feedback post-divider - m2 */
6068 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6069
6070 /* Feedback refclk divider - n and m1 */
6071 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6072 DPIO_CHV_M1_DIV_BY_2 |
6073 1 << DPIO_CHV_N_DIV_SHIFT);
6074
6075 /* M2 fraction division */
6076 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6077
6078 /* M2 fraction division enable */
6079 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6080 DPIO_CHV_FRAC_DIV_EN |
6081 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6082
6083 /* Loop filter */
409ee761 6084 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6085 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6086 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6087 if (refclk == 100000)
6088 intcoeff = 11;
6089 else if (refclk == 38400)
6090 intcoeff = 10;
6091 else
6092 intcoeff = 9;
6093 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6094 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6095
6096 /* AFC Recal */
6097 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6098 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6099 DPIO_AFC_RECAL);
6100
6101 mutex_unlock(&dev_priv->dpio_lock);
6102}
6103
d288f65f
VS
6104/**
6105 * vlv_force_pll_on - forcibly enable just the PLL
6106 * @dev_priv: i915 private structure
6107 * @pipe: pipe PLL to enable
6108 * @dpll: PLL configuration
6109 *
6110 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6111 * in cases where we need the PLL enabled even when @pipe is not going to
6112 * be enabled.
6113 */
6114void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6115 const struct dpll *dpll)
6116{
6117 struct intel_crtc *crtc =
6118 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6119 struct intel_crtc_state pipe_config = {
d288f65f
VS
6120 .pixel_multiplier = 1,
6121 .dpll = *dpll,
6122 };
6123
6124 if (IS_CHERRYVIEW(dev)) {
6125 chv_update_pll(crtc, &pipe_config);
6126 chv_prepare_pll(crtc, &pipe_config);
6127 chv_enable_pll(crtc, &pipe_config);
6128 } else {
6129 vlv_update_pll(crtc, &pipe_config);
6130 vlv_prepare_pll(crtc, &pipe_config);
6131 vlv_enable_pll(crtc, &pipe_config);
6132 }
6133}
6134
6135/**
6136 * vlv_force_pll_off - forcibly disable just the PLL
6137 * @dev_priv: i915 private structure
6138 * @pipe: pipe PLL to disable
6139 *
6140 * Disable the PLL for @pipe. To be used in cases where we need
6141 * the PLL enabled even when @pipe is not going to be enabled.
6142 */
6143void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6144{
6145 if (IS_CHERRYVIEW(dev))
6146 chv_disable_pll(to_i915(dev), pipe);
6147 else
6148 vlv_disable_pll(to_i915(dev), pipe);
6149}
6150
f47709a9 6151static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6152 struct intel_crtc_state *crtc_state,
f47709a9 6153 intel_clock_t *reduced_clock,
eb1cbe48
DV
6154 int num_connectors)
6155{
f47709a9 6156 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6157 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6158 u32 dpll;
6159 bool is_sdvo;
190f68c5 6160 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6161
190f68c5 6162 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6163
d0737e1d
ACO
6164 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6165 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6166
6167 dpll = DPLL_VGA_MODE_DIS;
6168
d0737e1d 6169 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6170 dpll |= DPLLB_MODE_LVDS;
6171 else
6172 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6173
ef1b460d 6174 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6175 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6176 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6177 }
198a037f
DV
6178
6179 if (is_sdvo)
4a33e48d 6180 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6181
190f68c5 6182 if (crtc_state->has_dp_encoder)
4a33e48d 6183 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6184
6185 /* compute bitmask from p1 value */
6186 if (IS_PINEVIEW(dev))
6187 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6188 else {
6189 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6190 if (IS_G4X(dev) && reduced_clock)
6191 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6192 }
6193 switch (clock->p2) {
6194 case 5:
6195 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6196 break;
6197 case 7:
6198 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6199 break;
6200 case 10:
6201 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6202 break;
6203 case 14:
6204 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6205 break;
6206 }
6207 if (INTEL_INFO(dev)->gen >= 4)
6208 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6209
190f68c5 6210 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6211 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6212 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6213 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6214 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6215 else
6216 dpll |= PLL_REF_INPUT_DREFCLK;
6217
6218 dpll |= DPLL_VCO_ENABLE;
190f68c5 6219 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6220
eb1cbe48 6221 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6222 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6223 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6224 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6225 }
6226}
6227
f47709a9 6228static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6229 struct intel_crtc_state *crtc_state,
f47709a9 6230 intel_clock_t *reduced_clock,
eb1cbe48
DV
6231 int num_connectors)
6232{
f47709a9 6233 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6234 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6235 u32 dpll;
190f68c5 6236 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6237
190f68c5 6238 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6239
eb1cbe48
DV
6240 dpll = DPLL_VGA_MODE_DIS;
6241
d0737e1d 6242 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6243 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6244 } else {
6245 if (clock->p1 == 2)
6246 dpll |= PLL_P1_DIVIDE_BY_TWO;
6247 else
6248 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6249 if (clock->p2 == 4)
6250 dpll |= PLL_P2_DIVIDE_BY_4;
6251 }
6252
d0737e1d 6253 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6254 dpll |= DPLL_DVO_2X_MODE;
6255
d0737e1d 6256 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6257 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6258 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6259 else
6260 dpll |= PLL_REF_INPUT_DREFCLK;
6261
6262 dpll |= DPLL_VCO_ENABLE;
190f68c5 6263 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6264}
6265
8a654f3b 6266static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6267{
6268 struct drm_device *dev = intel_crtc->base.dev;
6269 struct drm_i915_private *dev_priv = dev->dev_private;
6270 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6271 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6272 struct drm_display_mode *adjusted_mode =
6e3c9717 6273 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6274 uint32_t crtc_vtotal, crtc_vblank_end;
6275 int vsyncshift = 0;
4d8a62ea
DV
6276
6277 /* We need to be careful not to changed the adjusted mode, for otherwise
6278 * the hw state checker will get angry at the mismatch. */
6279 crtc_vtotal = adjusted_mode->crtc_vtotal;
6280 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6281
609aeaca 6282 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6283 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6284 crtc_vtotal -= 1;
6285 crtc_vblank_end -= 1;
609aeaca 6286
409ee761 6287 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6288 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6289 else
6290 vsyncshift = adjusted_mode->crtc_hsync_start -
6291 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6292 if (vsyncshift < 0)
6293 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6294 }
6295
6296 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6297 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6298
fe2b8f9d 6299 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6300 (adjusted_mode->crtc_hdisplay - 1) |
6301 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6302 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6303 (adjusted_mode->crtc_hblank_start - 1) |
6304 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6305 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6306 (adjusted_mode->crtc_hsync_start - 1) |
6307 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6308
fe2b8f9d 6309 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6310 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6311 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6312 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6313 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6314 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6315 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6316 (adjusted_mode->crtc_vsync_start - 1) |
6317 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6318
b5e508d4
PZ
6319 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6320 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6321 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6322 * bits. */
6323 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6324 (pipe == PIPE_B || pipe == PIPE_C))
6325 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6326
b0e77b9c
PZ
6327 /* pipesrc controls the size that is scaled from, which should
6328 * always be the user's requested size.
6329 */
6330 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6331 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6332 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6333}
6334
1bd1bd80 6335static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6336 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6337{
6338 struct drm_device *dev = crtc->base.dev;
6339 struct drm_i915_private *dev_priv = dev->dev_private;
6340 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6341 uint32_t tmp;
6342
6343 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6344 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6345 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6346 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6347 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6348 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6349 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6350 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6351 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6352
6353 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6354 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6355 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6356 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6357 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6358 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6359 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6360 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6361 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6362
6363 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6364 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6365 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6366 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6367 }
6368
6369 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6370 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6371 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6372
2d112de7
ACO
6373 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6374 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6375}
6376
f6a83288 6377void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6378 struct intel_crtc_state *pipe_config)
babea61d 6379{
2d112de7
ACO
6380 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6381 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6382 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6383 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6384
2d112de7
ACO
6385 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6386 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6387 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6388 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6389
2d112de7 6390 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6391
2d112de7
ACO
6392 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6393 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6394}
6395
84b046f3
DV
6396static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6397{
6398 struct drm_device *dev = intel_crtc->base.dev;
6399 struct drm_i915_private *dev_priv = dev->dev_private;
6400 uint32_t pipeconf;
6401
9f11a9e4 6402 pipeconf = 0;
84b046f3 6403
b6b5d049
VS
6404 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6405 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6406 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6407
6e3c9717 6408 if (intel_crtc->config->double_wide)
cf532bb2 6409 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6410
ff9ce46e
DV
6411 /* only g4x and later have fancy bpc/dither controls */
6412 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6413 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6414 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6415 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6416 PIPECONF_DITHER_TYPE_SP;
84b046f3 6417
6e3c9717 6418 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6419 case 18:
6420 pipeconf |= PIPECONF_6BPC;
6421 break;
6422 case 24:
6423 pipeconf |= PIPECONF_8BPC;
6424 break;
6425 case 30:
6426 pipeconf |= PIPECONF_10BPC;
6427 break;
6428 default:
6429 /* Case prevented by intel_choose_pipe_bpp_dither. */
6430 BUG();
84b046f3
DV
6431 }
6432 }
6433
6434 if (HAS_PIPE_CXSR(dev)) {
6435 if (intel_crtc->lowfreq_avail) {
6436 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6437 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6438 } else {
6439 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6440 }
6441 }
6442
6e3c9717 6443 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6444 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6445 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6446 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6447 else
6448 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6449 } else
84b046f3
DV
6450 pipeconf |= PIPECONF_PROGRESSIVE;
6451
6e3c9717 6452 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6453 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6454
84b046f3
DV
6455 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6456 POSTING_READ(PIPECONF(intel_crtc->pipe));
6457}
6458
190f68c5
ACO
6459static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6460 struct intel_crtc_state *crtc_state)
79e53945 6461{
c7653199 6462 struct drm_device *dev = crtc->base.dev;
79e53945 6463 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6464 int refclk, num_connectors = 0;
652c393a 6465 intel_clock_t clock, reduced_clock;
a16af721 6466 bool ok, has_reduced_clock = false;
e9fd1c02 6467 bool is_lvds = false, is_dsi = false;
5eddb70b 6468 struct intel_encoder *encoder;
d4906093 6469 const intel_limit_t *limit;
79e53945 6470
d0737e1d
ACO
6471 for_each_intel_encoder(dev, encoder) {
6472 if (encoder->new_crtc != crtc)
6473 continue;
6474
5eddb70b 6475 switch (encoder->type) {
79e53945
JB
6476 case INTEL_OUTPUT_LVDS:
6477 is_lvds = true;
6478 break;
e9fd1c02
JN
6479 case INTEL_OUTPUT_DSI:
6480 is_dsi = true;
6481 break;
6847d71b
PZ
6482 default:
6483 break;
79e53945 6484 }
43565a06 6485
c751ce4f 6486 num_connectors++;
79e53945
JB
6487 }
6488
f2335330 6489 if (is_dsi)
5b18e57c 6490 return 0;
f2335330 6491
190f68c5 6492 if (!crtc_state->clock_set) {
409ee761 6493 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6494
e9fd1c02
JN
6495 /*
6496 * Returns a set of divisors for the desired target clock with
6497 * the given refclk, or FALSE. The returned values represent
6498 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6499 * 2) / p1 / p2.
6500 */
409ee761 6501 limit = intel_limit(crtc, refclk);
c7653199 6502 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6503 crtc_state->port_clock,
e9fd1c02 6504 refclk, NULL, &clock);
f2335330 6505 if (!ok) {
e9fd1c02
JN
6506 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6507 return -EINVAL;
6508 }
79e53945 6509
f2335330
JN
6510 if (is_lvds && dev_priv->lvds_downclock_avail) {
6511 /*
6512 * Ensure we match the reduced clock's P to the target
6513 * clock. If the clocks don't match, we can't switch
6514 * the display clock by using the FP0/FP1. In such case
6515 * we will disable the LVDS downclock feature.
6516 */
6517 has_reduced_clock =
c7653199 6518 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6519 dev_priv->lvds_downclock,
6520 refclk, &clock,
6521 &reduced_clock);
6522 }
6523 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6524 crtc_state->dpll.n = clock.n;
6525 crtc_state->dpll.m1 = clock.m1;
6526 crtc_state->dpll.m2 = clock.m2;
6527 crtc_state->dpll.p1 = clock.p1;
6528 crtc_state->dpll.p2 = clock.p2;
f47709a9 6529 }
7026d4ac 6530
e9fd1c02 6531 if (IS_GEN2(dev)) {
190f68c5 6532 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6533 has_reduced_clock ? &reduced_clock : NULL,
6534 num_connectors);
9d556c99 6535 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6536 chv_update_pll(crtc, crtc_state);
e9fd1c02 6537 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6538 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6539 } else {
190f68c5 6540 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6541 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6542 num_connectors);
e9fd1c02 6543 }
79e53945 6544
c8f7a0db 6545 return 0;
f564048e
EA
6546}
6547
2fa2fe9a 6548static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6549 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6550{
6551 struct drm_device *dev = crtc->base.dev;
6552 struct drm_i915_private *dev_priv = dev->dev_private;
6553 uint32_t tmp;
6554
dc9e7dec
VS
6555 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6556 return;
6557
2fa2fe9a 6558 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6559 if (!(tmp & PFIT_ENABLE))
6560 return;
2fa2fe9a 6561
06922821 6562 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6563 if (INTEL_INFO(dev)->gen < 4) {
6564 if (crtc->pipe != PIPE_B)
6565 return;
2fa2fe9a
DV
6566 } else {
6567 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6568 return;
6569 }
6570
06922821 6571 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6572 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6573 if (INTEL_INFO(dev)->gen < 5)
6574 pipe_config->gmch_pfit.lvds_border_bits =
6575 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6576}
6577
acbec814 6578static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6579 struct intel_crtc_state *pipe_config)
acbec814
JB
6580{
6581 struct drm_device *dev = crtc->base.dev;
6582 struct drm_i915_private *dev_priv = dev->dev_private;
6583 int pipe = pipe_config->cpu_transcoder;
6584 intel_clock_t clock;
6585 u32 mdiv;
662c6ecb 6586 int refclk = 100000;
acbec814 6587
f573de5a
SK
6588 /* In case of MIPI DPLL will not even be used */
6589 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6590 return;
6591
acbec814 6592 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6593 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6594 mutex_unlock(&dev_priv->dpio_lock);
6595
6596 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6597 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6598 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6599 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6600 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6601
f646628b 6602 vlv_clock(refclk, &clock);
acbec814 6603
f646628b
VS
6604 /* clock.dot is the fast clock */
6605 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6606}
6607
5724dbd1
DL
6608static void
6609i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6610 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6611{
6612 struct drm_device *dev = crtc->base.dev;
6613 struct drm_i915_private *dev_priv = dev->dev_private;
6614 u32 val, base, offset;
6615 int pipe = crtc->pipe, plane = crtc->plane;
6616 int fourcc, pixel_format;
6617 int aligned_height;
b113d5ee 6618 struct drm_framebuffer *fb;
1b842c89 6619 struct intel_framebuffer *intel_fb;
1ad292b5 6620
42a7b088
DL
6621 val = I915_READ(DSPCNTR(plane));
6622 if (!(val & DISPLAY_PLANE_ENABLE))
6623 return;
6624
d9806c9f 6625 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 6626 if (!intel_fb) {
1ad292b5
JB
6627 DRM_DEBUG_KMS("failed to alloc fb\n");
6628 return;
6629 }
6630
1b842c89
DL
6631 fb = &intel_fb->base;
6632
18c5247e
DV
6633 if (INTEL_INFO(dev)->gen >= 4) {
6634 if (val & DISPPLANE_TILED) {
49af449b 6635 plane_config->tiling = I915_TILING_X;
18c5247e
DV
6636 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6637 }
6638 }
1ad292b5
JB
6639
6640 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6641 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6642 fb->pixel_format = fourcc;
6643 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6644
6645 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6646 if (plane_config->tiling)
1ad292b5
JB
6647 offset = I915_READ(DSPTILEOFF(plane));
6648 else
6649 offset = I915_READ(DSPLINOFF(plane));
6650 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6651 } else {
6652 base = I915_READ(DSPADDR(plane));
6653 }
6654 plane_config->base = base;
6655
6656 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6657 fb->width = ((val >> 16) & 0xfff) + 1;
6658 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6659
6660 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6661 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6662
b113d5ee 6663 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
6664 fb->pixel_format,
6665 fb->modifier[0]);
1ad292b5 6666
b113d5ee 6667 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
1ad292b5 6668
2844a921
DL
6669 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6670 pipe_name(pipe), plane, fb->width, fb->height,
6671 fb->bits_per_pixel, base, fb->pitches[0],
6672 plane_config->size);
1ad292b5 6673
2d14030b 6674 plane_config->fb = intel_fb;
1ad292b5
JB
6675}
6676
70b23a98 6677static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6678 struct intel_crtc_state *pipe_config)
70b23a98
VS
6679{
6680 struct drm_device *dev = crtc->base.dev;
6681 struct drm_i915_private *dev_priv = dev->dev_private;
6682 int pipe = pipe_config->cpu_transcoder;
6683 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6684 intel_clock_t clock;
6685 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6686 int refclk = 100000;
6687
6688 mutex_lock(&dev_priv->dpio_lock);
6689 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6690 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6691 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6692 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6693 mutex_unlock(&dev_priv->dpio_lock);
6694
6695 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6696 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6697 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6698 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6699 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6700
6701 chv_clock(refclk, &clock);
6702
6703 /* clock.dot is the fast clock */
6704 pipe_config->port_clock = clock.dot / 5;
6705}
6706
0e8ffe1b 6707static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6708 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6709{
6710 struct drm_device *dev = crtc->base.dev;
6711 struct drm_i915_private *dev_priv = dev->dev_private;
6712 uint32_t tmp;
6713
f458ebbc
DV
6714 if (!intel_display_power_is_enabled(dev_priv,
6715 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6716 return false;
6717
e143a21c 6718 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6719 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6720
0e8ffe1b
DV
6721 tmp = I915_READ(PIPECONF(crtc->pipe));
6722 if (!(tmp & PIPECONF_ENABLE))
6723 return false;
6724
42571aef
VS
6725 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6726 switch (tmp & PIPECONF_BPC_MASK) {
6727 case PIPECONF_6BPC:
6728 pipe_config->pipe_bpp = 18;
6729 break;
6730 case PIPECONF_8BPC:
6731 pipe_config->pipe_bpp = 24;
6732 break;
6733 case PIPECONF_10BPC:
6734 pipe_config->pipe_bpp = 30;
6735 break;
6736 default:
6737 break;
6738 }
6739 }
6740
b5a9fa09
DV
6741 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6742 pipe_config->limited_color_range = true;
6743
282740f7
VS
6744 if (INTEL_INFO(dev)->gen < 4)
6745 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6746
1bd1bd80
DV
6747 intel_get_pipe_timings(crtc, pipe_config);
6748
2fa2fe9a
DV
6749 i9xx_get_pfit_config(crtc, pipe_config);
6750
6c49f241
DV
6751 if (INTEL_INFO(dev)->gen >= 4) {
6752 tmp = I915_READ(DPLL_MD(crtc->pipe));
6753 pipe_config->pixel_multiplier =
6754 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6755 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6756 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6757 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6758 tmp = I915_READ(DPLL(crtc->pipe));
6759 pipe_config->pixel_multiplier =
6760 ((tmp & SDVO_MULTIPLIER_MASK)
6761 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6762 } else {
6763 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6764 * port and will be fixed up in the encoder->get_config
6765 * function. */
6766 pipe_config->pixel_multiplier = 1;
6767 }
8bcc2795
DV
6768 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6769 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6770 /*
6771 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6772 * on 830. Filter it out here so that we don't
6773 * report errors due to that.
6774 */
6775 if (IS_I830(dev))
6776 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6777
8bcc2795
DV
6778 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6779 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6780 } else {
6781 /* Mask out read-only status bits. */
6782 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6783 DPLL_PORTC_READY_MASK |
6784 DPLL_PORTB_READY_MASK);
8bcc2795 6785 }
6c49f241 6786
70b23a98
VS
6787 if (IS_CHERRYVIEW(dev))
6788 chv_crtc_clock_get(crtc, pipe_config);
6789 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6790 vlv_crtc_clock_get(crtc, pipe_config);
6791 else
6792 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6793
0e8ffe1b
DV
6794 return true;
6795}
6796
dde86e2d 6797static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6798{
6799 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6800 struct intel_encoder *encoder;
74cfd7ac 6801 u32 val, final;
13d83a67 6802 bool has_lvds = false;
199e5d79 6803 bool has_cpu_edp = false;
199e5d79 6804 bool has_panel = false;
99eb6a01
KP
6805 bool has_ck505 = false;
6806 bool can_ssc = false;
13d83a67
JB
6807
6808 /* We need to take the global config into account */
b2784e15 6809 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6810 switch (encoder->type) {
6811 case INTEL_OUTPUT_LVDS:
6812 has_panel = true;
6813 has_lvds = true;
6814 break;
6815 case INTEL_OUTPUT_EDP:
6816 has_panel = true;
2de6905f 6817 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6818 has_cpu_edp = true;
6819 break;
6847d71b
PZ
6820 default:
6821 break;
13d83a67
JB
6822 }
6823 }
6824
99eb6a01 6825 if (HAS_PCH_IBX(dev)) {
41aa3448 6826 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6827 can_ssc = has_ck505;
6828 } else {
6829 has_ck505 = false;
6830 can_ssc = true;
6831 }
6832
2de6905f
ID
6833 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6834 has_panel, has_lvds, has_ck505);
13d83a67
JB
6835
6836 /* Ironlake: try to setup display ref clock before DPLL
6837 * enabling. This is only under driver's control after
6838 * PCH B stepping, previous chipset stepping should be
6839 * ignoring this setting.
6840 */
74cfd7ac
CW
6841 val = I915_READ(PCH_DREF_CONTROL);
6842
6843 /* As we must carefully and slowly disable/enable each source in turn,
6844 * compute the final state we want first and check if we need to
6845 * make any changes at all.
6846 */
6847 final = val;
6848 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6849 if (has_ck505)
6850 final |= DREF_NONSPREAD_CK505_ENABLE;
6851 else
6852 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6853
6854 final &= ~DREF_SSC_SOURCE_MASK;
6855 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6856 final &= ~DREF_SSC1_ENABLE;
6857
6858 if (has_panel) {
6859 final |= DREF_SSC_SOURCE_ENABLE;
6860
6861 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6862 final |= DREF_SSC1_ENABLE;
6863
6864 if (has_cpu_edp) {
6865 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6866 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6867 else
6868 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6869 } else
6870 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6871 } else {
6872 final |= DREF_SSC_SOURCE_DISABLE;
6873 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6874 }
6875
6876 if (final == val)
6877 return;
6878
13d83a67 6879 /* Always enable nonspread source */
74cfd7ac 6880 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6881
99eb6a01 6882 if (has_ck505)
74cfd7ac 6883 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6884 else
74cfd7ac 6885 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6886
199e5d79 6887 if (has_panel) {
74cfd7ac
CW
6888 val &= ~DREF_SSC_SOURCE_MASK;
6889 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6890
199e5d79 6891 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6892 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6893 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6894 val |= DREF_SSC1_ENABLE;
e77166b5 6895 } else
74cfd7ac 6896 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6897
6898 /* Get SSC going before enabling the outputs */
74cfd7ac 6899 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6900 POSTING_READ(PCH_DREF_CONTROL);
6901 udelay(200);
6902
74cfd7ac 6903 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6904
6905 /* Enable CPU source on CPU attached eDP */
199e5d79 6906 if (has_cpu_edp) {
99eb6a01 6907 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6908 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6909 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6910 } else
74cfd7ac 6911 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6912 } else
74cfd7ac 6913 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6914
74cfd7ac 6915 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6916 POSTING_READ(PCH_DREF_CONTROL);
6917 udelay(200);
6918 } else {
6919 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6920
74cfd7ac 6921 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6922
6923 /* Turn off CPU output */
74cfd7ac 6924 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6925
74cfd7ac 6926 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6927 POSTING_READ(PCH_DREF_CONTROL);
6928 udelay(200);
6929
6930 /* Turn off the SSC source */
74cfd7ac
CW
6931 val &= ~DREF_SSC_SOURCE_MASK;
6932 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6933
6934 /* Turn off SSC1 */
74cfd7ac 6935 val &= ~DREF_SSC1_ENABLE;
199e5d79 6936
74cfd7ac 6937 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6938 POSTING_READ(PCH_DREF_CONTROL);
6939 udelay(200);
6940 }
74cfd7ac
CW
6941
6942 BUG_ON(val != final);
13d83a67
JB
6943}
6944
f31f2d55 6945static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6946{
f31f2d55 6947 uint32_t tmp;
dde86e2d 6948
0ff066a9
PZ
6949 tmp = I915_READ(SOUTH_CHICKEN2);
6950 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6951 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6952
0ff066a9
PZ
6953 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6954 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6955 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6956
0ff066a9
PZ
6957 tmp = I915_READ(SOUTH_CHICKEN2);
6958 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6959 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6960
0ff066a9
PZ
6961 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6962 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6963 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6964}
6965
6966/* WaMPhyProgramming:hsw */
6967static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6968{
6969 uint32_t tmp;
dde86e2d
PZ
6970
6971 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6972 tmp &= ~(0xFF << 24);
6973 tmp |= (0x12 << 24);
6974 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6975
dde86e2d
PZ
6976 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6977 tmp |= (1 << 11);
6978 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6979
6980 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6981 tmp |= (1 << 11);
6982 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6983
dde86e2d
PZ
6984 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6985 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6986 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6987
6988 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6989 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6990 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6991
0ff066a9
PZ
6992 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6993 tmp &= ~(7 << 13);
6994 tmp |= (5 << 13);
6995 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6996
0ff066a9
PZ
6997 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6998 tmp &= ~(7 << 13);
6999 tmp |= (5 << 13);
7000 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
7001
7002 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7003 tmp &= ~0xFF;
7004 tmp |= 0x1C;
7005 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7006
7007 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7008 tmp &= ~0xFF;
7009 tmp |= 0x1C;
7010 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7011
7012 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7013 tmp &= ~(0xFF << 16);
7014 tmp |= (0x1C << 16);
7015 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7016
7017 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7018 tmp &= ~(0xFF << 16);
7019 tmp |= (0x1C << 16);
7020 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7021
0ff066a9
PZ
7022 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7023 tmp |= (1 << 27);
7024 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 7025
0ff066a9
PZ
7026 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7027 tmp |= (1 << 27);
7028 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7029
0ff066a9
PZ
7030 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7031 tmp &= ~(0xF << 28);
7032 tmp |= (4 << 28);
7033 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7034
0ff066a9
PZ
7035 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7036 tmp &= ~(0xF << 28);
7037 tmp |= (4 << 28);
7038 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7039}
7040
2fa86a1f
PZ
7041/* Implements 3 different sequences from BSpec chapter "Display iCLK
7042 * Programming" based on the parameters passed:
7043 * - Sequence to enable CLKOUT_DP
7044 * - Sequence to enable CLKOUT_DP without spread
7045 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7046 */
7047static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7048 bool with_fdi)
f31f2d55
PZ
7049{
7050 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7051 uint32_t reg, tmp;
7052
7053 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7054 with_spread = true;
7055 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7056 with_fdi, "LP PCH doesn't have FDI\n"))
7057 with_fdi = false;
f31f2d55
PZ
7058
7059 mutex_lock(&dev_priv->dpio_lock);
7060
7061 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7062 tmp &= ~SBI_SSCCTL_DISABLE;
7063 tmp |= SBI_SSCCTL_PATHALT;
7064 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7065
7066 udelay(24);
7067
2fa86a1f
PZ
7068 if (with_spread) {
7069 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7070 tmp &= ~SBI_SSCCTL_PATHALT;
7071 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7072
2fa86a1f
PZ
7073 if (with_fdi) {
7074 lpt_reset_fdi_mphy(dev_priv);
7075 lpt_program_fdi_mphy(dev_priv);
7076 }
7077 }
dde86e2d 7078
2fa86a1f
PZ
7079 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7080 SBI_GEN0 : SBI_DBUFF0;
7081 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7082 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7083 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7084
7085 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7086}
7087
47701c3b
PZ
7088/* Sequence to disable CLKOUT_DP */
7089static void lpt_disable_clkout_dp(struct drm_device *dev)
7090{
7091 struct drm_i915_private *dev_priv = dev->dev_private;
7092 uint32_t reg, tmp;
7093
7094 mutex_lock(&dev_priv->dpio_lock);
7095
7096 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7097 SBI_GEN0 : SBI_DBUFF0;
7098 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7099 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7100 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7101
7102 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7103 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7104 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7105 tmp |= SBI_SSCCTL_PATHALT;
7106 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7107 udelay(32);
7108 }
7109 tmp |= SBI_SSCCTL_DISABLE;
7110 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7111 }
7112
7113 mutex_unlock(&dev_priv->dpio_lock);
7114}
7115
bf8fa3d3
PZ
7116static void lpt_init_pch_refclk(struct drm_device *dev)
7117{
bf8fa3d3
PZ
7118 struct intel_encoder *encoder;
7119 bool has_vga = false;
7120
b2784e15 7121 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7122 switch (encoder->type) {
7123 case INTEL_OUTPUT_ANALOG:
7124 has_vga = true;
7125 break;
6847d71b
PZ
7126 default:
7127 break;
bf8fa3d3
PZ
7128 }
7129 }
7130
47701c3b
PZ
7131 if (has_vga)
7132 lpt_enable_clkout_dp(dev, true, true);
7133 else
7134 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7135}
7136
dde86e2d
PZ
7137/*
7138 * Initialize reference clocks when the driver loads
7139 */
7140void intel_init_pch_refclk(struct drm_device *dev)
7141{
7142 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7143 ironlake_init_pch_refclk(dev);
7144 else if (HAS_PCH_LPT(dev))
7145 lpt_init_pch_refclk(dev);
7146}
7147
d9d444cb
JB
7148static int ironlake_get_refclk(struct drm_crtc *crtc)
7149{
7150 struct drm_device *dev = crtc->dev;
7151 struct drm_i915_private *dev_priv = dev->dev_private;
7152 struct intel_encoder *encoder;
d9d444cb
JB
7153 int num_connectors = 0;
7154 bool is_lvds = false;
7155
d0737e1d
ACO
7156 for_each_intel_encoder(dev, encoder) {
7157 if (encoder->new_crtc != to_intel_crtc(crtc))
7158 continue;
7159
d9d444cb
JB
7160 switch (encoder->type) {
7161 case INTEL_OUTPUT_LVDS:
7162 is_lvds = true;
7163 break;
6847d71b
PZ
7164 default:
7165 break;
d9d444cb
JB
7166 }
7167 num_connectors++;
7168 }
7169
7170 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7171 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7172 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7173 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7174 }
7175
7176 return 120000;
7177}
7178
6ff93609 7179static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7180{
c8203565 7181 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7183 int pipe = intel_crtc->pipe;
c8203565
PZ
7184 uint32_t val;
7185
78114071 7186 val = 0;
c8203565 7187
6e3c9717 7188 switch (intel_crtc->config->pipe_bpp) {
c8203565 7189 case 18:
dfd07d72 7190 val |= PIPECONF_6BPC;
c8203565
PZ
7191 break;
7192 case 24:
dfd07d72 7193 val |= PIPECONF_8BPC;
c8203565
PZ
7194 break;
7195 case 30:
dfd07d72 7196 val |= PIPECONF_10BPC;
c8203565
PZ
7197 break;
7198 case 36:
dfd07d72 7199 val |= PIPECONF_12BPC;
c8203565
PZ
7200 break;
7201 default:
cc769b62
PZ
7202 /* Case prevented by intel_choose_pipe_bpp_dither. */
7203 BUG();
c8203565
PZ
7204 }
7205
6e3c9717 7206 if (intel_crtc->config->dither)
c8203565
PZ
7207 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7208
6e3c9717 7209 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7210 val |= PIPECONF_INTERLACED_ILK;
7211 else
7212 val |= PIPECONF_PROGRESSIVE;
7213
6e3c9717 7214 if (intel_crtc->config->limited_color_range)
3685a8f3 7215 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7216
c8203565
PZ
7217 I915_WRITE(PIPECONF(pipe), val);
7218 POSTING_READ(PIPECONF(pipe));
7219}
7220
86d3efce
VS
7221/*
7222 * Set up the pipe CSC unit.
7223 *
7224 * Currently only full range RGB to limited range RGB conversion
7225 * is supported, but eventually this should handle various
7226 * RGB<->YCbCr scenarios as well.
7227 */
50f3b016 7228static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7229{
7230 struct drm_device *dev = crtc->dev;
7231 struct drm_i915_private *dev_priv = dev->dev_private;
7232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7233 int pipe = intel_crtc->pipe;
7234 uint16_t coeff = 0x7800; /* 1.0 */
7235
7236 /*
7237 * TODO: Check what kind of values actually come out of the pipe
7238 * with these coeff/postoff values and adjust to get the best
7239 * accuracy. Perhaps we even need to take the bpc value into
7240 * consideration.
7241 */
7242
6e3c9717 7243 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7244 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7245
7246 /*
7247 * GY/GU and RY/RU should be the other way around according
7248 * to BSpec, but reality doesn't agree. Just set them up in
7249 * a way that results in the correct picture.
7250 */
7251 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7252 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7253
7254 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7255 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7256
7257 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7258 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7259
7260 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7261 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7262 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7263
7264 if (INTEL_INFO(dev)->gen > 6) {
7265 uint16_t postoff = 0;
7266
6e3c9717 7267 if (intel_crtc->config->limited_color_range)
32cf0cb0 7268 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7269
7270 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7271 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7272 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7273
7274 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7275 } else {
7276 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7277
6e3c9717 7278 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7279 mode |= CSC_BLACK_SCREEN_OFFSET;
7280
7281 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7282 }
7283}
7284
6ff93609 7285static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7286{
756f85cf
PZ
7287 struct drm_device *dev = crtc->dev;
7288 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7290 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7291 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7292 uint32_t val;
7293
3eff4faa 7294 val = 0;
ee2b0b38 7295
6e3c9717 7296 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7297 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7298
6e3c9717 7299 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7300 val |= PIPECONF_INTERLACED_ILK;
7301 else
7302 val |= PIPECONF_PROGRESSIVE;
7303
702e7a56
PZ
7304 I915_WRITE(PIPECONF(cpu_transcoder), val);
7305 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7306
7307 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7308 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7309
3cdf122c 7310 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7311 val = 0;
7312
6e3c9717 7313 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7314 case 18:
7315 val |= PIPEMISC_DITHER_6_BPC;
7316 break;
7317 case 24:
7318 val |= PIPEMISC_DITHER_8_BPC;
7319 break;
7320 case 30:
7321 val |= PIPEMISC_DITHER_10_BPC;
7322 break;
7323 case 36:
7324 val |= PIPEMISC_DITHER_12_BPC;
7325 break;
7326 default:
7327 /* Case prevented by pipe_config_set_bpp. */
7328 BUG();
7329 }
7330
6e3c9717 7331 if (intel_crtc->config->dither)
756f85cf
PZ
7332 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7333
7334 I915_WRITE(PIPEMISC(pipe), val);
7335 }
ee2b0b38
PZ
7336}
7337
6591c6e4 7338static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7339 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7340 intel_clock_t *clock,
7341 bool *has_reduced_clock,
7342 intel_clock_t *reduced_clock)
7343{
7344 struct drm_device *dev = crtc->dev;
7345 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7347 int refclk;
d4906093 7348 const intel_limit_t *limit;
a16af721 7349 bool ret, is_lvds = false;
79e53945 7350
d0737e1d 7351 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7352
d9d444cb 7353 refclk = ironlake_get_refclk(crtc);
79e53945 7354
d4906093
ML
7355 /*
7356 * Returns a set of divisors for the desired target clock with the given
7357 * refclk, or FALSE. The returned values represent the clock equation:
7358 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7359 */
409ee761 7360 limit = intel_limit(intel_crtc, refclk);
a919ff14 7361 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7362 crtc_state->port_clock,
ee9300bb 7363 refclk, NULL, clock);
6591c6e4
PZ
7364 if (!ret)
7365 return false;
cda4b7d3 7366
ddc9003c 7367 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7368 /*
7369 * Ensure we match the reduced clock's P to the target clock.
7370 * If the clocks don't match, we can't switch the display clock
7371 * by using the FP0/FP1. In such case we will disable the LVDS
7372 * downclock feature.
7373 */
ee9300bb 7374 *has_reduced_clock =
a919ff14 7375 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7376 dev_priv->lvds_downclock,
7377 refclk, clock,
7378 reduced_clock);
652c393a 7379 }
61e9653f 7380
6591c6e4
PZ
7381 return true;
7382}
7383
d4b1931c
PZ
7384int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7385{
7386 /*
7387 * Account for spread spectrum to avoid
7388 * oversubscribing the link. Max center spread
7389 * is 2.5%; use 5% for safety's sake.
7390 */
7391 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7392 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7393}
7394
7429e9d4 7395static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7396{
7429e9d4 7397 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7398}
7399
de13a2e3 7400static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7401 struct intel_crtc_state *crtc_state,
7429e9d4 7402 u32 *fp,
9a7c7890 7403 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7404{
de13a2e3 7405 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7406 struct drm_device *dev = crtc->dev;
7407 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7408 struct intel_encoder *intel_encoder;
7409 uint32_t dpll;
6cc5f341 7410 int factor, num_connectors = 0;
09ede541 7411 bool is_lvds = false, is_sdvo = false;
79e53945 7412
d0737e1d
ACO
7413 for_each_intel_encoder(dev, intel_encoder) {
7414 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7415 continue;
7416
de13a2e3 7417 switch (intel_encoder->type) {
79e53945
JB
7418 case INTEL_OUTPUT_LVDS:
7419 is_lvds = true;
7420 break;
7421 case INTEL_OUTPUT_SDVO:
7d57382e 7422 case INTEL_OUTPUT_HDMI:
79e53945 7423 is_sdvo = true;
79e53945 7424 break;
6847d71b
PZ
7425 default:
7426 break;
79e53945 7427 }
43565a06 7428
c751ce4f 7429 num_connectors++;
79e53945 7430 }
79e53945 7431
c1858123 7432 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7433 factor = 21;
7434 if (is_lvds) {
7435 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7436 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7437 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7438 factor = 25;
190f68c5 7439 } else if (crtc_state->sdvo_tv_clock)
8febb297 7440 factor = 20;
c1858123 7441
190f68c5 7442 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7443 *fp |= FP_CB_TUNE;
2c07245f 7444
9a7c7890
DV
7445 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7446 *fp2 |= FP_CB_TUNE;
7447
5eddb70b 7448 dpll = 0;
2c07245f 7449
a07d6787
EA
7450 if (is_lvds)
7451 dpll |= DPLLB_MODE_LVDS;
7452 else
7453 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7454
190f68c5 7455 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7456 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7457
7458 if (is_sdvo)
4a33e48d 7459 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7460 if (crtc_state->has_dp_encoder)
4a33e48d 7461 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7462
a07d6787 7463 /* compute bitmask from p1 value */
190f68c5 7464 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7465 /* also FPA1 */
190f68c5 7466 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7467
190f68c5 7468 switch (crtc_state->dpll.p2) {
a07d6787
EA
7469 case 5:
7470 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7471 break;
7472 case 7:
7473 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7474 break;
7475 case 10:
7476 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7477 break;
7478 case 14:
7479 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7480 break;
79e53945
JB
7481 }
7482
b4c09f3b 7483 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7484 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7485 else
7486 dpll |= PLL_REF_INPUT_DREFCLK;
7487
959e16d6 7488 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7489}
7490
190f68c5
ACO
7491static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7492 struct intel_crtc_state *crtc_state)
de13a2e3 7493{
c7653199 7494 struct drm_device *dev = crtc->base.dev;
de13a2e3 7495 intel_clock_t clock, reduced_clock;
cbbab5bd 7496 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7497 bool ok, has_reduced_clock = false;
8b47047b 7498 bool is_lvds = false;
e2b78267 7499 struct intel_shared_dpll *pll;
de13a2e3 7500
409ee761 7501 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7502
5dc5298b
PZ
7503 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7504 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7505
190f68c5 7506 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7507 &has_reduced_clock, &reduced_clock);
190f68c5 7508 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7509 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7510 return -EINVAL;
79e53945 7511 }
f47709a9 7512 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7513 if (!crtc_state->clock_set) {
7514 crtc_state->dpll.n = clock.n;
7515 crtc_state->dpll.m1 = clock.m1;
7516 crtc_state->dpll.m2 = clock.m2;
7517 crtc_state->dpll.p1 = clock.p1;
7518 crtc_state->dpll.p2 = clock.p2;
f47709a9 7519 }
79e53945 7520
5dc5298b 7521 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7522 if (crtc_state->has_pch_encoder) {
7523 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7524 if (has_reduced_clock)
7429e9d4 7525 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7526
190f68c5 7527 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7528 &fp, &reduced_clock,
7529 has_reduced_clock ? &fp2 : NULL);
7530
190f68c5
ACO
7531 crtc_state->dpll_hw_state.dpll = dpll;
7532 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7533 if (has_reduced_clock)
190f68c5 7534 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7535 else
190f68c5 7536 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7537
190f68c5 7538 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7539 if (pll == NULL) {
84f44ce7 7540 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7541 pipe_name(crtc->pipe));
4b645f14
JB
7542 return -EINVAL;
7543 }
3fb37703 7544 }
79e53945 7545
d330a953 7546 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7547 crtc->lowfreq_avail = true;
bcd644e0 7548 else
c7653199 7549 crtc->lowfreq_avail = false;
e2b78267 7550
c8f7a0db 7551 return 0;
79e53945
JB
7552}
7553
eb14cb74
VS
7554static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7555 struct intel_link_m_n *m_n)
7556{
7557 struct drm_device *dev = crtc->base.dev;
7558 struct drm_i915_private *dev_priv = dev->dev_private;
7559 enum pipe pipe = crtc->pipe;
7560
7561 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7562 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7563 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7564 & ~TU_SIZE_MASK;
7565 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7566 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7567 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7568}
7569
7570static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7571 enum transcoder transcoder,
b95af8be
VK
7572 struct intel_link_m_n *m_n,
7573 struct intel_link_m_n *m2_n2)
72419203
DV
7574{
7575 struct drm_device *dev = crtc->base.dev;
7576 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7577 enum pipe pipe = crtc->pipe;
72419203 7578
eb14cb74
VS
7579 if (INTEL_INFO(dev)->gen >= 5) {
7580 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7581 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7582 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7583 & ~TU_SIZE_MASK;
7584 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7585 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7586 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7587 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7588 * gen < 8) and if DRRS is supported (to make sure the
7589 * registers are not unnecessarily read).
7590 */
7591 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7592 crtc->config->has_drrs) {
b95af8be
VK
7593 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7594 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7595 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7596 & ~TU_SIZE_MASK;
7597 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7598 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7599 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7600 }
eb14cb74
VS
7601 } else {
7602 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7603 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7604 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7605 & ~TU_SIZE_MASK;
7606 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7607 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7608 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7609 }
7610}
7611
7612void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7613 struct intel_crtc_state *pipe_config)
eb14cb74 7614{
681a8504 7615 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7616 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7617 else
7618 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7619 &pipe_config->dp_m_n,
7620 &pipe_config->dp_m2_n2);
eb14cb74 7621}
72419203 7622
eb14cb74 7623static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7624 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7625{
7626 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7627 &pipe_config->fdi_m_n, NULL);
72419203
DV
7628}
7629
bd2e244f 7630static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7631 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7632{
7633 struct drm_device *dev = crtc->base.dev;
7634 struct drm_i915_private *dev_priv = dev->dev_private;
7635 uint32_t tmp;
7636
7637 tmp = I915_READ(PS_CTL(crtc->pipe));
7638
7639 if (tmp & PS_ENABLE) {
7640 pipe_config->pch_pfit.enabled = true;
7641 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7642 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7643 }
7644}
7645
5724dbd1
DL
7646static void
7647skylake_get_initial_plane_config(struct intel_crtc *crtc,
7648 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7649{
7650 struct drm_device *dev = crtc->base.dev;
7651 struct drm_i915_private *dev_priv = dev->dev_private;
7652 u32 val, base, offset, stride_mult;
7653 int pipe = crtc->pipe;
7654 int fourcc, pixel_format;
7655 int aligned_height;
7656 struct drm_framebuffer *fb;
1b842c89 7657 struct intel_framebuffer *intel_fb;
bc8d7dff 7658
d9806c9f 7659 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7660 if (!intel_fb) {
bc8d7dff
DL
7661 DRM_DEBUG_KMS("failed to alloc fb\n");
7662 return;
7663 }
7664
1b842c89
DL
7665 fb = &intel_fb->base;
7666
bc8d7dff 7667 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
7668 if (!(val & PLANE_CTL_ENABLE))
7669 goto error;
7670
18c5247e 7671 if (val & PLANE_CTL_TILED_MASK) {
bc8d7dff 7672 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7673 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7674 }
bc8d7dff
DL
7675
7676 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7677 fourcc = skl_format_to_fourcc(pixel_format,
7678 val & PLANE_CTL_ORDER_RGBX,
7679 val & PLANE_CTL_ALPHA_MASK);
7680 fb->pixel_format = fourcc;
7681 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7682
7683 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7684 plane_config->base = base;
7685
7686 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7687
7688 val = I915_READ(PLANE_SIZE(pipe, 0));
7689 fb->height = ((val >> 16) & 0xfff) + 1;
7690 fb->width = ((val >> 0) & 0x1fff) + 1;
7691
7692 val = I915_READ(PLANE_STRIDE(pipe, 0));
7693 switch (plane_config->tiling) {
7694 case I915_TILING_NONE:
7695 stride_mult = 64;
7696 break;
7697 case I915_TILING_X:
7698 stride_mult = 512;
7699 break;
7700 default:
7701 MISSING_CASE(plane_config->tiling);
7702 goto error;
7703 }
7704 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7705
7706 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7707 fb->pixel_format,
7708 fb->modifier[0]);
bc8d7dff
DL
7709
7710 plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7711
7712 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7713 pipe_name(pipe), fb->width, fb->height,
7714 fb->bits_per_pixel, base, fb->pitches[0],
7715 plane_config->size);
7716
2d14030b 7717 plane_config->fb = intel_fb;
bc8d7dff
DL
7718 return;
7719
7720error:
7721 kfree(fb);
7722}
7723
2fa2fe9a 7724static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7725 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7726{
7727 struct drm_device *dev = crtc->base.dev;
7728 struct drm_i915_private *dev_priv = dev->dev_private;
7729 uint32_t tmp;
7730
7731 tmp = I915_READ(PF_CTL(crtc->pipe));
7732
7733 if (tmp & PF_ENABLE) {
fd4daa9c 7734 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7735 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7736 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7737
7738 /* We currently do not free assignements of panel fitters on
7739 * ivb/hsw (since we don't use the higher upscaling modes which
7740 * differentiates them) so just WARN about this case for now. */
7741 if (IS_GEN7(dev)) {
7742 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7743 PF_PIPE_SEL_IVB(crtc->pipe));
7744 }
2fa2fe9a 7745 }
79e53945
JB
7746}
7747
5724dbd1
DL
7748static void
7749ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7750 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
7751{
7752 struct drm_device *dev = crtc->base.dev;
7753 struct drm_i915_private *dev_priv = dev->dev_private;
7754 u32 val, base, offset;
aeee5a49 7755 int pipe = crtc->pipe;
4c6baa59
JB
7756 int fourcc, pixel_format;
7757 int aligned_height;
b113d5ee 7758 struct drm_framebuffer *fb;
1b842c89 7759 struct intel_framebuffer *intel_fb;
4c6baa59 7760
42a7b088
DL
7761 val = I915_READ(DSPCNTR(pipe));
7762 if (!(val & DISPLAY_PLANE_ENABLE))
7763 return;
7764
d9806c9f 7765 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7766 if (!intel_fb) {
4c6baa59
JB
7767 DRM_DEBUG_KMS("failed to alloc fb\n");
7768 return;
7769 }
7770
1b842c89
DL
7771 fb = &intel_fb->base;
7772
18c5247e
DV
7773 if (INTEL_INFO(dev)->gen >= 4) {
7774 if (val & DISPPLANE_TILED) {
49af449b 7775 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7776 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7777 }
7778 }
4c6baa59
JB
7779
7780 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7781 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7782 fb->pixel_format = fourcc;
7783 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 7784
aeee5a49 7785 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 7786 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 7787 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 7788 } else {
49af449b 7789 if (plane_config->tiling)
aeee5a49 7790 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 7791 else
aeee5a49 7792 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
7793 }
7794 plane_config->base = base;
7795
7796 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7797 fb->width = ((val >> 16) & 0xfff) + 1;
7798 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7799
7800 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7801 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7802
b113d5ee 7803 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7804 fb->pixel_format,
7805 fb->modifier[0]);
4c6baa59 7806
b113d5ee 7807 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
4c6baa59 7808
2844a921
DL
7809 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7810 pipe_name(pipe), fb->width, fb->height,
7811 fb->bits_per_pixel, base, fb->pitches[0],
7812 plane_config->size);
b113d5ee 7813
2d14030b 7814 plane_config->fb = intel_fb;
4c6baa59
JB
7815}
7816
0e8ffe1b 7817static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7818 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7819{
7820 struct drm_device *dev = crtc->base.dev;
7821 struct drm_i915_private *dev_priv = dev->dev_private;
7822 uint32_t tmp;
7823
f458ebbc
DV
7824 if (!intel_display_power_is_enabled(dev_priv,
7825 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7826 return false;
7827
e143a21c 7828 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7829 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7830
0e8ffe1b
DV
7831 tmp = I915_READ(PIPECONF(crtc->pipe));
7832 if (!(tmp & PIPECONF_ENABLE))
7833 return false;
7834
42571aef
VS
7835 switch (tmp & PIPECONF_BPC_MASK) {
7836 case PIPECONF_6BPC:
7837 pipe_config->pipe_bpp = 18;
7838 break;
7839 case PIPECONF_8BPC:
7840 pipe_config->pipe_bpp = 24;
7841 break;
7842 case PIPECONF_10BPC:
7843 pipe_config->pipe_bpp = 30;
7844 break;
7845 case PIPECONF_12BPC:
7846 pipe_config->pipe_bpp = 36;
7847 break;
7848 default:
7849 break;
7850 }
7851
b5a9fa09
DV
7852 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7853 pipe_config->limited_color_range = true;
7854
ab9412ba 7855 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7856 struct intel_shared_dpll *pll;
7857
88adfff1
DV
7858 pipe_config->has_pch_encoder = true;
7859
627eb5a3
DV
7860 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7861 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7862 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7863
7864 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7865
c0d43d62 7866 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7867 pipe_config->shared_dpll =
7868 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7869 } else {
7870 tmp = I915_READ(PCH_DPLL_SEL);
7871 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7872 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7873 else
7874 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7875 }
66e985c0
DV
7876
7877 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7878
7879 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7880 &pipe_config->dpll_hw_state));
c93f54cf
DV
7881
7882 tmp = pipe_config->dpll_hw_state.dpll;
7883 pipe_config->pixel_multiplier =
7884 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7885 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7886
7887 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7888 } else {
7889 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7890 }
7891
1bd1bd80
DV
7892 intel_get_pipe_timings(crtc, pipe_config);
7893
2fa2fe9a
DV
7894 ironlake_get_pfit_config(crtc, pipe_config);
7895
0e8ffe1b
DV
7896 return true;
7897}
7898
be256dc7
PZ
7899static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7900{
7901 struct drm_device *dev = dev_priv->dev;
be256dc7 7902 struct intel_crtc *crtc;
be256dc7 7903
d3fcc808 7904 for_each_intel_crtc(dev, crtc)
e2c719b7 7905 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7906 pipe_name(crtc->pipe));
7907
e2c719b7
RC
7908 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7909 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7910 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7911 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7912 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7913 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 7914 "CPU PWM1 enabled\n");
c5107b87 7915 if (IS_HASWELL(dev))
e2c719b7 7916 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 7917 "CPU PWM2 enabled\n");
e2c719b7 7918 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 7919 "PCH PWM1 enabled\n");
e2c719b7 7920 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 7921 "Utility pin enabled\n");
e2c719b7 7922 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 7923
9926ada1
PZ
7924 /*
7925 * In theory we can still leave IRQs enabled, as long as only the HPD
7926 * interrupts remain enabled. We used to check for that, but since it's
7927 * gen-specific and since we only disable LCPLL after we fully disable
7928 * the interrupts, the check below should be enough.
7929 */
e2c719b7 7930 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7931}
7932
9ccd5aeb
PZ
7933static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7934{
7935 struct drm_device *dev = dev_priv->dev;
7936
7937 if (IS_HASWELL(dev))
7938 return I915_READ(D_COMP_HSW);
7939 else
7940 return I915_READ(D_COMP_BDW);
7941}
7942
3c4c9b81
PZ
7943static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7944{
7945 struct drm_device *dev = dev_priv->dev;
7946
7947 if (IS_HASWELL(dev)) {
7948 mutex_lock(&dev_priv->rps.hw_lock);
7949 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7950 val))
f475dadf 7951 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7952 mutex_unlock(&dev_priv->rps.hw_lock);
7953 } else {
9ccd5aeb
PZ
7954 I915_WRITE(D_COMP_BDW, val);
7955 POSTING_READ(D_COMP_BDW);
3c4c9b81 7956 }
be256dc7
PZ
7957}
7958
7959/*
7960 * This function implements pieces of two sequences from BSpec:
7961 * - Sequence for display software to disable LCPLL
7962 * - Sequence for display software to allow package C8+
7963 * The steps implemented here are just the steps that actually touch the LCPLL
7964 * register. Callers should take care of disabling all the display engine
7965 * functions, doing the mode unset, fixing interrupts, etc.
7966 */
6ff58d53
PZ
7967static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7968 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7969{
7970 uint32_t val;
7971
7972 assert_can_disable_lcpll(dev_priv);
7973
7974 val = I915_READ(LCPLL_CTL);
7975
7976 if (switch_to_fclk) {
7977 val |= LCPLL_CD_SOURCE_FCLK;
7978 I915_WRITE(LCPLL_CTL, val);
7979
7980 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7981 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7982 DRM_ERROR("Switching to FCLK failed\n");
7983
7984 val = I915_READ(LCPLL_CTL);
7985 }
7986
7987 val |= LCPLL_PLL_DISABLE;
7988 I915_WRITE(LCPLL_CTL, val);
7989 POSTING_READ(LCPLL_CTL);
7990
7991 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7992 DRM_ERROR("LCPLL still locked\n");
7993
9ccd5aeb 7994 val = hsw_read_dcomp(dev_priv);
be256dc7 7995 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7996 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7997 ndelay(100);
7998
9ccd5aeb
PZ
7999 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8000 1))
be256dc7
PZ
8001 DRM_ERROR("D_COMP RCOMP still in progress\n");
8002
8003 if (allow_power_down) {
8004 val = I915_READ(LCPLL_CTL);
8005 val |= LCPLL_POWER_DOWN_ALLOW;
8006 I915_WRITE(LCPLL_CTL, val);
8007 POSTING_READ(LCPLL_CTL);
8008 }
8009}
8010
8011/*
8012 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8013 * source.
8014 */
6ff58d53 8015static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
8016{
8017 uint32_t val;
8018
8019 val = I915_READ(LCPLL_CTL);
8020
8021 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8022 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8023 return;
8024
a8a8bd54
PZ
8025 /*
8026 * Make sure we're not on PC8 state before disabling PC8, otherwise
8027 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 8028 */
59bad947 8029 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 8030
be256dc7
PZ
8031 if (val & LCPLL_POWER_DOWN_ALLOW) {
8032 val &= ~LCPLL_POWER_DOWN_ALLOW;
8033 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 8034 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
8035 }
8036
9ccd5aeb 8037 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
8038 val |= D_COMP_COMP_FORCE;
8039 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 8040 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8041
8042 val = I915_READ(LCPLL_CTL);
8043 val &= ~LCPLL_PLL_DISABLE;
8044 I915_WRITE(LCPLL_CTL, val);
8045
8046 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8047 DRM_ERROR("LCPLL not locked yet\n");
8048
8049 if (val & LCPLL_CD_SOURCE_FCLK) {
8050 val = I915_READ(LCPLL_CTL);
8051 val &= ~LCPLL_CD_SOURCE_FCLK;
8052 I915_WRITE(LCPLL_CTL, val);
8053
8054 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8055 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8056 DRM_ERROR("Switching back to LCPLL failed\n");
8057 }
215733fa 8058
59bad947 8059 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8060}
8061
765dab67
PZ
8062/*
8063 * Package states C8 and deeper are really deep PC states that can only be
8064 * reached when all the devices on the system allow it, so even if the graphics
8065 * device allows PC8+, it doesn't mean the system will actually get to these
8066 * states. Our driver only allows PC8+ when going into runtime PM.
8067 *
8068 * The requirements for PC8+ are that all the outputs are disabled, the power
8069 * well is disabled and most interrupts are disabled, and these are also
8070 * requirements for runtime PM. When these conditions are met, we manually do
8071 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8072 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8073 * hang the machine.
8074 *
8075 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8076 * the state of some registers, so when we come back from PC8+ we need to
8077 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8078 * need to take care of the registers kept by RC6. Notice that this happens even
8079 * if we don't put the device in PCI D3 state (which is what currently happens
8080 * because of the runtime PM support).
8081 *
8082 * For more, read "Display Sequences for Package C8" on the hardware
8083 * documentation.
8084 */
a14cb6fc 8085void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8086{
c67a470b
PZ
8087 struct drm_device *dev = dev_priv->dev;
8088 uint32_t val;
8089
c67a470b
PZ
8090 DRM_DEBUG_KMS("Enabling package C8+\n");
8091
c67a470b
PZ
8092 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8093 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8094 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8095 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8096 }
8097
8098 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8099 hsw_disable_lcpll(dev_priv, true, true);
8100}
8101
a14cb6fc 8102void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8103{
8104 struct drm_device *dev = dev_priv->dev;
8105 uint32_t val;
8106
c67a470b
PZ
8107 DRM_DEBUG_KMS("Disabling package C8+\n");
8108
8109 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8110 lpt_init_pch_refclk(dev);
8111
8112 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8113 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8114 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8115 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8116 }
8117
8118 intel_prepare_ddi(dev);
c67a470b
PZ
8119}
8120
190f68c5
ACO
8121static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8122 struct intel_crtc_state *crtc_state)
09b4ddf9 8123{
190f68c5 8124 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8125 return -EINVAL;
716c2e55 8126
c7653199 8127 crtc->lowfreq_avail = false;
644cef34 8128
c8f7a0db 8129 return 0;
79e53945
JB
8130}
8131
96b7dfb7
S
8132static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8133 enum port port,
5cec258b 8134 struct intel_crtc_state *pipe_config)
96b7dfb7 8135{
3148ade7 8136 u32 temp, dpll_ctl1;
96b7dfb7
S
8137
8138 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8139 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8140
8141 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8142 case SKL_DPLL0:
8143 /*
8144 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8145 * of the shared DPLL framework and thus needs to be read out
8146 * separately
8147 */
8148 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8149 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8150 break;
96b7dfb7
S
8151 case SKL_DPLL1:
8152 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8153 break;
8154 case SKL_DPLL2:
8155 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8156 break;
8157 case SKL_DPLL3:
8158 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8159 break;
96b7dfb7
S
8160 }
8161}
8162
7d2c8175
DL
8163static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8164 enum port port,
5cec258b 8165 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8166{
8167 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8168
8169 switch (pipe_config->ddi_pll_sel) {
8170 case PORT_CLK_SEL_WRPLL1:
8171 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8172 break;
8173 case PORT_CLK_SEL_WRPLL2:
8174 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8175 break;
8176 }
8177}
8178
26804afd 8179static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8180 struct intel_crtc_state *pipe_config)
26804afd
DV
8181{
8182 struct drm_device *dev = crtc->base.dev;
8183 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8184 struct intel_shared_dpll *pll;
26804afd
DV
8185 enum port port;
8186 uint32_t tmp;
8187
8188 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8189
8190 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8191
96b7dfb7
S
8192 if (IS_SKYLAKE(dev))
8193 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8194 else
8195 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8196
d452c5b6
DV
8197 if (pipe_config->shared_dpll >= 0) {
8198 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8199
8200 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8201 &pipe_config->dpll_hw_state));
8202 }
8203
26804afd
DV
8204 /*
8205 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8206 * DDI E. So just check whether this pipe is wired to DDI E and whether
8207 * the PCH transcoder is on.
8208 */
ca370455
DL
8209 if (INTEL_INFO(dev)->gen < 9 &&
8210 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8211 pipe_config->has_pch_encoder = true;
8212
8213 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8214 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8215 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8216
8217 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8218 }
8219}
8220
0e8ffe1b 8221static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8222 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8223{
8224 struct drm_device *dev = crtc->base.dev;
8225 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8226 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8227 uint32_t tmp;
8228
f458ebbc 8229 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8230 POWER_DOMAIN_PIPE(crtc->pipe)))
8231 return false;
8232
e143a21c 8233 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8234 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8235
eccb140b
DV
8236 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8237 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8238 enum pipe trans_edp_pipe;
8239 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8240 default:
8241 WARN(1, "unknown pipe linked to edp transcoder\n");
8242 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8243 case TRANS_DDI_EDP_INPUT_A_ON:
8244 trans_edp_pipe = PIPE_A;
8245 break;
8246 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8247 trans_edp_pipe = PIPE_B;
8248 break;
8249 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8250 trans_edp_pipe = PIPE_C;
8251 break;
8252 }
8253
8254 if (trans_edp_pipe == crtc->pipe)
8255 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8256 }
8257
f458ebbc 8258 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8259 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8260 return false;
8261
eccb140b 8262 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8263 if (!(tmp & PIPECONF_ENABLE))
8264 return false;
8265
26804afd 8266 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8267
1bd1bd80
DV
8268 intel_get_pipe_timings(crtc, pipe_config);
8269
2fa2fe9a 8270 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8271 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8272 if (IS_SKYLAKE(dev))
8273 skylake_get_pfit_config(crtc, pipe_config);
8274 else
8275 ironlake_get_pfit_config(crtc, pipe_config);
8276 }
88adfff1 8277
e59150dc
JB
8278 if (IS_HASWELL(dev))
8279 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8280 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8281
ebb69c95
CT
8282 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8283 pipe_config->pixel_multiplier =
8284 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8285 } else {
8286 pipe_config->pixel_multiplier = 1;
8287 }
6c49f241 8288
0e8ffe1b
DV
8289 return true;
8290}
8291
560b85bb
CW
8292static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8293{
8294 struct drm_device *dev = crtc->dev;
8295 struct drm_i915_private *dev_priv = dev->dev_private;
8296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8297 uint32_t cntl = 0, size = 0;
560b85bb 8298
dc41c154
VS
8299 if (base) {
8300 unsigned int width = intel_crtc->cursor_width;
8301 unsigned int height = intel_crtc->cursor_height;
8302 unsigned int stride = roundup_pow_of_two(width) * 4;
8303
8304 switch (stride) {
8305 default:
8306 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8307 width, stride);
8308 stride = 256;
8309 /* fallthrough */
8310 case 256:
8311 case 512:
8312 case 1024:
8313 case 2048:
8314 break;
4b0e333e
CW
8315 }
8316
dc41c154
VS
8317 cntl |= CURSOR_ENABLE |
8318 CURSOR_GAMMA_ENABLE |
8319 CURSOR_FORMAT_ARGB |
8320 CURSOR_STRIDE(stride);
8321
8322 size = (height << 12) | width;
4b0e333e 8323 }
560b85bb 8324
dc41c154
VS
8325 if (intel_crtc->cursor_cntl != 0 &&
8326 (intel_crtc->cursor_base != base ||
8327 intel_crtc->cursor_size != size ||
8328 intel_crtc->cursor_cntl != cntl)) {
8329 /* On these chipsets we can only modify the base/size/stride
8330 * whilst the cursor is disabled.
8331 */
8332 I915_WRITE(_CURACNTR, 0);
4b0e333e 8333 POSTING_READ(_CURACNTR);
dc41c154 8334 intel_crtc->cursor_cntl = 0;
4b0e333e 8335 }
560b85bb 8336
99d1f387 8337 if (intel_crtc->cursor_base != base) {
9db4a9c7 8338 I915_WRITE(_CURABASE, base);
99d1f387
VS
8339 intel_crtc->cursor_base = base;
8340 }
4726e0b0 8341
dc41c154
VS
8342 if (intel_crtc->cursor_size != size) {
8343 I915_WRITE(CURSIZE, size);
8344 intel_crtc->cursor_size = size;
4b0e333e 8345 }
560b85bb 8346
4b0e333e 8347 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8348 I915_WRITE(_CURACNTR, cntl);
8349 POSTING_READ(_CURACNTR);
4b0e333e 8350 intel_crtc->cursor_cntl = cntl;
560b85bb 8351 }
560b85bb
CW
8352}
8353
560b85bb 8354static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8355{
8356 struct drm_device *dev = crtc->dev;
8357 struct drm_i915_private *dev_priv = dev->dev_private;
8358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8359 int pipe = intel_crtc->pipe;
4b0e333e
CW
8360 uint32_t cntl;
8361
8362 cntl = 0;
8363 if (base) {
8364 cntl = MCURSOR_GAMMA_ENABLE;
8365 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8366 case 64:
8367 cntl |= CURSOR_MODE_64_ARGB_AX;
8368 break;
8369 case 128:
8370 cntl |= CURSOR_MODE_128_ARGB_AX;
8371 break;
8372 case 256:
8373 cntl |= CURSOR_MODE_256_ARGB_AX;
8374 break;
8375 default:
5f77eeb0 8376 MISSING_CASE(intel_crtc->cursor_width);
4726e0b0 8377 return;
65a21cd6 8378 }
4b0e333e 8379 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8380
8381 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8382 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8383 }
65a21cd6 8384
8e7d688b 8385 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
8386 cntl |= CURSOR_ROTATE_180;
8387
4b0e333e
CW
8388 if (intel_crtc->cursor_cntl != cntl) {
8389 I915_WRITE(CURCNTR(pipe), cntl);
8390 POSTING_READ(CURCNTR(pipe));
8391 intel_crtc->cursor_cntl = cntl;
65a21cd6 8392 }
4b0e333e 8393
65a21cd6 8394 /* and commit changes on next vblank */
5efb3e28
VS
8395 I915_WRITE(CURBASE(pipe), base);
8396 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8397
8398 intel_crtc->cursor_base = base;
65a21cd6
JB
8399}
8400
cda4b7d3 8401/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8402static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8403 bool on)
cda4b7d3
CW
8404{
8405 struct drm_device *dev = crtc->dev;
8406 struct drm_i915_private *dev_priv = dev->dev_private;
8407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8408 int pipe = intel_crtc->pipe;
3d7d6510
MR
8409 int x = crtc->cursor_x;
8410 int y = crtc->cursor_y;
d6e4db15 8411 u32 base = 0, pos = 0;
cda4b7d3 8412
d6e4db15 8413 if (on)
cda4b7d3 8414 base = intel_crtc->cursor_addr;
cda4b7d3 8415
6e3c9717 8416 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8417 base = 0;
8418
6e3c9717 8419 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8420 base = 0;
8421
8422 if (x < 0) {
efc9064e 8423 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8424 base = 0;
8425
8426 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8427 x = -x;
8428 }
8429 pos |= x << CURSOR_X_SHIFT;
8430
8431 if (y < 0) {
efc9064e 8432 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8433 base = 0;
8434
8435 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8436 y = -y;
8437 }
8438 pos |= y << CURSOR_Y_SHIFT;
8439
4b0e333e 8440 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8441 return;
8442
5efb3e28
VS
8443 I915_WRITE(CURPOS(pipe), pos);
8444
4398ad45
VS
8445 /* ILK+ do this automagically */
8446 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 8447 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
4398ad45
VS
8448 base += (intel_crtc->cursor_height *
8449 intel_crtc->cursor_width - 1) * 4;
8450 }
8451
8ac54669 8452 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8453 i845_update_cursor(crtc, base);
8454 else
8455 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8456}
8457
dc41c154
VS
8458static bool cursor_size_ok(struct drm_device *dev,
8459 uint32_t width, uint32_t height)
8460{
8461 if (width == 0 || height == 0)
8462 return false;
8463
8464 /*
8465 * 845g/865g are special in that they are only limited by
8466 * the width of their cursors, the height is arbitrary up to
8467 * the precision of the register. Everything else requires
8468 * square cursors, limited to a few power-of-two sizes.
8469 */
8470 if (IS_845G(dev) || IS_I865G(dev)) {
8471 if ((width & 63) != 0)
8472 return false;
8473
8474 if (width > (IS_845G(dev) ? 64 : 512))
8475 return false;
8476
8477 if (height > 1023)
8478 return false;
8479 } else {
8480 switch (width | height) {
8481 case 256:
8482 case 128:
8483 if (IS_GEN2(dev))
8484 return false;
8485 case 64:
8486 break;
8487 default:
8488 return false;
8489 }
8490 }
8491
8492 return true;
8493}
8494
79e53945 8495static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8496 u16 *blue, uint32_t start, uint32_t size)
79e53945 8497{
7203425a 8498 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8500
7203425a 8501 for (i = start; i < end; i++) {
79e53945
JB
8502 intel_crtc->lut_r[i] = red[i] >> 8;
8503 intel_crtc->lut_g[i] = green[i] >> 8;
8504 intel_crtc->lut_b[i] = blue[i] >> 8;
8505 }
8506
8507 intel_crtc_load_lut(crtc);
8508}
8509
79e53945
JB
8510/* VESA 640x480x72Hz mode to set on the pipe */
8511static struct drm_display_mode load_detect_mode = {
8512 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8513 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8514};
8515
a8bb6818
DV
8516struct drm_framebuffer *
8517__intel_framebuffer_create(struct drm_device *dev,
8518 struct drm_mode_fb_cmd2 *mode_cmd,
8519 struct drm_i915_gem_object *obj)
d2dff872
CW
8520{
8521 struct intel_framebuffer *intel_fb;
8522 int ret;
8523
8524 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8525 if (!intel_fb) {
6ccb81f2 8526 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8527 return ERR_PTR(-ENOMEM);
8528 }
8529
8530 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8531 if (ret)
8532 goto err;
d2dff872
CW
8533
8534 return &intel_fb->base;
dd4916c5 8535err:
6ccb81f2 8536 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8537 kfree(intel_fb);
8538
8539 return ERR_PTR(ret);
d2dff872
CW
8540}
8541
b5ea642a 8542static struct drm_framebuffer *
a8bb6818
DV
8543intel_framebuffer_create(struct drm_device *dev,
8544 struct drm_mode_fb_cmd2 *mode_cmd,
8545 struct drm_i915_gem_object *obj)
8546{
8547 struct drm_framebuffer *fb;
8548 int ret;
8549
8550 ret = i915_mutex_lock_interruptible(dev);
8551 if (ret)
8552 return ERR_PTR(ret);
8553 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8554 mutex_unlock(&dev->struct_mutex);
8555
8556 return fb;
8557}
8558
d2dff872
CW
8559static u32
8560intel_framebuffer_pitch_for_width(int width, int bpp)
8561{
8562 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8563 return ALIGN(pitch, 64);
8564}
8565
8566static u32
8567intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8568{
8569 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8570 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8571}
8572
8573static struct drm_framebuffer *
8574intel_framebuffer_create_for_mode(struct drm_device *dev,
8575 struct drm_display_mode *mode,
8576 int depth, int bpp)
8577{
8578 struct drm_i915_gem_object *obj;
0fed39bd 8579 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8580
8581 obj = i915_gem_alloc_object(dev,
8582 intel_framebuffer_size_for_mode(mode, bpp));
8583 if (obj == NULL)
8584 return ERR_PTR(-ENOMEM);
8585
8586 mode_cmd.width = mode->hdisplay;
8587 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8588 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8589 bpp);
5ca0c34a 8590 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8591
8592 return intel_framebuffer_create(dev, &mode_cmd, obj);
8593}
8594
8595static struct drm_framebuffer *
8596mode_fits_in_fbdev(struct drm_device *dev,
8597 struct drm_display_mode *mode)
8598{
4520f53a 8599#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8600 struct drm_i915_private *dev_priv = dev->dev_private;
8601 struct drm_i915_gem_object *obj;
8602 struct drm_framebuffer *fb;
8603
4c0e5528 8604 if (!dev_priv->fbdev)
d2dff872
CW
8605 return NULL;
8606
4c0e5528 8607 if (!dev_priv->fbdev->fb)
d2dff872
CW
8608 return NULL;
8609
4c0e5528
DV
8610 obj = dev_priv->fbdev->fb->obj;
8611 BUG_ON(!obj);
8612
8bcd4553 8613 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8614 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8615 fb->bits_per_pixel))
d2dff872
CW
8616 return NULL;
8617
01f2c773 8618 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8619 return NULL;
8620
8621 return fb;
4520f53a
DV
8622#else
8623 return NULL;
8624#endif
d2dff872
CW
8625}
8626
d2434ab7 8627bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8628 struct drm_display_mode *mode,
51fd371b
RC
8629 struct intel_load_detect_pipe *old,
8630 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8631{
8632 struct intel_crtc *intel_crtc;
d2434ab7
DV
8633 struct intel_encoder *intel_encoder =
8634 intel_attached_encoder(connector);
79e53945 8635 struct drm_crtc *possible_crtc;
4ef69c7a 8636 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8637 struct drm_crtc *crtc = NULL;
8638 struct drm_device *dev = encoder->dev;
94352cf9 8639 struct drm_framebuffer *fb;
51fd371b
RC
8640 struct drm_mode_config *config = &dev->mode_config;
8641 int ret, i = -1;
79e53945 8642
d2dff872 8643 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8644 connector->base.id, connector->name,
8e329a03 8645 encoder->base.id, encoder->name);
d2dff872 8646
51fd371b
RC
8647retry:
8648 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8649 if (ret)
8650 goto fail_unlock;
6e9f798d 8651
79e53945
JB
8652 /*
8653 * Algorithm gets a little messy:
7a5e4805 8654 *
79e53945
JB
8655 * - if the connector already has an assigned crtc, use it (but make
8656 * sure it's on first)
7a5e4805 8657 *
79e53945
JB
8658 * - try to find the first unused crtc that can drive this connector,
8659 * and use that if we find one
79e53945
JB
8660 */
8661
8662 /* See if we already have a CRTC for this connector */
8663 if (encoder->crtc) {
8664 crtc = encoder->crtc;
8261b191 8665
51fd371b 8666 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8667 if (ret)
8668 goto fail_unlock;
8669 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8670 if (ret)
8671 goto fail_unlock;
7b24056b 8672
24218aac 8673 old->dpms_mode = connector->dpms;
8261b191
CW
8674 old->load_detect_temp = false;
8675
8676 /* Make sure the crtc and connector are running */
24218aac
DV
8677 if (connector->dpms != DRM_MODE_DPMS_ON)
8678 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8679
7173188d 8680 return true;
79e53945
JB
8681 }
8682
8683 /* Find an unused one (if possible) */
70e1e0ec 8684 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8685 i++;
8686 if (!(encoder->possible_crtcs & (1 << i)))
8687 continue;
a459249c
VS
8688 if (possible_crtc->enabled)
8689 continue;
8690 /* This can occur when applying the pipe A quirk on resume. */
8691 if (to_intel_crtc(possible_crtc)->new_enabled)
8692 continue;
8693
8694 crtc = possible_crtc;
8695 break;
79e53945
JB
8696 }
8697
8698 /*
8699 * If we didn't find an unused CRTC, don't use any.
8700 */
8701 if (!crtc) {
7173188d 8702 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8703 goto fail_unlock;
79e53945
JB
8704 }
8705
51fd371b
RC
8706 ret = drm_modeset_lock(&crtc->mutex, ctx);
8707 if (ret)
4d02e2de
DV
8708 goto fail_unlock;
8709 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8710 if (ret)
51fd371b 8711 goto fail_unlock;
fc303101
DV
8712 intel_encoder->new_crtc = to_intel_crtc(crtc);
8713 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8714
8715 intel_crtc = to_intel_crtc(crtc);
412b61d8 8716 intel_crtc->new_enabled = true;
6e3c9717 8717 intel_crtc->new_config = intel_crtc->config;
24218aac 8718 old->dpms_mode = connector->dpms;
8261b191 8719 old->load_detect_temp = true;
d2dff872 8720 old->release_fb = NULL;
79e53945 8721
6492711d
CW
8722 if (!mode)
8723 mode = &load_detect_mode;
79e53945 8724
d2dff872
CW
8725 /* We need a framebuffer large enough to accommodate all accesses
8726 * that the plane may generate whilst we perform load detection.
8727 * We can not rely on the fbcon either being present (we get called
8728 * during its initialisation to detect all boot displays, or it may
8729 * not even exist) or that it is large enough to satisfy the
8730 * requested mode.
8731 */
94352cf9
DV
8732 fb = mode_fits_in_fbdev(dev, mode);
8733 if (fb == NULL) {
d2dff872 8734 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8735 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8736 old->release_fb = fb;
d2dff872
CW
8737 } else
8738 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8739 if (IS_ERR(fb)) {
d2dff872 8740 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8741 goto fail;
79e53945 8742 }
79e53945 8743
c0c36b94 8744 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8745 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8746 if (old->release_fb)
8747 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8748 goto fail;
79e53945 8749 }
7173188d 8750
79e53945 8751 /* let the connector get through one full cycle before testing */
9d0498a2 8752 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8753 return true;
412b61d8
VS
8754
8755 fail:
8756 intel_crtc->new_enabled = crtc->enabled;
8757 if (intel_crtc->new_enabled)
6e3c9717 8758 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
8759 else
8760 intel_crtc->new_config = NULL;
51fd371b
RC
8761fail_unlock:
8762 if (ret == -EDEADLK) {
8763 drm_modeset_backoff(ctx);
8764 goto retry;
8765 }
8766
412b61d8 8767 return false;
79e53945
JB
8768}
8769
d2434ab7 8770void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8771 struct intel_load_detect_pipe *old)
79e53945 8772{
d2434ab7
DV
8773 struct intel_encoder *intel_encoder =
8774 intel_attached_encoder(connector);
4ef69c7a 8775 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8776 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8778
d2dff872 8779 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8780 connector->base.id, connector->name,
8e329a03 8781 encoder->base.id, encoder->name);
d2dff872 8782
8261b191 8783 if (old->load_detect_temp) {
fc303101
DV
8784 to_intel_connector(connector)->new_encoder = NULL;
8785 intel_encoder->new_crtc = NULL;
412b61d8
VS
8786 intel_crtc->new_enabled = false;
8787 intel_crtc->new_config = NULL;
fc303101 8788 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8789
36206361
DV
8790 if (old->release_fb) {
8791 drm_framebuffer_unregister_private(old->release_fb);
8792 drm_framebuffer_unreference(old->release_fb);
8793 }
d2dff872 8794
0622a53c 8795 return;
79e53945
JB
8796 }
8797
c751ce4f 8798 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8799 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8800 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8801}
8802
da4a1efa 8803static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 8804 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
8805{
8806 struct drm_i915_private *dev_priv = dev->dev_private;
8807 u32 dpll = pipe_config->dpll_hw_state.dpll;
8808
8809 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8810 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8811 else if (HAS_PCH_SPLIT(dev))
8812 return 120000;
8813 else if (!IS_GEN2(dev))
8814 return 96000;
8815 else
8816 return 48000;
8817}
8818
79e53945 8819/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 8820static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8821 struct intel_crtc_state *pipe_config)
79e53945 8822{
f1f644dc 8823 struct drm_device *dev = crtc->base.dev;
79e53945 8824 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8825 int pipe = pipe_config->cpu_transcoder;
293623f7 8826 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8827 u32 fp;
8828 intel_clock_t clock;
da4a1efa 8829 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8830
8831 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8832 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8833 else
293623f7 8834 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8835
8836 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8837 if (IS_PINEVIEW(dev)) {
8838 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8839 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8840 } else {
8841 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8842 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8843 }
8844
a6c45cf0 8845 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8846 if (IS_PINEVIEW(dev))
8847 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8848 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8849 else
8850 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8851 DPLL_FPA01_P1_POST_DIV_SHIFT);
8852
8853 switch (dpll & DPLL_MODE_MASK) {
8854 case DPLLB_MODE_DAC_SERIAL:
8855 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8856 5 : 10;
8857 break;
8858 case DPLLB_MODE_LVDS:
8859 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8860 7 : 14;
8861 break;
8862 default:
28c97730 8863 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8864 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8865 return;
79e53945
JB
8866 }
8867
ac58c3f0 8868 if (IS_PINEVIEW(dev))
da4a1efa 8869 pineview_clock(refclk, &clock);
ac58c3f0 8870 else
da4a1efa 8871 i9xx_clock(refclk, &clock);
79e53945 8872 } else {
0fb58223 8873 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8874 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8875
8876 if (is_lvds) {
8877 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8878 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8879
8880 if (lvds & LVDS_CLKB_POWER_UP)
8881 clock.p2 = 7;
8882 else
8883 clock.p2 = 14;
79e53945
JB
8884 } else {
8885 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8886 clock.p1 = 2;
8887 else {
8888 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8889 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8890 }
8891 if (dpll & PLL_P2_DIVIDE_BY_4)
8892 clock.p2 = 4;
8893 else
8894 clock.p2 = 2;
79e53945 8895 }
da4a1efa
VS
8896
8897 i9xx_clock(refclk, &clock);
79e53945
JB
8898 }
8899
18442d08
VS
8900 /*
8901 * This value includes pixel_multiplier. We will use
241bfc38 8902 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8903 * encoder's get_config() function.
8904 */
8905 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8906}
8907
6878da05
VS
8908int intel_dotclock_calculate(int link_freq,
8909 const struct intel_link_m_n *m_n)
f1f644dc 8910{
f1f644dc
JB
8911 /*
8912 * The calculation for the data clock is:
1041a02f 8913 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8914 * But we want to avoid losing precison if possible, so:
1041a02f 8915 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8916 *
8917 * and the link clock is simpler:
1041a02f 8918 * link_clock = (m * link_clock) / n
f1f644dc
JB
8919 */
8920
6878da05
VS
8921 if (!m_n->link_n)
8922 return 0;
f1f644dc 8923
6878da05
VS
8924 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8925}
f1f644dc 8926
18442d08 8927static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 8928 struct intel_crtc_state *pipe_config)
6878da05
VS
8929{
8930 struct drm_device *dev = crtc->base.dev;
79e53945 8931
18442d08
VS
8932 /* read out port_clock from the DPLL */
8933 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8934
f1f644dc 8935 /*
18442d08 8936 * This value does not include pixel_multiplier.
241bfc38 8937 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8938 * agree once we know their relationship in the encoder's
8939 * get_config() function.
79e53945 8940 */
2d112de7 8941 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
8942 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8943 &pipe_config->fdi_m_n);
79e53945
JB
8944}
8945
8946/** Returns the currently programmed mode of the given pipe. */
8947struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8948 struct drm_crtc *crtc)
8949{
548f245b 8950 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8951 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8952 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 8953 struct drm_display_mode *mode;
5cec258b 8954 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
8955 int htot = I915_READ(HTOTAL(cpu_transcoder));
8956 int hsync = I915_READ(HSYNC(cpu_transcoder));
8957 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8958 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8959 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8960
8961 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8962 if (!mode)
8963 return NULL;
8964
f1f644dc
JB
8965 /*
8966 * Construct a pipe_config sufficient for getting the clock info
8967 * back out of crtc_clock_get.
8968 *
8969 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8970 * to use a real value here instead.
8971 */
293623f7 8972 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8973 pipe_config.pixel_multiplier = 1;
293623f7
VS
8974 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8975 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8976 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8977 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8978
773ae034 8979 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8980 mode->hdisplay = (htot & 0xffff) + 1;
8981 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8982 mode->hsync_start = (hsync & 0xffff) + 1;
8983 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8984 mode->vdisplay = (vtot & 0xffff) + 1;
8985 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8986 mode->vsync_start = (vsync & 0xffff) + 1;
8987 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8988
8989 drm_mode_set_name(mode);
79e53945
JB
8990
8991 return mode;
8992}
8993
652c393a
JB
8994static void intel_decrease_pllclock(struct drm_crtc *crtc)
8995{
8996 struct drm_device *dev = crtc->dev;
fbee40df 8997 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8999
baff296c 9000 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9001 return;
9002
9003 if (!dev_priv->lvds_downclock_avail)
9004 return;
9005
9006 /*
9007 * Since this is called by a timer, we should never get here in
9008 * the manual case.
9009 */
9010 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9011 int pipe = intel_crtc->pipe;
9012 int dpll_reg = DPLL(pipe);
9013 int dpll;
f6e5b160 9014
44d98a61 9015 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9016
8ac5a6d5 9017 assert_panel_unlocked(dev_priv, pipe);
652c393a 9018
dc257cf1 9019 dpll = I915_READ(dpll_reg);
652c393a
JB
9020 dpll |= DISPLAY_RATE_SELECT_FPA1;
9021 I915_WRITE(dpll_reg, dpll);
9d0498a2 9022 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9023 dpll = I915_READ(dpll_reg);
9024 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9025 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9026 }
9027
9028}
9029
f047e395
CW
9030void intel_mark_busy(struct drm_device *dev)
9031{
c67a470b
PZ
9032 struct drm_i915_private *dev_priv = dev->dev_private;
9033
f62a0076
CW
9034 if (dev_priv->mm.busy)
9035 return;
9036
43694d69 9037 intel_runtime_pm_get(dev_priv);
c67a470b 9038 i915_update_gfx_val(dev_priv);
f62a0076 9039 dev_priv->mm.busy = true;
f047e395
CW
9040}
9041
9042void intel_mark_idle(struct drm_device *dev)
652c393a 9043{
c67a470b 9044 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9045 struct drm_crtc *crtc;
652c393a 9046
f62a0076
CW
9047 if (!dev_priv->mm.busy)
9048 return;
9049
9050 dev_priv->mm.busy = false;
9051
d330a953 9052 if (!i915.powersave)
bb4cdd53 9053 goto out;
652c393a 9054
70e1e0ec 9055 for_each_crtc(dev, crtc) {
f4510a27 9056 if (!crtc->primary->fb)
652c393a
JB
9057 continue;
9058
725a5b54 9059 intel_decrease_pllclock(crtc);
652c393a 9060 }
b29c19b6 9061
3d13ef2e 9062 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9063 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9064
9065out:
43694d69 9066 intel_runtime_pm_put(dev_priv);
652c393a
JB
9067}
9068
f5de6e07
ACO
9069static void intel_crtc_set_state(struct intel_crtc *crtc,
9070 struct intel_crtc_state *crtc_state)
9071{
9072 kfree(crtc->config);
9073 crtc->config = crtc_state;
16f3f658 9074 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9075}
9076
79e53945
JB
9077static void intel_crtc_destroy(struct drm_crtc *crtc)
9078{
9079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9080 struct drm_device *dev = crtc->dev;
9081 struct intel_unpin_work *work;
67e77c5a 9082
5e2d7afc 9083 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9084 work = intel_crtc->unpin_work;
9085 intel_crtc->unpin_work = NULL;
5e2d7afc 9086 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9087
9088 if (work) {
9089 cancel_work_sync(&work->work);
9090 kfree(work);
9091 }
79e53945 9092
f5de6e07 9093 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9094 drm_crtc_cleanup(crtc);
67e77c5a 9095
79e53945
JB
9096 kfree(intel_crtc);
9097}
9098
6b95a207
KH
9099static void intel_unpin_work_fn(struct work_struct *__work)
9100{
9101 struct intel_unpin_work *work =
9102 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9103 struct drm_device *dev = work->crtc->dev;
f99d7069 9104 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9105
b4a98e57 9106 mutex_lock(&dev->struct_mutex);
ab8d6675 9107 intel_unpin_fb_obj(intel_fb_obj(work->old_fb));
05394f39 9108 drm_gem_object_unreference(&work->pending_flip_obj->base);
ab8d6675 9109 drm_framebuffer_unreference(work->old_fb);
d9e86c0e 9110
7ff0ebcc 9111 intel_fbc_update(dev);
f06cc1b9
JH
9112
9113 if (work->flip_queued_req)
146d84f0 9114 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9115 mutex_unlock(&dev->struct_mutex);
9116
f99d7069
DV
9117 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9118
b4a98e57
CW
9119 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9120 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9121
6b95a207
KH
9122 kfree(work);
9123}
9124
1afe3e9d 9125static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9126 struct drm_crtc *crtc)
6b95a207 9127{
6b95a207
KH
9128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9129 struct intel_unpin_work *work;
6b95a207
KH
9130 unsigned long flags;
9131
9132 /* Ignore early vblank irqs */
9133 if (intel_crtc == NULL)
9134 return;
9135
f326038a
DV
9136 /*
9137 * This is called both by irq handlers and the reset code (to complete
9138 * lost pageflips) so needs the full irqsave spinlocks.
9139 */
6b95a207
KH
9140 spin_lock_irqsave(&dev->event_lock, flags);
9141 work = intel_crtc->unpin_work;
e7d841ca
CW
9142
9143 /* Ensure we don't miss a work->pending update ... */
9144 smp_rmb();
9145
9146 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9147 spin_unlock_irqrestore(&dev->event_lock, flags);
9148 return;
9149 }
9150
d6bbafa1 9151 page_flip_completed(intel_crtc);
0af7e4df 9152
6b95a207 9153 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9154}
9155
1afe3e9d
JB
9156void intel_finish_page_flip(struct drm_device *dev, int pipe)
9157{
fbee40df 9158 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9159 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9160
49b14a5c 9161 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9162}
9163
9164void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9165{
fbee40df 9166 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9167 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9168
49b14a5c 9169 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9170}
9171
75f7f3ec
VS
9172/* Is 'a' after or equal to 'b'? */
9173static bool g4x_flip_count_after_eq(u32 a, u32 b)
9174{
9175 return !((a - b) & 0x80000000);
9176}
9177
9178static bool page_flip_finished(struct intel_crtc *crtc)
9179{
9180 struct drm_device *dev = crtc->base.dev;
9181 struct drm_i915_private *dev_priv = dev->dev_private;
9182
bdfa7542
VS
9183 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9184 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9185 return true;
9186
75f7f3ec
VS
9187 /*
9188 * The relevant registers doen't exist on pre-ctg.
9189 * As the flip done interrupt doesn't trigger for mmio
9190 * flips on gmch platforms, a flip count check isn't
9191 * really needed there. But since ctg has the registers,
9192 * include it in the check anyway.
9193 */
9194 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9195 return true;
9196
9197 /*
9198 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9199 * used the same base address. In that case the mmio flip might
9200 * have completed, but the CS hasn't even executed the flip yet.
9201 *
9202 * A flip count check isn't enough as the CS might have updated
9203 * the base address just after start of vblank, but before we
9204 * managed to process the interrupt. This means we'd complete the
9205 * CS flip too soon.
9206 *
9207 * Combining both checks should get us a good enough result. It may
9208 * still happen that the CS flip has been executed, but has not
9209 * yet actually completed. But in case the base address is the same
9210 * anyway, we don't really care.
9211 */
9212 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9213 crtc->unpin_work->gtt_offset &&
9214 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9215 crtc->unpin_work->flip_count);
9216}
9217
6b95a207
KH
9218void intel_prepare_page_flip(struct drm_device *dev, int plane)
9219{
fbee40df 9220 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9221 struct intel_crtc *intel_crtc =
9222 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9223 unsigned long flags;
9224
f326038a
DV
9225
9226 /*
9227 * This is called both by irq handlers and the reset code (to complete
9228 * lost pageflips) so needs the full irqsave spinlocks.
9229 *
9230 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9231 * generate a page-flip completion irq, i.e. every modeset
9232 * is also accompanied by a spurious intel_prepare_page_flip().
9233 */
6b95a207 9234 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9235 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9236 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9237 spin_unlock_irqrestore(&dev->event_lock, flags);
9238}
9239
eba905b2 9240static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9241{
9242 /* Ensure that the work item is consistent when activating it ... */
9243 smp_wmb();
9244 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9245 /* and that it is marked active as soon as the irq could fire. */
9246 smp_wmb();
9247}
9248
8c9f3aaf
JB
9249static int intel_gen2_queue_flip(struct drm_device *dev,
9250 struct drm_crtc *crtc,
9251 struct drm_framebuffer *fb,
ed8d1975 9252 struct drm_i915_gem_object *obj,
a4872ba6 9253 struct intel_engine_cs *ring,
ed8d1975 9254 uint32_t flags)
8c9f3aaf 9255{
8c9f3aaf 9256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9257 u32 flip_mask;
9258 int ret;
9259
6d90c952 9260 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9261 if (ret)
4fa62c89 9262 return ret;
8c9f3aaf
JB
9263
9264 /* Can't queue multiple flips, so wait for the previous
9265 * one to finish before executing the next.
9266 */
9267 if (intel_crtc->plane)
9268 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9269 else
9270 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9271 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9272 intel_ring_emit(ring, MI_NOOP);
9273 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9274 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9275 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9276 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9277 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9278
9279 intel_mark_page_flip_active(intel_crtc);
09246732 9280 __intel_ring_advance(ring);
83d4092b 9281 return 0;
8c9f3aaf
JB
9282}
9283
9284static int intel_gen3_queue_flip(struct drm_device *dev,
9285 struct drm_crtc *crtc,
9286 struct drm_framebuffer *fb,
ed8d1975 9287 struct drm_i915_gem_object *obj,
a4872ba6 9288 struct intel_engine_cs *ring,
ed8d1975 9289 uint32_t flags)
8c9f3aaf 9290{
8c9f3aaf 9291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9292 u32 flip_mask;
9293 int ret;
9294
6d90c952 9295 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9296 if (ret)
4fa62c89 9297 return ret;
8c9f3aaf
JB
9298
9299 if (intel_crtc->plane)
9300 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9301 else
9302 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9303 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9304 intel_ring_emit(ring, MI_NOOP);
9305 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9306 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9307 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9308 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9309 intel_ring_emit(ring, MI_NOOP);
9310
e7d841ca 9311 intel_mark_page_flip_active(intel_crtc);
09246732 9312 __intel_ring_advance(ring);
83d4092b 9313 return 0;
8c9f3aaf
JB
9314}
9315
9316static int intel_gen4_queue_flip(struct drm_device *dev,
9317 struct drm_crtc *crtc,
9318 struct drm_framebuffer *fb,
ed8d1975 9319 struct drm_i915_gem_object *obj,
a4872ba6 9320 struct intel_engine_cs *ring,
ed8d1975 9321 uint32_t flags)
8c9f3aaf
JB
9322{
9323 struct drm_i915_private *dev_priv = dev->dev_private;
9324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9325 uint32_t pf, pipesrc;
9326 int ret;
9327
6d90c952 9328 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9329 if (ret)
4fa62c89 9330 return ret;
8c9f3aaf
JB
9331
9332 /* i965+ uses the linear or tiled offsets from the
9333 * Display Registers (which do not change across a page-flip)
9334 * so we need only reprogram the base address.
9335 */
6d90c952
DV
9336 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9337 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9338 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9339 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9340 obj->tiling_mode);
8c9f3aaf
JB
9341
9342 /* XXX Enabling the panel-fitter across page-flip is so far
9343 * untested on non-native modes, so ignore it for now.
9344 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9345 */
9346 pf = 0;
9347 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9348 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9349
9350 intel_mark_page_flip_active(intel_crtc);
09246732 9351 __intel_ring_advance(ring);
83d4092b 9352 return 0;
8c9f3aaf
JB
9353}
9354
9355static int intel_gen6_queue_flip(struct drm_device *dev,
9356 struct drm_crtc *crtc,
9357 struct drm_framebuffer *fb,
ed8d1975 9358 struct drm_i915_gem_object *obj,
a4872ba6 9359 struct intel_engine_cs *ring,
ed8d1975 9360 uint32_t flags)
8c9f3aaf
JB
9361{
9362 struct drm_i915_private *dev_priv = dev->dev_private;
9363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9364 uint32_t pf, pipesrc;
9365 int ret;
9366
6d90c952 9367 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9368 if (ret)
4fa62c89 9369 return ret;
8c9f3aaf 9370
6d90c952
DV
9371 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9372 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9373 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9374 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9375
dc257cf1
DV
9376 /* Contrary to the suggestions in the documentation,
9377 * "Enable Panel Fitter" does not seem to be required when page
9378 * flipping with a non-native mode, and worse causes a normal
9379 * modeset to fail.
9380 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9381 */
9382 pf = 0;
8c9f3aaf 9383 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9384 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9385
9386 intel_mark_page_flip_active(intel_crtc);
09246732 9387 __intel_ring_advance(ring);
83d4092b 9388 return 0;
8c9f3aaf
JB
9389}
9390
7c9017e5
JB
9391static int intel_gen7_queue_flip(struct drm_device *dev,
9392 struct drm_crtc *crtc,
9393 struct drm_framebuffer *fb,
ed8d1975 9394 struct drm_i915_gem_object *obj,
a4872ba6 9395 struct intel_engine_cs *ring,
ed8d1975 9396 uint32_t flags)
7c9017e5 9397{
7c9017e5 9398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9399 uint32_t plane_bit = 0;
ffe74d75
CW
9400 int len, ret;
9401
eba905b2 9402 switch (intel_crtc->plane) {
cb05d8de
DV
9403 case PLANE_A:
9404 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9405 break;
9406 case PLANE_B:
9407 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9408 break;
9409 case PLANE_C:
9410 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9411 break;
9412 default:
9413 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9414 return -ENODEV;
cb05d8de
DV
9415 }
9416
ffe74d75 9417 len = 4;
f476828a 9418 if (ring->id == RCS) {
ffe74d75 9419 len += 6;
f476828a
DL
9420 /*
9421 * On Gen 8, SRM is now taking an extra dword to accommodate
9422 * 48bits addresses, and we need a NOOP for the batch size to
9423 * stay even.
9424 */
9425 if (IS_GEN8(dev))
9426 len += 2;
9427 }
ffe74d75 9428
f66fab8e
VS
9429 /*
9430 * BSpec MI_DISPLAY_FLIP for IVB:
9431 * "The full packet must be contained within the same cache line."
9432 *
9433 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9434 * cacheline, if we ever start emitting more commands before
9435 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9436 * then do the cacheline alignment, and finally emit the
9437 * MI_DISPLAY_FLIP.
9438 */
9439 ret = intel_ring_cacheline_align(ring);
9440 if (ret)
4fa62c89 9441 return ret;
f66fab8e 9442
ffe74d75 9443 ret = intel_ring_begin(ring, len);
7c9017e5 9444 if (ret)
4fa62c89 9445 return ret;
7c9017e5 9446
ffe74d75
CW
9447 /* Unmask the flip-done completion message. Note that the bspec says that
9448 * we should do this for both the BCS and RCS, and that we must not unmask
9449 * more than one flip event at any time (or ensure that one flip message
9450 * can be sent by waiting for flip-done prior to queueing new flips).
9451 * Experimentation says that BCS works despite DERRMR masking all
9452 * flip-done completion events and that unmasking all planes at once
9453 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9454 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9455 */
9456 if (ring->id == RCS) {
9457 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9458 intel_ring_emit(ring, DERRMR);
9459 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9460 DERRMR_PIPEB_PRI_FLIP_DONE |
9461 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9462 if (IS_GEN8(dev))
9463 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9464 MI_SRM_LRM_GLOBAL_GTT);
9465 else
9466 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9467 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9468 intel_ring_emit(ring, DERRMR);
9469 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9470 if (IS_GEN8(dev)) {
9471 intel_ring_emit(ring, 0);
9472 intel_ring_emit(ring, MI_NOOP);
9473 }
ffe74d75
CW
9474 }
9475
cb05d8de 9476 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9477 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9478 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9479 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9480
9481 intel_mark_page_flip_active(intel_crtc);
09246732 9482 __intel_ring_advance(ring);
83d4092b 9483 return 0;
7c9017e5
JB
9484}
9485
84c33a64
SG
9486static bool use_mmio_flip(struct intel_engine_cs *ring,
9487 struct drm_i915_gem_object *obj)
9488{
9489 /*
9490 * This is not being used for older platforms, because
9491 * non-availability of flip done interrupt forces us to use
9492 * CS flips. Older platforms derive flip done using some clever
9493 * tricks involving the flip_pending status bits and vblank irqs.
9494 * So using MMIO flips there would disrupt this mechanism.
9495 */
9496
8e09bf83
CW
9497 if (ring == NULL)
9498 return true;
9499
84c33a64
SG
9500 if (INTEL_INFO(ring->dev)->gen < 5)
9501 return false;
9502
9503 if (i915.use_mmio_flip < 0)
9504 return false;
9505 else if (i915.use_mmio_flip > 0)
9506 return true;
14bf993e
OM
9507 else if (i915.enable_execlists)
9508 return true;
84c33a64 9509 else
41c52415 9510 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9511}
9512
ff944564
DL
9513static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9514{
9515 struct drm_device *dev = intel_crtc->base.dev;
9516 struct drm_i915_private *dev_priv = dev->dev_private;
9517 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9518 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9519 struct drm_i915_gem_object *obj = intel_fb->obj;
9520 const enum pipe pipe = intel_crtc->pipe;
9521 u32 ctl, stride;
9522
9523 ctl = I915_READ(PLANE_CTL(pipe, 0));
9524 ctl &= ~PLANE_CTL_TILED_MASK;
9525 if (obj->tiling_mode == I915_TILING_X)
9526 ctl |= PLANE_CTL_TILED_X;
9527
9528 /*
9529 * The stride is either expressed as a multiple of 64 bytes chunks for
9530 * linear buffers or in number of tiles for tiled buffers.
9531 */
9532 stride = fb->pitches[0] >> 6;
9533 if (obj->tiling_mode == I915_TILING_X)
9534 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9535
9536 /*
9537 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9538 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9539 */
9540 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9541 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9542
9543 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9544 POSTING_READ(PLANE_SURF(pipe, 0));
9545}
9546
9547static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9548{
9549 struct drm_device *dev = intel_crtc->base.dev;
9550 struct drm_i915_private *dev_priv = dev->dev_private;
9551 struct intel_framebuffer *intel_fb =
9552 to_intel_framebuffer(intel_crtc->base.primary->fb);
9553 struct drm_i915_gem_object *obj = intel_fb->obj;
9554 u32 dspcntr;
9555 u32 reg;
9556
84c33a64
SG
9557 reg = DSPCNTR(intel_crtc->plane);
9558 dspcntr = I915_READ(reg);
9559
c5d97472
DL
9560 if (obj->tiling_mode != I915_TILING_NONE)
9561 dspcntr |= DISPPLANE_TILED;
9562 else
9563 dspcntr &= ~DISPPLANE_TILED;
9564
84c33a64
SG
9565 I915_WRITE(reg, dspcntr);
9566
9567 I915_WRITE(DSPSURF(intel_crtc->plane),
9568 intel_crtc->unpin_work->gtt_offset);
9569 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9570
ff944564
DL
9571}
9572
9573/*
9574 * XXX: This is the temporary way to update the plane registers until we get
9575 * around to using the usual plane update functions for MMIO flips
9576 */
9577static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9578{
9579 struct drm_device *dev = intel_crtc->base.dev;
9580 bool atomic_update;
9581 u32 start_vbl_count;
9582
9583 intel_mark_page_flip_active(intel_crtc);
9584
9585 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9586
9587 if (INTEL_INFO(dev)->gen >= 9)
9588 skl_do_mmio_flip(intel_crtc);
9589 else
9590 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9591 ilk_do_mmio_flip(intel_crtc);
9592
9362c7c5
ACO
9593 if (atomic_update)
9594 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9595}
9596
9362c7c5 9597static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9598{
cc8c4cc2 9599 struct intel_crtc *crtc =
9362c7c5 9600 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9601 struct intel_mmio_flip *mmio_flip;
84c33a64 9602
cc8c4cc2
JH
9603 mmio_flip = &crtc->mmio_flip;
9604 if (mmio_flip->req)
9c654818
JH
9605 WARN_ON(__i915_wait_request(mmio_flip->req,
9606 crtc->reset_counter,
9607 false, NULL, NULL) != 0);
84c33a64 9608
cc8c4cc2
JH
9609 intel_do_mmio_flip(crtc);
9610 if (mmio_flip->req) {
9611 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9612 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9613 mutex_unlock(&crtc->base.dev->struct_mutex);
9614 }
84c33a64
SG
9615}
9616
9617static int intel_queue_mmio_flip(struct drm_device *dev,
9618 struct drm_crtc *crtc,
9619 struct drm_framebuffer *fb,
9620 struct drm_i915_gem_object *obj,
9621 struct intel_engine_cs *ring,
9622 uint32_t flags)
9623{
84c33a64 9624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9625
cc8c4cc2
JH
9626 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9627 obj->last_write_req);
536f5b5e
ACO
9628
9629 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9630
84c33a64
SG
9631 return 0;
9632}
9633
830c81db
DL
9634static int intel_gen9_queue_flip(struct drm_device *dev,
9635 struct drm_crtc *crtc,
9636 struct drm_framebuffer *fb,
9637 struct drm_i915_gem_object *obj,
9638 struct intel_engine_cs *ring,
9639 uint32_t flags)
9640{
9641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9642 uint32_t plane = 0, stride;
9643 int ret;
9644
9645 switch(intel_crtc->pipe) {
9646 case PIPE_A:
9647 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9648 break;
9649 case PIPE_B:
9650 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9651 break;
9652 case PIPE_C:
9653 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9654 break;
9655 default:
9656 WARN_ONCE(1, "unknown plane in flip command\n");
9657 return -ENODEV;
9658 }
9659
9660 switch (obj->tiling_mode) {
9661 case I915_TILING_NONE:
9662 stride = fb->pitches[0] >> 6;
9663 break;
9664 case I915_TILING_X:
9665 stride = fb->pitches[0] >> 9;
9666 break;
9667 default:
9668 WARN_ONCE(1, "unknown tiling in flip command\n");
9669 return -ENODEV;
9670 }
9671
9672 ret = intel_ring_begin(ring, 10);
9673 if (ret)
9674 return ret;
9675
9676 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9677 intel_ring_emit(ring, DERRMR);
9678 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9679 DERRMR_PIPEB_PRI_FLIP_DONE |
9680 DERRMR_PIPEC_PRI_FLIP_DONE));
9681 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9682 MI_SRM_LRM_GLOBAL_GTT);
9683 intel_ring_emit(ring, DERRMR);
9684 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9685 intel_ring_emit(ring, 0);
9686
9687 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9688 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9689 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9690
9691 intel_mark_page_flip_active(intel_crtc);
9692 __intel_ring_advance(ring);
9693
9694 return 0;
9695}
9696
8c9f3aaf
JB
9697static int intel_default_queue_flip(struct drm_device *dev,
9698 struct drm_crtc *crtc,
9699 struct drm_framebuffer *fb,
ed8d1975 9700 struct drm_i915_gem_object *obj,
a4872ba6 9701 struct intel_engine_cs *ring,
ed8d1975 9702 uint32_t flags)
8c9f3aaf
JB
9703{
9704 return -ENODEV;
9705}
9706
d6bbafa1
CW
9707static bool __intel_pageflip_stall_check(struct drm_device *dev,
9708 struct drm_crtc *crtc)
9709{
9710 struct drm_i915_private *dev_priv = dev->dev_private;
9711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9712 struct intel_unpin_work *work = intel_crtc->unpin_work;
9713 u32 addr;
9714
9715 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9716 return true;
9717
9718 if (!work->enable_stall_check)
9719 return false;
9720
9721 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9722 if (work->flip_queued_req &&
9723 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9724 return false;
9725
9726 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9727 }
9728
9729 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9730 return false;
9731
9732 /* Potential stall - if we see that the flip has happened,
9733 * assume a missed interrupt. */
9734 if (INTEL_INFO(dev)->gen >= 4)
9735 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9736 else
9737 addr = I915_READ(DSPADDR(intel_crtc->plane));
9738
9739 /* There is a potential issue here with a false positive after a flip
9740 * to the same address. We could address this by checking for a
9741 * non-incrementing frame counter.
9742 */
9743 return addr == work->gtt_offset;
9744}
9745
9746void intel_check_page_flip(struct drm_device *dev, int pipe)
9747{
9748 struct drm_i915_private *dev_priv = dev->dev_private;
9749 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9751
9752 WARN_ON(!in_irq());
d6bbafa1
CW
9753
9754 if (crtc == NULL)
9755 return;
9756
f326038a 9757 spin_lock(&dev->event_lock);
d6bbafa1
CW
9758 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9759 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9760 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9761 page_flip_completed(intel_crtc);
9762 }
f326038a 9763 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9764}
9765
6b95a207
KH
9766static int intel_crtc_page_flip(struct drm_crtc *crtc,
9767 struct drm_framebuffer *fb,
ed8d1975
KP
9768 struct drm_pending_vblank_event *event,
9769 uint32_t page_flip_flags)
6b95a207
KH
9770{
9771 struct drm_device *dev = crtc->dev;
9772 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9773 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9774 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 9776 struct drm_plane *primary = crtc->primary;
a071fa00 9777 enum pipe pipe = intel_crtc->pipe;
6b95a207 9778 struct intel_unpin_work *work;
a4872ba6 9779 struct intel_engine_cs *ring;
52e68630 9780 int ret;
6b95a207 9781
2ff8fde1
MR
9782 /*
9783 * drm_mode_page_flip_ioctl() should already catch this, but double
9784 * check to be safe. In the future we may enable pageflipping from
9785 * a disabled primary plane.
9786 */
9787 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9788 return -EBUSY;
9789
e6a595d2 9790 /* Can't change pixel format via MI display flips. */
f4510a27 9791 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9792 return -EINVAL;
9793
9794 /*
9795 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9796 * Note that pitch changes could also affect these register.
9797 */
9798 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9799 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9800 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9801 return -EINVAL;
9802
f900db47
CW
9803 if (i915_terminally_wedged(&dev_priv->gpu_error))
9804 goto out_hang;
9805
b14c5679 9806 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9807 if (work == NULL)
9808 return -ENOMEM;
9809
6b95a207 9810 work->event = event;
b4a98e57 9811 work->crtc = crtc;
ab8d6675 9812 work->old_fb = old_fb;
6b95a207
KH
9813 INIT_WORK(&work->work, intel_unpin_work_fn);
9814
87b6b101 9815 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9816 if (ret)
9817 goto free_work;
9818
6b95a207 9819 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9820 spin_lock_irq(&dev->event_lock);
6b95a207 9821 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9822 /* Before declaring the flip queue wedged, check if
9823 * the hardware completed the operation behind our backs.
9824 */
9825 if (__intel_pageflip_stall_check(dev, crtc)) {
9826 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9827 page_flip_completed(intel_crtc);
9828 } else {
9829 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9830 spin_unlock_irq(&dev->event_lock);
468f0b44 9831
d6bbafa1
CW
9832 drm_crtc_vblank_put(crtc);
9833 kfree(work);
9834 return -EBUSY;
9835 }
6b95a207
KH
9836 }
9837 intel_crtc->unpin_work = work;
5e2d7afc 9838 spin_unlock_irq(&dev->event_lock);
6b95a207 9839
b4a98e57
CW
9840 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9841 flush_workqueue(dev_priv->wq);
9842
79158103
CW
9843 ret = i915_mutex_lock_interruptible(dev);
9844 if (ret)
9845 goto cleanup;
6b95a207 9846
75dfca80 9847 /* Reference the objects for the scheduled work. */
ab8d6675 9848 drm_framebuffer_reference(work->old_fb);
05394f39 9849 drm_gem_object_reference(&obj->base);
6b95a207 9850
f4510a27 9851 crtc->primary->fb = fb;
afd65eb4 9852 update_state_fb(crtc->primary);
1ed1f968 9853
e1f99ce6 9854 work->pending_flip_obj = obj;
e1f99ce6 9855
b4a98e57 9856 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9857 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9858
75f7f3ec 9859 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9860 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9861
4fa62c89
VS
9862 if (IS_VALLEYVIEW(dev)) {
9863 ring = &dev_priv->ring[BCS];
ab8d6675 9864 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
9865 /* vlv: DISPLAY_FLIP fails to change tiling */
9866 ring = NULL;
48bf5b2d 9867 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 9868 ring = &dev_priv->ring[BCS];
4fa62c89 9869 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 9870 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
9871 if (ring == NULL || ring->id != RCS)
9872 ring = &dev_priv->ring[BCS];
9873 } else {
9874 ring = &dev_priv->ring[RCS];
9875 }
9876
850c4cdc 9877 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
8c9f3aaf
JB
9878 if (ret)
9879 goto cleanup_pending;
6b95a207 9880
4fa62c89
VS
9881 work->gtt_offset =
9882 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9883
d6bbafa1 9884 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9885 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9886 page_flip_flags);
d6bbafa1
CW
9887 if (ret)
9888 goto cleanup_unpin;
9889
f06cc1b9
JH
9890 i915_gem_request_assign(&work->flip_queued_req,
9891 obj->last_write_req);
d6bbafa1 9892 } else {
84c33a64 9893 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9894 page_flip_flags);
9895 if (ret)
9896 goto cleanup_unpin;
9897
f06cc1b9
JH
9898 i915_gem_request_assign(&work->flip_queued_req,
9899 intel_ring_get_request(ring));
d6bbafa1
CW
9900 }
9901
9902 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9903 work->enable_stall_check = true;
4fa62c89 9904
ab8d6675 9905 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
9906 INTEL_FRONTBUFFER_PRIMARY(pipe));
9907
7ff0ebcc 9908 intel_fbc_disable(dev);
f99d7069 9909 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9910 mutex_unlock(&dev->struct_mutex);
9911
e5510fac
JB
9912 trace_i915_flip_request(intel_crtc->plane, obj);
9913
6b95a207 9914 return 0;
96b099fd 9915
4fa62c89
VS
9916cleanup_unpin:
9917 intel_unpin_fb_obj(obj);
8c9f3aaf 9918cleanup_pending:
b4a98e57 9919 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9920 crtc->primary->fb = old_fb;
afd65eb4 9921 update_state_fb(crtc->primary);
ab8d6675 9922 drm_framebuffer_unreference(work->old_fb);
05394f39 9923 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9924 mutex_unlock(&dev->struct_mutex);
9925
79158103 9926cleanup:
5e2d7afc 9927 spin_lock_irq(&dev->event_lock);
96b099fd 9928 intel_crtc->unpin_work = NULL;
5e2d7afc 9929 spin_unlock_irq(&dev->event_lock);
96b099fd 9930
87b6b101 9931 drm_crtc_vblank_put(crtc);
7317c75e 9932free_work:
96b099fd
CW
9933 kfree(work);
9934
f900db47
CW
9935 if (ret == -EIO) {
9936out_hang:
53a366b9 9937 ret = intel_plane_restore(primary);
f0d3dad3 9938 if (ret == 0 && event) {
5e2d7afc 9939 spin_lock_irq(&dev->event_lock);
a071fa00 9940 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9941 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9942 }
f900db47 9943 }
96b099fd 9944 return ret;
6b95a207
KH
9945}
9946
f6e5b160 9947static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9948 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9949 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
9950 .atomic_begin = intel_begin_crtc_commit,
9951 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
9952};
9953
9a935856
DV
9954/**
9955 * intel_modeset_update_staged_output_state
9956 *
9957 * Updates the staged output configuration state, e.g. after we've read out the
9958 * current hw state.
9959 */
9960static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9961{
7668851f 9962 struct intel_crtc *crtc;
9a935856
DV
9963 struct intel_encoder *encoder;
9964 struct intel_connector *connector;
f6e5b160 9965
9a935856
DV
9966 list_for_each_entry(connector, &dev->mode_config.connector_list,
9967 base.head) {
9968 connector->new_encoder =
9969 to_intel_encoder(connector->base.encoder);
9970 }
f6e5b160 9971
b2784e15 9972 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9973 encoder->new_crtc =
9974 to_intel_crtc(encoder->base.crtc);
9975 }
7668851f 9976
d3fcc808 9977 for_each_intel_crtc(dev, crtc) {
7668851f 9978 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9979
9980 if (crtc->new_enabled)
6e3c9717 9981 crtc->new_config = crtc->config;
7bd0a8e7
VS
9982 else
9983 crtc->new_config = NULL;
7668851f 9984 }
f6e5b160
CW
9985}
9986
9a935856
DV
9987/**
9988 * intel_modeset_commit_output_state
9989 *
9990 * This function copies the stage display pipe configuration to the real one.
9991 */
9992static void intel_modeset_commit_output_state(struct drm_device *dev)
9993{
7668851f 9994 struct intel_crtc *crtc;
9a935856
DV
9995 struct intel_encoder *encoder;
9996 struct intel_connector *connector;
f6e5b160 9997
9a935856
DV
9998 list_for_each_entry(connector, &dev->mode_config.connector_list,
9999 base.head) {
10000 connector->base.encoder = &connector->new_encoder->base;
10001 }
f6e5b160 10002
b2784e15 10003 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10004 encoder->base.crtc = &encoder->new_crtc->base;
10005 }
7668851f 10006
d3fcc808 10007 for_each_intel_crtc(dev, crtc) {
7668851f
VS
10008 crtc->base.enabled = crtc->new_enabled;
10009 }
9a935856
DV
10010}
10011
050f7aeb 10012static void
eba905b2 10013connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 10014 struct intel_crtc_state *pipe_config)
050f7aeb
DV
10015{
10016 int bpp = pipe_config->pipe_bpp;
10017
10018 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10019 connector->base.base.id,
c23cc417 10020 connector->base.name);
050f7aeb
DV
10021
10022 /* Don't use an invalid EDID bpc value */
10023 if (connector->base.display_info.bpc &&
10024 connector->base.display_info.bpc * 3 < bpp) {
10025 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10026 bpp, connector->base.display_info.bpc*3);
10027 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10028 }
10029
10030 /* Clamp bpp to 8 on screens without EDID 1.4 */
10031 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10032 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10033 bpp);
10034 pipe_config->pipe_bpp = 24;
10035 }
10036}
10037
4e53c2e0 10038static int
050f7aeb
DV
10039compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10040 struct drm_framebuffer *fb,
5cec258b 10041 struct intel_crtc_state *pipe_config)
4e53c2e0 10042{
050f7aeb
DV
10043 struct drm_device *dev = crtc->base.dev;
10044 struct intel_connector *connector;
4e53c2e0
DV
10045 int bpp;
10046
d42264b1
DV
10047 switch (fb->pixel_format) {
10048 case DRM_FORMAT_C8:
4e53c2e0
DV
10049 bpp = 8*3; /* since we go through a colormap */
10050 break;
d42264b1
DV
10051 case DRM_FORMAT_XRGB1555:
10052 case DRM_FORMAT_ARGB1555:
10053 /* checked in intel_framebuffer_init already */
10054 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10055 return -EINVAL;
10056 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10057 bpp = 6*3; /* min is 18bpp */
10058 break;
d42264b1
DV
10059 case DRM_FORMAT_XBGR8888:
10060 case DRM_FORMAT_ABGR8888:
10061 /* checked in intel_framebuffer_init already */
10062 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10063 return -EINVAL;
10064 case DRM_FORMAT_XRGB8888:
10065 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10066 bpp = 8*3;
10067 break;
d42264b1
DV
10068 case DRM_FORMAT_XRGB2101010:
10069 case DRM_FORMAT_ARGB2101010:
10070 case DRM_FORMAT_XBGR2101010:
10071 case DRM_FORMAT_ABGR2101010:
10072 /* checked in intel_framebuffer_init already */
10073 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10074 return -EINVAL;
4e53c2e0
DV
10075 bpp = 10*3;
10076 break;
baba133a 10077 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10078 default:
10079 DRM_DEBUG_KMS("unsupported depth\n");
10080 return -EINVAL;
10081 }
10082
4e53c2e0
DV
10083 pipe_config->pipe_bpp = bpp;
10084
10085 /* Clamp display bpp to EDID value */
10086 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10087 base.head) {
1b829e05
DV
10088 if (!connector->new_encoder ||
10089 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10090 continue;
10091
050f7aeb 10092 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10093 }
10094
10095 return bpp;
10096}
10097
644db711
DV
10098static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10099{
10100 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10101 "type: 0x%x flags: 0x%x\n",
1342830c 10102 mode->crtc_clock,
644db711
DV
10103 mode->crtc_hdisplay, mode->crtc_hsync_start,
10104 mode->crtc_hsync_end, mode->crtc_htotal,
10105 mode->crtc_vdisplay, mode->crtc_vsync_start,
10106 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10107}
10108
c0b03411 10109static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10110 struct intel_crtc_state *pipe_config,
c0b03411
DV
10111 const char *context)
10112{
10113 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10114 context, pipe_name(crtc->pipe));
10115
10116 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10117 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10118 pipe_config->pipe_bpp, pipe_config->dither);
10119 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10120 pipe_config->has_pch_encoder,
10121 pipe_config->fdi_lanes,
10122 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10123 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10124 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10125 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10126 pipe_config->has_dp_encoder,
10127 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10128 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10129 pipe_config->dp_m_n.tu);
b95af8be
VK
10130
10131 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10132 pipe_config->has_dp_encoder,
10133 pipe_config->dp_m2_n2.gmch_m,
10134 pipe_config->dp_m2_n2.gmch_n,
10135 pipe_config->dp_m2_n2.link_m,
10136 pipe_config->dp_m2_n2.link_n,
10137 pipe_config->dp_m2_n2.tu);
10138
55072d19
DV
10139 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10140 pipe_config->has_audio,
10141 pipe_config->has_infoframe);
10142
c0b03411 10143 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10144 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10145 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10146 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10147 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10148 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10149 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10150 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10151 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10152 pipe_config->gmch_pfit.control,
10153 pipe_config->gmch_pfit.pgm_ratios,
10154 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10155 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10156 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10157 pipe_config->pch_pfit.size,
10158 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10159 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10160 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10161}
10162
bc079e8b
VS
10163static bool encoders_cloneable(const struct intel_encoder *a,
10164 const struct intel_encoder *b)
accfc0c5 10165{
bc079e8b
VS
10166 /* masks could be asymmetric, so check both ways */
10167 return a == b || (a->cloneable & (1 << b->type) &&
10168 b->cloneable & (1 << a->type));
10169}
10170
10171static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10172 struct intel_encoder *encoder)
10173{
10174 struct drm_device *dev = crtc->base.dev;
10175 struct intel_encoder *source_encoder;
10176
b2784e15 10177 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10178 if (source_encoder->new_crtc != crtc)
10179 continue;
10180
10181 if (!encoders_cloneable(encoder, source_encoder))
10182 return false;
10183 }
10184
10185 return true;
10186}
10187
10188static bool check_encoder_cloning(struct intel_crtc *crtc)
10189{
10190 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10191 struct intel_encoder *encoder;
10192
b2784e15 10193 for_each_intel_encoder(dev, encoder) {
bc079e8b 10194 if (encoder->new_crtc != crtc)
accfc0c5
DV
10195 continue;
10196
bc079e8b
VS
10197 if (!check_single_encoder_cloning(crtc, encoder))
10198 return false;
accfc0c5
DV
10199 }
10200
bc079e8b 10201 return true;
accfc0c5
DV
10202}
10203
00f0b378
VS
10204static bool check_digital_port_conflicts(struct drm_device *dev)
10205{
10206 struct intel_connector *connector;
10207 unsigned int used_ports = 0;
10208
10209 /*
10210 * Walk the connector list instead of the encoder
10211 * list to detect the problem on ddi platforms
10212 * where there's just one encoder per digital port.
10213 */
10214 list_for_each_entry(connector,
10215 &dev->mode_config.connector_list, base.head) {
10216 struct intel_encoder *encoder = connector->new_encoder;
10217
10218 if (!encoder)
10219 continue;
10220
10221 WARN_ON(!encoder->new_crtc);
10222
10223 switch (encoder->type) {
10224 unsigned int port_mask;
10225 case INTEL_OUTPUT_UNKNOWN:
10226 if (WARN_ON(!HAS_DDI(dev)))
10227 break;
10228 case INTEL_OUTPUT_DISPLAYPORT:
10229 case INTEL_OUTPUT_HDMI:
10230 case INTEL_OUTPUT_EDP:
10231 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10232
10233 /* the same port mustn't appear more than once */
10234 if (used_ports & port_mask)
10235 return false;
10236
10237 used_ports |= port_mask;
10238 default:
10239 break;
10240 }
10241 }
10242
10243 return true;
10244}
10245
5cec258b 10246static struct intel_crtc_state *
b8cecdf5 10247intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10248 struct drm_framebuffer *fb,
b8cecdf5 10249 struct drm_display_mode *mode)
ee7b9f93 10250{
7758a113 10251 struct drm_device *dev = crtc->dev;
7758a113 10252 struct intel_encoder *encoder;
5cec258b 10253 struct intel_crtc_state *pipe_config;
e29c22c0
DV
10254 int plane_bpp, ret = -EINVAL;
10255 bool retry = true;
ee7b9f93 10256
bc079e8b 10257 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10258 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10259 return ERR_PTR(-EINVAL);
10260 }
10261
00f0b378
VS
10262 if (!check_digital_port_conflicts(dev)) {
10263 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10264 return ERR_PTR(-EINVAL);
10265 }
10266
b8cecdf5
DV
10267 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10268 if (!pipe_config)
7758a113
DV
10269 return ERR_PTR(-ENOMEM);
10270
2d112de7
ACO
10271 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10272 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10273
e143a21c
DV
10274 pipe_config->cpu_transcoder =
10275 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10276 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10277
2960bc9c
ID
10278 /*
10279 * Sanitize sync polarity flags based on requested ones. If neither
10280 * positive or negative polarity is requested, treat this as meaning
10281 * negative polarity.
10282 */
2d112de7 10283 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10284 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10285 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10286
2d112de7 10287 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10288 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10289 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10290
050f7aeb
DV
10291 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10292 * plane pixel format and any sink constraints into account. Returns the
10293 * source plane bpp so that dithering can be selected on mismatches
10294 * after encoders and crtc also have had their say. */
10295 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10296 fb, pipe_config);
4e53c2e0
DV
10297 if (plane_bpp < 0)
10298 goto fail;
10299
e41a56be
VS
10300 /*
10301 * Determine the real pipe dimensions. Note that stereo modes can
10302 * increase the actual pipe size due to the frame doubling and
10303 * insertion of additional space for blanks between the frame. This
10304 * is stored in the crtc timings. We use the requested mode to do this
10305 * computation to clearly distinguish it from the adjusted mode, which
10306 * can be changed by the connectors in the below retry loop.
10307 */
2d112de7 10308 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10309 &pipe_config->pipe_src_w,
10310 &pipe_config->pipe_src_h);
e41a56be 10311
e29c22c0 10312encoder_retry:
ef1b460d 10313 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10314 pipe_config->port_clock = 0;
ef1b460d 10315 pipe_config->pixel_multiplier = 1;
ff9a6750 10316
135c81b8 10317 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10318 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10319 CRTC_STEREO_DOUBLE);
135c81b8 10320
7758a113
DV
10321 /* Pass our mode to the connectors and the CRTC to give them a chance to
10322 * adjust it according to limitations or connector properties, and also
10323 * a chance to reject the mode entirely.
47f1c6c9 10324 */
b2784e15 10325 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10326
7758a113
DV
10327 if (&encoder->new_crtc->base != crtc)
10328 continue;
7ae89233 10329
efea6e8e
DV
10330 if (!(encoder->compute_config(encoder, pipe_config))) {
10331 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10332 goto fail;
10333 }
ee7b9f93 10334 }
47f1c6c9 10335
ff9a6750
DV
10336 /* Set default port clock if not overwritten by the encoder. Needs to be
10337 * done afterwards in case the encoder adjusts the mode. */
10338 if (!pipe_config->port_clock)
2d112de7 10339 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10340 * pipe_config->pixel_multiplier;
ff9a6750 10341
a43f6e0f 10342 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10343 if (ret < 0) {
7758a113
DV
10344 DRM_DEBUG_KMS("CRTC fixup failed\n");
10345 goto fail;
ee7b9f93 10346 }
e29c22c0
DV
10347
10348 if (ret == RETRY) {
10349 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10350 ret = -EINVAL;
10351 goto fail;
10352 }
10353
10354 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10355 retry = false;
10356 goto encoder_retry;
10357 }
10358
4e53c2e0
DV
10359 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10360 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10361 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10362
b8cecdf5 10363 return pipe_config;
7758a113 10364fail:
b8cecdf5 10365 kfree(pipe_config);
e29c22c0 10366 return ERR_PTR(ret);
ee7b9f93 10367}
47f1c6c9 10368
e2e1ed41
DV
10369/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10370 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10371static void
10372intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10373 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10374{
10375 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10376 struct drm_device *dev = crtc->dev;
10377 struct intel_encoder *encoder;
10378 struct intel_connector *connector;
10379 struct drm_crtc *tmp_crtc;
79e53945 10380
e2e1ed41 10381 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10382
e2e1ed41
DV
10383 /* Check which crtcs have changed outputs connected to them, these need
10384 * to be part of the prepare_pipes mask. We don't (yet) support global
10385 * modeset across multiple crtcs, so modeset_pipes will only have one
10386 * bit set at most. */
10387 list_for_each_entry(connector, &dev->mode_config.connector_list,
10388 base.head) {
10389 if (connector->base.encoder == &connector->new_encoder->base)
10390 continue;
79e53945 10391
e2e1ed41
DV
10392 if (connector->base.encoder) {
10393 tmp_crtc = connector->base.encoder->crtc;
10394
10395 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10396 }
10397
10398 if (connector->new_encoder)
10399 *prepare_pipes |=
10400 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10401 }
10402
b2784e15 10403 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10404 if (encoder->base.crtc == &encoder->new_crtc->base)
10405 continue;
10406
10407 if (encoder->base.crtc) {
10408 tmp_crtc = encoder->base.crtc;
10409
10410 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10411 }
10412
10413 if (encoder->new_crtc)
10414 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10415 }
10416
7668851f 10417 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10418 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10419 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10420 continue;
7e7d76c3 10421
7668851f 10422 if (!intel_crtc->new_enabled)
e2e1ed41 10423 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10424 else
10425 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10426 }
10427
e2e1ed41
DV
10428
10429 /* set_mode is also used to update properties on life display pipes. */
10430 intel_crtc = to_intel_crtc(crtc);
7668851f 10431 if (intel_crtc->new_enabled)
e2e1ed41
DV
10432 *prepare_pipes |= 1 << intel_crtc->pipe;
10433
b6c5164d
DV
10434 /*
10435 * For simplicity do a full modeset on any pipe where the output routing
10436 * changed. We could be more clever, but that would require us to be
10437 * more careful with calling the relevant encoder->mode_set functions.
10438 */
e2e1ed41
DV
10439 if (*prepare_pipes)
10440 *modeset_pipes = *prepare_pipes;
10441
10442 /* ... and mask these out. */
10443 *modeset_pipes &= ~(*disable_pipes);
10444 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10445
10446 /*
10447 * HACK: We don't (yet) fully support global modesets. intel_set_config
10448 * obies this rule, but the modeset restore mode of
10449 * intel_modeset_setup_hw_state does not.
10450 */
10451 *modeset_pipes &= 1 << intel_crtc->pipe;
10452 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10453
10454 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10455 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10456}
79e53945 10457
ea9d758d 10458static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10459{
ea9d758d 10460 struct drm_encoder *encoder;
f6e5b160 10461 struct drm_device *dev = crtc->dev;
f6e5b160 10462
ea9d758d
DV
10463 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10464 if (encoder->crtc == crtc)
10465 return true;
10466
10467 return false;
10468}
10469
10470static void
10471intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10472{
ba41c0de 10473 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10474 struct intel_encoder *intel_encoder;
10475 struct intel_crtc *intel_crtc;
10476 struct drm_connector *connector;
10477
ba41c0de
DV
10478 intel_shared_dpll_commit(dev_priv);
10479
b2784e15 10480 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10481 if (!intel_encoder->base.crtc)
10482 continue;
10483
10484 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10485
10486 if (prepare_pipes & (1 << intel_crtc->pipe))
10487 intel_encoder->connectors_active = false;
10488 }
10489
10490 intel_modeset_commit_output_state(dev);
10491
7668851f 10492 /* Double check state. */
d3fcc808 10493 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10494 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10495 WARN_ON(intel_crtc->new_config &&
6e3c9717 10496 intel_crtc->new_config != intel_crtc->config);
7bd0a8e7 10497 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10498 }
10499
10500 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10501 if (!connector->encoder || !connector->encoder->crtc)
10502 continue;
10503
10504 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10505
10506 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10507 struct drm_property *dpms_property =
10508 dev->mode_config.dpms_property;
10509
ea9d758d 10510 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10511 drm_object_property_set_value(&connector->base,
68d34720
DV
10512 dpms_property,
10513 DRM_MODE_DPMS_ON);
ea9d758d
DV
10514
10515 intel_encoder = to_intel_encoder(connector->encoder);
10516 intel_encoder->connectors_active = true;
10517 }
10518 }
10519
10520}
10521
3bd26263 10522static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10523{
3bd26263 10524 int diff;
f1f644dc
JB
10525
10526 if (clock1 == clock2)
10527 return true;
10528
10529 if (!clock1 || !clock2)
10530 return false;
10531
10532 diff = abs(clock1 - clock2);
10533
10534 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10535 return true;
10536
10537 return false;
10538}
10539
25c5b266
DV
10540#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10541 list_for_each_entry((intel_crtc), \
10542 &(dev)->mode_config.crtc_list, \
10543 base.head) \
0973f18f 10544 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10545
0e8ffe1b 10546static bool
2fa2fe9a 10547intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10548 struct intel_crtc_state *current_config,
10549 struct intel_crtc_state *pipe_config)
0e8ffe1b 10550{
66e985c0
DV
10551#define PIPE_CONF_CHECK_X(name) \
10552 if (current_config->name != pipe_config->name) { \
10553 DRM_ERROR("mismatch in " #name " " \
10554 "(expected 0x%08x, found 0x%08x)\n", \
10555 current_config->name, \
10556 pipe_config->name); \
10557 return false; \
10558 }
10559
08a24034
DV
10560#define PIPE_CONF_CHECK_I(name) \
10561 if (current_config->name != pipe_config->name) { \
10562 DRM_ERROR("mismatch in " #name " " \
10563 "(expected %i, found %i)\n", \
10564 current_config->name, \
10565 pipe_config->name); \
10566 return false; \
88adfff1
DV
10567 }
10568
b95af8be
VK
10569/* This is required for BDW+ where there is only one set of registers for
10570 * switching between high and low RR.
10571 * This macro can be used whenever a comparison has to be made between one
10572 * hw state and multiple sw state variables.
10573 */
10574#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10575 if ((current_config->name != pipe_config->name) && \
10576 (current_config->alt_name != pipe_config->name)) { \
10577 DRM_ERROR("mismatch in " #name " " \
10578 "(expected %i or %i, found %i)\n", \
10579 current_config->name, \
10580 current_config->alt_name, \
10581 pipe_config->name); \
10582 return false; \
10583 }
10584
1bd1bd80
DV
10585#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10586 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10587 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10588 "(expected %i, found %i)\n", \
10589 current_config->name & (mask), \
10590 pipe_config->name & (mask)); \
10591 return false; \
10592 }
10593
5e550656
VS
10594#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10595 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10596 DRM_ERROR("mismatch in " #name " " \
10597 "(expected %i, found %i)\n", \
10598 current_config->name, \
10599 pipe_config->name); \
10600 return false; \
10601 }
10602
bb760063
DV
10603#define PIPE_CONF_QUIRK(quirk) \
10604 ((current_config->quirks | pipe_config->quirks) & (quirk))
10605
eccb140b
DV
10606 PIPE_CONF_CHECK_I(cpu_transcoder);
10607
08a24034
DV
10608 PIPE_CONF_CHECK_I(has_pch_encoder);
10609 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10610 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10611 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10612 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10613 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10614 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10615
eb14cb74 10616 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10617
10618 if (INTEL_INFO(dev)->gen < 8) {
10619 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10620 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10621 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10622 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10623 PIPE_CONF_CHECK_I(dp_m_n.tu);
10624
10625 if (current_config->has_drrs) {
10626 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10627 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10628 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10629 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10630 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10631 }
10632 } else {
10633 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10634 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10635 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10636 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10637 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10638 }
eb14cb74 10639
2d112de7
ACO
10640 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10641 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10642 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10643 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10644 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10645 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10646
2d112de7
ACO
10647 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10648 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10649 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10650 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10651 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10652 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10653
c93f54cf 10654 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10655 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10656 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10657 IS_VALLEYVIEW(dev))
10658 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10659 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10660
9ed109a7
DV
10661 PIPE_CONF_CHECK_I(has_audio);
10662
2d112de7 10663 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10664 DRM_MODE_FLAG_INTERLACE);
10665
bb760063 10666 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10667 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10668 DRM_MODE_FLAG_PHSYNC);
2d112de7 10669 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10670 DRM_MODE_FLAG_NHSYNC);
2d112de7 10671 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10672 DRM_MODE_FLAG_PVSYNC);
2d112de7 10673 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10674 DRM_MODE_FLAG_NVSYNC);
10675 }
045ac3b5 10676
37327abd
VS
10677 PIPE_CONF_CHECK_I(pipe_src_w);
10678 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10679
9953599b
DV
10680 /*
10681 * FIXME: BIOS likes to set up a cloned config with lvds+external
10682 * screen. Since we don't yet re-compute the pipe config when moving
10683 * just the lvds port away to another pipe the sw tracking won't match.
10684 *
10685 * Proper atomic modesets with recomputed global state will fix this.
10686 * Until then just don't check gmch state for inherited modes.
10687 */
10688 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10689 PIPE_CONF_CHECK_I(gmch_pfit.control);
10690 /* pfit ratios are autocomputed by the hw on gen4+ */
10691 if (INTEL_INFO(dev)->gen < 4)
10692 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10693 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10694 }
10695
fd4daa9c
CW
10696 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10697 if (current_config->pch_pfit.enabled) {
10698 PIPE_CONF_CHECK_I(pch_pfit.pos);
10699 PIPE_CONF_CHECK_I(pch_pfit.size);
10700 }
2fa2fe9a 10701
e59150dc
JB
10702 /* BDW+ don't expose a synchronous way to read the state */
10703 if (IS_HASWELL(dev))
10704 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10705
282740f7
VS
10706 PIPE_CONF_CHECK_I(double_wide);
10707
26804afd
DV
10708 PIPE_CONF_CHECK_X(ddi_pll_sel);
10709
c0d43d62 10710 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10711 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10712 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10713 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10714 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10715 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
10716 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10717 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10718 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 10719
42571aef
VS
10720 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10721 PIPE_CONF_CHECK_I(pipe_bpp);
10722
2d112de7 10723 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 10724 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10725
66e985c0 10726#undef PIPE_CONF_CHECK_X
08a24034 10727#undef PIPE_CONF_CHECK_I
b95af8be 10728#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10729#undef PIPE_CONF_CHECK_FLAGS
5e550656 10730#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10731#undef PIPE_CONF_QUIRK
88adfff1 10732
0e8ffe1b
DV
10733 return true;
10734}
10735
08db6652
DL
10736static void check_wm_state(struct drm_device *dev)
10737{
10738 struct drm_i915_private *dev_priv = dev->dev_private;
10739 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10740 struct intel_crtc *intel_crtc;
10741 int plane;
10742
10743 if (INTEL_INFO(dev)->gen < 9)
10744 return;
10745
10746 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10747 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10748
10749 for_each_intel_crtc(dev, intel_crtc) {
10750 struct skl_ddb_entry *hw_entry, *sw_entry;
10751 const enum pipe pipe = intel_crtc->pipe;
10752
10753 if (!intel_crtc->active)
10754 continue;
10755
10756 /* planes */
10757 for_each_plane(pipe, plane) {
10758 hw_entry = &hw_ddb.plane[pipe][plane];
10759 sw_entry = &sw_ddb->plane[pipe][plane];
10760
10761 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10762 continue;
10763
10764 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10765 "(expected (%u,%u), found (%u,%u))\n",
10766 pipe_name(pipe), plane + 1,
10767 sw_entry->start, sw_entry->end,
10768 hw_entry->start, hw_entry->end);
10769 }
10770
10771 /* cursor */
10772 hw_entry = &hw_ddb.cursor[pipe];
10773 sw_entry = &sw_ddb->cursor[pipe];
10774
10775 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10776 continue;
10777
10778 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10779 "(expected (%u,%u), found (%u,%u))\n",
10780 pipe_name(pipe),
10781 sw_entry->start, sw_entry->end,
10782 hw_entry->start, hw_entry->end);
10783 }
10784}
10785
91d1b4bd
DV
10786static void
10787check_connector_state(struct drm_device *dev)
8af6cf88 10788{
8af6cf88
DV
10789 struct intel_connector *connector;
10790
10791 list_for_each_entry(connector, &dev->mode_config.connector_list,
10792 base.head) {
10793 /* This also checks the encoder/connector hw state with the
10794 * ->get_hw_state callbacks. */
10795 intel_connector_check_state(connector);
10796
e2c719b7 10797 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
10798 "connector's staged encoder doesn't match current encoder\n");
10799 }
91d1b4bd
DV
10800}
10801
10802static void
10803check_encoder_state(struct drm_device *dev)
10804{
10805 struct intel_encoder *encoder;
10806 struct intel_connector *connector;
8af6cf88 10807
b2784e15 10808 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10809 bool enabled = false;
10810 bool active = false;
10811 enum pipe pipe, tracked_pipe;
10812
10813 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10814 encoder->base.base.id,
8e329a03 10815 encoder->base.name);
8af6cf88 10816
e2c719b7 10817 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 10818 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 10819 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
10820 "encoder's active_connectors set, but no crtc\n");
10821
10822 list_for_each_entry(connector, &dev->mode_config.connector_list,
10823 base.head) {
10824 if (connector->base.encoder != &encoder->base)
10825 continue;
10826 enabled = true;
10827 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10828 active = true;
10829 }
0e32b39c
DA
10830 /*
10831 * for MST connectors if we unplug the connector is gone
10832 * away but the encoder is still connected to a crtc
10833 * until a modeset happens in response to the hotplug.
10834 */
10835 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10836 continue;
10837
e2c719b7 10838 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
10839 "encoder's enabled state mismatch "
10840 "(expected %i, found %i)\n",
10841 !!encoder->base.crtc, enabled);
e2c719b7 10842 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
10843 "active encoder with no crtc\n");
10844
e2c719b7 10845 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
10846 "encoder's computed active state doesn't match tracked active state "
10847 "(expected %i, found %i)\n", active, encoder->connectors_active);
10848
10849 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 10850 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
10851 "encoder's hw state doesn't match sw tracking "
10852 "(expected %i, found %i)\n",
10853 encoder->connectors_active, active);
10854
10855 if (!encoder->base.crtc)
10856 continue;
10857
10858 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 10859 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
10860 "active encoder's pipe doesn't match"
10861 "(expected %i, found %i)\n",
10862 tracked_pipe, pipe);
10863
10864 }
91d1b4bd
DV
10865}
10866
10867static void
10868check_crtc_state(struct drm_device *dev)
10869{
fbee40df 10870 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10871 struct intel_crtc *crtc;
10872 struct intel_encoder *encoder;
5cec258b 10873 struct intel_crtc_state pipe_config;
8af6cf88 10874
d3fcc808 10875 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10876 bool enabled = false;
10877 bool active = false;
10878
045ac3b5
JB
10879 memset(&pipe_config, 0, sizeof(pipe_config));
10880
8af6cf88
DV
10881 DRM_DEBUG_KMS("[CRTC:%d]\n",
10882 crtc->base.base.id);
10883
e2c719b7 10884 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
8af6cf88
DV
10885 "active crtc, but not enabled in sw tracking\n");
10886
b2784e15 10887 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10888 if (encoder->base.crtc != &crtc->base)
10889 continue;
10890 enabled = true;
10891 if (encoder->connectors_active)
10892 active = true;
10893 }
6c49f241 10894
e2c719b7 10895 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
10896 "crtc's computed active state doesn't match tracked active state "
10897 "(expected %i, found %i)\n", active, crtc->active);
e2c719b7 10898 I915_STATE_WARN(enabled != crtc->base.enabled,
8af6cf88
DV
10899 "crtc's computed enabled state doesn't match tracked enabled state "
10900 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10901
0e8ffe1b
DV
10902 active = dev_priv->display.get_pipe_config(crtc,
10903 &pipe_config);
d62cf62a 10904
b6b5d049
VS
10905 /* hw state is inconsistent with the pipe quirk */
10906 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10907 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10908 active = crtc->active;
10909
b2784e15 10910 for_each_intel_encoder(dev, encoder) {
3eaba51c 10911 enum pipe pipe;
6c49f241
DV
10912 if (encoder->base.crtc != &crtc->base)
10913 continue;
1d37b689 10914 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10915 encoder->get_config(encoder, &pipe_config);
10916 }
10917
e2c719b7 10918 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
10919 "crtc active state doesn't match with hw state "
10920 "(expected %i, found %i)\n", crtc->active, active);
10921
c0b03411 10922 if (active &&
6e3c9717 10923 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 10924 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
10925 intel_dump_pipe_config(crtc, &pipe_config,
10926 "[hw state]");
6e3c9717 10927 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
10928 "[sw state]");
10929 }
8af6cf88
DV
10930 }
10931}
10932
91d1b4bd
DV
10933static void
10934check_shared_dpll_state(struct drm_device *dev)
10935{
fbee40df 10936 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10937 struct intel_crtc *crtc;
10938 struct intel_dpll_hw_state dpll_hw_state;
10939 int i;
5358901f
DV
10940
10941 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10942 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10943 int enabled_crtcs = 0, active_crtcs = 0;
10944 bool active;
10945
10946 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10947
10948 DRM_DEBUG_KMS("%s\n", pll->name);
10949
10950 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10951
e2c719b7 10952 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10953 "more active pll users than references: %i vs %i\n",
3e369b76 10954 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 10955 I915_STATE_WARN(pll->active && !pll->on,
5358901f 10956 "pll in active use but not on in sw tracking\n");
e2c719b7 10957 I915_STATE_WARN(pll->on && !pll->active,
35c95375 10958 "pll in on but not on in use in sw tracking\n");
e2c719b7 10959 I915_STATE_WARN(pll->on != active,
5358901f
DV
10960 "pll on state mismatch (expected %i, found %i)\n",
10961 pll->on, active);
10962
d3fcc808 10963 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10964 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10965 enabled_crtcs++;
10966 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10967 active_crtcs++;
10968 }
e2c719b7 10969 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
10970 "pll active crtcs mismatch (expected %i, found %i)\n",
10971 pll->active, active_crtcs);
e2c719b7 10972 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10973 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10974 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10975
e2c719b7 10976 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10977 sizeof(dpll_hw_state)),
10978 "pll hw state mismatch\n");
5358901f 10979 }
8af6cf88
DV
10980}
10981
91d1b4bd
DV
10982void
10983intel_modeset_check_state(struct drm_device *dev)
10984{
08db6652 10985 check_wm_state(dev);
91d1b4bd
DV
10986 check_connector_state(dev);
10987 check_encoder_state(dev);
10988 check_crtc_state(dev);
10989 check_shared_dpll_state(dev);
10990}
10991
5cec258b 10992void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
10993 int dotclock)
10994{
10995 /*
10996 * FDI already provided one idea for the dotclock.
10997 * Yell if the encoder disagrees.
10998 */
2d112de7 10999 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 11000 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 11001 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
11002}
11003
80715b2f
VS
11004static void update_scanline_offset(struct intel_crtc *crtc)
11005{
11006 struct drm_device *dev = crtc->base.dev;
11007
11008 /*
11009 * The scanline counter increments at the leading edge of hsync.
11010 *
11011 * On most platforms it starts counting from vtotal-1 on the
11012 * first active line. That means the scanline counter value is
11013 * always one less than what we would expect. Ie. just after
11014 * start of vblank, which also occurs at start of hsync (on the
11015 * last active line), the scanline counter will read vblank_start-1.
11016 *
11017 * On gen2 the scanline counter starts counting from 1 instead
11018 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11019 * to keep the value positive), instead of adding one.
11020 *
11021 * On HSW+ the behaviour of the scanline counter depends on the output
11022 * type. For DP ports it behaves like most other platforms, but on HDMI
11023 * there's an extra 1 line difference. So we need to add two instead of
11024 * one to the value.
11025 */
11026 if (IS_GEN2(dev)) {
6e3c9717 11027 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
11028 int vtotal;
11029
11030 vtotal = mode->crtc_vtotal;
11031 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11032 vtotal /= 2;
11033
11034 crtc->scanline_offset = vtotal - 1;
11035 } else if (HAS_DDI(dev) &&
409ee761 11036 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
11037 crtc->scanline_offset = 2;
11038 } else
11039 crtc->scanline_offset = 1;
11040}
11041
5cec258b 11042static struct intel_crtc_state *
7f27126e
JB
11043intel_modeset_compute_config(struct drm_crtc *crtc,
11044 struct drm_display_mode *mode,
11045 struct drm_framebuffer *fb,
11046 unsigned *modeset_pipes,
11047 unsigned *prepare_pipes,
11048 unsigned *disable_pipes)
11049{
5cec258b 11050 struct intel_crtc_state *pipe_config = NULL;
7f27126e
JB
11051
11052 intel_modeset_affected_pipes(crtc, modeset_pipes,
11053 prepare_pipes, disable_pipes);
11054
11055 if ((*modeset_pipes) == 0)
11056 goto out;
11057
11058 /*
11059 * Note this needs changes when we start tracking multiple modes
11060 * and crtcs. At that point we'll need to compute the whole config
11061 * (i.e. one pipe_config for each crtc) rather than just the one
11062 * for this crtc.
11063 */
11064 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11065 if (IS_ERR(pipe_config)) {
11066 goto out;
11067 }
11068 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11069 "[modeset]");
7f27126e
JB
11070
11071out:
11072 return pipe_config;
11073}
11074
ed6739ef
ACO
11075static int __intel_set_mode_setup_plls(struct drm_device *dev,
11076 unsigned modeset_pipes,
11077 unsigned disable_pipes)
11078{
11079 struct drm_i915_private *dev_priv = to_i915(dev);
11080 unsigned clear_pipes = modeset_pipes | disable_pipes;
11081 struct intel_crtc *intel_crtc;
11082 int ret = 0;
11083
11084 if (!dev_priv->display.crtc_compute_clock)
11085 return 0;
11086
11087 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11088 if (ret)
11089 goto done;
11090
11091 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11092 struct intel_crtc_state *state = intel_crtc->new_config;
11093 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11094 state);
11095 if (ret) {
11096 intel_shared_dpll_abort_config(dev_priv);
11097 goto done;
11098 }
11099 }
11100
11101done:
11102 return ret;
11103}
11104
f30da187
DV
11105static int __intel_set_mode(struct drm_crtc *crtc,
11106 struct drm_display_mode *mode,
7f27126e 11107 int x, int y, struct drm_framebuffer *fb,
5cec258b 11108 struct intel_crtc_state *pipe_config,
7f27126e
JB
11109 unsigned modeset_pipes,
11110 unsigned prepare_pipes,
11111 unsigned disable_pipes)
a6778b3c
DV
11112{
11113 struct drm_device *dev = crtc->dev;
fbee40df 11114 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11115 struct drm_display_mode *saved_mode;
25c5b266 11116 struct intel_crtc *intel_crtc;
c0c36b94 11117 int ret = 0;
a6778b3c 11118
4b4b9238 11119 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11120 if (!saved_mode)
11121 return -ENOMEM;
a6778b3c 11122
3ac18232 11123 *saved_mode = crtc->mode;
a6778b3c 11124
b9950a13
VS
11125 if (modeset_pipes)
11126 to_intel_crtc(crtc)->new_config = pipe_config;
11127
30a970c6
JB
11128 /*
11129 * See if the config requires any additional preparation, e.g.
11130 * to adjust global state with pipes off. We need to do this
11131 * here so we can get the modeset_pipe updated config for the new
11132 * mode set on this crtc. For other crtcs we need to use the
11133 * adjusted_mode bits in the crtc directly.
11134 */
c164f833 11135 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11136 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11137
c164f833
VS
11138 /* may have added more to prepare_pipes than we should */
11139 prepare_pipes &= ~disable_pipes;
11140 }
11141
ed6739ef
ACO
11142 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11143 if (ret)
11144 goto done;
8bd31e67 11145
460da916
DV
11146 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11147 intel_crtc_disable(&intel_crtc->base);
11148
ea9d758d
DV
11149 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11150 if (intel_crtc->base.enabled)
11151 dev_priv->display.crtc_disable(&intel_crtc->base);
11152 }
a6778b3c 11153
6c4c86f5
DV
11154 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11155 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11156 *
11157 * Note we'll need to fix this up when we start tracking multiple
11158 * pipes; here we assume a single modeset_pipe and only track the
11159 * single crtc and mode.
f6e5b160 11160 */
b8cecdf5 11161 if (modeset_pipes) {
25c5b266 11162 crtc->mode = *mode;
b8cecdf5
DV
11163 /* mode_set/enable/disable functions rely on a correct pipe
11164 * config. */
f5de6e07 11165 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11166
11167 /*
11168 * Calculate and store various constants which
11169 * are later needed by vblank and swap-completion
11170 * timestamping. They are derived from true hwmode.
11171 */
11172 drm_calc_timestamping_constants(crtc,
2d112de7 11173 &pipe_config->base.adjusted_mode);
b8cecdf5 11174 }
7758a113 11175
ea9d758d
DV
11176 /* Only after disabling all output pipelines that will be changed can we
11177 * update the the output configuration. */
11178 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11179
50f6e502 11180 modeset_update_crtc_power_domains(dev);
47fab737 11181
a6778b3c
DV
11182 /* Set up the DPLL and any encoders state that needs to adjust or depend
11183 * on the DPLL.
f6e5b160 11184 */
25c5b266 11185 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11186 struct drm_plane *primary = intel_crtc->base.primary;
11187 int vdisplay, hdisplay;
4c10794f 11188
455a6808
GP
11189 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11190 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11191 fb, 0, 0,
11192 hdisplay, vdisplay,
11193 x << 16, y << 16,
11194 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11195 }
11196
11197 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11198 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11199 update_scanline_offset(intel_crtc);
11200
25c5b266 11201 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11202 }
a6778b3c 11203
a6778b3c
DV
11204 /* FIXME: add subpixel order */
11205done:
4b4b9238 11206 if (ret && crtc->enabled)
3ac18232 11207 crtc->mode = *saved_mode;
a6778b3c 11208
3ac18232 11209 kfree(saved_mode);
a6778b3c 11210 return ret;
f6e5b160
CW
11211}
11212
7f27126e
JB
11213static int intel_set_mode_pipes(struct drm_crtc *crtc,
11214 struct drm_display_mode *mode,
11215 int x, int y, struct drm_framebuffer *fb,
5cec258b 11216 struct intel_crtc_state *pipe_config,
7f27126e
JB
11217 unsigned modeset_pipes,
11218 unsigned prepare_pipes,
11219 unsigned disable_pipes)
f30da187
DV
11220{
11221 int ret;
11222
7f27126e
JB
11223 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11224 prepare_pipes, disable_pipes);
f30da187
DV
11225
11226 if (ret == 0)
11227 intel_modeset_check_state(crtc->dev);
11228
11229 return ret;
11230}
11231
7f27126e
JB
11232static int intel_set_mode(struct drm_crtc *crtc,
11233 struct drm_display_mode *mode,
11234 int x, int y, struct drm_framebuffer *fb)
11235{
5cec258b 11236 struct intel_crtc_state *pipe_config;
7f27126e
JB
11237 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11238
11239 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11240 &modeset_pipes,
11241 &prepare_pipes,
11242 &disable_pipes);
11243
11244 if (IS_ERR(pipe_config))
11245 return PTR_ERR(pipe_config);
11246
11247 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11248 modeset_pipes, prepare_pipes,
11249 disable_pipes);
11250}
11251
c0c36b94
CW
11252void intel_crtc_restore_mode(struct drm_crtc *crtc)
11253{
f4510a27 11254 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11255}
11256
25c5b266
DV
11257#undef for_each_intel_crtc_masked
11258
d9e55608
DV
11259static void intel_set_config_free(struct intel_set_config *config)
11260{
11261 if (!config)
11262 return;
11263
1aa4b628
DV
11264 kfree(config->save_connector_encoders);
11265 kfree(config->save_encoder_crtcs);
7668851f 11266 kfree(config->save_crtc_enabled);
d9e55608
DV
11267 kfree(config);
11268}
11269
85f9eb71
DV
11270static int intel_set_config_save_state(struct drm_device *dev,
11271 struct intel_set_config *config)
11272{
7668851f 11273 struct drm_crtc *crtc;
85f9eb71
DV
11274 struct drm_encoder *encoder;
11275 struct drm_connector *connector;
11276 int count;
11277
7668851f
VS
11278 config->save_crtc_enabled =
11279 kcalloc(dev->mode_config.num_crtc,
11280 sizeof(bool), GFP_KERNEL);
11281 if (!config->save_crtc_enabled)
11282 return -ENOMEM;
11283
1aa4b628
DV
11284 config->save_encoder_crtcs =
11285 kcalloc(dev->mode_config.num_encoder,
11286 sizeof(struct drm_crtc *), GFP_KERNEL);
11287 if (!config->save_encoder_crtcs)
85f9eb71
DV
11288 return -ENOMEM;
11289
1aa4b628
DV
11290 config->save_connector_encoders =
11291 kcalloc(dev->mode_config.num_connector,
11292 sizeof(struct drm_encoder *), GFP_KERNEL);
11293 if (!config->save_connector_encoders)
85f9eb71
DV
11294 return -ENOMEM;
11295
11296 /* Copy data. Note that driver private data is not affected.
11297 * Should anything bad happen only the expected state is
11298 * restored, not the drivers personal bookkeeping.
11299 */
7668851f 11300 count = 0;
70e1e0ec 11301 for_each_crtc(dev, crtc) {
7668851f
VS
11302 config->save_crtc_enabled[count++] = crtc->enabled;
11303 }
11304
85f9eb71
DV
11305 count = 0;
11306 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11307 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11308 }
11309
11310 count = 0;
11311 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11312 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11313 }
11314
11315 return 0;
11316}
11317
11318static void intel_set_config_restore_state(struct drm_device *dev,
11319 struct intel_set_config *config)
11320{
7668851f 11321 struct intel_crtc *crtc;
9a935856
DV
11322 struct intel_encoder *encoder;
11323 struct intel_connector *connector;
85f9eb71
DV
11324 int count;
11325
7668851f 11326 count = 0;
d3fcc808 11327 for_each_intel_crtc(dev, crtc) {
7668851f 11328 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11329
11330 if (crtc->new_enabled)
6e3c9717 11331 crtc->new_config = crtc->config;
7bd0a8e7
VS
11332 else
11333 crtc->new_config = NULL;
7668851f
VS
11334 }
11335
85f9eb71 11336 count = 0;
b2784e15 11337 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11338 encoder->new_crtc =
11339 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11340 }
11341
11342 count = 0;
9a935856
DV
11343 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11344 connector->new_encoder =
11345 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11346 }
11347}
11348
e3de42b6 11349static bool
2e57f47d 11350is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11351{
11352 int i;
11353
2e57f47d
CW
11354 if (set->num_connectors == 0)
11355 return false;
11356
11357 if (WARN_ON(set->connectors == NULL))
11358 return false;
11359
11360 for (i = 0; i < set->num_connectors; i++)
11361 if (set->connectors[i]->encoder &&
11362 set->connectors[i]->encoder->crtc == set->crtc &&
11363 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11364 return true;
11365
11366 return false;
11367}
11368
5e2b584e
DV
11369static void
11370intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11371 struct intel_set_config *config)
11372{
11373
11374 /* We should be able to check here if the fb has the same properties
11375 * and then just flip_or_move it */
2e57f47d
CW
11376 if (is_crtc_connector_off(set)) {
11377 config->mode_changed = true;
f4510a27 11378 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11379 /*
11380 * If we have no fb, we can only flip as long as the crtc is
11381 * active, otherwise we need a full mode set. The crtc may
11382 * be active if we've only disabled the primary plane, or
11383 * in fastboot situations.
11384 */
f4510a27 11385 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11386 struct intel_crtc *intel_crtc =
11387 to_intel_crtc(set->crtc);
11388
3b150f08 11389 if (intel_crtc->active) {
319d9827
JB
11390 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11391 config->fb_changed = true;
11392 } else {
11393 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11394 config->mode_changed = true;
11395 }
5e2b584e
DV
11396 } else if (set->fb == NULL) {
11397 config->mode_changed = true;
72f4901e 11398 } else if (set->fb->pixel_format !=
f4510a27 11399 set->crtc->primary->fb->pixel_format) {
5e2b584e 11400 config->mode_changed = true;
e3de42b6 11401 } else {
5e2b584e 11402 config->fb_changed = true;
e3de42b6 11403 }
5e2b584e
DV
11404 }
11405
835c5873 11406 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11407 config->fb_changed = true;
11408
11409 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11410 DRM_DEBUG_KMS("modes are different, full mode set\n");
11411 drm_mode_debug_printmodeline(&set->crtc->mode);
11412 drm_mode_debug_printmodeline(set->mode);
11413 config->mode_changed = true;
11414 }
a1d95703
CW
11415
11416 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11417 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11418}
11419
2e431051 11420static int
9a935856
DV
11421intel_modeset_stage_output_state(struct drm_device *dev,
11422 struct drm_mode_set *set,
11423 struct intel_set_config *config)
50f56119 11424{
9a935856
DV
11425 struct intel_connector *connector;
11426 struct intel_encoder *encoder;
7668851f 11427 struct intel_crtc *crtc;
f3f08572 11428 int ro;
50f56119 11429
9abdda74 11430 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11431 * of connectors. For paranoia, double-check this. */
11432 WARN_ON(!set->fb && (set->num_connectors != 0));
11433 WARN_ON(set->fb && (set->num_connectors == 0));
11434
9a935856
DV
11435 list_for_each_entry(connector, &dev->mode_config.connector_list,
11436 base.head) {
11437 /* Otherwise traverse passed in connector list and get encoders
11438 * for them. */
50f56119 11439 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11440 if (set->connectors[ro] == &connector->base) {
0e32b39c 11441 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11442 break;
11443 }
11444 }
11445
9a935856
DV
11446 /* If we disable the crtc, disable all its connectors. Also, if
11447 * the connector is on the changing crtc but not on the new
11448 * connector list, disable it. */
11449 if ((!set->fb || ro == set->num_connectors) &&
11450 connector->base.encoder &&
11451 connector->base.encoder->crtc == set->crtc) {
11452 connector->new_encoder = NULL;
11453
11454 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11455 connector->base.base.id,
c23cc417 11456 connector->base.name);
9a935856
DV
11457 }
11458
11459
11460 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11461 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11462 config->mode_changed = true;
50f56119
DV
11463 }
11464 }
9a935856 11465 /* connector->new_encoder is now updated for all connectors. */
50f56119 11466
9a935856 11467 /* Update crtc of enabled connectors. */
9a935856
DV
11468 list_for_each_entry(connector, &dev->mode_config.connector_list,
11469 base.head) {
7668851f
VS
11470 struct drm_crtc *new_crtc;
11471
9a935856 11472 if (!connector->new_encoder)
50f56119
DV
11473 continue;
11474
9a935856 11475 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11476
11477 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11478 if (set->connectors[ro] == &connector->base)
50f56119
DV
11479 new_crtc = set->crtc;
11480 }
11481
11482 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11483 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11484 new_crtc)) {
5e2b584e 11485 return -EINVAL;
50f56119 11486 }
0e32b39c 11487 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11488
11489 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11490 connector->base.base.id,
c23cc417 11491 connector->base.name,
9a935856
DV
11492 new_crtc->base.id);
11493 }
11494
11495 /* Check for any encoders that needs to be disabled. */
b2784e15 11496 for_each_intel_encoder(dev, encoder) {
5a65f358 11497 int num_connectors = 0;
9a935856
DV
11498 list_for_each_entry(connector,
11499 &dev->mode_config.connector_list,
11500 base.head) {
11501 if (connector->new_encoder == encoder) {
11502 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11503 num_connectors++;
9a935856
DV
11504 }
11505 }
5a65f358
PZ
11506
11507 if (num_connectors == 0)
11508 encoder->new_crtc = NULL;
11509 else if (num_connectors > 1)
11510 return -EINVAL;
11511
9a935856
DV
11512 /* Only now check for crtc changes so we don't miss encoders
11513 * that will be disabled. */
11514 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11515 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11516 config->mode_changed = true;
50f56119
DV
11517 }
11518 }
9a935856 11519 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11520 list_for_each_entry(connector, &dev->mode_config.connector_list,
11521 base.head) {
11522 if (connector->new_encoder)
11523 if (connector->new_encoder != connector->encoder)
11524 connector->encoder = connector->new_encoder;
11525 }
d3fcc808 11526 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11527 crtc->new_enabled = false;
11528
b2784e15 11529 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11530 if (encoder->new_crtc == crtc) {
11531 crtc->new_enabled = true;
11532 break;
11533 }
11534 }
11535
11536 if (crtc->new_enabled != crtc->base.enabled) {
11537 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11538 crtc->new_enabled ? "en" : "dis");
11539 config->mode_changed = true;
11540 }
7bd0a8e7
VS
11541
11542 if (crtc->new_enabled)
6e3c9717 11543 crtc->new_config = crtc->config;
7bd0a8e7
VS
11544 else
11545 crtc->new_config = NULL;
7668851f
VS
11546 }
11547
2e431051
DV
11548 return 0;
11549}
11550
7d00a1f5
VS
11551static void disable_crtc_nofb(struct intel_crtc *crtc)
11552{
11553 struct drm_device *dev = crtc->base.dev;
11554 struct intel_encoder *encoder;
11555 struct intel_connector *connector;
11556
11557 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11558 pipe_name(crtc->pipe));
11559
11560 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11561 if (connector->new_encoder &&
11562 connector->new_encoder->new_crtc == crtc)
11563 connector->new_encoder = NULL;
11564 }
11565
b2784e15 11566 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11567 if (encoder->new_crtc == crtc)
11568 encoder->new_crtc = NULL;
11569 }
11570
11571 crtc->new_enabled = false;
7bd0a8e7 11572 crtc->new_config = NULL;
7d00a1f5
VS
11573}
11574
2e431051
DV
11575static int intel_crtc_set_config(struct drm_mode_set *set)
11576{
11577 struct drm_device *dev;
2e431051
DV
11578 struct drm_mode_set save_set;
11579 struct intel_set_config *config;
5cec258b 11580 struct intel_crtc_state *pipe_config;
50f52756 11581 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11582 int ret;
2e431051 11583
8d3e375e
DV
11584 BUG_ON(!set);
11585 BUG_ON(!set->crtc);
11586 BUG_ON(!set->crtc->helper_private);
2e431051 11587
7e53f3a4
DV
11588 /* Enforce sane interface api - has been abused by the fb helper. */
11589 BUG_ON(!set->mode && set->fb);
11590 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11591
2e431051
DV
11592 if (set->fb) {
11593 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11594 set->crtc->base.id, set->fb->base.id,
11595 (int)set->num_connectors, set->x, set->y);
11596 } else {
11597 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11598 }
11599
11600 dev = set->crtc->dev;
11601
11602 ret = -ENOMEM;
11603 config = kzalloc(sizeof(*config), GFP_KERNEL);
11604 if (!config)
11605 goto out_config;
11606
11607 ret = intel_set_config_save_state(dev, config);
11608 if (ret)
11609 goto out_config;
11610
11611 save_set.crtc = set->crtc;
11612 save_set.mode = &set->crtc->mode;
11613 save_set.x = set->crtc->x;
11614 save_set.y = set->crtc->y;
f4510a27 11615 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11616
11617 /* Compute whether we need a full modeset, only an fb base update or no
11618 * change at all. In the future we might also check whether only the
11619 * mode changed, e.g. for LVDS where we only change the panel fitter in
11620 * such cases. */
11621 intel_set_config_compute_mode_changes(set, config);
11622
9a935856 11623 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11624 if (ret)
11625 goto fail;
11626
50f52756
JB
11627 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11628 set->fb,
11629 &modeset_pipes,
11630 &prepare_pipes,
11631 &disable_pipes);
20664591 11632 if (IS_ERR(pipe_config)) {
6ac0483b 11633 ret = PTR_ERR(pipe_config);
50f52756 11634 goto fail;
20664591 11635 } else if (pipe_config) {
b9950a13 11636 if (pipe_config->has_audio !=
6e3c9717 11637 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
11638 config->mode_changed = true;
11639
af15d2ce
JB
11640 /*
11641 * Note we have an issue here with infoframes: current code
11642 * only updates them on the full mode set path per hw
11643 * requirements. So here we should be checking for any
11644 * required changes and forcing a mode set.
11645 */
20664591 11646 }
50f52756
JB
11647
11648 /* set_mode will free it in the mode_changed case */
11649 if (!config->mode_changed)
11650 kfree(pipe_config);
11651
1f9954d0
JB
11652 intel_update_pipe_size(to_intel_crtc(set->crtc));
11653
5e2b584e 11654 if (config->mode_changed) {
50f52756
JB
11655 ret = intel_set_mode_pipes(set->crtc, set->mode,
11656 set->x, set->y, set->fb, pipe_config,
11657 modeset_pipes, prepare_pipes,
11658 disable_pipes);
5e2b584e 11659 } else if (config->fb_changed) {
3b150f08 11660 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
11661 struct drm_plane *primary = set->crtc->primary;
11662 int vdisplay, hdisplay;
3b150f08 11663
455a6808
GP
11664 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11665 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11666 0, 0, hdisplay, vdisplay,
11667 set->x << 16, set->y << 16,
11668 hdisplay << 16, vdisplay << 16);
3b150f08
MR
11669
11670 /*
11671 * We need to make sure the primary plane is re-enabled if it
11672 * has previously been turned off.
11673 */
11674 if (!intel_crtc->primary_enabled && ret == 0) {
11675 WARN_ON(!intel_crtc->active);
fdd508a6 11676 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11677 }
11678
7ca51a3a
JB
11679 /*
11680 * In the fastboot case this may be our only check of the
11681 * state after boot. It would be better to only do it on
11682 * the first update, but we don't have a nice way of doing that
11683 * (and really, set_config isn't used much for high freq page
11684 * flipping, so increasing its cost here shouldn't be a big
11685 * deal).
11686 */
d330a953 11687 if (i915.fastboot && ret == 0)
7ca51a3a 11688 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11689 }
11690
2d05eae1 11691 if (ret) {
bf67dfeb
DV
11692 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11693 set->crtc->base.id, ret);
50f56119 11694fail:
2d05eae1 11695 intel_set_config_restore_state(dev, config);
50f56119 11696
7d00a1f5
VS
11697 /*
11698 * HACK: if the pipe was on, but we didn't have a framebuffer,
11699 * force the pipe off to avoid oopsing in the modeset code
11700 * due to fb==NULL. This should only happen during boot since
11701 * we don't yet reconstruct the FB from the hardware state.
11702 */
11703 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11704 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11705
2d05eae1
CW
11706 /* Try to restore the config */
11707 if (config->mode_changed &&
11708 intel_set_mode(save_set.crtc, save_set.mode,
11709 save_set.x, save_set.y, save_set.fb))
11710 DRM_ERROR("failed to restore config after modeset failure\n");
11711 }
50f56119 11712
d9e55608
DV
11713out_config:
11714 intel_set_config_free(config);
50f56119
DV
11715 return ret;
11716}
f6e5b160
CW
11717
11718static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11719 .gamma_set = intel_crtc_gamma_set,
50f56119 11720 .set_config = intel_crtc_set_config,
f6e5b160
CW
11721 .destroy = intel_crtc_destroy,
11722 .page_flip = intel_crtc_page_flip,
1356837e
MR
11723 .atomic_duplicate_state = intel_crtc_duplicate_state,
11724 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
11725};
11726
5358901f
DV
11727static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11728 struct intel_shared_dpll *pll,
11729 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11730{
5358901f 11731 uint32_t val;
ee7b9f93 11732
f458ebbc 11733 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11734 return false;
11735
5358901f 11736 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11737 hw_state->dpll = val;
11738 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11739 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11740
11741 return val & DPLL_VCO_ENABLE;
11742}
11743
15bdd4cf
DV
11744static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11745 struct intel_shared_dpll *pll)
11746{
3e369b76
ACO
11747 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11748 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11749}
11750
e7b903d2
DV
11751static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11752 struct intel_shared_dpll *pll)
11753{
e7b903d2 11754 /* PCH refclock must be enabled first */
89eff4be 11755 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11756
3e369b76 11757 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11758
11759 /* Wait for the clocks to stabilize. */
11760 POSTING_READ(PCH_DPLL(pll->id));
11761 udelay(150);
11762
11763 /* The pixel multiplier can only be updated once the
11764 * DPLL is enabled and the clocks are stable.
11765 *
11766 * So write it again.
11767 */
3e369b76 11768 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11769 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11770 udelay(200);
11771}
11772
11773static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11774 struct intel_shared_dpll *pll)
11775{
11776 struct drm_device *dev = dev_priv->dev;
11777 struct intel_crtc *crtc;
e7b903d2
DV
11778
11779 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11780 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11781 if (intel_crtc_to_shared_dpll(crtc) == pll)
11782 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11783 }
11784
15bdd4cf
DV
11785 I915_WRITE(PCH_DPLL(pll->id), 0);
11786 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11787 udelay(200);
11788}
11789
46edb027
DV
11790static char *ibx_pch_dpll_names[] = {
11791 "PCH DPLL A",
11792 "PCH DPLL B",
11793};
11794
7c74ade1 11795static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11796{
e7b903d2 11797 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11798 int i;
11799
7c74ade1 11800 dev_priv->num_shared_dpll = 2;
ee7b9f93 11801
e72f9fbf 11802 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11803 dev_priv->shared_dplls[i].id = i;
11804 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11805 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11806 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11807 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11808 dev_priv->shared_dplls[i].get_hw_state =
11809 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11810 }
11811}
11812
7c74ade1
DV
11813static void intel_shared_dpll_init(struct drm_device *dev)
11814{
e7b903d2 11815 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11816
9cd86933
DV
11817 if (HAS_DDI(dev))
11818 intel_ddi_pll_init(dev);
11819 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11820 ibx_pch_dpll_init(dev);
11821 else
11822 dev_priv->num_shared_dpll = 0;
11823
11824 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11825}
11826
6beb8c23
MR
11827/**
11828 * intel_prepare_plane_fb - Prepare fb for usage on plane
11829 * @plane: drm plane to prepare for
11830 * @fb: framebuffer to prepare for presentation
11831 *
11832 * Prepares a framebuffer for usage on a display plane. Generally this
11833 * involves pinning the underlying object and updating the frontbuffer tracking
11834 * bits. Some older platforms need special physical address handling for
11835 * cursor planes.
11836 *
11837 * Returns 0 on success, negative error code on failure.
11838 */
11839int
11840intel_prepare_plane_fb(struct drm_plane *plane,
11841 struct drm_framebuffer *fb)
465c120c
MR
11842{
11843 struct drm_device *dev = plane->dev;
6beb8c23
MR
11844 struct intel_plane *intel_plane = to_intel_plane(plane);
11845 enum pipe pipe = intel_plane->pipe;
11846 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11847 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11848 unsigned frontbuffer_bits = 0;
11849 int ret = 0;
465c120c 11850
ea2c67bb 11851 if (!obj)
465c120c
MR
11852 return 0;
11853
6beb8c23
MR
11854 switch (plane->type) {
11855 case DRM_PLANE_TYPE_PRIMARY:
11856 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11857 break;
11858 case DRM_PLANE_TYPE_CURSOR:
11859 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11860 break;
11861 case DRM_PLANE_TYPE_OVERLAY:
11862 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11863 break;
11864 }
465c120c 11865
6beb8c23 11866 mutex_lock(&dev->struct_mutex);
465c120c 11867
6beb8c23
MR
11868 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11869 INTEL_INFO(dev)->cursor_needs_physical) {
11870 int align = IS_I830(dev) ? 16 * 1024 : 256;
11871 ret = i915_gem_object_attach_phys(obj, align);
11872 if (ret)
11873 DRM_DEBUG_KMS("failed to attach phys object\n");
11874 } else {
11875 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11876 }
465c120c 11877
6beb8c23
MR
11878 if (ret == 0)
11879 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 11880
4c34574f 11881 mutex_unlock(&dev->struct_mutex);
465c120c 11882
6beb8c23
MR
11883 return ret;
11884}
11885
38f3ce3a
MR
11886/**
11887 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11888 * @plane: drm plane to clean up for
11889 * @fb: old framebuffer that was on plane
11890 *
11891 * Cleans up a framebuffer that has just been removed from a plane.
11892 */
11893void
11894intel_cleanup_plane_fb(struct drm_plane *plane,
11895 struct drm_framebuffer *fb)
11896{
11897 struct drm_device *dev = plane->dev;
11898 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11899
11900 if (WARN_ON(!obj))
11901 return;
11902
11903 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11904 !INTEL_INFO(dev)->cursor_needs_physical) {
11905 mutex_lock(&dev->struct_mutex);
11906 intel_unpin_fb_obj(obj);
11907 mutex_unlock(&dev->struct_mutex);
11908 }
465c120c
MR
11909}
11910
11911static int
3c692a41
GP
11912intel_check_primary_plane(struct drm_plane *plane,
11913 struct intel_plane_state *state)
11914{
32b7eeec
MR
11915 struct drm_device *dev = plane->dev;
11916 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 11917 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 11918 struct intel_crtc *intel_crtc;
2b875c22 11919 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
11920 struct drm_rect *dest = &state->dst;
11921 struct drm_rect *src = &state->src;
11922 const struct drm_rect *clip = &state->clip;
465c120c
MR
11923 int ret;
11924
ea2c67bb
MR
11925 crtc = crtc ? crtc : plane->crtc;
11926 intel_crtc = to_intel_crtc(crtc);
11927
c59cb179
MR
11928 ret = drm_plane_helper_check_update(plane, crtc, fb,
11929 src, dest, clip,
11930 DRM_PLANE_HELPER_NO_SCALING,
11931 DRM_PLANE_HELPER_NO_SCALING,
11932 false, true, &state->visible);
11933 if (ret)
11934 return ret;
465c120c 11935
32b7eeec
MR
11936 if (intel_crtc->active) {
11937 intel_crtc->atomic.wait_for_flips = true;
11938
11939 /*
11940 * FBC does not work on some platforms for rotated
11941 * planes, so disable it when rotation is not 0 and
11942 * update it when rotation is set back to 0.
11943 *
11944 * FIXME: This is redundant with the fbc update done in
11945 * the primary plane enable function except that that
11946 * one is done too late. We eventually need to unify
11947 * this.
11948 */
11949 if (intel_crtc->primary_enabled &&
11950 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 11951 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 11952 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
11953 intel_crtc->atomic.disable_fbc = true;
11954 }
11955
11956 if (state->visible) {
11957 /*
11958 * BDW signals flip done immediately if the plane
11959 * is disabled, even if the plane enable is already
11960 * armed to occur at the next vblank :(
11961 */
11962 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11963 intel_crtc->atomic.wait_vblank = true;
11964 }
11965
11966 intel_crtc->atomic.fb_bits |=
11967 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11968
11969 intel_crtc->atomic.update_fbc = true;
ccc759dc
GP
11970 }
11971
14af293f
GP
11972 return 0;
11973}
11974
11975static void
11976intel_commit_primary_plane(struct drm_plane *plane,
11977 struct intel_plane_state *state)
11978{
2b875c22
MR
11979 struct drm_crtc *crtc = state->base.crtc;
11980 struct drm_framebuffer *fb = state->base.fb;
11981 struct drm_device *dev = plane->dev;
14af293f 11982 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 11983 struct intel_crtc *intel_crtc;
14af293f 11984 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14af293f
GP
11985 struct intel_plane *intel_plane = to_intel_plane(plane);
11986 struct drm_rect *src = &state->src;
11987
ea2c67bb
MR
11988 crtc = crtc ? crtc : plane->crtc;
11989 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
11990
11991 plane->fb = fb;
9dc806fc
MR
11992 crtc->x = src->x1 >> 16;
11993 crtc->y = src->y1 >> 16;
ccc759dc 11994
ccc759dc 11995 intel_plane->obj = obj;
4c34574f 11996
ccc759dc 11997 if (intel_crtc->active) {
ccc759dc 11998 if (state->visible) {
ccc759dc
GP
11999 /* FIXME: kill this fastboot hack */
12000 intel_update_pipe_size(intel_crtc);
465c120c 12001
ccc759dc 12002 intel_crtc->primary_enabled = true;
465c120c 12003
ccc759dc
GP
12004 dev_priv->display.update_primary_plane(crtc, plane->fb,
12005 crtc->x, crtc->y);
ccc759dc
GP
12006 } else {
12007 /*
12008 * If clipping results in a non-visible primary plane,
12009 * we'll disable the primary plane. Note that this is
12010 * a bit different than what happens if userspace
12011 * explicitly disables the plane by passing fb=0
12012 * because plane->fb still gets set and pinned.
12013 */
12014 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 12015 }
ccc759dc 12016 }
465c120c
MR
12017}
12018
32b7eeec 12019static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 12020{
32b7eeec 12021 struct drm_device *dev = crtc->dev;
140fd38d 12022 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 12023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
12024 struct intel_plane *intel_plane;
12025 struct drm_plane *p;
12026 unsigned fb_bits = 0;
12027
12028 /* Track fb's for any planes being disabled */
12029 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12030 intel_plane = to_intel_plane(p);
12031
12032 if (intel_crtc->atomic.disabled_planes &
12033 (1 << drm_plane_index(p))) {
12034 switch (p->type) {
12035 case DRM_PLANE_TYPE_PRIMARY:
12036 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12037 break;
12038 case DRM_PLANE_TYPE_CURSOR:
12039 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12040 break;
12041 case DRM_PLANE_TYPE_OVERLAY:
12042 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12043 break;
12044 }
3c692a41 12045
ea2c67bb
MR
12046 mutex_lock(&dev->struct_mutex);
12047 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12048 mutex_unlock(&dev->struct_mutex);
12049 }
12050 }
3c692a41 12051
32b7eeec
MR
12052 if (intel_crtc->atomic.wait_for_flips)
12053 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 12054
32b7eeec
MR
12055 if (intel_crtc->atomic.disable_fbc)
12056 intel_fbc_disable(dev);
3c692a41 12057
32b7eeec
MR
12058 if (intel_crtc->atomic.pre_disable_primary)
12059 intel_pre_disable_primary(crtc);
3c692a41 12060
32b7eeec
MR
12061 if (intel_crtc->atomic.update_wm)
12062 intel_update_watermarks(crtc);
3c692a41 12063
32b7eeec 12064 intel_runtime_pm_get(dev_priv);
3c692a41 12065
c34c9ee4
MR
12066 /* Perform vblank evasion around commit operation */
12067 if (intel_crtc->active)
12068 intel_crtc->atomic.evade =
12069 intel_pipe_update_start(intel_crtc,
12070 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
12071}
12072
12073static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12074{
12075 struct drm_device *dev = crtc->dev;
12076 struct drm_i915_private *dev_priv = dev->dev_private;
12077 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12078 struct drm_plane *p;
12079
c34c9ee4
MR
12080 if (intel_crtc->atomic.evade)
12081 intel_pipe_update_end(intel_crtc,
12082 intel_crtc->atomic.start_vbl_count);
3c692a41 12083
140fd38d 12084 intel_runtime_pm_put(dev_priv);
3c692a41 12085
32b7eeec
MR
12086 if (intel_crtc->atomic.wait_vblank)
12087 intel_wait_for_vblank(dev, intel_crtc->pipe);
12088
12089 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12090
12091 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12092 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12093 intel_fbc_update(dev);
ccc759dc 12094 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12095 }
3c692a41 12096
32b7eeec
MR
12097 if (intel_crtc->atomic.post_enable_primary)
12098 intel_post_enable_primary(crtc);
3c692a41 12099
32b7eeec
MR
12100 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12101 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12102 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12103 false, false);
12104
12105 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12106}
12107
cf4c7c12 12108/**
4a3b8769
MR
12109 * intel_plane_destroy - destroy a plane
12110 * @plane: plane to destroy
cf4c7c12 12111 *
4a3b8769
MR
12112 * Common destruction function for all types of planes (primary, cursor,
12113 * sprite).
cf4c7c12 12114 */
4a3b8769 12115void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12116{
12117 struct intel_plane *intel_plane = to_intel_plane(plane);
12118 drm_plane_cleanup(plane);
12119 kfree(intel_plane);
12120}
12121
65a3fea0 12122const struct drm_plane_funcs intel_plane_funcs = {
3f678c96
MR
12123 .update_plane = drm_atomic_helper_update_plane,
12124 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 12125 .destroy = intel_plane_destroy,
c196e1d6 12126 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
12127 .atomic_get_property = intel_plane_atomic_get_property,
12128 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
12129 .atomic_duplicate_state = intel_plane_duplicate_state,
12130 .atomic_destroy_state = intel_plane_destroy_state,
12131
465c120c
MR
12132};
12133
12134static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12135 int pipe)
12136{
12137 struct intel_plane *primary;
8e7d688b 12138 struct intel_plane_state *state;
465c120c
MR
12139 const uint32_t *intel_primary_formats;
12140 int num_formats;
12141
12142 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12143 if (primary == NULL)
12144 return NULL;
12145
8e7d688b
MR
12146 state = intel_create_plane_state(&primary->base);
12147 if (!state) {
ea2c67bb
MR
12148 kfree(primary);
12149 return NULL;
12150 }
8e7d688b 12151 primary->base.state = &state->base;
ea2c67bb 12152
465c120c
MR
12153 primary->can_scale = false;
12154 primary->max_downscale = 1;
12155 primary->pipe = pipe;
12156 primary->plane = pipe;
c59cb179
MR
12157 primary->check_plane = intel_check_primary_plane;
12158 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12159 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12160 primary->plane = !pipe;
12161
12162 if (INTEL_INFO(dev)->gen <= 3) {
12163 intel_primary_formats = intel_primary_formats_gen2;
12164 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12165 } else {
12166 intel_primary_formats = intel_primary_formats_gen4;
12167 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12168 }
12169
12170 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 12171 &intel_plane_funcs,
465c120c
MR
12172 intel_primary_formats, num_formats,
12173 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12174
12175 if (INTEL_INFO(dev)->gen >= 4) {
12176 if (!dev->mode_config.rotation_property)
12177 dev->mode_config.rotation_property =
12178 drm_mode_create_rotation_property(dev,
12179 BIT(DRM_ROTATE_0) |
12180 BIT(DRM_ROTATE_180));
12181 if (dev->mode_config.rotation_property)
12182 drm_object_attach_property(&primary->base.base,
12183 dev->mode_config.rotation_property,
8e7d688b 12184 state->base.rotation);
48404c1e
SJ
12185 }
12186
ea2c67bb
MR
12187 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12188
465c120c
MR
12189 return &primary->base;
12190}
12191
3d7d6510 12192static int
852e787c
GP
12193intel_check_cursor_plane(struct drm_plane *plane,
12194 struct intel_plane_state *state)
3d7d6510 12195{
2b875c22 12196 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12197 struct drm_device *dev = plane->dev;
2b875c22 12198 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12199 struct drm_rect *dest = &state->dst;
12200 struct drm_rect *src = &state->src;
12201 const struct drm_rect *clip = &state->clip;
757f9a3e 12202 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12203 struct intel_crtc *intel_crtc;
757f9a3e
GP
12204 unsigned stride;
12205 int ret;
3d7d6510 12206
ea2c67bb
MR
12207 crtc = crtc ? crtc : plane->crtc;
12208 intel_crtc = to_intel_crtc(crtc);
12209
757f9a3e 12210 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12211 src, dest, clip,
3d7d6510
MR
12212 DRM_PLANE_HELPER_NO_SCALING,
12213 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12214 true, true, &state->visible);
757f9a3e
GP
12215 if (ret)
12216 return ret;
12217
12218
12219 /* if we want to turn off the cursor ignore width and height */
12220 if (!obj)
32b7eeec 12221 goto finish;
757f9a3e 12222
757f9a3e 12223 /* Check for which cursor types we support */
ea2c67bb
MR
12224 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12225 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12226 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12227 return -EINVAL;
12228 }
12229
ea2c67bb
MR
12230 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12231 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12232 DRM_DEBUG_KMS("buffer is too small\n");
12233 return -ENOMEM;
12234 }
12235
e391ea88
GP
12236 if (fb == crtc->cursor->fb)
12237 return 0;
12238
757f9a3e
GP
12239 /* we only need to pin inside GTT if cursor is non-phy */
12240 mutex_lock(&dev->struct_mutex);
12241 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12242 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12243 ret = -EINVAL;
12244 }
12245 mutex_unlock(&dev->struct_mutex);
12246
32b7eeec
MR
12247finish:
12248 if (intel_crtc->active) {
ea2c67bb 12249 if (intel_crtc->cursor_width != state->base.crtc_w)
32b7eeec
MR
12250 intel_crtc->atomic.update_wm = true;
12251
12252 intel_crtc->atomic.fb_bits |=
12253 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12254 }
12255
757f9a3e 12256 return ret;
852e787c 12257}
3d7d6510 12258
f4a2cf29 12259static void
852e787c
GP
12260intel_commit_cursor_plane(struct drm_plane *plane,
12261 struct intel_plane_state *state)
12262{
2b875c22 12263 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12264 struct drm_device *dev = plane->dev;
12265 struct intel_crtc *intel_crtc;
a919db90 12266 struct intel_plane *intel_plane = to_intel_plane(plane);
2b875c22 12267 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12268 uint32_t addr;
852e787c 12269
ea2c67bb
MR
12270 crtc = crtc ? crtc : plane->crtc;
12271 intel_crtc = to_intel_crtc(crtc);
12272
2b875c22 12273 plane->fb = state->base.fb;
ea2c67bb
MR
12274 crtc->cursor_x = state->base.crtc_x;
12275 crtc->cursor_y = state->base.crtc_y;
12276
a919db90
SJ
12277 intel_plane->obj = obj;
12278
a912f12f
GP
12279 if (intel_crtc->cursor_bo == obj)
12280 goto update;
4ed91096 12281
f4a2cf29 12282 if (!obj)
a912f12f 12283 addr = 0;
f4a2cf29 12284 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12285 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12286 else
a912f12f 12287 addr = obj->phys_handle->busaddr;
852e787c 12288
a912f12f
GP
12289 intel_crtc->cursor_addr = addr;
12290 intel_crtc->cursor_bo = obj;
12291update:
ea2c67bb
MR
12292 intel_crtc->cursor_width = state->base.crtc_w;
12293 intel_crtc->cursor_height = state->base.crtc_h;
852e787c 12294
32b7eeec 12295 if (intel_crtc->active)
a912f12f 12296 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12297}
12298
3d7d6510
MR
12299static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12300 int pipe)
12301{
12302 struct intel_plane *cursor;
8e7d688b 12303 struct intel_plane_state *state;
3d7d6510
MR
12304
12305 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12306 if (cursor == NULL)
12307 return NULL;
12308
8e7d688b
MR
12309 state = intel_create_plane_state(&cursor->base);
12310 if (!state) {
ea2c67bb
MR
12311 kfree(cursor);
12312 return NULL;
12313 }
8e7d688b 12314 cursor->base.state = &state->base;
ea2c67bb 12315
3d7d6510
MR
12316 cursor->can_scale = false;
12317 cursor->max_downscale = 1;
12318 cursor->pipe = pipe;
12319 cursor->plane = pipe;
c59cb179
MR
12320 cursor->check_plane = intel_check_cursor_plane;
12321 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12322
12323 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 12324 &intel_plane_funcs,
3d7d6510
MR
12325 intel_cursor_formats,
12326 ARRAY_SIZE(intel_cursor_formats),
12327 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12328
12329 if (INTEL_INFO(dev)->gen >= 4) {
12330 if (!dev->mode_config.rotation_property)
12331 dev->mode_config.rotation_property =
12332 drm_mode_create_rotation_property(dev,
12333 BIT(DRM_ROTATE_0) |
12334 BIT(DRM_ROTATE_180));
12335 if (dev->mode_config.rotation_property)
12336 drm_object_attach_property(&cursor->base.base,
12337 dev->mode_config.rotation_property,
8e7d688b 12338 state->base.rotation);
4398ad45
VS
12339 }
12340
ea2c67bb
MR
12341 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12342
3d7d6510
MR
12343 return &cursor->base;
12344}
12345
b358d0a6 12346static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12347{
fbee40df 12348 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12349 struct intel_crtc *intel_crtc;
f5de6e07 12350 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12351 struct drm_plane *primary = NULL;
12352 struct drm_plane *cursor = NULL;
465c120c 12353 int i, ret;
79e53945 12354
955382f3 12355 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12356 if (intel_crtc == NULL)
12357 return;
12358
f5de6e07
ACO
12359 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12360 if (!crtc_state)
12361 goto fail;
12362 intel_crtc_set_state(intel_crtc, crtc_state);
12363
465c120c 12364 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12365 if (!primary)
12366 goto fail;
12367
12368 cursor = intel_cursor_plane_create(dev, pipe);
12369 if (!cursor)
12370 goto fail;
12371
465c120c 12372 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12373 cursor, &intel_crtc_funcs);
12374 if (ret)
12375 goto fail;
79e53945
JB
12376
12377 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12378 for (i = 0; i < 256; i++) {
12379 intel_crtc->lut_r[i] = i;
12380 intel_crtc->lut_g[i] = i;
12381 intel_crtc->lut_b[i] = i;
12382 }
12383
1f1c2e24
VS
12384 /*
12385 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12386 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12387 */
80824003
JB
12388 intel_crtc->pipe = pipe;
12389 intel_crtc->plane = pipe;
3a77c4c4 12390 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12391 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12392 intel_crtc->plane = !pipe;
80824003
JB
12393 }
12394
4b0e333e
CW
12395 intel_crtc->cursor_base = ~0;
12396 intel_crtc->cursor_cntl = ~0;
dc41c154 12397 intel_crtc->cursor_size = ~0;
8d7849db 12398
22fd0fab
JB
12399 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12400 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12401 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12402 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12403
9362c7c5
ACO
12404 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12405
79e53945 12406 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12407
12408 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12409 return;
12410
12411fail:
12412 if (primary)
12413 drm_plane_cleanup(primary);
12414 if (cursor)
12415 drm_plane_cleanup(cursor);
f5de6e07 12416 kfree(crtc_state);
3d7d6510 12417 kfree(intel_crtc);
79e53945
JB
12418}
12419
752aa88a
JB
12420enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12421{
12422 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12423 struct drm_device *dev = connector->base.dev;
752aa88a 12424
51fd371b 12425 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12426
d3babd3f 12427 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12428 return INVALID_PIPE;
12429
12430 return to_intel_crtc(encoder->crtc)->pipe;
12431}
12432
08d7b3d1 12433int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12434 struct drm_file *file)
08d7b3d1 12435{
08d7b3d1 12436 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12437 struct drm_crtc *drmmode_crtc;
c05422d5 12438 struct intel_crtc *crtc;
08d7b3d1 12439
1cff8f6b
DV
12440 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12441 return -ENODEV;
08d7b3d1 12442
7707e653 12443 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12444
7707e653 12445 if (!drmmode_crtc) {
08d7b3d1 12446 DRM_ERROR("no such CRTC id\n");
3f2c2057 12447 return -ENOENT;
08d7b3d1
CW
12448 }
12449
7707e653 12450 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12451 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12452
c05422d5 12453 return 0;
08d7b3d1
CW
12454}
12455
66a9278e 12456static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12457{
66a9278e
DV
12458 struct drm_device *dev = encoder->base.dev;
12459 struct intel_encoder *source_encoder;
79e53945 12460 int index_mask = 0;
79e53945
JB
12461 int entry = 0;
12462
b2784e15 12463 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12464 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12465 index_mask |= (1 << entry);
12466
79e53945
JB
12467 entry++;
12468 }
4ef69c7a 12469
79e53945
JB
12470 return index_mask;
12471}
12472
4d302442
CW
12473static bool has_edp_a(struct drm_device *dev)
12474{
12475 struct drm_i915_private *dev_priv = dev->dev_private;
12476
12477 if (!IS_MOBILE(dev))
12478 return false;
12479
12480 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12481 return false;
12482
e3589908 12483 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12484 return false;
12485
12486 return true;
12487}
12488
84b4e042
JB
12489static bool intel_crt_present(struct drm_device *dev)
12490{
12491 struct drm_i915_private *dev_priv = dev->dev_private;
12492
884497ed
DL
12493 if (INTEL_INFO(dev)->gen >= 9)
12494 return false;
12495
cf404ce4 12496 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12497 return false;
12498
12499 if (IS_CHERRYVIEW(dev))
12500 return false;
12501
12502 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12503 return false;
12504
12505 return true;
12506}
12507
79e53945
JB
12508static void intel_setup_outputs(struct drm_device *dev)
12509{
725e30ad 12510 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12511 struct intel_encoder *encoder;
c6f95f27 12512 struct drm_connector *connector;
cb0953d7 12513 bool dpd_is_edp = false;
79e53945 12514
c9093354 12515 intel_lvds_init(dev);
79e53945 12516
84b4e042 12517 if (intel_crt_present(dev))
79935fca 12518 intel_crt_init(dev);
cb0953d7 12519
affa9354 12520 if (HAS_DDI(dev)) {
0e72a5b5
ED
12521 int found;
12522
12523 /* Haswell uses DDI functions to detect digital outputs */
12524 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12525 /* DDI A only supports eDP */
12526 if (found)
12527 intel_ddi_init(dev, PORT_A);
12528
12529 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12530 * register */
12531 found = I915_READ(SFUSE_STRAP);
12532
12533 if (found & SFUSE_STRAP_DDIB_DETECTED)
12534 intel_ddi_init(dev, PORT_B);
12535 if (found & SFUSE_STRAP_DDIC_DETECTED)
12536 intel_ddi_init(dev, PORT_C);
12537 if (found & SFUSE_STRAP_DDID_DETECTED)
12538 intel_ddi_init(dev, PORT_D);
12539 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12540 int found;
5d8a7752 12541 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12542
12543 if (has_edp_a(dev))
12544 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12545
dc0fa718 12546 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12547 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12548 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12549 if (!found)
e2debe91 12550 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12551 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12552 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12553 }
12554
dc0fa718 12555 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12556 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12557
dc0fa718 12558 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12559 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12560
5eb08b69 12561 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12562 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12563
270b3042 12564 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12565 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12566 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12567 /*
12568 * The DP_DETECTED bit is the latched state of the DDC
12569 * SDA pin at boot. However since eDP doesn't require DDC
12570 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12571 * eDP ports may have been muxed to an alternate function.
12572 * Thus we can't rely on the DP_DETECTED bit alone to detect
12573 * eDP ports. Consult the VBT as well as DP_DETECTED to
12574 * detect eDP ports.
12575 */
d2182a66
VS
12576 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12577 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
12578 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12579 PORT_B);
e17ac6db
VS
12580 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12581 intel_dp_is_edp(dev, PORT_B))
12582 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12583
d2182a66
VS
12584 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12585 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
12586 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12587 PORT_C);
e17ac6db
VS
12588 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12589 intel_dp_is_edp(dev, PORT_C))
12590 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12591
9418c1f1 12592 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12593 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12594 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12595 PORT_D);
e17ac6db
VS
12596 /* eDP not supported on port D, so don't check VBT */
12597 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12598 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12599 }
12600
3cfca973 12601 intel_dsi_init(dev);
103a196f 12602 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12603 bool found = false;
7d57382e 12604
e2debe91 12605 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12606 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12607 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12608 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12609 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12610 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12611 }
27185ae1 12612
e7281eab 12613 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12614 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12615 }
13520b05
KH
12616
12617 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12618
e2debe91 12619 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12620 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12621 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12622 }
27185ae1 12623
e2debe91 12624 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12625
b01f2c3a
JB
12626 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12627 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12628 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12629 }
e7281eab 12630 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12631 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12632 }
27185ae1 12633
b01f2c3a 12634 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12635 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12636 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12637 } else if (IS_GEN2(dev))
79e53945
JB
12638 intel_dvo_init(dev);
12639
103a196f 12640 if (SUPPORTS_TV(dev))
79e53945
JB
12641 intel_tv_init(dev);
12642
c6f95f27
MR
12643 /*
12644 * FIXME: We don't have full atomic support yet, but we want to be
12645 * able to enable/test plane updates via the atomic interface in the
12646 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12647 * will take some atomic codepaths to lookup properties during
12648 * drmModeGetConnector() that unconditionally dereference
12649 * connector->state.
12650 *
12651 * We create a dummy connector state here for each connector to ensure
12652 * the DRM core doesn't try to dereference a NULL connector->state.
12653 * The actual connector properties will never be updated or contain
12654 * useful information, but since we're doing this specifically for
12655 * testing/debug of the plane operations (and only when a specific
12656 * kernel module option is given), that shouldn't really matter.
12657 *
12658 * Once atomic support for crtc's + connectors lands, this loop should
12659 * be removed since we'll be setting up real connector state, which
12660 * will contain Intel-specific properties.
12661 */
12662 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12663 list_for_each_entry(connector,
12664 &dev->mode_config.connector_list,
12665 head) {
12666 if (!WARN_ON(connector->state)) {
12667 connector->state =
12668 kzalloc(sizeof(*connector->state),
12669 GFP_KERNEL);
12670 }
12671 }
12672 }
12673
0bc12bcb 12674 intel_psr_init(dev);
7c8f8a70 12675
b2784e15 12676 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12677 encoder->base.possible_crtcs = encoder->crtc_mask;
12678 encoder->base.possible_clones =
66a9278e 12679 intel_encoder_clones(encoder);
79e53945 12680 }
47356eb6 12681
dde86e2d 12682 intel_init_pch_refclk(dev);
270b3042
DV
12683
12684 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12685}
12686
12687static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12688{
60a5ca01 12689 struct drm_device *dev = fb->dev;
79e53945 12690 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12691
ef2d633e 12692 drm_framebuffer_cleanup(fb);
60a5ca01 12693 mutex_lock(&dev->struct_mutex);
ef2d633e 12694 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12695 drm_gem_object_unreference(&intel_fb->obj->base);
12696 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12697 kfree(intel_fb);
12698}
12699
12700static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12701 struct drm_file *file,
79e53945
JB
12702 unsigned int *handle)
12703{
12704 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12705 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12706
05394f39 12707 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12708}
12709
12710static const struct drm_framebuffer_funcs intel_fb_funcs = {
12711 .destroy = intel_user_framebuffer_destroy,
12712 .create_handle = intel_user_framebuffer_create_handle,
12713};
12714
b5ea642a
DV
12715static int intel_framebuffer_init(struct drm_device *dev,
12716 struct intel_framebuffer *intel_fb,
12717 struct drm_mode_fb_cmd2 *mode_cmd,
12718 struct drm_i915_gem_object *obj)
79e53945 12719{
a57ce0b2 12720 int aligned_height;
a35cdaa0 12721 int pitch_limit;
79e53945
JB
12722 int ret;
12723
dd4916c5
DV
12724 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12725
2a80eada
DV
12726 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
12727 /* Enforce that fb modifier and tiling mode match, but only for
12728 * X-tiled. This is needed for FBC. */
12729 if (!!(obj->tiling_mode == I915_TILING_X) !=
12730 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
12731 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
12732 return -EINVAL;
12733 }
12734 } else {
12735 if (obj->tiling_mode == I915_TILING_X)
12736 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
12737 else if (obj->tiling_mode == I915_TILING_Y) {
12738 DRM_DEBUG("No Y tiling for legacy addfb\n");
12739 return -EINVAL;
12740 }
12741 }
12742
12743 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_Y_TILED) {
c16ed4be 12744 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12745 return -EINVAL;
c16ed4be 12746 }
57cd6508 12747
c16ed4be
CW
12748 if (mode_cmd->pitches[0] & 63) {
12749 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12750 mode_cmd->pitches[0]);
57cd6508 12751 return -EINVAL;
c16ed4be 12752 }
57cd6508 12753
a35cdaa0
CW
12754 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12755 pitch_limit = 32*1024;
12756 } else if (INTEL_INFO(dev)->gen >= 4) {
2a80eada 12757 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)
a35cdaa0
CW
12758 pitch_limit = 16*1024;
12759 else
12760 pitch_limit = 32*1024;
12761 } else if (INTEL_INFO(dev)->gen >= 3) {
2a80eada 12762 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)
a35cdaa0
CW
12763 pitch_limit = 8*1024;
12764 else
12765 pitch_limit = 16*1024;
12766 } else
12767 /* XXX DSPC is limited to 4k tiled */
12768 pitch_limit = 8*1024;
12769
12770 if (mode_cmd->pitches[0] > pitch_limit) {
12771 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
2a80eada
DV
12772 mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED ?
12773 "tiled" : "linear",
a35cdaa0 12774 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12775 return -EINVAL;
c16ed4be 12776 }
5d7bd705 12777
2a80eada 12778 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
12779 mode_cmd->pitches[0] != obj->stride) {
12780 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12781 mode_cmd->pitches[0], obj->stride);
5d7bd705 12782 return -EINVAL;
c16ed4be 12783 }
5d7bd705 12784
57779d06 12785 /* Reject formats not supported by any plane early. */
308e5bcb 12786 switch (mode_cmd->pixel_format) {
57779d06 12787 case DRM_FORMAT_C8:
04b3924d
VS
12788 case DRM_FORMAT_RGB565:
12789 case DRM_FORMAT_XRGB8888:
12790 case DRM_FORMAT_ARGB8888:
57779d06
VS
12791 break;
12792 case DRM_FORMAT_XRGB1555:
12793 case DRM_FORMAT_ARGB1555:
c16ed4be 12794 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12795 DRM_DEBUG("unsupported pixel format: %s\n",
12796 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12797 return -EINVAL;
c16ed4be 12798 }
57779d06
VS
12799 break;
12800 case DRM_FORMAT_XBGR8888:
12801 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12802 case DRM_FORMAT_XRGB2101010:
12803 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12804 case DRM_FORMAT_XBGR2101010:
12805 case DRM_FORMAT_ABGR2101010:
c16ed4be 12806 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12807 DRM_DEBUG("unsupported pixel format: %s\n",
12808 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12809 return -EINVAL;
c16ed4be 12810 }
b5626747 12811 break;
04b3924d
VS
12812 case DRM_FORMAT_YUYV:
12813 case DRM_FORMAT_UYVY:
12814 case DRM_FORMAT_YVYU:
12815 case DRM_FORMAT_VYUY:
c16ed4be 12816 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12817 DRM_DEBUG("unsupported pixel format: %s\n",
12818 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12819 return -EINVAL;
c16ed4be 12820 }
57cd6508
CW
12821 break;
12822 default:
4ee62c76
VS
12823 DRM_DEBUG("unsupported pixel format: %s\n",
12824 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12825 return -EINVAL;
12826 }
12827
90f9a336
VS
12828 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12829 if (mode_cmd->offsets[0] != 0)
12830 return -EINVAL;
12831
ec2c981e 12832 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
12833 mode_cmd->pixel_format,
12834 mode_cmd->modifier[0]);
53155c0a
DV
12835 /* FIXME drm helper for size checks (especially planar formats)? */
12836 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12837 return -EINVAL;
12838
c7d73f6a
DV
12839 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12840 intel_fb->obj = obj;
80075d49 12841 intel_fb->obj->framebuffer_references++;
c7d73f6a 12842
79e53945
JB
12843 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12844 if (ret) {
12845 DRM_ERROR("framebuffer init failed %d\n", ret);
12846 return ret;
12847 }
12848
79e53945
JB
12849 return 0;
12850}
12851
79e53945
JB
12852static struct drm_framebuffer *
12853intel_user_framebuffer_create(struct drm_device *dev,
12854 struct drm_file *filp,
308e5bcb 12855 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12856{
05394f39 12857 struct drm_i915_gem_object *obj;
79e53945 12858
308e5bcb
JB
12859 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12860 mode_cmd->handles[0]));
c8725226 12861 if (&obj->base == NULL)
cce13ff7 12862 return ERR_PTR(-ENOENT);
79e53945 12863
d2dff872 12864 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12865}
12866
4520f53a 12867#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12868static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12869{
12870}
12871#endif
12872
79e53945 12873static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12874 .fb_create = intel_user_framebuffer_create,
0632fef6 12875 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
12876 .atomic_check = intel_atomic_check,
12877 .atomic_commit = intel_atomic_commit,
79e53945
JB
12878};
12879
e70236a8
JB
12880/* Set up chip specific display functions */
12881static void intel_init_display(struct drm_device *dev)
12882{
12883 struct drm_i915_private *dev_priv = dev->dev_private;
12884
ee9300bb
DV
12885 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12886 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12887 else if (IS_CHERRYVIEW(dev))
12888 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12889 else if (IS_VALLEYVIEW(dev))
12890 dev_priv->display.find_dpll = vlv_find_best_dpll;
12891 else if (IS_PINEVIEW(dev))
12892 dev_priv->display.find_dpll = pnv_find_best_dpll;
12893 else
12894 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12895
bc8d7dff
DL
12896 if (INTEL_INFO(dev)->gen >= 9) {
12897 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12898 dev_priv->display.get_initial_plane_config =
12899 skylake_get_initial_plane_config;
bc8d7dff
DL
12900 dev_priv->display.crtc_compute_clock =
12901 haswell_crtc_compute_clock;
12902 dev_priv->display.crtc_enable = haswell_crtc_enable;
12903 dev_priv->display.crtc_disable = haswell_crtc_disable;
12904 dev_priv->display.off = ironlake_crtc_off;
12905 dev_priv->display.update_primary_plane =
12906 skylake_update_primary_plane;
12907 } else if (HAS_DDI(dev)) {
0e8ffe1b 12908 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12909 dev_priv->display.get_initial_plane_config =
12910 ironlake_get_initial_plane_config;
797d0259
ACO
12911 dev_priv->display.crtc_compute_clock =
12912 haswell_crtc_compute_clock;
4f771f10
PZ
12913 dev_priv->display.crtc_enable = haswell_crtc_enable;
12914 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12915 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
12916 dev_priv->display.update_primary_plane =
12917 ironlake_update_primary_plane;
09b4ddf9 12918 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12919 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
12920 dev_priv->display.get_initial_plane_config =
12921 ironlake_get_initial_plane_config;
3fb37703
ACO
12922 dev_priv->display.crtc_compute_clock =
12923 ironlake_crtc_compute_clock;
76e5a89c
DV
12924 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12925 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12926 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12927 dev_priv->display.update_primary_plane =
12928 ironlake_update_primary_plane;
89b667f8
JB
12929 } else if (IS_VALLEYVIEW(dev)) {
12930 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12931 dev_priv->display.get_initial_plane_config =
12932 i9xx_get_initial_plane_config;
d6dfee7a 12933 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
12934 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12935 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12936 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12937 dev_priv->display.update_primary_plane =
12938 i9xx_update_primary_plane;
f564048e 12939 } else {
0e8ffe1b 12940 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12941 dev_priv->display.get_initial_plane_config =
12942 i9xx_get_initial_plane_config;
d6dfee7a 12943 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
12944 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12945 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12946 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12947 dev_priv->display.update_primary_plane =
12948 i9xx_update_primary_plane;
f564048e 12949 }
e70236a8 12950
e70236a8 12951 /* Returns the core display clock speed */
25eb05fc
JB
12952 if (IS_VALLEYVIEW(dev))
12953 dev_priv->display.get_display_clock_speed =
12954 valleyview_get_display_clock_speed;
12955 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12956 dev_priv->display.get_display_clock_speed =
12957 i945_get_display_clock_speed;
12958 else if (IS_I915G(dev))
12959 dev_priv->display.get_display_clock_speed =
12960 i915_get_display_clock_speed;
257a7ffc 12961 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12962 dev_priv->display.get_display_clock_speed =
12963 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12964 else if (IS_PINEVIEW(dev))
12965 dev_priv->display.get_display_clock_speed =
12966 pnv_get_display_clock_speed;
e70236a8
JB
12967 else if (IS_I915GM(dev))
12968 dev_priv->display.get_display_clock_speed =
12969 i915gm_get_display_clock_speed;
12970 else if (IS_I865G(dev))
12971 dev_priv->display.get_display_clock_speed =
12972 i865_get_display_clock_speed;
f0f8a9ce 12973 else if (IS_I85X(dev))
e70236a8
JB
12974 dev_priv->display.get_display_clock_speed =
12975 i855_get_display_clock_speed;
12976 else /* 852, 830 */
12977 dev_priv->display.get_display_clock_speed =
12978 i830_get_display_clock_speed;
12979
7c10a2b5 12980 if (IS_GEN5(dev)) {
3bb11b53 12981 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12982 } else if (IS_GEN6(dev)) {
12983 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12984 } else if (IS_IVYBRIDGE(dev)) {
12985 /* FIXME: detect B0+ stepping and use auto training */
12986 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12987 dev_priv->display.modeset_global_resources =
12988 ivb_modeset_global_resources;
059b2fe9 12989 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12990 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
12991 } else if (IS_VALLEYVIEW(dev)) {
12992 dev_priv->display.modeset_global_resources =
12993 valleyview_modeset_global_resources;
e70236a8 12994 }
8c9f3aaf
JB
12995
12996 /* Default just returns -ENODEV to indicate unsupported */
12997 dev_priv->display.queue_flip = intel_default_queue_flip;
12998
12999 switch (INTEL_INFO(dev)->gen) {
13000 case 2:
13001 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13002 break;
13003
13004 case 3:
13005 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13006 break;
13007
13008 case 4:
13009 case 5:
13010 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13011 break;
13012
13013 case 6:
13014 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13015 break;
7c9017e5 13016 case 7:
4e0bbc31 13017 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
13018 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13019 break;
830c81db
DL
13020 case 9:
13021 dev_priv->display.queue_flip = intel_gen9_queue_flip;
13022 break;
8c9f3aaf 13023 }
7bd688cd
JN
13024
13025 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
13026
13027 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
13028}
13029
b690e96c
JB
13030/*
13031 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13032 * resume, or other times. This quirk makes sure that's the case for
13033 * affected systems.
13034 */
0206e353 13035static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
13036{
13037 struct drm_i915_private *dev_priv = dev->dev_private;
13038
13039 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 13040 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
13041}
13042
b6b5d049
VS
13043static void quirk_pipeb_force(struct drm_device *dev)
13044{
13045 struct drm_i915_private *dev_priv = dev->dev_private;
13046
13047 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13048 DRM_INFO("applying pipe b force quirk\n");
13049}
13050
435793df
KP
13051/*
13052 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13053 */
13054static void quirk_ssc_force_disable(struct drm_device *dev)
13055{
13056 struct drm_i915_private *dev_priv = dev->dev_private;
13057 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 13058 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
13059}
13060
4dca20ef 13061/*
5a15ab5b
CE
13062 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13063 * brightness value
4dca20ef
CE
13064 */
13065static void quirk_invert_brightness(struct drm_device *dev)
13066{
13067 struct drm_i915_private *dev_priv = dev->dev_private;
13068 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 13069 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
13070}
13071
9c72cc6f
SD
13072/* Some VBT's incorrectly indicate no backlight is present */
13073static void quirk_backlight_present(struct drm_device *dev)
13074{
13075 struct drm_i915_private *dev_priv = dev->dev_private;
13076 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13077 DRM_INFO("applying backlight present quirk\n");
13078}
13079
b690e96c
JB
13080struct intel_quirk {
13081 int device;
13082 int subsystem_vendor;
13083 int subsystem_device;
13084 void (*hook)(struct drm_device *dev);
13085};
13086
5f85f176
EE
13087/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13088struct intel_dmi_quirk {
13089 void (*hook)(struct drm_device *dev);
13090 const struct dmi_system_id (*dmi_id_list)[];
13091};
13092
13093static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13094{
13095 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13096 return 1;
13097}
13098
13099static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13100 {
13101 .dmi_id_list = &(const struct dmi_system_id[]) {
13102 {
13103 .callback = intel_dmi_reverse_brightness,
13104 .ident = "NCR Corporation",
13105 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13106 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13107 },
13108 },
13109 { } /* terminating entry */
13110 },
13111 .hook = quirk_invert_brightness,
13112 },
13113};
13114
c43b5634 13115static struct intel_quirk intel_quirks[] = {
b690e96c 13116 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13117 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13118
b690e96c
JB
13119 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13120 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13121
b690e96c
JB
13122 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13123 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13124
5f080c0f
VS
13125 /* 830 needs to leave pipe A & dpll A up */
13126 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13127
b6b5d049
VS
13128 /* 830 needs to leave pipe B & dpll B up */
13129 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13130
435793df
KP
13131 /* Lenovo U160 cannot use SSC on LVDS */
13132 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13133
13134 /* Sony Vaio Y cannot use SSC on LVDS */
13135 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13136
be505f64
AH
13137 /* Acer Aspire 5734Z must invert backlight brightness */
13138 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13139
13140 /* Acer/eMachines G725 */
13141 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13142
13143 /* Acer/eMachines e725 */
13144 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13145
13146 /* Acer/Packard Bell NCL20 */
13147 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13148
13149 /* Acer Aspire 4736Z */
13150 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13151
13152 /* Acer Aspire 5336 */
13153 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13154
13155 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13156 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13157
dfb3d47b
SD
13158 /* Acer C720 Chromebook (Core i3 4005U) */
13159 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13160
b2a9601c 13161 /* Apple Macbook 2,1 (Core 2 T7400) */
13162 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13163
d4967d8c
SD
13164 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13165 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13166
13167 /* HP Chromebook 14 (Celeron 2955U) */
13168 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
13169};
13170
13171static void intel_init_quirks(struct drm_device *dev)
13172{
13173 struct pci_dev *d = dev->pdev;
13174 int i;
13175
13176 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13177 struct intel_quirk *q = &intel_quirks[i];
13178
13179 if (d->device == q->device &&
13180 (d->subsystem_vendor == q->subsystem_vendor ||
13181 q->subsystem_vendor == PCI_ANY_ID) &&
13182 (d->subsystem_device == q->subsystem_device ||
13183 q->subsystem_device == PCI_ANY_ID))
13184 q->hook(dev);
13185 }
5f85f176
EE
13186 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13187 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13188 intel_dmi_quirks[i].hook(dev);
13189 }
b690e96c
JB
13190}
13191
9cce37f4
JB
13192/* Disable the VGA plane that we never use */
13193static void i915_disable_vga(struct drm_device *dev)
13194{
13195 struct drm_i915_private *dev_priv = dev->dev_private;
13196 u8 sr1;
766aa1c4 13197 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13198
2b37c616 13199 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13200 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13201 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13202 sr1 = inb(VGA_SR_DATA);
13203 outb(sr1 | 1<<5, VGA_SR_DATA);
13204 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13205 udelay(300);
13206
01f5a626 13207 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13208 POSTING_READ(vga_reg);
13209}
13210
f817586c
DV
13211void intel_modeset_init_hw(struct drm_device *dev)
13212{
a8f78b58
ED
13213 intel_prepare_ddi(dev);
13214
f8bf63fd
VS
13215 if (IS_VALLEYVIEW(dev))
13216 vlv_update_cdclk(dev);
13217
f817586c
DV
13218 intel_init_clock_gating(dev);
13219
8090c6b9 13220 intel_enable_gt_powersave(dev);
f817586c
DV
13221}
13222
79e53945
JB
13223void intel_modeset_init(struct drm_device *dev)
13224{
652c393a 13225 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13226 int sprite, ret;
8cc87b75 13227 enum pipe pipe;
46f297fb 13228 struct intel_crtc *crtc;
79e53945
JB
13229
13230 drm_mode_config_init(dev);
13231
13232 dev->mode_config.min_width = 0;
13233 dev->mode_config.min_height = 0;
13234
019d96cb
DA
13235 dev->mode_config.preferred_depth = 24;
13236 dev->mode_config.prefer_shadow = 1;
13237
e6ecefaa 13238 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13239
b690e96c
JB
13240 intel_init_quirks(dev);
13241
1fa61106
ED
13242 intel_init_pm(dev);
13243
e3c74757
BW
13244 if (INTEL_INFO(dev)->num_pipes == 0)
13245 return;
13246
e70236a8 13247 intel_init_display(dev);
7c10a2b5 13248 intel_init_audio(dev);
e70236a8 13249
a6c45cf0
CW
13250 if (IS_GEN2(dev)) {
13251 dev->mode_config.max_width = 2048;
13252 dev->mode_config.max_height = 2048;
13253 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13254 dev->mode_config.max_width = 4096;
13255 dev->mode_config.max_height = 4096;
79e53945 13256 } else {
a6c45cf0
CW
13257 dev->mode_config.max_width = 8192;
13258 dev->mode_config.max_height = 8192;
79e53945 13259 }
068be561 13260
dc41c154
VS
13261 if (IS_845G(dev) || IS_I865G(dev)) {
13262 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13263 dev->mode_config.cursor_height = 1023;
13264 } else if (IS_GEN2(dev)) {
068be561
DL
13265 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13266 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13267 } else {
13268 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13269 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13270 }
13271
5d4545ae 13272 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13273
28c97730 13274 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13275 INTEL_INFO(dev)->num_pipes,
13276 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13277
055e393f 13278 for_each_pipe(dev_priv, pipe) {
8cc87b75 13279 intel_crtc_init(dev, pipe);
1fe47785
DL
13280 for_each_sprite(pipe, sprite) {
13281 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13282 if (ret)
06da8da2 13283 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13284 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13285 }
79e53945
JB
13286 }
13287
f42bb70d
JB
13288 intel_init_dpio(dev);
13289
e72f9fbf 13290 intel_shared_dpll_init(dev);
ee7b9f93 13291
9cce37f4
JB
13292 /* Just disable it once at startup */
13293 i915_disable_vga(dev);
79e53945 13294 intel_setup_outputs(dev);
11be49eb
CW
13295
13296 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13297 intel_fbc_disable(dev);
fa9fa083 13298
6e9f798d 13299 drm_modeset_lock_all(dev);
fa9fa083 13300 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13301 drm_modeset_unlock_all(dev);
46f297fb 13302
d3fcc808 13303 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13304 if (!crtc->active)
13305 continue;
13306
46f297fb 13307 /*
46f297fb
JB
13308 * Note that reserving the BIOS fb up front prevents us
13309 * from stuffing other stolen allocations like the ring
13310 * on top. This prevents some ugliness at boot time, and
13311 * can even allow for smooth boot transitions if the BIOS
13312 * fb is large enough for the active pipe configuration.
13313 */
5724dbd1
DL
13314 if (dev_priv->display.get_initial_plane_config) {
13315 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13316 &crtc->plane_config);
13317 /*
13318 * If the fb is shared between multiple heads, we'll
13319 * just get the first one.
13320 */
484b41dd 13321 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13322 }
46f297fb 13323 }
2c7111db
CW
13324}
13325
7fad798e
DV
13326static void intel_enable_pipe_a(struct drm_device *dev)
13327{
13328 struct intel_connector *connector;
13329 struct drm_connector *crt = NULL;
13330 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13331 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13332
13333 /* We can't just switch on the pipe A, we need to set things up with a
13334 * proper mode and output configuration. As a gross hack, enable pipe A
13335 * by enabling the load detect pipe once. */
13336 list_for_each_entry(connector,
13337 &dev->mode_config.connector_list,
13338 base.head) {
13339 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13340 crt = &connector->base;
13341 break;
13342 }
13343 }
13344
13345 if (!crt)
13346 return;
13347
208bf9fd
VS
13348 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13349 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13350}
13351
fa555837
DV
13352static bool
13353intel_check_plane_mapping(struct intel_crtc *crtc)
13354{
7eb552ae
BW
13355 struct drm_device *dev = crtc->base.dev;
13356 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13357 u32 reg, val;
13358
7eb552ae 13359 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13360 return true;
13361
13362 reg = DSPCNTR(!crtc->plane);
13363 val = I915_READ(reg);
13364
13365 if ((val & DISPLAY_PLANE_ENABLE) &&
13366 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13367 return false;
13368
13369 return true;
13370}
13371
24929352
DV
13372static void intel_sanitize_crtc(struct intel_crtc *crtc)
13373{
13374 struct drm_device *dev = crtc->base.dev;
13375 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13376 u32 reg;
24929352 13377
24929352 13378 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13379 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13380 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13381
d3eaf884 13382 /* restore vblank interrupts to correct state */
d297e103
VS
13383 if (crtc->active) {
13384 update_scanline_offset(crtc);
d3eaf884 13385 drm_vblank_on(dev, crtc->pipe);
d297e103 13386 } else
d3eaf884
VS
13387 drm_vblank_off(dev, crtc->pipe);
13388
24929352 13389 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13390 * disable the crtc (and hence change the state) if it is wrong. Note
13391 * that gen4+ has a fixed plane -> pipe mapping. */
13392 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13393 struct intel_connector *connector;
13394 bool plane;
13395
24929352
DV
13396 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13397 crtc->base.base.id);
13398
13399 /* Pipe has the wrong plane attached and the plane is active.
13400 * Temporarily change the plane mapping and disable everything
13401 * ... */
13402 plane = crtc->plane;
13403 crtc->plane = !plane;
9c8958bc 13404 crtc->primary_enabled = true;
24929352
DV
13405 dev_priv->display.crtc_disable(&crtc->base);
13406 crtc->plane = plane;
13407
13408 /* ... and break all links. */
13409 list_for_each_entry(connector, &dev->mode_config.connector_list,
13410 base.head) {
13411 if (connector->encoder->base.crtc != &crtc->base)
13412 continue;
13413
7f1950fb
EE
13414 connector->base.dpms = DRM_MODE_DPMS_OFF;
13415 connector->base.encoder = NULL;
24929352 13416 }
7f1950fb
EE
13417 /* multiple connectors may have the same encoder:
13418 * handle them and break crtc link separately */
13419 list_for_each_entry(connector, &dev->mode_config.connector_list,
13420 base.head)
13421 if (connector->encoder->base.crtc == &crtc->base) {
13422 connector->encoder->base.crtc = NULL;
13423 connector->encoder->connectors_active = false;
13424 }
24929352
DV
13425
13426 WARN_ON(crtc->active);
13427 crtc->base.enabled = false;
13428 }
24929352 13429
7fad798e
DV
13430 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13431 crtc->pipe == PIPE_A && !crtc->active) {
13432 /* BIOS forgot to enable pipe A, this mostly happens after
13433 * resume. Force-enable the pipe to fix this, the update_dpms
13434 * call below we restore the pipe to the right state, but leave
13435 * the required bits on. */
13436 intel_enable_pipe_a(dev);
13437 }
13438
24929352
DV
13439 /* Adjust the state of the output pipe according to whether we
13440 * have active connectors/encoders. */
13441 intel_crtc_update_dpms(&crtc->base);
13442
13443 if (crtc->active != crtc->base.enabled) {
13444 struct intel_encoder *encoder;
13445
13446 /* This can happen either due to bugs in the get_hw_state
13447 * functions or because the pipe is force-enabled due to the
13448 * pipe A quirk. */
13449 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13450 crtc->base.base.id,
13451 crtc->base.enabled ? "enabled" : "disabled",
13452 crtc->active ? "enabled" : "disabled");
13453
13454 crtc->base.enabled = crtc->active;
13455
13456 /* Because we only establish the connector -> encoder ->
13457 * crtc links if something is active, this means the
13458 * crtc is now deactivated. Break the links. connector
13459 * -> encoder links are only establish when things are
13460 * actually up, hence no need to break them. */
13461 WARN_ON(crtc->active);
13462
13463 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13464 WARN_ON(encoder->connectors_active);
13465 encoder->base.crtc = NULL;
13466 }
13467 }
c5ab3bc0 13468
a3ed6aad 13469 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13470 /*
13471 * We start out with underrun reporting disabled to avoid races.
13472 * For correct bookkeeping mark this on active crtcs.
13473 *
c5ab3bc0
DV
13474 * Also on gmch platforms we dont have any hardware bits to
13475 * disable the underrun reporting. Which means we need to start
13476 * out with underrun reporting disabled also on inactive pipes,
13477 * since otherwise we'll complain about the garbage we read when
13478 * e.g. coming up after runtime pm.
13479 *
4cc31489
DV
13480 * No protection against concurrent access is required - at
13481 * worst a fifo underrun happens which also sets this to false.
13482 */
13483 crtc->cpu_fifo_underrun_disabled = true;
13484 crtc->pch_fifo_underrun_disabled = true;
13485 }
24929352
DV
13486}
13487
13488static void intel_sanitize_encoder(struct intel_encoder *encoder)
13489{
13490 struct intel_connector *connector;
13491 struct drm_device *dev = encoder->base.dev;
13492
13493 /* We need to check both for a crtc link (meaning that the
13494 * encoder is active and trying to read from a pipe) and the
13495 * pipe itself being active. */
13496 bool has_active_crtc = encoder->base.crtc &&
13497 to_intel_crtc(encoder->base.crtc)->active;
13498
13499 if (encoder->connectors_active && !has_active_crtc) {
13500 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13501 encoder->base.base.id,
8e329a03 13502 encoder->base.name);
24929352
DV
13503
13504 /* Connector is active, but has no active pipe. This is
13505 * fallout from our resume register restoring. Disable
13506 * the encoder manually again. */
13507 if (encoder->base.crtc) {
13508 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13509 encoder->base.base.id,
8e329a03 13510 encoder->base.name);
24929352 13511 encoder->disable(encoder);
a62d1497
VS
13512 if (encoder->post_disable)
13513 encoder->post_disable(encoder);
24929352 13514 }
7f1950fb
EE
13515 encoder->base.crtc = NULL;
13516 encoder->connectors_active = false;
24929352
DV
13517
13518 /* Inconsistent output/port/pipe state happens presumably due to
13519 * a bug in one of the get_hw_state functions. Or someplace else
13520 * in our code, like the register restore mess on resume. Clamp
13521 * things to off as a safer default. */
13522 list_for_each_entry(connector,
13523 &dev->mode_config.connector_list,
13524 base.head) {
13525 if (connector->encoder != encoder)
13526 continue;
7f1950fb
EE
13527 connector->base.dpms = DRM_MODE_DPMS_OFF;
13528 connector->base.encoder = NULL;
24929352
DV
13529 }
13530 }
13531 /* Enabled encoders without active connectors will be fixed in
13532 * the crtc fixup. */
13533}
13534
04098753 13535void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13536{
13537 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13538 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13539
04098753
ID
13540 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13541 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13542 i915_disable_vga(dev);
13543 }
13544}
13545
13546void i915_redisable_vga(struct drm_device *dev)
13547{
13548 struct drm_i915_private *dev_priv = dev->dev_private;
13549
8dc8a27c
PZ
13550 /* This function can be called both from intel_modeset_setup_hw_state or
13551 * at a very early point in our resume sequence, where the power well
13552 * structures are not yet restored. Since this function is at a very
13553 * paranoid "someone might have enabled VGA while we were not looking"
13554 * level, just check if the power well is enabled instead of trying to
13555 * follow the "don't touch the power well if we don't need it" policy
13556 * the rest of the driver uses. */
f458ebbc 13557 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13558 return;
13559
04098753 13560 i915_redisable_vga_power_on(dev);
0fde901f
KM
13561}
13562
98ec7739
VS
13563static bool primary_get_hw_state(struct intel_crtc *crtc)
13564{
13565 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13566
13567 if (!crtc->active)
13568 return false;
13569
13570 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13571}
13572
30e984df 13573static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13574{
13575 struct drm_i915_private *dev_priv = dev->dev_private;
13576 enum pipe pipe;
24929352
DV
13577 struct intel_crtc *crtc;
13578 struct intel_encoder *encoder;
13579 struct intel_connector *connector;
5358901f 13580 int i;
24929352 13581
d3fcc808 13582 for_each_intel_crtc(dev, crtc) {
6e3c9717 13583 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 13584
6e3c9717 13585 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 13586
0e8ffe1b 13587 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 13588 crtc->config);
24929352
DV
13589
13590 crtc->base.enabled = crtc->active;
98ec7739 13591 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13592
13593 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13594 crtc->base.base.id,
13595 crtc->active ? "enabled" : "disabled");
13596 }
13597
5358901f
DV
13598 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13599 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13600
3e369b76
ACO
13601 pll->on = pll->get_hw_state(dev_priv, pll,
13602 &pll->config.hw_state);
5358901f 13603 pll->active = 0;
3e369b76 13604 pll->config.crtc_mask = 0;
d3fcc808 13605 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13606 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13607 pll->active++;
3e369b76 13608 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13609 }
5358901f 13610 }
5358901f 13611
1e6f2ddc 13612 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13613 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13614
3e369b76 13615 if (pll->config.crtc_mask)
bd2bb1b9 13616 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13617 }
13618
b2784e15 13619 for_each_intel_encoder(dev, encoder) {
24929352
DV
13620 pipe = 0;
13621
13622 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13623 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13624 encoder->base.crtc = &crtc->base;
6e3c9717 13625 encoder->get_config(encoder, crtc->config);
24929352
DV
13626 } else {
13627 encoder->base.crtc = NULL;
13628 }
13629
13630 encoder->connectors_active = false;
6f2bcceb 13631 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13632 encoder->base.base.id,
8e329a03 13633 encoder->base.name,
24929352 13634 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13635 pipe_name(pipe));
24929352
DV
13636 }
13637
13638 list_for_each_entry(connector, &dev->mode_config.connector_list,
13639 base.head) {
13640 if (connector->get_hw_state(connector)) {
13641 connector->base.dpms = DRM_MODE_DPMS_ON;
13642 connector->encoder->connectors_active = true;
13643 connector->base.encoder = &connector->encoder->base;
13644 } else {
13645 connector->base.dpms = DRM_MODE_DPMS_OFF;
13646 connector->base.encoder = NULL;
13647 }
13648 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13649 connector->base.base.id,
c23cc417 13650 connector->base.name,
24929352
DV
13651 connector->base.encoder ? "enabled" : "disabled");
13652 }
30e984df
DV
13653}
13654
13655/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13656 * and i915 state tracking structures. */
13657void intel_modeset_setup_hw_state(struct drm_device *dev,
13658 bool force_restore)
13659{
13660 struct drm_i915_private *dev_priv = dev->dev_private;
13661 enum pipe pipe;
30e984df
DV
13662 struct intel_crtc *crtc;
13663 struct intel_encoder *encoder;
35c95375 13664 int i;
30e984df
DV
13665
13666 intel_modeset_readout_hw_state(dev);
24929352 13667
babea61d
JB
13668 /*
13669 * Now that we have the config, copy it to each CRTC struct
13670 * Note that this could go away if we move to using crtc_config
13671 * checking everywhere.
13672 */
d3fcc808 13673 for_each_intel_crtc(dev, crtc) {
d330a953 13674 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
13675 intel_mode_from_pipe_config(&crtc->base.mode,
13676 crtc->config);
babea61d
JB
13677 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13678 crtc->base.base.id);
13679 drm_mode_debug_printmodeline(&crtc->base.mode);
13680 }
13681 }
13682
24929352 13683 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13684 for_each_intel_encoder(dev, encoder) {
24929352
DV
13685 intel_sanitize_encoder(encoder);
13686 }
13687
055e393f 13688 for_each_pipe(dev_priv, pipe) {
24929352
DV
13689 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13690 intel_sanitize_crtc(crtc);
6e3c9717
ACO
13691 intel_dump_pipe_config(crtc, crtc->config,
13692 "[setup_hw_state]");
24929352 13693 }
9a935856 13694
35c95375
DV
13695 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13696 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13697
13698 if (!pll->on || pll->active)
13699 continue;
13700
13701 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13702
13703 pll->disable(dev_priv, pll);
13704 pll->on = false;
13705 }
13706
3078999f
PB
13707 if (IS_GEN9(dev))
13708 skl_wm_get_hw_state(dev);
13709 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13710 ilk_wm_get_hw_state(dev);
13711
45e2b5f6 13712 if (force_restore) {
7d0bc1ea
VS
13713 i915_redisable_vga(dev);
13714
f30da187
DV
13715 /*
13716 * We need to use raw interfaces for restoring state to avoid
13717 * checking (bogus) intermediate states.
13718 */
055e393f 13719 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13720 struct drm_crtc *crtc =
13721 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 13722
7f27126e
JB
13723 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13724 crtc->primary->fb);
45e2b5f6
DV
13725 }
13726 } else {
13727 intel_modeset_update_staged_output_state(dev);
13728 }
8af6cf88
DV
13729
13730 intel_modeset_check_state(dev);
2c7111db
CW
13731}
13732
13733void intel_modeset_gem_init(struct drm_device *dev)
13734{
92122789 13735 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 13736 struct drm_crtc *c;
2ff8fde1 13737 struct drm_i915_gem_object *obj;
484b41dd 13738
ae48434c
ID
13739 mutex_lock(&dev->struct_mutex);
13740 intel_init_gt_powersave(dev);
13741 mutex_unlock(&dev->struct_mutex);
13742
92122789
JB
13743 /*
13744 * There may be no VBT; and if the BIOS enabled SSC we can
13745 * just keep using it to avoid unnecessary flicker. Whereas if the
13746 * BIOS isn't using it, don't assume it will work even if the VBT
13747 * indicates as much.
13748 */
13749 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13750 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13751 DREF_SSC1_ENABLE);
13752
1833b134 13753 intel_modeset_init_hw(dev);
02e792fb
DV
13754
13755 intel_setup_overlay(dev);
484b41dd
JB
13756
13757 /*
13758 * Make sure any fbs we allocated at startup are properly
13759 * pinned & fenced. When we do the allocation it's too early
13760 * for this.
13761 */
13762 mutex_lock(&dev->struct_mutex);
70e1e0ec 13763 for_each_crtc(dev, c) {
2ff8fde1
MR
13764 obj = intel_fb_obj(c->primary->fb);
13765 if (obj == NULL)
484b41dd
JB
13766 continue;
13767
850c4cdc
TU
13768 if (intel_pin_and_fence_fb_obj(c->primary,
13769 c->primary->fb,
13770 NULL)) {
484b41dd
JB
13771 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13772 to_intel_crtc(c)->pipe);
66e514c1
DA
13773 drm_framebuffer_unreference(c->primary->fb);
13774 c->primary->fb = NULL;
afd65eb4 13775 update_state_fb(c->primary);
484b41dd
JB
13776 }
13777 }
13778 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
13779
13780 intel_backlight_register(dev);
79e53945
JB
13781}
13782
4932e2c3
ID
13783void intel_connector_unregister(struct intel_connector *intel_connector)
13784{
13785 struct drm_connector *connector = &intel_connector->base;
13786
13787 intel_panel_destroy_backlight(connector);
34ea3d38 13788 drm_connector_unregister(connector);
4932e2c3
ID
13789}
13790
79e53945
JB
13791void intel_modeset_cleanup(struct drm_device *dev)
13792{
652c393a 13793 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13794 struct drm_connector *connector;
652c393a 13795
2eb5252e
ID
13796 intel_disable_gt_powersave(dev);
13797
0962c3c9
VS
13798 intel_backlight_unregister(dev);
13799
fd0c0642
DV
13800 /*
13801 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 13802 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
13803 * experience fancy races otherwise.
13804 */
2aeb7d3a 13805 intel_irq_uninstall(dev_priv);
eb21b92b 13806
fd0c0642
DV
13807 /*
13808 * Due to the hpd irq storm handling the hotplug work can re-arm the
13809 * poll handlers. Hence disable polling after hpd handling is shut down.
13810 */
f87ea761 13811 drm_kms_helper_poll_fini(dev);
fd0c0642 13812
652c393a
JB
13813 mutex_lock(&dev->struct_mutex);
13814
723bfd70
JB
13815 intel_unregister_dsm_handler();
13816
7ff0ebcc 13817 intel_fbc_disable(dev);
e70236a8 13818
930ebb46
DV
13819 ironlake_teardown_rc6(dev);
13820
69341a5e
KH
13821 mutex_unlock(&dev->struct_mutex);
13822
1630fe75
CW
13823 /* flush any delayed tasks or pending work */
13824 flush_scheduled_work();
13825
db31af1d
JN
13826 /* destroy the backlight and sysfs files before encoders/connectors */
13827 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13828 struct intel_connector *intel_connector;
13829
13830 intel_connector = to_intel_connector(connector);
13831 intel_connector->unregister(intel_connector);
db31af1d 13832 }
d9255d57 13833
79e53945 13834 drm_mode_config_cleanup(dev);
4d7bb011
DV
13835
13836 intel_cleanup_overlay(dev);
ae48434c
ID
13837
13838 mutex_lock(&dev->struct_mutex);
13839 intel_cleanup_gt_powersave(dev);
13840 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13841}
13842
f1c79df3
ZW
13843/*
13844 * Return which encoder is currently attached for connector.
13845 */
df0e9248 13846struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13847{
df0e9248
CW
13848 return &intel_attached_encoder(connector)->base;
13849}
f1c79df3 13850
df0e9248
CW
13851void intel_connector_attach_encoder(struct intel_connector *connector,
13852 struct intel_encoder *encoder)
13853{
13854 connector->encoder = encoder;
13855 drm_mode_connector_attach_encoder(&connector->base,
13856 &encoder->base);
79e53945 13857}
28d52043
DA
13858
13859/*
13860 * set vga decode state - true == enable VGA decode
13861 */
13862int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13863{
13864 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13865 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13866 u16 gmch_ctrl;
13867
75fa041d
CW
13868 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13869 DRM_ERROR("failed to read control word\n");
13870 return -EIO;
13871 }
13872
c0cc8a55
CW
13873 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13874 return 0;
13875
28d52043
DA
13876 if (state)
13877 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13878 else
13879 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13880
13881 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13882 DRM_ERROR("failed to write control word\n");
13883 return -EIO;
13884 }
13885
28d52043
DA
13886 return 0;
13887}
c4a1d9e4 13888
c4a1d9e4 13889struct intel_display_error_state {
ff57f1b0
PZ
13890
13891 u32 power_well_driver;
13892
63b66e5b
CW
13893 int num_transcoders;
13894
c4a1d9e4
CW
13895 struct intel_cursor_error_state {
13896 u32 control;
13897 u32 position;
13898 u32 base;
13899 u32 size;
52331309 13900 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13901
13902 struct intel_pipe_error_state {
ddf9c536 13903 bool power_domain_on;
c4a1d9e4 13904 u32 source;
f301b1e1 13905 u32 stat;
52331309 13906 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13907
13908 struct intel_plane_error_state {
13909 u32 control;
13910 u32 stride;
13911 u32 size;
13912 u32 pos;
13913 u32 addr;
13914 u32 surface;
13915 u32 tile_offset;
52331309 13916 } plane[I915_MAX_PIPES];
63b66e5b
CW
13917
13918 struct intel_transcoder_error_state {
ddf9c536 13919 bool power_domain_on;
63b66e5b
CW
13920 enum transcoder cpu_transcoder;
13921
13922 u32 conf;
13923
13924 u32 htotal;
13925 u32 hblank;
13926 u32 hsync;
13927 u32 vtotal;
13928 u32 vblank;
13929 u32 vsync;
13930 } transcoder[4];
c4a1d9e4
CW
13931};
13932
13933struct intel_display_error_state *
13934intel_display_capture_error_state(struct drm_device *dev)
13935{
fbee40df 13936 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13937 struct intel_display_error_state *error;
63b66e5b
CW
13938 int transcoders[] = {
13939 TRANSCODER_A,
13940 TRANSCODER_B,
13941 TRANSCODER_C,
13942 TRANSCODER_EDP,
13943 };
c4a1d9e4
CW
13944 int i;
13945
63b66e5b
CW
13946 if (INTEL_INFO(dev)->num_pipes == 0)
13947 return NULL;
13948
9d1cb914 13949 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13950 if (error == NULL)
13951 return NULL;
13952
190be112 13953 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13954 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13955
055e393f 13956 for_each_pipe(dev_priv, i) {
ddf9c536 13957 error->pipe[i].power_domain_on =
f458ebbc
DV
13958 __intel_display_power_is_enabled(dev_priv,
13959 POWER_DOMAIN_PIPE(i));
ddf9c536 13960 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13961 continue;
13962
5efb3e28
VS
13963 error->cursor[i].control = I915_READ(CURCNTR(i));
13964 error->cursor[i].position = I915_READ(CURPOS(i));
13965 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13966
13967 error->plane[i].control = I915_READ(DSPCNTR(i));
13968 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13969 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13970 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13971 error->plane[i].pos = I915_READ(DSPPOS(i));
13972 }
ca291363
PZ
13973 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13974 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13975 if (INTEL_INFO(dev)->gen >= 4) {
13976 error->plane[i].surface = I915_READ(DSPSURF(i));
13977 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13978 }
13979
c4a1d9e4 13980 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13981
3abfce77 13982 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13983 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13984 }
13985
13986 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13987 if (HAS_DDI(dev_priv->dev))
13988 error->num_transcoders++; /* Account for eDP. */
13989
13990 for (i = 0; i < error->num_transcoders; i++) {
13991 enum transcoder cpu_transcoder = transcoders[i];
13992
ddf9c536 13993 error->transcoder[i].power_domain_on =
f458ebbc 13994 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13995 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13996 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13997 continue;
13998
63b66e5b
CW
13999 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14000
14001 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14002 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14003 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14004 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14005 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14006 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14007 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
14008 }
14009
14010 return error;
14011}
14012
edc3d884
MK
14013#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14014
c4a1d9e4 14015void
edc3d884 14016intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
14017 struct drm_device *dev,
14018 struct intel_display_error_state *error)
14019{
055e393f 14020 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
14021 int i;
14022
63b66e5b
CW
14023 if (!error)
14024 return;
14025
edc3d884 14026 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 14027 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 14028 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 14029 error->power_well_driver);
055e393f 14030 for_each_pipe(dev_priv, i) {
edc3d884 14031 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
14032 err_printf(m, " Power: %s\n",
14033 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 14034 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 14035 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
14036
14037 err_printf(m, "Plane [%d]:\n", i);
14038 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14039 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 14040 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
14041 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14042 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 14043 }
4b71a570 14044 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 14045 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 14046 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
14047 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14048 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
14049 }
14050
edc3d884
MK
14051 err_printf(m, "Cursor [%d]:\n", i);
14052 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14053 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14054 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 14055 }
63b66e5b
CW
14056
14057 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 14058 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 14059 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
14060 err_printf(m, " Power: %s\n",
14061 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
14062 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14063 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14064 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14065 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14066 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14067 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14068 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14069 }
c4a1d9e4 14070}
e2fcdaa9
VS
14071
14072void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14073{
14074 struct intel_crtc *crtc;
14075
14076 for_each_intel_crtc(dev, crtc) {
14077 struct intel_unpin_work *work;
e2fcdaa9 14078
5e2d7afc 14079 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
14080
14081 work = crtc->unpin_work;
14082
14083 if (work && work->event &&
14084 work->event->base.file_priv == file) {
14085 kfree(work->event);
14086 work->event = NULL;
14087 }
14088
5e2d7afc 14089 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
14090 }
14091}
This page took 2.588041 seconds and 5 git commands to generate.