drm/i915: Convert connector checking to atomic, v3.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c 48/* Primary plane formats for gen <= 3 */
568db4f2 49static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
465c120c 52 DRM_FORMAT_XRGB1555,
67fe7dc5 53 DRM_FORMAT_XRGB8888,
465c120c
MR
54};
55
56/* Primary plane formats for gen >= 4 */
568db4f2 57static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64};
65
66static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
465c120c 70 DRM_FORMAT_XBGR8888,
67fe7dc5 71 DRM_FORMAT_ARGB8888,
465c120c
MR
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
465c120c 74 DRM_FORMAT_XBGR2101010,
465c120c
MR
75};
76
3d7d6510
MR
77/* Cursor formats */
78static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80};
81
6b383a7f 82static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 83
f1f644dc 84static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 85 struct intel_crtc_state *pipe_config);
18442d08 86static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 87 struct intel_crtc_state *pipe_config);
f1f644dc 88
eb1bfe80
JB
89static int intel_framebuffer_init(struct drm_device *dev,
90 struct intel_framebuffer *ifb,
91 struct drm_mode_fb_cmd2 *mode_cmd,
92 struct drm_i915_gem_object *obj);
5b18e57c
DV
93static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
94static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 95static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
96 struct intel_link_m_n *m_n,
97 struct intel_link_m_n *m2_n2);
29407aab 98static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
99static void haswell_set_pipeconf(struct drm_crtc *crtc);
100static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 101static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 102 const struct intel_crtc_state *pipe_config);
d288f65f 103static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 104 const struct intel_crtc_state *pipe_config);
613d2b27
ML
105static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
106static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
107static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
108 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
109static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
110 int num_connectors);
043e9bda 111static void intel_modeset_setup_hw_state(struct drm_device *dev);
e7457a9a 112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 393 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
5ab7b0b7
ID
401static const intel_limit_t intel_limits_bxt = {
402 /* FIXME: find real dot limits */
403 .dot = { .min = 0, .max = INT_MAX },
e6292556 404 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
405 .n = { .min = 1, .max = 1 },
406 .m1 = { .min = 2, .max = 2 },
407 /* FIXME: find real m2 limits */
408 .m2 = { .min = 2 << 22, .max = 255 << 22 },
409 .p1 = { .min = 2, .max = 4 },
410 .p2 = { .p2_slow = 1, .p2_fast = 20 },
411};
412
cdba954e
ACO
413static bool
414needs_modeset(struct drm_crtc_state *state)
415{
fc596660 416 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
417}
418
e0638cdf
PZ
419/**
420 * Returns whether any output on the specified pipe is of the specified type
421 */
4093561b 422bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 423{
409ee761 424 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
425 struct intel_encoder *encoder;
426
409ee761 427 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
428 if (encoder->type == type)
429 return true;
430
431 return false;
432}
433
d0737e1d
ACO
434/**
435 * Returns whether any output on the specified pipe will have the specified
436 * type after a staged modeset is complete, i.e., the same as
437 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
438 * encoder->crtc.
439 */
a93e255f
ACO
440static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
441 int type)
d0737e1d 442{
a93e255f 443 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 444 struct drm_connector *connector;
a93e255f 445 struct drm_connector_state *connector_state;
d0737e1d 446 struct intel_encoder *encoder;
a93e255f
ACO
447 int i, num_connectors = 0;
448
da3ced29 449 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
450 if (connector_state->crtc != crtc_state->base.crtc)
451 continue;
452
453 num_connectors++;
d0737e1d 454
a93e255f
ACO
455 encoder = to_intel_encoder(connector_state->best_encoder);
456 if (encoder->type == type)
d0737e1d 457 return true;
a93e255f
ACO
458 }
459
460 WARN_ON(num_connectors == 0);
d0737e1d
ACO
461
462 return false;
463}
464
a93e255f
ACO
465static const intel_limit_t *
466intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 467{
a93e255f 468 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 469 const intel_limit_t *limit;
b91ad0ec 470
a93e255f 471 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 472 if (intel_is_dual_link_lvds(dev)) {
1b894b59 473 if (refclk == 100000)
b91ad0ec
ZW
474 limit = &intel_limits_ironlake_dual_lvds_100m;
475 else
476 limit = &intel_limits_ironlake_dual_lvds;
477 } else {
1b894b59 478 if (refclk == 100000)
b91ad0ec
ZW
479 limit = &intel_limits_ironlake_single_lvds_100m;
480 else
481 limit = &intel_limits_ironlake_single_lvds;
482 }
c6bb3538 483 } else
b91ad0ec 484 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
485
486 return limit;
487}
488
a93e255f
ACO
489static const intel_limit_t *
490intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 491{
a93e255f 492 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
493 const intel_limit_t *limit;
494
a93e255f 495 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 496 if (intel_is_dual_link_lvds(dev))
e4b36699 497 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 498 else
e4b36699 499 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
501 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 502 limit = &intel_limits_g4x_hdmi;
a93e255f 503 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 504 limit = &intel_limits_g4x_sdvo;
044c7c41 505 } else /* The option is for other outputs */
e4b36699 506 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
507
508 return limit;
509}
510
a93e255f
ACO
511static const intel_limit_t *
512intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 513{
a93e255f 514 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
515 const intel_limit_t *limit;
516
5ab7b0b7
ID
517 if (IS_BROXTON(dev))
518 limit = &intel_limits_bxt;
519 else if (HAS_PCH_SPLIT(dev))
a93e255f 520 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 521 else if (IS_G4X(dev)) {
a93e255f 522 limit = intel_g4x_limit(crtc_state);
f2b115e6 523 } else if (IS_PINEVIEW(dev)) {
a93e255f 524 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 525 limit = &intel_limits_pineview_lvds;
2177832f 526 else
f2b115e6 527 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
528 } else if (IS_CHERRYVIEW(dev)) {
529 limit = &intel_limits_chv;
a0c4da24 530 } else if (IS_VALLEYVIEW(dev)) {
dc730512 531 limit = &intel_limits_vlv;
a6c45cf0 532 } else if (!IS_GEN2(dev)) {
a93e255f 533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
534 limit = &intel_limits_i9xx_lvds;
535 else
536 limit = &intel_limits_i9xx_sdvo;
79e53945 537 } else {
a93e255f 538 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 539 limit = &intel_limits_i8xx_lvds;
a93e255f 540 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 541 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
542 else
543 limit = &intel_limits_i8xx_dac;
79e53945
JB
544 }
545 return limit;
546}
547
dccbea3b
ID
548/*
549 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
550 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
551 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
552 * The helpers' return value is the rate of the clock that is fed to the
553 * display engine's pipe which can be the above fast dot clock rate or a
554 * divided-down version of it.
555 */
f2b115e6 556/* m1 is reserved as 0 in Pineview, n is a ring counter */
dccbea3b 557static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
79e53945 558{
2177832f
SL
559 clock->m = clock->m2 + 2;
560 clock->p = clock->p1 * clock->p2;
ed5ca77e 561 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 562 return 0;
fb03ac01
VS
563 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
564 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
565
566 return clock->dot;
2177832f
SL
567}
568
7429e9d4
DV
569static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
570{
571 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
572}
573
dccbea3b 574static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
2177832f 575{
7429e9d4 576 clock->m = i9xx_dpll_compute_m(clock);
79e53945 577 clock->p = clock->p1 * clock->p2;
ed5ca77e 578 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 579 return 0;
fb03ac01
VS
580 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
581 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
582
583 return clock->dot;
79e53945
JB
584}
585
dccbea3b 586static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
589eca67
ID
587{
588 clock->m = clock->m1 * clock->m2;
589 clock->p = clock->p1 * clock->p2;
590 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 591 return 0;
589eca67
ID
592 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
593 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
594
595 return clock->dot / 5;
589eca67
ID
596}
597
dccbea3b 598int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
ef9348c8
CML
599{
600 clock->m = clock->m1 * clock->m2;
601 clock->p = clock->p1 * clock->p2;
602 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 603 return 0;
ef9348c8
CML
604 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
605 clock->n << 22);
606 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
607
608 return clock->dot / 5;
ef9348c8
CML
609}
610
7c04d1d9 611#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
612/**
613 * Returns whether the given set of divisors are valid for a given refclk with
614 * the given connectors.
615 */
616
1b894b59
CW
617static bool intel_PLL_is_valid(struct drm_device *dev,
618 const intel_limit_t *limit,
619 const intel_clock_t *clock)
79e53945 620{
f01b7962
VS
621 if (clock->n < limit->n.min || limit->n.max < clock->n)
622 INTELPllInvalid("n out of range\n");
79e53945 623 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 624 INTELPllInvalid("p1 out of range\n");
79e53945 625 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 626 INTELPllInvalid("m2 out of range\n");
79e53945 627 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 628 INTELPllInvalid("m1 out of range\n");
f01b7962 629
5ab7b0b7 630 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
631 if (clock->m1 <= clock->m2)
632 INTELPllInvalid("m1 <= m2\n");
633
5ab7b0b7 634 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
635 if (clock->p < limit->p.min || limit->p.max < clock->p)
636 INTELPllInvalid("p out of range\n");
637 if (clock->m < limit->m.min || limit->m.max < clock->m)
638 INTELPllInvalid("m out of range\n");
639 }
640
79e53945 641 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 642 INTELPllInvalid("vco out of range\n");
79e53945
JB
643 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
644 * connector, etc., rather than just a single range.
645 */
646 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 647 INTELPllInvalid("dot out of range\n");
79e53945
JB
648
649 return true;
650}
651
3b1429d9
VS
652static int
653i9xx_select_p2_div(const intel_limit_t *limit,
654 const struct intel_crtc_state *crtc_state,
655 int target)
79e53945 656{
3b1429d9 657 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 658
a93e255f 659 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 660 /*
a210b028
DV
661 * For LVDS just rely on its current settings for dual-channel.
662 * We haven't figured out how to reliably set up different
663 * single/dual channel state, if we even can.
79e53945 664 */
1974cad0 665 if (intel_is_dual_link_lvds(dev))
3b1429d9 666 return limit->p2.p2_fast;
79e53945 667 else
3b1429d9 668 return limit->p2.p2_slow;
79e53945
JB
669 } else {
670 if (target < limit->p2.dot_limit)
3b1429d9 671 return limit->p2.p2_slow;
79e53945 672 else
3b1429d9 673 return limit->p2.p2_fast;
79e53945 674 }
3b1429d9
VS
675}
676
677static bool
678i9xx_find_best_dpll(const intel_limit_t *limit,
679 struct intel_crtc_state *crtc_state,
680 int target, int refclk, intel_clock_t *match_clock,
681 intel_clock_t *best_clock)
682{
683 struct drm_device *dev = crtc_state->base.crtc->dev;
684 intel_clock_t clock;
685 int err = target;
79e53945 686
0206e353 687 memset(best_clock, 0, sizeof(*best_clock));
79e53945 688
3b1429d9
VS
689 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
690
42158660
ZY
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692 clock.m1++) {
693 for (clock.m2 = limit->m2.min;
694 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 695 if (clock.m2 >= clock.m1)
42158660
ZY
696 break;
697 for (clock.n = limit->n.min;
698 clock.n <= limit->n.max; clock.n++) {
699 for (clock.p1 = limit->p1.min;
700 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
701 int this_err;
702
dccbea3b 703 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
704 if (!intel_PLL_is_valid(dev, limit,
705 &clock))
706 continue;
707 if (match_clock &&
708 clock.p != match_clock->p)
709 continue;
710
711 this_err = abs(clock.dot - target);
712 if (this_err < err) {
713 *best_clock = clock;
714 err = this_err;
715 }
716 }
717 }
718 }
719 }
720
721 return (err != target);
722}
723
724static bool
a93e255f
ACO
725pnv_find_best_dpll(const intel_limit_t *limit,
726 struct intel_crtc_state *crtc_state,
ee9300bb
DV
727 int target, int refclk, intel_clock_t *match_clock,
728 intel_clock_t *best_clock)
79e53945 729{
3b1429d9 730 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 731 intel_clock_t clock;
79e53945
JB
732 int err = target;
733
0206e353 734 memset(best_clock, 0, sizeof(*best_clock));
79e53945 735
3b1429d9
VS
736 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
737
42158660
ZY
738 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
739 clock.m1++) {
740 for (clock.m2 = limit->m2.min;
741 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
742 for (clock.n = limit->n.min;
743 clock.n <= limit->n.max; clock.n++) {
744 for (clock.p1 = limit->p1.min;
745 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
746 int this_err;
747
dccbea3b 748 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
749 if (!intel_PLL_is_valid(dev, limit,
750 &clock))
79e53945 751 continue;
cec2f356
SP
752 if (match_clock &&
753 clock.p != match_clock->p)
754 continue;
79e53945
JB
755
756 this_err = abs(clock.dot - target);
757 if (this_err < err) {
758 *best_clock = clock;
759 err = this_err;
760 }
761 }
762 }
763 }
764 }
765
766 return (err != target);
767}
768
d4906093 769static bool
a93e255f
ACO
770g4x_find_best_dpll(const intel_limit_t *limit,
771 struct intel_crtc_state *crtc_state,
ee9300bb
DV
772 int target, int refclk, intel_clock_t *match_clock,
773 intel_clock_t *best_clock)
d4906093 774{
3b1429d9 775 struct drm_device *dev = crtc_state->base.crtc->dev;
d4906093
ML
776 intel_clock_t clock;
777 int max_n;
3b1429d9 778 bool found = false;
6ba770dc
AJ
779 /* approximately equals target * 0.00585 */
780 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
781
782 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
783
784 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
d4906093 786 max_n = limit->n.max;
f77f13e2 787 /* based on hardware requirement, prefer smaller n to precision */
d4906093 788 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 789 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
790 for (clock.m1 = limit->m1.max;
791 clock.m1 >= limit->m1.min; clock.m1--) {
792 for (clock.m2 = limit->m2.max;
793 clock.m2 >= limit->m2.min; clock.m2--) {
794 for (clock.p1 = limit->p1.max;
795 clock.p1 >= limit->p1.min; clock.p1--) {
796 int this_err;
797
dccbea3b 798 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
799 if (!intel_PLL_is_valid(dev, limit,
800 &clock))
d4906093 801 continue;
1b894b59
CW
802
803 this_err = abs(clock.dot - target);
d4906093
ML
804 if (this_err < err_most) {
805 *best_clock = clock;
806 err_most = this_err;
807 max_n = clock.n;
808 found = true;
809 }
810 }
811 }
812 }
813 }
2c07245f
ZW
814 return found;
815}
816
d5dd62bd
ID
817/*
818 * Check if the calculated PLL configuration is more optimal compared to the
819 * best configuration and error found so far. Return the calculated error.
820 */
821static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
822 const intel_clock_t *calculated_clock,
823 const intel_clock_t *best_clock,
824 unsigned int best_error_ppm,
825 unsigned int *error_ppm)
826{
9ca3ba01
ID
827 /*
828 * For CHV ignore the error and consider only the P value.
829 * Prefer a bigger P value based on HW requirements.
830 */
831 if (IS_CHERRYVIEW(dev)) {
832 *error_ppm = 0;
833
834 return calculated_clock->p > best_clock->p;
835 }
836
24be4e46
ID
837 if (WARN_ON_ONCE(!target_freq))
838 return false;
839
d5dd62bd
ID
840 *error_ppm = div_u64(1000000ULL *
841 abs(target_freq - calculated_clock->dot),
842 target_freq);
843 /*
844 * Prefer a better P value over a better (smaller) error if the error
845 * is small. Ensure this preference for future configurations too by
846 * setting the error to 0.
847 */
848 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
849 *error_ppm = 0;
850
851 return true;
852 }
853
854 return *error_ppm + 10 < best_error_ppm;
855}
856
a0c4da24 857static bool
a93e255f
ACO
858vlv_find_best_dpll(const intel_limit_t *limit,
859 struct intel_crtc_state *crtc_state,
ee9300bb
DV
860 int target, int refclk, intel_clock_t *match_clock,
861 intel_clock_t *best_clock)
a0c4da24 862{
a93e255f 863 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 864 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 865 intel_clock_t clock;
69e4f900 866 unsigned int bestppm = 1000000;
27e639bf
VS
867 /* min update 19.2 MHz */
868 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 869 bool found = false;
a0c4da24 870
6b4bf1c4
VS
871 target *= 5; /* fast clock */
872
873 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
874
875 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 876 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 877 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 878 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 879 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 880 clock.p = clock.p1 * clock.p2;
a0c4da24 881 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 882 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 883 unsigned int ppm;
69e4f900 884
6b4bf1c4
VS
885 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
886 refclk * clock.m1);
887
dccbea3b 888 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 889
f01b7962
VS
890 if (!intel_PLL_is_valid(dev, limit,
891 &clock))
43b0ac53
VS
892 continue;
893
d5dd62bd
ID
894 if (!vlv_PLL_is_optimal(dev, target,
895 &clock,
896 best_clock,
897 bestppm, &ppm))
898 continue;
6b4bf1c4 899
d5dd62bd
ID
900 *best_clock = clock;
901 bestppm = ppm;
902 found = true;
a0c4da24
JB
903 }
904 }
905 }
906 }
a0c4da24 907
49e497ef 908 return found;
a0c4da24 909}
a4fc5ed6 910
ef9348c8 911static bool
a93e255f
ACO
912chv_find_best_dpll(const intel_limit_t *limit,
913 struct intel_crtc_state *crtc_state,
ef9348c8
CML
914 int target, int refclk, intel_clock_t *match_clock,
915 intel_clock_t *best_clock)
916{
a93e255f 917 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 918 struct drm_device *dev = crtc->base.dev;
9ca3ba01 919 unsigned int best_error_ppm;
ef9348c8
CML
920 intel_clock_t clock;
921 uint64_t m2;
922 int found = false;
923
924 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 925 best_error_ppm = 1000000;
ef9348c8
CML
926
927 /*
928 * Based on hardware doc, the n always set to 1, and m1 always
929 * set to 2. If requires to support 200Mhz refclk, we need to
930 * revisit this because n may not 1 anymore.
931 */
932 clock.n = 1, clock.m1 = 2;
933 target *= 5; /* fast clock */
934
935 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
936 for (clock.p2 = limit->p2.p2_fast;
937 clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 939 unsigned int error_ppm;
ef9348c8
CML
940
941 clock.p = clock.p1 * clock.p2;
942
943 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
944 clock.n) << 22, refclk * clock.m1);
945
946 if (m2 > INT_MAX/clock.m1)
947 continue;
948
949 clock.m2 = m2;
950
dccbea3b 951 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
952
953 if (!intel_PLL_is_valid(dev, limit, &clock))
954 continue;
955
9ca3ba01
ID
956 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
957 best_error_ppm, &error_ppm))
958 continue;
959
960 *best_clock = clock;
961 best_error_ppm = error_ppm;
962 found = true;
ef9348c8
CML
963 }
964 }
965
966 return found;
967}
968
5ab7b0b7
ID
969bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
970 intel_clock_t *best_clock)
971{
972 int refclk = i9xx_get_refclk(crtc_state, 0);
973
974 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
975 target_clock, refclk, NULL, best_clock);
976}
977
20ddf665
VS
978bool intel_crtc_active(struct drm_crtc *crtc)
979{
980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
981
982 /* Be paranoid as we can arrive here with only partial
983 * state retrieved from the hardware during setup.
984 *
241bfc38 985 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
986 * as Haswell has gained clock readout/fastboot support.
987 *
66e514c1 988 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 989 * properly reconstruct framebuffers.
c3d1f436
MR
990 *
991 * FIXME: The intel_crtc->active here should be switched to
992 * crtc->state->active once we have proper CRTC states wired up
993 * for atomic.
20ddf665 994 */
c3d1f436 995 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 996 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
997}
998
a5c961d1
PZ
999enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1000 enum pipe pipe)
1001{
1002 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1004
6e3c9717 1005 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1006}
1007
fbf49ea2
VS
1008static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1009{
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 reg = PIPEDSL(pipe);
1012 u32 line1, line2;
1013 u32 line_mask;
1014
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
1020 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1021 msleep(5);
fbf49ea2
VS
1022 line2 = I915_READ(reg) & line_mask;
1023
1024 return line1 == line2;
1025}
1026
ab7ad7f6
KP
1027/*
1028 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1029 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1030 *
1031 * After disabling a pipe, we can't wait for vblank in the usual way,
1032 * spinning on the vblank interrupt status bit, since we won't actually
1033 * see an interrupt when the pipe is disabled.
1034 *
ab7ad7f6
KP
1035 * On Gen4 and above:
1036 * wait for the pipe register state bit to turn off
1037 *
1038 * Otherwise:
1039 * wait for the display line value to settle (it usually
1040 * ends up stopping at the start of the next frame).
58e10eb9 1041 *
9d0498a2 1042 */
575f7ab7 1043static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1044{
575f7ab7 1045 struct drm_device *dev = crtc->base.dev;
9d0498a2 1046 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1047 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1048 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1049
1050 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1051 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1052
1053 /* Wait for the Pipe State to go off */
58e10eb9
CW
1054 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1055 100))
284637d9 1056 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1057 } else {
ab7ad7f6 1058 /* Wait for the display line to settle */
fbf49ea2 1059 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1060 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1061 }
79e53945
JB
1062}
1063
b0ea7d37
DL
1064/*
1065 * ibx_digital_port_connected - is the specified port connected?
1066 * @dev_priv: i915 private structure
1067 * @port: the port to test
1068 *
1069 * Returns true if @port is connected, false otherwise.
1070 */
1071bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1072 struct intel_digital_port *port)
1073{
1074 u32 bit;
1075
c36346e3 1076 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1077 switch (port->port) {
c36346e3
DL
1078 case PORT_B:
1079 bit = SDE_PORTB_HOTPLUG;
1080 break;
1081 case PORT_C:
1082 bit = SDE_PORTC_HOTPLUG;
1083 break;
1084 case PORT_D:
1085 bit = SDE_PORTD_HOTPLUG;
1086 break;
1087 default:
1088 return true;
1089 }
1090 } else {
eba905b2 1091 switch (port->port) {
c36346e3
DL
1092 case PORT_B:
1093 bit = SDE_PORTB_HOTPLUG_CPT;
1094 break;
1095 case PORT_C:
1096 bit = SDE_PORTC_HOTPLUG_CPT;
1097 break;
1098 case PORT_D:
1099 bit = SDE_PORTD_HOTPLUG_CPT;
1100 break;
1101 default:
1102 return true;
1103 }
b0ea7d37
DL
1104 }
1105
1106 return I915_READ(SDEISR) & bit;
1107}
1108
b24e7179
JB
1109static const char *state_string(bool enabled)
1110{
1111 return enabled ? "on" : "off";
1112}
1113
1114/* Only for pre-ILK configs */
55607e8a
DV
1115void assert_pll(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
b24e7179
JB
1117{
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121
1122 reg = DPLL(pipe);
1123 val = I915_READ(reg);
1124 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1125 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1126 "PLL state assertion failure (expected %s, current %s)\n",
1127 state_string(state), state_string(cur_state));
1128}
b24e7179 1129
23538ef1
JN
1130/* XXX: the dsi pll is shared between MIPI DSI ports */
1131static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1132{
1133 u32 val;
1134 bool cur_state;
1135
a580516d 1136 mutex_lock(&dev_priv->sb_lock);
23538ef1 1137 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1138 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1139
1140 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1141 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1142 "DSI PLL state assertion failure (expected %s, current %s)\n",
1143 state_string(state), state_string(cur_state));
1144}
1145#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1146#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1147
55607e8a 1148struct intel_shared_dpll *
e2b78267
DV
1149intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1150{
1151 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1152
6e3c9717 1153 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1154 return NULL;
1155
6e3c9717 1156 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1157}
1158
040484af 1159/* For ILK+ */
55607e8a
DV
1160void assert_shared_dpll(struct drm_i915_private *dev_priv,
1161 struct intel_shared_dpll *pll,
1162 bool state)
040484af 1163{
040484af 1164 bool cur_state;
5358901f 1165 struct intel_dpll_hw_state hw_state;
040484af 1166
92b27b08 1167 if (WARN (!pll,
46edb027 1168 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1169 return;
ee7b9f93 1170
5358901f 1171 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1172 I915_STATE_WARN(cur_state != state,
5358901f
DV
1173 "%s assertion failure (expected %s, current %s)\n",
1174 pll->name, state_string(state), state_string(cur_state));
040484af 1175}
040484af
JB
1176
1177static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179{
1180 int reg;
1181 u32 val;
1182 bool cur_state;
ad80a810
PZ
1183 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1184 pipe);
040484af 1185
affa9354
PZ
1186 if (HAS_DDI(dev_priv->dev)) {
1187 /* DDI does not have a specific FDI_TX register */
ad80a810 1188 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1189 val = I915_READ(reg);
ad80a810 1190 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1191 } else {
1192 reg = FDI_TX_CTL(pipe);
1193 val = I915_READ(reg);
1194 cur_state = !!(val & FDI_TX_ENABLE);
1195 }
e2c719b7 1196 I915_STATE_WARN(cur_state != state,
040484af
JB
1197 "FDI TX state assertion failure (expected %s, current %s)\n",
1198 state_string(state), state_string(cur_state));
1199}
1200#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1201#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1202
1203static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1204 enum pipe pipe, bool state)
1205{
1206 int reg;
1207 u32 val;
1208 bool cur_state;
1209
d63fa0dc
PZ
1210 reg = FDI_RX_CTL(pipe);
1211 val = I915_READ(reg);
1212 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1213 I915_STATE_WARN(cur_state != state,
040484af
JB
1214 "FDI RX state assertion failure (expected %s, current %s)\n",
1215 state_string(state), state_string(cur_state));
1216}
1217#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1218#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1219
1220static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1221 enum pipe pipe)
1222{
1223 int reg;
1224 u32 val;
1225
1226 /* ILK FDI PLL is always enabled */
3d13ef2e 1227 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1228 return;
1229
bf507ef7 1230 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1231 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1232 return;
1233
040484af
JB
1234 reg = FDI_TX_CTL(pipe);
1235 val = I915_READ(reg);
e2c719b7 1236 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1237}
1238
55607e8a
DV
1239void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
040484af
JB
1241{
1242 int reg;
1243 u32 val;
55607e8a 1244 bool cur_state;
040484af
JB
1245
1246 reg = FDI_RX_CTL(pipe);
1247 val = I915_READ(reg);
55607e8a 1248 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1249 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1250 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1251 state_string(state), state_string(cur_state));
040484af
JB
1252}
1253
b680c37a
DV
1254void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1255 enum pipe pipe)
ea0760cf 1256{
bedd4dba
JN
1257 struct drm_device *dev = dev_priv->dev;
1258 int pp_reg;
ea0760cf
JB
1259 u32 val;
1260 enum pipe panel_pipe = PIPE_A;
0de3b485 1261 bool locked = true;
ea0760cf 1262
bedd4dba
JN
1263 if (WARN_ON(HAS_DDI(dev)))
1264 return;
1265
1266 if (HAS_PCH_SPLIT(dev)) {
1267 u32 port_sel;
1268
ea0760cf 1269 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1270 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1271
1272 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1273 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1274 panel_pipe = PIPE_B;
1275 /* XXX: else fix for eDP */
1276 } else if (IS_VALLEYVIEW(dev)) {
1277 /* presumably write lock depends on pipe, not port select */
1278 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1279 panel_pipe = pipe;
ea0760cf
JB
1280 } else {
1281 pp_reg = PP_CONTROL;
bedd4dba
JN
1282 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1283 panel_pipe = PIPE_B;
ea0760cf
JB
1284 }
1285
1286 val = I915_READ(pp_reg);
1287 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1288 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1289 locked = false;
1290
e2c719b7 1291 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1292 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1293 pipe_name(pipe));
ea0760cf
JB
1294}
1295
93ce0ba6
JN
1296static void assert_cursor(struct drm_i915_private *dev_priv,
1297 enum pipe pipe, bool state)
1298{
1299 struct drm_device *dev = dev_priv->dev;
1300 bool cur_state;
1301
d9d82081 1302 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1303 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1304 else
5efb3e28 1305 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1306
e2c719b7 1307 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1308 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1309 pipe_name(pipe), state_string(state), state_string(cur_state));
1310}
1311#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1312#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1313
b840d907
JB
1314void assert_pipe(struct drm_i915_private *dev_priv,
1315 enum pipe pipe, bool state)
b24e7179
JB
1316{
1317 int reg;
1318 u32 val;
63d7bbe9 1319 bool cur_state;
702e7a56
PZ
1320 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1321 pipe);
b24e7179 1322
b6b5d049
VS
1323 /* if we need the pipe quirk it must be always on */
1324 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1325 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1326 state = true;
1327
f458ebbc 1328 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1329 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1330 cur_state = false;
1331 } else {
1332 reg = PIPECONF(cpu_transcoder);
1333 val = I915_READ(reg);
1334 cur_state = !!(val & PIPECONF_ENABLE);
1335 }
1336
e2c719b7 1337 I915_STATE_WARN(cur_state != state,
63d7bbe9 1338 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1339 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1340}
1341
931872fc
CW
1342static void assert_plane(struct drm_i915_private *dev_priv,
1343 enum plane plane, bool state)
b24e7179
JB
1344{
1345 int reg;
1346 u32 val;
931872fc 1347 bool cur_state;
b24e7179
JB
1348
1349 reg = DSPCNTR(plane);
1350 val = I915_READ(reg);
931872fc 1351 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1352 I915_STATE_WARN(cur_state != state,
931872fc
CW
1353 "plane %c assertion failure (expected %s, current %s)\n",
1354 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1355}
1356
931872fc
CW
1357#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1358#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1359
b24e7179
JB
1360static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1361 enum pipe pipe)
1362{
653e1026 1363 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1364 int reg, i;
1365 u32 val;
1366 int cur_pipe;
1367
653e1026
VS
1368 /* Primary planes are fixed to pipes on gen4+ */
1369 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1370 reg = DSPCNTR(pipe);
1371 val = I915_READ(reg);
e2c719b7 1372 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1373 "plane %c assertion failure, should be disabled but not\n",
1374 plane_name(pipe));
19ec1358 1375 return;
28c05794 1376 }
19ec1358 1377
b24e7179 1378 /* Need to check both planes against the pipe */
055e393f 1379 for_each_pipe(dev_priv, i) {
b24e7179
JB
1380 reg = DSPCNTR(i);
1381 val = I915_READ(reg);
1382 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1383 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1384 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1385 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1386 plane_name(i), pipe_name(pipe));
b24e7179
JB
1387 }
1388}
1389
19332d7a
JB
1390static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe)
1392{
20674eef 1393 struct drm_device *dev = dev_priv->dev;
1fe47785 1394 int reg, sprite;
19332d7a
JB
1395 u32 val;
1396
7feb8b88 1397 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1398 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1399 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1400 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1401 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1402 sprite, pipe_name(pipe));
1403 }
1404 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1405 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1406 reg = SPCNTR(pipe, sprite);
20674eef 1407 val = I915_READ(reg);
e2c719b7 1408 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1409 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1410 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1411 }
1412 } else if (INTEL_INFO(dev)->gen >= 7) {
1413 reg = SPRCTL(pipe);
19332d7a 1414 val = I915_READ(reg);
e2c719b7 1415 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1416 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1417 plane_name(pipe), pipe_name(pipe));
1418 } else if (INTEL_INFO(dev)->gen >= 5) {
1419 reg = DVSCNTR(pipe);
19332d7a 1420 val = I915_READ(reg);
e2c719b7 1421 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1422 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1423 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1424 }
1425}
1426
08c71e5e
VS
1427static void assert_vblank_disabled(struct drm_crtc *crtc)
1428{
e2c719b7 1429 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1430 drm_crtc_vblank_put(crtc);
1431}
1432
89eff4be 1433static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1434{
1435 u32 val;
1436 bool enabled;
1437
e2c719b7 1438 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1439
92f2584a
JB
1440 val = I915_READ(PCH_DREF_CONTROL);
1441 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1442 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1443 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1444}
1445
ab9412ba
DV
1446static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1447 enum pipe pipe)
92f2584a
JB
1448{
1449 int reg;
1450 u32 val;
1451 bool enabled;
1452
ab9412ba 1453 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1454 val = I915_READ(reg);
1455 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1456 I915_STATE_WARN(enabled,
9db4a9c7
JB
1457 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1458 pipe_name(pipe));
92f2584a
JB
1459}
1460
4e634389
KP
1461static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1462 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1463{
1464 if ((val & DP_PORT_EN) == 0)
1465 return false;
1466
1467 if (HAS_PCH_CPT(dev_priv->dev)) {
1468 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1469 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1470 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1471 return false;
44f37d1f
CML
1472 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1473 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1474 return false;
f0575e92
KP
1475 } else {
1476 if ((val & DP_PIPE_MASK) != (pipe << 30))
1477 return false;
1478 }
1479 return true;
1480}
1481
1519b995
KP
1482static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1483 enum pipe pipe, u32 val)
1484{
dc0fa718 1485 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1486 return false;
1487
1488 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1489 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1490 return false;
44f37d1f
CML
1491 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1492 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1493 return false;
1519b995 1494 } else {
dc0fa718 1495 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1496 return false;
1497 }
1498 return true;
1499}
1500
1501static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1502 enum pipe pipe, u32 val)
1503{
1504 if ((val & LVDS_PORT_EN) == 0)
1505 return false;
1506
1507 if (HAS_PCH_CPT(dev_priv->dev)) {
1508 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1509 return false;
1510 } else {
1511 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1512 return false;
1513 }
1514 return true;
1515}
1516
1517static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1519{
1520 if ((val & ADPA_DAC_ENABLE) == 0)
1521 return false;
1522 if (HAS_PCH_CPT(dev_priv->dev)) {
1523 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524 return false;
1525 } else {
1526 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1527 return false;
1528 }
1529 return true;
1530}
1531
291906f1 1532static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1533 enum pipe pipe, int reg, u32 port_sel)
291906f1 1534{
47a05eca 1535 u32 val = I915_READ(reg);
e2c719b7 1536 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1537 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1538 reg, pipe_name(pipe));
de9a35ab 1539
e2c719b7 1540 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1541 && (val & DP_PIPEB_SELECT),
de9a35ab 1542 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1543}
1544
1545static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1546 enum pipe pipe, int reg)
1547{
47a05eca 1548 u32 val = I915_READ(reg);
e2c719b7 1549 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1550 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1551 reg, pipe_name(pipe));
de9a35ab 1552
e2c719b7 1553 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1554 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1555 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1556}
1557
1558static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1559 enum pipe pipe)
1560{
1561 int reg;
1562 u32 val;
291906f1 1563
f0575e92
KP
1564 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1565 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1566 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1567
1568 reg = PCH_ADPA;
1569 val = I915_READ(reg);
e2c719b7 1570 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1571 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1572 pipe_name(pipe));
291906f1
JB
1573
1574 reg = PCH_LVDS;
1575 val = I915_READ(reg);
e2c719b7 1576 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1577 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1578 pipe_name(pipe));
291906f1 1579
e2debe91
PZ
1580 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1581 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1582 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1583}
1584
40e9cf64
JB
1585static void intel_init_dpio(struct drm_device *dev)
1586{
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589 if (!IS_VALLEYVIEW(dev))
1590 return;
1591
a09caddd
CML
1592 /*
1593 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1594 * CHV x1 PHY (DP/HDMI D)
1595 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1596 */
1597 if (IS_CHERRYVIEW(dev)) {
1598 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1599 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1600 } else {
1601 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1602 }
5382f5f3
JB
1603}
1604
d288f65f 1605static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1606 const struct intel_crtc_state *pipe_config)
87442f73 1607{
426115cf
DV
1608 struct drm_device *dev = crtc->base.dev;
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1610 int reg = DPLL(crtc->pipe);
d288f65f 1611 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1612
426115cf 1613 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1614
1615 /* No really, not for ILK+ */
1616 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1617
1618 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1619 if (IS_MOBILE(dev_priv->dev))
426115cf 1620 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1621
426115cf
DV
1622 I915_WRITE(reg, dpll);
1623 POSTING_READ(reg);
1624 udelay(150);
1625
1626 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1627 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1628
d288f65f 1629 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1630 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1631
1632 /* We do this three times for luck */
426115cf 1633 I915_WRITE(reg, dpll);
87442f73
DV
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
426115cf 1636 I915_WRITE(reg, dpll);
87442f73
DV
1637 POSTING_READ(reg);
1638 udelay(150); /* wait for warmup */
426115cf 1639 I915_WRITE(reg, dpll);
87442f73
DV
1640 POSTING_READ(reg);
1641 udelay(150); /* wait for warmup */
1642}
1643
d288f65f 1644static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1645 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1646{
1647 struct drm_device *dev = crtc->base.dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 int pipe = crtc->pipe;
1650 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1651 u32 tmp;
1652
1653 assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1656
a580516d 1657 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1658
1659 /* Enable back the 10bit clock to display controller */
1660 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1661 tmp |= DPIO_DCLKP_EN;
1662 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1663
54433e91
VS
1664 mutex_unlock(&dev_priv->sb_lock);
1665
9d556c99
CML
1666 /*
1667 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1668 */
1669 udelay(1);
1670
1671 /* Enable PLL */
d288f65f 1672 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1673
1674 /* Check PLL is locked */
a11b0703 1675 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1676 DRM_ERROR("PLL %d failed to lock\n", pipe);
1677
a11b0703 1678 /* not sure when this should be written */
d288f65f 1679 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1680 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1681}
1682
1c4e0274
VS
1683static int intel_num_dvo_pipes(struct drm_device *dev)
1684{
1685 struct intel_crtc *crtc;
1686 int count = 0;
1687
1688 for_each_intel_crtc(dev, crtc)
3538b9df 1689 count += crtc->base.state->active &&
409ee761 1690 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1691
1692 return count;
1693}
1694
66e3d5c0 1695static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1696{
66e3d5c0
DV
1697 struct drm_device *dev = crtc->base.dev;
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 int reg = DPLL(crtc->pipe);
6e3c9717 1700 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1701
66e3d5c0 1702 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1703
63d7bbe9 1704 /* No really, not for ILK+ */
3d13ef2e 1705 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1706
1707 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1708 if (IS_MOBILE(dev) && !IS_I830(dev))
1709 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1710
1c4e0274
VS
1711 /* Enable DVO 2x clock on both PLLs if necessary */
1712 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1713 /*
1714 * It appears to be important that we don't enable this
1715 * for the current pipe before otherwise configuring the
1716 * PLL. No idea how this should be handled if multiple
1717 * DVO outputs are enabled simultaneosly.
1718 */
1719 dpll |= DPLL_DVO_2X_MODE;
1720 I915_WRITE(DPLL(!crtc->pipe),
1721 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1722 }
66e3d5c0
DV
1723
1724 /* Wait for the clocks to stabilize. */
1725 POSTING_READ(reg);
1726 udelay(150);
1727
1728 if (INTEL_INFO(dev)->gen >= 4) {
1729 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1730 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1731 } else {
1732 /* The pixel multiplier can only be updated once the
1733 * DPLL is enabled and the clocks are stable.
1734 *
1735 * So write it again.
1736 */
1737 I915_WRITE(reg, dpll);
1738 }
63d7bbe9
JB
1739
1740 /* We do this three times for luck */
66e3d5c0 1741 I915_WRITE(reg, dpll);
63d7bbe9
JB
1742 POSTING_READ(reg);
1743 udelay(150); /* wait for warmup */
66e3d5c0 1744 I915_WRITE(reg, dpll);
63d7bbe9
JB
1745 POSTING_READ(reg);
1746 udelay(150); /* wait for warmup */
66e3d5c0 1747 I915_WRITE(reg, dpll);
63d7bbe9
JB
1748 POSTING_READ(reg);
1749 udelay(150); /* wait for warmup */
1750}
1751
1752/**
50b44a44 1753 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1754 * @dev_priv: i915 private structure
1755 * @pipe: pipe PLL to disable
1756 *
1757 * Disable the PLL for @pipe, making sure the pipe is off first.
1758 *
1759 * Note! This is for pre-ILK only.
1760 */
1c4e0274 1761static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1762{
1c4e0274
VS
1763 struct drm_device *dev = crtc->base.dev;
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 enum pipe pipe = crtc->pipe;
1766
1767 /* Disable DVO 2x clock on both PLLs if necessary */
1768 if (IS_I830(dev) &&
409ee761 1769 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1770 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1771 I915_WRITE(DPLL(PIPE_B),
1772 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1773 I915_WRITE(DPLL(PIPE_A),
1774 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1775 }
1776
b6b5d049
VS
1777 /* Don't disable pipe or pipe PLLs if needed */
1778 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1779 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1780 return;
1781
1782 /* Make sure the pipe isn't still relying on us */
1783 assert_pipe_disabled(dev_priv, pipe);
1784
b8afb911 1785 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1786 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1787}
1788
f6071166
JB
1789static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1790{
b8afb911 1791 u32 val;
f6071166
JB
1792
1793 /* Make sure the pipe isn't still relying on us */
1794 assert_pipe_disabled(dev_priv, pipe);
1795
e5cbfbfb
ID
1796 /*
1797 * Leave integrated clock source and reference clock enabled for pipe B.
1798 * The latter is needed for VGA hotplug / manual detection.
1799 */
b8afb911 1800 val = DPLL_VGA_MODE_DIS;
f6071166 1801 if (pipe == PIPE_B)
60bfe44f 1802 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
f6071166
JB
1803 I915_WRITE(DPLL(pipe), val);
1804 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1805
1806}
1807
1808static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1809{
d752048d 1810 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1811 u32 val;
1812
a11b0703
VS
1813 /* Make sure the pipe isn't still relying on us */
1814 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1815
a11b0703 1816 /* Set PLL en = 0 */
60bfe44f
VS
1817 val = DPLL_SSC_REF_CLK_CHV |
1818 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1819 if (pipe != PIPE_A)
1820 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1821 I915_WRITE(DPLL(pipe), val);
1822 POSTING_READ(DPLL(pipe));
d752048d 1823
a580516d 1824 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1825
1826 /* Disable 10bit clock to display controller */
1827 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1828 val &= ~DPIO_DCLKP_EN;
1829 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1830
61407f6d
VS
1831 /* disable left/right clock distribution */
1832 if (pipe != PIPE_B) {
1833 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1834 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1835 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1836 } else {
1837 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1838 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1839 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1840 }
1841
a580516d 1842 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1843}
1844
e4607fcf 1845void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1846 struct intel_digital_port *dport,
1847 unsigned int expected_mask)
89b667f8
JB
1848{
1849 u32 port_mask;
00fc31b7 1850 int dpll_reg;
89b667f8 1851
e4607fcf
CML
1852 switch (dport->port) {
1853 case PORT_B:
89b667f8 1854 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1855 dpll_reg = DPLL(0);
e4607fcf
CML
1856 break;
1857 case PORT_C:
89b667f8 1858 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1859 dpll_reg = DPLL(0);
9b6de0a1 1860 expected_mask <<= 4;
00fc31b7
CML
1861 break;
1862 case PORT_D:
1863 port_mask = DPLL_PORTD_READY_MASK;
1864 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1865 break;
1866 default:
1867 BUG();
1868 }
89b667f8 1869
9b6de0a1
VS
1870 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1871 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1872 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1873}
1874
b14b1055
DV
1875static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1876{
1877 struct drm_device *dev = crtc->base.dev;
1878 struct drm_i915_private *dev_priv = dev->dev_private;
1879 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1880
be19f0ff
CW
1881 if (WARN_ON(pll == NULL))
1882 return;
1883
3e369b76 1884 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1885 if (pll->active == 0) {
1886 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1887 WARN_ON(pll->on);
1888 assert_shared_dpll_disabled(dev_priv, pll);
1889
1890 pll->mode_set(dev_priv, pll);
1891 }
1892}
1893
92f2584a 1894/**
85b3894f 1895 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1896 * @dev_priv: i915 private structure
1897 * @pipe: pipe PLL to enable
1898 *
1899 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1900 * drives the transcoder clock.
1901 */
85b3894f 1902static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1903{
3d13ef2e
DL
1904 struct drm_device *dev = crtc->base.dev;
1905 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1906 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1907
87a875bb 1908 if (WARN_ON(pll == NULL))
48da64a8
CW
1909 return;
1910
3e369b76 1911 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1912 return;
ee7b9f93 1913
74dd6928 1914 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1915 pll->name, pll->active, pll->on,
e2b78267 1916 crtc->base.base.id);
92f2584a 1917
cdbd2316
DV
1918 if (pll->active++) {
1919 WARN_ON(!pll->on);
e9d6944e 1920 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1921 return;
1922 }
f4a091c7 1923 WARN_ON(pll->on);
ee7b9f93 1924
bd2bb1b9
PZ
1925 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1926
46edb027 1927 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1928 pll->enable(dev_priv, pll);
ee7b9f93 1929 pll->on = true;
92f2584a
JB
1930}
1931
f6daaec2 1932static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1933{
3d13ef2e
DL
1934 struct drm_device *dev = crtc->base.dev;
1935 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1936 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1937
92f2584a 1938 /* PCH only available on ILK+ */
80aa9312
JB
1939 if (INTEL_INFO(dev)->gen < 5)
1940 return;
1941
eddfcbcd
ML
1942 if (pll == NULL)
1943 return;
92f2584a 1944
eddfcbcd 1945 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
48da64a8 1946 return;
7a419866 1947
46edb027
DV
1948 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1949 pll->name, pll->active, pll->on,
e2b78267 1950 crtc->base.base.id);
7a419866 1951
48da64a8 1952 if (WARN_ON(pll->active == 0)) {
e9d6944e 1953 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1954 return;
1955 }
1956
e9d6944e 1957 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1958 WARN_ON(!pll->on);
cdbd2316 1959 if (--pll->active)
7a419866 1960 return;
ee7b9f93 1961
46edb027 1962 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1963 pll->disable(dev_priv, pll);
ee7b9f93 1964 pll->on = false;
bd2bb1b9
PZ
1965
1966 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1967}
1968
b8a4f404
PZ
1969static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1970 enum pipe pipe)
040484af 1971{
23670b32 1972 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1973 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1975 uint32_t reg, val, pipeconf_val;
040484af
JB
1976
1977 /* PCH only available on ILK+ */
55522f37 1978 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1979
1980 /* Make sure PCH DPLL is enabled */
e72f9fbf 1981 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1982 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1983
1984 /* FDI must be feeding us bits for PCH ports */
1985 assert_fdi_tx_enabled(dev_priv, pipe);
1986 assert_fdi_rx_enabled(dev_priv, pipe);
1987
23670b32
DV
1988 if (HAS_PCH_CPT(dev)) {
1989 /* Workaround: Set the timing override bit before enabling the
1990 * pch transcoder. */
1991 reg = TRANS_CHICKEN2(pipe);
1992 val = I915_READ(reg);
1993 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1994 I915_WRITE(reg, val);
59c859d6 1995 }
23670b32 1996
ab9412ba 1997 reg = PCH_TRANSCONF(pipe);
040484af 1998 val = I915_READ(reg);
5f7f726d 1999 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
2000
2001 if (HAS_PCH_IBX(dev_priv->dev)) {
2002 /*
c5de7c6f
VS
2003 * Make the BPC in transcoder be consistent with
2004 * that in pipeconf reg. For HDMI we must use 8bpc
2005 * here for both 8bpc and 12bpc.
e9bcff5c 2006 */
dfd07d72 2007 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
2008 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2009 val |= PIPECONF_8BPC;
2010 else
2011 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 2012 }
5f7f726d
PZ
2013
2014 val &= ~TRANS_INTERLACE_MASK;
2015 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 2016 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 2017 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
2018 val |= TRANS_LEGACY_INTERLACED_ILK;
2019 else
2020 val |= TRANS_INTERLACED;
5f7f726d
PZ
2021 else
2022 val |= TRANS_PROGRESSIVE;
2023
040484af
JB
2024 I915_WRITE(reg, val | TRANS_ENABLE);
2025 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 2026 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
2027}
2028
8fb033d7 2029static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2030 enum transcoder cpu_transcoder)
040484af 2031{
8fb033d7 2032 u32 val, pipeconf_val;
8fb033d7
PZ
2033
2034 /* PCH only available on ILK+ */
55522f37 2035 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2036
8fb033d7 2037 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2038 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2039 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2040
223a6fdf
PZ
2041 /* Workaround: set timing override bit. */
2042 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2043 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
2044 I915_WRITE(_TRANSA_CHICKEN2, val);
2045
25f3ef11 2046 val = TRANS_ENABLE;
937bb610 2047 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2048
9a76b1c6
PZ
2049 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2050 PIPECONF_INTERLACED_ILK)
a35f2679 2051 val |= TRANS_INTERLACED;
8fb033d7
PZ
2052 else
2053 val |= TRANS_PROGRESSIVE;
2054
ab9412ba
DV
2055 I915_WRITE(LPT_TRANSCONF, val);
2056 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2057 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2058}
2059
b8a4f404
PZ
2060static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2061 enum pipe pipe)
040484af 2062{
23670b32
DV
2063 struct drm_device *dev = dev_priv->dev;
2064 uint32_t reg, val;
040484af
JB
2065
2066 /* FDI relies on the transcoder */
2067 assert_fdi_tx_disabled(dev_priv, pipe);
2068 assert_fdi_rx_disabled(dev_priv, pipe);
2069
291906f1
JB
2070 /* Ports must be off as well */
2071 assert_pch_ports_disabled(dev_priv, pipe);
2072
ab9412ba 2073 reg = PCH_TRANSCONF(pipe);
040484af
JB
2074 val = I915_READ(reg);
2075 val &= ~TRANS_ENABLE;
2076 I915_WRITE(reg, val);
2077 /* wait for PCH transcoder off, transcoder state */
2078 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2079 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2080
2081 if (!HAS_PCH_IBX(dev)) {
2082 /* Workaround: Clear the timing override chicken bit again. */
2083 reg = TRANS_CHICKEN2(pipe);
2084 val = I915_READ(reg);
2085 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2086 I915_WRITE(reg, val);
2087 }
040484af
JB
2088}
2089
ab4d966c 2090static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2091{
8fb033d7
PZ
2092 u32 val;
2093
ab9412ba 2094 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2095 val &= ~TRANS_ENABLE;
ab9412ba 2096 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2097 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2098 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2099 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2100
2101 /* Workaround: clear timing override bit. */
2102 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2103 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2104 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2105}
2106
b24e7179 2107/**
309cfea8 2108 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2109 * @crtc: crtc responsible for the pipe
b24e7179 2110 *
0372264a 2111 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2112 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2113 */
e1fdc473 2114static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2115{
0372264a
PZ
2116 struct drm_device *dev = crtc->base.dev;
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2119 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2120 pipe);
1a240d4d 2121 enum pipe pch_transcoder;
b24e7179
JB
2122 int reg;
2123 u32 val;
2124
9e2ee2dd
VS
2125 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2126
58c6eaa2 2127 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2128 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2129 assert_sprites_disabled(dev_priv, pipe);
2130
681e5811 2131 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2132 pch_transcoder = TRANSCODER_A;
2133 else
2134 pch_transcoder = pipe;
2135
b24e7179
JB
2136 /*
2137 * A pipe without a PLL won't actually be able to drive bits from
2138 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2139 * need the check.
2140 */
50360403 2141 if (HAS_GMCH_DISPLAY(dev_priv->dev))
409ee761 2142 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2143 assert_dsi_pll_enabled(dev_priv);
2144 else
2145 assert_pll_enabled(dev_priv, pipe);
040484af 2146 else {
6e3c9717 2147 if (crtc->config->has_pch_encoder) {
040484af 2148 /* if driving the PCH, we need FDI enabled */
cc391bbb 2149 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2150 assert_fdi_tx_pll_enabled(dev_priv,
2151 (enum pipe) cpu_transcoder);
040484af
JB
2152 }
2153 /* FIXME: assert CPU port conditions for SNB+ */
2154 }
b24e7179 2155
702e7a56 2156 reg = PIPECONF(cpu_transcoder);
b24e7179 2157 val = I915_READ(reg);
7ad25d48 2158 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2159 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2160 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2161 return;
7ad25d48 2162 }
00d70b15
CW
2163
2164 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2165 POSTING_READ(reg);
b24e7179
JB
2166}
2167
2168/**
309cfea8 2169 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2170 * @crtc: crtc whose pipes is to be disabled
b24e7179 2171 *
575f7ab7
VS
2172 * Disable the pipe of @crtc, making sure that various hardware
2173 * specific requirements are met, if applicable, e.g. plane
2174 * disabled, panel fitter off, etc.
b24e7179
JB
2175 *
2176 * Will wait until the pipe has shut down before returning.
2177 */
575f7ab7 2178static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2179{
575f7ab7 2180 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2181 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2182 enum pipe pipe = crtc->pipe;
b24e7179
JB
2183 int reg;
2184 u32 val;
2185
9e2ee2dd
VS
2186 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2187
b24e7179
JB
2188 /*
2189 * Make sure planes won't keep trying to pump pixels to us,
2190 * or we might hang the display.
2191 */
2192 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2193 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2194 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2195
702e7a56 2196 reg = PIPECONF(cpu_transcoder);
b24e7179 2197 val = I915_READ(reg);
00d70b15
CW
2198 if ((val & PIPECONF_ENABLE) == 0)
2199 return;
2200
67adc644
VS
2201 /*
2202 * Double wide has implications for planes
2203 * so best keep it disabled when not needed.
2204 */
6e3c9717 2205 if (crtc->config->double_wide)
67adc644
VS
2206 val &= ~PIPECONF_DOUBLE_WIDE;
2207
2208 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2209 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2210 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2211 val &= ~PIPECONF_ENABLE;
2212
2213 I915_WRITE(reg, val);
2214 if ((val & PIPECONF_ENABLE) == 0)
2215 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2216}
2217
693db184
CW
2218static bool need_vtd_wa(struct drm_device *dev)
2219{
2220#ifdef CONFIG_INTEL_IOMMU
2221 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2222 return true;
2223#endif
2224 return false;
2225}
2226
50470bb0 2227unsigned int
6761dd31
TU
2228intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2229 uint64_t fb_format_modifier)
a57ce0b2 2230{
6761dd31
TU
2231 unsigned int tile_height;
2232 uint32_t pixel_bytes;
a57ce0b2 2233
b5d0e9bf
DL
2234 switch (fb_format_modifier) {
2235 case DRM_FORMAT_MOD_NONE:
2236 tile_height = 1;
2237 break;
2238 case I915_FORMAT_MOD_X_TILED:
2239 tile_height = IS_GEN2(dev) ? 16 : 8;
2240 break;
2241 case I915_FORMAT_MOD_Y_TILED:
2242 tile_height = 32;
2243 break;
2244 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2245 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2246 switch (pixel_bytes) {
b5d0e9bf 2247 default:
6761dd31 2248 case 1:
b5d0e9bf
DL
2249 tile_height = 64;
2250 break;
6761dd31
TU
2251 case 2:
2252 case 4:
b5d0e9bf
DL
2253 tile_height = 32;
2254 break;
6761dd31 2255 case 8:
b5d0e9bf
DL
2256 tile_height = 16;
2257 break;
6761dd31 2258 case 16:
b5d0e9bf
DL
2259 WARN_ONCE(1,
2260 "128-bit pixels are not supported for display!");
2261 tile_height = 16;
2262 break;
2263 }
2264 break;
2265 default:
2266 MISSING_CASE(fb_format_modifier);
2267 tile_height = 1;
2268 break;
2269 }
091df6cb 2270
6761dd31
TU
2271 return tile_height;
2272}
2273
2274unsigned int
2275intel_fb_align_height(struct drm_device *dev, unsigned int height,
2276 uint32_t pixel_format, uint64_t fb_format_modifier)
2277{
2278 return ALIGN(height, intel_tile_height(dev, pixel_format,
2279 fb_format_modifier));
a57ce0b2
JB
2280}
2281
f64b98cd
TU
2282static int
2283intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2284 const struct drm_plane_state *plane_state)
2285{
50470bb0 2286 struct intel_rotation_info *info = &view->rotation_info;
84fe03f7 2287 unsigned int tile_height, tile_pitch;
50470bb0 2288
f64b98cd
TU
2289 *view = i915_ggtt_view_normal;
2290
50470bb0
TU
2291 if (!plane_state)
2292 return 0;
2293
121920fa 2294 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2295 return 0;
2296
9abc4648 2297 *view = i915_ggtt_view_rotated;
50470bb0
TU
2298
2299 info->height = fb->height;
2300 info->pixel_format = fb->pixel_format;
2301 info->pitch = fb->pitches[0];
2302 info->fb_modifier = fb->modifier[0];
2303
84fe03f7
TU
2304 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305 fb->modifier[0]);
2306 tile_pitch = PAGE_SIZE / tile_height;
2307 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2309 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2310
f64b98cd
TU
2311 return 0;
2312}
2313
4e9a86b6
VS
2314static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2315{
2316 if (INTEL_INFO(dev_priv)->gen >= 9)
2317 return 256 * 1024;
985b8bb4
VS
2318 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2319 IS_VALLEYVIEW(dev_priv))
4e9a86b6
VS
2320 return 128 * 1024;
2321 else if (INTEL_INFO(dev_priv)->gen >= 4)
2322 return 4 * 1024;
2323 else
44c5905e 2324 return 0;
4e9a86b6
VS
2325}
2326
127bd2ac 2327int
850c4cdc
TU
2328intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2329 struct drm_framebuffer *fb,
82bc3b2d 2330 const struct drm_plane_state *plane_state,
91af127f
JH
2331 struct intel_engine_cs *pipelined,
2332 struct drm_i915_gem_request **pipelined_request)
6b95a207 2333{
850c4cdc 2334 struct drm_device *dev = fb->dev;
ce453d81 2335 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2336 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2337 struct i915_ggtt_view view;
6b95a207
KH
2338 u32 alignment;
2339 int ret;
2340
ebcdd39e
MR
2341 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2342
7b911adc
TU
2343 switch (fb->modifier[0]) {
2344 case DRM_FORMAT_MOD_NONE:
4e9a86b6 2345 alignment = intel_linear_alignment(dev_priv);
6b95a207 2346 break;
7b911adc 2347 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2348 if (INTEL_INFO(dev)->gen >= 9)
2349 alignment = 256 * 1024;
2350 else {
2351 /* pin() will align the object as required by fence */
2352 alignment = 0;
2353 }
6b95a207 2354 break;
7b911adc 2355 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2356 case I915_FORMAT_MOD_Yf_TILED:
2357 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2358 "Y tiling bo slipped through, driver bug!\n"))
2359 return -EINVAL;
2360 alignment = 1 * 1024 * 1024;
2361 break;
6b95a207 2362 default:
7b911adc
TU
2363 MISSING_CASE(fb->modifier[0]);
2364 return -EINVAL;
6b95a207
KH
2365 }
2366
f64b98cd
TU
2367 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2368 if (ret)
2369 return ret;
2370
693db184
CW
2371 /* Note that the w/a also requires 64 PTE of padding following the
2372 * bo. We currently fill all unused PTE with the shadow page and so
2373 * we should always have valid PTE following the scanout preventing
2374 * the VT-d warning.
2375 */
2376 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2377 alignment = 256 * 1024;
2378
d6dd6843
PZ
2379 /*
2380 * Global gtt pte registers are special registers which actually forward
2381 * writes to a chunk of system memory. Which means that there is no risk
2382 * that the register values disappear as soon as we call
2383 * intel_runtime_pm_put(), so it is correct to wrap only the
2384 * pin/unpin/fence and not more.
2385 */
2386 intel_runtime_pm_get(dev_priv);
2387
ce453d81 2388 dev_priv->mm.interruptible = false;
e6617330 2389 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
91af127f 2390 pipelined_request, &view);
48b956c5 2391 if (ret)
ce453d81 2392 goto err_interruptible;
6b95a207
KH
2393
2394 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2395 * fence, whereas 965+ only requires a fence if using
2396 * framebuffer compression. For simplicity, we always install
2397 * a fence as the cost is not that onerous.
2398 */
06d98131 2399 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2400 if (ret)
2401 goto err_unpin;
1690e1eb 2402
9a5a53b3 2403 i915_gem_object_pin_fence(obj);
6b95a207 2404
ce453d81 2405 dev_priv->mm.interruptible = true;
d6dd6843 2406 intel_runtime_pm_put(dev_priv);
6b95a207 2407 return 0;
48b956c5
CW
2408
2409err_unpin:
f64b98cd 2410 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2411err_interruptible:
2412 dev_priv->mm.interruptible = true;
d6dd6843 2413 intel_runtime_pm_put(dev_priv);
48b956c5 2414 return ret;
6b95a207
KH
2415}
2416
82bc3b2d
TU
2417static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2418 const struct drm_plane_state *plane_state)
1690e1eb 2419{
82bc3b2d 2420 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2421 struct i915_ggtt_view view;
2422 int ret;
82bc3b2d 2423
ebcdd39e
MR
2424 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2425
f64b98cd
TU
2426 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2427 WARN_ONCE(ret, "Couldn't get view from plane state!");
2428
1690e1eb 2429 i915_gem_object_unpin_fence(obj);
f64b98cd 2430 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2431}
2432
c2c75131
DV
2433/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2434 * is assumed to be a power-of-two. */
4e9a86b6
VS
2435unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2436 int *x, int *y,
bc752862
CW
2437 unsigned int tiling_mode,
2438 unsigned int cpp,
2439 unsigned int pitch)
c2c75131 2440{
bc752862
CW
2441 if (tiling_mode != I915_TILING_NONE) {
2442 unsigned int tile_rows, tiles;
c2c75131 2443
bc752862
CW
2444 tile_rows = *y / 8;
2445 *y %= 8;
c2c75131 2446
bc752862
CW
2447 tiles = *x / (512/cpp);
2448 *x %= 512/cpp;
2449
2450 return tile_rows * pitch * 8 + tiles * 4096;
2451 } else {
4e9a86b6 2452 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
bc752862
CW
2453 unsigned int offset;
2454
2455 offset = *y * pitch + *x * cpp;
4e9a86b6
VS
2456 *y = (offset & alignment) / pitch;
2457 *x = ((offset & alignment) - *y * pitch) / cpp;
2458 return offset & ~alignment;
bc752862 2459 }
c2c75131
DV
2460}
2461
b35d63fa 2462static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2463{
2464 switch (format) {
2465 case DISPPLANE_8BPP:
2466 return DRM_FORMAT_C8;
2467 case DISPPLANE_BGRX555:
2468 return DRM_FORMAT_XRGB1555;
2469 case DISPPLANE_BGRX565:
2470 return DRM_FORMAT_RGB565;
2471 default:
2472 case DISPPLANE_BGRX888:
2473 return DRM_FORMAT_XRGB8888;
2474 case DISPPLANE_RGBX888:
2475 return DRM_FORMAT_XBGR8888;
2476 case DISPPLANE_BGRX101010:
2477 return DRM_FORMAT_XRGB2101010;
2478 case DISPPLANE_RGBX101010:
2479 return DRM_FORMAT_XBGR2101010;
2480 }
2481}
2482
bc8d7dff
DL
2483static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2484{
2485 switch (format) {
2486 case PLANE_CTL_FORMAT_RGB_565:
2487 return DRM_FORMAT_RGB565;
2488 default:
2489 case PLANE_CTL_FORMAT_XRGB_8888:
2490 if (rgb_order) {
2491 if (alpha)
2492 return DRM_FORMAT_ABGR8888;
2493 else
2494 return DRM_FORMAT_XBGR8888;
2495 } else {
2496 if (alpha)
2497 return DRM_FORMAT_ARGB8888;
2498 else
2499 return DRM_FORMAT_XRGB8888;
2500 }
2501 case PLANE_CTL_FORMAT_XRGB_2101010:
2502 if (rgb_order)
2503 return DRM_FORMAT_XBGR2101010;
2504 else
2505 return DRM_FORMAT_XRGB2101010;
2506 }
2507}
2508
5724dbd1 2509static bool
f6936e29
DV
2510intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2511 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2512{
2513 struct drm_device *dev = crtc->base.dev;
2514 struct drm_i915_gem_object *obj = NULL;
2515 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2516 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2517 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2518 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2519 PAGE_SIZE);
2520
2521 size_aligned -= base_aligned;
46f297fb 2522
ff2652ea
CW
2523 if (plane_config->size == 0)
2524 return false;
2525
f37b5c2b
DV
2526 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2527 base_aligned,
2528 base_aligned,
2529 size_aligned);
46f297fb 2530 if (!obj)
484b41dd 2531 return false;
46f297fb 2532
49af449b
DL
2533 obj->tiling_mode = plane_config->tiling;
2534 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2535 obj->stride = fb->pitches[0];
46f297fb 2536
6bf129df
DL
2537 mode_cmd.pixel_format = fb->pixel_format;
2538 mode_cmd.width = fb->width;
2539 mode_cmd.height = fb->height;
2540 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2541 mode_cmd.modifier[0] = fb->modifier[0];
2542 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2543
2544 mutex_lock(&dev->struct_mutex);
6bf129df 2545 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2546 &mode_cmd, obj)) {
46f297fb
JB
2547 DRM_DEBUG_KMS("intel fb init failed\n");
2548 goto out_unref_obj;
2549 }
46f297fb 2550 mutex_unlock(&dev->struct_mutex);
484b41dd 2551
f6936e29 2552 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2553 return true;
46f297fb
JB
2554
2555out_unref_obj:
2556 drm_gem_object_unreference(&obj->base);
2557 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2558 return false;
2559}
2560
afd65eb4
MR
2561/* Update plane->state->fb to match plane->fb after driver-internal updates */
2562static void
2563update_state_fb(struct drm_plane *plane)
2564{
2565 if (plane->fb == plane->state->fb)
2566 return;
2567
2568 if (plane->state->fb)
2569 drm_framebuffer_unreference(plane->state->fb);
2570 plane->state->fb = plane->fb;
2571 if (plane->state->fb)
2572 drm_framebuffer_reference(plane->state->fb);
2573}
2574
5724dbd1 2575static void
f6936e29
DV
2576intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2577 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2578{
2579 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2580 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2581 struct drm_crtc *c;
2582 struct intel_crtc *i;
2ff8fde1 2583 struct drm_i915_gem_object *obj;
88595ac9 2584 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2585 struct drm_plane_state *plane_state = primary->state;
88595ac9 2586 struct drm_framebuffer *fb;
484b41dd 2587
2d14030b 2588 if (!plane_config->fb)
484b41dd
JB
2589 return;
2590
f6936e29 2591 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2592 fb = &plane_config->fb->base;
2593 goto valid_fb;
f55548b5 2594 }
484b41dd 2595
2d14030b 2596 kfree(plane_config->fb);
484b41dd
JB
2597
2598 /*
2599 * Failed to alloc the obj, check to see if we should share
2600 * an fb with another CRTC instead
2601 */
70e1e0ec 2602 for_each_crtc(dev, c) {
484b41dd
JB
2603 i = to_intel_crtc(c);
2604
2605 if (c == &intel_crtc->base)
2606 continue;
2607
2ff8fde1
MR
2608 if (!i->active)
2609 continue;
2610
88595ac9
DV
2611 fb = c->primary->fb;
2612 if (!fb)
484b41dd
JB
2613 continue;
2614
88595ac9 2615 obj = intel_fb_obj(fb);
2ff8fde1 2616 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2617 drm_framebuffer_reference(fb);
2618 goto valid_fb;
484b41dd
JB
2619 }
2620 }
88595ac9
DV
2621
2622 return;
2623
2624valid_fb:
be5651f2
ML
2625 plane_state->src_x = plane_state->src_y = 0;
2626 plane_state->src_w = fb->width << 16;
2627 plane_state->src_h = fb->height << 16;
2628
2629 plane_state->crtc_x = plane_state->src_y = 0;
2630 plane_state->crtc_w = fb->width;
2631 plane_state->crtc_h = fb->height;
2632
88595ac9
DV
2633 obj = intel_fb_obj(fb);
2634 if (obj->tiling_mode != I915_TILING_NONE)
2635 dev_priv->preserve_bios_swizzle = true;
2636
be5651f2
ML
2637 drm_framebuffer_reference(fb);
2638 primary->fb = primary->state->fb = fb;
36750f28 2639 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2640 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2641 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2642}
2643
29b9bde6
DV
2644static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2645 struct drm_framebuffer *fb,
2646 int x, int y)
81255565
JB
2647{
2648 struct drm_device *dev = crtc->dev;
2649 struct drm_i915_private *dev_priv = dev->dev_private;
2650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2651 struct drm_plane *primary = crtc->primary;
2652 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2653 struct drm_i915_gem_object *obj;
81255565 2654 int plane = intel_crtc->plane;
e506a0c6 2655 unsigned long linear_offset;
81255565 2656 u32 dspcntr;
f45651ba 2657 u32 reg = DSPCNTR(plane);
48404c1e 2658 int pixel_size;
f45651ba 2659
b70709a6 2660 if (!visible || !fb) {
fdd508a6
VS
2661 I915_WRITE(reg, 0);
2662 if (INTEL_INFO(dev)->gen >= 4)
2663 I915_WRITE(DSPSURF(plane), 0);
2664 else
2665 I915_WRITE(DSPADDR(plane), 0);
2666 POSTING_READ(reg);
2667 return;
2668 }
2669
c9ba6fad
VS
2670 obj = intel_fb_obj(fb);
2671 if (WARN_ON(obj == NULL))
2672 return;
2673
2674 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2675
f45651ba
VS
2676 dspcntr = DISPPLANE_GAMMA_ENABLE;
2677
fdd508a6 2678 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2679
2680 if (INTEL_INFO(dev)->gen < 4) {
2681 if (intel_crtc->pipe == PIPE_B)
2682 dspcntr |= DISPPLANE_SEL_PIPE_B;
2683
2684 /* pipesrc and dspsize control the size that is scaled from,
2685 * which should always be the user's requested size.
2686 */
2687 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2688 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2689 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2690 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2691 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2692 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2693 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2694 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2695 I915_WRITE(PRIMPOS(plane), 0);
2696 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2697 }
81255565 2698
57779d06
VS
2699 switch (fb->pixel_format) {
2700 case DRM_FORMAT_C8:
81255565
JB
2701 dspcntr |= DISPPLANE_8BPP;
2702 break;
57779d06 2703 case DRM_FORMAT_XRGB1555:
57779d06 2704 dspcntr |= DISPPLANE_BGRX555;
81255565 2705 break;
57779d06
VS
2706 case DRM_FORMAT_RGB565:
2707 dspcntr |= DISPPLANE_BGRX565;
2708 break;
2709 case DRM_FORMAT_XRGB8888:
57779d06
VS
2710 dspcntr |= DISPPLANE_BGRX888;
2711 break;
2712 case DRM_FORMAT_XBGR8888:
57779d06
VS
2713 dspcntr |= DISPPLANE_RGBX888;
2714 break;
2715 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2716 dspcntr |= DISPPLANE_BGRX101010;
2717 break;
2718 case DRM_FORMAT_XBGR2101010:
57779d06 2719 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2720 break;
2721 default:
baba133a 2722 BUG();
81255565 2723 }
57779d06 2724
f45651ba
VS
2725 if (INTEL_INFO(dev)->gen >= 4 &&
2726 obj->tiling_mode != I915_TILING_NONE)
2727 dspcntr |= DISPPLANE_TILED;
81255565 2728
de1aa629
VS
2729 if (IS_G4X(dev))
2730 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2731
b9897127 2732 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2733
c2c75131
DV
2734 if (INTEL_INFO(dev)->gen >= 4) {
2735 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2736 intel_gen4_compute_page_offset(dev_priv,
2737 &x, &y, obj->tiling_mode,
b9897127 2738 pixel_size,
bc752862 2739 fb->pitches[0]);
c2c75131
DV
2740 linear_offset -= intel_crtc->dspaddr_offset;
2741 } else {
e506a0c6 2742 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2743 }
e506a0c6 2744
8e7d688b 2745 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2746 dspcntr |= DISPPLANE_ROTATE_180;
2747
6e3c9717
ACO
2748 x += (intel_crtc->config->pipe_src_w - 1);
2749 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2750
2751 /* Finding the last pixel of the last line of the display
2752 data and adding to linear_offset*/
2753 linear_offset +=
6e3c9717
ACO
2754 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2755 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2756 }
2757
2758 I915_WRITE(reg, dspcntr);
2759
01f2c773 2760 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2761 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2762 I915_WRITE(DSPSURF(plane),
2763 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2764 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2765 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2766 } else
f343c5f6 2767 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2768 POSTING_READ(reg);
17638cd6
JB
2769}
2770
29b9bde6
DV
2771static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2772 struct drm_framebuffer *fb,
2773 int x, int y)
17638cd6
JB
2774{
2775 struct drm_device *dev = crtc->dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2778 struct drm_plane *primary = crtc->primary;
2779 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2780 struct drm_i915_gem_object *obj;
17638cd6 2781 int plane = intel_crtc->plane;
e506a0c6 2782 unsigned long linear_offset;
17638cd6 2783 u32 dspcntr;
f45651ba 2784 u32 reg = DSPCNTR(plane);
48404c1e 2785 int pixel_size;
f45651ba 2786
b70709a6 2787 if (!visible || !fb) {
fdd508a6
VS
2788 I915_WRITE(reg, 0);
2789 I915_WRITE(DSPSURF(plane), 0);
2790 POSTING_READ(reg);
2791 return;
2792 }
2793
c9ba6fad
VS
2794 obj = intel_fb_obj(fb);
2795 if (WARN_ON(obj == NULL))
2796 return;
2797
2798 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2799
f45651ba
VS
2800 dspcntr = DISPPLANE_GAMMA_ENABLE;
2801
fdd508a6 2802 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2803
2804 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2805 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2806
57779d06
VS
2807 switch (fb->pixel_format) {
2808 case DRM_FORMAT_C8:
17638cd6
JB
2809 dspcntr |= DISPPLANE_8BPP;
2810 break;
57779d06
VS
2811 case DRM_FORMAT_RGB565:
2812 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2813 break;
57779d06 2814 case DRM_FORMAT_XRGB8888:
57779d06
VS
2815 dspcntr |= DISPPLANE_BGRX888;
2816 break;
2817 case DRM_FORMAT_XBGR8888:
57779d06
VS
2818 dspcntr |= DISPPLANE_RGBX888;
2819 break;
2820 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2821 dspcntr |= DISPPLANE_BGRX101010;
2822 break;
2823 case DRM_FORMAT_XBGR2101010:
57779d06 2824 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2825 break;
2826 default:
baba133a 2827 BUG();
17638cd6
JB
2828 }
2829
2830 if (obj->tiling_mode != I915_TILING_NONE)
2831 dspcntr |= DISPPLANE_TILED;
17638cd6 2832
f45651ba 2833 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2834 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2835
b9897127 2836 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2837 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2838 intel_gen4_compute_page_offset(dev_priv,
2839 &x, &y, obj->tiling_mode,
b9897127 2840 pixel_size,
bc752862 2841 fb->pitches[0]);
c2c75131 2842 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2843 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2844 dspcntr |= DISPPLANE_ROTATE_180;
2845
2846 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2847 x += (intel_crtc->config->pipe_src_w - 1);
2848 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2849
2850 /* Finding the last pixel of the last line of the display
2851 data and adding to linear_offset*/
2852 linear_offset +=
6e3c9717
ACO
2853 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2854 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2855 }
2856 }
2857
2858 I915_WRITE(reg, dspcntr);
17638cd6 2859
01f2c773 2860 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2861 I915_WRITE(DSPSURF(plane),
2862 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2863 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2864 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2865 } else {
2866 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2867 I915_WRITE(DSPLINOFF(plane), linear_offset);
2868 }
17638cd6 2869 POSTING_READ(reg);
17638cd6
JB
2870}
2871
b321803d
DL
2872u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2873 uint32_t pixel_format)
2874{
2875 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2876
2877 /*
2878 * The stride is either expressed as a multiple of 64 bytes
2879 * chunks for linear buffers or in number of tiles for tiled
2880 * buffers.
2881 */
2882 switch (fb_modifier) {
2883 case DRM_FORMAT_MOD_NONE:
2884 return 64;
2885 case I915_FORMAT_MOD_X_TILED:
2886 if (INTEL_INFO(dev)->gen == 2)
2887 return 128;
2888 return 512;
2889 case I915_FORMAT_MOD_Y_TILED:
2890 /* No need to check for old gens and Y tiling since this is
2891 * about the display engine and those will be blocked before
2892 * we get here.
2893 */
2894 return 128;
2895 case I915_FORMAT_MOD_Yf_TILED:
2896 if (bits_per_pixel == 8)
2897 return 64;
2898 else
2899 return 128;
2900 default:
2901 MISSING_CASE(fb_modifier);
2902 return 64;
2903 }
2904}
2905
121920fa
TU
2906unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2907 struct drm_i915_gem_object *obj)
2908{
9abc4648 2909 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
121920fa
TU
2910
2911 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
9abc4648 2912 view = &i915_ggtt_view_rotated;
121920fa
TU
2913
2914 return i915_gem_obj_ggtt_offset_view(obj, view);
2915}
2916
e435d6e5
ML
2917static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2918{
2919 struct drm_device *dev = intel_crtc->base.dev;
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2921
2922 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2923 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2924 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2925 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2926 intel_crtc->base.base.id, intel_crtc->pipe, id);
2927}
2928
a1b2278e
CK
2929/*
2930 * This function detaches (aka. unbinds) unused scalers in hardware
2931 */
0583236e 2932static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2933{
a1b2278e
CK
2934 struct intel_crtc_scaler_state *scaler_state;
2935 int i;
2936
a1b2278e
CK
2937 scaler_state = &intel_crtc->config->scaler_state;
2938
2939 /* loop through and disable scalers that aren't in use */
2940 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2941 if (!scaler_state->scalers[i].in_use)
2942 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2943 }
2944}
2945
6156a456 2946u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2947{
6156a456 2948 switch (pixel_format) {
d161cf7a 2949 case DRM_FORMAT_C8:
c34ce3d1 2950 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2951 case DRM_FORMAT_RGB565:
c34ce3d1 2952 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2953 case DRM_FORMAT_XBGR8888:
c34ce3d1 2954 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2955 case DRM_FORMAT_XRGB8888:
c34ce3d1 2956 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2957 /*
2958 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2959 * to be already pre-multiplied. We need to add a knob (or a different
2960 * DRM_FORMAT) for user-space to configure that.
2961 */
f75fb42a 2962 case DRM_FORMAT_ABGR8888:
c34ce3d1 2963 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2964 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2965 case DRM_FORMAT_ARGB8888:
c34ce3d1 2966 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2967 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2968 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2969 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2970 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2971 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2972 case DRM_FORMAT_YUYV:
c34ce3d1 2973 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2974 case DRM_FORMAT_YVYU:
c34ce3d1 2975 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2976 case DRM_FORMAT_UYVY:
c34ce3d1 2977 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2978 case DRM_FORMAT_VYUY:
c34ce3d1 2979 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2980 default:
4249eeef 2981 MISSING_CASE(pixel_format);
70d21f0e 2982 }
8cfcba41 2983
c34ce3d1 2984 return 0;
6156a456 2985}
70d21f0e 2986
6156a456
CK
2987u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2988{
6156a456 2989 switch (fb_modifier) {
30af77c4 2990 case DRM_FORMAT_MOD_NONE:
70d21f0e 2991 break;
30af77c4 2992 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2993 return PLANE_CTL_TILED_X;
b321803d 2994 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2995 return PLANE_CTL_TILED_Y;
b321803d 2996 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2997 return PLANE_CTL_TILED_YF;
70d21f0e 2998 default:
6156a456 2999 MISSING_CASE(fb_modifier);
70d21f0e 3000 }
8cfcba41 3001
c34ce3d1 3002 return 0;
6156a456 3003}
70d21f0e 3004
6156a456
CK
3005u32 skl_plane_ctl_rotation(unsigned int rotation)
3006{
3b7a5119 3007 switch (rotation) {
6156a456
CK
3008 case BIT(DRM_ROTATE_0):
3009 break;
1e8df167
SJ
3010 /*
3011 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3012 * while i915 HW rotation is clockwise, thats why this swapping.
3013 */
3b7a5119 3014 case BIT(DRM_ROTATE_90):
1e8df167 3015 return PLANE_CTL_ROTATE_270;
3b7a5119 3016 case BIT(DRM_ROTATE_180):
c34ce3d1 3017 return PLANE_CTL_ROTATE_180;
3b7a5119 3018 case BIT(DRM_ROTATE_270):
1e8df167 3019 return PLANE_CTL_ROTATE_90;
6156a456
CK
3020 default:
3021 MISSING_CASE(rotation);
3022 }
3023
c34ce3d1 3024 return 0;
6156a456
CK
3025}
3026
3027static void skylake_update_primary_plane(struct drm_crtc *crtc,
3028 struct drm_framebuffer *fb,
3029 int x, int y)
3030{
3031 struct drm_device *dev = crtc->dev;
3032 struct drm_i915_private *dev_priv = dev->dev_private;
3033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
3034 struct drm_plane *plane = crtc->primary;
3035 bool visible = to_intel_plane_state(plane->state)->visible;
6156a456
CK
3036 struct drm_i915_gem_object *obj;
3037 int pipe = intel_crtc->pipe;
3038 u32 plane_ctl, stride_div, stride;
3039 u32 tile_height, plane_offset, plane_size;
3040 unsigned int rotation;
3041 int x_offset, y_offset;
3042 unsigned long surf_addr;
6156a456
CK
3043 struct intel_crtc_state *crtc_state = intel_crtc->config;
3044 struct intel_plane_state *plane_state;
3045 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3046 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3047 int scaler_id = -1;
3048
6156a456
CK
3049 plane_state = to_intel_plane_state(plane->state);
3050
b70709a6 3051 if (!visible || !fb) {
6156a456
CK
3052 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3053 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3054 POSTING_READ(PLANE_CTL(pipe, 0));
3055 return;
3b7a5119 3056 }
70d21f0e 3057
6156a456
CK
3058 plane_ctl = PLANE_CTL_ENABLE |
3059 PLANE_CTL_PIPE_GAMMA_ENABLE |
3060 PLANE_CTL_PIPE_CSC_ENABLE;
3061
3062 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3063 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3064 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3065
3066 rotation = plane->state->rotation;
3067 plane_ctl |= skl_plane_ctl_rotation(rotation);
3068
b321803d
DL
3069 obj = intel_fb_obj(fb);
3070 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3071 fb->pixel_format);
3b7a5119
SJ
3072 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3073
6156a456
CK
3074 /*
3075 * FIXME: intel_plane_state->src, dst aren't set when transitional
3076 * update_plane helpers are called from legacy paths.
3077 * Once full atomic crtc is available, below check can be avoided.
3078 */
3079 if (drm_rect_width(&plane_state->src)) {
3080 scaler_id = plane_state->scaler_id;
3081 src_x = plane_state->src.x1 >> 16;
3082 src_y = plane_state->src.y1 >> 16;
3083 src_w = drm_rect_width(&plane_state->src) >> 16;
3084 src_h = drm_rect_height(&plane_state->src) >> 16;
3085 dst_x = plane_state->dst.x1;
3086 dst_y = plane_state->dst.y1;
3087 dst_w = drm_rect_width(&plane_state->dst);
3088 dst_h = drm_rect_height(&plane_state->dst);
3089
3090 WARN_ON(x != src_x || y != src_y);
3091 } else {
3092 src_w = intel_crtc->config->pipe_src_w;
3093 src_h = intel_crtc->config->pipe_src_h;
3094 }
3095
3b7a5119
SJ
3096 if (intel_rotation_90_or_270(rotation)) {
3097 /* stride = Surface height in tiles */
2614f17d 3098 tile_height = intel_tile_height(dev, fb->pixel_format,
3b7a5119
SJ
3099 fb->modifier[0]);
3100 stride = DIV_ROUND_UP(fb->height, tile_height);
6156a456 3101 x_offset = stride * tile_height - y - src_h;
3b7a5119 3102 y_offset = x;
6156a456 3103 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3104 } else {
3105 stride = fb->pitches[0] / stride_div;
3106 x_offset = x;
3107 y_offset = y;
6156a456 3108 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3109 }
3110 plane_offset = y_offset << 16 | x_offset;
b321803d 3111
70d21f0e 3112 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3113 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3114 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3115 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3116
3117 if (scaler_id >= 0) {
3118 uint32_t ps_ctrl = 0;
3119
3120 WARN_ON(!dst_w || !dst_h);
3121 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3122 crtc_state->scaler_state.scalers[scaler_id].mode;
3123 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3124 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3125 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3126 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3127 I915_WRITE(PLANE_POS(pipe, 0), 0);
3128 } else {
3129 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3130 }
3131
121920fa 3132 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3133
3134 POSTING_READ(PLANE_SURF(pipe, 0));
3135}
3136
17638cd6
JB
3137/* Assume fb object is pinned & idle & fenced and just update base pointers */
3138static int
3139intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3140 int x, int y, enum mode_set_atomic state)
3141{
3142 struct drm_device *dev = crtc->dev;
3143 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3144
ff2a3117 3145 if (dev_priv->fbc.disable_fbc)
7733b49b 3146 dev_priv->fbc.disable_fbc(dev_priv);
81255565 3147
29b9bde6
DV
3148 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3149
3150 return 0;
81255565
JB
3151}
3152
7514747d 3153static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3154{
96a02917
VS
3155 struct drm_crtc *crtc;
3156
70e1e0ec 3157 for_each_crtc(dev, crtc) {
96a02917
VS
3158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3159 enum plane plane = intel_crtc->plane;
3160
3161 intel_prepare_page_flip(dev, plane);
3162 intel_finish_page_flip_plane(dev, plane);
3163 }
7514747d
VS
3164}
3165
3166static void intel_update_primary_planes(struct drm_device *dev)
3167{
3168 struct drm_i915_private *dev_priv = dev->dev_private;
3169 struct drm_crtc *crtc;
96a02917 3170
70e1e0ec 3171 for_each_crtc(dev, crtc) {
96a02917
VS
3172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3173
51fd371b 3174 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3175 /*
3176 * FIXME: Once we have proper support for primary planes (and
3177 * disabling them without disabling the entire crtc) allow again
66e514c1 3178 * a NULL crtc->primary->fb.
947fdaad 3179 */
f4510a27 3180 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3181 dev_priv->display.update_primary_plane(crtc,
66e514c1 3182 crtc->primary->fb,
262ca2b0
MR
3183 crtc->x,
3184 crtc->y);
51fd371b 3185 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3186 }
3187}
3188
7514747d
VS
3189void intel_prepare_reset(struct drm_device *dev)
3190{
3191 /* no reset support for gen2 */
3192 if (IS_GEN2(dev))
3193 return;
3194
3195 /* reset doesn't touch the display */
3196 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3197 return;
3198
3199 drm_modeset_lock_all(dev);
f98ce92f
VS
3200 /*
3201 * Disabling the crtcs gracefully seems nicer. Also the
3202 * g33 docs say we should at least disable all the planes.
3203 */
6b72d486 3204 intel_display_suspend(dev);
7514747d
VS
3205}
3206
3207void intel_finish_reset(struct drm_device *dev)
3208{
3209 struct drm_i915_private *dev_priv = to_i915(dev);
3210
3211 /*
3212 * Flips in the rings will be nuked by the reset,
3213 * so complete all pending flips so that user space
3214 * will get its events and not get stuck.
3215 */
3216 intel_complete_page_flips(dev);
3217
3218 /* no reset support for gen2 */
3219 if (IS_GEN2(dev))
3220 return;
3221
3222 /* reset doesn't touch the display */
3223 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3224 /*
3225 * Flips in the rings have been nuked by the reset,
3226 * so update the base address of all primary
3227 * planes to the the last fb to make sure we're
3228 * showing the correct fb after a reset.
3229 */
3230 intel_update_primary_planes(dev);
3231 return;
3232 }
3233
3234 /*
3235 * The display has been reset as well,
3236 * so need a full re-initialization.
3237 */
3238 intel_runtime_pm_disable_interrupts(dev_priv);
3239 intel_runtime_pm_enable_interrupts(dev_priv);
3240
3241 intel_modeset_init_hw(dev);
3242
3243 spin_lock_irq(&dev_priv->irq_lock);
3244 if (dev_priv->display.hpd_irq_setup)
3245 dev_priv->display.hpd_irq_setup(dev);
3246 spin_unlock_irq(&dev_priv->irq_lock);
3247
043e9bda 3248 intel_display_resume(dev);
7514747d
VS
3249
3250 intel_hpd_init(dev_priv);
3251
3252 drm_modeset_unlock_all(dev);
3253}
3254
2e2f351d 3255static void
14667a4b
CW
3256intel_finish_fb(struct drm_framebuffer *old_fb)
3257{
2ff8fde1 3258 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2e2f351d 3259 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14667a4b
CW
3260 bool was_interruptible = dev_priv->mm.interruptible;
3261 int ret;
3262
14667a4b
CW
3263 /* Big Hammer, we also need to ensure that any pending
3264 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3265 * current scanout is retired before unpinning the old
2e2f351d
CW
3266 * framebuffer. Note that we rely on userspace rendering
3267 * into the buffer attached to the pipe they are waiting
3268 * on. If not, userspace generates a GPU hang with IPEHR
3269 * point to the MI_WAIT_FOR_EVENT.
14667a4b
CW
3270 *
3271 * This should only fail upon a hung GPU, in which case we
3272 * can safely continue.
3273 */
3274 dev_priv->mm.interruptible = false;
2e2f351d 3275 ret = i915_gem_object_wait_rendering(obj, true);
14667a4b
CW
3276 dev_priv->mm.interruptible = was_interruptible;
3277
2e2f351d 3278 WARN_ON(ret);
14667a4b
CW
3279}
3280
7d5e3799
CW
3281static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3282{
3283 struct drm_device *dev = crtc->dev;
3284 struct drm_i915_private *dev_priv = dev->dev_private;
3285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3286 bool pending;
3287
3288 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3289 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3290 return false;
3291
5e2d7afc 3292 spin_lock_irq(&dev->event_lock);
7d5e3799 3293 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3294 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3295
3296 return pending;
3297}
3298
e30e8f75
GP
3299static void intel_update_pipe_size(struct intel_crtc *crtc)
3300{
3301 struct drm_device *dev = crtc->base.dev;
3302 struct drm_i915_private *dev_priv = dev->dev_private;
3303 const struct drm_display_mode *adjusted_mode;
3304
3305 if (!i915.fastboot)
3306 return;
3307
3308 /*
3309 * Update pipe size and adjust fitter if needed: the reason for this is
3310 * that in compute_mode_changes we check the native mode (not the pfit
3311 * mode) to see if we can flip rather than do a full mode set. In the
3312 * fastboot case, we'll flip, but if we don't update the pipesrc and
3313 * pfit state, we'll end up with a big fb scanned out into the wrong
3314 * sized surface.
3315 *
3316 * To fix this properly, we need to hoist the checks up into
3317 * compute_mode_changes (or above), check the actual pfit state and
3318 * whether the platform allows pfit disable with pipe active, and only
3319 * then update the pipesrc and pfit state, even on the flip path.
3320 */
3321
6e3c9717 3322 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3323
3324 I915_WRITE(PIPESRC(crtc->pipe),
3325 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3326 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3327 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3328 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3329 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3330 I915_WRITE(PF_CTL(crtc->pipe), 0);
3331 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3332 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3333 }
6e3c9717
ACO
3334 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3335 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3336}
3337
5e84e1a4
ZW
3338static void intel_fdi_normal_train(struct drm_crtc *crtc)
3339{
3340 struct drm_device *dev = crtc->dev;
3341 struct drm_i915_private *dev_priv = dev->dev_private;
3342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3343 int pipe = intel_crtc->pipe;
3344 u32 reg, temp;
3345
3346 /* enable normal train */
3347 reg = FDI_TX_CTL(pipe);
3348 temp = I915_READ(reg);
61e499bf 3349 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3350 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3351 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3352 } else {
3353 temp &= ~FDI_LINK_TRAIN_NONE;
3354 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3355 }
5e84e1a4
ZW
3356 I915_WRITE(reg, temp);
3357
3358 reg = FDI_RX_CTL(pipe);
3359 temp = I915_READ(reg);
3360 if (HAS_PCH_CPT(dev)) {
3361 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3362 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3363 } else {
3364 temp &= ~FDI_LINK_TRAIN_NONE;
3365 temp |= FDI_LINK_TRAIN_NONE;
3366 }
3367 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3368
3369 /* wait one idle pattern time */
3370 POSTING_READ(reg);
3371 udelay(1000);
357555c0
JB
3372
3373 /* IVB wants error correction enabled */
3374 if (IS_IVYBRIDGE(dev))
3375 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3376 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3377}
3378
8db9d77b
ZW
3379/* The FDI link training functions for ILK/Ibexpeak. */
3380static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3381{
3382 struct drm_device *dev = crtc->dev;
3383 struct drm_i915_private *dev_priv = dev->dev_private;
3384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3385 int pipe = intel_crtc->pipe;
5eddb70b 3386 u32 reg, temp, tries;
8db9d77b 3387
1c8562f6 3388 /* FDI needs bits from pipe first */
0fc932b8 3389 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3390
e1a44743
AJ
3391 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3392 for train result */
5eddb70b
CW
3393 reg = FDI_RX_IMR(pipe);
3394 temp = I915_READ(reg);
e1a44743
AJ
3395 temp &= ~FDI_RX_SYMBOL_LOCK;
3396 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3397 I915_WRITE(reg, temp);
3398 I915_READ(reg);
e1a44743
AJ
3399 udelay(150);
3400
8db9d77b 3401 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3402 reg = FDI_TX_CTL(pipe);
3403 temp = I915_READ(reg);
627eb5a3 3404 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3405 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3406 temp &= ~FDI_LINK_TRAIN_NONE;
3407 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3408 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3409
5eddb70b
CW
3410 reg = FDI_RX_CTL(pipe);
3411 temp = I915_READ(reg);
8db9d77b
ZW
3412 temp &= ~FDI_LINK_TRAIN_NONE;
3413 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3414 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3415
3416 POSTING_READ(reg);
8db9d77b
ZW
3417 udelay(150);
3418
5b2adf89 3419 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3420 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3421 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3422 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3423
5eddb70b 3424 reg = FDI_RX_IIR(pipe);
e1a44743 3425 for (tries = 0; tries < 5; tries++) {
5eddb70b 3426 temp = I915_READ(reg);
8db9d77b
ZW
3427 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3428
3429 if ((temp & FDI_RX_BIT_LOCK)) {
3430 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3431 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3432 break;
3433 }
8db9d77b 3434 }
e1a44743 3435 if (tries == 5)
5eddb70b 3436 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3437
3438 /* Train 2 */
5eddb70b
CW
3439 reg = FDI_TX_CTL(pipe);
3440 temp = I915_READ(reg);
8db9d77b
ZW
3441 temp &= ~FDI_LINK_TRAIN_NONE;
3442 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3443 I915_WRITE(reg, temp);
8db9d77b 3444
5eddb70b
CW
3445 reg = FDI_RX_CTL(pipe);
3446 temp = I915_READ(reg);
8db9d77b
ZW
3447 temp &= ~FDI_LINK_TRAIN_NONE;
3448 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3449 I915_WRITE(reg, temp);
8db9d77b 3450
5eddb70b
CW
3451 POSTING_READ(reg);
3452 udelay(150);
8db9d77b 3453
5eddb70b 3454 reg = FDI_RX_IIR(pipe);
e1a44743 3455 for (tries = 0; tries < 5; tries++) {
5eddb70b 3456 temp = I915_READ(reg);
8db9d77b
ZW
3457 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3458
3459 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3460 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3461 DRM_DEBUG_KMS("FDI train 2 done.\n");
3462 break;
3463 }
8db9d77b 3464 }
e1a44743 3465 if (tries == 5)
5eddb70b 3466 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3467
3468 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3469
8db9d77b
ZW
3470}
3471
0206e353 3472static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3473 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3474 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3475 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3476 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3477};
3478
3479/* The FDI link training functions for SNB/Cougarpoint. */
3480static void gen6_fdi_link_train(struct drm_crtc *crtc)
3481{
3482 struct drm_device *dev = crtc->dev;
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3485 int pipe = intel_crtc->pipe;
fa37d39e 3486 u32 reg, temp, i, retry;
8db9d77b 3487
e1a44743
AJ
3488 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3489 for train result */
5eddb70b
CW
3490 reg = FDI_RX_IMR(pipe);
3491 temp = I915_READ(reg);
e1a44743
AJ
3492 temp &= ~FDI_RX_SYMBOL_LOCK;
3493 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3494 I915_WRITE(reg, temp);
3495
3496 POSTING_READ(reg);
e1a44743
AJ
3497 udelay(150);
3498
8db9d77b 3499 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3500 reg = FDI_TX_CTL(pipe);
3501 temp = I915_READ(reg);
627eb5a3 3502 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3503 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3504 temp &= ~FDI_LINK_TRAIN_NONE;
3505 temp |= FDI_LINK_TRAIN_PATTERN_1;
3506 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3507 /* SNB-B */
3508 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3509 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3510
d74cf324
DV
3511 I915_WRITE(FDI_RX_MISC(pipe),
3512 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3513
5eddb70b
CW
3514 reg = FDI_RX_CTL(pipe);
3515 temp = I915_READ(reg);
8db9d77b
ZW
3516 if (HAS_PCH_CPT(dev)) {
3517 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3518 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3519 } else {
3520 temp &= ~FDI_LINK_TRAIN_NONE;
3521 temp |= FDI_LINK_TRAIN_PATTERN_1;
3522 }
5eddb70b
CW
3523 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3524
3525 POSTING_READ(reg);
8db9d77b
ZW
3526 udelay(150);
3527
0206e353 3528 for (i = 0; i < 4; i++) {
5eddb70b
CW
3529 reg = FDI_TX_CTL(pipe);
3530 temp = I915_READ(reg);
8db9d77b
ZW
3531 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3532 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3533 I915_WRITE(reg, temp);
3534
3535 POSTING_READ(reg);
8db9d77b
ZW
3536 udelay(500);
3537
fa37d39e
SP
3538 for (retry = 0; retry < 5; retry++) {
3539 reg = FDI_RX_IIR(pipe);
3540 temp = I915_READ(reg);
3541 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3542 if (temp & FDI_RX_BIT_LOCK) {
3543 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3544 DRM_DEBUG_KMS("FDI train 1 done.\n");
3545 break;
3546 }
3547 udelay(50);
8db9d77b 3548 }
fa37d39e
SP
3549 if (retry < 5)
3550 break;
8db9d77b
ZW
3551 }
3552 if (i == 4)
5eddb70b 3553 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3554
3555 /* Train 2 */
5eddb70b
CW
3556 reg = FDI_TX_CTL(pipe);
3557 temp = I915_READ(reg);
8db9d77b
ZW
3558 temp &= ~FDI_LINK_TRAIN_NONE;
3559 temp |= FDI_LINK_TRAIN_PATTERN_2;
3560 if (IS_GEN6(dev)) {
3561 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3562 /* SNB-B */
3563 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3564 }
5eddb70b 3565 I915_WRITE(reg, temp);
8db9d77b 3566
5eddb70b
CW
3567 reg = FDI_RX_CTL(pipe);
3568 temp = I915_READ(reg);
8db9d77b
ZW
3569 if (HAS_PCH_CPT(dev)) {
3570 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3571 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3572 } else {
3573 temp &= ~FDI_LINK_TRAIN_NONE;
3574 temp |= FDI_LINK_TRAIN_PATTERN_2;
3575 }
5eddb70b
CW
3576 I915_WRITE(reg, temp);
3577
3578 POSTING_READ(reg);
8db9d77b
ZW
3579 udelay(150);
3580
0206e353 3581 for (i = 0; i < 4; i++) {
5eddb70b
CW
3582 reg = FDI_TX_CTL(pipe);
3583 temp = I915_READ(reg);
8db9d77b
ZW
3584 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3585 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3586 I915_WRITE(reg, temp);
3587
3588 POSTING_READ(reg);
8db9d77b
ZW
3589 udelay(500);
3590
fa37d39e
SP
3591 for (retry = 0; retry < 5; retry++) {
3592 reg = FDI_RX_IIR(pipe);
3593 temp = I915_READ(reg);
3594 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3595 if (temp & FDI_RX_SYMBOL_LOCK) {
3596 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3597 DRM_DEBUG_KMS("FDI train 2 done.\n");
3598 break;
3599 }
3600 udelay(50);
8db9d77b 3601 }
fa37d39e
SP
3602 if (retry < 5)
3603 break;
8db9d77b
ZW
3604 }
3605 if (i == 4)
5eddb70b 3606 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3607
3608 DRM_DEBUG_KMS("FDI train done.\n");
3609}
3610
357555c0
JB
3611/* Manual link training for Ivy Bridge A0 parts */
3612static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3613{
3614 struct drm_device *dev = crtc->dev;
3615 struct drm_i915_private *dev_priv = dev->dev_private;
3616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617 int pipe = intel_crtc->pipe;
139ccd3f 3618 u32 reg, temp, i, j;
357555c0
JB
3619
3620 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3621 for train result */
3622 reg = FDI_RX_IMR(pipe);
3623 temp = I915_READ(reg);
3624 temp &= ~FDI_RX_SYMBOL_LOCK;
3625 temp &= ~FDI_RX_BIT_LOCK;
3626 I915_WRITE(reg, temp);
3627
3628 POSTING_READ(reg);
3629 udelay(150);
3630
01a415fd
DV
3631 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3632 I915_READ(FDI_RX_IIR(pipe)));
3633
139ccd3f
JB
3634 /* Try each vswing and preemphasis setting twice before moving on */
3635 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3636 /* disable first in case we need to retry */
3637 reg = FDI_TX_CTL(pipe);
3638 temp = I915_READ(reg);
3639 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3640 temp &= ~FDI_TX_ENABLE;
3641 I915_WRITE(reg, temp);
357555c0 3642
139ccd3f
JB
3643 reg = FDI_RX_CTL(pipe);
3644 temp = I915_READ(reg);
3645 temp &= ~FDI_LINK_TRAIN_AUTO;
3646 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3647 temp &= ~FDI_RX_ENABLE;
3648 I915_WRITE(reg, temp);
357555c0 3649
139ccd3f 3650 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3651 reg = FDI_TX_CTL(pipe);
3652 temp = I915_READ(reg);
139ccd3f 3653 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3654 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3655 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3656 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3657 temp |= snb_b_fdi_train_param[j/2];
3658 temp |= FDI_COMPOSITE_SYNC;
3659 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3660
139ccd3f
JB
3661 I915_WRITE(FDI_RX_MISC(pipe),
3662 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3663
139ccd3f 3664 reg = FDI_RX_CTL(pipe);
357555c0 3665 temp = I915_READ(reg);
139ccd3f
JB
3666 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3667 temp |= FDI_COMPOSITE_SYNC;
3668 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3669
139ccd3f
JB
3670 POSTING_READ(reg);
3671 udelay(1); /* should be 0.5us */
357555c0 3672
139ccd3f
JB
3673 for (i = 0; i < 4; i++) {
3674 reg = FDI_RX_IIR(pipe);
3675 temp = I915_READ(reg);
3676 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3677
139ccd3f
JB
3678 if (temp & FDI_RX_BIT_LOCK ||
3679 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3680 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3681 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3682 i);
3683 break;
3684 }
3685 udelay(1); /* should be 0.5us */
3686 }
3687 if (i == 4) {
3688 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3689 continue;
3690 }
357555c0 3691
139ccd3f 3692 /* Train 2 */
357555c0
JB
3693 reg = FDI_TX_CTL(pipe);
3694 temp = I915_READ(reg);
139ccd3f
JB
3695 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3696 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3697 I915_WRITE(reg, temp);
3698
3699 reg = FDI_RX_CTL(pipe);
3700 temp = I915_READ(reg);
3701 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3702 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3703 I915_WRITE(reg, temp);
3704
3705 POSTING_READ(reg);
139ccd3f 3706 udelay(2); /* should be 1.5us */
357555c0 3707
139ccd3f
JB
3708 for (i = 0; i < 4; i++) {
3709 reg = FDI_RX_IIR(pipe);
3710 temp = I915_READ(reg);
3711 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3712
139ccd3f
JB
3713 if (temp & FDI_RX_SYMBOL_LOCK ||
3714 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3715 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3716 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3717 i);
3718 goto train_done;
3719 }
3720 udelay(2); /* should be 1.5us */
357555c0 3721 }
139ccd3f
JB
3722 if (i == 4)
3723 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3724 }
357555c0 3725
139ccd3f 3726train_done:
357555c0
JB
3727 DRM_DEBUG_KMS("FDI train done.\n");
3728}
3729
88cefb6c 3730static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3731{
88cefb6c 3732 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3733 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3734 int pipe = intel_crtc->pipe;
5eddb70b 3735 u32 reg, temp;
79e53945 3736
c64e311e 3737
c98e9dcf 3738 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3739 reg = FDI_RX_CTL(pipe);
3740 temp = I915_READ(reg);
627eb5a3 3741 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3742 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3743 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3744 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3745
3746 POSTING_READ(reg);
c98e9dcf
JB
3747 udelay(200);
3748
3749 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3750 temp = I915_READ(reg);
3751 I915_WRITE(reg, temp | FDI_PCDCLK);
3752
3753 POSTING_READ(reg);
c98e9dcf
JB
3754 udelay(200);
3755
20749730
PZ
3756 /* Enable CPU FDI TX PLL, always on for Ironlake */
3757 reg = FDI_TX_CTL(pipe);
3758 temp = I915_READ(reg);
3759 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3760 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3761
20749730
PZ
3762 POSTING_READ(reg);
3763 udelay(100);
6be4a607 3764 }
0e23b99d
JB
3765}
3766
88cefb6c
DV
3767static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3768{
3769 struct drm_device *dev = intel_crtc->base.dev;
3770 struct drm_i915_private *dev_priv = dev->dev_private;
3771 int pipe = intel_crtc->pipe;
3772 u32 reg, temp;
3773
3774 /* Switch from PCDclk to Rawclk */
3775 reg = FDI_RX_CTL(pipe);
3776 temp = I915_READ(reg);
3777 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3778
3779 /* Disable CPU FDI TX PLL */
3780 reg = FDI_TX_CTL(pipe);
3781 temp = I915_READ(reg);
3782 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3783
3784 POSTING_READ(reg);
3785 udelay(100);
3786
3787 reg = FDI_RX_CTL(pipe);
3788 temp = I915_READ(reg);
3789 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3790
3791 /* Wait for the clocks to turn off. */
3792 POSTING_READ(reg);
3793 udelay(100);
3794}
3795
0fc932b8
JB
3796static void ironlake_fdi_disable(struct drm_crtc *crtc)
3797{
3798 struct drm_device *dev = crtc->dev;
3799 struct drm_i915_private *dev_priv = dev->dev_private;
3800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3801 int pipe = intel_crtc->pipe;
3802 u32 reg, temp;
3803
3804 /* disable CPU FDI tx and PCH FDI rx */
3805 reg = FDI_TX_CTL(pipe);
3806 temp = I915_READ(reg);
3807 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3808 POSTING_READ(reg);
3809
3810 reg = FDI_RX_CTL(pipe);
3811 temp = I915_READ(reg);
3812 temp &= ~(0x7 << 16);
dfd07d72 3813 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3814 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3815
3816 POSTING_READ(reg);
3817 udelay(100);
3818
3819 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3820 if (HAS_PCH_IBX(dev))
6f06ce18 3821 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3822
3823 /* still set train pattern 1 */
3824 reg = FDI_TX_CTL(pipe);
3825 temp = I915_READ(reg);
3826 temp &= ~FDI_LINK_TRAIN_NONE;
3827 temp |= FDI_LINK_TRAIN_PATTERN_1;
3828 I915_WRITE(reg, temp);
3829
3830 reg = FDI_RX_CTL(pipe);
3831 temp = I915_READ(reg);
3832 if (HAS_PCH_CPT(dev)) {
3833 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3834 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3835 } else {
3836 temp &= ~FDI_LINK_TRAIN_NONE;
3837 temp |= FDI_LINK_TRAIN_PATTERN_1;
3838 }
3839 /* BPC in FDI rx is consistent with that in PIPECONF */
3840 temp &= ~(0x07 << 16);
dfd07d72 3841 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3842 I915_WRITE(reg, temp);
3843
3844 POSTING_READ(reg);
3845 udelay(100);
3846}
3847
5dce5b93
CW
3848bool intel_has_pending_fb_unpin(struct drm_device *dev)
3849{
3850 struct intel_crtc *crtc;
3851
3852 /* Note that we don't need to be called with mode_config.lock here
3853 * as our list of CRTC objects is static for the lifetime of the
3854 * device and so cannot disappear as we iterate. Similarly, we can
3855 * happily treat the predicates as racy, atomic checks as userspace
3856 * cannot claim and pin a new fb without at least acquring the
3857 * struct_mutex and so serialising with us.
3858 */
d3fcc808 3859 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3860 if (atomic_read(&crtc->unpin_work_count) == 0)
3861 continue;
3862
3863 if (crtc->unpin_work)
3864 intel_wait_for_vblank(dev, crtc->pipe);
3865
3866 return true;
3867 }
3868
3869 return false;
3870}
3871
d6bbafa1
CW
3872static void page_flip_completed(struct intel_crtc *intel_crtc)
3873{
3874 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3875 struct intel_unpin_work *work = intel_crtc->unpin_work;
3876
3877 /* ensure that the unpin work is consistent wrt ->pending. */
3878 smp_rmb();
3879 intel_crtc->unpin_work = NULL;
3880
3881 if (work->event)
3882 drm_send_vblank_event(intel_crtc->base.dev,
3883 intel_crtc->pipe,
3884 work->event);
3885
3886 drm_crtc_vblank_put(&intel_crtc->base);
3887
3888 wake_up_all(&dev_priv->pending_flip_queue);
3889 queue_work(dev_priv->wq, &work->work);
3890
3891 trace_i915_flip_complete(intel_crtc->plane,
3892 work->pending_flip_obj);
3893}
3894
46a55d30 3895void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3896{
0f91128d 3897 struct drm_device *dev = crtc->dev;
5bb61643 3898 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3899
2c10d571 3900 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3901 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3902 !intel_crtc_has_pending_flip(crtc),
3903 60*HZ) == 0)) {
3904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3905
5e2d7afc 3906 spin_lock_irq(&dev->event_lock);
9c787942
CW
3907 if (intel_crtc->unpin_work) {
3908 WARN_ONCE(1, "Removing stuck page flip\n");
3909 page_flip_completed(intel_crtc);
3910 }
5e2d7afc 3911 spin_unlock_irq(&dev->event_lock);
9c787942 3912 }
5bb61643 3913
975d568a
CW
3914 if (crtc->primary->fb) {
3915 mutex_lock(&dev->struct_mutex);
3916 intel_finish_fb(crtc->primary->fb);
3917 mutex_unlock(&dev->struct_mutex);
3918 }
e6c3a2a6
CW
3919}
3920
e615efe4
ED
3921/* Program iCLKIP clock to the desired frequency */
3922static void lpt_program_iclkip(struct drm_crtc *crtc)
3923{
3924 struct drm_device *dev = crtc->dev;
3925 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3926 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3927 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3928 u32 temp;
3929
a580516d 3930 mutex_lock(&dev_priv->sb_lock);
09153000 3931
e615efe4
ED
3932 /* It is necessary to ungate the pixclk gate prior to programming
3933 * the divisors, and gate it back when it is done.
3934 */
3935 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3936
3937 /* Disable SSCCTL */
3938 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3939 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3940 SBI_SSCCTL_DISABLE,
3941 SBI_ICLK);
e615efe4
ED
3942
3943 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3944 if (clock == 20000) {
e615efe4
ED
3945 auxdiv = 1;
3946 divsel = 0x41;
3947 phaseinc = 0x20;
3948 } else {
3949 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3950 * but the adjusted_mode->crtc_clock in in KHz. To get the
3951 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3952 * convert the virtual clock precision to KHz here for higher
3953 * precision.
3954 */
3955 u32 iclk_virtual_root_freq = 172800 * 1000;
3956 u32 iclk_pi_range = 64;
3957 u32 desired_divisor, msb_divisor_value, pi_value;
3958
12d7ceed 3959 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3960 msb_divisor_value = desired_divisor / iclk_pi_range;
3961 pi_value = desired_divisor % iclk_pi_range;
3962
3963 auxdiv = 0;
3964 divsel = msb_divisor_value - 2;
3965 phaseinc = pi_value;
3966 }
3967
3968 /* This should not happen with any sane values */
3969 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3970 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3971 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3972 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3973
3974 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3975 clock,
e615efe4
ED
3976 auxdiv,
3977 divsel,
3978 phasedir,
3979 phaseinc);
3980
3981 /* Program SSCDIVINTPHASE6 */
988d6ee8 3982 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3983 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3984 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3985 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3986 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3987 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3988 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3989 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3990
3991 /* Program SSCAUXDIV */
988d6ee8 3992 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3993 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3994 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3995 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3996
3997 /* Enable modulator and associated divider */
988d6ee8 3998 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3999 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4000 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
4001
4002 /* Wait for initialization time */
4003 udelay(24);
4004
4005 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000 4006
a580516d 4007 mutex_unlock(&dev_priv->sb_lock);
e615efe4
ED
4008}
4009
275f01b2
DV
4010static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4011 enum pipe pch_transcoder)
4012{
4013 struct drm_device *dev = crtc->base.dev;
4014 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4015 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4016
4017 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4018 I915_READ(HTOTAL(cpu_transcoder)));
4019 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4020 I915_READ(HBLANK(cpu_transcoder)));
4021 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4022 I915_READ(HSYNC(cpu_transcoder)));
4023
4024 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4025 I915_READ(VTOTAL(cpu_transcoder)));
4026 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4027 I915_READ(VBLANK(cpu_transcoder)));
4028 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4029 I915_READ(VSYNC(cpu_transcoder)));
4030 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4031 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4032}
4033
003632d9 4034static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4035{
4036 struct drm_i915_private *dev_priv = dev->dev_private;
4037 uint32_t temp;
4038
4039 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4040 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4041 return;
4042
4043 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4044 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4045
003632d9
ACO
4046 temp &= ~FDI_BC_BIFURCATION_SELECT;
4047 if (enable)
4048 temp |= FDI_BC_BIFURCATION_SELECT;
4049
4050 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4051 I915_WRITE(SOUTH_CHICKEN1, temp);
4052 POSTING_READ(SOUTH_CHICKEN1);
4053}
4054
4055static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4056{
4057 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4058
4059 switch (intel_crtc->pipe) {
4060 case PIPE_A:
4061 break;
4062 case PIPE_B:
6e3c9717 4063 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4064 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4065 else
003632d9 4066 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4067
4068 break;
4069 case PIPE_C:
003632d9 4070 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4071
4072 break;
4073 default:
4074 BUG();
4075 }
4076}
4077
f67a559d
JB
4078/*
4079 * Enable PCH resources required for PCH ports:
4080 * - PCH PLLs
4081 * - FDI training & RX/TX
4082 * - update transcoder timings
4083 * - DP transcoding bits
4084 * - transcoder
4085 */
4086static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4087{
4088 struct drm_device *dev = crtc->dev;
4089 struct drm_i915_private *dev_priv = dev->dev_private;
4090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4091 int pipe = intel_crtc->pipe;
ee7b9f93 4092 u32 reg, temp;
2c07245f 4093
ab9412ba 4094 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4095
1fbc0d78
DV
4096 if (IS_IVYBRIDGE(dev))
4097 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4098
cd986abb
DV
4099 /* Write the TU size bits before fdi link training, so that error
4100 * detection works. */
4101 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4102 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4103
c98e9dcf 4104 /* For PCH output, training FDI link */
674cf967 4105 dev_priv->display.fdi_link_train(crtc);
2c07245f 4106
3ad8a208
DV
4107 /* We need to program the right clock selection before writing the pixel
4108 * mutliplier into the DPLL. */
303b81e0 4109 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4110 u32 sel;
4b645f14 4111
c98e9dcf 4112 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4113 temp |= TRANS_DPLL_ENABLE(pipe);
4114 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4115 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4116 temp |= sel;
4117 else
4118 temp &= ~sel;
c98e9dcf 4119 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4120 }
5eddb70b 4121
3ad8a208
DV
4122 /* XXX: pch pll's can be enabled any time before we enable the PCH
4123 * transcoder, and we actually should do this to not upset any PCH
4124 * transcoder that already use the clock when we share it.
4125 *
4126 * Note that enable_shared_dpll tries to do the right thing, but
4127 * get_shared_dpll unconditionally resets the pll - we need that to have
4128 * the right LVDS enable sequence. */
85b3894f 4129 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4130
d9b6cb56
JB
4131 /* set transcoder timing, panel must allow it */
4132 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4133 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4134
303b81e0 4135 intel_fdi_normal_train(crtc);
5e84e1a4 4136
c98e9dcf 4137 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4138 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4139 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4140 reg = TRANS_DP_CTL(pipe);
4141 temp = I915_READ(reg);
4142 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4143 TRANS_DP_SYNC_MASK |
4144 TRANS_DP_BPC_MASK);
e3ef4479 4145 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4146 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4147
4148 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4149 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4150 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4151 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4152
4153 switch (intel_trans_dp_port_sel(crtc)) {
4154 case PCH_DP_B:
5eddb70b 4155 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4156 break;
4157 case PCH_DP_C:
5eddb70b 4158 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4159 break;
4160 case PCH_DP_D:
5eddb70b 4161 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4162 break;
4163 default:
e95d41e1 4164 BUG();
32f9d658 4165 }
2c07245f 4166
5eddb70b 4167 I915_WRITE(reg, temp);
6be4a607 4168 }
b52eb4dc 4169
b8a4f404 4170 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4171}
4172
1507e5bd
PZ
4173static void lpt_pch_enable(struct drm_crtc *crtc)
4174{
4175 struct drm_device *dev = crtc->dev;
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4178 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4179
ab9412ba 4180 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4181
8c52b5e8 4182 lpt_program_iclkip(crtc);
1507e5bd 4183
0540e488 4184 /* Set transcoder timing. */
275f01b2 4185 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4186
937bb610 4187 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4188}
4189
190f68c5
ACO
4190struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4191 struct intel_crtc_state *crtc_state)
ee7b9f93 4192{
e2b78267 4193 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4194 struct intel_shared_dpll *pll;
de419ab6 4195 struct intel_shared_dpll_config *shared_dpll;
e2b78267 4196 enum intel_dpll_id i;
ee7b9f93 4197
de419ab6
ML
4198 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4199
98b6bd99
DV
4200 if (HAS_PCH_IBX(dev_priv->dev)) {
4201 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4202 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4203 pll = &dev_priv->shared_dplls[i];
98b6bd99 4204
46edb027
DV
4205 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4206 crtc->base.base.id, pll->name);
98b6bd99 4207
de419ab6 4208 WARN_ON(shared_dpll[i].crtc_mask);
f2a69f44 4209
98b6bd99
DV
4210 goto found;
4211 }
4212
bcddf610
S
4213 if (IS_BROXTON(dev_priv->dev)) {
4214 /* PLL is attached to port in bxt */
4215 struct intel_encoder *encoder;
4216 struct intel_digital_port *intel_dig_port;
4217
4218 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4219 if (WARN_ON(!encoder))
4220 return NULL;
4221
4222 intel_dig_port = enc_to_dig_port(&encoder->base);
4223 /* 1:1 mapping between ports and PLLs */
4224 i = (enum intel_dpll_id)intel_dig_port->port;
4225 pll = &dev_priv->shared_dplls[i];
4226 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4227 crtc->base.base.id, pll->name);
de419ab6 4228 WARN_ON(shared_dpll[i].crtc_mask);
bcddf610
S
4229
4230 goto found;
4231 }
4232
e72f9fbf
DV
4233 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4234 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4235
4236 /* Only want to check enabled timings first */
de419ab6 4237 if (shared_dpll[i].crtc_mask == 0)
ee7b9f93
JB
4238 continue;
4239
190f68c5 4240 if (memcmp(&crtc_state->dpll_hw_state,
de419ab6
ML
4241 &shared_dpll[i].hw_state,
4242 sizeof(crtc_state->dpll_hw_state)) == 0) {
8bd31e67 4243 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4244 crtc->base.base.id, pll->name,
de419ab6 4245 shared_dpll[i].crtc_mask,
8bd31e67 4246 pll->active);
ee7b9f93
JB
4247 goto found;
4248 }
4249 }
4250
4251 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4252 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4253 pll = &dev_priv->shared_dplls[i];
de419ab6 4254 if (shared_dpll[i].crtc_mask == 0) {
46edb027
DV
4255 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4256 crtc->base.base.id, pll->name);
ee7b9f93
JB
4257 goto found;
4258 }
4259 }
4260
4261 return NULL;
4262
4263found:
de419ab6
ML
4264 if (shared_dpll[i].crtc_mask == 0)
4265 shared_dpll[i].hw_state =
4266 crtc_state->dpll_hw_state;
f2a69f44 4267
190f68c5 4268 crtc_state->shared_dpll = i;
46edb027
DV
4269 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4270 pipe_name(crtc->pipe));
ee7b9f93 4271
de419ab6 4272 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
e04c7350 4273
ee7b9f93
JB
4274 return pll;
4275}
4276
de419ab6 4277static void intel_shared_dpll_commit(struct drm_atomic_state *state)
8bd31e67 4278{
de419ab6
ML
4279 struct drm_i915_private *dev_priv = to_i915(state->dev);
4280 struct intel_shared_dpll_config *shared_dpll;
8bd31e67
ACO
4281 struct intel_shared_dpll *pll;
4282 enum intel_dpll_id i;
4283
de419ab6
ML
4284 if (!to_intel_atomic_state(state)->dpll_set)
4285 return;
8bd31e67 4286
de419ab6 4287 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
8bd31e67
ACO
4288 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4289 pll = &dev_priv->shared_dplls[i];
de419ab6 4290 pll->config = shared_dpll[i];
8bd31e67
ACO
4291 }
4292}
4293
a1520318 4294static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4295{
4296 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4297 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4298 u32 temp;
4299
4300 temp = I915_READ(dslreg);
4301 udelay(500);
4302 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4303 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4304 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4305 }
4306}
4307
86adf9d7
ML
4308static int
4309skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4310 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4311 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4312{
86adf9d7
ML
4313 struct intel_crtc_scaler_state *scaler_state =
4314 &crtc_state->scaler_state;
4315 struct intel_crtc *intel_crtc =
4316 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4317 int need_scaling;
6156a456
CK
4318
4319 need_scaling = intel_rotation_90_or_270(rotation) ?
4320 (src_h != dst_w || src_w != dst_h):
4321 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4322
4323 /*
4324 * if plane is being disabled or scaler is no more required or force detach
4325 * - free scaler binded to this plane/crtc
4326 * - in order to do this, update crtc->scaler_usage
4327 *
4328 * Here scaler state in crtc_state is set free so that
4329 * scaler can be assigned to other user. Actual register
4330 * update to free the scaler is done in plane/panel-fit programming.
4331 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4332 */
86adf9d7 4333 if (force_detach || !need_scaling) {
a1b2278e 4334 if (*scaler_id >= 0) {
86adf9d7 4335 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4336 scaler_state->scalers[*scaler_id].in_use = 0;
4337
86adf9d7
ML
4338 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4339 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4340 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4341 scaler_state->scaler_users);
4342 *scaler_id = -1;
4343 }
4344 return 0;
4345 }
4346
4347 /* range checks */
4348 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4349 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4350
4351 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4352 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4353 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4354 "size is out of scaler range\n",
86adf9d7 4355 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4356 return -EINVAL;
4357 }
4358
86adf9d7
ML
4359 /* mark this plane as a scaler user in crtc_state */
4360 scaler_state->scaler_users |= (1 << scaler_user);
4361 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4362 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4363 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4364 scaler_state->scaler_users);
4365
4366 return 0;
4367}
4368
4369/**
4370 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4371 *
4372 * @state: crtc's scaler state
86adf9d7
ML
4373 *
4374 * Return
4375 * 0 - scaler_usage updated successfully
4376 * error - requested scaling cannot be supported or other error condition
4377 */
e435d6e5 4378int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4379{
4380 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4381 struct drm_display_mode *adjusted_mode =
4382 &state->base.adjusted_mode;
4383
4384 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4385 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4386
e435d6e5 4387 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
86adf9d7
ML
4388 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4389 state->pipe_src_w, state->pipe_src_h,
8c6cda29 4390 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
86adf9d7
ML
4391}
4392
4393/**
4394 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4395 *
4396 * @state: crtc's scaler state
86adf9d7
ML
4397 * @plane_state: atomic plane state to update
4398 *
4399 * Return
4400 * 0 - scaler_usage updated successfully
4401 * error - requested scaling cannot be supported or other error condition
4402 */
da20eabd
ML
4403static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4404 struct intel_plane_state *plane_state)
86adf9d7
ML
4405{
4406
4407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4408 struct intel_plane *intel_plane =
4409 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4410 struct drm_framebuffer *fb = plane_state->base.fb;
4411 int ret;
4412
4413 bool force_detach = !fb || !plane_state->visible;
4414
4415 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4416 intel_plane->base.base.id, intel_crtc->pipe,
4417 drm_plane_index(&intel_plane->base));
4418
4419 ret = skl_update_scaler(crtc_state, force_detach,
4420 drm_plane_index(&intel_plane->base),
4421 &plane_state->scaler_id,
4422 plane_state->base.rotation,
4423 drm_rect_width(&plane_state->src) >> 16,
4424 drm_rect_height(&plane_state->src) >> 16,
4425 drm_rect_width(&plane_state->dst),
4426 drm_rect_height(&plane_state->dst));
4427
4428 if (ret || plane_state->scaler_id < 0)
4429 return ret;
4430
a1b2278e 4431 /* check colorkey */
818ed961 4432 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4433 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4434 intel_plane->base.base.id);
a1b2278e
CK
4435 return -EINVAL;
4436 }
4437
4438 /* Check src format */
86adf9d7
ML
4439 switch (fb->pixel_format) {
4440 case DRM_FORMAT_RGB565:
4441 case DRM_FORMAT_XBGR8888:
4442 case DRM_FORMAT_XRGB8888:
4443 case DRM_FORMAT_ABGR8888:
4444 case DRM_FORMAT_ARGB8888:
4445 case DRM_FORMAT_XRGB2101010:
4446 case DRM_FORMAT_XBGR2101010:
4447 case DRM_FORMAT_YUYV:
4448 case DRM_FORMAT_YVYU:
4449 case DRM_FORMAT_UYVY:
4450 case DRM_FORMAT_VYUY:
4451 break;
4452 default:
4453 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4454 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4455 return -EINVAL;
a1b2278e
CK
4456 }
4457
a1b2278e
CK
4458 return 0;
4459}
4460
e435d6e5
ML
4461static void skylake_scaler_disable(struct intel_crtc *crtc)
4462{
4463 int i;
4464
4465 for (i = 0; i < crtc->num_scalers; i++)
4466 skl_detach_scaler(crtc, i);
4467}
4468
4469static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4470{
4471 struct drm_device *dev = crtc->base.dev;
4472 struct drm_i915_private *dev_priv = dev->dev_private;
4473 int pipe = crtc->pipe;
a1b2278e
CK
4474 struct intel_crtc_scaler_state *scaler_state =
4475 &crtc->config->scaler_state;
4476
4477 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4478
6e3c9717 4479 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4480 int id;
4481
4482 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4483 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4484 return;
4485 }
4486
4487 id = scaler_state->scaler_id;
4488 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4489 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4490 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4491 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4492
4493 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4494 }
4495}
4496
b074cec8
JB
4497static void ironlake_pfit_enable(struct intel_crtc *crtc)
4498{
4499 struct drm_device *dev = crtc->base.dev;
4500 struct drm_i915_private *dev_priv = dev->dev_private;
4501 int pipe = crtc->pipe;
4502
6e3c9717 4503 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4504 /* Force use of hard-coded filter coefficients
4505 * as some pre-programmed values are broken,
4506 * e.g. x201.
4507 */
4508 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4509 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4510 PF_PIPE_SEL_IVB(pipe));
4511 else
4512 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4513 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4514 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4515 }
4516}
4517
20bc8673 4518void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4519{
cea165c3
VS
4520 struct drm_device *dev = crtc->base.dev;
4521 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4522
6e3c9717 4523 if (!crtc->config->ips_enabled)
d77e4531
PZ
4524 return;
4525
cea165c3
VS
4526 /* We can only enable IPS after we enable a plane and wait for a vblank */
4527 intel_wait_for_vblank(dev, crtc->pipe);
4528
d77e4531 4529 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4530 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4531 mutex_lock(&dev_priv->rps.hw_lock);
4532 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4533 mutex_unlock(&dev_priv->rps.hw_lock);
4534 /* Quoting Art Runyan: "its not safe to expect any particular
4535 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4536 * mailbox." Moreover, the mailbox may return a bogus state,
4537 * so we need to just enable it and continue on.
2a114cc1
BW
4538 */
4539 } else {
4540 I915_WRITE(IPS_CTL, IPS_ENABLE);
4541 /* The bit only becomes 1 in the next vblank, so this wait here
4542 * is essentially intel_wait_for_vblank. If we don't have this
4543 * and don't wait for vblanks until the end of crtc_enable, then
4544 * the HW state readout code will complain that the expected
4545 * IPS_CTL value is not the one we read. */
4546 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4547 DRM_ERROR("Timed out waiting for IPS enable\n");
4548 }
d77e4531
PZ
4549}
4550
20bc8673 4551void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4552{
4553 struct drm_device *dev = crtc->base.dev;
4554 struct drm_i915_private *dev_priv = dev->dev_private;
4555
6e3c9717 4556 if (!crtc->config->ips_enabled)
d77e4531
PZ
4557 return;
4558
4559 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4560 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4561 mutex_lock(&dev_priv->rps.hw_lock);
4562 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4563 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4564 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4565 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4566 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4567 } else {
2a114cc1 4568 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4569 POSTING_READ(IPS_CTL);
4570 }
d77e4531
PZ
4571
4572 /* We need to wait for a vblank before we can disable the plane. */
4573 intel_wait_for_vblank(dev, crtc->pipe);
4574}
4575
4576/** Loads the palette/gamma unit for the CRTC with the prepared values */
4577static void intel_crtc_load_lut(struct drm_crtc *crtc)
4578{
4579 struct drm_device *dev = crtc->dev;
4580 struct drm_i915_private *dev_priv = dev->dev_private;
4581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4582 enum pipe pipe = intel_crtc->pipe;
4583 int palreg = PALETTE(pipe);
4584 int i;
4585 bool reenable_ips = false;
4586
4587 /* The clocks have to be on to load the palette. */
53d9f4e9 4588 if (!crtc->state->active)
d77e4531
PZ
4589 return;
4590
50360403 4591 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
409ee761 4592 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4593 assert_dsi_pll_enabled(dev_priv);
4594 else
4595 assert_pll_enabled(dev_priv, pipe);
4596 }
4597
4598 /* use legacy palette for Ironlake */
7a1db49a 4599 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4600 palreg = LGC_PALETTE(pipe);
4601
4602 /* Workaround : Do not read or write the pipe palette/gamma data while
4603 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4604 */
6e3c9717 4605 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4606 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4607 GAMMA_MODE_MODE_SPLIT)) {
4608 hsw_disable_ips(intel_crtc);
4609 reenable_ips = true;
4610 }
4611
4612 for (i = 0; i < 256; i++) {
4613 I915_WRITE(palreg + 4 * i,
4614 (intel_crtc->lut_r[i] << 16) |
4615 (intel_crtc->lut_g[i] << 8) |
4616 intel_crtc->lut_b[i]);
4617 }
4618
4619 if (reenable_ips)
4620 hsw_enable_ips(intel_crtc);
4621}
4622
7cac945f 4623static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4624{
7cac945f 4625 if (intel_crtc->overlay) {
d3eedb1a
VS
4626 struct drm_device *dev = intel_crtc->base.dev;
4627 struct drm_i915_private *dev_priv = dev->dev_private;
4628
4629 mutex_lock(&dev->struct_mutex);
4630 dev_priv->mm.interruptible = false;
4631 (void) intel_overlay_switch_off(intel_crtc->overlay);
4632 dev_priv->mm.interruptible = true;
4633 mutex_unlock(&dev->struct_mutex);
4634 }
4635
4636 /* Let userspace switch the overlay on again. In most cases userspace
4637 * has to recompute where to put it anyway.
4638 */
4639}
4640
87d4300a
ML
4641/**
4642 * intel_post_enable_primary - Perform operations after enabling primary plane
4643 * @crtc: the CRTC whose primary plane was just enabled
4644 *
4645 * Performs potentially sleeping operations that must be done after the primary
4646 * plane is enabled, such as updating FBC and IPS. Note that this may be
4647 * called due to an explicit primary plane update, or due to an implicit
4648 * re-enable that is caused when a sprite plane is updated to no longer
4649 * completely hide the primary plane.
4650 */
4651static void
4652intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4653{
4654 struct drm_device *dev = crtc->dev;
87d4300a 4655 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4657 int pipe = intel_crtc->pipe;
a5c4d7bc 4658
87d4300a
ML
4659 /*
4660 * BDW signals flip done immediately if the plane
4661 * is disabled, even if the plane enable is already
4662 * armed to occur at the next vblank :(
4663 */
4664 if (IS_BROADWELL(dev))
4665 intel_wait_for_vblank(dev, pipe);
a5c4d7bc 4666
87d4300a
ML
4667 /*
4668 * FIXME IPS should be fine as long as one plane is
4669 * enabled, but in practice it seems to have problems
4670 * when going from primary only to sprite only and vice
4671 * versa.
4672 */
a5c4d7bc
VS
4673 hsw_enable_ips(intel_crtc);
4674
f99d7069 4675 /*
87d4300a
ML
4676 * Gen2 reports pipe underruns whenever all planes are disabled.
4677 * So don't enable underrun reporting before at least some planes
4678 * are enabled.
4679 * FIXME: Need to fix the logic to work when we turn off all planes
4680 * but leave the pipe running.
f99d7069 4681 */
87d4300a
ML
4682 if (IS_GEN2(dev))
4683 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4684
4685 /* Underruns don't raise interrupts, so check manually. */
4686 if (HAS_GMCH_DISPLAY(dev))
4687 i9xx_check_fifo_underruns(dev_priv);
a5c4d7bc
VS
4688}
4689
87d4300a
ML
4690/**
4691 * intel_pre_disable_primary - Perform operations before disabling primary plane
4692 * @crtc: the CRTC whose primary plane is to be disabled
4693 *
4694 * Performs potentially sleeping operations that must be done before the
4695 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4696 * be called due to an explicit primary plane update, or due to an implicit
4697 * disable that is caused when a sprite plane completely hides the primary
4698 * plane.
4699 */
4700static void
4701intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4702{
4703 struct drm_device *dev = crtc->dev;
4704 struct drm_i915_private *dev_priv = dev->dev_private;
4705 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4706 int pipe = intel_crtc->pipe;
a5c4d7bc 4707
87d4300a
ML
4708 /*
4709 * Gen2 reports pipe underruns whenever all planes are disabled.
4710 * So diasble underrun reporting before all the planes get disabled.
4711 * FIXME: Need to fix the logic to work when we turn off all planes
4712 * but leave the pipe running.
4713 */
4714 if (IS_GEN2(dev))
4715 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4716
87d4300a
ML
4717 /*
4718 * Vblank time updates from the shadow to live plane control register
4719 * are blocked if the memory self-refresh mode is active at that
4720 * moment. So to make sure the plane gets truly disabled, disable
4721 * first the self-refresh mode. The self-refresh enable bit in turn
4722 * will be checked/applied by the HW only at the next frame start
4723 * event which is after the vblank start event, so we need to have a
4724 * wait-for-vblank between disabling the plane and the pipe.
4725 */
262cd2e1 4726 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4727 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4728 dev_priv->wm.vlv.cxsr = false;
4729 intel_wait_for_vblank(dev, pipe);
4730 }
87d4300a 4731
87d4300a
ML
4732 /*
4733 * FIXME IPS should be fine as long as one plane is
4734 * enabled, but in practice it seems to have problems
4735 * when going from primary only to sprite only and vice
4736 * versa.
4737 */
a5c4d7bc 4738 hsw_disable_ips(intel_crtc);
87d4300a
ML
4739}
4740
ac21b225
ML
4741static void intel_post_plane_update(struct intel_crtc *crtc)
4742{
4743 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4744 struct drm_device *dev = crtc->base.dev;
7733b49b 4745 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225
ML
4746 struct drm_plane *plane;
4747
4748 if (atomic->wait_vblank)
4749 intel_wait_for_vblank(dev, crtc->pipe);
4750
4751 intel_frontbuffer_flip(dev, atomic->fb_bits);
4752
852eb00d
VS
4753 if (atomic->disable_cxsr)
4754 crtc->wm.cxsr_allowed = true;
4755
f015c551
VS
4756 if (crtc->atomic.update_wm_post)
4757 intel_update_watermarks(&crtc->base);
4758
c80ac854 4759 if (atomic->update_fbc)
7733b49b 4760 intel_fbc_update(dev_priv);
ac21b225
ML
4761
4762 if (atomic->post_enable_primary)
4763 intel_post_enable_primary(&crtc->base);
4764
4765 drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4766 intel_update_sprite_watermarks(plane, &crtc->base,
4767 0, 0, 0, false, false);
4768
4769 memset(atomic, 0, sizeof(*atomic));
4770}
4771
4772static void intel_pre_plane_update(struct intel_crtc *crtc)
4773{
4774 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4775 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225
ML
4776 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4777 struct drm_plane *p;
4778
4779 /* Track fb's for any planes being disabled */
ac21b225
ML
4780 drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4781 struct intel_plane *plane = to_intel_plane(p);
ac21b225
ML
4782
4783 mutex_lock(&dev->struct_mutex);
a9ff8714
VS
4784 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4785 plane->frontbuffer_bit);
ac21b225
ML
4786 mutex_unlock(&dev->struct_mutex);
4787 }
4788
4789 if (atomic->wait_for_flips)
4790 intel_crtc_wait_for_pending_flips(&crtc->base);
4791
c80ac854 4792 if (atomic->disable_fbc)
25ad93fd 4793 intel_fbc_disable_crtc(crtc);
ac21b225 4794
066cf55b
RV
4795 if (crtc->atomic.disable_ips)
4796 hsw_disable_ips(crtc);
4797
ac21b225
ML
4798 if (atomic->pre_disable_primary)
4799 intel_pre_disable_primary(&crtc->base);
852eb00d
VS
4800
4801 if (atomic->disable_cxsr) {
4802 crtc->wm.cxsr_allowed = false;
4803 intel_set_memory_cxsr(dev_priv, false);
4804 }
ac21b225
ML
4805}
4806
d032ffa0 4807static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4808{
4809 struct drm_device *dev = crtc->dev;
4810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4811 struct drm_plane *p;
87d4300a
ML
4812 int pipe = intel_crtc->pipe;
4813
7cac945f 4814 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4815
d032ffa0
ML
4816 drm_for_each_plane_mask(p, dev, plane_mask)
4817 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4818
f99d7069
DV
4819 /*
4820 * FIXME: Once we grow proper nuclear flip support out of this we need
4821 * to compute the mask of flip planes precisely. For the time being
4822 * consider this a flip to a NULL plane.
4823 */
4824 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4825}
4826
f67a559d
JB
4827static void ironlake_crtc_enable(struct drm_crtc *crtc)
4828{
4829 struct drm_device *dev = crtc->dev;
4830 struct drm_i915_private *dev_priv = dev->dev_private;
4831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4832 struct intel_encoder *encoder;
f67a559d 4833 int pipe = intel_crtc->pipe;
f67a559d 4834
53d9f4e9 4835 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4836 return;
4837
6e3c9717 4838 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4839 intel_prepare_shared_dpll(intel_crtc);
4840
6e3c9717 4841 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4842 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4843
4844 intel_set_pipe_timings(intel_crtc);
4845
6e3c9717 4846 if (intel_crtc->config->has_pch_encoder) {
29407aab 4847 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4848 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4849 }
4850
4851 ironlake_set_pipeconf(crtc);
4852
f67a559d 4853 intel_crtc->active = true;
8664281b 4854
a72e4c9f
DV
4855 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4856 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4857
f6736a1a 4858 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4859 if (encoder->pre_enable)
4860 encoder->pre_enable(encoder);
f67a559d 4861
6e3c9717 4862 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4863 /* Note: FDI PLL enabling _must_ be done before we enable the
4864 * cpu pipes, hence this is separate from all the other fdi/pch
4865 * enabling. */
88cefb6c 4866 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4867 } else {
4868 assert_fdi_tx_disabled(dev_priv, pipe);
4869 assert_fdi_rx_disabled(dev_priv, pipe);
4870 }
f67a559d 4871
b074cec8 4872 ironlake_pfit_enable(intel_crtc);
f67a559d 4873
9c54c0dd
JB
4874 /*
4875 * On ILK+ LUT must be loaded before the pipe is running but with
4876 * clocks enabled
4877 */
4878 intel_crtc_load_lut(crtc);
4879
f37fcc2a 4880 intel_update_watermarks(crtc);
e1fdc473 4881 intel_enable_pipe(intel_crtc);
f67a559d 4882
6e3c9717 4883 if (intel_crtc->config->has_pch_encoder)
f67a559d 4884 ironlake_pch_enable(crtc);
c98e9dcf 4885
f9b61ff6
DV
4886 assert_vblank_disabled(crtc);
4887 drm_crtc_vblank_on(crtc);
4888
fa5c73b1
DV
4889 for_each_encoder_on_crtc(dev, crtc, encoder)
4890 encoder->enable(encoder);
61b77ddd
DV
4891
4892 if (HAS_PCH_CPT(dev))
a1520318 4893 cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
4894}
4895
42db64ef
PZ
4896/* IPS only exists on ULT machines and is tied to pipe A. */
4897static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4898{
f5adf94e 4899 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4900}
4901
4f771f10
PZ
4902static void haswell_crtc_enable(struct drm_crtc *crtc)
4903{
4904 struct drm_device *dev = crtc->dev;
4905 struct drm_i915_private *dev_priv = dev->dev_private;
4906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4907 struct intel_encoder *encoder;
99d736a2
ML
4908 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4909 struct intel_crtc_state *pipe_config =
4910 to_intel_crtc_state(crtc->state);
4f771f10 4911
53d9f4e9 4912 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4913 return;
4914
df8ad70c
DV
4915 if (intel_crtc_to_shared_dpll(intel_crtc))
4916 intel_enable_shared_dpll(intel_crtc);
4917
6e3c9717 4918 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4919 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4920
4921 intel_set_pipe_timings(intel_crtc);
4922
6e3c9717
ACO
4923 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4924 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4925 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4926 }
4927
6e3c9717 4928 if (intel_crtc->config->has_pch_encoder) {
229fca97 4929 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4930 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4931 }
4932
4933 haswell_set_pipeconf(crtc);
4934
4935 intel_set_pipe_csc(crtc);
4936
4f771f10 4937 intel_crtc->active = true;
8664281b 4938
a72e4c9f 4939 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4940 for_each_encoder_on_crtc(dev, crtc, encoder)
4941 if (encoder->pre_enable)
4942 encoder->pre_enable(encoder);
4943
6e3c9717 4944 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4945 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4946 true);
4fe9467d
ID
4947 dev_priv->display.fdi_link_train(crtc);
4948 }
4949
1f544388 4950 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4951
ff6d9f55 4952 if (INTEL_INFO(dev)->gen == 9)
e435d6e5 4953 skylake_pfit_enable(intel_crtc);
ff6d9f55 4954 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 4955 ironlake_pfit_enable(intel_crtc);
ff6d9f55
JB
4956 else
4957 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10
PZ
4958
4959 /*
4960 * On ILK+ LUT must be loaded before the pipe is running but with
4961 * clocks enabled
4962 */
4963 intel_crtc_load_lut(crtc);
4964
1f544388 4965 intel_ddi_set_pipe_settings(crtc);
8228c251 4966 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4967
f37fcc2a 4968 intel_update_watermarks(crtc);
e1fdc473 4969 intel_enable_pipe(intel_crtc);
42db64ef 4970
6e3c9717 4971 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4972 lpt_pch_enable(crtc);
4f771f10 4973
6e3c9717 4974 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4975 intel_ddi_set_vc_payload_alloc(crtc, true);
4976
f9b61ff6
DV
4977 assert_vblank_disabled(crtc);
4978 drm_crtc_vblank_on(crtc);
4979
8807e55b 4980 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4981 encoder->enable(encoder);
8807e55b
JN
4982 intel_opregion_notify_encoder(encoder, true);
4983 }
4f771f10 4984
e4916946
PZ
4985 /* If we change the relative order between pipe/planes enabling, we need
4986 * to change the workaround. */
99d736a2
ML
4987 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4988 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4989 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4990 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4991 }
4f771f10
PZ
4992}
4993
3f8dce3a
DV
4994static void ironlake_pfit_disable(struct intel_crtc *crtc)
4995{
4996 struct drm_device *dev = crtc->base.dev;
4997 struct drm_i915_private *dev_priv = dev->dev_private;
4998 int pipe = crtc->pipe;
4999
5000 /* To avoid upsetting the power well on haswell only disable the pfit if
5001 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 5002 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5003 I915_WRITE(PF_CTL(pipe), 0);
5004 I915_WRITE(PF_WIN_POS(pipe), 0);
5005 I915_WRITE(PF_WIN_SZ(pipe), 0);
5006 }
5007}
5008
6be4a607
JB
5009static void ironlake_crtc_disable(struct drm_crtc *crtc)
5010{
5011 struct drm_device *dev = crtc->dev;
5012 struct drm_i915_private *dev_priv = dev->dev_private;
5013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5014 struct intel_encoder *encoder;
6be4a607 5015 int pipe = intel_crtc->pipe;
5eddb70b 5016 u32 reg, temp;
b52eb4dc 5017
ea9d758d
DV
5018 for_each_encoder_on_crtc(dev, crtc, encoder)
5019 encoder->disable(encoder);
5020
f9b61ff6
DV
5021 drm_crtc_vblank_off(crtc);
5022 assert_vblank_disabled(crtc);
5023
6e3c9717 5024 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 5025 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 5026
575f7ab7 5027 intel_disable_pipe(intel_crtc);
32f9d658 5028
3f8dce3a 5029 ironlake_pfit_disable(intel_crtc);
2c07245f 5030
5a74f70a
VS
5031 if (intel_crtc->config->has_pch_encoder)
5032 ironlake_fdi_disable(crtc);
5033
bf49ec8c
DV
5034 for_each_encoder_on_crtc(dev, crtc, encoder)
5035 if (encoder->post_disable)
5036 encoder->post_disable(encoder);
2c07245f 5037
6e3c9717 5038 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5039 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5040
d925c59a
DV
5041 if (HAS_PCH_CPT(dev)) {
5042 /* disable TRANS_DP_CTL */
5043 reg = TRANS_DP_CTL(pipe);
5044 temp = I915_READ(reg);
5045 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5046 TRANS_DP_PORT_SEL_MASK);
5047 temp |= TRANS_DP_PORT_SEL_NONE;
5048 I915_WRITE(reg, temp);
5049
5050 /* disable DPLL_SEL */
5051 temp = I915_READ(PCH_DPLL_SEL);
11887397 5052 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5053 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5054 }
e3421a18 5055
d925c59a
DV
5056 ironlake_fdi_pll_disable(intel_crtc);
5057 }
e4ca0612
PJ
5058
5059 intel_crtc->active = false;
5060 intel_update_watermarks(crtc);
6be4a607 5061}
1b3c7a47 5062
4f771f10 5063static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5064{
4f771f10
PZ
5065 struct drm_device *dev = crtc->dev;
5066 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5068 struct intel_encoder *encoder;
6e3c9717 5069 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5070
8807e55b
JN
5071 for_each_encoder_on_crtc(dev, crtc, encoder) {
5072 intel_opregion_notify_encoder(encoder, false);
4f771f10 5073 encoder->disable(encoder);
8807e55b 5074 }
4f771f10 5075
f9b61ff6
DV
5076 drm_crtc_vblank_off(crtc);
5077 assert_vblank_disabled(crtc);
5078
6e3c9717 5079 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
5080 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5081 false);
575f7ab7 5082 intel_disable_pipe(intel_crtc);
4f771f10 5083
6e3c9717 5084 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5085 intel_ddi_set_vc_payload_alloc(crtc, false);
5086
ad80a810 5087 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5088
ff6d9f55 5089 if (INTEL_INFO(dev)->gen == 9)
e435d6e5 5090 skylake_scaler_disable(intel_crtc);
ff6d9f55 5091 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 5092 ironlake_pfit_disable(intel_crtc);
ff6d9f55
JB
5093 else
5094 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10 5095
1f544388 5096 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5097
6e3c9717 5098 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5099 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5100 intel_ddi_fdi_disable(crtc);
83616634 5101 }
4f771f10 5102
97b040aa
ID
5103 for_each_encoder_on_crtc(dev, crtc, encoder)
5104 if (encoder->post_disable)
5105 encoder->post_disable(encoder);
e4ca0612
PJ
5106
5107 intel_crtc->active = false;
5108 intel_update_watermarks(crtc);
4f771f10
PZ
5109}
5110
2dd24552
JB
5111static void i9xx_pfit_enable(struct intel_crtc *crtc)
5112{
5113 struct drm_device *dev = crtc->base.dev;
5114 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5115 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5116
681a8504 5117 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5118 return;
5119
2dd24552 5120 /*
c0b03411
DV
5121 * The panel fitter should only be adjusted whilst the pipe is disabled,
5122 * according to register description and PRM.
2dd24552 5123 */
c0b03411
DV
5124 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5125 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5126
b074cec8
JB
5127 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5128 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5129
5130 /* Border color in case we don't scale up to the full screen. Black by
5131 * default, change to something else for debugging. */
5132 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5133}
5134
d05410f9
DA
5135static enum intel_display_power_domain port_to_power_domain(enum port port)
5136{
5137 switch (port) {
5138 case PORT_A:
5139 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5140 case PORT_B:
5141 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5142 case PORT_C:
5143 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5144 case PORT_D:
5145 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5146 default:
5147 WARN_ON_ONCE(1);
5148 return POWER_DOMAIN_PORT_OTHER;
5149 }
5150}
5151
77d22dca
ID
5152#define for_each_power_domain(domain, mask) \
5153 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5154 if ((1 << (domain)) & (mask))
5155
319be8ae
ID
5156enum intel_display_power_domain
5157intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5158{
5159 struct drm_device *dev = intel_encoder->base.dev;
5160 struct intel_digital_port *intel_dig_port;
5161
5162 switch (intel_encoder->type) {
5163 case INTEL_OUTPUT_UNKNOWN:
5164 /* Only DDI platforms should ever use this output type */
5165 WARN_ON_ONCE(!HAS_DDI(dev));
5166 case INTEL_OUTPUT_DISPLAYPORT:
5167 case INTEL_OUTPUT_HDMI:
5168 case INTEL_OUTPUT_EDP:
5169 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5170 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5171 case INTEL_OUTPUT_DP_MST:
5172 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5173 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5174 case INTEL_OUTPUT_ANALOG:
5175 return POWER_DOMAIN_PORT_CRT;
5176 case INTEL_OUTPUT_DSI:
5177 return POWER_DOMAIN_PORT_DSI;
5178 default:
5179 return POWER_DOMAIN_PORT_OTHER;
5180 }
5181}
5182
5183static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5184{
319be8ae
ID
5185 struct drm_device *dev = crtc->dev;
5186 struct intel_encoder *intel_encoder;
5187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5188 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
5189 unsigned long mask;
5190 enum transcoder transcoder;
5191
292b990e
ML
5192 if (!crtc->state->active)
5193 return 0;
5194
77d22dca
ID
5195 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5196
5197 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5198 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5199 if (intel_crtc->config->pch_pfit.enabled ||
5200 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5201 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5202
319be8ae
ID
5203 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5204 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5205
77d22dca
ID
5206 return mask;
5207}
5208
292b990e 5209static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5210{
292b990e
ML
5211 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5213 enum intel_display_power_domain domain;
5214 unsigned long domains, new_domains, old_domains;
77d22dca 5215
292b990e
ML
5216 old_domains = intel_crtc->enabled_power_domains;
5217 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
77d22dca 5218
292b990e
ML
5219 domains = new_domains & ~old_domains;
5220
5221 for_each_power_domain(domain, domains)
5222 intel_display_power_get(dev_priv, domain);
5223
5224 return old_domains & ~new_domains;
5225}
5226
5227static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5228 unsigned long domains)
5229{
5230 enum intel_display_power_domain domain;
5231
5232 for_each_power_domain(domain, domains)
5233 intel_display_power_put(dev_priv, domain);
5234}
77d22dca 5235
292b990e
ML
5236static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5237{
5238 struct drm_device *dev = state->dev;
5239 struct drm_i915_private *dev_priv = dev->dev_private;
5240 unsigned long put_domains[I915_MAX_PIPES] = {};
5241 struct drm_crtc_state *crtc_state;
5242 struct drm_crtc *crtc;
5243 int i;
77d22dca 5244
292b990e
ML
5245 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5246 if (needs_modeset(crtc->state))
5247 put_domains[to_intel_crtc(crtc)->pipe] =
5248 modeset_get_crtc_power_domains(crtc);
77d22dca
ID
5249 }
5250
27c329ed
ML
5251 if (dev_priv->display.modeset_commit_cdclk) {
5252 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5253
5254 if (cdclk != dev_priv->cdclk_freq &&
5255 !WARN_ON(!state->allow_modeset))
5256 dev_priv->display.modeset_commit_cdclk(state);
5257 }
50f6e502 5258
292b990e
ML
5259 for (i = 0; i < I915_MAX_PIPES; i++)
5260 if (put_domains[i])
5261 modeset_put_power_domains(dev_priv, put_domains[i]);
77d22dca
ID
5262}
5263
560a7ae4
DL
5264static void intel_update_max_cdclk(struct drm_device *dev)
5265{
5266 struct drm_i915_private *dev_priv = dev->dev_private;
5267
5268 if (IS_SKYLAKE(dev)) {
5269 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5270
5271 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5272 dev_priv->max_cdclk_freq = 675000;
5273 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5274 dev_priv->max_cdclk_freq = 540000;
5275 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5276 dev_priv->max_cdclk_freq = 450000;
5277 else
5278 dev_priv->max_cdclk_freq = 337500;
5279 } else if (IS_BROADWELL(dev)) {
5280 /*
5281 * FIXME with extra cooling we can allow
5282 * 540 MHz for ULX and 675 Mhz for ULT.
5283 * How can we know if extra cooling is
5284 * available? PCI ID, VTB, something else?
5285 */
5286 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5287 dev_priv->max_cdclk_freq = 450000;
5288 else if (IS_BDW_ULX(dev))
5289 dev_priv->max_cdclk_freq = 450000;
5290 else if (IS_BDW_ULT(dev))
5291 dev_priv->max_cdclk_freq = 540000;
5292 else
5293 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5294 } else if (IS_CHERRYVIEW(dev)) {
5295 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5296 } else if (IS_VALLEYVIEW(dev)) {
5297 dev_priv->max_cdclk_freq = 400000;
5298 } else {
5299 /* otherwise assume cdclk is fixed */
5300 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5301 }
5302
5303 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5304 dev_priv->max_cdclk_freq);
5305}
5306
5307static void intel_update_cdclk(struct drm_device *dev)
5308{
5309 struct drm_i915_private *dev_priv = dev->dev_private;
5310
5311 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5312 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5313 dev_priv->cdclk_freq);
5314
5315 /*
5316 * Program the gmbus_freq based on the cdclk frequency.
5317 * BSpec erroneously claims we should aim for 4MHz, but
5318 * in fact 1MHz is the correct frequency.
5319 */
5320 if (IS_VALLEYVIEW(dev)) {
5321 /*
5322 * Program the gmbus_freq based on the cdclk frequency.
5323 * BSpec erroneously claims we should aim for 4MHz, but
5324 * in fact 1MHz is the correct frequency.
5325 */
5326 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5327 }
5328
5329 if (dev_priv->max_cdclk_freq == 0)
5330 intel_update_max_cdclk(dev);
5331}
5332
70d0c574 5333static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5334{
5335 struct drm_i915_private *dev_priv = dev->dev_private;
5336 uint32_t divider;
5337 uint32_t ratio;
5338 uint32_t current_freq;
5339 int ret;
5340
5341 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5342 switch (frequency) {
5343 case 144000:
5344 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5345 ratio = BXT_DE_PLL_RATIO(60);
5346 break;
5347 case 288000:
5348 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5349 ratio = BXT_DE_PLL_RATIO(60);
5350 break;
5351 case 384000:
5352 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5353 ratio = BXT_DE_PLL_RATIO(60);
5354 break;
5355 case 576000:
5356 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5357 ratio = BXT_DE_PLL_RATIO(60);
5358 break;
5359 case 624000:
5360 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5361 ratio = BXT_DE_PLL_RATIO(65);
5362 break;
5363 case 19200:
5364 /*
5365 * Bypass frequency with DE PLL disabled. Init ratio, divider
5366 * to suppress GCC warning.
5367 */
5368 ratio = 0;
5369 divider = 0;
5370 break;
5371 default:
5372 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5373
5374 return;
5375 }
5376
5377 mutex_lock(&dev_priv->rps.hw_lock);
5378 /* Inform power controller of upcoming frequency change */
5379 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5380 0x80000000);
5381 mutex_unlock(&dev_priv->rps.hw_lock);
5382
5383 if (ret) {
5384 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5385 ret, frequency);
5386 return;
5387 }
5388
5389 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5390 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5391 current_freq = current_freq * 500 + 1000;
5392
5393 /*
5394 * DE PLL has to be disabled when
5395 * - setting to 19.2MHz (bypass, PLL isn't used)
5396 * - before setting to 624MHz (PLL needs toggling)
5397 * - before setting to any frequency from 624MHz (PLL needs toggling)
5398 */
5399 if (frequency == 19200 || frequency == 624000 ||
5400 current_freq == 624000) {
5401 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5402 /* Timeout 200us */
5403 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5404 1))
5405 DRM_ERROR("timout waiting for DE PLL unlock\n");
5406 }
5407
5408 if (frequency != 19200) {
5409 uint32_t val;
5410
5411 val = I915_READ(BXT_DE_PLL_CTL);
5412 val &= ~BXT_DE_PLL_RATIO_MASK;
5413 val |= ratio;
5414 I915_WRITE(BXT_DE_PLL_CTL, val);
5415
5416 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5417 /* Timeout 200us */
5418 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5419 DRM_ERROR("timeout waiting for DE PLL lock\n");
5420
5421 val = I915_READ(CDCLK_CTL);
5422 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5423 val |= divider;
5424 /*
5425 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5426 * enable otherwise.
5427 */
5428 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5429 if (frequency >= 500000)
5430 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5431
5432 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5433 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5434 val |= (frequency - 1000) / 500;
5435 I915_WRITE(CDCLK_CTL, val);
5436 }
5437
5438 mutex_lock(&dev_priv->rps.hw_lock);
5439 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5440 DIV_ROUND_UP(frequency, 25000));
5441 mutex_unlock(&dev_priv->rps.hw_lock);
5442
5443 if (ret) {
5444 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5445 ret, frequency);
5446 return;
5447 }
5448
a47871bd 5449 intel_update_cdclk(dev);
f8437dd1
VK
5450}
5451
5452void broxton_init_cdclk(struct drm_device *dev)
5453{
5454 struct drm_i915_private *dev_priv = dev->dev_private;
5455 uint32_t val;
5456
5457 /*
5458 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5459 * or else the reset will hang because there is no PCH to respond.
5460 * Move the handshake programming to initialization sequence.
5461 * Previously was left up to BIOS.
5462 */
5463 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5464 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5465 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5466
5467 /* Enable PG1 for cdclk */
5468 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5469
5470 /* check if cd clock is enabled */
5471 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5472 DRM_DEBUG_KMS("Display already initialized\n");
5473 return;
5474 }
5475
5476 /*
5477 * FIXME:
5478 * - The initial CDCLK needs to be read from VBT.
5479 * Need to make this change after VBT has changes for BXT.
5480 * - check if setting the max (or any) cdclk freq is really necessary
5481 * here, it belongs to modeset time
5482 */
5483 broxton_set_cdclk(dev, 624000);
5484
5485 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5486 POSTING_READ(DBUF_CTL);
5487
f8437dd1
VK
5488 udelay(10);
5489
5490 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5491 DRM_ERROR("DBuf power enable timeout!\n");
5492}
5493
5494void broxton_uninit_cdclk(struct drm_device *dev)
5495{
5496 struct drm_i915_private *dev_priv = dev->dev_private;
5497
5498 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5499 POSTING_READ(DBUF_CTL);
5500
f8437dd1
VK
5501 udelay(10);
5502
5503 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5504 DRM_ERROR("DBuf power disable timeout!\n");
5505
5506 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5507 broxton_set_cdclk(dev, 19200);
5508
5509 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5510}
5511
5d96d8af
DL
5512static const struct skl_cdclk_entry {
5513 unsigned int freq;
5514 unsigned int vco;
5515} skl_cdclk_frequencies[] = {
5516 { .freq = 308570, .vco = 8640 },
5517 { .freq = 337500, .vco = 8100 },
5518 { .freq = 432000, .vco = 8640 },
5519 { .freq = 450000, .vco = 8100 },
5520 { .freq = 540000, .vco = 8100 },
5521 { .freq = 617140, .vco = 8640 },
5522 { .freq = 675000, .vco = 8100 },
5523};
5524
5525static unsigned int skl_cdclk_decimal(unsigned int freq)
5526{
5527 return (freq - 1000) / 500;
5528}
5529
5530static unsigned int skl_cdclk_get_vco(unsigned int freq)
5531{
5532 unsigned int i;
5533
5534 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5535 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5536
5537 if (e->freq == freq)
5538 return e->vco;
5539 }
5540
5541 return 8100;
5542}
5543
5544static void
5545skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5546{
5547 unsigned int min_freq;
5548 u32 val;
5549
5550 /* select the minimum CDCLK before enabling DPLL 0 */
5551 val = I915_READ(CDCLK_CTL);
5552 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5553 val |= CDCLK_FREQ_337_308;
5554
5555 if (required_vco == 8640)
5556 min_freq = 308570;
5557 else
5558 min_freq = 337500;
5559
5560 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5561
5562 I915_WRITE(CDCLK_CTL, val);
5563 POSTING_READ(CDCLK_CTL);
5564
5565 /*
5566 * We always enable DPLL0 with the lowest link rate possible, but still
5567 * taking into account the VCO required to operate the eDP panel at the
5568 * desired frequency. The usual DP link rates operate with a VCO of
5569 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5570 * The modeset code is responsible for the selection of the exact link
5571 * rate later on, with the constraint of choosing a frequency that
5572 * works with required_vco.
5573 */
5574 val = I915_READ(DPLL_CTRL1);
5575
5576 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5577 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5578 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5579 if (required_vco == 8640)
5580 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5581 SKL_DPLL0);
5582 else
5583 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5584 SKL_DPLL0);
5585
5586 I915_WRITE(DPLL_CTRL1, val);
5587 POSTING_READ(DPLL_CTRL1);
5588
5589 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5590
5591 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5592 DRM_ERROR("DPLL0 not locked\n");
5593}
5594
5595static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5596{
5597 int ret;
5598 u32 val;
5599
5600 /* inform PCU we want to change CDCLK */
5601 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5602 mutex_lock(&dev_priv->rps.hw_lock);
5603 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5604 mutex_unlock(&dev_priv->rps.hw_lock);
5605
5606 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5607}
5608
5609static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5610{
5611 unsigned int i;
5612
5613 for (i = 0; i < 15; i++) {
5614 if (skl_cdclk_pcu_ready(dev_priv))
5615 return true;
5616 udelay(10);
5617 }
5618
5619 return false;
5620}
5621
5622static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5623{
560a7ae4 5624 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5625 u32 freq_select, pcu_ack;
5626
5627 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5628
5629 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5630 DRM_ERROR("failed to inform PCU about cdclk change\n");
5631 return;
5632 }
5633
5634 /* set CDCLK_CTL */
5635 switch(freq) {
5636 case 450000:
5637 case 432000:
5638 freq_select = CDCLK_FREQ_450_432;
5639 pcu_ack = 1;
5640 break;
5641 case 540000:
5642 freq_select = CDCLK_FREQ_540;
5643 pcu_ack = 2;
5644 break;
5645 case 308570:
5646 case 337500:
5647 default:
5648 freq_select = CDCLK_FREQ_337_308;
5649 pcu_ack = 0;
5650 break;
5651 case 617140:
5652 case 675000:
5653 freq_select = CDCLK_FREQ_675_617;
5654 pcu_ack = 3;
5655 break;
5656 }
5657
5658 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5659 POSTING_READ(CDCLK_CTL);
5660
5661 /* inform PCU of the change */
5662 mutex_lock(&dev_priv->rps.hw_lock);
5663 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5664 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5665
5666 intel_update_cdclk(dev);
5d96d8af
DL
5667}
5668
5669void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5670{
5671 /* disable DBUF power */
5672 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5673 POSTING_READ(DBUF_CTL);
5674
5675 udelay(10);
5676
5677 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5678 DRM_ERROR("DBuf power disable timeout\n");
5679
5680 /* disable DPLL0 */
5681 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5682 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5683 DRM_ERROR("Couldn't disable DPLL0\n");
5684
5685 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5686}
5687
5688void skl_init_cdclk(struct drm_i915_private *dev_priv)
5689{
5690 u32 val;
5691 unsigned int required_vco;
5692
5693 /* enable PCH reset handshake */
5694 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5695 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5696
5697 /* enable PG1 and Misc I/O */
5698 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5699
5700 /* DPLL0 already enabed !? */
5701 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5702 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5703 return;
5704 }
5705
5706 /* enable DPLL0 */
5707 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5708 skl_dpll0_enable(dev_priv, required_vco);
5709
5710 /* set CDCLK to the frequency the BIOS chose */
5711 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5712
5713 /* enable DBUF power */
5714 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5715 POSTING_READ(DBUF_CTL);
5716
5717 udelay(10);
5718
5719 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5720 DRM_ERROR("DBuf power enable timeout\n");
5721}
5722
dfcab17e 5723/* returns HPLL frequency in kHz */
f8bf63fd 5724static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 5725{
586f49dc 5726 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 5727
586f49dc 5728 /* Obtain SKU information */
a580516d 5729 mutex_lock(&dev_priv->sb_lock);
586f49dc
JB
5730 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5731 CCK_FUSE_HPLL_FREQ_MASK;
a580516d 5732 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5733
dfcab17e 5734 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
5735}
5736
5737/* Adjust CDclk dividers to allow high res or save power if possible */
5738static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5739{
5740 struct drm_i915_private *dev_priv = dev->dev_private;
5741 u32 val, cmd;
5742
164dfd28
VK
5743 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5744 != dev_priv->cdclk_freq);
d60c4473 5745
dfcab17e 5746 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5747 cmd = 2;
dfcab17e 5748 else if (cdclk == 266667)
30a970c6
JB
5749 cmd = 1;
5750 else
5751 cmd = 0;
5752
5753 mutex_lock(&dev_priv->rps.hw_lock);
5754 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5755 val &= ~DSPFREQGUAR_MASK;
5756 val |= (cmd << DSPFREQGUAR_SHIFT);
5757 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5758 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5759 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5760 50)) {
5761 DRM_ERROR("timed out waiting for CDclk change\n");
5762 }
5763 mutex_unlock(&dev_priv->rps.hw_lock);
5764
54433e91
VS
5765 mutex_lock(&dev_priv->sb_lock);
5766
dfcab17e 5767 if (cdclk == 400000) {
6bcda4f0 5768 u32 divider;
30a970c6 5769
6bcda4f0 5770 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5771
30a970c6
JB
5772 /* adjust cdclk divider */
5773 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5774 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5775 val |= divider;
5776 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5777
5778 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5779 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5780 50))
5781 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5782 }
5783
30a970c6
JB
5784 /* adjust self-refresh exit latency value */
5785 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5786 val &= ~0x7f;
5787
5788 /*
5789 * For high bandwidth configs, we set a higher latency in the bunit
5790 * so that the core display fetch happens in time to avoid underruns.
5791 */
dfcab17e 5792 if (cdclk == 400000)
30a970c6
JB
5793 val |= 4500 / 250; /* 4.5 usec */
5794 else
5795 val |= 3000 / 250; /* 3.0 usec */
5796 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5797
a580516d 5798 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5799
b6283055 5800 intel_update_cdclk(dev);
30a970c6
JB
5801}
5802
383c5a6a
VS
5803static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5804{
5805 struct drm_i915_private *dev_priv = dev->dev_private;
5806 u32 val, cmd;
5807
164dfd28
VK
5808 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5809 != dev_priv->cdclk_freq);
383c5a6a
VS
5810
5811 switch (cdclk) {
383c5a6a
VS
5812 case 333333:
5813 case 320000:
383c5a6a 5814 case 266667:
383c5a6a 5815 case 200000:
383c5a6a
VS
5816 break;
5817 default:
5f77eeb0 5818 MISSING_CASE(cdclk);
383c5a6a
VS
5819 return;
5820 }
5821
9d0d3fda
VS
5822 /*
5823 * Specs are full of misinformation, but testing on actual
5824 * hardware has shown that we just need to write the desired
5825 * CCK divider into the Punit register.
5826 */
5827 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5828
383c5a6a
VS
5829 mutex_lock(&dev_priv->rps.hw_lock);
5830 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5831 val &= ~DSPFREQGUAR_MASK_CHV;
5832 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5833 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5834 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5835 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5836 50)) {
5837 DRM_ERROR("timed out waiting for CDclk change\n");
5838 }
5839 mutex_unlock(&dev_priv->rps.hw_lock);
5840
b6283055 5841 intel_update_cdclk(dev);
383c5a6a
VS
5842}
5843
30a970c6
JB
5844static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5845 int max_pixclk)
5846{
6bcda4f0 5847 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5848 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5849
30a970c6
JB
5850 /*
5851 * Really only a few cases to deal with, as only 4 CDclks are supported:
5852 * 200MHz
5853 * 267MHz
29dc7ef3 5854 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5855 * 400MHz (VLV only)
5856 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5857 * of the lower bin and adjust if needed.
e37c67a1
VS
5858 *
5859 * We seem to get an unstable or solid color picture at 200MHz.
5860 * Not sure what's wrong. For now use 200MHz only when all pipes
5861 * are off.
30a970c6 5862 */
6cca3195
VS
5863 if (!IS_CHERRYVIEW(dev_priv) &&
5864 max_pixclk > freq_320*limit/100)
dfcab17e 5865 return 400000;
6cca3195 5866 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5867 return freq_320;
e37c67a1 5868 else if (max_pixclk > 0)
dfcab17e 5869 return 266667;
e37c67a1
VS
5870 else
5871 return 200000;
30a970c6
JB
5872}
5873
f8437dd1
VK
5874static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5875 int max_pixclk)
5876{
5877 /*
5878 * FIXME:
5879 * - remove the guardband, it's not needed on BXT
5880 * - set 19.2MHz bypass frequency if there are no active pipes
5881 */
5882 if (max_pixclk > 576000*9/10)
5883 return 624000;
5884 else if (max_pixclk > 384000*9/10)
5885 return 576000;
5886 else if (max_pixclk > 288000*9/10)
5887 return 384000;
5888 else if (max_pixclk > 144000*9/10)
5889 return 288000;
5890 else
5891 return 144000;
5892}
5893
a821fc46
ACO
5894/* Compute the max pixel clock for new configuration. Uses atomic state if
5895 * that's non-NULL, look at current state otherwise. */
5896static int intel_mode_max_pixclk(struct drm_device *dev,
5897 struct drm_atomic_state *state)
30a970c6 5898{
30a970c6 5899 struct intel_crtc *intel_crtc;
304603f4 5900 struct intel_crtc_state *crtc_state;
30a970c6
JB
5901 int max_pixclk = 0;
5902
d3fcc808 5903 for_each_intel_crtc(dev, intel_crtc) {
27c329ed 5904 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
304603f4
ACO
5905 if (IS_ERR(crtc_state))
5906 return PTR_ERR(crtc_state);
5907
5908 if (!crtc_state->base.enable)
5909 continue;
5910
5911 max_pixclk = max(max_pixclk,
5912 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
5913 }
5914
5915 return max_pixclk;
5916}
5917
27c329ed 5918static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 5919{
27c329ed
ML
5920 struct drm_device *dev = state->dev;
5921 struct drm_i915_private *dev_priv = dev->dev_private;
5922 int max_pixclk = intel_mode_max_pixclk(dev, state);
30a970c6 5923
304603f4
ACO
5924 if (max_pixclk < 0)
5925 return max_pixclk;
30a970c6 5926
27c329ed
ML
5927 to_intel_atomic_state(state)->cdclk =
5928 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 5929
27c329ed
ML
5930 return 0;
5931}
304603f4 5932
27c329ed
ML
5933static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5934{
5935 struct drm_device *dev = state->dev;
5936 struct drm_i915_private *dev_priv = dev->dev_private;
5937 int max_pixclk = intel_mode_max_pixclk(dev, state);
85a96e7a 5938
27c329ed
ML
5939 if (max_pixclk < 0)
5940 return max_pixclk;
85a96e7a 5941
27c329ed
ML
5942 to_intel_atomic_state(state)->cdclk =
5943 broxton_calc_cdclk(dev_priv, max_pixclk);
85a96e7a 5944
27c329ed 5945 return 0;
30a970c6
JB
5946}
5947
1e69cd74
VS
5948static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5949{
5950 unsigned int credits, default_credits;
5951
5952 if (IS_CHERRYVIEW(dev_priv))
5953 default_credits = PFI_CREDIT(12);
5954 else
5955 default_credits = PFI_CREDIT(8);
5956
164dfd28 5957 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
1e69cd74
VS
5958 /* CHV suggested value is 31 or 63 */
5959 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 5960 credits = PFI_CREDIT_63;
1e69cd74
VS
5961 else
5962 credits = PFI_CREDIT(15);
5963 } else {
5964 credits = default_credits;
5965 }
5966
5967 /*
5968 * WA - write default credits before re-programming
5969 * FIXME: should we also set the resend bit here?
5970 */
5971 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5972 default_credits);
5973
5974 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5975 credits | PFI_CREDIT_RESEND);
5976
5977 /*
5978 * FIXME is this guaranteed to clear
5979 * immediately or should we poll for it?
5980 */
5981 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5982}
5983
27c329ed 5984static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 5985{
a821fc46 5986 struct drm_device *dev = old_state->dev;
27c329ed 5987 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
30a970c6 5988 struct drm_i915_private *dev_priv = dev->dev_private;
30a970c6 5989
27c329ed
ML
5990 /*
5991 * FIXME: We can end up here with all power domains off, yet
5992 * with a CDCLK frequency other than the minimum. To account
5993 * for this take the PIPE-A power domain, which covers the HW
5994 * blocks needed for the following programming. This can be
5995 * removed once it's guaranteed that we get here either with
5996 * the minimum CDCLK set, or the required power domains
5997 * enabled.
5998 */
5999 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6000
27c329ed
ML
6001 if (IS_CHERRYVIEW(dev))
6002 cherryview_set_cdclk(dev, req_cdclk);
6003 else
6004 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6005
27c329ed 6006 vlv_program_pfi_credits(dev_priv);
1e69cd74 6007
27c329ed 6008 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6009}
6010
89b667f8
JB
6011static void valleyview_crtc_enable(struct drm_crtc *crtc)
6012{
6013 struct drm_device *dev = crtc->dev;
a72e4c9f 6014 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6015 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6016 struct intel_encoder *encoder;
6017 int pipe = intel_crtc->pipe;
23538ef1 6018 bool is_dsi;
89b667f8 6019
53d9f4e9 6020 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6021 return;
6022
409ee761 6023 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 6024
1ae0d137
VS
6025 if (!is_dsi) {
6026 if (IS_CHERRYVIEW(dev))
6e3c9717 6027 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 6028 else
6e3c9717 6029 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 6030 }
5b18e57c 6031
6e3c9717 6032 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6033 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6034
6035 intel_set_pipe_timings(intel_crtc);
6036
c14b0485
VS
6037 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6038 struct drm_i915_private *dev_priv = dev->dev_private;
6039
6040 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6041 I915_WRITE(CHV_CANVAS(pipe), 0);
6042 }
6043
5b18e57c
DV
6044 i9xx_set_pipeconf(intel_crtc);
6045
89b667f8 6046 intel_crtc->active = true;
89b667f8 6047
a72e4c9f 6048 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6049
89b667f8
JB
6050 for_each_encoder_on_crtc(dev, crtc, encoder)
6051 if (encoder->pre_pll_enable)
6052 encoder->pre_pll_enable(encoder);
6053
9d556c99
CML
6054 if (!is_dsi) {
6055 if (IS_CHERRYVIEW(dev))
6e3c9717 6056 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6057 else
6e3c9717 6058 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6059 }
89b667f8
JB
6060
6061 for_each_encoder_on_crtc(dev, crtc, encoder)
6062 if (encoder->pre_enable)
6063 encoder->pre_enable(encoder);
6064
2dd24552
JB
6065 i9xx_pfit_enable(intel_crtc);
6066
63cbb074
VS
6067 intel_crtc_load_lut(crtc);
6068
e1fdc473 6069 intel_enable_pipe(intel_crtc);
be6a6f8e 6070
4b3a9526
VS
6071 assert_vblank_disabled(crtc);
6072 drm_crtc_vblank_on(crtc);
6073
f9b61ff6
DV
6074 for_each_encoder_on_crtc(dev, crtc, encoder)
6075 encoder->enable(encoder);
89b667f8
JB
6076}
6077
f13c2ef3
DV
6078static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6079{
6080 struct drm_device *dev = crtc->base.dev;
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082
6e3c9717
ACO
6083 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6084 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6085}
6086
0b8765c6 6087static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6088{
6089 struct drm_device *dev = crtc->dev;
a72e4c9f 6090 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6092 struct intel_encoder *encoder;
79e53945 6093 int pipe = intel_crtc->pipe;
79e53945 6094
53d9f4e9 6095 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6096 return;
6097
f13c2ef3
DV
6098 i9xx_set_pll_dividers(intel_crtc);
6099
6e3c9717 6100 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6101 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6102
6103 intel_set_pipe_timings(intel_crtc);
6104
5b18e57c
DV
6105 i9xx_set_pipeconf(intel_crtc);
6106
f7abfe8b 6107 intel_crtc->active = true;
6b383a7f 6108
4a3436e8 6109 if (!IS_GEN2(dev))
a72e4c9f 6110 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6111
9d6d9f19
MK
6112 for_each_encoder_on_crtc(dev, crtc, encoder)
6113 if (encoder->pre_enable)
6114 encoder->pre_enable(encoder);
6115
f6736a1a
DV
6116 i9xx_enable_pll(intel_crtc);
6117
2dd24552
JB
6118 i9xx_pfit_enable(intel_crtc);
6119
63cbb074
VS
6120 intel_crtc_load_lut(crtc);
6121
f37fcc2a 6122 intel_update_watermarks(crtc);
e1fdc473 6123 intel_enable_pipe(intel_crtc);
be6a6f8e 6124
4b3a9526
VS
6125 assert_vblank_disabled(crtc);
6126 drm_crtc_vblank_on(crtc);
6127
f9b61ff6
DV
6128 for_each_encoder_on_crtc(dev, crtc, encoder)
6129 encoder->enable(encoder);
0b8765c6 6130}
79e53945 6131
87476d63
DV
6132static void i9xx_pfit_disable(struct intel_crtc *crtc)
6133{
6134 struct drm_device *dev = crtc->base.dev;
6135 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6136
6e3c9717 6137 if (!crtc->config->gmch_pfit.control)
328d8e82 6138 return;
87476d63 6139
328d8e82 6140 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6141
328d8e82
DV
6142 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6143 I915_READ(PFIT_CONTROL));
6144 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6145}
6146
0b8765c6
JB
6147static void i9xx_crtc_disable(struct drm_crtc *crtc)
6148{
6149 struct drm_device *dev = crtc->dev;
6150 struct drm_i915_private *dev_priv = dev->dev_private;
6151 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6152 struct intel_encoder *encoder;
0b8765c6 6153 int pipe = intel_crtc->pipe;
ef9c3aee 6154
6304cd91
VS
6155 /*
6156 * On gen2 planes are double buffered but the pipe isn't, so we must
6157 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6158 * We also need to wait on all gmch platforms because of the
6159 * self-refresh mode constraint explained above.
6304cd91 6160 */
564ed191 6161 intel_wait_for_vblank(dev, pipe);
6304cd91 6162
4b3a9526
VS
6163 for_each_encoder_on_crtc(dev, crtc, encoder)
6164 encoder->disable(encoder);
6165
f9b61ff6
DV
6166 drm_crtc_vblank_off(crtc);
6167 assert_vblank_disabled(crtc);
6168
575f7ab7 6169 intel_disable_pipe(intel_crtc);
24a1f16d 6170
87476d63 6171 i9xx_pfit_disable(intel_crtc);
24a1f16d 6172
89b667f8
JB
6173 for_each_encoder_on_crtc(dev, crtc, encoder)
6174 if (encoder->post_disable)
6175 encoder->post_disable(encoder);
6176
409ee761 6177 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
6178 if (IS_CHERRYVIEW(dev))
6179 chv_disable_pll(dev_priv, pipe);
6180 else if (IS_VALLEYVIEW(dev))
6181 vlv_disable_pll(dev_priv, pipe);
6182 else
1c4e0274 6183 i9xx_disable_pll(intel_crtc);
076ed3b2 6184 }
0b8765c6 6185
4a3436e8 6186 if (!IS_GEN2(dev))
a72e4c9f 6187 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
e4ca0612
PJ
6188
6189 intel_crtc->active = false;
6190 intel_update_watermarks(crtc);
0b8765c6
JB
6191}
6192
b17d48e2
ML
6193static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6194{
6195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6196 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6197 enum intel_display_power_domain domain;
6198 unsigned long domains;
6199
6200 if (!intel_crtc->active)
6201 return;
6202
a539205a
ML
6203 if (to_intel_plane_state(crtc->primary->state)->visible) {
6204 intel_crtc_wait_for_pending_flips(crtc);
6205 intel_pre_disable_primary(crtc);
6206 }
6207
d032ffa0 6208 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
b17d48e2 6209 dev_priv->display.crtc_disable(crtc);
1f7457b1 6210 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6211
6212 domains = intel_crtc->enabled_power_domains;
6213 for_each_power_domain(domain, domains)
6214 intel_display_power_put(dev_priv, domain);
6215 intel_crtc->enabled_power_domains = 0;
6216}
6217
6b72d486
ML
6218/*
6219 * turn all crtc's off, but do not adjust state
6220 * This has to be paired with a call to intel_modeset_setup_hw_state.
6221 */
70e0bd74 6222int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6223{
70e0bd74
ML
6224 struct drm_mode_config *config = &dev->mode_config;
6225 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6226 struct drm_atomic_state *state;
6b72d486 6227 struct drm_crtc *crtc;
70e0bd74
ML
6228 unsigned crtc_mask = 0;
6229 int ret = 0;
6230
6231 if (WARN_ON(!ctx))
6232 return 0;
6233
6234 lockdep_assert_held(&ctx->ww_ctx);
6235 state = drm_atomic_state_alloc(dev);
6236 if (WARN_ON(!state))
6237 return -ENOMEM;
6238
6239 state->acquire_ctx = ctx;
6240 state->allow_modeset = true;
6241
6242 for_each_crtc(dev, crtc) {
6243 struct drm_crtc_state *crtc_state =
6244 drm_atomic_get_crtc_state(state, crtc);
6b72d486 6245
70e0bd74
ML
6246 ret = PTR_ERR_OR_ZERO(crtc_state);
6247 if (ret)
6248 goto free;
6249
6250 if (!crtc_state->active)
6251 continue;
6252
6253 crtc_state->active = false;
6254 crtc_mask |= 1 << drm_crtc_index(crtc);
6255 }
6256
6257 if (crtc_mask) {
74c090b1 6258 ret = drm_atomic_commit(state);
70e0bd74
ML
6259
6260 if (!ret) {
6261 for_each_crtc(dev, crtc)
6262 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6263 crtc->state->active = true;
6264
6265 return ret;
6266 }
6267 }
6268
6269free:
6270 if (ret)
6271 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6272 drm_atomic_state_free(state);
6273 return ret;
ee7b9f93
JB
6274}
6275
b04c5bd6 6276/* Master function to enable/disable CRTC and corresponding power wells */
5da76e94 6277int intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
6278{
6279 struct drm_device *dev = crtc->dev;
5da76e94
ML
6280 struct drm_mode_config *config = &dev->mode_config;
6281 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
0e572fe7 6282 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5da76e94
ML
6283 struct intel_crtc_state *pipe_config;
6284 struct drm_atomic_state *state;
6285 int ret;
976f8a20 6286
1b509259 6287 if (enable == intel_crtc->active)
5da76e94 6288 return 0;
0e572fe7 6289
1b509259 6290 if (enable && !crtc->state->enable)
5da76e94 6291 return 0;
1b509259 6292
5da76e94
ML
6293 /* this function should be called with drm_modeset_lock_all for now */
6294 if (WARN_ON(!ctx))
6295 return -EIO;
6296 lockdep_assert_held(&ctx->ww_ctx);
1b509259 6297
5da76e94
ML
6298 state = drm_atomic_state_alloc(dev);
6299 if (WARN_ON(!state))
6300 return -ENOMEM;
1b509259 6301
5da76e94
ML
6302 state->acquire_ctx = ctx;
6303 state->allow_modeset = true;
6304
6305 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6306 if (IS_ERR(pipe_config)) {
6307 ret = PTR_ERR(pipe_config);
6308 goto err;
0e572fe7 6309 }
5da76e94
ML
6310 pipe_config->base.active = enable;
6311
74c090b1 6312 ret = drm_atomic_commit(state);
5da76e94
ML
6313 if (!ret)
6314 return ret;
6315
6316err:
6317 DRM_ERROR("Updating crtc active failed with %i\n", ret);
6318 drm_atomic_state_free(state);
6319 return ret;
b04c5bd6
BF
6320}
6321
6322/**
6323 * Sets the power management mode of the pipe and plane.
6324 */
6325void intel_crtc_update_dpms(struct drm_crtc *crtc)
6326{
6327 struct drm_device *dev = crtc->dev;
6328 struct intel_encoder *intel_encoder;
6329 bool enable = false;
6330
6331 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6332 enable |= intel_encoder->connectors_active;
6333
6334 intel_crtc_control(crtc, enable);
cdd59983
CW
6335}
6336
ea5b213a 6337void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6338{
4ef69c7a 6339 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6340
ea5b213a
CW
6341 drm_encoder_cleanup(encoder);
6342 kfree(intel_encoder);
7e7d76c3
JB
6343}
6344
9237329d 6345/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
6346 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6347 * state of the entire output pipe. */
9237329d 6348static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 6349{
5ab432ef
DV
6350 if (mode == DRM_MODE_DPMS_ON) {
6351 encoder->connectors_active = true;
6352
b2cabb0e 6353 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
6354 } else {
6355 encoder->connectors_active = false;
6356
b2cabb0e 6357 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 6358 }
79e53945
JB
6359}
6360
0a91ca29
DV
6361/* Cross check the actual hw state with our own modeset state tracking (and it's
6362 * internal consistency). */
b980514c 6363static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6364{
35dd3c64
ML
6365 struct drm_crtc *crtc = connector->base.state->crtc;
6366
6367 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6368 connector->base.base.id,
6369 connector->base.name);
6370
0a91ca29 6371 if (connector->get_hw_state(connector)) {
35dd3c64
ML
6372 struct drm_encoder *encoder = &connector->encoder->base;
6373 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6374
35dd3c64
ML
6375 I915_STATE_WARN(!crtc,
6376 "connector enabled without attached crtc\n");
0a91ca29 6377
35dd3c64
ML
6378 if (!crtc)
6379 return;
6380
6381 I915_STATE_WARN(!crtc->state->active,
6382 "connector is active, but attached crtc isn't\n");
6383
6384 if (!encoder)
6385 return;
6386
6387 I915_STATE_WARN(conn_state->best_encoder != encoder,
6388 "atomic encoder doesn't match attached encoder\n");
6389
6390 I915_STATE_WARN(conn_state->crtc != encoder->crtc,
6391 "attached encoder crtc differs from connector crtc\n");
6392 } else {
6393 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6394 "best encoder set without crtc!\n");
0a91ca29 6395 }
79e53945
JB
6396}
6397
08d9bc92
ACO
6398int intel_connector_init(struct intel_connector *connector)
6399{
6400 struct drm_connector_state *connector_state;
6401
6402 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6403 if (!connector_state)
6404 return -ENOMEM;
6405
6406 connector->base.state = connector_state;
6407 return 0;
6408}
6409
6410struct intel_connector *intel_connector_alloc(void)
6411{
6412 struct intel_connector *connector;
6413
6414 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6415 if (!connector)
6416 return NULL;
6417
6418 if (intel_connector_init(connector) < 0) {
6419 kfree(connector);
6420 return NULL;
6421 }
6422
6423 return connector;
6424}
6425
5ab432ef
DV
6426/* Even simpler default implementation, if there's really no special case to
6427 * consider. */
9a69a9ac 6428int intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 6429{
5ab432ef
DV
6430 /* All the simple cases only support two dpms states. */
6431 if (mode != DRM_MODE_DPMS_ON)
6432 mode = DRM_MODE_DPMS_OFF;
d4270e57 6433
5ab432ef 6434 if (mode == connector->dpms)
9a69a9ac 6435 return 0;
5ab432ef
DV
6436
6437 connector->dpms = mode;
6438
6439 /* Only need to change hw state when actually enabled */
c9976dcf
CW
6440 if (connector->encoder)
6441 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 6442
9a69a9ac 6443 return 0;
79e53945
JB
6444}
6445
f0947c37
DV
6446/* Simple connector->get_hw_state implementation for encoders that support only
6447 * one connector and no cloning and hence the encoder state determines the state
6448 * of the connector. */
6449bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6450{
24929352 6451 enum pipe pipe = 0;
f0947c37 6452 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6453
f0947c37 6454 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6455}
6456
6d293983 6457static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6458{
6d293983
ACO
6459 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6460 return crtc_state->fdi_lanes;
d272ddfa
VS
6461
6462 return 0;
6463}
6464
6d293983 6465static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6466 struct intel_crtc_state *pipe_config)
1857e1da 6467{
6d293983
ACO
6468 struct drm_atomic_state *state = pipe_config->base.state;
6469 struct intel_crtc *other_crtc;
6470 struct intel_crtc_state *other_crtc_state;
6471
1857e1da
DV
6472 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6473 pipe_name(pipe), pipe_config->fdi_lanes);
6474 if (pipe_config->fdi_lanes > 4) {
6475 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6476 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6477 return -EINVAL;
1857e1da
DV
6478 }
6479
bafb6553 6480 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6481 if (pipe_config->fdi_lanes > 2) {
6482 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6483 pipe_config->fdi_lanes);
6d293983 6484 return -EINVAL;
1857e1da 6485 } else {
6d293983 6486 return 0;
1857e1da
DV
6487 }
6488 }
6489
6490 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6491 return 0;
1857e1da
DV
6492
6493 /* Ivybridge 3 pipe is really complicated */
6494 switch (pipe) {
6495 case PIPE_A:
6d293983 6496 return 0;
1857e1da 6497 case PIPE_B:
6d293983
ACO
6498 if (pipe_config->fdi_lanes <= 2)
6499 return 0;
6500
6501 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6502 other_crtc_state =
6503 intel_atomic_get_crtc_state(state, other_crtc);
6504 if (IS_ERR(other_crtc_state))
6505 return PTR_ERR(other_crtc_state);
6506
6507 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6508 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6509 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6510 return -EINVAL;
1857e1da 6511 }
6d293983 6512 return 0;
1857e1da 6513 case PIPE_C:
251cc67c
VS
6514 if (pipe_config->fdi_lanes > 2) {
6515 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6516 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6517 return -EINVAL;
251cc67c 6518 }
6d293983
ACO
6519
6520 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6521 other_crtc_state =
6522 intel_atomic_get_crtc_state(state, other_crtc);
6523 if (IS_ERR(other_crtc_state))
6524 return PTR_ERR(other_crtc_state);
6525
6526 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6527 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6528 return -EINVAL;
1857e1da 6529 }
6d293983 6530 return 0;
1857e1da
DV
6531 default:
6532 BUG();
6533 }
6534}
6535
e29c22c0
DV
6536#define RETRY 1
6537static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6538 struct intel_crtc_state *pipe_config)
877d48d5 6539{
1857e1da 6540 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 6541 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6542 int lane, link_bw, fdi_dotclock, ret;
6543 bool needs_recompute = false;
877d48d5 6544
e29c22c0 6545retry:
877d48d5
DV
6546 /* FDI is a binary signal running at ~2.7GHz, encoding
6547 * each output octet as 10 bits. The actual frequency
6548 * is stored as a divider into a 100MHz clock, and the
6549 * mode pixel clock is stored in units of 1KHz.
6550 * Hence the bw of each lane in terms of the mode signal
6551 * is:
6552 */
6553 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6554
241bfc38 6555 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6556
2bd89a07 6557 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6558 pipe_config->pipe_bpp);
6559
6560 pipe_config->fdi_lanes = lane;
6561
2bd89a07 6562 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6563 link_bw, &pipe_config->fdi_m_n);
1857e1da 6564
6d293983
ACO
6565 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6566 intel_crtc->pipe, pipe_config);
6567 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6568 pipe_config->pipe_bpp -= 2*3;
6569 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6570 pipe_config->pipe_bpp);
6571 needs_recompute = true;
6572 pipe_config->bw_constrained = true;
6573
6574 goto retry;
6575 }
6576
6577 if (needs_recompute)
6578 return RETRY;
6579
6d293983 6580 return ret;
877d48d5
DV
6581}
6582
8cfb3407
VS
6583static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6584 struct intel_crtc_state *pipe_config)
6585{
6586 if (pipe_config->pipe_bpp > 24)
6587 return false;
6588
6589 /* HSW can handle pixel rate up to cdclk? */
6590 if (IS_HASWELL(dev_priv->dev))
6591 return true;
6592
6593 /*
b432e5cf
VS
6594 * We compare against max which means we must take
6595 * the increased cdclk requirement into account when
6596 * calculating the new cdclk.
6597 *
6598 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6599 */
6600 return ilk_pipe_pixel_rate(pipe_config) <=
6601 dev_priv->max_cdclk_freq * 95 / 100;
6602}
6603
42db64ef 6604static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6605 struct intel_crtc_state *pipe_config)
42db64ef 6606{
8cfb3407
VS
6607 struct drm_device *dev = crtc->base.dev;
6608 struct drm_i915_private *dev_priv = dev->dev_private;
6609
d330a953 6610 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6611 hsw_crtc_supports_ips(crtc) &&
6612 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6613}
6614
a43f6e0f 6615static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6616 struct intel_crtc_state *pipe_config)
79e53945 6617{
a43f6e0f 6618 struct drm_device *dev = crtc->base.dev;
8bd31e67 6619 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 6620 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6621
ad3a4479 6622 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6623 if (INTEL_INFO(dev)->gen < 4) {
44913155 6624 int clock_limit = dev_priv->max_cdclk_freq;
cf532bb2
VS
6625
6626 /*
6627 * Enable pixel doubling when the dot clock
6628 * is > 90% of the (display) core speed.
6629 *
b397c96b
VS
6630 * GDG double wide on either pipe,
6631 * otherwise pipe A only.
cf532bb2 6632 */
b397c96b 6633 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 6634 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 6635 clock_limit *= 2;
cf532bb2 6636 pipe_config->double_wide = true;
ad3a4479
VS
6637 }
6638
241bfc38 6639 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 6640 return -EINVAL;
2c07245f 6641 }
89749350 6642
1d1d0e27
VS
6643 /*
6644 * Pipe horizontal size must be even in:
6645 * - DVO ganged mode
6646 * - LVDS dual channel mode
6647 * - Double wide pipe
6648 */
a93e255f 6649 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6650 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6651 pipe_config->pipe_src_w &= ~1;
6652
8693a824
DL
6653 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6654 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6655 */
6656 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6657 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 6658 return -EINVAL;
44f46b42 6659
f5adf94e 6660 if (HAS_IPS(dev))
a43f6e0f
DV
6661 hsw_compute_ips_config(crtc, pipe_config);
6662
877d48d5 6663 if (pipe_config->has_pch_encoder)
a43f6e0f 6664 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6665
cf5a15be 6666 return 0;
79e53945
JB
6667}
6668
1652d19e
VS
6669static int skylake_get_display_clock_speed(struct drm_device *dev)
6670{
6671 struct drm_i915_private *dev_priv = to_i915(dev);
6672 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6673 uint32_t cdctl = I915_READ(CDCLK_CTL);
6674 uint32_t linkrate;
6675
414355a7 6676 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6677 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6678
6679 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6680 return 540000;
6681
6682 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6683 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6684
71cd8423
DL
6685 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6686 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6687 /* vco 8640 */
6688 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6689 case CDCLK_FREQ_450_432:
6690 return 432000;
6691 case CDCLK_FREQ_337_308:
6692 return 308570;
6693 case CDCLK_FREQ_675_617:
6694 return 617140;
6695 default:
6696 WARN(1, "Unknown cd freq selection\n");
6697 }
6698 } else {
6699 /* vco 8100 */
6700 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6701 case CDCLK_FREQ_450_432:
6702 return 450000;
6703 case CDCLK_FREQ_337_308:
6704 return 337500;
6705 case CDCLK_FREQ_675_617:
6706 return 675000;
6707 default:
6708 WARN(1, "Unknown cd freq selection\n");
6709 }
6710 }
6711
6712 /* error case, do as if DPLL0 isn't enabled */
6713 return 24000;
6714}
6715
acd3f3d3
BP
6716static int broxton_get_display_clock_speed(struct drm_device *dev)
6717{
6718 struct drm_i915_private *dev_priv = to_i915(dev);
6719 uint32_t cdctl = I915_READ(CDCLK_CTL);
6720 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6721 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6722 int cdclk;
6723
6724 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6725 return 19200;
6726
6727 cdclk = 19200 * pll_ratio / 2;
6728
6729 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6730 case BXT_CDCLK_CD2X_DIV_SEL_1:
6731 return cdclk; /* 576MHz or 624MHz */
6732 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6733 return cdclk * 2 / 3; /* 384MHz */
6734 case BXT_CDCLK_CD2X_DIV_SEL_2:
6735 return cdclk / 2; /* 288MHz */
6736 case BXT_CDCLK_CD2X_DIV_SEL_4:
6737 return cdclk / 4; /* 144MHz */
6738 }
6739
6740 /* error case, do as if DE PLL isn't enabled */
6741 return 19200;
6742}
6743
1652d19e
VS
6744static int broadwell_get_display_clock_speed(struct drm_device *dev)
6745{
6746 struct drm_i915_private *dev_priv = dev->dev_private;
6747 uint32_t lcpll = I915_READ(LCPLL_CTL);
6748 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6749
6750 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6751 return 800000;
6752 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6753 return 450000;
6754 else if (freq == LCPLL_CLK_FREQ_450)
6755 return 450000;
6756 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6757 return 540000;
6758 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6759 return 337500;
6760 else
6761 return 675000;
6762}
6763
6764static int haswell_get_display_clock_speed(struct drm_device *dev)
6765{
6766 struct drm_i915_private *dev_priv = dev->dev_private;
6767 uint32_t lcpll = I915_READ(LCPLL_CTL);
6768 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6769
6770 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6771 return 800000;
6772 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6773 return 450000;
6774 else if (freq == LCPLL_CLK_FREQ_450)
6775 return 450000;
6776 else if (IS_HSW_ULT(dev))
6777 return 337500;
6778 else
6779 return 540000;
79e53945
JB
6780}
6781
25eb05fc
JB
6782static int valleyview_get_display_clock_speed(struct drm_device *dev)
6783{
d197b7d3 6784 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
6785 u32 val;
6786 int divider;
6787
6bcda4f0
VS
6788 if (dev_priv->hpll_freq == 0)
6789 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6790
a580516d 6791 mutex_lock(&dev_priv->sb_lock);
d197b7d3 6792 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
a580516d 6793 mutex_unlock(&dev_priv->sb_lock);
d197b7d3
VS
6794
6795 divider = val & DISPLAY_FREQUENCY_VALUES;
6796
7d007f40
VS
6797 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6798 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6799 "cdclk change in progress\n");
6800
6bcda4f0 6801 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
6802}
6803
b37a6434
VS
6804static int ilk_get_display_clock_speed(struct drm_device *dev)
6805{
6806 return 450000;
6807}
6808
e70236a8
JB
6809static int i945_get_display_clock_speed(struct drm_device *dev)
6810{
6811 return 400000;
6812}
79e53945 6813
e70236a8 6814static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6815{
e907f170 6816 return 333333;
e70236a8 6817}
79e53945 6818
e70236a8
JB
6819static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6820{
6821 return 200000;
6822}
79e53945 6823
257a7ffc
DV
6824static int pnv_get_display_clock_speed(struct drm_device *dev)
6825{
6826 u16 gcfgc = 0;
6827
6828 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6829
6830 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6831 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6832 return 266667;
257a7ffc 6833 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6834 return 333333;
257a7ffc 6835 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6836 return 444444;
257a7ffc
DV
6837 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6838 return 200000;
6839 default:
6840 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6841 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6842 return 133333;
257a7ffc 6843 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6844 return 166667;
257a7ffc
DV
6845 }
6846}
6847
e70236a8
JB
6848static int i915gm_get_display_clock_speed(struct drm_device *dev)
6849{
6850 u16 gcfgc = 0;
79e53945 6851
e70236a8
JB
6852 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6853
6854 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6855 return 133333;
e70236a8
JB
6856 else {
6857 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6858 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6859 return 333333;
e70236a8
JB
6860 default:
6861 case GC_DISPLAY_CLOCK_190_200_MHZ:
6862 return 190000;
79e53945 6863 }
e70236a8
JB
6864 }
6865}
6866
6867static int i865_get_display_clock_speed(struct drm_device *dev)
6868{
e907f170 6869 return 266667;
e70236a8
JB
6870}
6871
1b1d2716 6872static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6873{
6874 u16 hpllcc = 0;
1b1d2716 6875
65cd2b3f
VS
6876 /*
6877 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6878 * encoding is different :(
6879 * FIXME is this the right way to detect 852GM/852GMV?
6880 */
6881 if (dev->pdev->revision == 0x1)
6882 return 133333;
6883
1b1d2716
VS
6884 pci_bus_read_config_word(dev->pdev->bus,
6885 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6886
e70236a8
JB
6887 /* Assume that the hardware is in the high speed state. This
6888 * should be the default.
6889 */
6890 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6891 case GC_CLOCK_133_200:
1b1d2716 6892 case GC_CLOCK_133_200_2:
e70236a8
JB
6893 case GC_CLOCK_100_200:
6894 return 200000;
6895 case GC_CLOCK_166_250:
6896 return 250000;
6897 case GC_CLOCK_100_133:
e907f170 6898 return 133333;
1b1d2716
VS
6899 case GC_CLOCK_133_266:
6900 case GC_CLOCK_133_266_2:
6901 case GC_CLOCK_166_266:
6902 return 266667;
e70236a8 6903 }
79e53945 6904
e70236a8
JB
6905 /* Shouldn't happen */
6906 return 0;
6907}
79e53945 6908
e70236a8
JB
6909static int i830_get_display_clock_speed(struct drm_device *dev)
6910{
e907f170 6911 return 133333;
79e53945
JB
6912}
6913
34edce2f
VS
6914static unsigned int intel_hpll_vco(struct drm_device *dev)
6915{
6916 struct drm_i915_private *dev_priv = dev->dev_private;
6917 static const unsigned int blb_vco[8] = {
6918 [0] = 3200000,
6919 [1] = 4000000,
6920 [2] = 5333333,
6921 [3] = 4800000,
6922 [4] = 6400000,
6923 };
6924 static const unsigned int pnv_vco[8] = {
6925 [0] = 3200000,
6926 [1] = 4000000,
6927 [2] = 5333333,
6928 [3] = 4800000,
6929 [4] = 2666667,
6930 };
6931 static const unsigned int cl_vco[8] = {
6932 [0] = 3200000,
6933 [1] = 4000000,
6934 [2] = 5333333,
6935 [3] = 6400000,
6936 [4] = 3333333,
6937 [5] = 3566667,
6938 [6] = 4266667,
6939 };
6940 static const unsigned int elk_vco[8] = {
6941 [0] = 3200000,
6942 [1] = 4000000,
6943 [2] = 5333333,
6944 [3] = 4800000,
6945 };
6946 static const unsigned int ctg_vco[8] = {
6947 [0] = 3200000,
6948 [1] = 4000000,
6949 [2] = 5333333,
6950 [3] = 6400000,
6951 [4] = 2666667,
6952 [5] = 4266667,
6953 };
6954 const unsigned int *vco_table;
6955 unsigned int vco;
6956 uint8_t tmp = 0;
6957
6958 /* FIXME other chipsets? */
6959 if (IS_GM45(dev))
6960 vco_table = ctg_vco;
6961 else if (IS_G4X(dev))
6962 vco_table = elk_vco;
6963 else if (IS_CRESTLINE(dev))
6964 vco_table = cl_vco;
6965 else if (IS_PINEVIEW(dev))
6966 vco_table = pnv_vco;
6967 else if (IS_G33(dev))
6968 vco_table = blb_vco;
6969 else
6970 return 0;
6971
6972 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6973
6974 vco = vco_table[tmp & 0x7];
6975 if (vco == 0)
6976 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6977 else
6978 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6979
6980 return vco;
6981}
6982
6983static int gm45_get_display_clock_speed(struct drm_device *dev)
6984{
6985 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6986 uint16_t tmp = 0;
6987
6988 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6989
6990 cdclk_sel = (tmp >> 12) & 0x1;
6991
6992 switch (vco) {
6993 case 2666667:
6994 case 4000000:
6995 case 5333333:
6996 return cdclk_sel ? 333333 : 222222;
6997 case 3200000:
6998 return cdclk_sel ? 320000 : 228571;
6999 default:
7000 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7001 return 222222;
7002 }
7003}
7004
7005static int i965gm_get_display_clock_speed(struct drm_device *dev)
7006{
7007 static const uint8_t div_3200[] = { 16, 10, 8 };
7008 static const uint8_t div_4000[] = { 20, 12, 10 };
7009 static const uint8_t div_5333[] = { 24, 16, 14 };
7010 const uint8_t *div_table;
7011 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7012 uint16_t tmp = 0;
7013
7014 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7015
7016 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7017
7018 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7019 goto fail;
7020
7021 switch (vco) {
7022 case 3200000:
7023 div_table = div_3200;
7024 break;
7025 case 4000000:
7026 div_table = div_4000;
7027 break;
7028 case 5333333:
7029 div_table = div_5333;
7030 break;
7031 default:
7032 goto fail;
7033 }
7034
7035 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7036
caf4e252 7037fail:
34edce2f
VS
7038 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7039 return 200000;
7040}
7041
7042static int g33_get_display_clock_speed(struct drm_device *dev)
7043{
7044 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7045 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7046 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7047 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7048 const uint8_t *div_table;
7049 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7050 uint16_t tmp = 0;
7051
7052 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7053
7054 cdclk_sel = (tmp >> 4) & 0x7;
7055
7056 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7057 goto fail;
7058
7059 switch (vco) {
7060 case 3200000:
7061 div_table = div_3200;
7062 break;
7063 case 4000000:
7064 div_table = div_4000;
7065 break;
7066 case 4800000:
7067 div_table = div_4800;
7068 break;
7069 case 5333333:
7070 div_table = div_5333;
7071 break;
7072 default:
7073 goto fail;
7074 }
7075
7076 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7077
caf4e252 7078fail:
34edce2f
VS
7079 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7080 return 190476;
7081}
7082
2c07245f 7083static void
a65851af 7084intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7085{
a65851af
VS
7086 while (*num > DATA_LINK_M_N_MASK ||
7087 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7088 *num >>= 1;
7089 *den >>= 1;
7090 }
7091}
7092
a65851af
VS
7093static void compute_m_n(unsigned int m, unsigned int n,
7094 uint32_t *ret_m, uint32_t *ret_n)
7095{
7096 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7097 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7098 intel_reduce_m_n_ratio(ret_m, ret_n);
7099}
7100
e69d0bc1
DV
7101void
7102intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7103 int pixel_clock, int link_clock,
7104 struct intel_link_m_n *m_n)
2c07245f 7105{
e69d0bc1 7106 m_n->tu = 64;
a65851af
VS
7107
7108 compute_m_n(bits_per_pixel * pixel_clock,
7109 link_clock * nlanes * 8,
7110 &m_n->gmch_m, &m_n->gmch_n);
7111
7112 compute_m_n(pixel_clock, link_clock,
7113 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7114}
7115
a7615030
CW
7116static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7117{
d330a953
JN
7118 if (i915.panel_use_ssc >= 0)
7119 return i915.panel_use_ssc != 0;
41aa3448 7120 return dev_priv->vbt.lvds_use_ssc
435793df 7121 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7122}
7123
a93e255f
ACO
7124static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7125 int num_connectors)
c65d77d8 7126{
a93e255f 7127 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7128 struct drm_i915_private *dev_priv = dev->dev_private;
7129 int refclk;
7130
a93e255f
ACO
7131 WARN_ON(!crtc_state->base.state);
7132
5ab7b0b7 7133 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7134 refclk = 100000;
a93e255f 7135 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7136 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7137 refclk = dev_priv->vbt.lvds_ssc_freq;
7138 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7139 } else if (!IS_GEN2(dev)) {
7140 refclk = 96000;
7141 } else {
7142 refclk = 48000;
7143 }
7144
7145 return refclk;
7146}
7147
7429e9d4 7148static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7149{
7df00d7a 7150 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7151}
f47709a9 7152
7429e9d4
DV
7153static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7154{
7155 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7156}
7157
f47709a9 7158static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7159 struct intel_crtc_state *crtc_state,
a7516a05
JB
7160 intel_clock_t *reduced_clock)
7161{
f47709a9 7162 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7163 u32 fp, fp2 = 0;
7164
7165 if (IS_PINEVIEW(dev)) {
190f68c5 7166 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7167 if (reduced_clock)
7429e9d4 7168 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7169 } else {
190f68c5 7170 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7171 if (reduced_clock)
7429e9d4 7172 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7173 }
7174
190f68c5 7175 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7176
f47709a9 7177 crtc->lowfreq_avail = false;
a93e255f 7178 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7179 reduced_clock) {
190f68c5 7180 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7181 crtc->lowfreq_avail = true;
a7516a05 7182 } else {
190f68c5 7183 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7184 }
7185}
7186
5e69f97f
CML
7187static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7188 pipe)
89b667f8
JB
7189{
7190 u32 reg_val;
7191
7192 /*
7193 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7194 * and set it to a reasonable value instead.
7195 */
ab3c759a 7196 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7197 reg_val &= 0xffffff00;
7198 reg_val |= 0x00000030;
ab3c759a 7199 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7200
ab3c759a 7201 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7202 reg_val &= 0x8cffffff;
7203 reg_val = 0x8c000000;
ab3c759a 7204 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7205
ab3c759a 7206 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7207 reg_val &= 0xffffff00;
ab3c759a 7208 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7209
ab3c759a 7210 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7211 reg_val &= 0x00ffffff;
7212 reg_val |= 0xb0000000;
ab3c759a 7213 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7214}
7215
b551842d
DV
7216static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7217 struct intel_link_m_n *m_n)
7218{
7219 struct drm_device *dev = crtc->base.dev;
7220 struct drm_i915_private *dev_priv = dev->dev_private;
7221 int pipe = crtc->pipe;
7222
e3b95f1e
DV
7223 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7224 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7225 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7226 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7227}
7228
7229static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7230 struct intel_link_m_n *m_n,
7231 struct intel_link_m_n *m2_n2)
b551842d
DV
7232{
7233 struct drm_device *dev = crtc->base.dev;
7234 struct drm_i915_private *dev_priv = dev->dev_private;
7235 int pipe = crtc->pipe;
6e3c9717 7236 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7237
7238 if (INTEL_INFO(dev)->gen >= 5) {
7239 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7240 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7241 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7242 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7243 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7244 * for gen < 8) and if DRRS is supported (to make sure the
7245 * registers are not unnecessarily accessed).
7246 */
44395bfe 7247 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7248 crtc->config->has_drrs) {
f769cd24
VK
7249 I915_WRITE(PIPE_DATA_M2(transcoder),
7250 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7251 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7252 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7253 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7254 }
b551842d 7255 } else {
e3b95f1e
DV
7256 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7257 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7258 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7259 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7260 }
7261}
7262
fe3cd48d 7263void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7264{
fe3cd48d
R
7265 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7266
7267 if (m_n == M1_N1) {
7268 dp_m_n = &crtc->config->dp_m_n;
7269 dp_m2_n2 = &crtc->config->dp_m2_n2;
7270 } else if (m_n == M2_N2) {
7271
7272 /*
7273 * M2_N2 registers are not supported. Hence m2_n2 divider value
7274 * needs to be programmed into M1_N1.
7275 */
7276 dp_m_n = &crtc->config->dp_m2_n2;
7277 } else {
7278 DRM_ERROR("Unsupported divider value\n");
7279 return;
7280 }
7281
6e3c9717
ACO
7282 if (crtc->config->has_pch_encoder)
7283 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7284 else
fe3cd48d 7285 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7286}
7287
251ac862
DV
7288static void vlv_compute_dpll(struct intel_crtc *crtc,
7289 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7290{
7291 u32 dpll, dpll_md;
7292
7293 /*
7294 * Enable DPIO clock input. We should never disable the reference
7295 * clock for pipe B, since VGA hotplug / manual detection depends
7296 * on it.
7297 */
60bfe44f
VS
7298 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7299 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
bdd4b6a6
DV
7300 /* We should never disable this, set it here for state tracking */
7301 if (crtc->pipe == PIPE_B)
7302 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7303 dpll |= DPLL_VCO_ENABLE;
d288f65f 7304 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7305
d288f65f 7306 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7307 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7308 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7309}
7310
d288f65f 7311static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7312 const struct intel_crtc_state *pipe_config)
a0c4da24 7313{
f47709a9 7314 struct drm_device *dev = crtc->base.dev;
a0c4da24 7315 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7316 int pipe = crtc->pipe;
bdd4b6a6 7317 u32 mdiv;
a0c4da24 7318 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7319 u32 coreclk, reg_val;
a0c4da24 7320
a580516d 7321 mutex_lock(&dev_priv->sb_lock);
09153000 7322
d288f65f
VS
7323 bestn = pipe_config->dpll.n;
7324 bestm1 = pipe_config->dpll.m1;
7325 bestm2 = pipe_config->dpll.m2;
7326 bestp1 = pipe_config->dpll.p1;
7327 bestp2 = pipe_config->dpll.p2;
a0c4da24 7328
89b667f8
JB
7329 /* See eDP HDMI DPIO driver vbios notes doc */
7330
7331 /* PLL B needs special handling */
bdd4b6a6 7332 if (pipe == PIPE_B)
5e69f97f 7333 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7334
7335 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7336 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7337
7338 /* Disable target IRef on PLL */
ab3c759a 7339 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7340 reg_val &= 0x00ffffff;
ab3c759a 7341 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7342
7343 /* Disable fast lock */
ab3c759a 7344 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7345
7346 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7347 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7348 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7349 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7350 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7351
7352 /*
7353 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7354 * but we don't support that).
7355 * Note: don't use the DAC post divider as it seems unstable.
7356 */
7357 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7358 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7359
a0c4da24 7360 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7361 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7362
89b667f8 7363 /* Set HBR and RBR LPF coefficients */
d288f65f 7364 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7365 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7366 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7367 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7368 0x009f0003);
89b667f8 7369 else
ab3c759a 7370 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7371 0x00d0000f);
7372
681a8504 7373 if (pipe_config->has_dp_encoder) {
89b667f8 7374 /* Use SSC source */
bdd4b6a6 7375 if (pipe == PIPE_A)
ab3c759a 7376 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7377 0x0df40000);
7378 else
ab3c759a 7379 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7380 0x0df70000);
7381 } else { /* HDMI or VGA */
7382 /* Use bend source */
bdd4b6a6 7383 if (pipe == PIPE_A)
ab3c759a 7384 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7385 0x0df70000);
7386 else
ab3c759a 7387 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7388 0x0df40000);
7389 }
a0c4da24 7390
ab3c759a 7391 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7392 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7393 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7394 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7395 coreclk |= 0x01000000;
ab3c759a 7396 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7397
ab3c759a 7398 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7399 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7400}
7401
251ac862
DV
7402static void chv_compute_dpll(struct intel_crtc *crtc,
7403 struct intel_crtc_state *pipe_config)
1ae0d137 7404{
60bfe44f
VS
7405 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7406 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
1ae0d137
VS
7407 DPLL_VCO_ENABLE;
7408 if (crtc->pipe != PIPE_A)
d288f65f 7409 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7410
d288f65f
VS
7411 pipe_config->dpll_hw_state.dpll_md =
7412 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7413}
7414
d288f65f 7415static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7416 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7417{
7418 struct drm_device *dev = crtc->base.dev;
7419 struct drm_i915_private *dev_priv = dev->dev_private;
7420 int pipe = crtc->pipe;
7421 int dpll_reg = DPLL(crtc->pipe);
7422 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7423 u32 loopfilter, tribuf_calcntr;
9d556c99 7424 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7425 u32 dpio_val;
9cbe40c1 7426 int vco;
9d556c99 7427
d288f65f
VS
7428 bestn = pipe_config->dpll.n;
7429 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7430 bestm1 = pipe_config->dpll.m1;
7431 bestm2 = pipe_config->dpll.m2 >> 22;
7432 bestp1 = pipe_config->dpll.p1;
7433 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7434 vco = pipe_config->dpll.vco;
a945ce7e 7435 dpio_val = 0;
9cbe40c1 7436 loopfilter = 0;
9d556c99
CML
7437
7438 /*
7439 * Enable Refclk and SSC
7440 */
a11b0703 7441 I915_WRITE(dpll_reg,
d288f65f 7442 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7443
a580516d 7444 mutex_lock(&dev_priv->sb_lock);
9d556c99 7445
9d556c99
CML
7446 /* p1 and p2 divider */
7447 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7448 5 << DPIO_CHV_S1_DIV_SHIFT |
7449 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7450 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7451 1 << DPIO_CHV_K_DIV_SHIFT);
7452
7453 /* Feedback post-divider - m2 */
7454 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7455
7456 /* Feedback refclk divider - n and m1 */
7457 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7458 DPIO_CHV_M1_DIV_BY_2 |
7459 1 << DPIO_CHV_N_DIV_SHIFT);
7460
7461 /* M2 fraction division */
a945ce7e
VP
7462 if (bestm2_frac)
7463 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7464
7465 /* M2 fraction division enable */
a945ce7e
VP
7466 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7467 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7468 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7469 if (bestm2_frac)
7470 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7471 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7472
de3a0fde
VP
7473 /* Program digital lock detect threshold */
7474 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7475 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7476 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7477 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7478 if (!bestm2_frac)
7479 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7480 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7481
9d556c99 7482 /* Loop filter */
9cbe40c1
VP
7483 if (vco == 5400000) {
7484 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7485 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7486 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7487 tribuf_calcntr = 0x9;
7488 } else if (vco <= 6200000) {
7489 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7490 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7491 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7492 tribuf_calcntr = 0x9;
7493 } else if (vco <= 6480000) {
7494 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7495 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7496 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7497 tribuf_calcntr = 0x8;
7498 } else {
7499 /* Not supported. Apply the same limits as in the max case */
7500 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7501 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7502 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7503 tribuf_calcntr = 0;
7504 }
9d556c99
CML
7505 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7506
968040b2 7507 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7508 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7509 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7510 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7511
9d556c99
CML
7512 /* AFC Recal */
7513 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7514 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7515 DPIO_AFC_RECAL);
7516
a580516d 7517 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7518}
7519
d288f65f
VS
7520/**
7521 * vlv_force_pll_on - forcibly enable just the PLL
7522 * @dev_priv: i915 private structure
7523 * @pipe: pipe PLL to enable
7524 * @dpll: PLL configuration
7525 *
7526 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7527 * in cases where we need the PLL enabled even when @pipe is not going to
7528 * be enabled.
7529 */
7530void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7531 const struct dpll *dpll)
7532{
7533 struct intel_crtc *crtc =
7534 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 7535 struct intel_crtc_state pipe_config = {
a93e255f 7536 .base.crtc = &crtc->base,
d288f65f
VS
7537 .pixel_multiplier = 1,
7538 .dpll = *dpll,
7539 };
7540
7541 if (IS_CHERRYVIEW(dev)) {
251ac862 7542 chv_compute_dpll(crtc, &pipe_config);
d288f65f
VS
7543 chv_prepare_pll(crtc, &pipe_config);
7544 chv_enable_pll(crtc, &pipe_config);
7545 } else {
251ac862 7546 vlv_compute_dpll(crtc, &pipe_config);
d288f65f
VS
7547 vlv_prepare_pll(crtc, &pipe_config);
7548 vlv_enable_pll(crtc, &pipe_config);
7549 }
7550}
7551
7552/**
7553 * vlv_force_pll_off - forcibly disable just the PLL
7554 * @dev_priv: i915 private structure
7555 * @pipe: pipe PLL to disable
7556 *
7557 * Disable the PLL for @pipe. To be used in cases where we need
7558 * the PLL enabled even when @pipe is not going to be enabled.
7559 */
7560void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7561{
7562 if (IS_CHERRYVIEW(dev))
7563 chv_disable_pll(to_i915(dev), pipe);
7564 else
7565 vlv_disable_pll(to_i915(dev), pipe);
7566}
7567
251ac862
DV
7568static void i9xx_compute_dpll(struct intel_crtc *crtc,
7569 struct intel_crtc_state *crtc_state,
7570 intel_clock_t *reduced_clock,
7571 int num_connectors)
eb1cbe48 7572{
f47709a9 7573 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7574 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7575 u32 dpll;
7576 bool is_sdvo;
190f68c5 7577 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7578
190f68c5 7579 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7580
a93e255f
ACO
7581 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7582 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7583
7584 dpll = DPLL_VGA_MODE_DIS;
7585
a93e255f 7586 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7587 dpll |= DPLLB_MODE_LVDS;
7588 else
7589 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7590
ef1b460d 7591 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7592 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7593 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7594 }
198a037f
DV
7595
7596 if (is_sdvo)
4a33e48d 7597 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7598
190f68c5 7599 if (crtc_state->has_dp_encoder)
4a33e48d 7600 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7601
7602 /* compute bitmask from p1 value */
7603 if (IS_PINEVIEW(dev))
7604 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7605 else {
7606 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7607 if (IS_G4X(dev) && reduced_clock)
7608 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7609 }
7610 switch (clock->p2) {
7611 case 5:
7612 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7613 break;
7614 case 7:
7615 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7616 break;
7617 case 10:
7618 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7619 break;
7620 case 14:
7621 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7622 break;
7623 }
7624 if (INTEL_INFO(dev)->gen >= 4)
7625 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7626
190f68c5 7627 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7628 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7629 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7630 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7631 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7632 else
7633 dpll |= PLL_REF_INPUT_DREFCLK;
7634
7635 dpll |= DPLL_VCO_ENABLE;
190f68c5 7636 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7637
eb1cbe48 7638 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7639 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7640 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7641 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7642 }
7643}
7644
251ac862
DV
7645static void i8xx_compute_dpll(struct intel_crtc *crtc,
7646 struct intel_crtc_state *crtc_state,
7647 intel_clock_t *reduced_clock,
7648 int num_connectors)
eb1cbe48 7649{
f47709a9 7650 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7651 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7652 u32 dpll;
190f68c5 7653 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7654
190f68c5 7655 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7656
eb1cbe48
DV
7657 dpll = DPLL_VGA_MODE_DIS;
7658
a93e255f 7659 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7660 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7661 } else {
7662 if (clock->p1 == 2)
7663 dpll |= PLL_P1_DIVIDE_BY_TWO;
7664 else
7665 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7666 if (clock->p2 == 4)
7667 dpll |= PLL_P2_DIVIDE_BY_4;
7668 }
7669
a93e255f 7670 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7671 dpll |= DPLL_DVO_2X_MODE;
7672
a93e255f 7673 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7674 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7675 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7676 else
7677 dpll |= PLL_REF_INPUT_DREFCLK;
7678
7679 dpll |= DPLL_VCO_ENABLE;
190f68c5 7680 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7681}
7682
8a654f3b 7683static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7684{
7685 struct drm_device *dev = intel_crtc->base.dev;
7686 struct drm_i915_private *dev_priv = dev->dev_private;
7687 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7688 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 7689 struct drm_display_mode *adjusted_mode =
6e3c9717 7690 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7691 uint32_t crtc_vtotal, crtc_vblank_end;
7692 int vsyncshift = 0;
4d8a62ea
DV
7693
7694 /* We need to be careful not to changed the adjusted mode, for otherwise
7695 * the hw state checker will get angry at the mismatch. */
7696 crtc_vtotal = adjusted_mode->crtc_vtotal;
7697 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7698
609aeaca 7699 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7700 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7701 crtc_vtotal -= 1;
7702 crtc_vblank_end -= 1;
609aeaca 7703
409ee761 7704 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7705 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7706 else
7707 vsyncshift = adjusted_mode->crtc_hsync_start -
7708 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7709 if (vsyncshift < 0)
7710 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7711 }
7712
7713 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7714 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7715
fe2b8f9d 7716 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7717 (adjusted_mode->crtc_hdisplay - 1) |
7718 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7719 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7720 (adjusted_mode->crtc_hblank_start - 1) |
7721 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7722 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7723 (adjusted_mode->crtc_hsync_start - 1) |
7724 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7725
fe2b8f9d 7726 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7727 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7728 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7729 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7730 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7731 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7732 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7733 (adjusted_mode->crtc_vsync_start - 1) |
7734 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7735
b5e508d4
PZ
7736 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7737 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7738 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7739 * bits. */
7740 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7741 (pipe == PIPE_B || pipe == PIPE_C))
7742 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7743
b0e77b9c
PZ
7744 /* pipesrc controls the size that is scaled from, which should
7745 * always be the user's requested size.
7746 */
7747 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7748 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7749 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7750}
7751
1bd1bd80 7752static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7753 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7754{
7755 struct drm_device *dev = crtc->base.dev;
7756 struct drm_i915_private *dev_priv = dev->dev_private;
7757 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7758 uint32_t tmp;
7759
7760 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7761 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7762 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7763 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7764 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7765 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7766 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7767 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7768 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7769
7770 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7771 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7772 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7773 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7774 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7775 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7776 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7777 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7778 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7779
7780 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7781 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7782 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7783 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7784 }
7785
7786 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7787 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7788 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7789
2d112de7
ACO
7790 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7791 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7792}
7793
f6a83288 7794void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7795 struct intel_crtc_state *pipe_config)
babea61d 7796{
2d112de7
ACO
7797 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7798 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7799 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7800 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7801
2d112de7
ACO
7802 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7803 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7804 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7805 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7806
2d112de7 7807 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7808 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7809
2d112de7
ACO
7810 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7811 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7812
7813 mode->hsync = drm_mode_hsync(mode);
7814 mode->vrefresh = drm_mode_vrefresh(mode);
7815 drm_mode_set_name(mode);
babea61d
JB
7816}
7817
84b046f3
DV
7818static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7819{
7820 struct drm_device *dev = intel_crtc->base.dev;
7821 struct drm_i915_private *dev_priv = dev->dev_private;
7822 uint32_t pipeconf;
7823
9f11a9e4 7824 pipeconf = 0;
84b046f3 7825
b6b5d049
VS
7826 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7827 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7828 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7829
6e3c9717 7830 if (intel_crtc->config->double_wide)
cf532bb2 7831 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7832
ff9ce46e
DV
7833 /* only g4x and later have fancy bpc/dither controls */
7834 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7835 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7836 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7837 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7838 PIPECONF_DITHER_TYPE_SP;
84b046f3 7839
6e3c9717 7840 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7841 case 18:
7842 pipeconf |= PIPECONF_6BPC;
7843 break;
7844 case 24:
7845 pipeconf |= PIPECONF_8BPC;
7846 break;
7847 case 30:
7848 pipeconf |= PIPECONF_10BPC;
7849 break;
7850 default:
7851 /* Case prevented by intel_choose_pipe_bpp_dither. */
7852 BUG();
84b046f3
DV
7853 }
7854 }
7855
7856 if (HAS_PIPE_CXSR(dev)) {
7857 if (intel_crtc->lowfreq_avail) {
7858 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7859 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7860 } else {
7861 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7862 }
7863 }
7864
6e3c9717 7865 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7866 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7867 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7868 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7869 else
7870 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7871 } else
84b046f3
DV
7872 pipeconf |= PIPECONF_PROGRESSIVE;
7873
6e3c9717 7874 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7875 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7876
84b046f3
DV
7877 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7878 POSTING_READ(PIPECONF(intel_crtc->pipe));
7879}
7880
190f68c5
ACO
7881static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7882 struct intel_crtc_state *crtc_state)
79e53945 7883{
c7653199 7884 struct drm_device *dev = crtc->base.dev;
79e53945 7885 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7886 int refclk, num_connectors = 0;
c329a4ec
DV
7887 intel_clock_t clock;
7888 bool ok;
7889 bool is_dsi = false;
5eddb70b 7890 struct intel_encoder *encoder;
d4906093 7891 const intel_limit_t *limit;
55bb9992 7892 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7893 struct drm_connector *connector;
55bb9992
ACO
7894 struct drm_connector_state *connector_state;
7895 int i;
79e53945 7896
dd3cd74a
ACO
7897 memset(&crtc_state->dpll_hw_state, 0,
7898 sizeof(crtc_state->dpll_hw_state));
7899
da3ced29 7900 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
7901 if (connector_state->crtc != &crtc->base)
7902 continue;
7903
7904 encoder = to_intel_encoder(connector_state->best_encoder);
7905
5eddb70b 7906 switch (encoder->type) {
e9fd1c02
JN
7907 case INTEL_OUTPUT_DSI:
7908 is_dsi = true;
7909 break;
6847d71b
PZ
7910 default:
7911 break;
79e53945 7912 }
43565a06 7913
c751ce4f 7914 num_connectors++;
79e53945
JB
7915 }
7916
f2335330 7917 if (is_dsi)
5b18e57c 7918 return 0;
f2335330 7919
190f68c5 7920 if (!crtc_state->clock_set) {
a93e255f 7921 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7922
e9fd1c02
JN
7923 /*
7924 * Returns a set of divisors for the desired target clock with
7925 * the given refclk, or FALSE. The returned values represent
7926 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7927 * 2) / p1 / p2.
7928 */
a93e255f
ACO
7929 limit = intel_limit(crtc_state, refclk);
7930 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7931 crtc_state->port_clock,
e9fd1c02 7932 refclk, NULL, &clock);
f2335330 7933 if (!ok) {
e9fd1c02
JN
7934 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7935 return -EINVAL;
7936 }
79e53945 7937
f2335330 7938 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7939 crtc_state->dpll.n = clock.n;
7940 crtc_state->dpll.m1 = clock.m1;
7941 crtc_state->dpll.m2 = clock.m2;
7942 crtc_state->dpll.p1 = clock.p1;
7943 crtc_state->dpll.p2 = clock.p2;
f47709a9 7944 }
7026d4ac 7945
e9fd1c02 7946 if (IS_GEN2(dev)) {
c329a4ec 7947 i8xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7948 num_connectors);
9d556c99 7949 } else if (IS_CHERRYVIEW(dev)) {
251ac862 7950 chv_compute_dpll(crtc, crtc_state);
e9fd1c02 7951 } else if (IS_VALLEYVIEW(dev)) {
251ac862 7952 vlv_compute_dpll(crtc, crtc_state);
e9fd1c02 7953 } else {
c329a4ec 7954 i9xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7955 num_connectors);
e9fd1c02 7956 }
79e53945 7957
c8f7a0db 7958 return 0;
f564048e
EA
7959}
7960
2fa2fe9a 7961static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7962 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7963{
7964 struct drm_device *dev = crtc->base.dev;
7965 struct drm_i915_private *dev_priv = dev->dev_private;
7966 uint32_t tmp;
7967
dc9e7dec
VS
7968 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7969 return;
7970
2fa2fe9a 7971 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7972 if (!(tmp & PFIT_ENABLE))
7973 return;
2fa2fe9a 7974
06922821 7975 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7976 if (INTEL_INFO(dev)->gen < 4) {
7977 if (crtc->pipe != PIPE_B)
7978 return;
2fa2fe9a
DV
7979 } else {
7980 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7981 return;
7982 }
7983
06922821 7984 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7985 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7986 if (INTEL_INFO(dev)->gen < 5)
7987 pipe_config->gmch_pfit.lvds_border_bits =
7988 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7989}
7990
acbec814 7991static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7992 struct intel_crtc_state *pipe_config)
acbec814
JB
7993{
7994 struct drm_device *dev = crtc->base.dev;
7995 struct drm_i915_private *dev_priv = dev->dev_private;
7996 int pipe = pipe_config->cpu_transcoder;
7997 intel_clock_t clock;
7998 u32 mdiv;
662c6ecb 7999 int refclk = 100000;
acbec814 8000
f573de5a
SK
8001 /* In case of MIPI DPLL will not even be used */
8002 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8003 return;
8004
a580516d 8005 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8006 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8007 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8008
8009 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8010 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8011 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8012 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8013 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8014
dccbea3b 8015 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
8016}
8017
5724dbd1
DL
8018static void
8019i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8020 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8021{
8022 struct drm_device *dev = crtc->base.dev;
8023 struct drm_i915_private *dev_priv = dev->dev_private;
8024 u32 val, base, offset;
8025 int pipe = crtc->pipe, plane = crtc->plane;
8026 int fourcc, pixel_format;
6761dd31 8027 unsigned int aligned_height;
b113d5ee 8028 struct drm_framebuffer *fb;
1b842c89 8029 struct intel_framebuffer *intel_fb;
1ad292b5 8030
42a7b088
DL
8031 val = I915_READ(DSPCNTR(plane));
8032 if (!(val & DISPLAY_PLANE_ENABLE))
8033 return;
8034
d9806c9f 8035 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8036 if (!intel_fb) {
1ad292b5
JB
8037 DRM_DEBUG_KMS("failed to alloc fb\n");
8038 return;
8039 }
8040
1b842c89
DL
8041 fb = &intel_fb->base;
8042
18c5247e
DV
8043 if (INTEL_INFO(dev)->gen >= 4) {
8044 if (val & DISPPLANE_TILED) {
49af449b 8045 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8046 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8047 }
8048 }
1ad292b5
JB
8049
8050 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8051 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8052 fb->pixel_format = fourcc;
8053 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8054
8055 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8056 if (plane_config->tiling)
1ad292b5
JB
8057 offset = I915_READ(DSPTILEOFF(plane));
8058 else
8059 offset = I915_READ(DSPLINOFF(plane));
8060 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8061 } else {
8062 base = I915_READ(DSPADDR(plane));
8063 }
8064 plane_config->base = base;
8065
8066 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8067 fb->width = ((val >> 16) & 0xfff) + 1;
8068 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8069
8070 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8071 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8072
b113d5ee 8073 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8074 fb->pixel_format,
8075 fb->modifier[0]);
1ad292b5 8076
f37b5c2b 8077 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8078
2844a921
DL
8079 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8080 pipe_name(pipe), plane, fb->width, fb->height,
8081 fb->bits_per_pixel, base, fb->pitches[0],
8082 plane_config->size);
1ad292b5 8083
2d14030b 8084 plane_config->fb = intel_fb;
1ad292b5
JB
8085}
8086
70b23a98 8087static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8088 struct intel_crtc_state *pipe_config)
70b23a98
VS
8089{
8090 struct drm_device *dev = crtc->base.dev;
8091 struct drm_i915_private *dev_priv = dev->dev_private;
8092 int pipe = pipe_config->cpu_transcoder;
8093 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8094 intel_clock_t clock;
0d7b6b11 8095 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8096 int refclk = 100000;
8097
a580516d 8098 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8099 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8100 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8101 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8102 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8103 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8104 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8105
8106 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8107 clock.m2 = (pll_dw0 & 0xff) << 22;
8108 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8109 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8110 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8111 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8112 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8113
dccbea3b 8114 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8115}
8116
0e8ffe1b 8117static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8118 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8119{
8120 struct drm_device *dev = crtc->base.dev;
8121 struct drm_i915_private *dev_priv = dev->dev_private;
8122 uint32_t tmp;
8123
f458ebbc
DV
8124 if (!intel_display_power_is_enabled(dev_priv,
8125 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
8126 return false;
8127
e143a21c 8128 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8129 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8130
0e8ffe1b
DV
8131 tmp = I915_READ(PIPECONF(crtc->pipe));
8132 if (!(tmp & PIPECONF_ENABLE))
8133 return false;
8134
42571aef
VS
8135 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8136 switch (tmp & PIPECONF_BPC_MASK) {
8137 case PIPECONF_6BPC:
8138 pipe_config->pipe_bpp = 18;
8139 break;
8140 case PIPECONF_8BPC:
8141 pipe_config->pipe_bpp = 24;
8142 break;
8143 case PIPECONF_10BPC:
8144 pipe_config->pipe_bpp = 30;
8145 break;
8146 default:
8147 break;
8148 }
8149 }
8150
b5a9fa09
DV
8151 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8152 pipe_config->limited_color_range = true;
8153
282740f7
VS
8154 if (INTEL_INFO(dev)->gen < 4)
8155 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8156
1bd1bd80
DV
8157 intel_get_pipe_timings(crtc, pipe_config);
8158
2fa2fe9a
DV
8159 i9xx_get_pfit_config(crtc, pipe_config);
8160
6c49f241
DV
8161 if (INTEL_INFO(dev)->gen >= 4) {
8162 tmp = I915_READ(DPLL_MD(crtc->pipe));
8163 pipe_config->pixel_multiplier =
8164 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8165 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8166 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8167 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8168 tmp = I915_READ(DPLL(crtc->pipe));
8169 pipe_config->pixel_multiplier =
8170 ((tmp & SDVO_MULTIPLIER_MASK)
8171 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8172 } else {
8173 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8174 * port and will be fixed up in the encoder->get_config
8175 * function. */
8176 pipe_config->pixel_multiplier = 1;
8177 }
8bcc2795
DV
8178 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8179 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
8180 /*
8181 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8182 * on 830. Filter it out here so that we don't
8183 * report errors due to that.
8184 */
8185 if (IS_I830(dev))
8186 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8187
8bcc2795
DV
8188 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8189 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8190 } else {
8191 /* Mask out read-only status bits. */
8192 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8193 DPLL_PORTC_READY_MASK |
8194 DPLL_PORTB_READY_MASK);
8bcc2795 8195 }
6c49f241 8196
70b23a98
VS
8197 if (IS_CHERRYVIEW(dev))
8198 chv_crtc_clock_get(crtc, pipe_config);
8199 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8200 vlv_crtc_clock_get(crtc, pipe_config);
8201 else
8202 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8203
0e8ffe1b
DV
8204 return true;
8205}
8206
dde86e2d 8207static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8208{
8209 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8210 struct intel_encoder *encoder;
74cfd7ac 8211 u32 val, final;
13d83a67 8212 bool has_lvds = false;
199e5d79 8213 bool has_cpu_edp = false;
199e5d79 8214 bool has_panel = false;
99eb6a01
KP
8215 bool has_ck505 = false;
8216 bool can_ssc = false;
13d83a67
JB
8217
8218 /* We need to take the global config into account */
b2784e15 8219 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8220 switch (encoder->type) {
8221 case INTEL_OUTPUT_LVDS:
8222 has_panel = true;
8223 has_lvds = true;
8224 break;
8225 case INTEL_OUTPUT_EDP:
8226 has_panel = true;
2de6905f 8227 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8228 has_cpu_edp = true;
8229 break;
6847d71b
PZ
8230 default:
8231 break;
13d83a67
JB
8232 }
8233 }
8234
99eb6a01 8235 if (HAS_PCH_IBX(dev)) {
41aa3448 8236 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8237 can_ssc = has_ck505;
8238 } else {
8239 has_ck505 = false;
8240 can_ssc = true;
8241 }
8242
2de6905f
ID
8243 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8244 has_panel, has_lvds, has_ck505);
13d83a67
JB
8245
8246 /* Ironlake: try to setup display ref clock before DPLL
8247 * enabling. This is only under driver's control after
8248 * PCH B stepping, previous chipset stepping should be
8249 * ignoring this setting.
8250 */
74cfd7ac
CW
8251 val = I915_READ(PCH_DREF_CONTROL);
8252
8253 /* As we must carefully and slowly disable/enable each source in turn,
8254 * compute the final state we want first and check if we need to
8255 * make any changes at all.
8256 */
8257 final = val;
8258 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8259 if (has_ck505)
8260 final |= DREF_NONSPREAD_CK505_ENABLE;
8261 else
8262 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8263
8264 final &= ~DREF_SSC_SOURCE_MASK;
8265 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8266 final &= ~DREF_SSC1_ENABLE;
8267
8268 if (has_panel) {
8269 final |= DREF_SSC_SOURCE_ENABLE;
8270
8271 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8272 final |= DREF_SSC1_ENABLE;
8273
8274 if (has_cpu_edp) {
8275 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8276 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8277 else
8278 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8279 } else
8280 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8281 } else {
8282 final |= DREF_SSC_SOURCE_DISABLE;
8283 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8284 }
8285
8286 if (final == val)
8287 return;
8288
13d83a67 8289 /* Always enable nonspread source */
74cfd7ac 8290 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8291
99eb6a01 8292 if (has_ck505)
74cfd7ac 8293 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8294 else
74cfd7ac 8295 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8296
199e5d79 8297 if (has_panel) {
74cfd7ac
CW
8298 val &= ~DREF_SSC_SOURCE_MASK;
8299 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8300
199e5d79 8301 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8302 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8303 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8304 val |= DREF_SSC1_ENABLE;
e77166b5 8305 } else
74cfd7ac 8306 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8307
8308 /* Get SSC going before enabling the outputs */
74cfd7ac 8309 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8310 POSTING_READ(PCH_DREF_CONTROL);
8311 udelay(200);
8312
74cfd7ac 8313 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8314
8315 /* Enable CPU source on CPU attached eDP */
199e5d79 8316 if (has_cpu_edp) {
99eb6a01 8317 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8318 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8319 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8320 } else
74cfd7ac 8321 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8322 } else
74cfd7ac 8323 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8324
74cfd7ac 8325 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8326 POSTING_READ(PCH_DREF_CONTROL);
8327 udelay(200);
8328 } else {
8329 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8330
74cfd7ac 8331 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8332
8333 /* Turn off CPU output */
74cfd7ac 8334 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8335
74cfd7ac 8336 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8337 POSTING_READ(PCH_DREF_CONTROL);
8338 udelay(200);
8339
8340 /* Turn off the SSC source */
74cfd7ac
CW
8341 val &= ~DREF_SSC_SOURCE_MASK;
8342 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8343
8344 /* Turn off SSC1 */
74cfd7ac 8345 val &= ~DREF_SSC1_ENABLE;
199e5d79 8346
74cfd7ac 8347 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8348 POSTING_READ(PCH_DREF_CONTROL);
8349 udelay(200);
8350 }
74cfd7ac
CW
8351
8352 BUG_ON(val != final);
13d83a67
JB
8353}
8354
f31f2d55 8355static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8356{
f31f2d55 8357 uint32_t tmp;
dde86e2d 8358
0ff066a9
PZ
8359 tmp = I915_READ(SOUTH_CHICKEN2);
8360 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8361 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8362
0ff066a9
PZ
8363 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8364 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8365 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8366
0ff066a9
PZ
8367 tmp = I915_READ(SOUTH_CHICKEN2);
8368 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8369 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8370
0ff066a9
PZ
8371 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8372 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8373 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8374}
8375
8376/* WaMPhyProgramming:hsw */
8377static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8378{
8379 uint32_t tmp;
dde86e2d
PZ
8380
8381 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8382 tmp &= ~(0xFF << 24);
8383 tmp |= (0x12 << 24);
8384 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8385
dde86e2d
PZ
8386 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8387 tmp |= (1 << 11);
8388 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8389
8390 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8391 tmp |= (1 << 11);
8392 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8393
dde86e2d
PZ
8394 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8395 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8396 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8397
8398 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8399 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8400 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8401
0ff066a9
PZ
8402 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8403 tmp &= ~(7 << 13);
8404 tmp |= (5 << 13);
8405 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8406
0ff066a9
PZ
8407 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8408 tmp &= ~(7 << 13);
8409 tmp |= (5 << 13);
8410 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8411
8412 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8413 tmp &= ~0xFF;
8414 tmp |= 0x1C;
8415 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8416
8417 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8418 tmp &= ~0xFF;
8419 tmp |= 0x1C;
8420 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8421
8422 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8423 tmp &= ~(0xFF << 16);
8424 tmp |= (0x1C << 16);
8425 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8426
8427 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8428 tmp &= ~(0xFF << 16);
8429 tmp |= (0x1C << 16);
8430 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8431
0ff066a9
PZ
8432 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8433 tmp |= (1 << 27);
8434 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8435
0ff066a9
PZ
8436 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8437 tmp |= (1 << 27);
8438 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8439
0ff066a9
PZ
8440 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8441 tmp &= ~(0xF << 28);
8442 tmp |= (4 << 28);
8443 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8444
0ff066a9
PZ
8445 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8446 tmp &= ~(0xF << 28);
8447 tmp |= (4 << 28);
8448 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8449}
8450
2fa86a1f
PZ
8451/* Implements 3 different sequences from BSpec chapter "Display iCLK
8452 * Programming" based on the parameters passed:
8453 * - Sequence to enable CLKOUT_DP
8454 * - Sequence to enable CLKOUT_DP without spread
8455 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8456 */
8457static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8458 bool with_fdi)
f31f2d55
PZ
8459{
8460 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8461 uint32_t reg, tmp;
8462
8463 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8464 with_spread = true;
8465 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8466 with_fdi, "LP PCH doesn't have FDI\n"))
8467 with_fdi = false;
f31f2d55 8468
a580516d 8469 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8470
8471 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8472 tmp &= ~SBI_SSCCTL_DISABLE;
8473 tmp |= SBI_SSCCTL_PATHALT;
8474 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8475
8476 udelay(24);
8477
2fa86a1f
PZ
8478 if (with_spread) {
8479 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8480 tmp &= ~SBI_SSCCTL_PATHALT;
8481 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8482
2fa86a1f
PZ
8483 if (with_fdi) {
8484 lpt_reset_fdi_mphy(dev_priv);
8485 lpt_program_fdi_mphy(dev_priv);
8486 }
8487 }
dde86e2d 8488
2fa86a1f
PZ
8489 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8490 SBI_GEN0 : SBI_DBUFF0;
8491 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8492 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8493 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8494
a580516d 8495 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8496}
8497
47701c3b
PZ
8498/* Sequence to disable CLKOUT_DP */
8499static void lpt_disable_clkout_dp(struct drm_device *dev)
8500{
8501 struct drm_i915_private *dev_priv = dev->dev_private;
8502 uint32_t reg, tmp;
8503
a580516d 8504 mutex_lock(&dev_priv->sb_lock);
47701c3b
PZ
8505
8506 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8507 SBI_GEN0 : SBI_DBUFF0;
8508 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8509 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8510 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8511
8512 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8513 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8514 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8515 tmp |= SBI_SSCCTL_PATHALT;
8516 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8517 udelay(32);
8518 }
8519 tmp |= SBI_SSCCTL_DISABLE;
8520 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8521 }
8522
a580516d 8523 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8524}
8525
bf8fa3d3
PZ
8526static void lpt_init_pch_refclk(struct drm_device *dev)
8527{
bf8fa3d3
PZ
8528 struct intel_encoder *encoder;
8529 bool has_vga = false;
8530
b2784e15 8531 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8532 switch (encoder->type) {
8533 case INTEL_OUTPUT_ANALOG:
8534 has_vga = true;
8535 break;
6847d71b
PZ
8536 default:
8537 break;
bf8fa3d3
PZ
8538 }
8539 }
8540
47701c3b
PZ
8541 if (has_vga)
8542 lpt_enable_clkout_dp(dev, true, true);
8543 else
8544 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8545}
8546
dde86e2d
PZ
8547/*
8548 * Initialize reference clocks when the driver loads
8549 */
8550void intel_init_pch_refclk(struct drm_device *dev)
8551{
8552 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8553 ironlake_init_pch_refclk(dev);
8554 else if (HAS_PCH_LPT(dev))
8555 lpt_init_pch_refclk(dev);
8556}
8557
55bb9992 8558static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8559{
55bb9992 8560 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8561 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8562 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8563 struct drm_connector *connector;
55bb9992 8564 struct drm_connector_state *connector_state;
d9d444cb 8565 struct intel_encoder *encoder;
55bb9992 8566 int num_connectors = 0, i;
d9d444cb
JB
8567 bool is_lvds = false;
8568
da3ced29 8569 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8570 if (connector_state->crtc != crtc_state->base.crtc)
8571 continue;
8572
8573 encoder = to_intel_encoder(connector_state->best_encoder);
8574
d9d444cb
JB
8575 switch (encoder->type) {
8576 case INTEL_OUTPUT_LVDS:
8577 is_lvds = true;
8578 break;
6847d71b
PZ
8579 default:
8580 break;
d9d444cb
JB
8581 }
8582 num_connectors++;
8583 }
8584
8585 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8586 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8587 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8588 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8589 }
8590
8591 return 120000;
8592}
8593
6ff93609 8594static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8595{
c8203565 8596 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8598 int pipe = intel_crtc->pipe;
c8203565
PZ
8599 uint32_t val;
8600
78114071 8601 val = 0;
c8203565 8602
6e3c9717 8603 switch (intel_crtc->config->pipe_bpp) {
c8203565 8604 case 18:
dfd07d72 8605 val |= PIPECONF_6BPC;
c8203565
PZ
8606 break;
8607 case 24:
dfd07d72 8608 val |= PIPECONF_8BPC;
c8203565
PZ
8609 break;
8610 case 30:
dfd07d72 8611 val |= PIPECONF_10BPC;
c8203565
PZ
8612 break;
8613 case 36:
dfd07d72 8614 val |= PIPECONF_12BPC;
c8203565
PZ
8615 break;
8616 default:
cc769b62
PZ
8617 /* Case prevented by intel_choose_pipe_bpp_dither. */
8618 BUG();
c8203565
PZ
8619 }
8620
6e3c9717 8621 if (intel_crtc->config->dither)
c8203565
PZ
8622 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8623
6e3c9717 8624 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8625 val |= PIPECONF_INTERLACED_ILK;
8626 else
8627 val |= PIPECONF_PROGRESSIVE;
8628
6e3c9717 8629 if (intel_crtc->config->limited_color_range)
3685a8f3 8630 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8631
c8203565
PZ
8632 I915_WRITE(PIPECONF(pipe), val);
8633 POSTING_READ(PIPECONF(pipe));
8634}
8635
86d3efce
VS
8636/*
8637 * Set up the pipe CSC unit.
8638 *
8639 * Currently only full range RGB to limited range RGB conversion
8640 * is supported, but eventually this should handle various
8641 * RGB<->YCbCr scenarios as well.
8642 */
50f3b016 8643static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8644{
8645 struct drm_device *dev = crtc->dev;
8646 struct drm_i915_private *dev_priv = dev->dev_private;
8647 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8648 int pipe = intel_crtc->pipe;
8649 uint16_t coeff = 0x7800; /* 1.0 */
8650
8651 /*
8652 * TODO: Check what kind of values actually come out of the pipe
8653 * with these coeff/postoff values and adjust to get the best
8654 * accuracy. Perhaps we even need to take the bpc value into
8655 * consideration.
8656 */
8657
6e3c9717 8658 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8659 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8660
8661 /*
8662 * GY/GU and RY/RU should be the other way around according
8663 * to BSpec, but reality doesn't agree. Just set them up in
8664 * a way that results in the correct picture.
8665 */
8666 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8667 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8668
8669 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8670 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8671
8672 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8673 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8674
8675 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8676 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8677 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8678
8679 if (INTEL_INFO(dev)->gen > 6) {
8680 uint16_t postoff = 0;
8681
6e3c9717 8682 if (intel_crtc->config->limited_color_range)
32cf0cb0 8683 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8684
8685 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8686 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8687 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8688
8689 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8690 } else {
8691 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8692
6e3c9717 8693 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8694 mode |= CSC_BLACK_SCREEN_OFFSET;
8695
8696 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8697 }
8698}
8699
6ff93609 8700static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8701{
756f85cf
PZ
8702 struct drm_device *dev = crtc->dev;
8703 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8705 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8706 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8707 uint32_t val;
8708
3eff4faa 8709 val = 0;
ee2b0b38 8710
6e3c9717 8711 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8712 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8713
6e3c9717 8714 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8715 val |= PIPECONF_INTERLACED_ILK;
8716 else
8717 val |= PIPECONF_PROGRESSIVE;
8718
702e7a56
PZ
8719 I915_WRITE(PIPECONF(cpu_transcoder), val);
8720 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8721
8722 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8723 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8724
3cdf122c 8725 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8726 val = 0;
8727
6e3c9717 8728 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8729 case 18:
8730 val |= PIPEMISC_DITHER_6_BPC;
8731 break;
8732 case 24:
8733 val |= PIPEMISC_DITHER_8_BPC;
8734 break;
8735 case 30:
8736 val |= PIPEMISC_DITHER_10_BPC;
8737 break;
8738 case 36:
8739 val |= PIPEMISC_DITHER_12_BPC;
8740 break;
8741 default:
8742 /* Case prevented by pipe_config_set_bpp. */
8743 BUG();
8744 }
8745
6e3c9717 8746 if (intel_crtc->config->dither)
756f85cf
PZ
8747 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8748
8749 I915_WRITE(PIPEMISC(pipe), val);
8750 }
ee2b0b38
PZ
8751}
8752
6591c6e4 8753static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8754 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8755 intel_clock_t *clock,
8756 bool *has_reduced_clock,
8757 intel_clock_t *reduced_clock)
8758{
8759 struct drm_device *dev = crtc->dev;
8760 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8761 int refclk;
d4906093 8762 const intel_limit_t *limit;
c329a4ec 8763 bool ret;
79e53945 8764
55bb9992 8765 refclk = ironlake_get_refclk(crtc_state);
79e53945 8766
d4906093
ML
8767 /*
8768 * Returns a set of divisors for the desired target clock with the given
8769 * refclk, or FALSE. The returned values represent the clock equation:
8770 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8771 */
a93e255f
ACO
8772 limit = intel_limit(crtc_state, refclk);
8773 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8774 crtc_state->port_clock,
ee9300bb 8775 refclk, NULL, clock);
6591c6e4
PZ
8776 if (!ret)
8777 return false;
cda4b7d3 8778
6591c6e4
PZ
8779 return true;
8780}
8781
d4b1931c
PZ
8782int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8783{
8784 /*
8785 * Account for spread spectrum to avoid
8786 * oversubscribing the link. Max center spread
8787 * is 2.5%; use 5% for safety's sake.
8788 */
8789 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8790 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8791}
8792
7429e9d4 8793static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8794{
7429e9d4 8795 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8796}
8797
de13a2e3 8798static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8799 struct intel_crtc_state *crtc_state,
7429e9d4 8800 u32 *fp,
9a7c7890 8801 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8802{
de13a2e3 8803 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8804 struct drm_device *dev = crtc->dev;
8805 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8806 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8807 struct drm_connector *connector;
55bb9992
ACO
8808 struct drm_connector_state *connector_state;
8809 struct intel_encoder *encoder;
de13a2e3 8810 uint32_t dpll;
55bb9992 8811 int factor, num_connectors = 0, i;
09ede541 8812 bool is_lvds = false, is_sdvo = false;
79e53945 8813
da3ced29 8814 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8815 if (connector_state->crtc != crtc_state->base.crtc)
8816 continue;
8817
8818 encoder = to_intel_encoder(connector_state->best_encoder);
8819
8820 switch (encoder->type) {
79e53945
JB
8821 case INTEL_OUTPUT_LVDS:
8822 is_lvds = true;
8823 break;
8824 case INTEL_OUTPUT_SDVO:
7d57382e 8825 case INTEL_OUTPUT_HDMI:
79e53945 8826 is_sdvo = true;
79e53945 8827 break;
6847d71b
PZ
8828 default:
8829 break;
79e53945 8830 }
43565a06 8831
c751ce4f 8832 num_connectors++;
79e53945 8833 }
79e53945 8834
c1858123 8835 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8836 factor = 21;
8837 if (is_lvds) {
8838 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8839 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8840 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8841 factor = 25;
190f68c5 8842 } else if (crtc_state->sdvo_tv_clock)
8febb297 8843 factor = 20;
c1858123 8844
190f68c5 8845 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8846 *fp |= FP_CB_TUNE;
2c07245f 8847
9a7c7890
DV
8848 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8849 *fp2 |= FP_CB_TUNE;
8850
5eddb70b 8851 dpll = 0;
2c07245f 8852
a07d6787
EA
8853 if (is_lvds)
8854 dpll |= DPLLB_MODE_LVDS;
8855 else
8856 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8857
190f68c5 8858 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8859 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8860
8861 if (is_sdvo)
4a33e48d 8862 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8863 if (crtc_state->has_dp_encoder)
4a33e48d 8864 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8865
a07d6787 8866 /* compute bitmask from p1 value */
190f68c5 8867 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8868 /* also FPA1 */
190f68c5 8869 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8870
190f68c5 8871 switch (crtc_state->dpll.p2) {
a07d6787
EA
8872 case 5:
8873 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8874 break;
8875 case 7:
8876 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8877 break;
8878 case 10:
8879 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8880 break;
8881 case 14:
8882 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8883 break;
79e53945
JB
8884 }
8885
b4c09f3b 8886 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8887 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8888 else
8889 dpll |= PLL_REF_INPUT_DREFCLK;
8890
959e16d6 8891 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8892}
8893
190f68c5
ACO
8894static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8895 struct intel_crtc_state *crtc_state)
de13a2e3 8896{
c7653199 8897 struct drm_device *dev = crtc->base.dev;
de13a2e3 8898 intel_clock_t clock, reduced_clock;
cbbab5bd 8899 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8900 bool ok, has_reduced_clock = false;
8b47047b 8901 bool is_lvds = false;
e2b78267 8902 struct intel_shared_dpll *pll;
de13a2e3 8903
dd3cd74a
ACO
8904 memset(&crtc_state->dpll_hw_state, 0,
8905 sizeof(crtc_state->dpll_hw_state));
8906
409ee761 8907 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 8908
5dc5298b
PZ
8909 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8910 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8911
190f68c5 8912 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8913 &has_reduced_clock, &reduced_clock);
190f68c5 8914 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8915 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8916 return -EINVAL;
79e53945 8917 }
f47709a9 8918 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8919 if (!crtc_state->clock_set) {
8920 crtc_state->dpll.n = clock.n;
8921 crtc_state->dpll.m1 = clock.m1;
8922 crtc_state->dpll.m2 = clock.m2;
8923 crtc_state->dpll.p1 = clock.p1;
8924 crtc_state->dpll.p2 = clock.p2;
f47709a9 8925 }
79e53945 8926
5dc5298b 8927 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8928 if (crtc_state->has_pch_encoder) {
8929 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8930 if (has_reduced_clock)
7429e9d4 8931 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8932
190f68c5 8933 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8934 &fp, &reduced_clock,
8935 has_reduced_clock ? &fp2 : NULL);
8936
190f68c5
ACO
8937 crtc_state->dpll_hw_state.dpll = dpll;
8938 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8939 if (has_reduced_clock)
190f68c5 8940 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8941 else
190f68c5 8942 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8943
190f68c5 8944 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8945 if (pll == NULL) {
84f44ce7 8946 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8947 pipe_name(crtc->pipe));
4b645f14
JB
8948 return -EINVAL;
8949 }
3fb37703 8950 }
79e53945 8951
ab585dea 8952 if (is_lvds && has_reduced_clock)
c7653199 8953 crtc->lowfreq_avail = true;
bcd644e0 8954 else
c7653199 8955 crtc->lowfreq_avail = false;
e2b78267 8956
c8f7a0db 8957 return 0;
79e53945
JB
8958}
8959
eb14cb74
VS
8960static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8961 struct intel_link_m_n *m_n)
8962{
8963 struct drm_device *dev = crtc->base.dev;
8964 struct drm_i915_private *dev_priv = dev->dev_private;
8965 enum pipe pipe = crtc->pipe;
8966
8967 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8968 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8969 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8970 & ~TU_SIZE_MASK;
8971 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8972 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8973 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8974}
8975
8976static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8977 enum transcoder transcoder,
b95af8be
VK
8978 struct intel_link_m_n *m_n,
8979 struct intel_link_m_n *m2_n2)
72419203
DV
8980{
8981 struct drm_device *dev = crtc->base.dev;
8982 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 8983 enum pipe pipe = crtc->pipe;
72419203 8984
eb14cb74
VS
8985 if (INTEL_INFO(dev)->gen >= 5) {
8986 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8987 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8988 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8989 & ~TU_SIZE_MASK;
8990 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8991 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8992 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
8993 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8994 * gen < 8) and if DRRS is supported (to make sure the
8995 * registers are not unnecessarily read).
8996 */
8997 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 8998 crtc->config->has_drrs) {
b95af8be
VK
8999 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9000 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9001 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9002 & ~TU_SIZE_MASK;
9003 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9004 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9005 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9006 }
eb14cb74
VS
9007 } else {
9008 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9009 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9010 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9011 & ~TU_SIZE_MASK;
9012 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9013 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9014 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9015 }
9016}
9017
9018void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9019 struct intel_crtc_state *pipe_config)
eb14cb74 9020{
681a8504 9021 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9022 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9023 else
9024 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9025 &pipe_config->dp_m_n,
9026 &pipe_config->dp_m2_n2);
eb14cb74 9027}
72419203 9028
eb14cb74 9029static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9030 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9031{
9032 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9033 &pipe_config->fdi_m_n, NULL);
72419203
DV
9034}
9035
bd2e244f 9036static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9037 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9038{
9039 struct drm_device *dev = crtc->base.dev;
9040 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9041 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9042 uint32_t ps_ctrl = 0;
9043 int id = -1;
9044 int i;
bd2e244f 9045
a1b2278e
CK
9046 /* find scaler attached to this pipe */
9047 for (i = 0; i < crtc->num_scalers; i++) {
9048 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9049 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9050 id = i;
9051 pipe_config->pch_pfit.enabled = true;
9052 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9053 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9054 break;
9055 }
9056 }
bd2e244f 9057
a1b2278e
CK
9058 scaler_state->scaler_id = id;
9059 if (id >= 0) {
9060 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9061 } else {
9062 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9063 }
9064}
9065
5724dbd1
DL
9066static void
9067skylake_get_initial_plane_config(struct intel_crtc *crtc,
9068 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9069{
9070 struct drm_device *dev = crtc->base.dev;
9071 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9072 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9073 int pipe = crtc->pipe;
9074 int fourcc, pixel_format;
6761dd31 9075 unsigned int aligned_height;
bc8d7dff 9076 struct drm_framebuffer *fb;
1b842c89 9077 struct intel_framebuffer *intel_fb;
bc8d7dff 9078
d9806c9f 9079 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9080 if (!intel_fb) {
bc8d7dff
DL
9081 DRM_DEBUG_KMS("failed to alloc fb\n");
9082 return;
9083 }
9084
1b842c89
DL
9085 fb = &intel_fb->base;
9086
bc8d7dff 9087 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9088 if (!(val & PLANE_CTL_ENABLE))
9089 goto error;
9090
bc8d7dff
DL
9091 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9092 fourcc = skl_format_to_fourcc(pixel_format,
9093 val & PLANE_CTL_ORDER_RGBX,
9094 val & PLANE_CTL_ALPHA_MASK);
9095 fb->pixel_format = fourcc;
9096 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9097
40f46283
DL
9098 tiling = val & PLANE_CTL_TILED_MASK;
9099 switch (tiling) {
9100 case PLANE_CTL_TILED_LINEAR:
9101 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9102 break;
9103 case PLANE_CTL_TILED_X:
9104 plane_config->tiling = I915_TILING_X;
9105 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9106 break;
9107 case PLANE_CTL_TILED_Y:
9108 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9109 break;
9110 case PLANE_CTL_TILED_YF:
9111 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9112 break;
9113 default:
9114 MISSING_CASE(tiling);
9115 goto error;
9116 }
9117
bc8d7dff
DL
9118 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9119 plane_config->base = base;
9120
9121 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9122
9123 val = I915_READ(PLANE_SIZE(pipe, 0));
9124 fb->height = ((val >> 16) & 0xfff) + 1;
9125 fb->width = ((val >> 0) & 0x1fff) + 1;
9126
9127 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
9128 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9129 fb->pixel_format);
bc8d7dff
DL
9130 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9131
9132 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9133 fb->pixel_format,
9134 fb->modifier[0]);
bc8d7dff 9135
f37b5c2b 9136 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9137
9138 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9139 pipe_name(pipe), fb->width, fb->height,
9140 fb->bits_per_pixel, base, fb->pitches[0],
9141 plane_config->size);
9142
2d14030b 9143 plane_config->fb = intel_fb;
bc8d7dff
DL
9144 return;
9145
9146error:
9147 kfree(fb);
9148}
9149
2fa2fe9a 9150static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9151 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9152{
9153 struct drm_device *dev = crtc->base.dev;
9154 struct drm_i915_private *dev_priv = dev->dev_private;
9155 uint32_t tmp;
9156
9157 tmp = I915_READ(PF_CTL(crtc->pipe));
9158
9159 if (tmp & PF_ENABLE) {
fd4daa9c 9160 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9161 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9162 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9163
9164 /* We currently do not free assignements of panel fitters on
9165 * ivb/hsw (since we don't use the higher upscaling modes which
9166 * differentiates them) so just WARN about this case for now. */
9167 if (IS_GEN7(dev)) {
9168 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9169 PF_PIPE_SEL_IVB(crtc->pipe));
9170 }
2fa2fe9a 9171 }
79e53945
JB
9172}
9173
5724dbd1
DL
9174static void
9175ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9176 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9177{
9178 struct drm_device *dev = crtc->base.dev;
9179 struct drm_i915_private *dev_priv = dev->dev_private;
9180 u32 val, base, offset;
aeee5a49 9181 int pipe = crtc->pipe;
4c6baa59 9182 int fourcc, pixel_format;
6761dd31 9183 unsigned int aligned_height;
b113d5ee 9184 struct drm_framebuffer *fb;
1b842c89 9185 struct intel_framebuffer *intel_fb;
4c6baa59 9186
42a7b088
DL
9187 val = I915_READ(DSPCNTR(pipe));
9188 if (!(val & DISPLAY_PLANE_ENABLE))
9189 return;
9190
d9806c9f 9191 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9192 if (!intel_fb) {
4c6baa59
JB
9193 DRM_DEBUG_KMS("failed to alloc fb\n");
9194 return;
9195 }
9196
1b842c89
DL
9197 fb = &intel_fb->base;
9198
18c5247e
DV
9199 if (INTEL_INFO(dev)->gen >= 4) {
9200 if (val & DISPPLANE_TILED) {
49af449b 9201 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9202 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9203 }
9204 }
4c6baa59
JB
9205
9206 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9207 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9208 fb->pixel_format = fourcc;
9209 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9210
aeee5a49 9211 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9212 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9213 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9214 } else {
49af449b 9215 if (plane_config->tiling)
aeee5a49 9216 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9217 else
aeee5a49 9218 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9219 }
9220 plane_config->base = base;
9221
9222 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9223 fb->width = ((val >> 16) & 0xfff) + 1;
9224 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9225
9226 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9227 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9228
b113d5ee 9229 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9230 fb->pixel_format,
9231 fb->modifier[0]);
4c6baa59 9232
f37b5c2b 9233 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9234
2844a921
DL
9235 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9236 pipe_name(pipe), fb->width, fb->height,
9237 fb->bits_per_pixel, base, fb->pitches[0],
9238 plane_config->size);
b113d5ee 9239
2d14030b 9240 plane_config->fb = intel_fb;
4c6baa59
JB
9241}
9242
0e8ffe1b 9243static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9244 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9245{
9246 struct drm_device *dev = crtc->base.dev;
9247 struct drm_i915_private *dev_priv = dev->dev_private;
9248 uint32_t tmp;
9249
f458ebbc
DV
9250 if (!intel_display_power_is_enabled(dev_priv,
9251 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
9252 return false;
9253
e143a21c 9254 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 9255 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 9256
0e8ffe1b
DV
9257 tmp = I915_READ(PIPECONF(crtc->pipe));
9258 if (!(tmp & PIPECONF_ENABLE))
9259 return false;
9260
42571aef
VS
9261 switch (tmp & PIPECONF_BPC_MASK) {
9262 case PIPECONF_6BPC:
9263 pipe_config->pipe_bpp = 18;
9264 break;
9265 case PIPECONF_8BPC:
9266 pipe_config->pipe_bpp = 24;
9267 break;
9268 case PIPECONF_10BPC:
9269 pipe_config->pipe_bpp = 30;
9270 break;
9271 case PIPECONF_12BPC:
9272 pipe_config->pipe_bpp = 36;
9273 break;
9274 default:
9275 break;
9276 }
9277
b5a9fa09
DV
9278 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9279 pipe_config->limited_color_range = true;
9280
ab9412ba 9281 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
9282 struct intel_shared_dpll *pll;
9283
88adfff1
DV
9284 pipe_config->has_pch_encoder = true;
9285
627eb5a3
DV
9286 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9287 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9288 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9289
9290 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9291
c0d43d62 9292 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
9293 pipe_config->shared_dpll =
9294 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9295 } else {
9296 tmp = I915_READ(PCH_DPLL_SEL);
9297 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9298 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9299 else
9300 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9301 }
66e985c0
DV
9302
9303 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9304
9305 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9306 &pipe_config->dpll_hw_state));
c93f54cf
DV
9307
9308 tmp = pipe_config->dpll_hw_state.dpll;
9309 pipe_config->pixel_multiplier =
9310 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9311 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9312
9313 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9314 } else {
9315 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9316 }
9317
1bd1bd80
DV
9318 intel_get_pipe_timings(crtc, pipe_config);
9319
2fa2fe9a
DV
9320 ironlake_get_pfit_config(crtc, pipe_config);
9321
0e8ffe1b
DV
9322 return true;
9323}
9324
be256dc7
PZ
9325static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9326{
9327 struct drm_device *dev = dev_priv->dev;
be256dc7 9328 struct intel_crtc *crtc;
be256dc7 9329
d3fcc808 9330 for_each_intel_crtc(dev, crtc)
e2c719b7 9331 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9332 pipe_name(crtc->pipe));
9333
e2c719b7
RC
9334 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9335 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9336 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9337 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9338 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9339 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9340 "CPU PWM1 enabled\n");
c5107b87 9341 if (IS_HASWELL(dev))
e2c719b7 9342 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9343 "CPU PWM2 enabled\n");
e2c719b7 9344 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9345 "PCH PWM1 enabled\n");
e2c719b7 9346 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9347 "Utility pin enabled\n");
e2c719b7 9348 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9349
9926ada1
PZ
9350 /*
9351 * In theory we can still leave IRQs enabled, as long as only the HPD
9352 * interrupts remain enabled. We used to check for that, but since it's
9353 * gen-specific and since we only disable LCPLL after we fully disable
9354 * the interrupts, the check below should be enough.
9355 */
e2c719b7 9356 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9357}
9358
9ccd5aeb
PZ
9359static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9360{
9361 struct drm_device *dev = dev_priv->dev;
9362
9363 if (IS_HASWELL(dev))
9364 return I915_READ(D_COMP_HSW);
9365 else
9366 return I915_READ(D_COMP_BDW);
9367}
9368
3c4c9b81
PZ
9369static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9370{
9371 struct drm_device *dev = dev_priv->dev;
9372
9373 if (IS_HASWELL(dev)) {
9374 mutex_lock(&dev_priv->rps.hw_lock);
9375 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9376 val))
f475dadf 9377 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9378 mutex_unlock(&dev_priv->rps.hw_lock);
9379 } else {
9ccd5aeb
PZ
9380 I915_WRITE(D_COMP_BDW, val);
9381 POSTING_READ(D_COMP_BDW);
3c4c9b81 9382 }
be256dc7
PZ
9383}
9384
9385/*
9386 * This function implements pieces of two sequences from BSpec:
9387 * - Sequence for display software to disable LCPLL
9388 * - Sequence for display software to allow package C8+
9389 * The steps implemented here are just the steps that actually touch the LCPLL
9390 * register. Callers should take care of disabling all the display engine
9391 * functions, doing the mode unset, fixing interrupts, etc.
9392 */
6ff58d53
PZ
9393static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9394 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9395{
9396 uint32_t val;
9397
9398 assert_can_disable_lcpll(dev_priv);
9399
9400 val = I915_READ(LCPLL_CTL);
9401
9402 if (switch_to_fclk) {
9403 val |= LCPLL_CD_SOURCE_FCLK;
9404 I915_WRITE(LCPLL_CTL, val);
9405
9406 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9407 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9408 DRM_ERROR("Switching to FCLK failed\n");
9409
9410 val = I915_READ(LCPLL_CTL);
9411 }
9412
9413 val |= LCPLL_PLL_DISABLE;
9414 I915_WRITE(LCPLL_CTL, val);
9415 POSTING_READ(LCPLL_CTL);
9416
9417 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9418 DRM_ERROR("LCPLL still locked\n");
9419
9ccd5aeb 9420 val = hsw_read_dcomp(dev_priv);
be256dc7 9421 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9422 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9423 ndelay(100);
9424
9ccd5aeb
PZ
9425 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9426 1))
be256dc7
PZ
9427 DRM_ERROR("D_COMP RCOMP still in progress\n");
9428
9429 if (allow_power_down) {
9430 val = I915_READ(LCPLL_CTL);
9431 val |= LCPLL_POWER_DOWN_ALLOW;
9432 I915_WRITE(LCPLL_CTL, val);
9433 POSTING_READ(LCPLL_CTL);
9434 }
9435}
9436
9437/*
9438 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9439 * source.
9440 */
6ff58d53 9441static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9442{
9443 uint32_t val;
9444
9445 val = I915_READ(LCPLL_CTL);
9446
9447 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9448 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9449 return;
9450
a8a8bd54
PZ
9451 /*
9452 * Make sure we're not on PC8 state before disabling PC8, otherwise
9453 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9454 */
59bad947 9455 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9456
be256dc7
PZ
9457 if (val & LCPLL_POWER_DOWN_ALLOW) {
9458 val &= ~LCPLL_POWER_DOWN_ALLOW;
9459 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9460 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9461 }
9462
9ccd5aeb 9463 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9464 val |= D_COMP_COMP_FORCE;
9465 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9466 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9467
9468 val = I915_READ(LCPLL_CTL);
9469 val &= ~LCPLL_PLL_DISABLE;
9470 I915_WRITE(LCPLL_CTL, val);
9471
9472 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9473 DRM_ERROR("LCPLL not locked yet\n");
9474
9475 if (val & LCPLL_CD_SOURCE_FCLK) {
9476 val = I915_READ(LCPLL_CTL);
9477 val &= ~LCPLL_CD_SOURCE_FCLK;
9478 I915_WRITE(LCPLL_CTL, val);
9479
9480 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9481 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9482 DRM_ERROR("Switching back to LCPLL failed\n");
9483 }
215733fa 9484
59bad947 9485 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9486 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9487}
9488
765dab67
PZ
9489/*
9490 * Package states C8 and deeper are really deep PC states that can only be
9491 * reached when all the devices on the system allow it, so even if the graphics
9492 * device allows PC8+, it doesn't mean the system will actually get to these
9493 * states. Our driver only allows PC8+ when going into runtime PM.
9494 *
9495 * The requirements for PC8+ are that all the outputs are disabled, the power
9496 * well is disabled and most interrupts are disabled, and these are also
9497 * requirements for runtime PM. When these conditions are met, we manually do
9498 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9499 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9500 * hang the machine.
9501 *
9502 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9503 * the state of some registers, so when we come back from PC8+ we need to
9504 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9505 * need to take care of the registers kept by RC6. Notice that this happens even
9506 * if we don't put the device in PCI D3 state (which is what currently happens
9507 * because of the runtime PM support).
9508 *
9509 * For more, read "Display Sequences for Package C8" on the hardware
9510 * documentation.
9511 */
a14cb6fc 9512void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9513{
c67a470b
PZ
9514 struct drm_device *dev = dev_priv->dev;
9515 uint32_t val;
9516
c67a470b
PZ
9517 DRM_DEBUG_KMS("Enabling package C8+\n");
9518
c67a470b
PZ
9519 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9520 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9521 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9522 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9523 }
9524
9525 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9526 hsw_disable_lcpll(dev_priv, true, true);
9527}
9528
a14cb6fc 9529void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9530{
9531 struct drm_device *dev = dev_priv->dev;
9532 uint32_t val;
9533
c67a470b
PZ
9534 DRM_DEBUG_KMS("Disabling package C8+\n");
9535
9536 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9537 lpt_init_pch_refclk(dev);
9538
9539 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9540 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9541 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9542 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9543 }
9544
9545 intel_prepare_ddi(dev);
c67a470b
PZ
9546}
9547
27c329ed 9548static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9549{
a821fc46 9550 struct drm_device *dev = old_state->dev;
27c329ed 9551 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
f8437dd1 9552
27c329ed 9553 broxton_set_cdclk(dev, req_cdclk);
f8437dd1
VK
9554}
9555
b432e5cf 9556/* compute the max rate for new configuration */
27c329ed 9557static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9558{
b432e5cf 9559 struct intel_crtc *intel_crtc;
27c329ed 9560 struct intel_crtc_state *crtc_state;
b432e5cf 9561 int max_pixel_rate = 0;
b432e5cf 9562
27c329ed
ML
9563 for_each_intel_crtc(state->dev, intel_crtc) {
9564 int pixel_rate;
9565
9566 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9567 if (IS_ERR(crtc_state))
9568 return PTR_ERR(crtc_state);
9569
9570 if (!crtc_state->base.enable)
b432e5cf
VS
9571 continue;
9572
27c329ed 9573 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9574
9575 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
27c329ed 9576 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
b432e5cf
VS
9577 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9578
9579 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9580 }
9581
9582 return max_pixel_rate;
9583}
9584
9585static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9586{
9587 struct drm_i915_private *dev_priv = dev->dev_private;
9588 uint32_t val, data;
9589 int ret;
9590
9591 if (WARN((I915_READ(LCPLL_CTL) &
9592 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9593 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9594 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9595 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9596 "trying to change cdclk frequency with cdclk not enabled\n"))
9597 return;
9598
9599 mutex_lock(&dev_priv->rps.hw_lock);
9600 ret = sandybridge_pcode_write(dev_priv,
9601 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9602 mutex_unlock(&dev_priv->rps.hw_lock);
9603 if (ret) {
9604 DRM_ERROR("failed to inform pcode about cdclk change\n");
9605 return;
9606 }
9607
9608 val = I915_READ(LCPLL_CTL);
9609 val |= LCPLL_CD_SOURCE_FCLK;
9610 I915_WRITE(LCPLL_CTL, val);
9611
9612 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9613 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9614 DRM_ERROR("Switching to FCLK failed\n");
9615
9616 val = I915_READ(LCPLL_CTL);
9617 val &= ~LCPLL_CLK_FREQ_MASK;
9618
9619 switch (cdclk) {
9620 case 450000:
9621 val |= LCPLL_CLK_FREQ_450;
9622 data = 0;
9623 break;
9624 case 540000:
9625 val |= LCPLL_CLK_FREQ_54O_BDW;
9626 data = 1;
9627 break;
9628 case 337500:
9629 val |= LCPLL_CLK_FREQ_337_5_BDW;
9630 data = 2;
9631 break;
9632 case 675000:
9633 val |= LCPLL_CLK_FREQ_675_BDW;
9634 data = 3;
9635 break;
9636 default:
9637 WARN(1, "invalid cdclk frequency\n");
9638 return;
9639 }
9640
9641 I915_WRITE(LCPLL_CTL, val);
9642
9643 val = I915_READ(LCPLL_CTL);
9644 val &= ~LCPLL_CD_SOURCE_FCLK;
9645 I915_WRITE(LCPLL_CTL, val);
9646
9647 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9648 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9649 DRM_ERROR("Switching back to LCPLL failed\n");
9650
9651 mutex_lock(&dev_priv->rps.hw_lock);
9652 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9653 mutex_unlock(&dev_priv->rps.hw_lock);
9654
9655 intel_update_cdclk(dev);
9656
9657 WARN(cdclk != dev_priv->cdclk_freq,
9658 "cdclk requested %d kHz but got %d kHz\n",
9659 cdclk, dev_priv->cdclk_freq);
9660}
9661
27c329ed 9662static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9663{
27c329ed
ML
9664 struct drm_i915_private *dev_priv = to_i915(state->dev);
9665 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9666 int cdclk;
9667
9668 /*
9669 * FIXME should also account for plane ratio
9670 * once 64bpp pixel formats are supported.
9671 */
27c329ed 9672 if (max_pixclk > 540000)
b432e5cf 9673 cdclk = 675000;
27c329ed 9674 else if (max_pixclk > 450000)
b432e5cf 9675 cdclk = 540000;
27c329ed 9676 else if (max_pixclk > 337500)
b432e5cf
VS
9677 cdclk = 450000;
9678 else
9679 cdclk = 337500;
9680
9681 /*
9682 * FIXME move the cdclk caclulation to
9683 * compute_config() so we can fail gracegully.
9684 */
9685 if (cdclk > dev_priv->max_cdclk_freq) {
9686 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9687 cdclk, dev_priv->max_cdclk_freq);
9688 cdclk = dev_priv->max_cdclk_freq;
9689 }
9690
27c329ed 9691 to_intel_atomic_state(state)->cdclk = cdclk;
b432e5cf
VS
9692
9693 return 0;
9694}
9695
27c329ed 9696static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9697{
27c329ed
ML
9698 struct drm_device *dev = old_state->dev;
9699 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
b432e5cf 9700
27c329ed 9701 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9702}
9703
190f68c5
ACO
9704static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9705 struct intel_crtc_state *crtc_state)
09b4ddf9 9706{
190f68c5 9707 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9708 return -EINVAL;
716c2e55 9709
c7653199 9710 crtc->lowfreq_avail = false;
644cef34 9711
c8f7a0db 9712 return 0;
79e53945
JB
9713}
9714
3760b59c
S
9715static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9716 enum port port,
9717 struct intel_crtc_state *pipe_config)
9718{
9719 switch (port) {
9720 case PORT_A:
9721 pipe_config->ddi_pll_sel = SKL_DPLL0;
9722 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9723 break;
9724 case PORT_B:
9725 pipe_config->ddi_pll_sel = SKL_DPLL1;
9726 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9727 break;
9728 case PORT_C:
9729 pipe_config->ddi_pll_sel = SKL_DPLL2;
9730 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9731 break;
9732 default:
9733 DRM_ERROR("Incorrect port type\n");
9734 }
9735}
9736
96b7dfb7
S
9737static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9738 enum port port,
5cec258b 9739 struct intel_crtc_state *pipe_config)
96b7dfb7 9740{
3148ade7 9741 u32 temp, dpll_ctl1;
96b7dfb7
S
9742
9743 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9744 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9745
9746 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9747 case SKL_DPLL0:
9748 /*
9749 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9750 * of the shared DPLL framework and thus needs to be read out
9751 * separately
9752 */
9753 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9754 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9755 break;
96b7dfb7
S
9756 case SKL_DPLL1:
9757 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9758 break;
9759 case SKL_DPLL2:
9760 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9761 break;
9762 case SKL_DPLL3:
9763 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9764 break;
96b7dfb7
S
9765 }
9766}
9767
7d2c8175
DL
9768static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9769 enum port port,
5cec258b 9770 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9771{
9772 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9773
9774 switch (pipe_config->ddi_pll_sel) {
9775 case PORT_CLK_SEL_WRPLL1:
9776 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9777 break;
9778 case PORT_CLK_SEL_WRPLL2:
9779 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9780 break;
9781 }
9782}
9783
26804afd 9784static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9785 struct intel_crtc_state *pipe_config)
26804afd
DV
9786{
9787 struct drm_device *dev = crtc->base.dev;
9788 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9789 struct intel_shared_dpll *pll;
26804afd
DV
9790 enum port port;
9791 uint32_t tmp;
9792
9793 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9794
9795 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9796
96b7dfb7
S
9797 if (IS_SKYLAKE(dev))
9798 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9799 else if (IS_BROXTON(dev))
9800 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9801 else
9802 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9803
d452c5b6
DV
9804 if (pipe_config->shared_dpll >= 0) {
9805 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9806
9807 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9808 &pipe_config->dpll_hw_state));
9809 }
9810
26804afd
DV
9811 /*
9812 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9813 * DDI E. So just check whether this pipe is wired to DDI E and whether
9814 * the PCH transcoder is on.
9815 */
ca370455
DL
9816 if (INTEL_INFO(dev)->gen < 9 &&
9817 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9818 pipe_config->has_pch_encoder = true;
9819
9820 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9821 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9822 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9823
9824 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9825 }
9826}
9827
0e8ffe1b 9828static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9829 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9830{
9831 struct drm_device *dev = crtc->base.dev;
9832 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9833 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9834 uint32_t tmp;
9835
f458ebbc 9836 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9837 POWER_DOMAIN_PIPE(crtc->pipe)))
9838 return false;
9839
e143a21c 9840 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9841 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9842
eccb140b
DV
9843 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9844 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9845 enum pipe trans_edp_pipe;
9846 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9847 default:
9848 WARN(1, "unknown pipe linked to edp transcoder\n");
9849 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9850 case TRANS_DDI_EDP_INPUT_A_ON:
9851 trans_edp_pipe = PIPE_A;
9852 break;
9853 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9854 trans_edp_pipe = PIPE_B;
9855 break;
9856 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9857 trans_edp_pipe = PIPE_C;
9858 break;
9859 }
9860
9861 if (trans_edp_pipe == crtc->pipe)
9862 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9863 }
9864
f458ebbc 9865 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9866 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9867 return false;
9868
eccb140b 9869 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9870 if (!(tmp & PIPECONF_ENABLE))
9871 return false;
9872
26804afd 9873 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9874
1bd1bd80
DV
9875 intel_get_pipe_timings(crtc, pipe_config);
9876
a1b2278e
CK
9877 if (INTEL_INFO(dev)->gen >= 9) {
9878 skl_init_scalers(dev, crtc, pipe_config);
9879 }
9880
2fa2fe9a 9881 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
af99ceda
CK
9882
9883 if (INTEL_INFO(dev)->gen >= 9) {
9884 pipe_config->scaler_state.scaler_id = -1;
9885 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9886 }
9887
bd2e244f 9888 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
ff6d9f55 9889 if (INTEL_INFO(dev)->gen == 9)
bd2e244f 9890 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9891 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 9892 ironlake_get_pfit_config(crtc, pipe_config);
ff6d9f55
JB
9893 else
9894 MISSING_CASE(INTEL_INFO(dev)->gen);
bd2e244f 9895 }
88adfff1 9896
e59150dc
JB
9897 if (IS_HASWELL(dev))
9898 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9899 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9900
ebb69c95
CT
9901 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9902 pipe_config->pixel_multiplier =
9903 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9904 } else {
9905 pipe_config->pixel_multiplier = 1;
9906 }
6c49f241 9907
0e8ffe1b
DV
9908 return true;
9909}
9910
560b85bb
CW
9911static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9912{
9913 struct drm_device *dev = crtc->dev;
9914 struct drm_i915_private *dev_priv = dev->dev_private;
9915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9916 uint32_t cntl = 0, size = 0;
560b85bb 9917
dc41c154 9918 if (base) {
3dd512fb
MR
9919 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9920 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
9921 unsigned int stride = roundup_pow_of_two(width) * 4;
9922
9923 switch (stride) {
9924 default:
9925 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9926 width, stride);
9927 stride = 256;
9928 /* fallthrough */
9929 case 256:
9930 case 512:
9931 case 1024:
9932 case 2048:
9933 break;
4b0e333e
CW
9934 }
9935
dc41c154
VS
9936 cntl |= CURSOR_ENABLE |
9937 CURSOR_GAMMA_ENABLE |
9938 CURSOR_FORMAT_ARGB |
9939 CURSOR_STRIDE(stride);
9940
9941 size = (height << 12) | width;
4b0e333e 9942 }
560b85bb 9943
dc41c154
VS
9944 if (intel_crtc->cursor_cntl != 0 &&
9945 (intel_crtc->cursor_base != base ||
9946 intel_crtc->cursor_size != size ||
9947 intel_crtc->cursor_cntl != cntl)) {
9948 /* On these chipsets we can only modify the base/size/stride
9949 * whilst the cursor is disabled.
9950 */
9951 I915_WRITE(_CURACNTR, 0);
4b0e333e 9952 POSTING_READ(_CURACNTR);
dc41c154 9953 intel_crtc->cursor_cntl = 0;
4b0e333e 9954 }
560b85bb 9955
99d1f387 9956 if (intel_crtc->cursor_base != base) {
9db4a9c7 9957 I915_WRITE(_CURABASE, base);
99d1f387
VS
9958 intel_crtc->cursor_base = base;
9959 }
4726e0b0 9960
dc41c154
VS
9961 if (intel_crtc->cursor_size != size) {
9962 I915_WRITE(CURSIZE, size);
9963 intel_crtc->cursor_size = size;
4b0e333e 9964 }
560b85bb 9965
4b0e333e 9966 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
9967 I915_WRITE(_CURACNTR, cntl);
9968 POSTING_READ(_CURACNTR);
4b0e333e 9969 intel_crtc->cursor_cntl = cntl;
560b85bb 9970 }
560b85bb
CW
9971}
9972
560b85bb 9973static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
9974{
9975 struct drm_device *dev = crtc->dev;
9976 struct drm_i915_private *dev_priv = dev->dev_private;
9977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9978 int pipe = intel_crtc->pipe;
4b0e333e
CW
9979 uint32_t cntl;
9980
9981 cntl = 0;
9982 if (base) {
9983 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 9984 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
9985 case 64:
9986 cntl |= CURSOR_MODE_64_ARGB_AX;
9987 break;
9988 case 128:
9989 cntl |= CURSOR_MODE_128_ARGB_AX;
9990 break;
9991 case 256:
9992 cntl |= CURSOR_MODE_256_ARGB_AX;
9993 break;
9994 default:
3dd512fb 9995 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 9996 return;
65a21cd6 9997 }
4b0e333e 9998 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
9999
10000 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10001 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 10002 }
65a21cd6 10003
8e7d688b 10004 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
10005 cntl |= CURSOR_ROTATE_180;
10006
4b0e333e
CW
10007 if (intel_crtc->cursor_cntl != cntl) {
10008 I915_WRITE(CURCNTR(pipe), cntl);
10009 POSTING_READ(CURCNTR(pipe));
10010 intel_crtc->cursor_cntl = cntl;
65a21cd6 10011 }
4b0e333e 10012
65a21cd6 10013 /* and commit changes on next vblank */
5efb3e28
VS
10014 I915_WRITE(CURBASE(pipe), base);
10015 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10016
10017 intel_crtc->cursor_base = base;
65a21cd6
JB
10018}
10019
cda4b7d3 10020/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
10021static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10022 bool on)
cda4b7d3
CW
10023{
10024 struct drm_device *dev = crtc->dev;
10025 struct drm_i915_private *dev_priv = dev->dev_private;
10026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10027 int pipe = intel_crtc->pipe;
3d7d6510
MR
10028 int x = crtc->cursor_x;
10029 int y = crtc->cursor_y;
d6e4db15 10030 u32 base = 0, pos = 0;
cda4b7d3 10031
d6e4db15 10032 if (on)
cda4b7d3 10033 base = intel_crtc->cursor_addr;
cda4b7d3 10034
6e3c9717 10035 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
10036 base = 0;
10037
6e3c9717 10038 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
10039 base = 0;
10040
10041 if (x < 0) {
3dd512fb 10042 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
10043 base = 0;
10044
10045 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10046 x = -x;
10047 }
10048 pos |= x << CURSOR_X_SHIFT;
10049
10050 if (y < 0) {
3dd512fb 10051 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
10052 base = 0;
10053
10054 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10055 y = -y;
10056 }
10057 pos |= y << CURSOR_Y_SHIFT;
10058
4b0e333e 10059 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
10060 return;
10061
5efb3e28
VS
10062 I915_WRITE(CURPOS(pipe), pos);
10063
4398ad45
VS
10064 /* ILK+ do this automagically */
10065 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 10066 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
10067 base += (intel_crtc->base.cursor->state->crtc_h *
10068 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
10069 }
10070
8ac54669 10071 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
10072 i845_update_cursor(crtc, base);
10073 else
10074 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
10075}
10076
dc41c154
VS
10077static bool cursor_size_ok(struct drm_device *dev,
10078 uint32_t width, uint32_t height)
10079{
10080 if (width == 0 || height == 0)
10081 return false;
10082
10083 /*
10084 * 845g/865g are special in that they are only limited by
10085 * the width of their cursors, the height is arbitrary up to
10086 * the precision of the register. Everything else requires
10087 * square cursors, limited to a few power-of-two sizes.
10088 */
10089 if (IS_845G(dev) || IS_I865G(dev)) {
10090 if ((width & 63) != 0)
10091 return false;
10092
10093 if (width > (IS_845G(dev) ? 64 : 512))
10094 return false;
10095
10096 if (height > 1023)
10097 return false;
10098 } else {
10099 switch (width | height) {
10100 case 256:
10101 case 128:
10102 if (IS_GEN2(dev))
10103 return false;
10104 case 64:
10105 break;
10106 default:
10107 return false;
10108 }
10109 }
10110
10111 return true;
10112}
10113
79e53945 10114static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10115 u16 *blue, uint32_t start, uint32_t size)
79e53945 10116{
7203425a 10117 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10119
7203425a 10120 for (i = start; i < end; i++) {
79e53945
JB
10121 intel_crtc->lut_r[i] = red[i] >> 8;
10122 intel_crtc->lut_g[i] = green[i] >> 8;
10123 intel_crtc->lut_b[i] = blue[i] >> 8;
10124 }
10125
10126 intel_crtc_load_lut(crtc);
10127}
10128
79e53945
JB
10129/* VESA 640x480x72Hz mode to set on the pipe */
10130static struct drm_display_mode load_detect_mode = {
10131 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10132 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10133};
10134
a8bb6818
DV
10135struct drm_framebuffer *
10136__intel_framebuffer_create(struct drm_device *dev,
10137 struct drm_mode_fb_cmd2 *mode_cmd,
10138 struct drm_i915_gem_object *obj)
d2dff872
CW
10139{
10140 struct intel_framebuffer *intel_fb;
10141 int ret;
10142
10143 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10144 if (!intel_fb) {
6ccb81f2 10145 drm_gem_object_unreference(&obj->base);
d2dff872
CW
10146 return ERR_PTR(-ENOMEM);
10147 }
10148
10149 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10150 if (ret)
10151 goto err;
d2dff872
CW
10152
10153 return &intel_fb->base;
dd4916c5 10154err:
6ccb81f2 10155 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
10156 kfree(intel_fb);
10157
10158 return ERR_PTR(ret);
d2dff872
CW
10159}
10160
b5ea642a 10161static struct drm_framebuffer *
a8bb6818
DV
10162intel_framebuffer_create(struct drm_device *dev,
10163 struct drm_mode_fb_cmd2 *mode_cmd,
10164 struct drm_i915_gem_object *obj)
10165{
10166 struct drm_framebuffer *fb;
10167 int ret;
10168
10169 ret = i915_mutex_lock_interruptible(dev);
10170 if (ret)
10171 return ERR_PTR(ret);
10172 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10173 mutex_unlock(&dev->struct_mutex);
10174
10175 return fb;
10176}
10177
d2dff872
CW
10178static u32
10179intel_framebuffer_pitch_for_width(int width, int bpp)
10180{
10181 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10182 return ALIGN(pitch, 64);
10183}
10184
10185static u32
10186intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10187{
10188 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10189 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10190}
10191
10192static struct drm_framebuffer *
10193intel_framebuffer_create_for_mode(struct drm_device *dev,
10194 struct drm_display_mode *mode,
10195 int depth, int bpp)
10196{
10197 struct drm_i915_gem_object *obj;
0fed39bd 10198 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10199
10200 obj = i915_gem_alloc_object(dev,
10201 intel_framebuffer_size_for_mode(mode, bpp));
10202 if (obj == NULL)
10203 return ERR_PTR(-ENOMEM);
10204
10205 mode_cmd.width = mode->hdisplay;
10206 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10207 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10208 bpp);
5ca0c34a 10209 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
10210
10211 return intel_framebuffer_create(dev, &mode_cmd, obj);
10212}
10213
10214static struct drm_framebuffer *
10215mode_fits_in_fbdev(struct drm_device *dev,
10216 struct drm_display_mode *mode)
10217{
4520f53a 10218#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
10219 struct drm_i915_private *dev_priv = dev->dev_private;
10220 struct drm_i915_gem_object *obj;
10221 struct drm_framebuffer *fb;
10222
4c0e5528 10223 if (!dev_priv->fbdev)
d2dff872
CW
10224 return NULL;
10225
4c0e5528 10226 if (!dev_priv->fbdev->fb)
d2dff872
CW
10227 return NULL;
10228
4c0e5528
DV
10229 obj = dev_priv->fbdev->fb->obj;
10230 BUG_ON(!obj);
10231
8bcd4553 10232 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10233 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10234 fb->bits_per_pixel))
d2dff872
CW
10235 return NULL;
10236
01f2c773 10237 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10238 return NULL;
10239
10240 return fb;
4520f53a
DV
10241#else
10242 return NULL;
10243#endif
d2dff872
CW
10244}
10245
d3a40d1b
ACO
10246static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10247 struct drm_crtc *crtc,
10248 struct drm_display_mode *mode,
10249 struct drm_framebuffer *fb,
10250 int x, int y)
10251{
10252 struct drm_plane_state *plane_state;
10253 int hdisplay, vdisplay;
10254 int ret;
10255
10256 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10257 if (IS_ERR(plane_state))
10258 return PTR_ERR(plane_state);
10259
10260 if (mode)
10261 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10262 else
10263 hdisplay = vdisplay = 0;
10264
10265 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10266 if (ret)
10267 return ret;
10268 drm_atomic_set_fb_for_plane(plane_state, fb);
10269 plane_state->crtc_x = 0;
10270 plane_state->crtc_y = 0;
10271 plane_state->crtc_w = hdisplay;
10272 plane_state->crtc_h = vdisplay;
10273 plane_state->src_x = x << 16;
10274 plane_state->src_y = y << 16;
10275 plane_state->src_w = hdisplay << 16;
10276 plane_state->src_h = vdisplay << 16;
10277
10278 return 0;
10279}
10280
d2434ab7 10281bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10282 struct drm_display_mode *mode,
51fd371b
RC
10283 struct intel_load_detect_pipe *old,
10284 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10285{
10286 struct intel_crtc *intel_crtc;
d2434ab7
DV
10287 struct intel_encoder *intel_encoder =
10288 intel_attached_encoder(connector);
79e53945 10289 struct drm_crtc *possible_crtc;
4ef69c7a 10290 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10291 struct drm_crtc *crtc = NULL;
10292 struct drm_device *dev = encoder->dev;
94352cf9 10293 struct drm_framebuffer *fb;
51fd371b 10294 struct drm_mode_config *config = &dev->mode_config;
83a57153 10295 struct drm_atomic_state *state = NULL;
944b0c76 10296 struct drm_connector_state *connector_state;
4be07317 10297 struct intel_crtc_state *crtc_state;
51fd371b 10298 int ret, i = -1;
79e53945 10299
d2dff872 10300 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10301 connector->base.id, connector->name,
8e329a03 10302 encoder->base.id, encoder->name);
d2dff872 10303
51fd371b
RC
10304retry:
10305 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10306 if (ret)
ad3c558f 10307 goto fail;
6e9f798d 10308
79e53945
JB
10309 /*
10310 * Algorithm gets a little messy:
7a5e4805 10311 *
79e53945
JB
10312 * - if the connector already has an assigned crtc, use it (but make
10313 * sure it's on first)
7a5e4805 10314 *
79e53945
JB
10315 * - try to find the first unused crtc that can drive this connector,
10316 * and use that if we find one
79e53945
JB
10317 */
10318
10319 /* See if we already have a CRTC for this connector */
10320 if (encoder->crtc) {
10321 crtc = encoder->crtc;
8261b191 10322
51fd371b 10323 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10324 if (ret)
ad3c558f 10325 goto fail;
4d02e2de 10326 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b 10327 if (ret)
ad3c558f 10328 goto fail;
7b24056b 10329
24218aac 10330 old->dpms_mode = connector->dpms;
8261b191
CW
10331 old->load_detect_temp = false;
10332
10333 /* Make sure the crtc and connector are running */
24218aac
DV
10334 if (connector->dpms != DRM_MODE_DPMS_ON)
10335 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 10336
7173188d 10337 return true;
79e53945
JB
10338 }
10339
10340 /* Find an unused one (if possible) */
70e1e0ec 10341 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10342 i++;
10343 if (!(encoder->possible_crtcs & (1 << i)))
10344 continue;
83d65738 10345 if (possible_crtc->state->enable)
a459249c 10346 continue;
a459249c
VS
10347
10348 crtc = possible_crtc;
10349 break;
79e53945
JB
10350 }
10351
10352 /*
10353 * If we didn't find an unused CRTC, don't use any.
10354 */
10355 if (!crtc) {
7173188d 10356 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10357 goto fail;
79e53945
JB
10358 }
10359
51fd371b
RC
10360 ret = drm_modeset_lock(&crtc->mutex, ctx);
10361 if (ret)
ad3c558f 10362 goto fail;
4d02e2de
DV
10363 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10364 if (ret)
ad3c558f 10365 goto fail;
79e53945
JB
10366
10367 intel_crtc = to_intel_crtc(crtc);
24218aac 10368 old->dpms_mode = connector->dpms;
8261b191 10369 old->load_detect_temp = true;
d2dff872 10370 old->release_fb = NULL;
79e53945 10371
83a57153
ACO
10372 state = drm_atomic_state_alloc(dev);
10373 if (!state)
10374 return false;
10375
10376 state->acquire_ctx = ctx;
10377
944b0c76
ACO
10378 connector_state = drm_atomic_get_connector_state(state, connector);
10379 if (IS_ERR(connector_state)) {
10380 ret = PTR_ERR(connector_state);
10381 goto fail;
10382 }
10383
10384 connector_state->crtc = crtc;
10385 connector_state->best_encoder = &intel_encoder->base;
10386
4be07317
ACO
10387 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10388 if (IS_ERR(crtc_state)) {
10389 ret = PTR_ERR(crtc_state);
10390 goto fail;
10391 }
10392
49d6fa21 10393 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10394
6492711d
CW
10395 if (!mode)
10396 mode = &load_detect_mode;
79e53945 10397
d2dff872
CW
10398 /* We need a framebuffer large enough to accommodate all accesses
10399 * that the plane may generate whilst we perform load detection.
10400 * We can not rely on the fbcon either being present (we get called
10401 * during its initialisation to detect all boot displays, or it may
10402 * not even exist) or that it is large enough to satisfy the
10403 * requested mode.
10404 */
94352cf9
DV
10405 fb = mode_fits_in_fbdev(dev, mode);
10406 if (fb == NULL) {
d2dff872 10407 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
10408 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10409 old->release_fb = fb;
d2dff872
CW
10410 } else
10411 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10412 if (IS_ERR(fb)) {
d2dff872 10413 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10414 goto fail;
79e53945 10415 }
79e53945 10416
d3a40d1b
ACO
10417 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10418 if (ret)
10419 goto fail;
10420
8c7b5ccb
ACO
10421 drm_mode_copy(&crtc_state->base.mode, mode);
10422
74c090b1 10423 if (drm_atomic_commit(state)) {
6492711d 10424 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
10425 if (old->release_fb)
10426 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 10427 goto fail;
79e53945 10428 }
9128b040 10429 crtc->primary->crtc = crtc;
7173188d 10430
79e53945 10431 /* let the connector get through one full cycle before testing */
9d0498a2 10432 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10433 return true;
412b61d8 10434
ad3c558f 10435fail:
e5d958ef
ACO
10436 drm_atomic_state_free(state);
10437 state = NULL;
83a57153 10438
51fd371b
RC
10439 if (ret == -EDEADLK) {
10440 drm_modeset_backoff(ctx);
10441 goto retry;
10442 }
10443
412b61d8 10444 return false;
79e53945
JB
10445}
10446
d2434ab7 10447void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10448 struct intel_load_detect_pipe *old,
10449 struct drm_modeset_acquire_ctx *ctx)
79e53945 10450{
83a57153 10451 struct drm_device *dev = connector->dev;
d2434ab7
DV
10452 struct intel_encoder *intel_encoder =
10453 intel_attached_encoder(connector);
4ef69c7a 10454 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 10455 struct drm_crtc *crtc = encoder->crtc;
412b61d8 10456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 10457 struct drm_atomic_state *state;
944b0c76 10458 struct drm_connector_state *connector_state;
4be07317 10459 struct intel_crtc_state *crtc_state;
d3a40d1b 10460 int ret;
79e53945 10461
d2dff872 10462 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10463 connector->base.id, connector->name,
8e329a03 10464 encoder->base.id, encoder->name);
d2dff872 10465
8261b191 10466 if (old->load_detect_temp) {
83a57153 10467 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
10468 if (!state)
10469 goto fail;
83a57153
ACO
10470
10471 state->acquire_ctx = ctx;
10472
944b0c76
ACO
10473 connector_state = drm_atomic_get_connector_state(state, connector);
10474 if (IS_ERR(connector_state))
10475 goto fail;
10476
4be07317
ACO
10477 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10478 if (IS_ERR(crtc_state))
10479 goto fail;
10480
944b0c76
ACO
10481 connector_state->best_encoder = NULL;
10482 connector_state->crtc = NULL;
10483
49d6fa21 10484 crtc_state->base.enable = crtc_state->base.active = false;
4be07317 10485
d3a40d1b
ACO
10486 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10487 0, 0);
10488 if (ret)
10489 goto fail;
10490
74c090b1 10491 ret = drm_atomic_commit(state);
2bfb4627
ACO
10492 if (ret)
10493 goto fail;
d2dff872 10494
36206361
DV
10495 if (old->release_fb) {
10496 drm_framebuffer_unregister_private(old->release_fb);
10497 drm_framebuffer_unreference(old->release_fb);
10498 }
d2dff872 10499
0622a53c 10500 return;
79e53945
JB
10501 }
10502
c751ce4f 10503 /* Switch crtc and encoder back off if necessary */
24218aac
DV
10504 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10505 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
10506
10507 return;
10508fail:
10509 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10510 drm_atomic_state_free(state);
79e53945
JB
10511}
10512
da4a1efa 10513static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10514 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10515{
10516 struct drm_i915_private *dev_priv = dev->dev_private;
10517 u32 dpll = pipe_config->dpll_hw_state.dpll;
10518
10519 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10520 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10521 else if (HAS_PCH_SPLIT(dev))
10522 return 120000;
10523 else if (!IS_GEN2(dev))
10524 return 96000;
10525 else
10526 return 48000;
10527}
10528
79e53945 10529/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10530static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10531 struct intel_crtc_state *pipe_config)
79e53945 10532{
f1f644dc 10533 struct drm_device *dev = crtc->base.dev;
79e53945 10534 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10535 int pipe = pipe_config->cpu_transcoder;
293623f7 10536 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10537 u32 fp;
10538 intel_clock_t clock;
dccbea3b 10539 int port_clock;
da4a1efa 10540 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10541
10542 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10543 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10544 else
293623f7 10545 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10546
10547 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10548 if (IS_PINEVIEW(dev)) {
10549 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10550 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10551 } else {
10552 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10553 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10554 }
10555
a6c45cf0 10556 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10557 if (IS_PINEVIEW(dev))
10558 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10559 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10560 else
10561 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10562 DPLL_FPA01_P1_POST_DIV_SHIFT);
10563
10564 switch (dpll & DPLL_MODE_MASK) {
10565 case DPLLB_MODE_DAC_SERIAL:
10566 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10567 5 : 10;
10568 break;
10569 case DPLLB_MODE_LVDS:
10570 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10571 7 : 14;
10572 break;
10573 default:
28c97730 10574 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10575 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10576 return;
79e53945
JB
10577 }
10578
ac58c3f0 10579 if (IS_PINEVIEW(dev))
dccbea3b 10580 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10581 else
dccbea3b 10582 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10583 } else {
0fb58223 10584 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10585 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10586
10587 if (is_lvds) {
10588 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10589 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10590
10591 if (lvds & LVDS_CLKB_POWER_UP)
10592 clock.p2 = 7;
10593 else
10594 clock.p2 = 14;
79e53945
JB
10595 } else {
10596 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10597 clock.p1 = 2;
10598 else {
10599 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10600 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10601 }
10602 if (dpll & PLL_P2_DIVIDE_BY_4)
10603 clock.p2 = 4;
10604 else
10605 clock.p2 = 2;
79e53945 10606 }
da4a1efa 10607
dccbea3b 10608 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10609 }
10610
18442d08
VS
10611 /*
10612 * This value includes pixel_multiplier. We will use
241bfc38 10613 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10614 * encoder's get_config() function.
10615 */
dccbea3b 10616 pipe_config->port_clock = port_clock;
f1f644dc
JB
10617}
10618
6878da05
VS
10619int intel_dotclock_calculate(int link_freq,
10620 const struct intel_link_m_n *m_n)
f1f644dc 10621{
f1f644dc
JB
10622 /*
10623 * The calculation for the data clock is:
1041a02f 10624 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10625 * But we want to avoid losing precison if possible, so:
1041a02f 10626 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10627 *
10628 * and the link clock is simpler:
1041a02f 10629 * link_clock = (m * link_clock) / n
f1f644dc
JB
10630 */
10631
6878da05
VS
10632 if (!m_n->link_n)
10633 return 0;
f1f644dc 10634
6878da05
VS
10635 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10636}
f1f644dc 10637
18442d08 10638static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10639 struct intel_crtc_state *pipe_config)
6878da05
VS
10640{
10641 struct drm_device *dev = crtc->base.dev;
79e53945 10642
18442d08
VS
10643 /* read out port_clock from the DPLL */
10644 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10645
f1f644dc 10646 /*
18442d08 10647 * This value does not include pixel_multiplier.
241bfc38 10648 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
10649 * agree once we know their relationship in the encoder's
10650 * get_config() function.
79e53945 10651 */
2d112de7 10652 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
10653 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10654 &pipe_config->fdi_m_n);
79e53945
JB
10655}
10656
10657/** Returns the currently programmed mode of the given pipe. */
10658struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10659 struct drm_crtc *crtc)
10660{
548f245b 10661 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10663 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10664 struct drm_display_mode *mode;
5cec258b 10665 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
10666 int htot = I915_READ(HTOTAL(cpu_transcoder));
10667 int hsync = I915_READ(HSYNC(cpu_transcoder));
10668 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10669 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10670 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10671
10672 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10673 if (!mode)
10674 return NULL;
10675
f1f644dc
JB
10676 /*
10677 * Construct a pipe_config sufficient for getting the clock info
10678 * back out of crtc_clock_get.
10679 *
10680 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10681 * to use a real value here instead.
10682 */
293623f7 10683 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 10684 pipe_config.pixel_multiplier = 1;
293623f7
VS
10685 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10686 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10687 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
10688 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10689
773ae034 10690 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
10691 mode->hdisplay = (htot & 0xffff) + 1;
10692 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10693 mode->hsync_start = (hsync & 0xffff) + 1;
10694 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10695 mode->vdisplay = (vtot & 0xffff) + 1;
10696 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10697 mode->vsync_start = (vsync & 0xffff) + 1;
10698 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10699
10700 drm_mode_set_name(mode);
79e53945
JB
10701
10702 return mode;
10703}
10704
f047e395
CW
10705void intel_mark_busy(struct drm_device *dev)
10706{
c67a470b
PZ
10707 struct drm_i915_private *dev_priv = dev->dev_private;
10708
f62a0076
CW
10709 if (dev_priv->mm.busy)
10710 return;
10711
43694d69 10712 intel_runtime_pm_get(dev_priv);
c67a470b 10713 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10714 if (INTEL_INFO(dev)->gen >= 6)
10715 gen6_rps_busy(dev_priv);
f62a0076 10716 dev_priv->mm.busy = true;
f047e395
CW
10717}
10718
10719void intel_mark_idle(struct drm_device *dev)
652c393a 10720{
c67a470b 10721 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10722
f62a0076
CW
10723 if (!dev_priv->mm.busy)
10724 return;
10725
10726 dev_priv->mm.busy = false;
10727
3d13ef2e 10728 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10729 gen6_rps_idle(dev->dev_private);
bb4cdd53 10730
43694d69 10731 intel_runtime_pm_put(dev_priv);
652c393a
JB
10732}
10733
79e53945
JB
10734static void intel_crtc_destroy(struct drm_crtc *crtc)
10735{
10736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10737 struct drm_device *dev = crtc->dev;
10738 struct intel_unpin_work *work;
67e77c5a 10739
5e2d7afc 10740 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10741 work = intel_crtc->unpin_work;
10742 intel_crtc->unpin_work = NULL;
5e2d7afc 10743 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10744
10745 if (work) {
10746 cancel_work_sync(&work->work);
10747 kfree(work);
10748 }
79e53945
JB
10749
10750 drm_crtc_cleanup(crtc);
67e77c5a 10751
79e53945
JB
10752 kfree(intel_crtc);
10753}
10754
6b95a207
KH
10755static void intel_unpin_work_fn(struct work_struct *__work)
10756{
10757 struct intel_unpin_work *work =
10758 container_of(__work, struct intel_unpin_work, work);
a9ff8714
VS
10759 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10760 struct drm_device *dev = crtc->base.dev;
10761 struct drm_plane *primary = crtc->base.primary;
6b95a207 10762
b4a98e57 10763 mutex_lock(&dev->struct_mutex);
a9ff8714 10764 intel_unpin_fb_obj(work->old_fb, primary->state);
05394f39 10765 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10766
f06cc1b9 10767 if (work->flip_queued_req)
146d84f0 10768 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10769 mutex_unlock(&dev->struct_mutex);
10770
a9ff8714 10771 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
89ed88ba 10772 drm_framebuffer_unreference(work->old_fb);
f99d7069 10773
a9ff8714
VS
10774 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10775 atomic_dec(&crtc->unpin_work_count);
b4a98e57 10776
6b95a207
KH
10777 kfree(work);
10778}
10779
1afe3e9d 10780static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10781 struct drm_crtc *crtc)
6b95a207 10782{
6b95a207
KH
10783 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10784 struct intel_unpin_work *work;
6b95a207
KH
10785 unsigned long flags;
10786
10787 /* Ignore early vblank irqs */
10788 if (intel_crtc == NULL)
10789 return;
10790
f326038a
DV
10791 /*
10792 * This is called both by irq handlers and the reset code (to complete
10793 * lost pageflips) so needs the full irqsave spinlocks.
10794 */
6b95a207
KH
10795 spin_lock_irqsave(&dev->event_lock, flags);
10796 work = intel_crtc->unpin_work;
e7d841ca
CW
10797
10798 /* Ensure we don't miss a work->pending update ... */
10799 smp_rmb();
10800
10801 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10802 spin_unlock_irqrestore(&dev->event_lock, flags);
10803 return;
10804 }
10805
d6bbafa1 10806 page_flip_completed(intel_crtc);
0af7e4df 10807
6b95a207 10808 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10809}
10810
1afe3e9d
JB
10811void intel_finish_page_flip(struct drm_device *dev, int pipe)
10812{
fbee40df 10813 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10814 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10815
49b14a5c 10816 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10817}
10818
10819void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10820{
fbee40df 10821 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10822 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10823
49b14a5c 10824 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10825}
10826
75f7f3ec
VS
10827/* Is 'a' after or equal to 'b'? */
10828static bool g4x_flip_count_after_eq(u32 a, u32 b)
10829{
10830 return !((a - b) & 0x80000000);
10831}
10832
10833static bool page_flip_finished(struct intel_crtc *crtc)
10834{
10835 struct drm_device *dev = crtc->base.dev;
10836 struct drm_i915_private *dev_priv = dev->dev_private;
10837
bdfa7542
VS
10838 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10839 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10840 return true;
10841
75f7f3ec
VS
10842 /*
10843 * The relevant registers doen't exist on pre-ctg.
10844 * As the flip done interrupt doesn't trigger for mmio
10845 * flips on gmch platforms, a flip count check isn't
10846 * really needed there. But since ctg has the registers,
10847 * include it in the check anyway.
10848 */
10849 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10850 return true;
10851
10852 /*
10853 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10854 * used the same base address. In that case the mmio flip might
10855 * have completed, but the CS hasn't even executed the flip yet.
10856 *
10857 * A flip count check isn't enough as the CS might have updated
10858 * the base address just after start of vblank, but before we
10859 * managed to process the interrupt. This means we'd complete the
10860 * CS flip too soon.
10861 *
10862 * Combining both checks should get us a good enough result. It may
10863 * still happen that the CS flip has been executed, but has not
10864 * yet actually completed. But in case the base address is the same
10865 * anyway, we don't really care.
10866 */
10867 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10868 crtc->unpin_work->gtt_offset &&
10869 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10870 crtc->unpin_work->flip_count);
10871}
10872
6b95a207
KH
10873void intel_prepare_page_flip(struct drm_device *dev, int plane)
10874{
fbee40df 10875 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10876 struct intel_crtc *intel_crtc =
10877 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10878 unsigned long flags;
10879
f326038a
DV
10880
10881 /*
10882 * This is called both by irq handlers and the reset code (to complete
10883 * lost pageflips) so needs the full irqsave spinlocks.
10884 *
10885 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10886 * generate a page-flip completion irq, i.e. every modeset
10887 * is also accompanied by a spurious intel_prepare_page_flip().
10888 */
6b95a207 10889 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10890 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10891 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10892 spin_unlock_irqrestore(&dev->event_lock, flags);
10893}
10894
eba905b2 10895static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
10896{
10897 /* Ensure that the work item is consistent when activating it ... */
10898 smp_wmb();
10899 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10900 /* and that it is marked active as soon as the irq could fire. */
10901 smp_wmb();
10902}
10903
8c9f3aaf
JB
10904static int intel_gen2_queue_flip(struct drm_device *dev,
10905 struct drm_crtc *crtc,
10906 struct drm_framebuffer *fb,
ed8d1975 10907 struct drm_i915_gem_object *obj,
6258fbe2 10908 struct drm_i915_gem_request *req,
ed8d1975 10909 uint32_t flags)
8c9f3aaf 10910{
6258fbe2 10911 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10913 u32 flip_mask;
10914 int ret;
10915
5fb9de1a 10916 ret = intel_ring_begin(req, 6);
8c9f3aaf 10917 if (ret)
4fa62c89 10918 return ret;
8c9f3aaf
JB
10919
10920 /* Can't queue multiple flips, so wait for the previous
10921 * one to finish before executing the next.
10922 */
10923 if (intel_crtc->plane)
10924 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10925 else
10926 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10927 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10928 intel_ring_emit(ring, MI_NOOP);
10929 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10930 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10931 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10932 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10933 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
10934
10935 intel_mark_page_flip_active(intel_crtc);
83d4092b 10936 return 0;
8c9f3aaf
JB
10937}
10938
10939static int intel_gen3_queue_flip(struct drm_device *dev,
10940 struct drm_crtc *crtc,
10941 struct drm_framebuffer *fb,
ed8d1975 10942 struct drm_i915_gem_object *obj,
6258fbe2 10943 struct drm_i915_gem_request *req,
ed8d1975 10944 uint32_t flags)
8c9f3aaf 10945{
6258fbe2 10946 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10948 u32 flip_mask;
10949 int ret;
10950
5fb9de1a 10951 ret = intel_ring_begin(req, 6);
8c9f3aaf 10952 if (ret)
4fa62c89 10953 return ret;
8c9f3aaf
JB
10954
10955 if (intel_crtc->plane)
10956 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10957 else
10958 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10959 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10960 intel_ring_emit(ring, MI_NOOP);
10961 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10962 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10963 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10964 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
10965 intel_ring_emit(ring, MI_NOOP);
10966
e7d841ca 10967 intel_mark_page_flip_active(intel_crtc);
83d4092b 10968 return 0;
8c9f3aaf
JB
10969}
10970
10971static int intel_gen4_queue_flip(struct drm_device *dev,
10972 struct drm_crtc *crtc,
10973 struct drm_framebuffer *fb,
ed8d1975 10974 struct drm_i915_gem_object *obj,
6258fbe2 10975 struct drm_i915_gem_request *req,
ed8d1975 10976 uint32_t flags)
8c9f3aaf 10977{
6258fbe2 10978 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
10979 struct drm_i915_private *dev_priv = dev->dev_private;
10980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10981 uint32_t pf, pipesrc;
10982 int ret;
10983
5fb9de1a 10984 ret = intel_ring_begin(req, 4);
8c9f3aaf 10985 if (ret)
4fa62c89 10986 return ret;
8c9f3aaf
JB
10987
10988 /* i965+ uses the linear or tiled offsets from the
10989 * Display Registers (which do not change across a page-flip)
10990 * so we need only reprogram the base address.
10991 */
6d90c952
DV
10992 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10993 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10994 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10995 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 10996 obj->tiling_mode);
8c9f3aaf
JB
10997
10998 /* XXX Enabling the panel-fitter across page-flip is so far
10999 * untested on non-native modes, so ignore it for now.
11000 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11001 */
11002 pf = 0;
11003 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11004 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
11005
11006 intel_mark_page_flip_active(intel_crtc);
83d4092b 11007 return 0;
8c9f3aaf
JB
11008}
11009
11010static int intel_gen6_queue_flip(struct drm_device *dev,
11011 struct drm_crtc *crtc,
11012 struct drm_framebuffer *fb,
ed8d1975 11013 struct drm_i915_gem_object *obj,
6258fbe2 11014 struct drm_i915_gem_request *req,
ed8d1975 11015 uint32_t flags)
8c9f3aaf 11016{
6258fbe2 11017 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
11018 struct drm_i915_private *dev_priv = dev->dev_private;
11019 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11020 uint32_t pf, pipesrc;
11021 int ret;
11022
5fb9de1a 11023 ret = intel_ring_begin(req, 4);
8c9f3aaf 11024 if (ret)
4fa62c89 11025 return ret;
8c9f3aaf 11026
6d90c952
DV
11027 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11028 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11029 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 11030 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 11031
dc257cf1
DV
11032 /* Contrary to the suggestions in the documentation,
11033 * "Enable Panel Fitter" does not seem to be required when page
11034 * flipping with a non-native mode, and worse causes a normal
11035 * modeset to fail.
11036 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11037 */
11038 pf = 0;
8c9f3aaf 11039 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11040 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
11041
11042 intel_mark_page_flip_active(intel_crtc);
83d4092b 11043 return 0;
8c9f3aaf
JB
11044}
11045
7c9017e5
JB
11046static int intel_gen7_queue_flip(struct drm_device *dev,
11047 struct drm_crtc *crtc,
11048 struct drm_framebuffer *fb,
ed8d1975 11049 struct drm_i915_gem_object *obj,
6258fbe2 11050 struct drm_i915_gem_request *req,
ed8d1975 11051 uint32_t flags)
7c9017e5 11052{
6258fbe2 11053 struct intel_engine_cs *ring = req->ring;
7c9017e5 11054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11055 uint32_t plane_bit = 0;
ffe74d75
CW
11056 int len, ret;
11057
eba905b2 11058 switch (intel_crtc->plane) {
cb05d8de
DV
11059 case PLANE_A:
11060 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11061 break;
11062 case PLANE_B:
11063 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11064 break;
11065 case PLANE_C:
11066 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11067 break;
11068 default:
11069 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11070 return -ENODEV;
cb05d8de
DV
11071 }
11072
ffe74d75 11073 len = 4;
f476828a 11074 if (ring->id == RCS) {
ffe74d75 11075 len += 6;
f476828a
DL
11076 /*
11077 * On Gen 8, SRM is now taking an extra dword to accommodate
11078 * 48bits addresses, and we need a NOOP for the batch size to
11079 * stay even.
11080 */
11081 if (IS_GEN8(dev))
11082 len += 2;
11083 }
ffe74d75 11084
f66fab8e
VS
11085 /*
11086 * BSpec MI_DISPLAY_FLIP for IVB:
11087 * "The full packet must be contained within the same cache line."
11088 *
11089 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11090 * cacheline, if we ever start emitting more commands before
11091 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11092 * then do the cacheline alignment, and finally emit the
11093 * MI_DISPLAY_FLIP.
11094 */
bba09b12 11095 ret = intel_ring_cacheline_align(req);
f66fab8e 11096 if (ret)
4fa62c89 11097 return ret;
f66fab8e 11098
5fb9de1a 11099 ret = intel_ring_begin(req, len);
7c9017e5 11100 if (ret)
4fa62c89 11101 return ret;
7c9017e5 11102
ffe74d75
CW
11103 /* Unmask the flip-done completion message. Note that the bspec says that
11104 * we should do this for both the BCS and RCS, and that we must not unmask
11105 * more than one flip event at any time (or ensure that one flip message
11106 * can be sent by waiting for flip-done prior to queueing new flips).
11107 * Experimentation says that BCS works despite DERRMR masking all
11108 * flip-done completion events and that unmasking all planes at once
11109 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11110 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11111 */
11112 if (ring->id == RCS) {
11113 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11114 intel_ring_emit(ring, DERRMR);
11115 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11116 DERRMR_PIPEB_PRI_FLIP_DONE |
11117 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
11118 if (IS_GEN8(dev))
11119 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11120 MI_SRM_LRM_GLOBAL_GTT);
11121 else
11122 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11123 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
11124 intel_ring_emit(ring, DERRMR);
11125 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
11126 if (IS_GEN8(dev)) {
11127 intel_ring_emit(ring, 0);
11128 intel_ring_emit(ring, MI_NOOP);
11129 }
ffe74d75
CW
11130 }
11131
cb05d8de 11132 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 11133 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 11134 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 11135 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
11136
11137 intel_mark_page_flip_active(intel_crtc);
83d4092b 11138 return 0;
7c9017e5
JB
11139}
11140
84c33a64
SG
11141static bool use_mmio_flip(struct intel_engine_cs *ring,
11142 struct drm_i915_gem_object *obj)
11143{
11144 /*
11145 * This is not being used for older platforms, because
11146 * non-availability of flip done interrupt forces us to use
11147 * CS flips. Older platforms derive flip done using some clever
11148 * tricks involving the flip_pending status bits and vblank irqs.
11149 * So using MMIO flips there would disrupt this mechanism.
11150 */
11151
8e09bf83
CW
11152 if (ring == NULL)
11153 return true;
11154
84c33a64
SG
11155 if (INTEL_INFO(ring->dev)->gen < 5)
11156 return false;
11157
11158 if (i915.use_mmio_flip < 0)
11159 return false;
11160 else if (i915.use_mmio_flip > 0)
11161 return true;
14bf993e
OM
11162 else if (i915.enable_execlists)
11163 return true;
84c33a64 11164 else
b4716185 11165 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11166}
11167
ff944564
DL
11168static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11169{
11170 struct drm_device *dev = intel_crtc->base.dev;
11171 struct drm_i915_private *dev_priv = dev->dev_private;
11172 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564
DL
11173 const enum pipe pipe = intel_crtc->pipe;
11174 u32 ctl, stride;
11175
11176 ctl = I915_READ(PLANE_CTL(pipe, 0));
11177 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11178 switch (fb->modifier[0]) {
11179 case DRM_FORMAT_MOD_NONE:
11180 break;
11181 case I915_FORMAT_MOD_X_TILED:
ff944564 11182 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11183 break;
11184 case I915_FORMAT_MOD_Y_TILED:
11185 ctl |= PLANE_CTL_TILED_Y;
11186 break;
11187 case I915_FORMAT_MOD_Yf_TILED:
11188 ctl |= PLANE_CTL_TILED_YF;
11189 break;
11190 default:
11191 MISSING_CASE(fb->modifier[0]);
11192 }
ff944564
DL
11193
11194 /*
11195 * The stride is either expressed as a multiple of 64 bytes chunks for
11196 * linear buffers or in number of tiles for tiled buffers.
11197 */
2ebef630
TU
11198 stride = fb->pitches[0] /
11199 intel_fb_stride_alignment(dev, fb->modifier[0],
11200 fb->pixel_format);
ff944564
DL
11201
11202 /*
11203 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11204 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11205 */
11206 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11207 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11208
11209 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11210 POSTING_READ(PLANE_SURF(pipe, 0));
11211}
11212
11213static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
11214{
11215 struct drm_device *dev = intel_crtc->base.dev;
11216 struct drm_i915_private *dev_priv = dev->dev_private;
11217 struct intel_framebuffer *intel_fb =
11218 to_intel_framebuffer(intel_crtc->base.primary->fb);
11219 struct drm_i915_gem_object *obj = intel_fb->obj;
11220 u32 dspcntr;
11221 u32 reg;
11222
84c33a64
SG
11223 reg = DSPCNTR(intel_crtc->plane);
11224 dspcntr = I915_READ(reg);
11225
c5d97472
DL
11226 if (obj->tiling_mode != I915_TILING_NONE)
11227 dspcntr |= DISPPLANE_TILED;
11228 else
11229 dspcntr &= ~DISPPLANE_TILED;
11230
84c33a64
SG
11231 I915_WRITE(reg, dspcntr);
11232
11233 I915_WRITE(DSPSURF(intel_crtc->plane),
11234 intel_crtc->unpin_work->gtt_offset);
11235 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 11236
ff944564
DL
11237}
11238
11239/*
11240 * XXX: This is the temporary way to update the plane registers until we get
11241 * around to using the usual plane update functions for MMIO flips
11242 */
11243static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11244{
11245 struct drm_device *dev = intel_crtc->base.dev;
ff944564
DL
11246 u32 start_vbl_count;
11247
11248 intel_mark_page_flip_active(intel_crtc);
11249
8f539a83 11250 intel_pipe_update_start(intel_crtc, &start_vbl_count);
ff944564
DL
11251
11252 if (INTEL_INFO(dev)->gen >= 9)
11253 skl_do_mmio_flip(intel_crtc);
11254 else
11255 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11256 ilk_do_mmio_flip(intel_crtc);
11257
8f539a83 11258 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
11259}
11260
9362c7c5 11261static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11262{
b2cfe0ab
CW
11263 struct intel_mmio_flip *mmio_flip =
11264 container_of(work, struct intel_mmio_flip, work);
84c33a64 11265
eed29a5b
DV
11266 if (mmio_flip->req)
11267 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11268 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11269 false, NULL,
11270 &mmio_flip->i915->rps.mmioflips));
84c33a64 11271
b2cfe0ab
CW
11272 intel_do_mmio_flip(mmio_flip->crtc);
11273
eed29a5b 11274 i915_gem_request_unreference__unlocked(mmio_flip->req);
b2cfe0ab 11275 kfree(mmio_flip);
84c33a64
SG
11276}
11277
11278static int intel_queue_mmio_flip(struct drm_device *dev,
11279 struct drm_crtc *crtc,
11280 struct drm_framebuffer *fb,
11281 struct drm_i915_gem_object *obj,
11282 struct intel_engine_cs *ring,
11283 uint32_t flags)
11284{
b2cfe0ab
CW
11285 struct intel_mmio_flip *mmio_flip;
11286
11287 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11288 if (mmio_flip == NULL)
11289 return -ENOMEM;
84c33a64 11290
bcafc4e3 11291 mmio_flip->i915 = to_i915(dev);
eed29a5b 11292 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11293 mmio_flip->crtc = to_intel_crtc(crtc);
536f5b5e 11294
b2cfe0ab
CW
11295 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11296 schedule_work(&mmio_flip->work);
84c33a64 11297
84c33a64
SG
11298 return 0;
11299}
11300
8c9f3aaf
JB
11301static int intel_default_queue_flip(struct drm_device *dev,
11302 struct drm_crtc *crtc,
11303 struct drm_framebuffer *fb,
ed8d1975 11304 struct drm_i915_gem_object *obj,
6258fbe2 11305 struct drm_i915_gem_request *req,
ed8d1975 11306 uint32_t flags)
8c9f3aaf
JB
11307{
11308 return -ENODEV;
11309}
11310
d6bbafa1
CW
11311static bool __intel_pageflip_stall_check(struct drm_device *dev,
11312 struct drm_crtc *crtc)
11313{
11314 struct drm_i915_private *dev_priv = dev->dev_private;
11315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11316 struct intel_unpin_work *work = intel_crtc->unpin_work;
11317 u32 addr;
11318
11319 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11320 return true;
11321
11322 if (!work->enable_stall_check)
11323 return false;
11324
11325 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11326 if (work->flip_queued_req &&
11327 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11328 return false;
11329
1e3feefd 11330 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11331 }
11332
1e3feefd 11333 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11334 return false;
11335
11336 /* Potential stall - if we see that the flip has happened,
11337 * assume a missed interrupt. */
11338 if (INTEL_INFO(dev)->gen >= 4)
11339 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11340 else
11341 addr = I915_READ(DSPADDR(intel_crtc->plane));
11342
11343 /* There is a potential issue here with a false positive after a flip
11344 * to the same address. We could address this by checking for a
11345 * non-incrementing frame counter.
11346 */
11347 return addr == work->gtt_offset;
11348}
11349
11350void intel_check_page_flip(struct drm_device *dev, int pipe)
11351{
11352 struct drm_i915_private *dev_priv = dev->dev_private;
11353 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11355 struct intel_unpin_work *work;
f326038a 11356
6c51d46f 11357 WARN_ON(!in_interrupt());
d6bbafa1
CW
11358
11359 if (crtc == NULL)
11360 return;
11361
f326038a 11362 spin_lock(&dev->event_lock);
6ad790c0
CW
11363 work = intel_crtc->unpin_work;
11364 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11365 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11366 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11367 page_flip_completed(intel_crtc);
6ad790c0 11368 work = NULL;
d6bbafa1 11369 }
6ad790c0
CW
11370 if (work != NULL &&
11371 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11372 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11373 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11374}
11375
6b95a207
KH
11376static int intel_crtc_page_flip(struct drm_crtc *crtc,
11377 struct drm_framebuffer *fb,
ed8d1975
KP
11378 struct drm_pending_vblank_event *event,
11379 uint32_t page_flip_flags)
6b95a207
KH
11380{
11381 struct drm_device *dev = crtc->dev;
11382 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11383 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11384 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11386 struct drm_plane *primary = crtc->primary;
a071fa00 11387 enum pipe pipe = intel_crtc->pipe;
6b95a207 11388 struct intel_unpin_work *work;
a4872ba6 11389 struct intel_engine_cs *ring;
cf5d8a46 11390 bool mmio_flip;
91af127f 11391 struct drm_i915_gem_request *request = NULL;
52e68630 11392 int ret;
6b95a207 11393
2ff8fde1
MR
11394 /*
11395 * drm_mode_page_flip_ioctl() should already catch this, but double
11396 * check to be safe. In the future we may enable pageflipping from
11397 * a disabled primary plane.
11398 */
11399 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11400 return -EBUSY;
11401
e6a595d2 11402 /* Can't change pixel format via MI display flips. */
f4510a27 11403 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11404 return -EINVAL;
11405
11406 /*
11407 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11408 * Note that pitch changes could also affect these register.
11409 */
11410 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11411 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11412 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11413 return -EINVAL;
11414
f900db47
CW
11415 if (i915_terminally_wedged(&dev_priv->gpu_error))
11416 goto out_hang;
11417
b14c5679 11418 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11419 if (work == NULL)
11420 return -ENOMEM;
11421
6b95a207 11422 work->event = event;
b4a98e57 11423 work->crtc = crtc;
ab8d6675 11424 work->old_fb = old_fb;
6b95a207
KH
11425 INIT_WORK(&work->work, intel_unpin_work_fn);
11426
87b6b101 11427 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11428 if (ret)
11429 goto free_work;
11430
6b95a207 11431 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11432 spin_lock_irq(&dev->event_lock);
6b95a207 11433 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11434 /* Before declaring the flip queue wedged, check if
11435 * the hardware completed the operation behind our backs.
11436 */
11437 if (__intel_pageflip_stall_check(dev, crtc)) {
11438 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11439 page_flip_completed(intel_crtc);
11440 } else {
11441 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11442 spin_unlock_irq(&dev->event_lock);
468f0b44 11443
d6bbafa1
CW
11444 drm_crtc_vblank_put(crtc);
11445 kfree(work);
11446 return -EBUSY;
11447 }
6b95a207
KH
11448 }
11449 intel_crtc->unpin_work = work;
5e2d7afc 11450 spin_unlock_irq(&dev->event_lock);
6b95a207 11451
b4a98e57
CW
11452 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11453 flush_workqueue(dev_priv->wq);
11454
75dfca80 11455 /* Reference the objects for the scheduled work. */
ab8d6675 11456 drm_framebuffer_reference(work->old_fb);
05394f39 11457 drm_gem_object_reference(&obj->base);
6b95a207 11458
f4510a27 11459 crtc->primary->fb = fb;
afd65eb4 11460 update_state_fb(crtc->primary);
1ed1f968 11461
e1f99ce6 11462 work->pending_flip_obj = obj;
e1f99ce6 11463
89ed88ba
CW
11464 ret = i915_mutex_lock_interruptible(dev);
11465 if (ret)
11466 goto cleanup;
11467
b4a98e57 11468 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11469 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11470
75f7f3ec 11471 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 11472 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 11473
4fa62c89
VS
11474 if (IS_VALLEYVIEW(dev)) {
11475 ring = &dev_priv->ring[BCS];
ab8d6675 11476 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11477 /* vlv: DISPLAY_FLIP fails to change tiling */
11478 ring = NULL;
48bf5b2d 11479 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11480 ring = &dev_priv->ring[BCS];
4fa62c89 11481 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11482 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11483 if (ring == NULL || ring->id != RCS)
11484 ring = &dev_priv->ring[BCS];
11485 } else {
11486 ring = &dev_priv->ring[RCS];
11487 }
11488
cf5d8a46
CW
11489 mmio_flip = use_mmio_flip(ring, obj);
11490
11491 /* When using CS flips, we want to emit semaphores between rings.
11492 * However, when using mmio flips we will create a task to do the
11493 * synchronisation, so all we want here is to pin the framebuffer
11494 * into the display plane and skip any waits.
11495 */
82bc3b2d 11496 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
cf5d8a46 11497 crtc->primary->state,
91af127f 11498 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
8c9f3aaf
JB
11499 if (ret)
11500 goto cleanup_pending;
6b95a207 11501
121920fa
TU
11502 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11503 + intel_crtc->dspaddr_offset;
4fa62c89 11504
cf5d8a46 11505 if (mmio_flip) {
84c33a64
SG
11506 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11507 page_flip_flags);
d6bbafa1
CW
11508 if (ret)
11509 goto cleanup_unpin;
11510
f06cc1b9
JH
11511 i915_gem_request_assign(&work->flip_queued_req,
11512 obj->last_write_req);
d6bbafa1 11513 } else {
6258fbe2
JH
11514 if (!request) {
11515 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11516 if (ret)
11517 goto cleanup_unpin;
11518 }
11519
11520 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11521 page_flip_flags);
11522 if (ret)
11523 goto cleanup_unpin;
11524
6258fbe2 11525 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11526 }
11527
91af127f 11528 if (request)
75289874 11529 i915_add_request_no_flush(request);
91af127f 11530
1e3feefd 11531 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11532 work->enable_stall_check = true;
4fa62c89 11533
ab8d6675 11534 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a9ff8714 11535 to_intel_plane(primary)->frontbuffer_bit);
c80ac854 11536 mutex_unlock(&dev->struct_mutex);
a071fa00 11537
4e1e26f1 11538 intel_fbc_disable_crtc(intel_crtc);
a9ff8714
VS
11539 intel_frontbuffer_flip_prepare(dev,
11540 to_intel_plane(primary)->frontbuffer_bit);
6b95a207 11541
e5510fac
JB
11542 trace_i915_flip_request(intel_crtc->plane, obj);
11543
6b95a207 11544 return 0;
96b099fd 11545
4fa62c89 11546cleanup_unpin:
82bc3b2d 11547 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 11548cleanup_pending:
91af127f
JH
11549 if (request)
11550 i915_gem_request_cancel(request);
b4a98e57 11551 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11552 mutex_unlock(&dev->struct_mutex);
11553cleanup:
f4510a27 11554 crtc->primary->fb = old_fb;
afd65eb4 11555 update_state_fb(crtc->primary);
89ed88ba
CW
11556
11557 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11558 drm_framebuffer_unreference(work->old_fb);
96b099fd 11559
5e2d7afc 11560 spin_lock_irq(&dev->event_lock);
96b099fd 11561 intel_crtc->unpin_work = NULL;
5e2d7afc 11562 spin_unlock_irq(&dev->event_lock);
96b099fd 11563
87b6b101 11564 drm_crtc_vblank_put(crtc);
7317c75e 11565free_work:
96b099fd
CW
11566 kfree(work);
11567
f900db47 11568 if (ret == -EIO) {
02e0efb5
ML
11569 struct drm_atomic_state *state;
11570 struct drm_plane_state *plane_state;
11571
f900db47 11572out_hang:
02e0efb5
ML
11573 state = drm_atomic_state_alloc(dev);
11574 if (!state)
11575 return -ENOMEM;
11576 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11577
11578retry:
11579 plane_state = drm_atomic_get_plane_state(state, primary);
11580 ret = PTR_ERR_OR_ZERO(plane_state);
11581 if (!ret) {
11582 drm_atomic_set_fb_for_plane(plane_state, fb);
11583
11584 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11585 if (!ret)
11586 ret = drm_atomic_commit(state);
11587 }
11588
11589 if (ret == -EDEADLK) {
11590 drm_modeset_backoff(state->acquire_ctx);
11591 drm_atomic_state_clear(state);
11592 goto retry;
11593 }
11594
11595 if (ret)
11596 drm_atomic_state_free(state);
11597
f0d3dad3 11598 if (ret == 0 && event) {
5e2d7afc 11599 spin_lock_irq(&dev->event_lock);
a071fa00 11600 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11601 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11602 }
f900db47 11603 }
96b099fd 11604 return ret;
6b95a207
KH
11605}
11606
da20eabd
ML
11607
11608/**
11609 * intel_wm_need_update - Check whether watermarks need updating
11610 * @plane: drm plane
11611 * @state: new plane state
11612 *
11613 * Check current plane state versus the new one to determine whether
11614 * watermarks need to be recalculated.
11615 *
11616 * Returns true or false.
11617 */
11618static bool intel_wm_need_update(struct drm_plane *plane,
11619 struct drm_plane_state *state)
11620{
11621 /* Update watermarks on tiling changes. */
11622 if (!plane->state->fb || !state->fb ||
11623 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11624 plane->state->rotation != state->rotation)
11625 return true;
11626
11627 if (plane->state->crtc_w != state->crtc_w)
11628 return true;
11629
11630 return false;
11631}
11632
11633int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11634 struct drm_plane_state *plane_state)
11635{
11636 struct drm_crtc *crtc = crtc_state->crtc;
11637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11638 struct drm_plane *plane = plane_state->plane;
11639 struct drm_device *dev = crtc->dev;
11640 struct drm_i915_private *dev_priv = dev->dev_private;
11641 struct intel_plane_state *old_plane_state =
11642 to_intel_plane_state(plane->state);
11643 int idx = intel_crtc->base.base.id, ret;
11644 int i = drm_plane_index(plane);
11645 bool mode_changed = needs_modeset(crtc_state);
11646 bool was_crtc_enabled = crtc->state->active;
11647 bool is_crtc_enabled = crtc_state->active;
11648
11649 bool turn_off, turn_on, visible, was_visible;
11650 struct drm_framebuffer *fb = plane_state->fb;
11651
11652 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11653 plane->type != DRM_PLANE_TYPE_CURSOR) {
11654 ret = skl_update_scaler_plane(
11655 to_intel_crtc_state(crtc_state),
11656 to_intel_plane_state(plane_state));
11657 if (ret)
11658 return ret;
11659 }
11660
11661 /*
11662 * Disabling a plane is always okay; we just need to update
11663 * fb tracking in a special way since cleanup_fb() won't
11664 * get called by the plane helpers.
11665 */
11666 if (old_plane_state->base.fb && !fb)
11667 intel_crtc->atomic.disabled_planes |= 1 << i;
11668
da20eabd
ML
11669 was_visible = old_plane_state->visible;
11670 visible = to_intel_plane_state(plane_state)->visible;
11671
11672 if (!was_crtc_enabled && WARN_ON(was_visible))
11673 was_visible = false;
11674
11675 if (!is_crtc_enabled && WARN_ON(visible))
11676 visible = false;
11677
11678 if (!was_visible && !visible)
11679 return 0;
11680
11681 turn_off = was_visible && (!visible || mode_changed);
11682 turn_on = visible && (!was_visible || mode_changed);
11683
11684 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11685 plane->base.id, fb ? fb->base.id : -1);
11686
11687 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11688 plane->base.id, was_visible, visible,
11689 turn_off, turn_on, mode_changed);
11690
852eb00d 11691 if (turn_on) {
f015c551 11692 intel_crtc->atomic.update_wm_pre = true;
852eb00d
VS
11693 /* must disable cxsr around plane enable/disable */
11694 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11695 intel_crtc->atomic.disable_cxsr = true;
11696 /* to potentially re-enable cxsr */
11697 intel_crtc->atomic.wait_vblank = true;
11698 intel_crtc->atomic.update_wm_post = true;
11699 }
11700 } else if (turn_off) {
f015c551 11701 intel_crtc->atomic.update_wm_post = true;
852eb00d
VS
11702 /* must disable cxsr around plane enable/disable */
11703 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11704 if (is_crtc_enabled)
11705 intel_crtc->atomic.wait_vblank = true;
11706 intel_crtc->atomic.disable_cxsr = true;
11707 }
11708 } else if (intel_wm_need_update(plane, plane_state)) {
f015c551 11709 intel_crtc->atomic.update_wm_pre = true;
852eb00d 11710 }
da20eabd 11711
a9ff8714
VS
11712 if (visible)
11713 intel_crtc->atomic.fb_bits |=
11714 to_intel_plane(plane)->frontbuffer_bit;
11715
da20eabd
ML
11716 switch (plane->type) {
11717 case DRM_PLANE_TYPE_PRIMARY:
da20eabd
ML
11718 intel_crtc->atomic.wait_for_flips = true;
11719 intel_crtc->atomic.pre_disable_primary = turn_off;
11720 intel_crtc->atomic.post_enable_primary = turn_on;
11721
066cf55b
RV
11722 if (turn_off) {
11723 /*
11724 * FIXME: Actually if we will still have any other
11725 * plane enabled on the pipe we could let IPS enabled
11726 * still, but for now lets consider that when we make
11727 * primary invisible by setting DSPCNTR to 0 on
11728 * update_primary_plane function IPS needs to be
11729 * disable.
11730 */
11731 intel_crtc->atomic.disable_ips = true;
11732
da20eabd 11733 intel_crtc->atomic.disable_fbc = true;
066cf55b 11734 }
da20eabd
ML
11735
11736 /*
11737 * FBC does not work on some platforms for rotated
11738 * planes, so disable it when rotation is not 0 and
11739 * update it when rotation is set back to 0.
11740 *
11741 * FIXME: This is redundant with the fbc update done in
11742 * the primary plane enable function except that that
11743 * one is done too late. We eventually need to unify
11744 * this.
11745 */
11746
11747 if (visible &&
11748 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11749 dev_priv->fbc.crtc == intel_crtc &&
11750 plane_state->rotation != BIT(DRM_ROTATE_0))
11751 intel_crtc->atomic.disable_fbc = true;
11752
11753 /*
11754 * BDW signals flip done immediately if the plane
11755 * is disabled, even if the plane enable is already
11756 * armed to occur at the next vblank :(
11757 */
11758 if (turn_on && IS_BROADWELL(dev))
11759 intel_crtc->atomic.wait_vblank = true;
11760
11761 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11762 break;
11763 case DRM_PLANE_TYPE_CURSOR:
da20eabd
ML
11764 break;
11765 case DRM_PLANE_TYPE_OVERLAY:
d032ffa0 11766 if (turn_off && !mode_changed) {
da20eabd
ML
11767 intel_crtc->atomic.wait_vblank = true;
11768 intel_crtc->atomic.update_sprite_watermarks |=
11769 1 << i;
11770 }
da20eabd
ML
11771 }
11772 return 0;
11773}
11774
6d3a1ce7
ML
11775static bool encoders_cloneable(const struct intel_encoder *a,
11776 const struct intel_encoder *b)
11777{
11778 /* masks could be asymmetric, so check both ways */
11779 return a == b || (a->cloneable & (1 << b->type) &&
11780 b->cloneable & (1 << a->type));
11781}
11782
11783static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11784 struct intel_crtc *crtc,
11785 struct intel_encoder *encoder)
11786{
11787 struct intel_encoder *source_encoder;
11788 struct drm_connector *connector;
11789 struct drm_connector_state *connector_state;
11790 int i;
11791
11792 for_each_connector_in_state(state, connector, connector_state, i) {
11793 if (connector_state->crtc != &crtc->base)
11794 continue;
11795
11796 source_encoder =
11797 to_intel_encoder(connector_state->best_encoder);
11798 if (!encoders_cloneable(encoder, source_encoder))
11799 return false;
11800 }
11801
11802 return true;
11803}
11804
11805static bool check_encoder_cloning(struct drm_atomic_state *state,
11806 struct intel_crtc *crtc)
11807{
11808 struct intel_encoder *encoder;
11809 struct drm_connector *connector;
11810 struct drm_connector_state *connector_state;
11811 int i;
11812
11813 for_each_connector_in_state(state, connector, connector_state, i) {
11814 if (connector_state->crtc != &crtc->base)
11815 continue;
11816
11817 encoder = to_intel_encoder(connector_state->best_encoder);
11818 if (!check_single_encoder_cloning(state, crtc, encoder))
11819 return false;
11820 }
11821
11822 return true;
11823}
11824
11825static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11826 struct drm_crtc_state *crtc_state)
11827{
cf5a15be 11828 struct drm_device *dev = crtc->dev;
ad421372 11829 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11831 struct intel_crtc_state *pipe_config =
11832 to_intel_crtc_state(crtc_state);
6d3a1ce7 11833 struct drm_atomic_state *state = crtc_state->state;
ad421372 11834 int ret, idx = crtc->base.id;
6d3a1ce7
ML
11835 bool mode_changed = needs_modeset(crtc_state);
11836
11837 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11838 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11839 return -EINVAL;
11840 }
11841
11842 I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11843 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11844 idx, crtc->state->active, intel_crtc->active);
11845
852eb00d
VS
11846 if (mode_changed && !crtc_state->active)
11847 intel_crtc->atomic.update_wm_post = true;
eddfcbcd 11848
ad421372
ML
11849 if (mode_changed && crtc_state->enable &&
11850 dev_priv->display.crtc_compute_clock &&
11851 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11852 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11853 pipe_config);
11854 if (ret)
11855 return ret;
11856 }
11857
e435d6e5
ML
11858 ret = 0;
11859 if (INTEL_INFO(dev)->gen >= 9) {
11860 if (mode_changed)
11861 ret = skl_update_scaler_crtc(pipe_config);
11862
11863 if (!ret)
11864 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11865 pipe_config);
11866 }
11867
11868 return ret;
6d3a1ce7
ML
11869}
11870
65b38e0d 11871static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11872 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11873 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11874 .atomic_begin = intel_begin_crtc_commit,
11875 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 11876 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
11877};
11878
d29b2f9d
ACO
11879static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11880{
11881 struct intel_connector *connector;
11882
11883 for_each_intel_connector(dev, connector) {
11884 if (connector->base.encoder) {
11885 connector->base.state->best_encoder =
11886 connector->base.encoder;
11887 connector->base.state->crtc =
11888 connector->base.encoder->crtc;
11889 } else {
11890 connector->base.state->best_encoder = NULL;
11891 connector->base.state->crtc = NULL;
11892 }
11893 }
11894}
11895
050f7aeb 11896static void
eba905b2 11897connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11898 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11899{
11900 int bpp = pipe_config->pipe_bpp;
11901
11902 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11903 connector->base.base.id,
c23cc417 11904 connector->base.name);
050f7aeb
DV
11905
11906 /* Don't use an invalid EDID bpc value */
11907 if (connector->base.display_info.bpc &&
11908 connector->base.display_info.bpc * 3 < bpp) {
11909 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11910 bpp, connector->base.display_info.bpc*3);
11911 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11912 }
11913
11914 /* Clamp bpp to 8 on screens without EDID 1.4 */
11915 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11916 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11917 bpp);
11918 pipe_config->pipe_bpp = 24;
11919 }
11920}
11921
4e53c2e0 11922static int
050f7aeb 11923compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 11924 struct intel_crtc_state *pipe_config)
4e53c2e0 11925{
050f7aeb 11926 struct drm_device *dev = crtc->base.dev;
1486017f 11927 struct drm_atomic_state *state;
da3ced29
ACO
11928 struct drm_connector *connector;
11929 struct drm_connector_state *connector_state;
1486017f 11930 int bpp, i;
4e53c2e0 11931
d328c9d7 11932 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 11933 bpp = 10*3;
d328c9d7
DV
11934 else if (INTEL_INFO(dev)->gen >= 5)
11935 bpp = 12*3;
11936 else
11937 bpp = 8*3;
11938
4e53c2e0 11939
4e53c2e0
DV
11940 pipe_config->pipe_bpp = bpp;
11941
1486017f
ACO
11942 state = pipe_config->base.state;
11943
4e53c2e0 11944 /* Clamp display bpp to EDID value */
da3ced29
ACO
11945 for_each_connector_in_state(state, connector, connector_state, i) {
11946 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
11947 continue;
11948
da3ced29
ACO
11949 connected_sink_compute_bpp(to_intel_connector(connector),
11950 pipe_config);
4e53c2e0
DV
11951 }
11952
11953 return bpp;
11954}
11955
644db711
DV
11956static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11957{
11958 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11959 "type: 0x%x flags: 0x%x\n",
1342830c 11960 mode->crtc_clock,
644db711
DV
11961 mode->crtc_hdisplay, mode->crtc_hsync_start,
11962 mode->crtc_hsync_end, mode->crtc_htotal,
11963 mode->crtc_vdisplay, mode->crtc_vsync_start,
11964 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11965}
11966
c0b03411 11967static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 11968 struct intel_crtc_state *pipe_config,
c0b03411
DV
11969 const char *context)
11970{
6a60cd87
CK
11971 struct drm_device *dev = crtc->base.dev;
11972 struct drm_plane *plane;
11973 struct intel_plane *intel_plane;
11974 struct intel_plane_state *state;
11975 struct drm_framebuffer *fb;
11976
11977 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11978 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
11979
11980 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11981 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11982 pipe_config->pipe_bpp, pipe_config->dither);
11983 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11984 pipe_config->has_pch_encoder,
11985 pipe_config->fdi_lanes,
11986 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11987 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11988 pipe_config->fdi_m_n.tu);
eb14cb74
VS
11989 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11990 pipe_config->has_dp_encoder,
11991 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11992 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11993 pipe_config->dp_m_n.tu);
b95af8be
VK
11994
11995 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11996 pipe_config->has_dp_encoder,
11997 pipe_config->dp_m2_n2.gmch_m,
11998 pipe_config->dp_m2_n2.gmch_n,
11999 pipe_config->dp_m2_n2.link_m,
12000 pipe_config->dp_m2_n2.link_n,
12001 pipe_config->dp_m2_n2.tu);
12002
55072d19
DV
12003 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12004 pipe_config->has_audio,
12005 pipe_config->has_infoframe);
12006
c0b03411 12007 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12008 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12009 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12010 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12011 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12012 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12013 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12014 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12015 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12016 crtc->num_scalers,
12017 pipe_config->scaler_state.scaler_users,
12018 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12019 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12020 pipe_config->gmch_pfit.control,
12021 pipe_config->gmch_pfit.pgm_ratios,
12022 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12023 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12024 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12025 pipe_config->pch_pfit.size,
12026 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12027 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12028 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12029
415ff0f6 12030 if (IS_BROXTON(dev)) {
05712c15 12031 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12032 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12033 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12034 pipe_config->ddi_pll_sel,
12035 pipe_config->dpll_hw_state.ebb0,
05712c15 12036 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12037 pipe_config->dpll_hw_state.pll0,
12038 pipe_config->dpll_hw_state.pll1,
12039 pipe_config->dpll_hw_state.pll2,
12040 pipe_config->dpll_hw_state.pll3,
12041 pipe_config->dpll_hw_state.pll6,
12042 pipe_config->dpll_hw_state.pll8,
05712c15 12043 pipe_config->dpll_hw_state.pll9,
c8453338 12044 pipe_config->dpll_hw_state.pll10,
415ff0f6
TU
12045 pipe_config->dpll_hw_state.pcsdw12);
12046 } else if (IS_SKYLAKE(dev)) {
12047 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12048 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12049 pipe_config->ddi_pll_sel,
12050 pipe_config->dpll_hw_state.ctrl1,
12051 pipe_config->dpll_hw_state.cfgcr1,
12052 pipe_config->dpll_hw_state.cfgcr2);
12053 } else if (HAS_DDI(dev)) {
12054 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12055 pipe_config->ddi_pll_sel,
12056 pipe_config->dpll_hw_state.wrpll);
12057 } else {
12058 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12059 "fp0: 0x%x, fp1: 0x%x\n",
12060 pipe_config->dpll_hw_state.dpll,
12061 pipe_config->dpll_hw_state.dpll_md,
12062 pipe_config->dpll_hw_state.fp0,
12063 pipe_config->dpll_hw_state.fp1);
12064 }
12065
6a60cd87
CK
12066 DRM_DEBUG_KMS("planes on this crtc\n");
12067 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12068 intel_plane = to_intel_plane(plane);
12069 if (intel_plane->pipe != crtc->pipe)
12070 continue;
12071
12072 state = to_intel_plane_state(plane->state);
12073 fb = state->base.fb;
12074 if (!fb) {
12075 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12076 "disabled, scaler_id = %d\n",
12077 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12078 plane->base.id, intel_plane->pipe,
12079 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12080 drm_plane_index(plane), state->scaler_id);
12081 continue;
12082 }
12083
12084 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12085 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12086 plane->base.id, intel_plane->pipe,
12087 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12088 drm_plane_index(plane));
12089 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12090 fb->base.id, fb->width, fb->height, fb->pixel_format);
12091 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12092 state->scaler_id,
12093 state->src.x1 >> 16, state->src.y1 >> 16,
12094 drm_rect_width(&state->src) >> 16,
12095 drm_rect_height(&state->src) >> 16,
12096 state->dst.x1, state->dst.y1,
12097 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12098 }
c0b03411
DV
12099}
12100
5448a00d 12101static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12102{
5448a00d
ACO
12103 struct drm_device *dev = state->dev;
12104 struct intel_encoder *encoder;
da3ced29 12105 struct drm_connector *connector;
5448a00d 12106 struct drm_connector_state *connector_state;
00f0b378 12107 unsigned int used_ports = 0;
5448a00d 12108 int i;
00f0b378
VS
12109
12110 /*
12111 * Walk the connector list instead of the encoder
12112 * list to detect the problem on ddi platforms
12113 * where there's just one encoder per digital port.
12114 */
da3ced29 12115 for_each_connector_in_state(state, connector, connector_state, i) {
5448a00d 12116 if (!connector_state->best_encoder)
00f0b378
VS
12117 continue;
12118
5448a00d
ACO
12119 encoder = to_intel_encoder(connector_state->best_encoder);
12120
12121 WARN_ON(!connector_state->crtc);
00f0b378
VS
12122
12123 switch (encoder->type) {
12124 unsigned int port_mask;
12125 case INTEL_OUTPUT_UNKNOWN:
12126 if (WARN_ON(!HAS_DDI(dev)))
12127 break;
12128 case INTEL_OUTPUT_DISPLAYPORT:
12129 case INTEL_OUTPUT_HDMI:
12130 case INTEL_OUTPUT_EDP:
12131 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12132
12133 /* the same port mustn't appear more than once */
12134 if (used_ports & port_mask)
12135 return false;
12136
12137 used_ports |= port_mask;
12138 default:
12139 break;
12140 }
12141 }
12142
12143 return true;
12144}
12145
83a57153
ACO
12146static void
12147clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12148{
12149 struct drm_crtc_state tmp_state;
663a3640 12150 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
12151 struct intel_dpll_hw_state dpll_hw_state;
12152 enum intel_dpll_id shared_dpll;
8504c74c 12153 uint32_t ddi_pll_sel;
c4e2d043 12154 bool force_thru;
83a57153 12155
7546a384
ACO
12156 /* FIXME: before the switch to atomic started, a new pipe_config was
12157 * kzalloc'd. Code that depends on any field being zero should be
12158 * fixed, so that the crtc_state can be safely duplicated. For now,
12159 * only fields that are know to not cause problems are preserved. */
12160
83a57153 12161 tmp_state = crtc_state->base;
663a3640 12162 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12163 shared_dpll = crtc_state->shared_dpll;
12164 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12165 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12166 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12167
83a57153 12168 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12169
83a57153 12170 crtc_state->base = tmp_state;
663a3640 12171 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12172 crtc_state->shared_dpll = shared_dpll;
12173 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12174 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12175 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12176}
12177
548ee15b 12178static int
b8cecdf5 12179intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12180 struct intel_crtc_state *pipe_config)
ee7b9f93 12181{
b359283a 12182 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12183 struct intel_encoder *encoder;
da3ced29 12184 struct drm_connector *connector;
0b901879 12185 struct drm_connector_state *connector_state;
d328c9d7 12186 int base_bpp, ret = -EINVAL;
0b901879 12187 int i;
e29c22c0 12188 bool retry = true;
ee7b9f93 12189
83a57153 12190 clear_intel_crtc_state(pipe_config);
7758a113 12191
e143a21c
DV
12192 pipe_config->cpu_transcoder =
12193 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12194
2960bc9c
ID
12195 /*
12196 * Sanitize sync polarity flags based on requested ones. If neither
12197 * positive or negative polarity is requested, treat this as meaning
12198 * negative polarity.
12199 */
2d112de7 12200 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12201 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12202 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12203
2d112de7 12204 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12205 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12206 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12207
050f7aeb
DV
12208 /* Compute a starting value for pipe_config->pipe_bpp taking the source
12209 * plane pixel format and any sink constraints into account. Returns the
12210 * source plane bpp so that dithering can be selected on mismatches
12211 * after encoders and crtc also have had their say. */
d328c9d7
DV
12212 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12213 pipe_config);
12214 if (base_bpp < 0)
4e53c2e0
DV
12215 goto fail;
12216
e41a56be
VS
12217 /*
12218 * Determine the real pipe dimensions. Note that stereo modes can
12219 * increase the actual pipe size due to the frame doubling and
12220 * insertion of additional space for blanks between the frame. This
12221 * is stored in the crtc timings. We use the requested mode to do this
12222 * computation to clearly distinguish it from the adjusted mode, which
12223 * can be changed by the connectors in the below retry loop.
12224 */
2d112de7 12225 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12226 &pipe_config->pipe_src_w,
12227 &pipe_config->pipe_src_h);
e41a56be 12228
e29c22c0 12229encoder_retry:
ef1b460d 12230 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12231 pipe_config->port_clock = 0;
ef1b460d 12232 pipe_config->pixel_multiplier = 1;
ff9a6750 12233
135c81b8 12234 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12235 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12236 CRTC_STEREO_DOUBLE);
135c81b8 12237
7758a113
DV
12238 /* Pass our mode to the connectors and the CRTC to give them a chance to
12239 * adjust it according to limitations or connector properties, and also
12240 * a chance to reject the mode entirely.
47f1c6c9 12241 */
da3ced29 12242 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12243 if (connector_state->crtc != crtc)
7758a113 12244 continue;
7ae89233 12245
0b901879
ACO
12246 encoder = to_intel_encoder(connector_state->best_encoder);
12247
efea6e8e
DV
12248 if (!(encoder->compute_config(encoder, pipe_config))) {
12249 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12250 goto fail;
12251 }
ee7b9f93 12252 }
47f1c6c9 12253
ff9a6750
DV
12254 /* Set default port clock if not overwritten by the encoder. Needs to be
12255 * done afterwards in case the encoder adjusts the mode. */
12256 if (!pipe_config->port_clock)
2d112de7 12257 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12258 * pipe_config->pixel_multiplier;
ff9a6750 12259
a43f6e0f 12260 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12261 if (ret < 0) {
7758a113
DV
12262 DRM_DEBUG_KMS("CRTC fixup failed\n");
12263 goto fail;
ee7b9f93 12264 }
e29c22c0
DV
12265
12266 if (ret == RETRY) {
12267 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12268 ret = -EINVAL;
12269 goto fail;
12270 }
12271
12272 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12273 retry = false;
12274 goto encoder_retry;
12275 }
12276
d328c9d7 12277 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
4e53c2e0 12278 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12279 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12280
7758a113 12281fail:
548ee15b 12282 return ret;
ee7b9f93 12283}
47f1c6c9 12284
ea9d758d 12285static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 12286{
ea9d758d 12287 struct drm_encoder *encoder;
f6e5b160 12288 struct drm_device *dev = crtc->dev;
f6e5b160 12289
ea9d758d
DV
12290 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12291 if (encoder->crtc == crtc)
12292 return true;
12293
12294 return false;
12295}
12296
12297static void
0a9ab303 12298intel_modeset_update_state(struct drm_atomic_state *state)
ea9d758d 12299{
0a9ab303 12300 struct drm_device *dev = state->dev;
ea9d758d 12301 struct intel_encoder *intel_encoder;
0a9ab303
ACO
12302 struct drm_crtc *crtc;
12303 struct drm_crtc_state *crtc_state;
ea9d758d 12304 struct drm_connector *connector;
8a75d157 12305 int i;
ea9d758d 12306
de419ab6 12307 intel_shared_dpll_commit(state);
ba41c0de 12308
b2784e15 12309 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
12310 if (!intel_encoder->base.crtc)
12311 continue;
12312
69024de8
ML
12313 crtc = intel_encoder->base.crtc;
12314 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12315 if (!crtc_state || !needs_modeset(crtc->state))
12316 continue;
ea9d758d 12317
69024de8 12318 intel_encoder->connectors_active = false;
ea9d758d
DV
12319 }
12320
3cb480bc 12321 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
ea9d758d 12322
7668851f 12323 /* Double check state. */
8a75d157 12324 for_each_crtc_in_state(state, crtc, crtc_state, i) {
0a9ab303 12325 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
3cb480bc
ML
12326
12327 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12328
12329 /* Update hwmode for vblank functions */
12330 if (crtc->state->active)
12331 crtc->hwmode = crtc->state->adjusted_mode;
12332 else
12333 crtc->hwmode.crtc_clock = 0;
ea9d758d
DV
12334 }
12335
12336 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12337 if (!connector->encoder || !connector->encoder->crtc)
12338 continue;
12339
69024de8
ML
12340 crtc = connector->encoder->crtc;
12341 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12342 if (!crtc_state || !needs_modeset(crtc->state))
12343 continue;
ea9d758d 12344
53d9f4e9 12345 if (crtc->state->active) {
69024de8
ML
12346 intel_encoder = to_intel_encoder(connector->encoder);
12347 intel_encoder->connectors_active = true;
8c10342c 12348 }
ea9d758d 12349 }
ea9d758d
DV
12350}
12351
3bd26263 12352static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12353{
3bd26263 12354 int diff;
f1f644dc
JB
12355
12356 if (clock1 == clock2)
12357 return true;
12358
12359 if (!clock1 || !clock2)
12360 return false;
12361
12362 diff = abs(clock1 - clock2);
12363
12364 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12365 return true;
12366
12367 return false;
12368}
12369
25c5b266
DV
12370#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12371 list_for_each_entry((intel_crtc), \
12372 &(dev)->mode_config.crtc_list, \
12373 base.head) \
0973f18f 12374 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12375
cfb23ed6
ML
12376
12377static bool
12378intel_compare_m_n(unsigned int m, unsigned int n,
12379 unsigned int m2, unsigned int n2,
12380 bool exact)
12381{
12382 if (m == m2 && n == n2)
12383 return true;
12384
12385 if (exact || !m || !n || !m2 || !n2)
12386 return false;
12387
12388 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12389
12390 if (m > m2) {
12391 while (m > m2) {
12392 m2 <<= 1;
12393 n2 <<= 1;
12394 }
12395 } else if (m < m2) {
12396 while (m < m2) {
12397 m <<= 1;
12398 n <<= 1;
12399 }
12400 }
12401
12402 return m == m2 && n == n2;
12403}
12404
12405static bool
12406intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12407 struct intel_link_m_n *m2_n2,
12408 bool adjust)
12409{
12410 if (m_n->tu == m2_n2->tu &&
12411 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12412 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12413 intel_compare_m_n(m_n->link_m, m_n->link_n,
12414 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12415 if (adjust)
12416 *m2_n2 = *m_n;
12417
12418 return true;
12419 }
12420
12421 return false;
12422}
12423
0e8ffe1b 12424static bool
2fa2fe9a 12425intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12426 struct intel_crtc_state *current_config,
cfb23ed6
ML
12427 struct intel_crtc_state *pipe_config,
12428 bool adjust)
0e8ffe1b 12429{
cfb23ed6
ML
12430 bool ret = true;
12431
12432#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12433 do { \
12434 if (!adjust) \
12435 DRM_ERROR(fmt, ##__VA_ARGS__); \
12436 else \
12437 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12438 } while (0)
12439
66e985c0
DV
12440#define PIPE_CONF_CHECK_X(name) \
12441 if (current_config->name != pipe_config->name) { \
cfb23ed6 12442 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12443 "(expected 0x%08x, found 0x%08x)\n", \
12444 current_config->name, \
12445 pipe_config->name); \
cfb23ed6 12446 ret = false; \
66e985c0
DV
12447 }
12448
08a24034
DV
12449#define PIPE_CONF_CHECK_I(name) \
12450 if (current_config->name != pipe_config->name) { \
cfb23ed6 12451 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12452 "(expected %i, found %i)\n", \
12453 current_config->name, \
12454 pipe_config->name); \
cfb23ed6
ML
12455 ret = false; \
12456 }
12457
12458#define PIPE_CONF_CHECK_M_N(name) \
12459 if (!intel_compare_link_m_n(&current_config->name, \
12460 &pipe_config->name,\
12461 adjust)) { \
12462 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12463 "(expected tu %i gmch %i/%i link %i/%i, " \
12464 "found tu %i, gmch %i/%i link %i/%i)\n", \
12465 current_config->name.tu, \
12466 current_config->name.gmch_m, \
12467 current_config->name.gmch_n, \
12468 current_config->name.link_m, \
12469 current_config->name.link_n, \
12470 pipe_config->name.tu, \
12471 pipe_config->name.gmch_m, \
12472 pipe_config->name.gmch_n, \
12473 pipe_config->name.link_m, \
12474 pipe_config->name.link_n); \
12475 ret = false; \
12476 }
12477
12478#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12479 if (!intel_compare_link_m_n(&current_config->name, \
12480 &pipe_config->name, adjust) && \
12481 !intel_compare_link_m_n(&current_config->alt_name, \
12482 &pipe_config->name, adjust)) { \
12483 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12484 "(expected tu %i gmch %i/%i link %i/%i, " \
12485 "or tu %i gmch %i/%i link %i/%i, " \
12486 "found tu %i, gmch %i/%i link %i/%i)\n", \
12487 current_config->name.tu, \
12488 current_config->name.gmch_m, \
12489 current_config->name.gmch_n, \
12490 current_config->name.link_m, \
12491 current_config->name.link_n, \
12492 current_config->alt_name.tu, \
12493 current_config->alt_name.gmch_m, \
12494 current_config->alt_name.gmch_n, \
12495 current_config->alt_name.link_m, \
12496 current_config->alt_name.link_n, \
12497 pipe_config->name.tu, \
12498 pipe_config->name.gmch_m, \
12499 pipe_config->name.gmch_n, \
12500 pipe_config->name.link_m, \
12501 pipe_config->name.link_n); \
12502 ret = false; \
88adfff1
DV
12503 }
12504
b95af8be
VK
12505/* This is required for BDW+ where there is only one set of registers for
12506 * switching between high and low RR.
12507 * This macro can be used whenever a comparison has to be made between one
12508 * hw state and multiple sw state variables.
12509 */
12510#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12511 if ((current_config->name != pipe_config->name) && \
12512 (current_config->alt_name != pipe_config->name)) { \
cfb23ed6 12513 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
b95af8be
VK
12514 "(expected %i or %i, found %i)\n", \
12515 current_config->name, \
12516 current_config->alt_name, \
12517 pipe_config->name); \
cfb23ed6 12518 ret = false; \
b95af8be
VK
12519 }
12520
1bd1bd80
DV
12521#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12522 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12523 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12524 "(expected %i, found %i)\n", \
12525 current_config->name & (mask), \
12526 pipe_config->name & (mask)); \
cfb23ed6 12527 ret = false; \
1bd1bd80
DV
12528 }
12529
5e550656
VS
12530#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12531 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12532 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12533 "(expected %i, found %i)\n", \
12534 current_config->name, \
12535 pipe_config->name); \
cfb23ed6 12536 ret = false; \
5e550656
VS
12537 }
12538
bb760063
DV
12539#define PIPE_CONF_QUIRK(quirk) \
12540 ((current_config->quirks | pipe_config->quirks) & (quirk))
12541
eccb140b
DV
12542 PIPE_CONF_CHECK_I(cpu_transcoder);
12543
08a24034
DV
12544 PIPE_CONF_CHECK_I(has_pch_encoder);
12545 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12546 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12547
eb14cb74 12548 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
12549
12550 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12551 PIPE_CONF_CHECK_M_N(dp_m_n);
12552
12553 PIPE_CONF_CHECK_I(has_drrs);
12554 if (current_config->has_drrs)
12555 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12556 } else
12557 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12558
2d112de7
ACO
12559 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12560 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12561 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12562 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12563 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12564 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12565
2d112de7
ACO
12566 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12567 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12568 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12569 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12570 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12571 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12572
c93f54cf 12573 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12574 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
12575 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12576 IS_VALLEYVIEW(dev))
12577 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12578 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12579
9ed109a7
DV
12580 PIPE_CONF_CHECK_I(has_audio);
12581
2d112de7 12582 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12583 DRM_MODE_FLAG_INTERLACE);
12584
bb760063 12585 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12586 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12587 DRM_MODE_FLAG_PHSYNC);
2d112de7 12588 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12589 DRM_MODE_FLAG_NHSYNC);
2d112de7 12590 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12591 DRM_MODE_FLAG_PVSYNC);
2d112de7 12592 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12593 DRM_MODE_FLAG_NVSYNC);
12594 }
045ac3b5 12595
37327abd
VS
12596 PIPE_CONF_CHECK_I(pipe_src_w);
12597 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 12598
e2ff2d4a
DV
12599 PIPE_CONF_CHECK_I(gmch_pfit.control);
12600 /* pfit ratios are autocomputed by the hw on gen4+ */
12601 if (INTEL_INFO(dev)->gen < 4)
12602 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12603 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9953599b 12604
fd4daa9c
CW
12605 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12606 if (current_config->pch_pfit.enabled) {
12607 PIPE_CONF_CHECK_I(pch_pfit.pos);
12608 PIPE_CONF_CHECK_I(pch_pfit.size);
12609 }
2fa2fe9a 12610
a1b2278e
CK
12611 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12612
e59150dc
JB
12613 /* BDW+ don't expose a synchronous way to read the state */
12614 if (IS_HASWELL(dev))
12615 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12616
282740f7
VS
12617 PIPE_CONF_CHECK_I(double_wide);
12618
26804afd
DV
12619 PIPE_CONF_CHECK_X(ddi_pll_sel);
12620
c0d43d62 12621 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 12622 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12623 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12624 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12625 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12626 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
12627 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12628 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12629 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12630
42571aef
VS
12631 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12632 PIPE_CONF_CHECK_I(pipe_bpp);
12633
2d112de7 12634 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12635 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12636
66e985c0 12637#undef PIPE_CONF_CHECK_X
08a24034 12638#undef PIPE_CONF_CHECK_I
b95af8be 12639#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12640#undef PIPE_CONF_CHECK_FLAGS
5e550656 12641#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12642#undef PIPE_CONF_QUIRK
cfb23ed6 12643#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12644
cfb23ed6 12645 return ret;
0e8ffe1b
DV
12646}
12647
08db6652
DL
12648static void check_wm_state(struct drm_device *dev)
12649{
12650 struct drm_i915_private *dev_priv = dev->dev_private;
12651 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12652 struct intel_crtc *intel_crtc;
12653 int plane;
12654
12655 if (INTEL_INFO(dev)->gen < 9)
12656 return;
12657
12658 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12659 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12660
12661 for_each_intel_crtc(dev, intel_crtc) {
12662 struct skl_ddb_entry *hw_entry, *sw_entry;
12663 const enum pipe pipe = intel_crtc->pipe;
12664
12665 if (!intel_crtc->active)
12666 continue;
12667
12668 /* planes */
dd740780 12669 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12670 hw_entry = &hw_ddb.plane[pipe][plane];
12671 sw_entry = &sw_ddb->plane[pipe][plane];
12672
12673 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12674 continue;
12675
12676 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12677 "(expected (%u,%u), found (%u,%u))\n",
12678 pipe_name(pipe), plane + 1,
12679 sw_entry->start, sw_entry->end,
12680 hw_entry->start, hw_entry->end);
12681 }
12682
12683 /* cursor */
12684 hw_entry = &hw_ddb.cursor[pipe];
12685 sw_entry = &sw_ddb->cursor[pipe];
12686
12687 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12688 continue;
12689
12690 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12691 "(expected (%u,%u), found (%u,%u))\n",
12692 pipe_name(pipe),
12693 sw_entry->start, sw_entry->end,
12694 hw_entry->start, hw_entry->end);
12695 }
12696}
12697
91d1b4bd 12698static void
35dd3c64
ML
12699check_connector_state(struct drm_device *dev,
12700 struct drm_atomic_state *old_state)
8af6cf88 12701{
35dd3c64
ML
12702 struct drm_connector_state *old_conn_state;
12703 struct drm_connector *connector;
12704 int i;
8af6cf88 12705
35dd3c64
ML
12706 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12707 struct drm_encoder *encoder = connector->encoder;
12708 struct drm_connector_state *state = connector->state;
ad3c558f 12709
8af6cf88
DV
12710 /* This also checks the encoder/connector hw state with the
12711 * ->get_hw_state callbacks. */
35dd3c64 12712 intel_connector_check_state(to_intel_connector(connector));
8af6cf88 12713
ad3c558f 12714 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 12715 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 12716 }
91d1b4bd
DV
12717}
12718
12719static void
12720check_encoder_state(struct drm_device *dev)
12721{
12722 struct intel_encoder *encoder;
12723 struct intel_connector *connector;
8af6cf88 12724
b2784e15 12725 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12726 bool enabled = false;
12727 bool active = false;
12728 enum pipe pipe, tracked_pipe;
12729
12730 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12731 encoder->base.base.id,
8e329a03 12732 encoder->base.name);
8af6cf88 12733
e2c719b7 12734 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
12735 "encoder's active_connectors set, but no crtc\n");
12736
3a3371ff 12737 for_each_intel_connector(dev, connector) {
8af6cf88
DV
12738 if (connector->base.encoder != &encoder->base)
12739 continue;
12740 enabled = true;
12741 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12742 active = true;
ad3c558f
ML
12743
12744 I915_STATE_WARN(connector->base.state->crtc !=
12745 encoder->base.crtc,
12746 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 12747 }
0e32b39c 12748
e2c719b7 12749 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12750 "encoder's enabled state mismatch "
12751 "(expected %i, found %i)\n",
12752 !!encoder->base.crtc, enabled);
e2c719b7 12753 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
12754 "active encoder with no crtc\n");
12755
e2c719b7 12756 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
12757 "encoder's computed active state doesn't match tracked active state "
12758 "(expected %i, found %i)\n", active, encoder->connectors_active);
12759
12760 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 12761 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
12762 "encoder's hw state doesn't match sw tracking "
12763 "(expected %i, found %i)\n",
12764 encoder->connectors_active, active);
12765
12766 if (!encoder->base.crtc)
12767 continue;
12768
12769 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 12770 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
12771 "active encoder's pipe doesn't match"
12772 "(expected %i, found %i)\n",
12773 tracked_pipe, pipe);
12774
12775 }
91d1b4bd
DV
12776}
12777
12778static void
12779check_crtc_state(struct drm_device *dev)
12780{
fbee40df 12781 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12782 struct intel_crtc *crtc;
12783 struct intel_encoder *encoder;
5cec258b 12784 struct intel_crtc_state pipe_config;
8af6cf88 12785
d3fcc808 12786 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
12787 bool enabled = false;
12788 bool active = false;
12789
045ac3b5
JB
12790 memset(&pipe_config, 0, sizeof(pipe_config));
12791
8af6cf88
DV
12792 DRM_DEBUG_KMS("[CRTC:%d]\n",
12793 crtc->base.base.id);
12794
83d65738 12795 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
12796 "active crtc, but not enabled in sw tracking\n");
12797
b2784e15 12798 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12799 if (encoder->base.crtc != &crtc->base)
12800 continue;
12801 enabled = true;
12802 if (encoder->connectors_active)
12803 active = true;
12804 }
6c49f241 12805
e2c719b7 12806 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
12807 "crtc's computed active state doesn't match tracked active state "
12808 "(expected %i, found %i)\n", active, crtc->active);
83d65738 12809 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 12810 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
12811 "(expected %i, found %i)\n", enabled,
12812 crtc->base.state->enable);
8af6cf88 12813
0e8ffe1b
DV
12814 active = dev_priv->display.get_pipe_config(crtc,
12815 &pipe_config);
d62cf62a 12816
b6b5d049
VS
12817 /* hw state is inconsistent with the pipe quirk */
12818 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12819 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
12820 active = crtc->active;
12821
b2784e15 12822 for_each_intel_encoder(dev, encoder) {
3eaba51c 12823 enum pipe pipe;
6c49f241
DV
12824 if (encoder->base.crtc != &crtc->base)
12825 continue;
1d37b689 12826 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
12827 encoder->get_config(encoder, &pipe_config);
12828 }
12829
e2c719b7 12830 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
12831 "crtc active state doesn't match with hw state "
12832 "(expected %i, found %i)\n", crtc->active, active);
12833
53d9f4e9
ML
12834 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12835 "transitional active state does not match atomic hw state "
12836 "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12837
cfb23ed6
ML
12838 if (!active)
12839 continue;
12840
12841 if (!intel_pipe_config_compare(dev, crtc->config,
12842 &pipe_config, false)) {
e2c719b7 12843 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
12844 intel_dump_pipe_config(crtc, &pipe_config,
12845 "[hw state]");
6e3c9717 12846 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
12847 "[sw state]");
12848 }
8af6cf88
DV
12849 }
12850}
12851
91d1b4bd
DV
12852static void
12853check_shared_dpll_state(struct drm_device *dev)
12854{
fbee40df 12855 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12856 struct intel_crtc *crtc;
12857 struct intel_dpll_hw_state dpll_hw_state;
12858 int i;
5358901f
DV
12859
12860 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12861 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12862 int enabled_crtcs = 0, active_crtcs = 0;
12863 bool active;
12864
12865 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12866
12867 DRM_DEBUG_KMS("%s\n", pll->name);
12868
12869 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12870
e2c719b7 12871 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12872 "more active pll users than references: %i vs %i\n",
3e369b76 12873 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12874 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12875 "pll in active use but not on in sw tracking\n");
e2c719b7 12876 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12877 "pll in on but not on in use in sw tracking\n");
e2c719b7 12878 I915_STATE_WARN(pll->on != active,
5358901f
DV
12879 "pll on state mismatch (expected %i, found %i)\n",
12880 pll->on, active);
12881
d3fcc808 12882 for_each_intel_crtc(dev, crtc) {
83d65738 12883 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12884 enabled_crtcs++;
12885 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12886 active_crtcs++;
12887 }
e2c719b7 12888 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12889 "pll active crtcs mismatch (expected %i, found %i)\n",
12890 pll->active, active_crtcs);
e2c719b7 12891 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12892 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12893 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12894
e2c719b7 12895 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12896 sizeof(dpll_hw_state)),
12897 "pll hw state mismatch\n");
5358901f 12898 }
8af6cf88
DV
12899}
12900
ee165b1a
ML
12901static void
12902intel_modeset_check_state(struct drm_device *dev,
12903 struct drm_atomic_state *old_state)
91d1b4bd 12904{
08db6652 12905 check_wm_state(dev);
35dd3c64 12906 check_connector_state(dev, old_state);
91d1b4bd
DV
12907 check_encoder_state(dev);
12908 check_crtc_state(dev);
12909 check_shared_dpll_state(dev);
12910}
12911
5cec258b 12912void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
12913 int dotclock)
12914{
12915 /*
12916 * FDI already provided one idea for the dotclock.
12917 * Yell if the encoder disagrees.
12918 */
2d112de7 12919 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 12920 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 12921 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12922}
12923
80715b2f
VS
12924static void update_scanline_offset(struct intel_crtc *crtc)
12925{
12926 struct drm_device *dev = crtc->base.dev;
12927
12928 /*
12929 * The scanline counter increments at the leading edge of hsync.
12930 *
12931 * On most platforms it starts counting from vtotal-1 on the
12932 * first active line. That means the scanline counter value is
12933 * always one less than what we would expect. Ie. just after
12934 * start of vblank, which also occurs at start of hsync (on the
12935 * last active line), the scanline counter will read vblank_start-1.
12936 *
12937 * On gen2 the scanline counter starts counting from 1 instead
12938 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12939 * to keep the value positive), instead of adding one.
12940 *
12941 * On HSW+ the behaviour of the scanline counter depends on the output
12942 * type. For DP ports it behaves like most other platforms, but on HDMI
12943 * there's an extra 1 line difference. So we need to add two instead of
12944 * one to the value.
12945 */
12946 if (IS_GEN2(dev)) {
6e3c9717 12947 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12948 int vtotal;
12949
12950 vtotal = mode->crtc_vtotal;
12951 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12952 vtotal /= 2;
12953
12954 crtc->scanline_offset = vtotal - 1;
12955 } else if (HAS_DDI(dev) &&
409ee761 12956 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
12957 crtc->scanline_offset = 2;
12958 } else
12959 crtc->scanline_offset = 1;
12960}
12961
ad421372 12962static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 12963{
225da59b 12964 struct drm_device *dev = state->dev;
ed6739ef 12965 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 12966 struct intel_shared_dpll_config *shared_dpll = NULL;
ed6739ef 12967 struct intel_crtc *intel_crtc;
0a9ab303
ACO
12968 struct intel_crtc_state *intel_crtc_state;
12969 struct drm_crtc *crtc;
12970 struct drm_crtc_state *crtc_state;
0a9ab303 12971 int i;
ed6739ef
ACO
12972
12973 if (!dev_priv->display.crtc_compute_clock)
ad421372 12974 return;
ed6739ef 12975
0a9ab303 12976 for_each_crtc_in_state(state, crtc, crtc_state, i) {
ad421372
ML
12977 int dpll;
12978
0a9ab303 12979 intel_crtc = to_intel_crtc(crtc);
4978cc93 12980 intel_crtc_state = to_intel_crtc_state(crtc_state);
ad421372 12981 dpll = intel_crtc_state->shared_dpll;
0a9ab303 12982
ad421372 12983 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
225da59b
ACO
12984 continue;
12985
ad421372 12986 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
0a9ab303 12987
ad421372
ML
12988 if (!shared_dpll)
12989 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 12990
ad421372
ML
12991 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12992 }
ed6739ef
ACO
12993}
12994
99d736a2
ML
12995/*
12996 * This implements the workaround described in the "notes" section of the mode
12997 * set sequence documentation. When going from no pipes or single pipe to
12998 * multiple pipes, and planes are enabled after the pipe, we need to wait at
12999 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13000 */
13001static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13002{
13003 struct drm_crtc_state *crtc_state;
13004 struct intel_crtc *intel_crtc;
13005 struct drm_crtc *crtc;
13006 struct intel_crtc_state *first_crtc_state = NULL;
13007 struct intel_crtc_state *other_crtc_state = NULL;
13008 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13009 int i;
13010
13011 /* look at all crtc's that are going to be enabled in during modeset */
13012 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13013 intel_crtc = to_intel_crtc(crtc);
13014
13015 if (!crtc_state->active || !needs_modeset(crtc_state))
13016 continue;
13017
13018 if (first_crtc_state) {
13019 other_crtc_state = to_intel_crtc_state(crtc_state);
13020 break;
13021 } else {
13022 first_crtc_state = to_intel_crtc_state(crtc_state);
13023 first_pipe = intel_crtc->pipe;
13024 }
13025 }
13026
13027 /* No workaround needed? */
13028 if (!first_crtc_state)
13029 return 0;
13030
13031 /* w/a possibly needed, check how many crtc's are already enabled. */
13032 for_each_intel_crtc(state->dev, intel_crtc) {
13033 struct intel_crtc_state *pipe_config;
13034
13035 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13036 if (IS_ERR(pipe_config))
13037 return PTR_ERR(pipe_config);
13038
13039 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13040
13041 if (!pipe_config->base.active ||
13042 needs_modeset(&pipe_config->base))
13043 continue;
13044
13045 /* 2 or more enabled crtcs means no need for w/a */
13046 if (enabled_pipe != INVALID_PIPE)
13047 return 0;
13048
13049 enabled_pipe = intel_crtc->pipe;
13050 }
13051
13052 if (enabled_pipe != INVALID_PIPE)
13053 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13054 else if (other_crtc_state)
13055 other_crtc_state->hsw_workaround_pipe = first_pipe;
13056
13057 return 0;
13058}
13059
27c329ed
ML
13060static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13061{
13062 struct drm_crtc *crtc;
13063 struct drm_crtc_state *crtc_state;
13064 int ret = 0;
13065
13066 /* add all active pipes to the state */
13067 for_each_crtc(state->dev, crtc) {
13068 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13069 if (IS_ERR(crtc_state))
13070 return PTR_ERR(crtc_state);
13071
13072 if (!crtc_state->active || needs_modeset(crtc_state))
13073 continue;
13074
13075 crtc_state->mode_changed = true;
13076
13077 ret = drm_atomic_add_affected_connectors(state, crtc);
13078 if (ret)
13079 break;
13080
13081 ret = drm_atomic_add_affected_planes(state, crtc);
13082 if (ret)
13083 break;
13084 }
13085
13086 return ret;
13087}
13088
13089
c347a676 13090static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd
ACO
13091{
13092 struct drm_device *dev = state->dev;
27c329ed 13093 struct drm_i915_private *dev_priv = dev->dev_private;
054518dd
ACO
13094 int ret;
13095
b359283a
ML
13096 if (!check_digital_port_conflicts(state)) {
13097 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13098 return -EINVAL;
13099 }
13100
054518dd
ACO
13101 /*
13102 * See if the config requires any additional preparation, e.g.
13103 * to adjust global state with pipes off. We need to do this
13104 * here so we can get the modeset_pipe updated config for the new
13105 * mode set on this crtc. For other crtcs we need to use the
13106 * adjusted_mode bits in the crtc directly.
13107 */
27c329ed
ML
13108 if (dev_priv->display.modeset_calc_cdclk) {
13109 unsigned int cdclk;
b432e5cf 13110
27c329ed
ML
13111 ret = dev_priv->display.modeset_calc_cdclk(state);
13112
13113 cdclk = to_intel_atomic_state(state)->cdclk;
13114 if (!ret && cdclk != dev_priv->cdclk_freq)
13115 ret = intel_modeset_all_pipes(state);
13116
13117 if (ret < 0)
054518dd 13118 return ret;
27c329ed
ML
13119 } else
13120 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
054518dd 13121
ad421372 13122 intel_modeset_clear_plls(state);
054518dd 13123
99d736a2 13124 if (IS_HASWELL(dev))
ad421372 13125 return haswell_mode_set_planes_workaround(state);
99d736a2 13126
ad421372 13127 return 0;
c347a676
ACO
13128}
13129
74c090b1
ML
13130/**
13131 * intel_atomic_check - validate state object
13132 * @dev: drm device
13133 * @state: state to validate
13134 */
13135static int intel_atomic_check(struct drm_device *dev,
13136 struct drm_atomic_state *state)
c347a676
ACO
13137{
13138 struct drm_crtc *crtc;
13139 struct drm_crtc_state *crtc_state;
13140 int ret, i;
61333b60 13141 bool any_ms = false;
c347a676 13142
74c090b1 13143 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13144 if (ret)
13145 return ret;
13146
c347a676 13147 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13148 struct intel_crtc_state *pipe_config =
13149 to_intel_crtc_state(crtc_state);
1ed51de9
DV
13150
13151 /* Catch I915_MODE_FLAG_INHERITED */
13152 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13153 crtc_state->mode_changed = true;
cfb23ed6 13154
61333b60
ML
13155 if (!crtc_state->enable) {
13156 if (needs_modeset(crtc_state))
13157 any_ms = true;
c347a676 13158 continue;
61333b60 13159 }
c347a676 13160
26495481 13161 if (!needs_modeset(crtc_state))
cfb23ed6
ML
13162 continue;
13163
26495481
DV
13164 /* FIXME: For only active_changed we shouldn't need to do any
13165 * state recomputation at all. */
13166
1ed51de9
DV
13167 ret = drm_atomic_add_affected_connectors(state, crtc);
13168 if (ret)
13169 return ret;
b359283a 13170
cfb23ed6 13171 ret = intel_modeset_pipe_config(crtc, pipe_config);
c347a676
ACO
13172 if (ret)
13173 return ret;
13174
26495481
DV
13175 if (i915.fastboot &&
13176 intel_pipe_config_compare(state->dev,
cfb23ed6 13177 to_intel_crtc_state(crtc->state),
1ed51de9 13178 pipe_config, true)) {
26495481
DV
13179 crtc_state->mode_changed = false;
13180 }
13181
13182 if (needs_modeset(crtc_state)) {
13183 any_ms = true;
cfb23ed6
ML
13184
13185 ret = drm_atomic_add_affected_planes(state, crtc);
13186 if (ret)
13187 return ret;
13188 }
61333b60 13189
26495481
DV
13190 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13191 needs_modeset(crtc_state) ?
13192 "[modeset]" : "[fastset]");
c347a676
ACO
13193 }
13194
61333b60
ML
13195 if (any_ms) {
13196 ret = intel_modeset_checks(state);
13197
13198 if (ret)
13199 return ret;
27c329ed
ML
13200 } else
13201 to_intel_atomic_state(state)->cdclk =
13202 to_i915(state->dev)->cdclk_freq;
c347a676
ACO
13203
13204 return drm_atomic_helper_check_planes(state->dev, state);
054518dd
ACO
13205}
13206
74c090b1
ML
13207/**
13208 * intel_atomic_commit - commit validated state object
13209 * @dev: DRM device
13210 * @state: the top-level driver state object
13211 * @async: asynchronous commit
13212 *
13213 * This function commits a top-level state object that has been validated
13214 * with drm_atomic_helper_check().
13215 *
13216 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13217 * we can only handle plane-related operations and do not yet support
13218 * asynchronous commit.
13219 *
13220 * RETURNS
13221 * Zero for success or -errno.
13222 */
13223static int intel_atomic_commit(struct drm_device *dev,
13224 struct drm_atomic_state *state,
13225 bool async)
a6778b3c 13226{
fbee40df 13227 struct drm_i915_private *dev_priv = dev->dev_private;
0a9ab303
ACO
13228 struct drm_crtc *crtc;
13229 struct drm_crtc_state *crtc_state;
c0c36b94 13230 int ret = 0;
0a9ab303 13231 int i;
61333b60 13232 bool any_ms = false;
a6778b3c 13233
74c090b1
ML
13234 if (async) {
13235 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13236 return -EINVAL;
13237 }
13238
d4afb8cc
ACO
13239 ret = drm_atomic_helper_prepare_planes(dev, state);
13240 if (ret)
13241 return ret;
13242
1c5e19f8
ML
13243 drm_atomic_helper_swap_state(dev, state);
13244
0a9ab303 13245 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a539205a
ML
13246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13247
61333b60
ML
13248 if (!needs_modeset(crtc->state))
13249 continue;
13250
13251 any_ms = true;
a539205a 13252 intel_pre_plane_update(intel_crtc);
460da916 13253
a539205a
ML
13254 if (crtc_state->active) {
13255 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13256 dev_priv->display.crtc_disable(crtc);
eddfcbcd
ML
13257 intel_crtc->active = false;
13258 intel_disable_shared_dpll(intel_crtc);
a539205a 13259 }
b8cecdf5 13260 }
7758a113 13261
ea9d758d
DV
13262 /* Only after disabling all output pipelines that will be changed can we
13263 * update the the output configuration. */
0a9ab303 13264 intel_modeset_update_state(state);
f6e5b160 13265
a821fc46
ACO
13266 /* The state has been swaped above, so state actually contains the
13267 * old state now. */
61333b60
ML
13268 if (any_ms)
13269 modeset_update_crtc_power_domains(state);
47fab737 13270
a6778b3c 13271 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 13272 for_each_crtc_in_state(state, crtc, crtc_state, i) {
f6ac4b2a
ML
13273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13274 bool modeset = needs_modeset(crtc->state);
13275
13276 if (modeset && crtc->state->active) {
a539205a
ML
13277 update_scanline_offset(to_intel_crtc(crtc));
13278 dev_priv->display.crtc_enable(crtc);
13279 }
80715b2f 13280
f6ac4b2a
ML
13281 if (!modeset)
13282 intel_pre_plane_update(intel_crtc);
13283
a539205a 13284 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
f6ac4b2a 13285 intel_post_plane_update(intel_crtc);
80715b2f 13286 }
a6778b3c 13287
a6778b3c 13288 /* FIXME: add subpixel order */
83a57153 13289
74c090b1 13290 drm_atomic_helper_wait_for_vblanks(dev, state);
d4afb8cc 13291 drm_atomic_helper_cleanup_planes(dev, state);
2bfb4627 13292
74c090b1 13293 if (any_ms)
ee165b1a
ML
13294 intel_modeset_check_state(dev, state);
13295
13296 drm_atomic_state_free(state);
f30da187 13297
74c090b1 13298 return 0;
7f27126e
JB
13299}
13300
c0c36b94
CW
13301void intel_crtc_restore_mode(struct drm_crtc *crtc)
13302{
83a57153
ACO
13303 struct drm_device *dev = crtc->dev;
13304 struct drm_atomic_state *state;
e694eb02 13305 struct drm_crtc_state *crtc_state;
2bfb4627 13306 int ret;
83a57153
ACO
13307
13308 state = drm_atomic_state_alloc(dev);
13309 if (!state) {
e694eb02 13310 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
83a57153
ACO
13311 crtc->base.id);
13312 return;
13313 }
13314
e694eb02 13315 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 13316
e694eb02
ML
13317retry:
13318 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13319 ret = PTR_ERR_OR_ZERO(crtc_state);
13320 if (!ret) {
13321 if (!crtc_state->active)
13322 goto out;
83a57153 13323
e694eb02 13324 crtc_state->mode_changed = true;
74c090b1 13325 ret = drm_atomic_commit(state);
83a57153
ACO
13326 }
13327
e694eb02
ML
13328 if (ret == -EDEADLK) {
13329 drm_atomic_state_clear(state);
13330 drm_modeset_backoff(state->acquire_ctx);
13331 goto retry;
4ed9fb37 13332 }
4be07317 13333
2bfb4627 13334 if (ret)
e694eb02 13335out:
2bfb4627 13336 drm_atomic_state_free(state);
c0c36b94
CW
13337}
13338
25c5b266
DV
13339#undef for_each_intel_crtc_masked
13340
f6e5b160 13341static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13342 .gamma_set = intel_crtc_gamma_set,
74c090b1 13343 .set_config = drm_atomic_helper_set_config,
f6e5b160
CW
13344 .destroy = intel_crtc_destroy,
13345 .page_flip = intel_crtc_page_flip,
1356837e
MR
13346 .atomic_duplicate_state = intel_crtc_duplicate_state,
13347 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13348};
13349
5358901f
DV
13350static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13351 struct intel_shared_dpll *pll,
13352 struct intel_dpll_hw_state *hw_state)
ee7b9f93 13353{
5358901f 13354 uint32_t val;
ee7b9f93 13355
f458ebbc 13356 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
13357 return false;
13358
5358901f 13359 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
13360 hw_state->dpll = val;
13361 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13362 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
13363
13364 return val & DPLL_VCO_ENABLE;
13365}
13366
15bdd4cf
DV
13367static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13368 struct intel_shared_dpll *pll)
13369{
3e369b76
ACO
13370 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13371 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
13372}
13373
e7b903d2
DV
13374static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13375 struct intel_shared_dpll *pll)
13376{
e7b903d2 13377 /* PCH refclock must be enabled first */
89eff4be 13378 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 13379
3e369b76 13380 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
13381
13382 /* Wait for the clocks to stabilize. */
13383 POSTING_READ(PCH_DPLL(pll->id));
13384 udelay(150);
13385
13386 /* The pixel multiplier can only be updated once the
13387 * DPLL is enabled and the clocks are stable.
13388 *
13389 * So write it again.
13390 */
3e369b76 13391 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 13392 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13393 udelay(200);
13394}
13395
13396static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13397 struct intel_shared_dpll *pll)
13398{
13399 struct drm_device *dev = dev_priv->dev;
13400 struct intel_crtc *crtc;
e7b903d2
DV
13401
13402 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 13403 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
13404 if (intel_crtc_to_shared_dpll(crtc) == pll)
13405 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
13406 }
13407
15bdd4cf
DV
13408 I915_WRITE(PCH_DPLL(pll->id), 0);
13409 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13410 udelay(200);
13411}
13412
46edb027
DV
13413static char *ibx_pch_dpll_names[] = {
13414 "PCH DPLL A",
13415 "PCH DPLL B",
13416};
13417
7c74ade1 13418static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 13419{
e7b903d2 13420 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
13421 int i;
13422
7c74ade1 13423 dev_priv->num_shared_dpll = 2;
ee7b9f93 13424
e72f9fbf 13425 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
13426 dev_priv->shared_dplls[i].id = i;
13427 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 13428 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
13429 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13430 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
13431 dev_priv->shared_dplls[i].get_hw_state =
13432 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
13433 }
13434}
13435
7c74ade1
DV
13436static void intel_shared_dpll_init(struct drm_device *dev)
13437{
e7b903d2 13438 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 13439
b6283055
VS
13440 intel_update_cdclk(dev);
13441
9cd86933
DV
13442 if (HAS_DDI(dev))
13443 intel_ddi_pll_init(dev);
13444 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
13445 ibx_pch_dpll_init(dev);
13446 else
13447 dev_priv->num_shared_dpll = 0;
13448
13449 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
13450}
13451
6beb8c23
MR
13452/**
13453 * intel_prepare_plane_fb - Prepare fb for usage on plane
13454 * @plane: drm plane to prepare for
13455 * @fb: framebuffer to prepare for presentation
13456 *
13457 * Prepares a framebuffer for usage on a display plane. Generally this
13458 * involves pinning the underlying object and updating the frontbuffer tracking
13459 * bits. Some older platforms need special physical address handling for
13460 * cursor planes.
13461 *
13462 * Returns 0 on success, negative error code on failure.
13463 */
13464int
13465intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
13466 struct drm_framebuffer *fb,
13467 const struct drm_plane_state *new_state)
465c120c
MR
13468{
13469 struct drm_device *dev = plane->dev;
6beb8c23 13470 struct intel_plane *intel_plane = to_intel_plane(plane);
6beb8c23
MR
13471 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13472 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
6beb8c23 13473 int ret = 0;
465c120c 13474
ea2c67bb 13475 if (!obj)
465c120c
MR
13476 return 0;
13477
6beb8c23 13478 mutex_lock(&dev->struct_mutex);
465c120c 13479
6beb8c23
MR
13480 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13481 INTEL_INFO(dev)->cursor_needs_physical) {
13482 int align = IS_I830(dev) ? 16 * 1024 : 256;
13483 ret = i915_gem_object_attach_phys(obj, align);
13484 if (ret)
13485 DRM_DEBUG_KMS("failed to attach phys object\n");
13486 } else {
91af127f 13487 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
6beb8c23 13488 }
465c120c 13489
6beb8c23 13490 if (ret == 0)
a9ff8714 13491 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
fdd508a6 13492
4c34574f 13493 mutex_unlock(&dev->struct_mutex);
465c120c 13494
6beb8c23
MR
13495 return ret;
13496}
13497
38f3ce3a
MR
13498/**
13499 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13500 * @plane: drm plane to clean up for
13501 * @fb: old framebuffer that was on plane
13502 *
13503 * Cleans up a framebuffer that has just been removed from a plane.
13504 */
13505void
13506intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
13507 struct drm_framebuffer *fb,
13508 const struct drm_plane_state *old_state)
38f3ce3a
MR
13509{
13510 struct drm_device *dev = plane->dev;
13511 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13512
13513 if (WARN_ON(!obj))
13514 return;
13515
13516 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13517 !INTEL_INFO(dev)->cursor_needs_physical) {
13518 mutex_lock(&dev->struct_mutex);
82bc3b2d 13519 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
13520 mutex_unlock(&dev->struct_mutex);
13521 }
465c120c
MR
13522}
13523
6156a456
CK
13524int
13525skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13526{
13527 int max_scale;
13528 struct drm_device *dev;
13529 struct drm_i915_private *dev_priv;
13530 int crtc_clock, cdclk;
13531
13532 if (!intel_crtc || !crtc_state)
13533 return DRM_PLANE_HELPER_NO_SCALING;
13534
13535 dev = intel_crtc->base.dev;
13536 dev_priv = dev->dev_private;
13537 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13538 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456
CK
13539
13540 if (!crtc_clock || !cdclk)
13541 return DRM_PLANE_HELPER_NO_SCALING;
13542
13543 /*
13544 * skl max scale is lower of:
13545 * close to 3 but not 3, -1 is for that purpose
13546 * or
13547 * cdclk/crtc_clock
13548 */
13549 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13550
13551 return max_scale;
13552}
13553
465c120c 13554static int
3c692a41 13555intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13556 struct intel_crtc_state *crtc_state,
3c692a41
GP
13557 struct intel_plane_state *state)
13558{
2b875c22
MR
13559 struct drm_crtc *crtc = state->base.crtc;
13560 struct drm_framebuffer *fb = state->base.fb;
6156a456 13561 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13562 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13563 bool can_position = false;
465c120c 13564
061e4b8d
ML
13565 /* use scaler when colorkey is not required */
13566 if (INTEL_INFO(plane->dev)->gen >= 9 &&
818ed961 13567 state->ckey.flags == I915_SET_COLORKEY_NONE) {
061e4b8d
ML
13568 min_scale = 1;
13569 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
d8106366 13570 can_position = true;
6156a456 13571 }
d8106366 13572
061e4b8d
ML
13573 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13574 &state->dst, &state->clip,
da20eabd
ML
13575 min_scale, max_scale,
13576 can_position, true,
13577 &state->visible);
14af293f
GP
13578}
13579
13580static void
13581intel_commit_primary_plane(struct drm_plane *plane,
13582 struct intel_plane_state *state)
13583{
2b875c22
MR
13584 struct drm_crtc *crtc = state->base.crtc;
13585 struct drm_framebuffer *fb = state->base.fb;
13586 struct drm_device *dev = plane->dev;
14af293f 13587 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 13588 struct intel_crtc *intel_crtc;
14af293f
GP
13589 struct drm_rect *src = &state->src;
13590
ea2c67bb
MR
13591 crtc = crtc ? crtc : plane->crtc;
13592 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
13593
13594 plane->fb = fb;
9dc806fc
MR
13595 crtc->x = src->x1 >> 16;
13596 crtc->y = src->y1 >> 16;
ccc759dc 13597
a539205a 13598 if (!crtc->state->active)
302d19ac 13599 return;
465c120c 13600
302d19ac
ML
13601 if (state->visible)
13602 /* FIXME: kill this fastboot hack */
13603 intel_update_pipe_size(intel_crtc);
13604
13605 dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
465c120c
MR
13606}
13607
a8ad0d8e
ML
13608static void
13609intel_disable_primary_plane(struct drm_plane *plane,
7fabf5ef 13610 struct drm_crtc *crtc)
a8ad0d8e
ML
13611{
13612 struct drm_device *dev = plane->dev;
13613 struct drm_i915_private *dev_priv = dev->dev_private;
13614
a8ad0d8e
ML
13615 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13616}
13617
613d2b27
ML
13618static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13619 struct drm_crtc_state *old_crtc_state)
3c692a41 13620{
32b7eeec 13621 struct drm_device *dev = crtc->dev;
3c692a41 13622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3c692a41 13623
f015c551 13624 if (intel_crtc->atomic.update_wm_pre)
32b7eeec 13625 intel_update_watermarks(crtc);
3c692a41 13626
c34c9ee4 13627 /* Perform vblank evasion around commit operation */
a539205a 13628 if (crtc->state->active)
8f539a83 13629 intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
0583236e
ML
13630
13631 if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13632 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13633}
13634
613d2b27
ML
13635static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13636 struct drm_crtc_state *old_crtc_state)
32b7eeec 13637{
32b7eeec 13638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13639
8f539a83
ML
13640 if (crtc->state->active)
13641 intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
3c692a41
GP
13642}
13643
cf4c7c12 13644/**
4a3b8769
MR
13645 * intel_plane_destroy - destroy a plane
13646 * @plane: plane to destroy
cf4c7c12 13647 *
4a3b8769
MR
13648 * Common destruction function for all types of planes (primary, cursor,
13649 * sprite).
cf4c7c12 13650 */
4a3b8769 13651void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13652{
13653 struct intel_plane *intel_plane = to_intel_plane(plane);
13654 drm_plane_cleanup(plane);
13655 kfree(intel_plane);
13656}
13657
65a3fea0 13658const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13659 .update_plane = drm_atomic_helper_update_plane,
13660 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13661 .destroy = intel_plane_destroy,
c196e1d6 13662 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13663 .atomic_get_property = intel_plane_atomic_get_property,
13664 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13665 .atomic_duplicate_state = intel_plane_duplicate_state,
13666 .atomic_destroy_state = intel_plane_destroy_state,
13667
465c120c
MR
13668};
13669
13670static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13671 int pipe)
13672{
13673 struct intel_plane *primary;
8e7d688b 13674 struct intel_plane_state *state;
465c120c
MR
13675 const uint32_t *intel_primary_formats;
13676 int num_formats;
13677
13678 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13679 if (primary == NULL)
13680 return NULL;
13681
8e7d688b
MR
13682 state = intel_create_plane_state(&primary->base);
13683 if (!state) {
ea2c67bb
MR
13684 kfree(primary);
13685 return NULL;
13686 }
8e7d688b 13687 primary->base.state = &state->base;
ea2c67bb 13688
465c120c
MR
13689 primary->can_scale = false;
13690 primary->max_downscale = 1;
6156a456
CK
13691 if (INTEL_INFO(dev)->gen >= 9) {
13692 primary->can_scale = true;
af99ceda 13693 state->scaler_id = -1;
6156a456 13694 }
465c120c
MR
13695 primary->pipe = pipe;
13696 primary->plane = pipe;
a9ff8714 13697 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179
MR
13698 primary->check_plane = intel_check_primary_plane;
13699 primary->commit_plane = intel_commit_primary_plane;
a8ad0d8e 13700 primary->disable_plane = intel_disable_primary_plane;
465c120c
MR
13701 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13702 primary->plane = !pipe;
13703
6c0fd451
DL
13704 if (INTEL_INFO(dev)->gen >= 9) {
13705 intel_primary_formats = skl_primary_formats;
13706 num_formats = ARRAY_SIZE(skl_primary_formats);
13707 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13708 intel_primary_formats = i965_primary_formats;
13709 num_formats = ARRAY_SIZE(i965_primary_formats);
6c0fd451
DL
13710 } else {
13711 intel_primary_formats = i8xx_primary_formats;
13712 num_formats = ARRAY_SIZE(i8xx_primary_formats);
465c120c
MR
13713 }
13714
13715 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13716 &intel_plane_funcs,
465c120c
MR
13717 intel_primary_formats, num_formats,
13718 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13719
3b7a5119
SJ
13720 if (INTEL_INFO(dev)->gen >= 4)
13721 intel_create_rotation_property(dev, primary);
48404c1e 13722
ea2c67bb
MR
13723 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13724
465c120c
MR
13725 return &primary->base;
13726}
13727
3b7a5119
SJ
13728void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13729{
13730 if (!dev->mode_config.rotation_property) {
13731 unsigned long flags = BIT(DRM_ROTATE_0) |
13732 BIT(DRM_ROTATE_180);
13733
13734 if (INTEL_INFO(dev)->gen >= 9)
13735 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13736
13737 dev->mode_config.rotation_property =
13738 drm_mode_create_rotation_property(dev, flags);
13739 }
13740 if (dev->mode_config.rotation_property)
13741 drm_object_attach_property(&plane->base.base,
13742 dev->mode_config.rotation_property,
13743 plane->base.state->rotation);
13744}
13745
3d7d6510 13746static int
852e787c 13747intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 13748 struct intel_crtc_state *crtc_state,
852e787c 13749 struct intel_plane_state *state)
3d7d6510 13750{
061e4b8d 13751 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 13752 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 13753 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
757f9a3e
GP
13754 unsigned stride;
13755 int ret;
3d7d6510 13756
061e4b8d
ML
13757 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13758 &state->dst, &state->clip,
3d7d6510
MR
13759 DRM_PLANE_HELPER_NO_SCALING,
13760 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13761 true, true, &state->visible);
757f9a3e
GP
13762 if (ret)
13763 return ret;
13764
757f9a3e
GP
13765 /* if we want to turn off the cursor ignore width and height */
13766 if (!obj)
da20eabd 13767 return 0;
757f9a3e 13768
757f9a3e 13769 /* Check for which cursor types we support */
061e4b8d 13770 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
13771 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13772 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
13773 return -EINVAL;
13774 }
13775
ea2c67bb
MR
13776 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13777 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
13778 DRM_DEBUG_KMS("buffer is too small\n");
13779 return -ENOMEM;
13780 }
13781
3a656b54 13782 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 13783 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 13784 return -EINVAL;
32b7eeec
MR
13785 }
13786
da20eabd 13787 return 0;
852e787c 13788}
3d7d6510 13789
a8ad0d8e
ML
13790static void
13791intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 13792 struct drm_crtc *crtc)
a8ad0d8e 13793{
a8ad0d8e
ML
13794 intel_crtc_update_cursor(crtc, false);
13795}
13796
f4a2cf29 13797static void
852e787c
GP
13798intel_commit_cursor_plane(struct drm_plane *plane,
13799 struct intel_plane_state *state)
13800{
2b875c22 13801 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
13802 struct drm_device *dev = plane->dev;
13803 struct intel_crtc *intel_crtc;
2b875c22 13804 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 13805 uint32_t addr;
852e787c 13806
ea2c67bb
MR
13807 crtc = crtc ? crtc : plane->crtc;
13808 intel_crtc = to_intel_crtc(crtc);
13809
2b875c22 13810 plane->fb = state->base.fb;
ea2c67bb
MR
13811 crtc->cursor_x = state->base.crtc_x;
13812 crtc->cursor_y = state->base.crtc_y;
13813
a912f12f
GP
13814 if (intel_crtc->cursor_bo == obj)
13815 goto update;
4ed91096 13816
f4a2cf29 13817 if (!obj)
a912f12f 13818 addr = 0;
f4a2cf29 13819 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 13820 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 13821 else
a912f12f 13822 addr = obj->phys_handle->busaddr;
852e787c 13823
a912f12f
GP
13824 intel_crtc->cursor_addr = addr;
13825 intel_crtc->cursor_bo = obj;
852e787c 13826
302d19ac 13827update:
a539205a 13828 if (crtc->state->active)
a912f12f 13829 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
13830}
13831
3d7d6510
MR
13832static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13833 int pipe)
13834{
13835 struct intel_plane *cursor;
8e7d688b 13836 struct intel_plane_state *state;
3d7d6510
MR
13837
13838 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13839 if (cursor == NULL)
13840 return NULL;
13841
8e7d688b
MR
13842 state = intel_create_plane_state(&cursor->base);
13843 if (!state) {
ea2c67bb
MR
13844 kfree(cursor);
13845 return NULL;
13846 }
8e7d688b 13847 cursor->base.state = &state->base;
ea2c67bb 13848
3d7d6510
MR
13849 cursor->can_scale = false;
13850 cursor->max_downscale = 1;
13851 cursor->pipe = pipe;
13852 cursor->plane = pipe;
a9ff8714 13853 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179
MR
13854 cursor->check_plane = intel_check_cursor_plane;
13855 cursor->commit_plane = intel_commit_cursor_plane;
a8ad0d8e 13856 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
13857
13858 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 13859 &intel_plane_funcs,
3d7d6510
MR
13860 intel_cursor_formats,
13861 ARRAY_SIZE(intel_cursor_formats),
13862 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
13863
13864 if (INTEL_INFO(dev)->gen >= 4) {
13865 if (!dev->mode_config.rotation_property)
13866 dev->mode_config.rotation_property =
13867 drm_mode_create_rotation_property(dev,
13868 BIT(DRM_ROTATE_0) |
13869 BIT(DRM_ROTATE_180));
13870 if (dev->mode_config.rotation_property)
13871 drm_object_attach_property(&cursor->base.base,
13872 dev->mode_config.rotation_property,
8e7d688b 13873 state->base.rotation);
4398ad45
VS
13874 }
13875
af99ceda
CK
13876 if (INTEL_INFO(dev)->gen >=9)
13877 state->scaler_id = -1;
13878
ea2c67bb
MR
13879 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13880
3d7d6510
MR
13881 return &cursor->base;
13882}
13883
549e2bfb
CK
13884static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13885 struct intel_crtc_state *crtc_state)
13886{
13887 int i;
13888 struct intel_scaler *intel_scaler;
13889 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13890
13891 for (i = 0; i < intel_crtc->num_scalers; i++) {
13892 intel_scaler = &scaler_state->scalers[i];
13893 intel_scaler->in_use = 0;
549e2bfb
CK
13894 intel_scaler->mode = PS_SCALER_MODE_DYN;
13895 }
13896
13897 scaler_state->scaler_id = -1;
13898}
13899
b358d0a6 13900static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 13901{
fbee40df 13902 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 13903 struct intel_crtc *intel_crtc;
f5de6e07 13904 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
13905 struct drm_plane *primary = NULL;
13906 struct drm_plane *cursor = NULL;
465c120c 13907 int i, ret;
79e53945 13908
955382f3 13909 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
13910 if (intel_crtc == NULL)
13911 return;
13912
f5de6e07
ACO
13913 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13914 if (!crtc_state)
13915 goto fail;
550acefd
ACO
13916 intel_crtc->config = crtc_state;
13917 intel_crtc->base.state = &crtc_state->base;
07878248 13918 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 13919
549e2bfb
CK
13920 /* initialize shared scalers */
13921 if (INTEL_INFO(dev)->gen >= 9) {
13922 if (pipe == PIPE_C)
13923 intel_crtc->num_scalers = 1;
13924 else
13925 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13926
13927 skl_init_scalers(dev, intel_crtc, crtc_state);
13928 }
13929
465c120c 13930 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
13931 if (!primary)
13932 goto fail;
13933
13934 cursor = intel_cursor_plane_create(dev, pipe);
13935 if (!cursor)
13936 goto fail;
13937
465c120c 13938 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
13939 cursor, &intel_crtc_funcs);
13940 if (ret)
13941 goto fail;
79e53945
JB
13942
13943 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
13944 for (i = 0; i < 256; i++) {
13945 intel_crtc->lut_r[i] = i;
13946 intel_crtc->lut_g[i] = i;
13947 intel_crtc->lut_b[i] = i;
13948 }
13949
1f1c2e24
VS
13950 /*
13951 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 13952 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 13953 */
80824003
JB
13954 intel_crtc->pipe = pipe;
13955 intel_crtc->plane = pipe;
3a77c4c4 13956 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 13957 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 13958 intel_crtc->plane = !pipe;
80824003
JB
13959 }
13960
4b0e333e
CW
13961 intel_crtc->cursor_base = ~0;
13962 intel_crtc->cursor_cntl = ~0;
dc41c154 13963 intel_crtc->cursor_size = ~0;
8d7849db 13964
852eb00d
VS
13965 intel_crtc->wm.cxsr_allowed = true;
13966
22fd0fab
JB
13967 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13968 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13969 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13970 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13971
79e53945 13972 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
13973
13974 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
13975 return;
13976
13977fail:
13978 if (primary)
13979 drm_plane_cleanup(primary);
13980 if (cursor)
13981 drm_plane_cleanup(cursor);
f5de6e07 13982 kfree(crtc_state);
3d7d6510 13983 kfree(intel_crtc);
79e53945
JB
13984}
13985
752aa88a
JB
13986enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13987{
13988 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 13989 struct drm_device *dev = connector->base.dev;
752aa88a 13990
51fd371b 13991 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 13992
d3babd3f 13993 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
13994 return INVALID_PIPE;
13995
13996 return to_intel_crtc(encoder->crtc)->pipe;
13997}
13998
08d7b3d1 13999int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14000 struct drm_file *file)
08d7b3d1 14001{
08d7b3d1 14002 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14003 struct drm_crtc *drmmode_crtc;
c05422d5 14004 struct intel_crtc *crtc;
08d7b3d1 14005
7707e653 14006 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14007
7707e653 14008 if (!drmmode_crtc) {
08d7b3d1 14009 DRM_ERROR("no such CRTC id\n");
3f2c2057 14010 return -ENOENT;
08d7b3d1
CW
14011 }
14012
7707e653 14013 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14014 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14015
c05422d5 14016 return 0;
08d7b3d1
CW
14017}
14018
66a9278e 14019static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14020{
66a9278e
DV
14021 struct drm_device *dev = encoder->base.dev;
14022 struct intel_encoder *source_encoder;
79e53945 14023 int index_mask = 0;
79e53945
JB
14024 int entry = 0;
14025
b2784e15 14026 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14027 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14028 index_mask |= (1 << entry);
14029
79e53945
JB
14030 entry++;
14031 }
4ef69c7a 14032
79e53945
JB
14033 return index_mask;
14034}
14035
4d302442
CW
14036static bool has_edp_a(struct drm_device *dev)
14037{
14038 struct drm_i915_private *dev_priv = dev->dev_private;
14039
14040 if (!IS_MOBILE(dev))
14041 return false;
14042
14043 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14044 return false;
14045
e3589908 14046 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14047 return false;
14048
14049 return true;
14050}
14051
84b4e042
JB
14052static bool intel_crt_present(struct drm_device *dev)
14053{
14054 struct drm_i915_private *dev_priv = dev->dev_private;
14055
884497ed
DL
14056 if (INTEL_INFO(dev)->gen >= 9)
14057 return false;
14058
cf404ce4 14059 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14060 return false;
14061
14062 if (IS_CHERRYVIEW(dev))
14063 return false;
14064
14065 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14066 return false;
14067
14068 return true;
14069}
14070
79e53945
JB
14071static void intel_setup_outputs(struct drm_device *dev)
14072{
725e30ad 14073 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14074 struct intel_encoder *encoder;
cb0953d7 14075 bool dpd_is_edp = false;
79e53945 14076
c9093354 14077 intel_lvds_init(dev);
79e53945 14078
84b4e042 14079 if (intel_crt_present(dev))
79935fca 14080 intel_crt_init(dev);
cb0953d7 14081
c776eb2e
VK
14082 if (IS_BROXTON(dev)) {
14083 /*
14084 * FIXME: Broxton doesn't support port detection via the
14085 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14086 * detect the ports.
14087 */
14088 intel_ddi_init(dev, PORT_A);
14089 intel_ddi_init(dev, PORT_B);
14090 intel_ddi_init(dev, PORT_C);
14091 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14092 int found;
14093
de31facd
JB
14094 /*
14095 * Haswell uses DDI functions to detect digital outputs.
14096 * On SKL pre-D0 the strap isn't connected, so we assume
14097 * it's there.
14098 */
0e72a5b5 14099 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
14100 /* WaIgnoreDDIAStrap: skl */
14101 if (found ||
14102 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
14103 intel_ddi_init(dev, PORT_A);
14104
14105 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14106 * register */
14107 found = I915_READ(SFUSE_STRAP);
14108
14109 if (found & SFUSE_STRAP_DDIB_DETECTED)
14110 intel_ddi_init(dev, PORT_B);
14111 if (found & SFUSE_STRAP_DDIC_DETECTED)
14112 intel_ddi_init(dev, PORT_C);
14113 if (found & SFUSE_STRAP_DDID_DETECTED)
14114 intel_ddi_init(dev, PORT_D);
14115 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14116 int found;
5d8a7752 14117 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14118
14119 if (has_edp_a(dev))
14120 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14121
dc0fa718 14122 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14123 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 14124 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 14125 if (!found)
e2debe91 14126 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14127 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14128 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14129 }
14130
dc0fa718 14131 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14132 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14133
dc0fa718 14134 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14135 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14136
5eb08b69 14137 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14138 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14139
270b3042 14140 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14141 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 14142 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
14143 /*
14144 * The DP_DETECTED bit is the latched state of the DDC
14145 * SDA pin at boot. However since eDP doesn't require DDC
14146 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14147 * eDP ports may have been muxed to an alternate function.
14148 * Thus we can't rely on the DP_DETECTED bit alone to detect
14149 * eDP ports. Consult the VBT as well as DP_DETECTED to
14150 * detect eDP ports.
14151 */
d2182a66
VS
14152 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14153 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
14154 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14155 PORT_B);
e17ac6db
VS
14156 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14157 intel_dp_is_edp(dev, PORT_B))
14158 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 14159
d2182a66
VS
14160 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14161 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
14162 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14163 PORT_C);
e17ac6db
VS
14164 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14165 intel_dp_is_edp(dev, PORT_C))
14166 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 14167
9418c1f1 14168 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14169 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
14170 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14171 PORT_D);
e17ac6db
VS
14172 /* eDP not supported on port D, so don't check VBT */
14173 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14174 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
14175 }
14176
3cfca973 14177 intel_dsi_init(dev);
09da55dc 14178 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14179 bool found = false;
7d57382e 14180
e2debe91 14181 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14182 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 14183 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
3fec3d2f 14184 if (!found && IS_G4X(dev)) {
b01f2c3a 14185 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14186 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14187 }
27185ae1 14188
3fec3d2f 14189 if (!found && IS_G4X(dev))
ab9d7c30 14190 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14191 }
13520b05
KH
14192
14193 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14194
e2debe91 14195 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14196 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 14197 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 14198 }
27185ae1 14199
e2debe91 14200 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14201
3fec3d2f 14202 if (IS_G4X(dev)) {
b01f2c3a 14203 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14204 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14205 }
3fec3d2f 14206 if (IS_G4X(dev))
ab9d7c30 14207 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14208 }
27185ae1 14209
3fec3d2f 14210 if (IS_G4X(dev) &&
e7281eab 14211 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14212 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14213 } else if (IS_GEN2(dev))
79e53945
JB
14214 intel_dvo_init(dev);
14215
103a196f 14216 if (SUPPORTS_TV(dev))
79e53945
JB
14217 intel_tv_init(dev);
14218
0bc12bcb 14219 intel_psr_init(dev);
7c8f8a70 14220
b2784e15 14221 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14222 encoder->base.possible_crtcs = encoder->crtc_mask;
14223 encoder->base.possible_clones =
66a9278e 14224 intel_encoder_clones(encoder);
79e53945 14225 }
47356eb6 14226
dde86e2d 14227 intel_init_pch_refclk(dev);
270b3042
DV
14228
14229 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14230}
14231
14232static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14233{
60a5ca01 14234 struct drm_device *dev = fb->dev;
79e53945 14235 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14236
ef2d633e 14237 drm_framebuffer_cleanup(fb);
60a5ca01 14238 mutex_lock(&dev->struct_mutex);
ef2d633e 14239 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14240 drm_gem_object_unreference(&intel_fb->obj->base);
14241 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14242 kfree(intel_fb);
14243}
14244
14245static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14246 struct drm_file *file,
79e53945
JB
14247 unsigned int *handle)
14248{
14249 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14250 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14251
05394f39 14252 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14253}
14254
86c98588
RV
14255static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14256 struct drm_file *file,
14257 unsigned flags, unsigned color,
14258 struct drm_clip_rect *clips,
14259 unsigned num_clips)
14260{
14261 struct drm_device *dev = fb->dev;
14262 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14263 struct drm_i915_gem_object *obj = intel_fb->obj;
14264
14265 mutex_lock(&dev->struct_mutex);
74b4ea1e 14266 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14267 mutex_unlock(&dev->struct_mutex);
14268
14269 return 0;
14270}
14271
79e53945
JB
14272static const struct drm_framebuffer_funcs intel_fb_funcs = {
14273 .destroy = intel_user_framebuffer_destroy,
14274 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14275 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14276};
14277
b321803d
DL
14278static
14279u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14280 uint32_t pixel_format)
14281{
14282 u32 gen = INTEL_INFO(dev)->gen;
14283
14284 if (gen >= 9) {
14285 /* "The stride in bytes must not exceed the of the size of 8K
14286 * pixels and 32K bytes."
14287 */
14288 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14289 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14290 return 32*1024;
14291 } else if (gen >= 4) {
14292 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14293 return 16*1024;
14294 else
14295 return 32*1024;
14296 } else if (gen >= 3) {
14297 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14298 return 8*1024;
14299 else
14300 return 16*1024;
14301 } else {
14302 /* XXX DSPC is limited to 4k tiled */
14303 return 8*1024;
14304 }
14305}
14306
b5ea642a
DV
14307static int intel_framebuffer_init(struct drm_device *dev,
14308 struct intel_framebuffer *intel_fb,
14309 struct drm_mode_fb_cmd2 *mode_cmd,
14310 struct drm_i915_gem_object *obj)
79e53945 14311{
6761dd31 14312 unsigned int aligned_height;
79e53945 14313 int ret;
b321803d 14314 u32 pitch_limit, stride_alignment;
79e53945 14315
dd4916c5
DV
14316 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14317
2a80eada
DV
14318 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14319 /* Enforce that fb modifier and tiling mode match, but only for
14320 * X-tiled. This is needed for FBC. */
14321 if (!!(obj->tiling_mode == I915_TILING_X) !=
14322 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14323 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14324 return -EINVAL;
14325 }
14326 } else {
14327 if (obj->tiling_mode == I915_TILING_X)
14328 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14329 else if (obj->tiling_mode == I915_TILING_Y) {
14330 DRM_DEBUG("No Y tiling for legacy addfb\n");
14331 return -EINVAL;
14332 }
14333 }
14334
9a8f0a12
TU
14335 /* Passed in modifier sanity checking. */
14336 switch (mode_cmd->modifier[0]) {
14337 case I915_FORMAT_MOD_Y_TILED:
14338 case I915_FORMAT_MOD_Yf_TILED:
14339 if (INTEL_INFO(dev)->gen < 9) {
14340 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14341 mode_cmd->modifier[0]);
14342 return -EINVAL;
14343 }
14344 case DRM_FORMAT_MOD_NONE:
14345 case I915_FORMAT_MOD_X_TILED:
14346 break;
14347 default:
c0f40428
JB
14348 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14349 mode_cmd->modifier[0]);
57cd6508 14350 return -EINVAL;
c16ed4be 14351 }
57cd6508 14352
b321803d
DL
14353 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14354 mode_cmd->pixel_format);
14355 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14356 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14357 mode_cmd->pitches[0], stride_alignment);
57cd6508 14358 return -EINVAL;
c16ed4be 14359 }
57cd6508 14360
b321803d
DL
14361 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14362 mode_cmd->pixel_format);
a35cdaa0 14363 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14364 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14365 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14366 "tiled" : "linear",
a35cdaa0 14367 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14368 return -EINVAL;
c16ed4be 14369 }
5d7bd705 14370
2a80eada 14371 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14372 mode_cmd->pitches[0] != obj->stride) {
14373 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14374 mode_cmd->pitches[0], obj->stride);
5d7bd705 14375 return -EINVAL;
c16ed4be 14376 }
5d7bd705 14377
57779d06 14378 /* Reject formats not supported by any plane early. */
308e5bcb 14379 switch (mode_cmd->pixel_format) {
57779d06 14380 case DRM_FORMAT_C8:
04b3924d
VS
14381 case DRM_FORMAT_RGB565:
14382 case DRM_FORMAT_XRGB8888:
14383 case DRM_FORMAT_ARGB8888:
57779d06
VS
14384 break;
14385 case DRM_FORMAT_XRGB1555:
c16ed4be 14386 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14387 DRM_DEBUG("unsupported pixel format: %s\n",
14388 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14389 return -EINVAL;
c16ed4be 14390 }
57779d06 14391 break;
57779d06 14392 case DRM_FORMAT_ABGR8888:
6c0fd451
DL
14393 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14394 DRM_DEBUG("unsupported pixel format: %s\n",
14395 drm_get_format_name(mode_cmd->pixel_format));
14396 return -EINVAL;
14397 }
14398 break;
14399 case DRM_FORMAT_XBGR8888:
04b3924d 14400 case DRM_FORMAT_XRGB2101010:
57779d06 14401 case DRM_FORMAT_XBGR2101010:
c16ed4be 14402 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14403 DRM_DEBUG("unsupported pixel format: %s\n",
14404 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14405 return -EINVAL;
c16ed4be 14406 }
b5626747 14407 break;
7531208b
DL
14408 case DRM_FORMAT_ABGR2101010:
14409 if (!IS_VALLEYVIEW(dev)) {
14410 DRM_DEBUG("unsupported pixel format: %s\n",
14411 drm_get_format_name(mode_cmd->pixel_format));
14412 return -EINVAL;
14413 }
14414 break;
04b3924d
VS
14415 case DRM_FORMAT_YUYV:
14416 case DRM_FORMAT_UYVY:
14417 case DRM_FORMAT_YVYU:
14418 case DRM_FORMAT_VYUY:
c16ed4be 14419 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14420 DRM_DEBUG("unsupported pixel format: %s\n",
14421 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14422 return -EINVAL;
c16ed4be 14423 }
57cd6508
CW
14424 break;
14425 default:
4ee62c76
VS
14426 DRM_DEBUG("unsupported pixel format: %s\n",
14427 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14428 return -EINVAL;
14429 }
14430
90f9a336
VS
14431 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14432 if (mode_cmd->offsets[0] != 0)
14433 return -EINVAL;
14434
ec2c981e 14435 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14436 mode_cmd->pixel_format,
14437 mode_cmd->modifier[0]);
53155c0a
DV
14438 /* FIXME drm helper for size checks (especially planar formats)? */
14439 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14440 return -EINVAL;
14441
c7d73f6a
DV
14442 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14443 intel_fb->obj = obj;
80075d49 14444 intel_fb->obj->framebuffer_references++;
c7d73f6a 14445
79e53945
JB
14446 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14447 if (ret) {
14448 DRM_ERROR("framebuffer init failed %d\n", ret);
14449 return ret;
14450 }
14451
79e53945
JB
14452 return 0;
14453}
14454
79e53945
JB
14455static struct drm_framebuffer *
14456intel_user_framebuffer_create(struct drm_device *dev,
14457 struct drm_file *filp,
308e5bcb 14458 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 14459{
05394f39 14460 struct drm_i915_gem_object *obj;
79e53945 14461
308e5bcb
JB
14462 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14463 mode_cmd->handles[0]));
c8725226 14464 if (&obj->base == NULL)
cce13ff7 14465 return ERR_PTR(-ENOENT);
79e53945 14466
d2dff872 14467 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
14468}
14469
4520f53a 14470#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 14471static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14472{
14473}
14474#endif
14475
79e53945 14476static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14477 .fb_create = intel_user_framebuffer_create,
0632fef6 14478 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14479 .atomic_check = intel_atomic_check,
14480 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14481 .atomic_state_alloc = intel_atomic_state_alloc,
14482 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14483};
14484
e70236a8
JB
14485/* Set up chip specific display functions */
14486static void intel_init_display(struct drm_device *dev)
14487{
14488 struct drm_i915_private *dev_priv = dev->dev_private;
14489
ee9300bb
DV
14490 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14491 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14492 else if (IS_CHERRYVIEW(dev))
14493 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14494 else if (IS_VALLEYVIEW(dev))
14495 dev_priv->display.find_dpll = vlv_find_best_dpll;
14496 else if (IS_PINEVIEW(dev))
14497 dev_priv->display.find_dpll = pnv_find_best_dpll;
14498 else
14499 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14500
bc8d7dff
DL
14501 if (INTEL_INFO(dev)->gen >= 9) {
14502 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14503 dev_priv->display.get_initial_plane_config =
14504 skylake_get_initial_plane_config;
bc8d7dff
DL
14505 dev_priv->display.crtc_compute_clock =
14506 haswell_crtc_compute_clock;
14507 dev_priv->display.crtc_enable = haswell_crtc_enable;
14508 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14509 dev_priv->display.update_primary_plane =
14510 skylake_update_primary_plane;
14511 } else if (HAS_DDI(dev)) {
0e8ffe1b 14512 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14513 dev_priv->display.get_initial_plane_config =
14514 ironlake_get_initial_plane_config;
797d0259
ACO
14515 dev_priv->display.crtc_compute_clock =
14516 haswell_crtc_compute_clock;
4f771f10
PZ
14517 dev_priv->display.crtc_enable = haswell_crtc_enable;
14518 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14519 dev_priv->display.update_primary_plane =
14520 ironlake_update_primary_plane;
09b4ddf9 14521 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14522 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14523 dev_priv->display.get_initial_plane_config =
14524 ironlake_get_initial_plane_config;
3fb37703
ACO
14525 dev_priv->display.crtc_compute_clock =
14526 ironlake_crtc_compute_clock;
76e5a89c
DV
14527 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14528 dev_priv->display.crtc_disable = ironlake_crtc_disable;
262ca2b0
MR
14529 dev_priv->display.update_primary_plane =
14530 ironlake_update_primary_plane;
89b667f8
JB
14531 } else if (IS_VALLEYVIEW(dev)) {
14532 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14533 dev_priv->display.get_initial_plane_config =
14534 i9xx_get_initial_plane_config;
d6dfee7a 14535 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14536 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14537 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14538 dev_priv->display.update_primary_plane =
14539 i9xx_update_primary_plane;
f564048e 14540 } else {
0e8ffe1b 14541 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14542 dev_priv->display.get_initial_plane_config =
14543 i9xx_get_initial_plane_config;
d6dfee7a 14544 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14545 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14546 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14547 dev_priv->display.update_primary_plane =
14548 i9xx_update_primary_plane;
f564048e 14549 }
e70236a8 14550
e70236a8 14551 /* Returns the core display clock speed */
1652d19e
VS
14552 if (IS_SKYLAKE(dev))
14553 dev_priv->display.get_display_clock_speed =
14554 skylake_get_display_clock_speed;
acd3f3d3
BP
14555 else if (IS_BROXTON(dev))
14556 dev_priv->display.get_display_clock_speed =
14557 broxton_get_display_clock_speed;
1652d19e
VS
14558 else if (IS_BROADWELL(dev))
14559 dev_priv->display.get_display_clock_speed =
14560 broadwell_get_display_clock_speed;
14561 else if (IS_HASWELL(dev))
14562 dev_priv->display.get_display_clock_speed =
14563 haswell_get_display_clock_speed;
14564 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14565 dev_priv->display.get_display_clock_speed =
14566 valleyview_get_display_clock_speed;
b37a6434
VS
14567 else if (IS_GEN5(dev))
14568 dev_priv->display.get_display_clock_speed =
14569 ilk_get_display_clock_speed;
a7c66cd8 14570 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14571 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14572 dev_priv->display.get_display_clock_speed =
14573 i945_get_display_clock_speed;
34edce2f
VS
14574 else if (IS_GM45(dev))
14575 dev_priv->display.get_display_clock_speed =
14576 gm45_get_display_clock_speed;
14577 else if (IS_CRESTLINE(dev))
14578 dev_priv->display.get_display_clock_speed =
14579 i965gm_get_display_clock_speed;
14580 else if (IS_PINEVIEW(dev))
14581 dev_priv->display.get_display_clock_speed =
14582 pnv_get_display_clock_speed;
14583 else if (IS_G33(dev) || IS_G4X(dev))
14584 dev_priv->display.get_display_clock_speed =
14585 g33_get_display_clock_speed;
e70236a8
JB
14586 else if (IS_I915G(dev))
14587 dev_priv->display.get_display_clock_speed =
14588 i915_get_display_clock_speed;
257a7ffc 14589 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14590 dev_priv->display.get_display_clock_speed =
14591 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
14592 else if (IS_PINEVIEW(dev))
14593 dev_priv->display.get_display_clock_speed =
14594 pnv_get_display_clock_speed;
e70236a8
JB
14595 else if (IS_I915GM(dev))
14596 dev_priv->display.get_display_clock_speed =
14597 i915gm_get_display_clock_speed;
14598 else if (IS_I865G(dev))
14599 dev_priv->display.get_display_clock_speed =
14600 i865_get_display_clock_speed;
f0f8a9ce 14601 else if (IS_I85X(dev))
e70236a8 14602 dev_priv->display.get_display_clock_speed =
1b1d2716 14603 i85x_get_display_clock_speed;
623e01e5
VS
14604 else { /* 830 */
14605 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14606 dev_priv->display.get_display_clock_speed =
14607 i830_get_display_clock_speed;
623e01e5 14608 }
e70236a8 14609
7c10a2b5 14610 if (IS_GEN5(dev)) {
3bb11b53 14611 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14612 } else if (IS_GEN6(dev)) {
14613 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14614 } else if (IS_IVYBRIDGE(dev)) {
14615 /* FIXME: detect B0+ stepping and use auto training */
14616 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14617 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14618 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
27c329ed
ML
14619 if (IS_BROADWELL(dev)) {
14620 dev_priv->display.modeset_commit_cdclk =
14621 broadwell_modeset_commit_cdclk;
14622 dev_priv->display.modeset_calc_cdclk =
14623 broadwell_modeset_calc_cdclk;
14624 }
30a970c6 14625 } else if (IS_VALLEYVIEW(dev)) {
27c329ed
ML
14626 dev_priv->display.modeset_commit_cdclk =
14627 valleyview_modeset_commit_cdclk;
14628 dev_priv->display.modeset_calc_cdclk =
14629 valleyview_modeset_calc_cdclk;
f8437dd1 14630 } else if (IS_BROXTON(dev)) {
27c329ed
ML
14631 dev_priv->display.modeset_commit_cdclk =
14632 broxton_modeset_commit_cdclk;
14633 dev_priv->display.modeset_calc_cdclk =
14634 broxton_modeset_calc_cdclk;
e70236a8 14635 }
8c9f3aaf 14636
8c9f3aaf
JB
14637 switch (INTEL_INFO(dev)->gen) {
14638 case 2:
14639 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14640 break;
14641
14642 case 3:
14643 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14644 break;
14645
14646 case 4:
14647 case 5:
14648 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14649 break;
14650
14651 case 6:
14652 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14653 break;
7c9017e5 14654 case 7:
4e0bbc31 14655 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14656 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14657 break;
830c81db 14658 case 9:
ba343e02
TU
14659 /* Drop through - unsupported since execlist only. */
14660 default:
14661 /* Default just returns -ENODEV to indicate unsupported */
14662 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14663 }
7bd688cd
JN
14664
14665 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
14666
14667 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14668}
14669
b690e96c
JB
14670/*
14671 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14672 * resume, or other times. This quirk makes sure that's the case for
14673 * affected systems.
14674 */
0206e353 14675static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14676{
14677 struct drm_i915_private *dev_priv = dev->dev_private;
14678
14679 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14680 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14681}
14682
b6b5d049
VS
14683static void quirk_pipeb_force(struct drm_device *dev)
14684{
14685 struct drm_i915_private *dev_priv = dev->dev_private;
14686
14687 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14688 DRM_INFO("applying pipe b force quirk\n");
14689}
14690
435793df
KP
14691/*
14692 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14693 */
14694static void quirk_ssc_force_disable(struct drm_device *dev)
14695{
14696 struct drm_i915_private *dev_priv = dev->dev_private;
14697 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14698 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14699}
14700
4dca20ef 14701/*
5a15ab5b
CE
14702 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14703 * brightness value
4dca20ef
CE
14704 */
14705static void quirk_invert_brightness(struct drm_device *dev)
14706{
14707 struct drm_i915_private *dev_priv = dev->dev_private;
14708 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14709 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14710}
14711
9c72cc6f
SD
14712/* Some VBT's incorrectly indicate no backlight is present */
14713static void quirk_backlight_present(struct drm_device *dev)
14714{
14715 struct drm_i915_private *dev_priv = dev->dev_private;
14716 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14717 DRM_INFO("applying backlight present quirk\n");
14718}
14719
b690e96c
JB
14720struct intel_quirk {
14721 int device;
14722 int subsystem_vendor;
14723 int subsystem_device;
14724 void (*hook)(struct drm_device *dev);
14725};
14726
5f85f176
EE
14727/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14728struct intel_dmi_quirk {
14729 void (*hook)(struct drm_device *dev);
14730 const struct dmi_system_id (*dmi_id_list)[];
14731};
14732
14733static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14734{
14735 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14736 return 1;
14737}
14738
14739static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14740 {
14741 .dmi_id_list = &(const struct dmi_system_id[]) {
14742 {
14743 .callback = intel_dmi_reverse_brightness,
14744 .ident = "NCR Corporation",
14745 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14746 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14747 },
14748 },
14749 { } /* terminating entry */
14750 },
14751 .hook = quirk_invert_brightness,
14752 },
14753};
14754
c43b5634 14755static struct intel_quirk intel_quirks[] = {
b690e96c
JB
14756 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14757 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14758
b690e96c
JB
14759 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14760 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14761
5f080c0f
VS
14762 /* 830 needs to leave pipe A & dpll A up */
14763 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14764
b6b5d049
VS
14765 /* 830 needs to leave pipe B & dpll B up */
14766 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14767
435793df
KP
14768 /* Lenovo U160 cannot use SSC on LVDS */
14769 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
14770
14771 /* Sony Vaio Y cannot use SSC on LVDS */
14772 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 14773
be505f64
AH
14774 /* Acer Aspire 5734Z must invert backlight brightness */
14775 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14776
14777 /* Acer/eMachines G725 */
14778 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14779
14780 /* Acer/eMachines e725 */
14781 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14782
14783 /* Acer/Packard Bell NCL20 */
14784 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14785
14786 /* Acer Aspire 4736Z */
14787 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
14788
14789 /* Acer Aspire 5336 */
14790 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
14791
14792 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14793 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 14794
dfb3d47b
SD
14795 /* Acer C720 Chromebook (Core i3 4005U) */
14796 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14797
b2a9601c 14798 /* Apple Macbook 2,1 (Core 2 T7400) */
14799 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14800
d4967d8c
SD
14801 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14802 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
14803
14804 /* HP Chromebook 14 (Celeron 2955U) */
14805 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
14806
14807 /* Dell Chromebook 11 */
14808 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
14809};
14810
14811static void intel_init_quirks(struct drm_device *dev)
14812{
14813 struct pci_dev *d = dev->pdev;
14814 int i;
14815
14816 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14817 struct intel_quirk *q = &intel_quirks[i];
14818
14819 if (d->device == q->device &&
14820 (d->subsystem_vendor == q->subsystem_vendor ||
14821 q->subsystem_vendor == PCI_ANY_ID) &&
14822 (d->subsystem_device == q->subsystem_device ||
14823 q->subsystem_device == PCI_ANY_ID))
14824 q->hook(dev);
14825 }
5f85f176
EE
14826 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14827 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14828 intel_dmi_quirks[i].hook(dev);
14829 }
b690e96c
JB
14830}
14831
9cce37f4
JB
14832/* Disable the VGA plane that we never use */
14833static void i915_disable_vga(struct drm_device *dev)
14834{
14835 struct drm_i915_private *dev_priv = dev->dev_private;
14836 u8 sr1;
766aa1c4 14837 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 14838
2b37c616 14839 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 14840 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 14841 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
14842 sr1 = inb(VGA_SR_DATA);
14843 outb(sr1 | 1<<5, VGA_SR_DATA);
14844 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14845 udelay(300);
14846
01f5a626 14847 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
14848 POSTING_READ(vga_reg);
14849}
14850
f817586c
DV
14851void intel_modeset_init_hw(struct drm_device *dev)
14852{
b6283055 14853 intel_update_cdclk(dev);
a8f78b58 14854 intel_prepare_ddi(dev);
f817586c 14855 intel_init_clock_gating(dev);
8090c6b9 14856 intel_enable_gt_powersave(dev);
f817586c
DV
14857}
14858
79e53945
JB
14859void intel_modeset_init(struct drm_device *dev)
14860{
652c393a 14861 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 14862 int sprite, ret;
8cc87b75 14863 enum pipe pipe;
46f297fb 14864 struct intel_crtc *crtc;
79e53945
JB
14865
14866 drm_mode_config_init(dev);
14867
14868 dev->mode_config.min_width = 0;
14869 dev->mode_config.min_height = 0;
14870
019d96cb
DA
14871 dev->mode_config.preferred_depth = 24;
14872 dev->mode_config.prefer_shadow = 1;
14873
25bab385
TU
14874 dev->mode_config.allow_fb_modifiers = true;
14875
e6ecefaa 14876 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 14877
b690e96c
JB
14878 intel_init_quirks(dev);
14879
1fa61106
ED
14880 intel_init_pm(dev);
14881
e3c74757
BW
14882 if (INTEL_INFO(dev)->num_pipes == 0)
14883 return;
14884
e70236a8 14885 intel_init_display(dev);
7c10a2b5 14886 intel_init_audio(dev);
e70236a8 14887
a6c45cf0
CW
14888 if (IS_GEN2(dev)) {
14889 dev->mode_config.max_width = 2048;
14890 dev->mode_config.max_height = 2048;
14891 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
14892 dev->mode_config.max_width = 4096;
14893 dev->mode_config.max_height = 4096;
79e53945 14894 } else {
a6c45cf0
CW
14895 dev->mode_config.max_width = 8192;
14896 dev->mode_config.max_height = 8192;
79e53945 14897 }
068be561 14898
dc41c154
VS
14899 if (IS_845G(dev) || IS_I865G(dev)) {
14900 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14901 dev->mode_config.cursor_height = 1023;
14902 } else if (IS_GEN2(dev)) {
068be561
DL
14903 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14904 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14905 } else {
14906 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14907 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14908 }
14909
5d4545ae 14910 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 14911
28c97730 14912 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
14913 INTEL_INFO(dev)->num_pipes,
14914 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 14915
055e393f 14916 for_each_pipe(dev_priv, pipe) {
8cc87b75 14917 intel_crtc_init(dev, pipe);
3bdcfc0c 14918 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 14919 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 14920 if (ret)
06da8da2 14921 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 14922 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 14923 }
79e53945
JB
14924 }
14925
f42bb70d
JB
14926 intel_init_dpio(dev);
14927
e72f9fbf 14928 intel_shared_dpll_init(dev);
ee7b9f93 14929
9cce37f4
JB
14930 /* Just disable it once at startup */
14931 i915_disable_vga(dev);
79e53945 14932 intel_setup_outputs(dev);
11be49eb
CW
14933
14934 /* Just in case the BIOS is doing something questionable. */
7733b49b 14935 intel_fbc_disable(dev_priv);
fa9fa083 14936
6e9f798d 14937 drm_modeset_lock_all(dev);
043e9bda 14938 intel_modeset_setup_hw_state(dev);
6e9f798d 14939 drm_modeset_unlock_all(dev);
46f297fb 14940
d3fcc808 14941 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
14942 struct intel_initial_plane_config plane_config = {};
14943
46f297fb
JB
14944 if (!crtc->active)
14945 continue;
14946
46f297fb 14947 /*
46f297fb
JB
14948 * Note that reserving the BIOS fb up front prevents us
14949 * from stuffing other stolen allocations like the ring
14950 * on top. This prevents some ugliness at boot time, and
14951 * can even allow for smooth boot transitions if the BIOS
14952 * fb is large enough for the active pipe configuration.
14953 */
eeebeac5
ML
14954 dev_priv->display.get_initial_plane_config(crtc,
14955 &plane_config);
14956
14957 /*
14958 * If the fb is shared between multiple heads, we'll
14959 * just get the first one.
14960 */
14961 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 14962 }
2c7111db
CW
14963}
14964
7fad798e
DV
14965static void intel_enable_pipe_a(struct drm_device *dev)
14966{
14967 struct intel_connector *connector;
14968 struct drm_connector *crt = NULL;
14969 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 14970 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
14971
14972 /* We can't just switch on the pipe A, we need to set things up with a
14973 * proper mode and output configuration. As a gross hack, enable pipe A
14974 * by enabling the load detect pipe once. */
3a3371ff 14975 for_each_intel_connector(dev, connector) {
7fad798e
DV
14976 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14977 crt = &connector->base;
14978 break;
14979 }
14980 }
14981
14982 if (!crt)
14983 return;
14984
208bf9fd 14985 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 14986 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
14987}
14988
fa555837
DV
14989static bool
14990intel_check_plane_mapping(struct intel_crtc *crtc)
14991{
7eb552ae
BW
14992 struct drm_device *dev = crtc->base.dev;
14993 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
14994 u32 reg, val;
14995
7eb552ae 14996 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
14997 return true;
14998
14999 reg = DSPCNTR(!crtc->plane);
15000 val = I915_READ(reg);
15001
15002 if ((val & DISPLAY_PLANE_ENABLE) &&
15003 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15004 return false;
15005
15006 return true;
15007}
15008
24929352
DV
15009static void intel_sanitize_crtc(struct intel_crtc *crtc)
15010{
15011 struct drm_device *dev = crtc->base.dev;
15012 struct drm_i915_private *dev_priv = dev->dev_private;
b17d48e2 15013 struct intel_encoder *encoder;
fa555837 15014 u32 reg;
b17d48e2 15015 bool enable;
24929352 15016
24929352 15017 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 15018 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
15019 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15020
d3eaf884 15021 /* restore vblank interrupts to correct state */
9625604c 15022 drm_crtc_vblank_reset(&crtc->base);
d297e103 15023 if (crtc->active) {
3a03dfb0 15024 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
d297e103 15025 update_scanline_offset(crtc);
9625604c
DV
15026 drm_crtc_vblank_on(&crtc->base);
15027 }
d3eaf884 15028
24929352 15029 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15030 * disable the crtc (and hence change the state) if it is wrong. Note
15031 * that gen4+ has a fixed plane -> pipe mapping. */
15032 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15033 bool plane;
15034
24929352
DV
15035 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15036 crtc->base.base.id);
15037
15038 /* Pipe has the wrong plane attached and the plane is active.
15039 * Temporarily change the plane mapping and disable everything
15040 * ... */
15041 plane = crtc->plane;
b70709a6 15042 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15043 crtc->plane = !plane;
b17d48e2 15044 intel_crtc_disable_noatomic(&crtc->base);
24929352 15045 crtc->plane = plane;
24929352 15046 }
24929352 15047
7fad798e
DV
15048 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15049 crtc->pipe == PIPE_A && !crtc->active) {
15050 /* BIOS forgot to enable pipe A, this mostly happens after
15051 * resume. Force-enable the pipe to fix this, the update_dpms
15052 * call below we restore the pipe to the right state, but leave
15053 * the required bits on. */
15054 intel_enable_pipe_a(dev);
15055 }
15056
24929352
DV
15057 /* Adjust the state of the output pipe according to whether we
15058 * have active connectors/encoders. */
b17d48e2
ML
15059 enable = false;
15060 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15061 enable |= encoder->connectors_active;
24929352 15062
b17d48e2
ML
15063 if (!enable)
15064 intel_crtc_disable_noatomic(&crtc->base);
24929352 15065
53d9f4e9 15066 if (crtc->active != crtc->base.state->active) {
24929352
DV
15067
15068 /* This can happen either due to bugs in the get_hw_state
b17d48e2
ML
15069 * functions or because of calls to intel_crtc_disable_noatomic,
15070 * or because the pipe is force-enabled due to the
24929352
DV
15071 * pipe A quirk. */
15072 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15073 crtc->base.base.id,
83d65738 15074 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
15075 crtc->active ? "enabled" : "disabled");
15076
4be40c98 15077 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
49d6fa21 15078 crtc->base.state->active = crtc->active;
24929352
DV
15079 crtc->base.enabled = crtc->active;
15080
15081 /* Because we only establish the connector -> encoder ->
15082 * crtc links if something is active, this means the
15083 * crtc is now deactivated. Break the links. connector
15084 * -> encoder links are only establish when things are
15085 * actually up, hence no need to break them. */
15086 WARN_ON(crtc->active);
15087
15088 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15089 WARN_ON(encoder->connectors_active);
15090 encoder->base.crtc = NULL;
15091 }
15092 }
c5ab3bc0 15093
a3ed6aad 15094 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15095 /*
15096 * We start out with underrun reporting disabled to avoid races.
15097 * For correct bookkeeping mark this on active crtcs.
15098 *
c5ab3bc0
DV
15099 * Also on gmch platforms we dont have any hardware bits to
15100 * disable the underrun reporting. Which means we need to start
15101 * out with underrun reporting disabled also on inactive pipes,
15102 * since otherwise we'll complain about the garbage we read when
15103 * e.g. coming up after runtime pm.
15104 *
4cc31489
DV
15105 * No protection against concurrent access is required - at
15106 * worst a fifo underrun happens which also sets this to false.
15107 */
15108 crtc->cpu_fifo_underrun_disabled = true;
15109 crtc->pch_fifo_underrun_disabled = true;
15110 }
24929352
DV
15111}
15112
15113static void intel_sanitize_encoder(struct intel_encoder *encoder)
15114{
15115 struct intel_connector *connector;
15116 struct drm_device *dev = encoder->base.dev;
15117
15118 /* We need to check both for a crtc link (meaning that the
15119 * encoder is active and trying to read from a pipe) and the
15120 * pipe itself being active. */
15121 bool has_active_crtc = encoder->base.crtc &&
15122 to_intel_crtc(encoder->base.crtc)->active;
15123
15124 if (encoder->connectors_active && !has_active_crtc) {
15125 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15126 encoder->base.base.id,
8e329a03 15127 encoder->base.name);
24929352
DV
15128
15129 /* Connector is active, but has no active pipe. This is
15130 * fallout from our resume register restoring. Disable
15131 * the encoder manually again. */
15132 if (encoder->base.crtc) {
15133 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15134 encoder->base.base.id,
8e329a03 15135 encoder->base.name);
24929352 15136 encoder->disable(encoder);
a62d1497
VS
15137 if (encoder->post_disable)
15138 encoder->post_disable(encoder);
24929352 15139 }
7f1950fb
EE
15140 encoder->base.crtc = NULL;
15141 encoder->connectors_active = false;
24929352
DV
15142
15143 /* Inconsistent output/port/pipe state happens presumably due to
15144 * a bug in one of the get_hw_state functions. Or someplace else
15145 * in our code, like the register restore mess on resume. Clamp
15146 * things to off as a safer default. */
3a3371ff 15147 for_each_intel_connector(dev, connector) {
24929352
DV
15148 if (connector->encoder != encoder)
15149 continue;
7f1950fb
EE
15150 connector->base.dpms = DRM_MODE_DPMS_OFF;
15151 connector->base.encoder = NULL;
24929352
DV
15152 }
15153 }
15154 /* Enabled encoders without active connectors will be fixed in
15155 * the crtc fixup. */
15156}
15157
04098753 15158void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15159{
15160 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 15161 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15162
04098753
ID
15163 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15164 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15165 i915_disable_vga(dev);
15166 }
15167}
15168
15169void i915_redisable_vga(struct drm_device *dev)
15170{
15171 struct drm_i915_private *dev_priv = dev->dev_private;
15172
8dc8a27c
PZ
15173 /* This function can be called both from intel_modeset_setup_hw_state or
15174 * at a very early point in our resume sequence, where the power well
15175 * structures are not yet restored. Since this function is at a very
15176 * paranoid "someone might have enabled VGA while we were not looking"
15177 * level, just check if the power well is enabled instead of trying to
15178 * follow the "don't touch the power well if we don't need it" policy
15179 * the rest of the driver uses. */
f458ebbc 15180 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15181 return;
15182
04098753 15183 i915_redisable_vga_power_on(dev);
0fde901f
KM
15184}
15185
98ec7739
VS
15186static bool primary_get_hw_state(struct intel_crtc *crtc)
15187{
15188 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15189
d032ffa0
ML
15190 return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15191}
15192
15193static void readout_plane_state(struct intel_crtc *crtc,
15194 struct intel_crtc_state *crtc_state)
15195{
15196 struct intel_plane *p;
4cf0ebbd 15197 struct intel_plane_state *plane_state;
d032ffa0
ML
15198 bool active = crtc_state->base.active;
15199
d032ffa0 15200 for_each_intel_plane(crtc->base.dev, p) {
d032ffa0
ML
15201 if (crtc->pipe != p->pipe)
15202 continue;
15203
4cf0ebbd 15204 plane_state = to_intel_plane_state(p->base.state);
e435d6e5 15205
4cf0ebbd
ML
15206 if (p->base.type == DRM_PLANE_TYPE_PRIMARY)
15207 plane_state->visible = primary_get_hw_state(crtc);
15208 else {
15209 if (active)
15210 p->disable_plane(&p->base, &crtc->base);
d032ffa0 15211
4cf0ebbd 15212 plane_state->visible = false;
d032ffa0
ML
15213 }
15214 }
98ec7739
VS
15215}
15216
30e984df 15217static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15218{
15219 struct drm_i915_private *dev_priv = dev->dev_private;
15220 enum pipe pipe;
24929352
DV
15221 struct intel_crtc *crtc;
15222 struct intel_encoder *encoder;
15223 struct intel_connector *connector;
5358901f 15224 int i;
24929352 15225
d3fcc808 15226 for_each_intel_crtc(dev, crtc) {
b06f8b0d 15227 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
6e3c9717 15228 memset(crtc->config, 0, sizeof(*crtc->config));
f7217905 15229 crtc->config->base.crtc = &crtc->base;
3b117c8f 15230
0e8ffe1b 15231 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 15232 crtc->config);
24929352 15233
49d6fa21 15234 crtc->base.state->active = crtc->active;
24929352 15235 crtc->base.enabled = crtc->active;
b70709a6 15236
5c1e3426
ML
15237 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15238 if (crtc->base.state->active) {
15239 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15240 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15241 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15242
15243 /*
15244 * The initial mode needs to be set in order to keep
15245 * the atomic core happy. It wants a valid mode if the
15246 * crtc's enabled, so we do the above call.
15247 *
15248 * At this point some state updated by the connectors
15249 * in their ->detect() callback has not run yet, so
15250 * no recalculation can be done yet.
15251 *
15252 * Even if we could do a recalculation and modeset
15253 * right now it would cause a double modeset if
15254 * fbdev or userspace chooses a different initial mode.
15255 *
5c1e3426
ML
15256 * If that happens, someone indicated they wanted a
15257 * mode change, which means it's safe to do a full
15258 * recalculation.
15259 */
1ed51de9 15260 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
5c1e3426
ML
15261 }
15262
15263 crtc->base.hwmode = crtc->config->base.adjusted_mode;
d032ffa0 15264 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
24929352
DV
15265
15266 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15267 crtc->base.base.id,
15268 crtc->active ? "enabled" : "disabled");
15269 }
15270
5358901f
DV
15271 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15272 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15273
3e369b76
ACO
15274 pll->on = pll->get_hw_state(dev_priv, pll,
15275 &pll->config.hw_state);
5358901f 15276 pll->active = 0;
3e369b76 15277 pll->config.crtc_mask = 0;
d3fcc808 15278 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 15279 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 15280 pll->active++;
3e369b76 15281 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15282 }
5358901f 15283 }
5358901f 15284
1e6f2ddc 15285 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15286 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15287
3e369b76 15288 if (pll->config.crtc_mask)
bd2bb1b9 15289 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15290 }
15291
b2784e15 15292 for_each_intel_encoder(dev, encoder) {
24929352
DV
15293 pipe = 0;
15294
15295 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15296 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15297 encoder->base.crtc = &crtc->base;
6e3c9717 15298 encoder->get_config(encoder, crtc->config);
24929352
DV
15299 } else {
15300 encoder->base.crtc = NULL;
15301 }
15302
15303 encoder->connectors_active = false;
6f2bcceb 15304 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15305 encoder->base.base.id,
8e329a03 15306 encoder->base.name,
24929352 15307 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15308 pipe_name(pipe));
24929352
DV
15309 }
15310
3a3371ff 15311 for_each_intel_connector(dev, connector) {
24929352
DV
15312 if (connector->get_hw_state(connector)) {
15313 connector->base.dpms = DRM_MODE_DPMS_ON;
15314 connector->encoder->connectors_active = true;
15315 connector->base.encoder = &connector->encoder->base;
15316 } else {
15317 connector->base.dpms = DRM_MODE_DPMS_OFF;
15318 connector->base.encoder = NULL;
15319 }
15320 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15321 connector->base.base.id,
c23cc417 15322 connector->base.name,
24929352
DV
15323 connector->base.encoder ? "enabled" : "disabled");
15324 }
30e984df
DV
15325}
15326
043e9bda
ML
15327/* Scan out the current hw modeset state,
15328 * and sanitizes it to the current state
15329 */
15330static void
15331intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
15332{
15333 struct drm_i915_private *dev_priv = dev->dev_private;
15334 enum pipe pipe;
30e984df
DV
15335 struct intel_crtc *crtc;
15336 struct intel_encoder *encoder;
35c95375 15337 int i;
30e984df
DV
15338
15339 intel_modeset_readout_hw_state(dev);
24929352
DV
15340
15341 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15342 for_each_intel_encoder(dev, encoder) {
24929352
DV
15343 intel_sanitize_encoder(encoder);
15344 }
15345
055e393f 15346 for_each_pipe(dev_priv, pipe) {
24929352
DV
15347 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15348 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15349 intel_dump_pipe_config(crtc, crtc->config,
15350 "[setup_hw_state]");
24929352 15351 }
9a935856 15352
d29b2f9d
ACO
15353 intel_modeset_update_connector_atomic_state(dev);
15354
35c95375
DV
15355 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15356 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15357
15358 if (!pll->on || pll->active)
15359 continue;
15360
15361 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15362
15363 pll->disable(dev_priv, pll);
15364 pll->on = false;
15365 }
15366
26e1fe4f 15367 if (IS_VALLEYVIEW(dev))
6eb1a681
VS
15368 vlv_wm_get_hw_state(dev);
15369 else if (IS_GEN9(dev))
3078999f
PB
15370 skl_wm_get_hw_state(dev);
15371 else if (HAS_PCH_SPLIT(dev))
243e6a44 15372 ilk_wm_get_hw_state(dev);
292b990e
ML
15373
15374 for_each_intel_crtc(dev, crtc) {
15375 unsigned long put_domains;
15376
15377 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15378 if (WARN_ON(put_domains))
15379 modeset_put_power_domains(dev_priv, put_domains);
15380 }
15381 intel_display_set_init_power(dev_priv, false);
043e9bda 15382}
7d0bc1ea 15383
043e9bda
ML
15384void intel_display_resume(struct drm_device *dev)
15385{
15386 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15387 struct intel_connector *conn;
15388 struct intel_plane *plane;
15389 struct drm_crtc *crtc;
15390 int ret;
f30da187 15391
043e9bda
ML
15392 if (!state)
15393 return;
15394
15395 state->acquire_ctx = dev->mode_config.acquire_ctx;
15396
15397 /* preserve complete old state, including dpll */
15398 intel_atomic_get_shared_dpll_state(state);
15399
15400 for_each_crtc(dev, crtc) {
15401 struct drm_crtc_state *crtc_state =
15402 drm_atomic_get_crtc_state(state, crtc);
15403
15404 ret = PTR_ERR_OR_ZERO(crtc_state);
15405 if (ret)
15406 goto err;
15407
15408 /* force a restore */
15409 crtc_state->mode_changed = true;
45e2b5f6 15410 }
8af6cf88 15411
043e9bda
ML
15412 for_each_intel_plane(dev, plane) {
15413 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15414 if (ret)
15415 goto err;
15416 }
15417
15418 for_each_intel_connector(dev, conn) {
15419 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15420 if (ret)
15421 goto err;
15422 }
15423
15424 intel_modeset_setup_hw_state(dev);
15425
15426 i915_redisable_vga(dev);
74c090b1 15427 ret = drm_atomic_commit(state);
043e9bda
ML
15428 if (!ret)
15429 return;
15430
15431err:
15432 DRM_ERROR("Restoring old state failed with %i\n", ret);
15433 drm_atomic_state_free(state);
2c7111db
CW
15434}
15435
15436void intel_modeset_gem_init(struct drm_device *dev)
15437{
92122789 15438 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 15439 struct drm_crtc *c;
2ff8fde1 15440 struct drm_i915_gem_object *obj;
e0d6149b 15441 int ret;
484b41dd 15442
ae48434c
ID
15443 mutex_lock(&dev->struct_mutex);
15444 intel_init_gt_powersave(dev);
15445 mutex_unlock(&dev->struct_mutex);
15446
92122789
JB
15447 /*
15448 * There may be no VBT; and if the BIOS enabled SSC we can
15449 * just keep using it to avoid unnecessary flicker. Whereas if the
15450 * BIOS isn't using it, don't assume it will work even if the VBT
15451 * indicates as much.
15452 */
15453 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15454 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15455 DREF_SSC1_ENABLE);
15456
1833b134 15457 intel_modeset_init_hw(dev);
02e792fb
DV
15458
15459 intel_setup_overlay(dev);
484b41dd
JB
15460
15461 /*
15462 * Make sure any fbs we allocated at startup are properly
15463 * pinned & fenced. When we do the allocation it's too early
15464 * for this.
15465 */
70e1e0ec 15466 for_each_crtc(dev, c) {
2ff8fde1
MR
15467 obj = intel_fb_obj(c->primary->fb);
15468 if (obj == NULL)
484b41dd
JB
15469 continue;
15470
e0d6149b
TU
15471 mutex_lock(&dev->struct_mutex);
15472 ret = intel_pin_and_fence_fb_obj(c->primary,
15473 c->primary->fb,
15474 c->primary->state,
91af127f 15475 NULL, NULL);
e0d6149b
TU
15476 mutex_unlock(&dev->struct_mutex);
15477 if (ret) {
484b41dd
JB
15478 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15479 to_intel_crtc(c)->pipe);
66e514c1
DA
15480 drm_framebuffer_unreference(c->primary->fb);
15481 c->primary->fb = NULL;
36750f28 15482 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 15483 update_state_fb(c->primary);
36750f28 15484 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
15485 }
15486 }
0962c3c9
VS
15487
15488 intel_backlight_register(dev);
79e53945
JB
15489}
15490
4932e2c3
ID
15491void intel_connector_unregister(struct intel_connector *intel_connector)
15492{
15493 struct drm_connector *connector = &intel_connector->base;
15494
15495 intel_panel_destroy_backlight(connector);
34ea3d38 15496 drm_connector_unregister(connector);
4932e2c3
ID
15497}
15498
79e53945
JB
15499void intel_modeset_cleanup(struct drm_device *dev)
15500{
652c393a 15501 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 15502 struct drm_connector *connector;
652c393a 15503
2eb5252e
ID
15504 intel_disable_gt_powersave(dev);
15505
0962c3c9
VS
15506 intel_backlight_unregister(dev);
15507
fd0c0642
DV
15508 /*
15509 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15510 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15511 * experience fancy races otherwise.
15512 */
2aeb7d3a 15513 intel_irq_uninstall(dev_priv);
eb21b92b 15514
fd0c0642
DV
15515 /*
15516 * Due to the hpd irq storm handling the hotplug work can re-arm the
15517 * poll handlers. Hence disable polling after hpd handling is shut down.
15518 */
f87ea761 15519 drm_kms_helper_poll_fini(dev);
fd0c0642 15520
723bfd70
JB
15521 intel_unregister_dsm_handler();
15522
7733b49b 15523 intel_fbc_disable(dev_priv);
69341a5e 15524
1630fe75
CW
15525 /* flush any delayed tasks or pending work */
15526 flush_scheduled_work();
15527
db31af1d
JN
15528 /* destroy the backlight and sysfs files before encoders/connectors */
15529 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15530 struct intel_connector *intel_connector;
15531
15532 intel_connector = to_intel_connector(connector);
15533 intel_connector->unregister(intel_connector);
db31af1d 15534 }
d9255d57 15535
79e53945 15536 drm_mode_config_cleanup(dev);
4d7bb011
DV
15537
15538 intel_cleanup_overlay(dev);
ae48434c
ID
15539
15540 mutex_lock(&dev->struct_mutex);
15541 intel_cleanup_gt_powersave(dev);
15542 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15543}
15544
f1c79df3
ZW
15545/*
15546 * Return which encoder is currently attached for connector.
15547 */
df0e9248 15548struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15549{
df0e9248
CW
15550 return &intel_attached_encoder(connector)->base;
15551}
f1c79df3 15552
df0e9248
CW
15553void intel_connector_attach_encoder(struct intel_connector *connector,
15554 struct intel_encoder *encoder)
15555{
15556 connector->encoder = encoder;
15557 drm_mode_connector_attach_encoder(&connector->base,
15558 &encoder->base);
79e53945 15559}
28d52043
DA
15560
15561/*
15562 * set vga decode state - true == enable VGA decode
15563 */
15564int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15565{
15566 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15567 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15568 u16 gmch_ctrl;
15569
75fa041d
CW
15570 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15571 DRM_ERROR("failed to read control word\n");
15572 return -EIO;
15573 }
15574
c0cc8a55
CW
15575 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15576 return 0;
15577
28d52043
DA
15578 if (state)
15579 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15580 else
15581 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15582
15583 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15584 DRM_ERROR("failed to write control word\n");
15585 return -EIO;
15586 }
15587
28d52043
DA
15588 return 0;
15589}
c4a1d9e4 15590
c4a1d9e4 15591struct intel_display_error_state {
ff57f1b0
PZ
15592
15593 u32 power_well_driver;
15594
63b66e5b
CW
15595 int num_transcoders;
15596
c4a1d9e4
CW
15597 struct intel_cursor_error_state {
15598 u32 control;
15599 u32 position;
15600 u32 base;
15601 u32 size;
52331309 15602 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15603
15604 struct intel_pipe_error_state {
ddf9c536 15605 bool power_domain_on;
c4a1d9e4 15606 u32 source;
f301b1e1 15607 u32 stat;
52331309 15608 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15609
15610 struct intel_plane_error_state {
15611 u32 control;
15612 u32 stride;
15613 u32 size;
15614 u32 pos;
15615 u32 addr;
15616 u32 surface;
15617 u32 tile_offset;
52331309 15618 } plane[I915_MAX_PIPES];
63b66e5b
CW
15619
15620 struct intel_transcoder_error_state {
ddf9c536 15621 bool power_domain_on;
63b66e5b
CW
15622 enum transcoder cpu_transcoder;
15623
15624 u32 conf;
15625
15626 u32 htotal;
15627 u32 hblank;
15628 u32 hsync;
15629 u32 vtotal;
15630 u32 vblank;
15631 u32 vsync;
15632 } transcoder[4];
c4a1d9e4
CW
15633};
15634
15635struct intel_display_error_state *
15636intel_display_capture_error_state(struct drm_device *dev)
15637{
fbee40df 15638 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15639 struct intel_display_error_state *error;
63b66e5b
CW
15640 int transcoders[] = {
15641 TRANSCODER_A,
15642 TRANSCODER_B,
15643 TRANSCODER_C,
15644 TRANSCODER_EDP,
15645 };
c4a1d9e4
CW
15646 int i;
15647
63b66e5b
CW
15648 if (INTEL_INFO(dev)->num_pipes == 0)
15649 return NULL;
15650
9d1cb914 15651 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15652 if (error == NULL)
15653 return NULL;
15654
190be112 15655 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15656 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15657
055e393f 15658 for_each_pipe(dev_priv, i) {
ddf9c536 15659 error->pipe[i].power_domain_on =
f458ebbc
DV
15660 __intel_display_power_is_enabled(dev_priv,
15661 POWER_DOMAIN_PIPE(i));
ddf9c536 15662 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15663 continue;
15664
5efb3e28
VS
15665 error->cursor[i].control = I915_READ(CURCNTR(i));
15666 error->cursor[i].position = I915_READ(CURPOS(i));
15667 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15668
15669 error->plane[i].control = I915_READ(DSPCNTR(i));
15670 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15671 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15672 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15673 error->plane[i].pos = I915_READ(DSPPOS(i));
15674 }
ca291363
PZ
15675 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15676 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15677 if (INTEL_INFO(dev)->gen >= 4) {
15678 error->plane[i].surface = I915_READ(DSPSURF(i));
15679 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15680 }
15681
c4a1d9e4 15682 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15683
3abfce77 15684 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15685 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15686 }
15687
15688 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15689 if (HAS_DDI(dev_priv->dev))
15690 error->num_transcoders++; /* Account for eDP. */
15691
15692 for (i = 0; i < error->num_transcoders; i++) {
15693 enum transcoder cpu_transcoder = transcoders[i];
15694
ddf9c536 15695 error->transcoder[i].power_domain_on =
f458ebbc 15696 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15697 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15698 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15699 continue;
15700
63b66e5b
CW
15701 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15702
15703 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15704 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15705 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15706 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15707 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15708 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15709 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15710 }
15711
15712 return error;
15713}
15714
edc3d884
MK
15715#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15716
c4a1d9e4 15717void
edc3d884 15718intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15719 struct drm_device *dev,
15720 struct intel_display_error_state *error)
15721{
055e393f 15722 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15723 int i;
15724
63b66e5b
CW
15725 if (!error)
15726 return;
15727
edc3d884 15728 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 15729 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 15730 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 15731 error->power_well_driver);
055e393f 15732 for_each_pipe(dev_priv, i) {
edc3d884 15733 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
15734 err_printf(m, " Power: %s\n",
15735 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 15736 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 15737 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
15738
15739 err_printf(m, "Plane [%d]:\n", i);
15740 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15741 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 15742 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
15743 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15744 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 15745 }
4b71a570 15746 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 15747 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 15748 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
15749 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15750 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
15751 }
15752
edc3d884
MK
15753 err_printf(m, "Cursor [%d]:\n", i);
15754 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15755 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15756 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 15757 }
63b66e5b
CW
15758
15759 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 15760 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 15761 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
15762 err_printf(m, " Power: %s\n",
15763 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
15764 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15765 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15766 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15767 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15768 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15769 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15770 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15771 }
c4a1d9e4 15772}
e2fcdaa9
VS
15773
15774void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15775{
15776 struct intel_crtc *crtc;
15777
15778 for_each_intel_crtc(dev, crtc) {
15779 struct intel_unpin_work *work;
e2fcdaa9 15780
5e2d7afc 15781 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
15782
15783 work = crtc->unpin_work;
15784
15785 if (work && work->event &&
15786 work->event->base.file_priv == file) {
15787 kfree(work->event);
15788 work->event = NULL;
15789 }
15790
5e2d7afc 15791 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
15792 }
15793}
This page took 3.031372 seconds and 5 git commands to generate.