drm/radeon/kms/atom: dpms bios scratch reg updates
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
23b2f8bb 27#include <linux/cpufreq.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
79e53945
JB
35#include "drmP.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
ab2c0672 40#include "drm_dp_helper.h"
79e53945 41#include "drm_crtc_helper.h"
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
7662c8bd 47static void intel_update_watermarks(struct drm_device *dev);
3dec0095 48static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 49static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
50
51typedef struct {
0206e353
AJ
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
79e53945
JB
61} intel_clock_t;
62
63typedef struct {
0206e353 64 int min, max;
79e53945
JB
65} intel_range_t;
66
67typedef struct {
0206e353
AJ
68 int dot_limit;
69 int p2_slow, p2_fast;
79e53945
JB
70} intel_p2_t;
71
72#define INTEL_P2_NUM 2
d4906093
ML
73typedef struct intel_limit intel_limit_t;
74struct intel_limit {
0206e353
AJ
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *);
d4906093 79};
79e53945 80
2377b741
JB
81/* FDI */
82#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
d4906093
ML
84static bool
85intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *best_clock);
87static bool
88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *best_clock);
79e53945 90
a4fc5ed6
KP
91static bool
92intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *best_clock);
5eb08b69 94static bool
f2b115e6
AJ
95intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *best_clock);
a4fc5ed6 97
021357ac
CW
98static inline u32 /* units of 100MHz */
99intel_fdi_link_freq(struct drm_device *dev)
100{
8b99e68c
CW
101 if (IS_GEN5(dev)) {
102 struct drm_i915_private *dev_priv = dev->dev_private;
103 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104 } else
105 return 27;
021357ac
CW
106}
107
e4b36699 108static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 2 },
d4906093 119 .find_pll = intel_find_best_PLL,
e4b36699
KP
120};
121
122static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
123 .dot = { .min = 25000, .max = 350000 },
124 .vco = { .min = 930000, .max = 1400000 },
125 .n = { .min = 3, .max = 16 },
126 .m = { .min = 96, .max = 140 },
127 .m1 = { .min = 18, .max = 26 },
128 .m2 = { .min = 6, .max = 16 },
129 .p = { .min = 4, .max = 128 },
130 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
131 .p2 = { .dot_limit = 165000,
132 .p2_slow = 14, .p2_fast = 7 },
d4906093 133 .find_pll = intel_find_best_PLL,
e4b36699 134};
273e27ca 135
e4b36699 136static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
137 .dot = { .min = 20000, .max = 400000 },
138 .vco = { .min = 1400000, .max = 2800000 },
139 .n = { .min = 1, .max = 6 },
140 .m = { .min = 70, .max = 120 },
141 .m1 = { .min = 10, .max = 22 },
142 .m2 = { .min = 5, .max = 9 },
143 .p = { .min = 5, .max = 80 },
144 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
145 .p2 = { .dot_limit = 200000,
146 .p2_slow = 10, .p2_fast = 5 },
d4906093 147 .find_pll = intel_find_best_PLL,
e4b36699
KP
148};
149
150static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
151 .dot = { .min = 20000, .max = 400000 },
152 .vco = { .min = 1400000, .max = 2800000 },
153 .n = { .min = 1, .max = 6 },
154 .m = { .min = 70, .max = 120 },
155 .m1 = { .min = 10, .max = 22 },
156 .m2 = { .min = 5, .max = 9 },
157 .p = { .min = 7, .max = 98 },
158 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
159 .p2 = { .dot_limit = 112000,
160 .p2_slow = 14, .p2_fast = 7 },
d4906093 161 .find_pll = intel_find_best_PLL,
e4b36699
KP
162};
163
273e27ca 164
e4b36699 165static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
166 .dot = { .min = 25000, .max = 270000 },
167 .vco = { .min = 1750000, .max = 3500000},
168 .n = { .min = 1, .max = 4 },
169 .m = { .min = 104, .max = 138 },
170 .m1 = { .min = 17, .max = 23 },
171 .m2 = { .min = 5, .max = 11 },
172 .p = { .min = 10, .max = 30 },
173 .p1 = { .min = 1, .max = 3},
174 .p2 = { .dot_limit = 270000,
175 .p2_slow = 10,
176 .p2_fast = 10
044c7c41 177 },
d4906093 178 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
179};
180
181static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
182 .dot = { .min = 22000, .max = 400000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 16, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 5, .max = 80 },
189 .p1 = { .min = 1, .max = 8},
190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 10, .p2_fast = 5 },
d4906093 192 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
193};
194
195static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
196 .dot = { .min = 20000, .max = 115000 },
197 .vco = { .min = 1750000, .max = 3500000 },
198 .n = { .min = 1, .max = 3 },
199 .m = { .min = 104, .max = 138 },
200 .m1 = { .min = 17, .max = 23 },
201 .m2 = { .min = 5, .max = 11 },
202 .p = { .min = 28, .max = 112 },
203 .p1 = { .min = 2, .max = 8 },
204 .p2 = { .dot_limit = 0,
205 .p2_slow = 14, .p2_fast = 14
044c7c41 206 },
d4906093 207 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
208};
209
210static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
211 .dot = { .min = 80000, .max = 224000 },
212 .vco = { .min = 1750000, .max = 3500000 },
213 .n = { .min = 1, .max = 3 },
214 .m = { .min = 104, .max = 138 },
215 .m1 = { .min = 17, .max = 23 },
216 .m2 = { .min = 5, .max = 11 },
217 .p = { .min = 14, .max = 42 },
218 .p1 = { .min = 2, .max = 6 },
219 .p2 = { .dot_limit = 0,
220 .p2_slow = 7, .p2_fast = 7
044c7c41 221 },
d4906093 222 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
223};
224
225static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
226 .dot = { .min = 161670, .max = 227000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 2 },
229 .m = { .min = 97, .max = 108 },
230 .m1 = { .min = 0x10, .max = 0x12 },
231 .m2 = { .min = 0x05, .max = 0x06 },
232 .p = { .min = 10, .max = 20 },
233 .p1 = { .min = 1, .max = 2},
234 .p2 = { .dot_limit = 0,
273e27ca 235 .p2_slow = 10, .p2_fast = 10 },
0206e353 236 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
237};
238
f2b115e6 239static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
240 .dot = { .min = 20000, .max = 400000},
241 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 242 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
243 .n = { .min = 3, .max = 6 },
244 .m = { .min = 2, .max = 256 },
273e27ca 245 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
246 .m1 = { .min = 0, .max = 0 },
247 .m2 = { .min = 0, .max = 254 },
248 .p = { .min = 5, .max = 80 },
249 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
250 .p2 = { .dot_limit = 200000,
251 .p2_slow = 10, .p2_fast = 5 },
6115707b 252 .find_pll = intel_find_best_PLL,
e4b36699
KP
253};
254
f2b115e6 255static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1700000, .max = 3500000 },
258 .n = { .min = 3, .max = 6 },
259 .m = { .min = 2, .max = 256 },
260 .m1 = { .min = 0, .max = 0 },
261 .m2 = { .min = 0, .max = 254 },
262 .p = { .min = 7, .max = 112 },
263 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 14 },
6115707b 266 .find_pll = intel_find_best_PLL,
e4b36699
KP
267};
268
273e27ca
EA
269/* Ironlake / Sandybridge
270 *
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2).
273 */
b91ad0ec 274static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 5 },
278 .m = { .min = 79, .max = 127 },
279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 10, .p2_fast = 5 },
4547668a 285 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
286};
287
b91ad0ec 288static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 1760000, .max = 3510000 },
291 .n = { .min = 1, .max = 3 },
292 .m = { .min = 79, .max = 118 },
293 .m1 = { .min = 12, .max = 22 },
294 .m2 = { .min = 5, .max = 9 },
295 .p = { .min = 28, .max = 112 },
296 .p1 = { .min = 2, .max = 8 },
297 .p2 = { .dot_limit = 225000,
298 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
299 .find_pll = intel_g4x_find_best_PLL,
300};
301
302static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 56 },
310 .p1 = { .min = 2, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
313 .find_pll = intel_g4x_find_best_PLL,
314};
315
273e27ca 316/* LVDS 100mhz refclk limits. */
b91ad0ec 317static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 2 },
321 .m = { .min = 79, .max = 126 },
322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 },
0206e353 325 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
328 .find_pll = intel_g4x_find_best_PLL,
329};
330
331static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 126 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 42 },
0206e353 339 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
342 .find_pll = intel_g4x_find_best_PLL,
343};
344
345static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000},
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 81, .max = 90 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 10, .max = 20 },
353 .p1 = { .min = 1, .max = 2},
354 .p2 = { .dot_limit = 0,
273e27ca 355 .p2_slow = 10, .p2_fast = 10 },
0206e353 356 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
357};
358
1b894b59
CW
359static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360 int refclk)
2c07245f 361{
b91ad0ec
ZW
362 struct drm_device *dev = crtc->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 364 const intel_limit_t *limit;
b91ad0ec
ZW
365
366 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b91ad0ec
ZW
367 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368 LVDS_CLKB_POWER_UP) {
369 /* LVDS dual channel */
1b894b59 370 if (refclk == 100000)
b91ad0ec
ZW
371 limit = &intel_limits_ironlake_dual_lvds_100m;
372 else
373 limit = &intel_limits_ironlake_dual_lvds;
374 } else {
1b894b59 375 if (refclk == 100000)
b91ad0ec
ZW
376 limit = &intel_limits_ironlake_single_lvds_100m;
377 else
378 limit = &intel_limits_ironlake_single_lvds;
379 }
380 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
381 HAS_eDP)
382 limit = &intel_limits_ironlake_display_port;
2c07245f 383 else
b91ad0ec 384 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
385
386 return limit;
387}
388
044c7c41
ML
389static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390{
391 struct drm_device *dev = crtc->dev;
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 const intel_limit_t *limit;
394
395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 LVDS_CLKB_POWER_UP)
398 /* LVDS with dual channel */
e4b36699 399 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
400 else
401 /* LVDS with dual channel */
e4b36699 402 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 405 limit = &intel_limits_g4x_hdmi;
044c7c41 406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 407 limit = &intel_limits_g4x_sdvo;
0206e353 408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 409 limit = &intel_limits_g4x_display_port;
044c7c41 410 } else /* The option is for other outputs */
e4b36699 411 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
412
413 return limit;
414}
415
1b894b59 416static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
417{
418 struct drm_device *dev = crtc->dev;
419 const intel_limit_t *limit;
420
bad720ff 421 if (HAS_PCH_SPLIT(dev))
1b894b59 422 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 423 else if (IS_G4X(dev)) {
044c7c41 424 limit = intel_g4x_limit(crtc);
f2b115e6 425 } else if (IS_PINEVIEW(dev)) {
2177832f 426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 427 limit = &intel_limits_pineview_lvds;
2177832f 428 else
f2b115e6 429 limit = &intel_limits_pineview_sdvo;
a6c45cf0
CW
430 } else if (!IS_GEN2(dev)) {
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432 limit = &intel_limits_i9xx_lvds;
433 else
434 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
435 } else {
436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 437 limit = &intel_limits_i8xx_lvds;
79e53945 438 else
e4b36699 439 limit = &intel_limits_i8xx_dvo;
79e53945
JB
440 }
441 return limit;
442}
443
f2b115e6
AJ
444/* m1 is reserved as 0 in Pineview, n is a ring counter */
445static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 446{
2177832f
SL
447 clock->m = clock->m2 + 2;
448 clock->p = clock->p1 * clock->p2;
449 clock->vco = refclk * clock->m / clock->n;
450 clock->dot = clock->vco / clock->p;
451}
452
453static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454{
f2b115e6
AJ
455 if (IS_PINEVIEW(dev)) {
456 pineview_clock(refclk, clock);
2177832f
SL
457 return;
458 }
79e53945
JB
459 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460 clock->p = clock->p1 * clock->p2;
461 clock->vco = refclk * clock->m / (clock->n + 2);
462 clock->dot = clock->vco / clock->p;
463}
464
79e53945
JB
465/**
466 * Returns whether any output on the specified pipe is of the specified type
467 */
4ef69c7a 468bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 469{
4ef69c7a
CW
470 struct drm_device *dev = crtc->dev;
471 struct drm_mode_config *mode_config = &dev->mode_config;
472 struct intel_encoder *encoder;
473
474 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475 if (encoder->base.crtc == crtc && encoder->type == type)
476 return true;
477
478 return false;
79e53945
JB
479}
480
7c04d1d9 481#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
482/**
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
485 */
486
1b894b59
CW
487static bool intel_PLL_is_valid(struct drm_device *dev,
488 const intel_limit_t *limit,
489 const intel_clock_t *clock)
79e53945 490{
79e53945 491 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 492 INTELPllInvalid("p1 out of range\n");
79e53945 493 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 494 INTELPllInvalid("p out of range\n");
79e53945 495 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 496 INTELPllInvalid("m2 out of range\n");
79e53945 497 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 498 INTELPllInvalid("m1 out of range\n");
f2b115e6 499 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 500 INTELPllInvalid("m1 <= m2\n");
79e53945 501 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 502 INTELPllInvalid("m out of range\n");
79e53945 503 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 504 INTELPllInvalid("n out of range\n");
79e53945 505 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 506 INTELPllInvalid("vco out of range\n");
79e53945
JB
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range.
509 */
510 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 511 INTELPllInvalid("dot out of range\n");
79e53945
JB
512
513 return true;
514}
515
d4906093
ML
516static bool
517intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518 int target, int refclk, intel_clock_t *best_clock)
519
79e53945
JB
520{
521 struct drm_device *dev = crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private;
523 intel_clock_t clock;
79e53945
JB
524 int err = target;
525
bc5e5718 526 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 527 (I915_READ(LVDS)) != 0) {
79e53945
JB
528 /*
529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we
532 * even can.
533 */
534 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 LVDS_CLKB_POWER_UP)
536 clock.p2 = limit->p2.p2_fast;
537 else
538 clock.p2 = limit->p2.p2_slow;
539 } else {
540 if (target < limit->p2.dot_limit)
541 clock.p2 = limit->p2.p2_slow;
542 else
543 clock.p2 = limit->p2.p2_fast;
544 }
545
0206e353 546 memset(best_clock, 0, sizeof(*best_clock));
79e53945 547
42158660
ZY
548 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 clock.m1++) {
550 for (clock.m2 = limit->m2.min;
551 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
552 /* m1 is always 0 in Pineview */
553 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
554 break;
555 for (clock.n = limit->n.min;
556 clock.n <= limit->n.max; clock.n++) {
557 for (clock.p1 = limit->p1.min;
558 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
559 int this_err;
560
2177832f 561 intel_clock(dev, refclk, &clock);
1b894b59
CW
562 if (!intel_PLL_is_valid(dev, limit,
563 &clock))
79e53945
JB
564 continue;
565
566 this_err = abs(clock.dot - target);
567 if (this_err < err) {
568 *best_clock = clock;
569 err = this_err;
570 }
571 }
572 }
573 }
574 }
575
576 return (err != target);
577}
578
d4906093
ML
579static bool
580intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581 int target, int refclk, intel_clock_t *best_clock)
582{
583 struct drm_device *dev = crtc->dev;
584 struct drm_i915_private *dev_priv = dev->dev_private;
585 intel_clock_t clock;
586 int max_n;
587 bool found;
6ba770dc
AJ
588 /* approximately equals target * 0.00585 */
589 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
590 found = false;
591
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
593 int lvds_reg;
594
c619eed4 595 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
596 lvds_reg = PCH_LVDS;
597 else
598 lvds_reg = LVDS;
599 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
600 LVDS_CLKB_POWER_UP)
601 clock.p2 = limit->p2.p2_fast;
602 else
603 clock.p2 = limit->p2.p2_slow;
604 } else {
605 if (target < limit->p2.dot_limit)
606 clock.p2 = limit->p2.p2_slow;
607 else
608 clock.p2 = limit->p2.p2_fast;
609 }
610
611 memset(best_clock, 0, sizeof(*best_clock));
612 max_n = limit->n.max;
f77f13e2 613 /* based on hardware requirement, prefer smaller n to precision */
d4906093 614 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 615 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
616 for (clock.m1 = limit->m1.max;
617 clock.m1 >= limit->m1.min; clock.m1--) {
618 for (clock.m2 = limit->m2.max;
619 clock.m2 >= limit->m2.min; clock.m2--) {
620 for (clock.p1 = limit->p1.max;
621 clock.p1 >= limit->p1.min; clock.p1--) {
622 int this_err;
623
2177832f 624 intel_clock(dev, refclk, &clock);
1b894b59
CW
625 if (!intel_PLL_is_valid(dev, limit,
626 &clock))
d4906093 627 continue;
1b894b59
CW
628
629 this_err = abs(clock.dot - target);
d4906093
ML
630 if (this_err < err_most) {
631 *best_clock = clock;
632 err_most = this_err;
633 max_n = clock.n;
634 found = true;
635 }
636 }
637 }
638 }
639 }
2c07245f
ZW
640 return found;
641}
642
5eb08b69 643static bool
f2b115e6
AJ
644intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *best_clock)
5eb08b69
ZW
646{
647 struct drm_device *dev = crtc->dev;
648 intel_clock_t clock;
4547668a 649
5eb08b69
ZW
650 if (target < 200000) {
651 clock.n = 1;
652 clock.p1 = 2;
653 clock.p2 = 10;
654 clock.m1 = 12;
655 clock.m2 = 9;
656 } else {
657 clock.n = 2;
658 clock.p1 = 1;
659 clock.p2 = 10;
660 clock.m1 = 14;
661 clock.m2 = 8;
662 }
663 intel_clock(dev, refclk, &clock);
664 memcpy(best_clock, &clock, sizeof(intel_clock_t));
665 return true;
666}
667
a4fc5ed6
KP
668/* DisplayPort has only two frequencies, 162MHz and 270MHz */
669static bool
670intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671 int target, int refclk, intel_clock_t *best_clock)
672{
5eddb70b
CW
673 intel_clock_t clock;
674 if (target < 200000) {
675 clock.p1 = 2;
676 clock.p2 = 10;
677 clock.n = 2;
678 clock.m1 = 23;
679 clock.m2 = 8;
680 } else {
681 clock.p1 = 1;
682 clock.p2 = 10;
683 clock.n = 1;
684 clock.m1 = 14;
685 clock.m2 = 2;
686 }
687 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688 clock.p = (clock.p1 * clock.p2);
689 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690 clock.vco = 0;
691 memcpy(best_clock, &clock, sizeof(intel_clock_t));
692 return true;
a4fc5ed6
KP
693}
694
9d0498a2
JB
695/**
696 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @dev: drm device
698 * @pipe: pipe to wait for
699 *
700 * Wait for vblank to occur on a given pipe. Needed for various bits of
701 * mode setting code.
702 */
703void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 704{
9d0498a2 705 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 706 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 707
300387c0
CW
708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well.
710 *
711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on
717 * vblanks...
718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers.
720 */
721 I915_WRITE(pipestat_reg,
722 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
9d0498a2 724 /* Wait for vblank interrupt bit to set */
481b6af3
CW
725 if (wait_for(I915_READ(pipestat_reg) &
726 PIPE_VBLANK_INTERRUPT_STATUS,
727 50))
9d0498a2
JB
728 DRM_DEBUG_KMS("vblank wait timed out\n");
729}
730
ab7ad7f6
KP
731/*
732 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
733 * @dev: drm device
734 * @pipe: pipe to wait for
735 *
736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled.
739 *
ab7ad7f6
KP
740 * On Gen4 and above:
741 * wait for the pipe register state bit to turn off
742 *
743 * Otherwise:
744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame).
58e10eb9 746 *
9d0498a2 747 */
58e10eb9 748void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
749{
750 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
751
752 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 753 int reg = PIPECONF(pipe);
ab7ad7f6
KP
754
755 /* Wait for the Pipe State to go off */
58e10eb9
CW
756 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757 100))
ab7ad7f6
KP
758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
759 } else {
760 u32 last_line;
58e10eb9 761 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
762 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764 /* Wait for the display line to settle */
765 do {
58e10eb9 766 last_line = I915_READ(reg) & DSL_LINEMASK;
ab7ad7f6 767 mdelay(5);
58e10eb9 768 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
ab7ad7f6
KP
769 time_after(timeout, jiffies));
770 if (time_after(jiffies, timeout))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
772 }
79e53945
JB
773}
774
b24e7179
JB
775static const char *state_string(bool enabled)
776{
777 return enabled ? "on" : "off";
778}
779
780/* Only for pre-ILK configs */
781static void assert_pll(struct drm_i915_private *dev_priv,
782 enum pipe pipe, bool state)
783{
784 int reg;
785 u32 val;
786 bool cur_state;
787
788 reg = DPLL(pipe);
789 val = I915_READ(reg);
790 cur_state = !!(val & DPLL_VCO_ENABLE);
791 WARN(cur_state != state,
792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state), state_string(cur_state));
794}
795#define assert_pll_enabled(d, p) assert_pll(d, p, true)
796#define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
040484af
JB
798/* For ILK+ */
799static void assert_pch_pll(struct drm_i915_private *dev_priv,
800 enum pipe pipe, bool state)
801{
802 int reg;
803 u32 val;
804 bool cur_state;
805
d3ccbe86
JB
806 if (HAS_PCH_CPT(dev_priv->dev)) {
807 u32 pch_dpll;
808
809 pch_dpll = I915_READ(PCH_DPLL_SEL);
810
811 /* Make sure the selected PLL is enabled to the transcoder */
812 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813 "transcoder %d PLL not enabled\n", pipe);
814
815 /* Convert the transcoder pipe number to a pll pipe number */
816 pipe = (pch_dpll >> (4 * pipe)) & 1;
817 }
818
040484af
JB
819 reg = PCH_DPLL(pipe);
820 val = I915_READ(reg);
821 cur_state = !!(val & DPLL_VCO_ENABLE);
822 WARN(cur_state != state,
823 "PCH PLL state assertion failure (expected %s, current %s)\n",
824 state_string(state), state_string(cur_state));
825}
826#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828
829static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830 enum pipe pipe, bool state)
831{
832 int reg;
833 u32 val;
834 bool cur_state;
835
836 reg = FDI_TX_CTL(pipe);
837 val = I915_READ(reg);
838 cur_state = !!(val & FDI_TX_ENABLE);
839 WARN(cur_state != state,
840 "FDI TX state assertion failure (expected %s, current %s)\n",
841 state_string(state), state_string(cur_state));
842}
843#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845
846static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847 enum pipe pipe, bool state)
848{
849 int reg;
850 u32 val;
851 bool cur_state;
852
853 reg = FDI_RX_CTL(pipe);
854 val = I915_READ(reg);
855 cur_state = !!(val & FDI_RX_ENABLE);
856 WARN(cur_state != state,
857 "FDI RX state assertion failure (expected %s, current %s)\n",
858 state_string(state), state_string(cur_state));
859}
860#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862
863static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864 enum pipe pipe)
865{
866 int reg;
867 u32 val;
868
869 /* ILK FDI PLL is always enabled */
870 if (dev_priv->info->gen == 5)
871 return;
872
873 reg = FDI_TX_CTL(pipe);
874 val = I915_READ(reg);
875 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876}
877
878static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879 enum pipe pipe)
880{
881 int reg;
882 u32 val;
883
884 reg = FDI_RX_CTL(pipe);
885 val = I915_READ(reg);
886 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887}
888
ea0760cf
JB
889static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890 enum pipe pipe)
891{
892 int pp_reg, lvds_reg;
893 u32 val;
894 enum pipe panel_pipe = PIPE_A;
0de3b485 895 bool locked = true;
ea0760cf
JB
896
897 if (HAS_PCH_SPLIT(dev_priv->dev)) {
898 pp_reg = PCH_PP_CONTROL;
899 lvds_reg = PCH_LVDS;
900 } else {
901 pp_reg = PP_CONTROL;
902 lvds_reg = LVDS;
903 }
904
905 val = I915_READ(pp_reg);
906 if (!(val & PANEL_POWER_ON) ||
907 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908 locked = false;
909
910 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911 panel_pipe = PIPE_B;
912
913 WARN(panel_pipe == pipe && locked,
914 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 915 pipe_name(pipe));
ea0760cf
JB
916}
917
b840d907
JB
918void assert_pipe(struct drm_i915_private *dev_priv,
919 enum pipe pipe, bool state)
b24e7179
JB
920{
921 int reg;
922 u32 val;
63d7bbe9 923 bool cur_state;
b24e7179
JB
924
925 reg = PIPECONF(pipe);
926 val = I915_READ(reg);
63d7bbe9
JB
927 cur_state = !!(val & PIPECONF_ENABLE);
928 WARN(cur_state != state,
929 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 930 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
931}
932
933static void assert_plane_enabled(struct drm_i915_private *dev_priv,
934 enum plane plane)
935{
936 int reg;
937 u32 val;
938
939 reg = DSPCNTR(plane);
940 val = I915_READ(reg);
941 WARN(!(val & DISPLAY_PLANE_ENABLE),
942 "plane %c assertion failure, should be active but is disabled\n",
9db4a9c7 943 plane_name(plane));
b24e7179
JB
944}
945
946static void assert_planes_disabled(struct drm_i915_private *dev_priv,
947 enum pipe pipe)
948{
949 int reg, i;
950 u32 val;
951 int cur_pipe;
952
19ec1358
JB
953 /* Planes are fixed to pipes on ILK+ */
954 if (HAS_PCH_SPLIT(dev_priv->dev))
955 return;
956
b24e7179
JB
957 /* Need to check both planes against the pipe */
958 for (i = 0; i < 2; i++) {
959 reg = DSPCNTR(i);
960 val = I915_READ(reg);
961 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
962 DISPPLANE_SEL_PIPE_SHIFT;
963 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
964 "plane %c assertion failure, should be off on pipe %c but is still active\n",
965 plane_name(i), pipe_name(pipe));
b24e7179
JB
966 }
967}
968
92f2584a
JB
969static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
970{
971 u32 val;
972 bool enabled;
973
974 val = I915_READ(PCH_DREF_CONTROL);
975 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
976 DREF_SUPERSPREAD_SOURCE_MASK));
977 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
978}
979
980static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
981 enum pipe pipe)
982{
983 int reg;
984 u32 val;
985 bool enabled;
986
987 reg = TRANSCONF(pipe);
988 val = I915_READ(reg);
989 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
990 WARN(enabled,
991 "transcoder assertion failed, should be off on pipe %c but is still active\n",
992 pipe_name(pipe));
92f2584a
JB
993}
994
4e634389
KP
995static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
996 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
997{
998 if ((val & DP_PORT_EN) == 0)
999 return false;
1000
1001 if (HAS_PCH_CPT(dev_priv->dev)) {
1002 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1003 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1004 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1005 return false;
1006 } else {
1007 if ((val & DP_PIPE_MASK) != (pipe << 30))
1008 return false;
1009 }
1010 return true;
1011}
1012
1519b995
KP
1013static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1014 enum pipe pipe, u32 val)
1015{
1016 if ((val & PORT_ENABLE) == 0)
1017 return false;
1018
1019 if (HAS_PCH_CPT(dev_priv->dev)) {
1020 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1021 return false;
1022 } else {
1023 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1024 return false;
1025 }
1026 return true;
1027}
1028
1029static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1030 enum pipe pipe, u32 val)
1031{
1032 if ((val & LVDS_PORT_EN) == 0)
1033 return false;
1034
1035 if (HAS_PCH_CPT(dev_priv->dev)) {
1036 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1037 return false;
1038 } else {
1039 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1040 return false;
1041 }
1042 return true;
1043}
1044
1045static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, u32 val)
1047{
1048 if ((val & ADPA_DAC_ENABLE) == 0)
1049 return false;
1050 if (HAS_PCH_CPT(dev_priv->dev)) {
1051 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1052 return false;
1053 } else {
1054 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1055 return false;
1056 }
1057 return true;
1058}
1059
291906f1 1060static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1061 enum pipe pipe, int reg, u32 port_sel)
291906f1 1062{
47a05eca 1063 u32 val = I915_READ(reg);
4e634389 1064 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1065 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1066 reg, pipe_name(pipe));
291906f1
JB
1067}
1068
1069static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1070 enum pipe pipe, int reg)
1071{
47a05eca 1072 u32 val = I915_READ(reg);
1519b995 1073 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
291906f1 1074 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1075 reg, pipe_name(pipe));
291906f1
JB
1076}
1077
1078static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1079 enum pipe pipe)
1080{
1081 int reg;
1082 u32 val;
291906f1 1083
f0575e92
KP
1084 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1085 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1086 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1087
1088 reg = PCH_ADPA;
1089 val = I915_READ(reg);
1519b995 1090 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
291906f1 1091 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1092 pipe_name(pipe));
291906f1
JB
1093
1094 reg = PCH_LVDS;
1095 val = I915_READ(reg);
1519b995 1096 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
291906f1 1097 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1098 pipe_name(pipe));
291906f1
JB
1099
1100 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1101 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1102 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1103}
1104
63d7bbe9
JB
1105/**
1106 * intel_enable_pll - enable a PLL
1107 * @dev_priv: i915 private structure
1108 * @pipe: pipe PLL to enable
1109 *
1110 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1111 * make sure the PLL reg is writable first though, since the panel write
1112 * protect mechanism may be enabled.
1113 *
1114 * Note! This is for pre-ILK only.
1115 */
1116static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1117{
1118 int reg;
1119 u32 val;
1120
1121 /* No really, not for ILK+ */
1122 BUG_ON(dev_priv->info->gen >= 5);
1123
1124 /* PLL is protected by panel, make sure we can write it */
1125 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1126 assert_panel_unlocked(dev_priv, pipe);
1127
1128 reg = DPLL(pipe);
1129 val = I915_READ(reg);
1130 val |= DPLL_VCO_ENABLE;
1131
1132 /* We do this three times for luck */
1133 I915_WRITE(reg, val);
1134 POSTING_READ(reg);
1135 udelay(150); /* wait for warmup */
1136 I915_WRITE(reg, val);
1137 POSTING_READ(reg);
1138 udelay(150); /* wait for warmup */
1139 I915_WRITE(reg, val);
1140 POSTING_READ(reg);
1141 udelay(150); /* wait for warmup */
1142}
1143
1144/**
1145 * intel_disable_pll - disable a PLL
1146 * @dev_priv: i915 private structure
1147 * @pipe: pipe PLL to disable
1148 *
1149 * Disable the PLL for @pipe, making sure the pipe is off first.
1150 *
1151 * Note! This is for pre-ILK only.
1152 */
1153static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1154{
1155 int reg;
1156 u32 val;
1157
1158 /* Don't disable pipe A or pipe A PLLs if needed */
1159 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1160 return;
1161
1162 /* Make sure the pipe isn't still relying on us */
1163 assert_pipe_disabled(dev_priv, pipe);
1164
1165 reg = DPLL(pipe);
1166 val = I915_READ(reg);
1167 val &= ~DPLL_VCO_ENABLE;
1168 I915_WRITE(reg, val);
1169 POSTING_READ(reg);
1170}
1171
92f2584a
JB
1172/**
1173 * intel_enable_pch_pll - enable PCH PLL
1174 * @dev_priv: i915 private structure
1175 * @pipe: pipe PLL to enable
1176 *
1177 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1178 * drives the transcoder clock.
1179 */
1180static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182{
1183 int reg;
1184 u32 val;
1185
4c609cb8
JB
1186 if (pipe > 1)
1187 return;
1188
92f2584a
JB
1189 /* PCH only available on ILK+ */
1190 BUG_ON(dev_priv->info->gen < 5);
1191
1192 /* PCH refclock must be enabled first */
1193 assert_pch_refclk_enabled(dev_priv);
1194
1195 reg = PCH_DPLL(pipe);
1196 val = I915_READ(reg);
1197 val |= DPLL_VCO_ENABLE;
1198 I915_WRITE(reg, val);
1199 POSTING_READ(reg);
1200 udelay(200);
1201}
1202
1203static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1205{
1206 int reg;
7a419866
JB
1207 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1208 pll_sel = TRANSC_DPLL_ENABLE;
92f2584a 1209
4c609cb8
JB
1210 if (pipe > 1)
1211 return;
1212
92f2584a
JB
1213 /* PCH only available on ILK+ */
1214 BUG_ON(dev_priv->info->gen < 5);
1215
1216 /* Make sure transcoder isn't still depending on us */
1217 assert_transcoder_disabled(dev_priv, pipe);
1218
7a419866
JB
1219 if (pipe == 0)
1220 pll_sel |= TRANSC_DPLLA_SEL;
1221 else if (pipe == 1)
1222 pll_sel |= TRANSC_DPLLB_SEL;
1223
1224
1225 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1226 return;
1227
92f2584a
JB
1228 reg = PCH_DPLL(pipe);
1229 val = I915_READ(reg);
1230 val &= ~DPLL_VCO_ENABLE;
1231 I915_WRITE(reg, val);
1232 POSTING_READ(reg);
1233 udelay(200);
1234}
1235
040484af
JB
1236static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1237 enum pipe pipe)
1238{
1239 int reg;
1240 u32 val;
1241
1242 /* PCH only available on ILK+ */
1243 BUG_ON(dev_priv->info->gen < 5);
1244
1245 /* Make sure PCH DPLL is enabled */
1246 assert_pch_pll_enabled(dev_priv, pipe);
1247
1248 /* FDI must be feeding us bits for PCH ports */
1249 assert_fdi_tx_enabled(dev_priv, pipe);
1250 assert_fdi_rx_enabled(dev_priv, pipe);
1251
1252 reg = TRANSCONF(pipe);
1253 val = I915_READ(reg);
e9bcff5c
JB
1254
1255 if (HAS_PCH_IBX(dev_priv->dev)) {
1256 /*
1257 * make the BPC in transcoder be consistent with
1258 * that in pipeconf reg.
1259 */
1260 val &= ~PIPE_BPC_MASK;
1261 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1262 }
040484af
JB
1263 I915_WRITE(reg, val | TRANS_ENABLE);
1264 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1265 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1266}
1267
1268static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1269 enum pipe pipe)
1270{
1271 int reg;
1272 u32 val;
1273
1274 /* FDI relies on the transcoder */
1275 assert_fdi_tx_disabled(dev_priv, pipe);
1276 assert_fdi_rx_disabled(dev_priv, pipe);
1277
291906f1
JB
1278 /* Ports must be off as well */
1279 assert_pch_ports_disabled(dev_priv, pipe);
1280
040484af
JB
1281 reg = TRANSCONF(pipe);
1282 val = I915_READ(reg);
1283 val &= ~TRANS_ENABLE;
1284 I915_WRITE(reg, val);
1285 /* wait for PCH transcoder off, transcoder state */
1286 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1287 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1288}
1289
b24e7179 1290/**
309cfea8 1291 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1292 * @dev_priv: i915 private structure
1293 * @pipe: pipe to enable
040484af 1294 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1295 *
1296 * Enable @pipe, making sure that various hardware specific requirements
1297 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1298 *
1299 * @pipe should be %PIPE_A or %PIPE_B.
1300 *
1301 * Will wait until the pipe is actually running (i.e. first vblank) before
1302 * returning.
1303 */
040484af
JB
1304static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1305 bool pch_port)
b24e7179
JB
1306{
1307 int reg;
1308 u32 val;
1309
1310 /*
1311 * A pipe without a PLL won't actually be able to drive bits from
1312 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1313 * need the check.
1314 */
1315 if (!HAS_PCH_SPLIT(dev_priv->dev))
1316 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1317 else {
1318 if (pch_port) {
1319 /* if driving the PCH, we need FDI enabled */
1320 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1321 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1322 }
1323 /* FIXME: assert CPU port conditions for SNB+ */
1324 }
b24e7179
JB
1325
1326 reg = PIPECONF(pipe);
1327 val = I915_READ(reg);
00d70b15
CW
1328 if (val & PIPECONF_ENABLE)
1329 return;
1330
1331 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1332 intel_wait_for_vblank(dev_priv->dev, pipe);
1333}
1334
1335/**
309cfea8 1336 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1337 * @dev_priv: i915 private structure
1338 * @pipe: pipe to disable
1339 *
1340 * Disable @pipe, making sure that various hardware specific requirements
1341 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1342 *
1343 * @pipe should be %PIPE_A or %PIPE_B.
1344 *
1345 * Will wait until the pipe has shut down before returning.
1346 */
1347static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1348 enum pipe pipe)
1349{
1350 int reg;
1351 u32 val;
1352
1353 /*
1354 * Make sure planes won't keep trying to pump pixels to us,
1355 * or we might hang the display.
1356 */
1357 assert_planes_disabled(dev_priv, pipe);
1358
1359 /* Don't disable pipe A or pipe A PLLs if needed */
1360 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1361 return;
1362
1363 reg = PIPECONF(pipe);
1364 val = I915_READ(reg);
00d70b15
CW
1365 if ((val & PIPECONF_ENABLE) == 0)
1366 return;
1367
1368 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1369 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1370}
1371
d74362c9
KP
1372/*
1373 * Plane regs are double buffered, going from enabled->disabled needs a
1374 * trigger in order to latch. The display address reg provides this.
1375 */
1376static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1377 enum plane plane)
1378{
1379 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1380 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1381}
1382
b24e7179
JB
1383/**
1384 * intel_enable_plane - enable a display plane on a given pipe
1385 * @dev_priv: i915 private structure
1386 * @plane: plane to enable
1387 * @pipe: pipe being fed
1388 *
1389 * Enable @plane on @pipe, making sure that @pipe is running first.
1390 */
1391static void intel_enable_plane(struct drm_i915_private *dev_priv,
1392 enum plane plane, enum pipe pipe)
1393{
1394 int reg;
1395 u32 val;
1396
1397 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1398 assert_pipe_enabled(dev_priv, pipe);
1399
1400 reg = DSPCNTR(plane);
1401 val = I915_READ(reg);
00d70b15
CW
1402 if (val & DISPLAY_PLANE_ENABLE)
1403 return;
1404
1405 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1406 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1407 intel_wait_for_vblank(dev_priv->dev, pipe);
1408}
1409
b24e7179
JB
1410/**
1411 * intel_disable_plane - disable a display plane
1412 * @dev_priv: i915 private structure
1413 * @plane: plane to disable
1414 * @pipe: pipe consuming the data
1415 *
1416 * Disable @plane; should be an independent operation.
1417 */
1418static void intel_disable_plane(struct drm_i915_private *dev_priv,
1419 enum plane plane, enum pipe pipe)
1420{
1421 int reg;
1422 u32 val;
1423
1424 reg = DSPCNTR(plane);
1425 val = I915_READ(reg);
00d70b15
CW
1426 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1427 return;
1428
1429 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1430 intel_flush_display_plane(dev_priv, plane);
1431 intel_wait_for_vblank(dev_priv->dev, pipe);
1432}
1433
47a05eca 1434static void disable_pch_dp(struct drm_i915_private *dev_priv,
f0575e92 1435 enum pipe pipe, int reg, u32 port_sel)
47a05eca
JB
1436{
1437 u32 val = I915_READ(reg);
4e634389 1438 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
f0575e92 1439 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
47a05eca 1440 I915_WRITE(reg, val & ~DP_PORT_EN);
f0575e92 1441 }
47a05eca
JB
1442}
1443
1444static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1445 enum pipe pipe, int reg)
1446{
1447 u32 val = I915_READ(reg);
1519b995 1448 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
f0575e92
KP
1449 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1450 reg, pipe);
47a05eca 1451 I915_WRITE(reg, val & ~PORT_ENABLE);
f0575e92 1452 }
47a05eca
JB
1453}
1454
1455/* Disable any ports connected to this transcoder */
1456static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1457 enum pipe pipe)
1458{
1459 u32 reg, val;
1460
1461 val = I915_READ(PCH_PP_CONTROL);
1462 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1463
f0575e92
KP
1464 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1465 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1466 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
47a05eca
JB
1467
1468 reg = PCH_ADPA;
1469 val = I915_READ(reg);
1519b995 1470 if (adpa_pipe_enabled(dev_priv, val, pipe))
47a05eca
JB
1471 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1472
1473 reg = PCH_LVDS;
1474 val = I915_READ(reg);
1519b995
KP
1475 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1476 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
47a05eca
JB
1477 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1478 POSTING_READ(reg);
1479 udelay(100);
1480 }
1481
1482 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1483 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1484 disable_pch_hdmi(dev_priv, pipe, HDMID);
1485}
1486
43a9539f
CW
1487static void i8xx_disable_fbc(struct drm_device *dev)
1488{
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490 u32 fbc_ctl;
1491
1492 /* Disable compression */
1493 fbc_ctl = I915_READ(FBC_CONTROL);
1494 if ((fbc_ctl & FBC_CTL_EN) == 0)
1495 return;
1496
1497 fbc_ctl &= ~FBC_CTL_EN;
1498 I915_WRITE(FBC_CONTROL, fbc_ctl);
1499
1500 /* Wait for compressing bit to clear */
1501 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1502 DRM_DEBUG_KMS("FBC idle timed out\n");
1503 return;
1504 }
1505
1506 DRM_DEBUG_KMS("disabled FBC\n");
1507}
1508
80824003
JB
1509static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1510{
1511 struct drm_device *dev = crtc->dev;
1512 struct drm_i915_private *dev_priv = dev->dev_private;
1513 struct drm_framebuffer *fb = crtc->fb;
1514 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1515 struct drm_i915_gem_object *obj = intel_fb->obj;
80824003 1516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
016b9b61 1517 int cfb_pitch;
80824003
JB
1518 int plane, i;
1519 u32 fbc_ctl, fbc_ctl2;
1520
016b9b61 1521 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
01f2c773
VS
1522 if (fb->pitches[0] < cfb_pitch)
1523 cfb_pitch = fb->pitches[0];
80824003
JB
1524
1525 /* FBC_CTL wants 64B units */
016b9b61
CW
1526 cfb_pitch = (cfb_pitch / 64) - 1;
1527 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
80824003
JB
1528
1529 /* Clear old tags */
1530 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1531 I915_WRITE(FBC_TAG + (i * 4), 0);
1532
1533 /* Set it up... */
de568510
CW
1534 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1535 fbc_ctl2 |= plane;
80824003
JB
1536 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1537 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1538
1539 /* enable it... */
1540 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
ee25df2b 1541 if (IS_I945GM(dev))
49677901 1542 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
016b9b61 1543 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
80824003 1544 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
016b9b61 1545 fbc_ctl |= obj->fence_reg;
80824003
JB
1546 I915_WRITE(FBC_CONTROL, fbc_ctl);
1547
016b9b61
CW
1548 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1549 cfb_pitch, crtc->y, intel_crtc->plane);
80824003
JB
1550}
1551
ee5382ae 1552static bool i8xx_fbc_enabled(struct drm_device *dev)
80824003 1553{
80824003
JB
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555
1556 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1557}
1558
74dff282
JB
1559static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1560{
1561 struct drm_device *dev = crtc->dev;
1562 struct drm_i915_private *dev_priv = dev->dev_private;
1563 struct drm_framebuffer *fb = crtc->fb;
1564 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1565 struct drm_i915_gem_object *obj = intel_fb->obj;
74dff282 1566 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1567 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
74dff282
JB
1568 unsigned long stall_watermark = 200;
1569 u32 dpfc_ctl;
1570
74dff282 1571 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
016b9b61 1572 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
de568510 1573 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
74dff282 1574
74dff282
JB
1575 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1576 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1577 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1578 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1579
1580 /* enable it... */
1581 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1582
28c97730 1583 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
74dff282
JB
1584}
1585
43a9539f 1586static void g4x_disable_fbc(struct drm_device *dev)
74dff282
JB
1587{
1588 struct drm_i915_private *dev_priv = dev->dev_private;
1589 u32 dpfc_ctl;
1590
1591 /* Disable compression */
1592 dpfc_ctl = I915_READ(DPFC_CONTROL);
bed4a673
CW
1593 if (dpfc_ctl & DPFC_CTL_EN) {
1594 dpfc_ctl &= ~DPFC_CTL_EN;
1595 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
74dff282 1596
bed4a673
CW
1597 DRM_DEBUG_KMS("disabled FBC\n");
1598 }
74dff282
JB
1599}
1600
ee5382ae 1601static bool g4x_fbc_enabled(struct drm_device *dev)
74dff282 1602{
74dff282
JB
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604
1605 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1606}
1607
4efe0708
JB
1608static void sandybridge_blit_fbc_update(struct drm_device *dev)
1609{
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 u32 blt_ecoskpd;
1612
1613 /* Make sure blitter notifies FBC of writes */
fcca7926 1614 gen6_gt_force_wake_get(dev_priv);
4efe0708
JB
1615 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1616 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1617 GEN6_BLITTER_LOCK_SHIFT;
1618 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1619 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1620 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1621 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1622 GEN6_BLITTER_LOCK_SHIFT);
1623 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1624 POSTING_READ(GEN6_BLITTER_ECOSKPD);
fcca7926 1625 gen6_gt_force_wake_put(dev_priv);
4efe0708
JB
1626}
1627
b52eb4dc
ZY
1628static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1629{
1630 struct drm_device *dev = crtc->dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 struct drm_framebuffer *fb = crtc->fb;
1633 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1634 struct drm_i915_gem_object *obj = intel_fb->obj;
b52eb4dc 1635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1636 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
b52eb4dc
ZY
1637 unsigned long stall_watermark = 200;
1638 u32 dpfc_ctl;
1639
bed4a673 1640 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
b52eb4dc
ZY
1641 dpfc_ctl &= DPFC_RESERVED;
1642 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
9ce9d069
CW
1643 /* Set persistent mode for front-buffer rendering, ala X. */
1644 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
016b9b61 1645 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
de568510 1646 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
b52eb4dc 1647
b52eb4dc
ZY
1648 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1649 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1650 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1651 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
05394f39 1652 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
b52eb4dc 1653 /* enable it... */
bed4a673 1654 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
b52eb4dc 1655
9c04f015
YL
1656 if (IS_GEN6(dev)) {
1657 I915_WRITE(SNB_DPFC_CTL_SA,
016b9b61 1658 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
9c04f015 1659 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
4efe0708 1660 sandybridge_blit_fbc_update(dev);
9c04f015
YL
1661 }
1662
b52eb4dc
ZY
1663 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1664}
1665
43a9539f 1666static void ironlake_disable_fbc(struct drm_device *dev)
b52eb4dc
ZY
1667{
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 u32 dpfc_ctl;
1670
1671 /* Disable compression */
1672 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
bed4a673
CW
1673 if (dpfc_ctl & DPFC_CTL_EN) {
1674 dpfc_ctl &= ~DPFC_CTL_EN;
1675 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
b52eb4dc 1676
bed4a673
CW
1677 DRM_DEBUG_KMS("disabled FBC\n");
1678 }
b52eb4dc
ZY
1679}
1680
1681static bool ironlake_fbc_enabled(struct drm_device *dev)
1682{
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684
1685 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1686}
1687
ee5382ae
AJ
1688bool intel_fbc_enabled(struct drm_device *dev)
1689{
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1691
1692 if (!dev_priv->display.fbc_enabled)
1693 return false;
1694
1695 return dev_priv->display.fbc_enabled(dev);
1696}
1697
1630fe75
CW
1698static void intel_fbc_work_fn(struct work_struct *__work)
1699{
1700 struct intel_fbc_work *work =
1701 container_of(to_delayed_work(__work),
1702 struct intel_fbc_work, work);
1703 struct drm_device *dev = work->crtc->dev;
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1705
1706 mutex_lock(&dev->struct_mutex);
1707 if (work == dev_priv->fbc_work) {
1708 /* Double check that we haven't switched fb without cancelling
1709 * the prior work.
1710 */
016b9b61 1711 if (work->crtc->fb == work->fb) {
1630fe75
CW
1712 dev_priv->display.enable_fbc(work->crtc,
1713 work->interval);
1714
016b9b61
CW
1715 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1716 dev_priv->cfb_fb = work->crtc->fb->base.id;
1717 dev_priv->cfb_y = work->crtc->y;
1718 }
1719
1630fe75
CW
1720 dev_priv->fbc_work = NULL;
1721 }
1722 mutex_unlock(&dev->struct_mutex);
1723
1724 kfree(work);
1725}
1726
1727static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1728{
1729 if (dev_priv->fbc_work == NULL)
1730 return;
1731
1732 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1733
1734 /* Synchronisation is provided by struct_mutex and checking of
1735 * dev_priv->fbc_work, so we can perform the cancellation
1736 * entirely asynchronously.
1737 */
1738 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1739 /* tasklet was killed before being run, clean up */
1740 kfree(dev_priv->fbc_work);
1741
1742 /* Mark the work as no longer wanted so that if it does
1743 * wake-up (because the work was already running and waiting
1744 * for our mutex), it will discover that is no longer
1745 * necessary to run.
1746 */
1747 dev_priv->fbc_work = NULL;
1748}
1749
43a9539f 1750static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
ee5382ae 1751{
1630fe75
CW
1752 struct intel_fbc_work *work;
1753 struct drm_device *dev = crtc->dev;
1754 struct drm_i915_private *dev_priv = dev->dev_private;
ee5382ae
AJ
1755
1756 if (!dev_priv->display.enable_fbc)
1757 return;
1758
1630fe75
CW
1759 intel_cancel_fbc_work(dev_priv);
1760
1761 work = kzalloc(sizeof *work, GFP_KERNEL);
1762 if (work == NULL) {
1763 dev_priv->display.enable_fbc(crtc, interval);
1764 return;
1765 }
1766
1767 work->crtc = crtc;
1768 work->fb = crtc->fb;
1769 work->interval = interval;
1770 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1771
1772 dev_priv->fbc_work = work;
1773
1774 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1775
1776 /* Delay the actual enabling to let pageflipping cease and the
016b9b61
CW
1777 * display to settle before starting the compression. Note that
1778 * this delay also serves a second purpose: it allows for a
1779 * vblank to pass after disabling the FBC before we attempt
1780 * to modify the control registers.
1630fe75
CW
1781 *
1782 * A more complicated solution would involve tracking vblanks
1783 * following the termination of the page-flipping sequence
1784 * and indeed performing the enable as a co-routine and not
1785 * waiting synchronously upon the vblank.
1786 */
1787 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
ee5382ae
AJ
1788}
1789
1790void intel_disable_fbc(struct drm_device *dev)
1791{
1792 struct drm_i915_private *dev_priv = dev->dev_private;
1793
1630fe75
CW
1794 intel_cancel_fbc_work(dev_priv);
1795
ee5382ae
AJ
1796 if (!dev_priv->display.disable_fbc)
1797 return;
1798
1799 dev_priv->display.disable_fbc(dev);
016b9b61 1800 dev_priv->cfb_plane = -1;
ee5382ae
AJ
1801}
1802
80824003
JB
1803/**
1804 * intel_update_fbc - enable/disable FBC as needed
bed4a673 1805 * @dev: the drm_device
80824003
JB
1806 *
1807 * Set up the framebuffer compression hardware at mode set time. We
1808 * enable it if possible:
1809 * - plane A only (on pre-965)
1810 * - no pixel mulitply/line duplication
1811 * - no alpha buffer discard
1812 * - no dual wide
1813 * - framebuffer <= 2048 in width, 1536 in height
1814 *
1815 * We can't assume that any compression will take place (worst case),
1816 * so the compressed buffer has to be the same size as the uncompressed
1817 * one. It also must reside (along with the line length buffer) in
1818 * stolen memory.
1819 *
1820 * We need to enable/disable FBC on a global basis.
1821 */
bed4a673 1822static void intel_update_fbc(struct drm_device *dev)
80824003 1823{
80824003 1824 struct drm_i915_private *dev_priv = dev->dev_private;
bed4a673
CW
1825 struct drm_crtc *crtc = NULL, *tmp_crtc;
1826 struct intel_crtc *intel_crtc;
1827 struct drm_framebuffer *fb;
80824003 1828 struct intel_framebuffer *intel_fb;
05394f39 1829 struct drm_i915_gem_object *obj;
cd0de039 1830 int enable_fbc;
9c928d16
JB
1831
1832 DRM_DEBUG_KMS("\n");
80824003
JB
1833
1834 if (!i915_powersave)
1835 return;
1836
ee5382ae 1837 if (!I915_HAS_FBC(dev))
e70236a8
JB
1838 return;
1839
80824003
JB
1840 /*
1841 * If FBC is already on, we just have to verify that we can
1842 * keep it that way...
1843 * Need to disable if:
9c928d16 1844 * - more than one pipe is active
80824003
JB
1845 * - changing FBC params (stride, fence, mode)
1846 * - new fb is too large to fit in compressed buffer
1847 * - going to an unsupported config (interlace, pixel multiply, etc.)
1848 */
9c928d16 1849 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
d210246a 1850 if (tmp_crtc->enabled && tmp_crtc->fb) {
bed4a673
CW
1851 if (crtc) {
1852 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1853 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1854 goto out_disable;
1855 }
1856 crtc = tmp_crtc;
1857 }
9c928d16 1858 }
bed4a673
CW
1859
1860 if (!crtc || crtc->fb == NULL) {
1861 DRM_DEBUG_KMS("no output, disabling\n");
1862 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
9c928d16
JB
1863 goto out_disable;
1864 }
bed4a673
CW
1865
1866 intel_crtc = to_intel_crtc(crtc);
1867 fb = crtc->fb;
1868 intel_fb = to_intel_framebuffer(fb);
05394f39 1869 obj = intel_fb->obj;
bed4a673 1870
cd0de039
KP
1871 enable_fbc = i915_enable_fbc;
1872 if (enable_fbc < 0) {
1873 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1874 enable_fbc = 1;
d56d8b28 1875 if (INTEL_INFO(dev)->gen <= 6)
cd0de039
KP
1876 enable_fbc = 0;
1877 }
1878 if (!enable_fbc) {
1879 DRM_DEBUG_KMS("fbc disabled per module param\n");
c1a9f047
JB
1880 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1881 goto out_disable;
1882 }
05394f39 1883 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
28c97730 1884 DRM_DEBUG_KMS("framebuffer too large, disabling "
5eddb70b 1885 "compression\n");
b5e50c3f 1886 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
80824003
JB
1887 goto out_disable;
1888 }
bed4a673
CW
1889 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1890 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
28c97730 1891 DRM_DEBUG_KMS("mode incompatible with compression, "
5eddb70b 1892 "disabling\n");
b5e50c3f 1893 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
80824003
JB
1894 goto out_disable;
1895 }
bed4a673
CW
1896 if ((crtc->mode.hdisplay > 2048) ||
1897 (crtc->mode.vdisplay > 1536)) {
28c97730 1898 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
b5e50c3f 1899 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
80824003
JB
1900 goto out_disable;
1901 }
bed4a673 1902 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
28c97730 1903 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
b5e50c3f 1904 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
80824003
JB
1905 goto out_disable;
1906 }
de568510
CW
1907
1908 /* The use of a CPU fence is mandatory in order to detect writes
1909 * by the CPU to the scanout and trigger updates to the FBC.
1910 */
1911 if (obj->tiling_mode != I915_TILING_X ||
1912 obj->fence_reg == I915_FENCE_REG_NONE) {
1913 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
b5e50c3f 1914 dev_priv->no_fbc_reason = FBC_NOT_TILED;
80824003
JB
1915 goto out_disable;
1916 }
1917
c924b934
JW
1918 /* If the kernel debugger is active, always disable compression */
1919 if (in_dbg_master())
1920 goto out_disable;
1921
016b9b61
CW
1922 /* If the scanout has not changed, don't modify the FBC settings.
1923 * Note that we make the fundamental assumption that the fb->obj
1924 * cannot be unpinned (and have its GTT offset and fence revoked)
1925 * without first being decoupled from the scanout and FBC disabled.
1926 */
1927 if (dev_priv->cfb_plane == intel_crtc->plane &&
1928 dev_priv->cfb_fb == fb->base.id &&
1929 dev_priv->cfb_y == crtc->y)
1930 return;
1931
1932 if (intel_fbc_enabled(dev)) {
1933 /* We update FBC along two paths, after changing fb/crtc
1934 * configuration (modeswitching) and after page-flipping
1935 * finishes. For the latter, we know that not only did
1936 * we disable the FBC at the start of the page-flip
1937 * sequence, but also more than one vblank has passed.
1938 *
1939 * For the former case of modeswitching, it is possible
1940 * to switch between two FBC valid configurations
1941 * instantaneously so we do need to disable the FBC
1942 * before we can modify its control registers. We also
1943 * have to wait for the next vblank for that to take
1944 * effect. However, since we delay enabling FBC we can
1945 * assume that a vblank has passed since disabling and
1946 * that we can safely alter the registers in the deferred
1947 * callback.
1948 *
1949 * In the scenario that we go from a valid to invalid
1950 * and then back to valid FBC configuration we have
1951 * no strict enforcement that a vblank occurred since
1952 * disabling the FBC. However, along all current pipe
1953 * disabling paths we do need to wait for a vblank at
1954 * some point. And we wait before enabling FBC anyway.
1955 */
1956 DRM_DEBUG_KMS("disabling active FBC for update\n");
1957 intel_disable_fbc(dev);
1958 }
1959
bed4a673 1960 intel_enable_fbc(crtc, 500);
80824003
JB
1961 return;
1962
1963out_disable:
80824003 1964 /* Multiple disables should be harmless */
a939406f
CW
1965 if (intel_fbc_enabled(dev)) {
1966 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
ee5382ae 1967 intel_disable_fbc(dev);
a939406f 1968 }
80824003
JB
1969}
1970
127bd2ac 1971int
48b956c5 1972intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1973 struct drm_i915_gem_object *obj,
919926ae 1974 struct intel_ring_buffer *pipelined)
6b95a207 1975{
ce453d81 1976 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1977 u32 alignment;
1978 int ret;
1979
05394f39 1980 switch (obj->tiling_mode) {
6b95a207 1981 case I915_TILING_NONE:
534843da
CW
1982 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1983 alignment = 128 * 1024;
a6c45cf0 1984 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1985 alignment = 4 * 1024;
1986 else
1987 alignment = 64 * 1024;
6b95a207
KH
1988 break;
1989 case I915_TILING_X:
1990 /* pin() will align the object as required by fence */
1991 alignment = 0;
1992 break;
1993 case I915_TILING_Y:
1994 /* FIXME: Is this true? */
1995 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1996 return -EINVAL;
1997 default:
1998 BUG();
1999 }
2000
ce453d81 2001 dev_priv->mm.interruptible = false;
2da3b9b9 2002 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2003 if (ret)
ce453d81 2004 goto err_interruptible;
6b95a207
KH
2005
2006 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2007 * fence, whereas 965+ only requires a fence if using
2008 * framebuffer compression. For simplicity, we always install
2009 * a fence as the cost is not that onerous.
2010 */
05394f39 2011 if (obj->tiling_mode != I915_TILING_NONE) {
ce453d81 2012 ret = i915_gem_object_get_fence(obj, pipelined);
48b956c5
CW
2013 if (ret)
2014 goto err_unpin;
6b95a207
KH
2015 }
2016
ce453d81 2017 dev_priv->mm.interruptible = true;
6b95a207 2018 return 0;
48b956c5
CW
2019
2020err_unpin:
2021 i915_gem_object_unpin(obj);
ce453d81
CW
2022err_interruptible:
2023 dev_priv->mm.interruptible = true;
48b956c5 2024 return ret;
6b95a207
KH
2025}
2026
17638cd6
JB
2027static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2028 int x, int y)
81255565
JB
2029{
2030 struct drm_device *dev = crtc->dev;
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2033 struct intel_framebuffer *intel_fb;
05394f39 2034 struct drm_i915_gem_object *obj;
81255565
JB
2035 int plane = intel_crtc->plane;
2036 unsigned long Start, Offset;
81255565 2037 u32 dspcntr;
5eddb70b 2038 u32 reg;
81255565
JB
2039
2040 switch (plane) {
2041 case 0:
2042 case 1:
2043 break;
2044 default:
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 return -EINVAL;
2047 }
2048
2049 intel_fb = to_intel_framebuffer(fb);
2050 obj = intel_fb->obj;
81255565 2051
5eddb70b
CW
2052 reg = DSPCNTR(plane);
2053 dspcntr = I915_READ(reg);
81255565
JB
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 switch (fb->bits_per_pixel) {
2057 case 8:
2058 dspcntr |= DISPPLANE_8BPP;
2059 break;
2060 case 16:
2061 if (fb->depth == 15)
2062 dspcntr |= DISPPLANE_15_16BPP;
2063 else
2064 dspcntr |= DISPPLANE_16BPP;
2065 break;
2066 case 24:
2067 case 32:
2068 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2069 break;
2070 default:
17638cd6 2071 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
2072 return -EINVAL;
2073 }
a6c45cf0 2074 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2075 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2076 dspcntr |= DISPPLANE_TILED;
2077 else
2078 dspcntr &= ~DISPPLANE_TILED;
2079 }
2080
5eddb70b 2081 I915_WRITE(reg, dspcntr);
81255565 2082
05394f39 2083 Start = obj->gtt_offset;
01f2c773 2084 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2085
4e6cfefc 2086 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
01f2c773
VS
2087 Start, Offset, x, y, fb->pitches[0]);
2088 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2089 if (INTEL_INFO(dev)->gen >= 4) {
5eddb70b
CW
2090 I915_WRITE(DSPSURF(plane), Start);
2091 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2092 I915_WRITE(DSPADDR(plane), Offset);
2093 } else
2094 I915_WRITE(DSPADDR(plane), Start + Offset);
2095 POSTING_READ(reg);
81255565 2096
17638cd6
JB
2097 return 0;
2098}
2099
2100static int ironlake_update_plane(struct drm_crtc *crtc,
2101 struct drm_framebuffer *fb, int x, int y)
2102{
2103 struct drm_device *dev = crtc->dev;
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2106 struct intel_framebuffer *intel_fb;
2107 struct drm_i915_gem_object *obj;
2108 int plane = intel_crtc->plane;
2109 unsigned long Start, Offset;
2110 u32 dspcntr;
2111 u32 reg;
2112
2113 switch (plane) {
2114 case 0:
2115 case 1:
27f8227b 2116 case 2:
17638cd6
JB
2117 break;
2118 default:
2119 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2120 return -EINVAL;
2121 }
2122
2123 intel_fb = to_intel_framebuffer(fb);
2124 obj = intel_fb->obj;
2125
2126 reg = DSPCNTR(plane);
2127 dspcntr = I915_READ(reg);
2128 /* Mask out pixel format bits in case we change it */
2129 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2130 switch (fb->bits_per_pixel) {
2131 case 8:
2132 dspcntr |= DISPPLANE_8BPP;
2133 break;
2134 case 16:
2135 if (fb->depth != 16)
2136 return -EINVAL;
2137
2138 dspcntr |= DISPPLANE_16BPP;
2139 break;
2140 case 24:
2141 case 32:
2142 if (fb->depth == 24)
2143 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2144 else if (fb->depth == 30)
2145 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2146 else
2147 return -EINVAL;
2148 break;
2149 default:
2150 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2151 return -EINVAL;
2152 }
2153
2154 if (obj->tiling_mode != I915_TILING_NONE)
2155 dspcntr |= DISPPLANE_TILED;
2156 else
2157 dspcntr &= ~DISPPLANE_TILED;
2158
2159 /* must disable */
2160 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2161
2162 I915_WRITE(reg, dspcntr);
2163
2164 Start = obj->gtt_offset;
01f2c773 2165 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
17638cd6
JB
2166
2167 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
01f2c773
VS
2168 Start, Offset, x, y, fb->pitches[0]);
2169 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
17638cd6
JB
2170 I915_WRITE(DSPSURF(plane), Start);
2171 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2172 I915_WRITE(DSPADDR(plane), Offset);
2173 POSTING_READ(reg);
2174
2175 return 0;
2176}
2177
2178/* Assume fb object is pinned & idle & fenced and just update base pointers */
2179static int
2180intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2181 int x, int y, enum mode_set_atomic state)
2182{
2183 struct drm_device *dev = crtc->dev;
2184 struct drm_i915_private *dev_priv = dev->dev_private;
2185 int ret;
2186
2187 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2188 if (ret)
2189 return ret;
2190
bed4a673 2191 intel_update_fbc(dev);
3dec0095 2192 intel_increase_pllclock(crtc);
81255565
JB
2193
2194 return 0;
2195}
2196
5c3b82e2 2197static int
3c4fdcfb
KH
2198intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2199 struct drm_framebuffer *old_fb)
79e53945
JB
2200{
2201 struct drm_device *dev = crtc->dev;
79e53945
JB
2202 struct drm_i915_master_private *master_priv;
2203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5c3b82e2 2204 int ret;
79e53945
JB
2205
2206 /* no fb bound */
2207 if (!crtc->fb) {
a5071c2f 2208 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2209 return 0;
2210 }
2211
265db958 2212 switch (intel_crtc->plane) {
5c3b82e2
CW
2213 case 0:
2214 case 1:
2215 break;
27f8227b
JB
2216 case 2:
2217 if (IS_IVYBRIDGE(dev))
2218 break;
2219 /* fall through otherwise */
5c3b82e2 2220 default:
a5071c2f 2221 DRM_ERROR("no plane for crtc\n");
5c3b82e2 2222 return -EINVAL;
79e53945
JB
2223 }
2224
5c3b82e2 2225 mutex_lock(&dev->struct_mutex);
265db958
CW
2226 ret = intel_pin_and_fence_fb_obj(dev,
2227 to_intel_framebuffer(crtc->fb)->obj,
919926ae 2228 NULL);
5c3b82e2
CW
2229 if (ret != 0) {
2230 mutex_unlock(&dev->struct_mutex);
a5071c2f 2231 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2232 return ret;
2233 }
79e53945 2234
265db958 2235 if (old_fb) {
e6c3a2a6 2236 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2237 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
265db958 2238
e6c3a2a6 2239 wait_event(dev_priv->pending_flip_queue,
01eec727 2240 atomic_read(&dev_priv->mm.wedged) ||
05394f39 2241 atomic_read(&obj->pending_flip) == 0);
85345517
CW
2242
2243 /* Big Hammer, we also need to ensure that any pending
2244 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2245 * current scanout is retired before unpinning the old
2246 * framebuffer.
01eec727
CW
2247 *
2248 * This should only fail upon a hung GPU, in which case we
2249 * can safely continue.
85345517 2250 */
a8198eea 2251 ret = i915_gem_object_finish_gpu(obj);
01eec727 2252 (void) ret;
265db958
CW
2253 }
2254
21c74a8e
JW
2255 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2256 LEAVE_ATOMIC_MODE_SET);
4e6cfefc 2257 if (ret) {
265db958 2258 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
5c3b82e2 2259 mutex_unlock(&dev->struct_mutex);
a5071c2f 2260 DRM_ERROR("failed to update base address\n");
4e6cfefc 2261 return ret;
79e53945 2262 }
3c4fdcfb 2263
b7f1de28
CW
2264 if (old_fb) {
2265 intel_wait_for_vblank(dev, intel_crtc->pipe);
265db958 2266 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2267 }
652c393a 2268
5c3b82e2 2269 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2270
2271 if (!dev->primary->master)
5c3b82e2 2272 return 0;
79e53945
JB
2273
2274 master_priv = dev->primary->master->driver_priv;
2275 if (!master_priv->sarea_priv)
5c3b82e2 2276 return 0;
79e53945 2277
265db958 2278 if (intel_crtc->pipe) {
79e53945
JB
2279 master_priv->sarea_priv->pipeB_x = x;
2280 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2281 } else {
2282 master_priv->sarea_priv->pipeA_x = x;
2283 master_priv->sarea_priv->pipeA_y = y;
79e53945 2284 }
5c3b82e2
CW
2285
2286 return 0;
79e53945
JB
2287}
2288
5eddb70b 2289static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2290{
2291 struct drm_device *dev = crtc->dev;
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293 u32 dpa_ctl;
2294
28c97730 2295 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2296 dpa_ctl = I915_READ(DP_A);
2297 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2298
2299 if (clock < 200000) {
2300 u32 temp;
2301 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2302 /* workaround for 160Mhz:
2303 1) program 0x4600c bits 15:0 = 0x8124
2304 2) program 0x46010 bit 0 = 1
2305 3) program 0x46034 bit 24 = 1
2306 4) program 0x64000 bit 14 = 1
2307 */
2308 temp = I915_READ(0x4600c);
2309 temp &= 0xffff0000;
2310 I915_WRITE(0x4600c, temp | 0x8124);
2311
2312 temp = I915_READ(0x46010);
2313 I915_WRITE(0x46010, temp | 1);
2314
2315 temp = I915_READ(0x46034);
2316 I915_WRITE(0x46034, temp | (1 << 24));
2317 } else {
2318 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2319 }
2320 I915_WRITE(DP_A, dpa_ctl);
2321
5eddb70b 2322 POSTING_READ(DP_A);
32f9d658
ZW
2323 udelay(500);
2324}
2325
5e84e1a4
ZW
2326static void intel_fdi_normal_train(struct drm_crtc *crtc)
2327{
2328 struct drm_device *dev = crtc->dev;
2329 struct drm_i915_private *dev_priv = dev->dev_private;
2330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2331 int pipe = intel_crtc->pipe;
2332 u32 reg, temp;
2333
2334 /* enable normal train */
2335 reg = FDI_TX_CTL(pipe);
2336 temp = I915_READ(reg);
61e499bf 2337 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2338 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2339 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2340 } else {
2341 temp &= ~FDI_LINK_TRAIN_NONE;
2342 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2343 }
5e84e1a4
ZW
2344 I915_WRITE(reg, temp);
2345
2346 reg = FDI_RX_CTL(pipe);
2347 temp = I915_READ(reg);
2348 if (HAS_PCH_CPT(dev)) {
2349 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2350 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2351 } else {
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_NONE;
2354 }
2355 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2356
2357 /* wait one idle pattern time */
2358 POSTING_READ(reg);
2359 udelay(1000);
357555c0
JB
2360
2361 /* IVB wants error correction enabled */
2362 if (IS_IVYBRIDGE(dev))
2363 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2364 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2365}
2366
291427f5
JB
2367static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2368{
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 u32 flags = I915_READ(SOUTH_CHICKEN1);
2371
2372 flags |= FDI_PHASE_SYNC_OVR(pipe);
2373 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2374 flags |= FDI_PHASE_SYNC_EN(pipe);
2375 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2376 POSTING_READ(SOUTH_CHICKEN1);
2377}
2378
8db9d77b
ZW
2379/* The FDI link training functions for ILK/Ibexpeak. */
2380static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2381{
2382 struct drm_device *dev = crtc->dev;
2383 struct drm_i915_private *dev_priv = dev->dev_private;
2384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2385 int pipe = intel_crtc->pipe;
0fc932b8 2386 int plane = intel_crtc->plane;
5eddb70b 2387 u32 reg, temp, tries;
8db9d77b 2388
0fc932b8
JB
2389 /* FDI needs bits from pipe & plane first */
2390 assert_pipe_enabled(dev_priv, pipe);
2391 assert_plane_enabled(dev_priv, plane);
2392
e1a44743
AJ
2393 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2394 for train result */
5eddb70b
CW
2395 reg = FDI_RX_IMR(pipe);
2396 temp = I915_READ(reg);
e1a44743
AJ
2397 temp &= ~FDI_RX_SYMBOL_LOCK;
2398 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2399 I915_WRITE(reg, temp);
2400 I915_READ(reg);
e1a44743
AJ
2401 udelay(150);
2402
8db9d77b 2403 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2404 reg = FDI_TX_CTL(pipe);
2405 temp = I915_READ(reg);
77ffb597
AJ
2406 temp &= ~(7 << 19);
2407 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2408 temp &= ~FDI_LINK_TRAIN_NONE;
2409 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2410 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2411
5eddb70b
CW
2412 reg = FDI_RX_CTL(pipe);
2413 temp = I915_READ(reg);
8db9d77b
ZW
2414 temp &= ~FDI_LINK_TRAIN_NONE;
2415 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2416 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2417
2418 POSTING_READ(reg);
8db9d77b
ZW
2419 udelay(150);
2420
5b2adf89 2421 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2422 if (HAS_PCH_IBX(dev)) {
2423 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2424 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2425 FDI_RX_PHASE_SYNC_POINTER_EN);
2426 }
5b2adf89 2427
5eddb70b 2428 reg = FDI_RX_IIR(pipe);
e1a44743 2429 for (tries = 0; tries < 5; tries++) {
5eddb70b 2430 temp = I915_READ(reg);
8db9d77b
ZW
2431 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2432
2433 if ((temp & FDI_RX_BIT_LOCK)) {
2434 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2435 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2436 break;
2437 }
8db9d77b 2438 }
e1a44743 2439 if (tries == 5)
5eddb70b 2440 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2441
2442 /* Train 2 */
5eddb70b
CW
2443 reg = FDI_TX_CTL(pipe);
2444 temp = I915_READ(reg);
8db9d77b
ZW
2445 temp &= ~FDI_LINK_TRAIN_NONE;
2446 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2447 I915_WRITE(reg, temp);
8db9d77b 2448
5eddb70b
CW
2449 reg = FDI_RX_CTL(pipe);
2450 temp = I915_READ(reg);
8db9d77b
ZW
2451 temp &= ~FDI_LINK_TRAIN_NONE;
2452 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2453 I915_WRITE(reg, temp);
8db9d77b 2454
5eddb70b
CW
2455 POSTING_READ(reg);
2456 udelay(150);
8db9d77b 2457
5eddb70b 2458 reg = FDI_RX_IIR(pipe);
e1a44743 2459 for (tries = 0; tries < 5; tries++) {
5eddb70b 2460 temp = I915_READ(reg);
8db9d77b
ZW
2461 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2462
2463 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2464 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2465 DRM_DEBUG_KMS("FDI train 2 done.\n");
2466 break;
2467 }
8db9d77b 2468 }
e1a44743 2469 if (tries == 5)
5eddb70b 2470 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2471
2472 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2473
8db9d77b
ZW
2474}
2475
0206e353 2476static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2477 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2478 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2479 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2480 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2481};
2482
2483/* The FDI link training functions for SNB/Cougarpoint. */
2484static void gen6_fdi_link_train(struct drm_crtc *crtc)
2485{
2486 struct drm_device *dev = crtc->dev;
2487 struct drm_i915_private *dev_priv = dev->dev_private;
2488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2489 int pipe = intel_crtc->pipe;
5eddb70b 2490 u32 reg, temp, i;
8db9d77b 2491
e1a44743
AJ
2492 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2493 for train result */
5eddb70b
CW
2494 reg = FDI_RX_IMR(pipe);
2495 temp = I915_READ(reg);
e1a44743
AJ
2496 temp &= ~FDI_RX_SYMBOL_LOCK;
2497 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2498 I915_WRITE(reg, temp);
2499
2500 POSTING_READ(reg);
e1a44743
AJ
2501 udelay(150);
2502
8db9d77b 2503 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2504 reg = FDI_TX_CTL(pipe);
2505 temp = I915_READ(reg);
77ffb597
AJ
2506 temp &= ~(7 << 19);
2507 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2508 temp &= ~FDI_LINK_TRAIN_NONE;
2509 temp |= FDI_LINK_TRAIN_PATTERN_1;
2510 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2511 /* SNB-B */
2512 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2513 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2514
5eddb70b
CW
2515 reg = FDI_RX_CTL(pipe);
2516 temp = I915_READ(reg);
8db9d77b
ZW
2517 if (HAS_PCH_CPT(dev)) {
2518 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2519 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2520 } else {
2521 temp &= ~FDI_LINK_TRAIN_NONE;
2522 temp |= FDI_LINK_TRAIN_PATTERN_1;
2523 }
5eddb70b
CW
2524 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2525
2526 POSTING_READ(reg);
8db9d77b
ZW
2527 udelay(150);
2528
291427f5
JB
2529 if (HAS_PCH_CPT(dev))
2530 cpt_phase_pointer_enable(dev, pipe);
2531
0206e353 2532 for (i = 0; i < 4; i++) {
5eddb70b
CW
2533 reg = FDI_TX_CTL(pipe);
2534 temp = I915_READ(reg);
8db9d77b
ZW
2535 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2536 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2537 I915_WRITE(reg, temp);
2538
2539 POSTING_READ(reg);
8db9d77b
ZW
2540 udelay(500);
2541
5eddb70b
CW
2542 reg = FDI_RX_IIR(pipe);
2543 temp = I915_READ(reg);
8db9d77b
ZW
2544 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545
2546 if (temp & FDI_RX_BIT_LOCK) {
5eddb70b 2547 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2548 DRM_DEBUG_KMS("FDI train 1 done.\n");
2549 break;
2550 }
2551 }
2552 if (i == 4)
5eddb70b 2553 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2554
2555 /* Train 2 */
5eddb70b
CW
2556 reg = FDI_TX_CTL(pipe);
2557 temp = I915_READ(reg);
8db9d77b
ZW
2558 temp &= ~FDI_LINK_TRAIN_NONE;
2559 temp |= FDI_LINK_TRAIN_PATTERN_2;
2560 if (IS_GEN6(dev)) {
2561 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2562 /* SNB-B */
2563 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2564 }
5eddb70b 2565 I915_WRITE(reg, temp);
8db9d77b 2566
5eddb70b
CW
2567 reg = FDI_RX_CTL(pipe);
2568 temp = I915_READ(reg);
8db9d77b
ZW
2569 if (HAS_PCH_CPT(dev)) {
2570 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2571 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2572 } else {
2573 temp &= ~FDI_LINK_TRAIN_NONE;
2574 temp |= FDI_LINK_TRAIN_PATTERN_2;
2575 }
5eddb70b
CW
2576 I915_WRITE(reg, temp);
2577
2578 POSTING_READ(reg);
8db9d77b
ZW
2579 udelay(150);
2580
0206e353 2581 for (i = 0; i < 4; i++) {
5eddb70b
CW
2582 reg = FDI_TX_CTL(pipe);
2583 temp = I915_READ(reg);
8db9d77b
ZW
2584 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2585 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2586 I915_WRITE(reg, temp);
2587
2588 POSTING_READ(reg);
8db9d77b
ZW
2589 udelay(500);
2590
5eddb70b
CW
2591 reg = FDI_RX_IIR(pipe);
2592 temp = I915_READ(reg);
8db9d77b
ZW
2593 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2594
2595 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2596 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2597 DRM_DEBUG_KMS("FDI train 2 done.\n");
2598 break;
2599 }
2600 }
2601 if (i == 4)
5eddb70b 2602 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2603
2604 DRM_DEBUG_KMS("FDI train done.\n");
2605}
2606
357555c0
JB
2607/* Manual link training for Ivy Bridge A0 parts */
2608static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2609{
2610 struct drm_device *dev = crtc->dev;
2611 struct drm_i915_private *dev_priv = dev->dev_private;
2612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2613 int pipe = intel_crtc->pipe;
2614 u32 reg, temp, i;
2615
2616 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2617 for train result */
2618 reg = FDI_RX_IMR(pipe);
2619 temp = I915_READ(reg);
2620 temp &= ~FDI_RX_SYMBOL_LOCK;
2621 temp &= ~FDI_RX_BIT_LOCK;
2622 I915_WRITE(reg, temp);
2623
2624 POSTING_READ(reg);
2625 udelay(150);
2626
2627 /* enable CPU FDI TX and PCH FDI RX */
2628 reg = FDI_TX_CTL(pipe);
2629 temp = I915_READ(reg);
2630 temp &= ~(7 << 19);
2631 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2632 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2633 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2634 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2635 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2636 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2637 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2638
2639 reg = FDI_RX_CTL(pipe);
2640 temp = I915_READ(reg);
2641 temp &= ~FDI_LINK_TRAIN_AUTO;
2642 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2643 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2644 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2645 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2646
2647 POSTING_READ(reg);
2648 udelay(150);
2649
291427f5
JB
2650 if (HAS_PCH_CPT(dev))
2651 cpt_phase_pointer_enable(dev, pipe);
2652
0206e353 2653 for (i = 0; i < 4; i++) {
357555c0
JB
2654 reg = FDI_TX_CTL(pipe);
2655 temp = I915_READ(reg);
2656 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2657 temp |= snb_b_fdi_train_param[i];
2658 I915_WRITE(reg, temp);
2659
2660 POSTING_READ(reg);
2661 udelay(500);
2662
2663 reg = FDI_RX_IIR(pipe);
2664 temp = I915_READ(reg);
2665 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2666
2667 if (temp & FDI_RX_BIT_LOCK ||
2668 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2669 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2670 DRM_DEBUG_KMS("FDI train 1 done.\n");
2671 break;
2672 }
2673 }
2674 if (i == 4)
2675 DRM_ERROR("FDI train 1 fail!\n");
2676
2677 /* Train 2 */
2678 reg = FDI_TX_CTL(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2681 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2682 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2684 I915_WRITE(reg, temp);
2685
2686 reg = FDI_RX_CTL(pipe);
2687 temp = I915_READ(reg);
2688 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2689 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2690 I915_WRITE(reg, temp);
2691
2692 POSTING_READ(reg);
2693 udelay(150);
2694
0206e353 2695 for (i = 0; i < 4; i++) {
357555c0
JB
2696 reg = FDI_TX_CTL(pipe);
2697 temp = I915_READ(reg);
2698 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2699 temp |= snb_b_fdi_train_param[i];
2700 I915_WRITE(reg, temp);
2701
2702 POSTING_READ(reg);
2703 udelay(500);
2704
2705 reg = FDI_RX_IIR(pipe);
2706 temp = I915_READ(reg);
2707 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2708
2709 if (temp & FDI_RX_SYMBOL_LOCK) {
2710 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2711 DRM_DEBUG_KMS("FDI train 2 done.\n");
2712 break;
2713 }
2714 }
2715 if (i == 4)
2716 DRM_ERROR("FDI train 2 fail!\n");
2717
2718 DRM_DEBUG_KMS("FDI train done.\n");
2719}
2720
2721static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2c07245f
ZW
2722{
2723 struct drm_device *dev = crtc->dev;
2724 struct drm_i915_private *dev_priv = dev->dev_private;
2725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726 int pipe = intel_crtc->pipe;
5eddb70b 2727 u32 reg, temp;
79e53945 2728
c64e311e 2729 /* Write the TU size bits so error detection works */
5eddb70b
CW
2730 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2731 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2732
c98e9dcf 2733 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2734 reg = FDI_RX_CTL(pipe);
2735 temp = I915_READ(reg);
2736 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2737 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2738 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2739 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2740
2741 POSTING_READ(reg);
c98e9dcf
JB
2742 udelay(200);
2743
2744 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2745 temp = I915_READ(reg);
2746 I915_WRITE(reg, temp | FDI_PCDCLK);
2747
2748 POSTING_READ(reg);
c98e9dcf
JB
2749 udelay(200);
2750
2751 /* Enable CPU FDI TX PLL, always on for Ironlake */
5eddb70b
CW
2752 reg = FDI_TX_CTL(pipe);
2753 temp = I915_READ(reg);
c98e9dcf 2754 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5eddb70b
CW
2755 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2756
2757 POSTING_READ(reg);
c98e9dcf 2758 udelay(100);
6be4a607 2759 }
0e23b99d
JB
2760}
2761
291427f5
JB
2762static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2763{
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 u32 flags = I915_READ(SOUTH_CHICKEN1);
2766
2767 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2768 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2769 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2770 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2771 POSTING_READ(SOUTH_CHICKEN1);
2772}
0fc932b8
JB
2773static void ironlake_fdi_disable(struct drm_crtc *crtc)
2774{
2775 struct drm_device *dev = crtc->dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778 int pipe = intel_crtc->pipe;
2779 u32 reg, temp;
2780
2781 /* disable CPU FDI tx and PCH FDI rx */
2782 reg = FDI_TX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2785 POSTING_READ(reg);
2786
2787 reg = FDI_RX_CTL(pipe);
2788 temp = I915_READ(reg);
2789 temp &= ~(0x7 << 16);
2790 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2791 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2792
2793 POSTING_READ(reg);
2794 udelay(100);
2795
2796 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2797 if (HAS_PCH_IBX(dev)) {
2798 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2799 I915_WRITE(FDI_RX_CHICKEN(pipe),
2800 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2801 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2802 } else if (HAS_PCH_CPT(dev)) {
2803 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2804 }
0fc932b8
JB
2805
2806 /* still set train pattern 1 */
2807 reg = FDI_TX_CTL(pipe);
2808 temp = I915_READ(reg);
2809 temp &= ~FDI_LINK_TRAIN_NONE;
2810 temp |= FDI_LINK_TRAIN_PATTERN_1;
2811 I915_WRITE(reg, temp);
2812
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 if (HAS_PCH_CPT(dev)) {
2816 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2817 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2818 } else {
2819 temp &= ~FDI_LINK_TRAIN_NONE;
2820 temp |= FDI_LINK_TRAIN_PATTERN_1;
2821 }
2822 /* BPC in FDI rx is consistent with that in PIPECONF */
2823 temp &= ~(0x07 << 16);
2824 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2825 I915_WRITE(reg, temp);
2826
2827 POSTING_READ(reg);
2828 udelay(100);
2829}
2830
6b383a7f
CW
2831/*
2832 * When we disable a pipe, we need to clear any pending scanline wait events
2833 * to avoid hanging the ring, which we assume we are waiting on.
2834 */
2835static void intel_clear_scanline_wait(struct drm_device *dev)
2836{
2837 struct drm_i915_private *dev_priv = dev->dev_private;
8168bd48 2838 struct intel_ring_buffer *ring;
6b383a7f
CW
2839 u32 tmp;
2840
2841 if (IS_GEN2(dev))
2842 /* Can't break the hang on i8xx */
2843 return;
2844
1ec14ad3 2845 ring = LP_RING(dev_priv);
8168bd48
CW
2846 tmp = I915_READ_CTL(ring);
2847 if (tmp & RING_WAIT)
2848 I915_WRITE_CTL(ring, tmp);
6b383a7f
CW
2849}
2850
e6c3a2a6
CW
2851static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2852{
05394f39 2853 struct drm_i915_gem_object *obj;
e6c3a2a6
CW
2854 struct drm_i915_private *dev_priv;
2855
2856 if (crtc->fb == NULL)
2857 return;
2858
05394f39 2859 obj = to_intel_framebuffer(crtc->fb)->obj;
e6c3a2a6
CW
2860 dev_priv = crtc->dev->dev_private;
2861 wait_event(dev_priv->pending_flip_queue,
05394f39 2862 atomic_read(&obj->pending_flip) == 0);
e6c3a2a6
CW
2863}
2864
040484af
JB
2865static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2866{
2867 struct drm_device *dev = crtc->dev;
2868 struct drm_mode_config *mode_config = &dev->mode_config;
2869 struct intel_encoder *encoder;
2870
2871 /*
2872 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2873 * must be driven by its own crtc; no sharing is possible.
2874 */
2875 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2876 if (encoder->base.crtc != crtc)
2877 continue;
2878
2879 switch (encoder->type) {
2880 case INTEL_OUTPUT_EDP:
2881 if (!intel_encoder_is_pch_edp(&encoder->base))
2882 return false;
2883 continue;
2884 }
2885 }
2886
2887 return true;
2888}
2889
f67a559d
JB
2890/*
2891 * Enable PCH resources required for PCH ports:
2892 * - PCH PLLs
2893 * - FDI training & RX/TX
2894 * - update transcoder timings
2895 * - DP transcoding bits
2896 * - transcoder
2897 */
2898static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2899{
2900 struct drm_device *dev = crtc->dev;
2901 struct drm_i915_private *dev_priv = dev->dev_private;
2902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903 int pipe = intel_crtc->pipe;
4b645f14 2904 u32 reg, temp, transc_sel;
2c07245f 2905
c98e9dcf 2906 /* For PCH output, training FDI link */
674cf967 2907 dev_priv->display.fdi_link_train(crtc);
2c07245f 2908
92f2584a 2909 intel_enable_pch_pll(dev_priv, pipe);
8db9d77b 2910
c98e9dcf 2911 if (HAS_PCH_CPT(dev)) {
4b645f14
JB
2912 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2913 TRANSC_DPLLB_SEL;
2914
c98e9dcf
JB
2915 /* Be sure PCH DPLL SEL is set */
2916 temp = I915_READ(PCH_DPLL_SEL);
d64311ab
JB
2917 if (pipe == 0) {
2918 temp &= ~(TRANSA_DPLLB_SEL);
c98e9dcf 2919 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
d64311ab
JB
2920 } else if (pipe == 1) {
2921 temp &= ~(TRANSB_DPLLB_SEL);
c98e9dcf 2922 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
d64311ab
JB
2923 } else if (pipe == 2) {
2924 temp &= ~(TRANSC_DPLLB_SEL);
4b645f14 2925 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
d64311ab 2926 }
c98e9dcf 2927 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 2928 }
5eddb70b 2929
d9b6cb56
JB
2930 /* set transcoder timing, panel must allow it */
2931 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
2932 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2933 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2934 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 2935
5eddb70b
CW
2936 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2937 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2938 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
8db9d77b 2939
5e84e1a4
ZW
2940 intel_fdi_normal_train(crtc);
2941
c98e9dcf
JB
2942 /* For PCH DP, enable TRANS_DP_CTL */
2943 if (HAS_PCH_CPT(dev) &&
417e822d
KP
2944 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2945 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 2946 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
2947 reg = TRANS_DP_CTL(pipe);
2948 temp = I915_READ(reg);
2949 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
2950 TRANS_DP_SYNC_MASK |
2951 TRANS_DP_BPC_MASK);
5eddb70b
CW
2952 temp |= (TRANS_DP_OUTPUT_ENABLE |
2953 TRANS_DP_ENH_FRAMING);
9325c9f0 2954 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
2955
2956 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 2957 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 2958 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 2959 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
2960
2961 switch (intel_trans_dp_port_sel(crtc)) {
2962 case PCH_DP_B:
5eddb70b 2963 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
2964 break;
2965 case PCH_DP_C:
5eddb70b 2966 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
2967 break;
2968 case PCH_DP_D:
5eddb70b 2969 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
2970 break;
2971 default:
2972 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 2973 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 2974 break;
32f9d658 2975 }
2c07245f 2976
5eddb70b 2977 I915_WRITE(reg, temp);
6be4a607 2978 }
b52eb4dc 2979
040484af 2980 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
2981}
2982
d4270e57
JB
2983void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2984{
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2986 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2987 u32 temp;
2988
2989 temp = I915_READ(dslreg);
2990 udelay(500);
2991 if (wait_for(I915_READ(dslreg) != temp, 5)) {
2992 /* Without this, mode sets may fail silently on FDI */
2993 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2994 udelay(250);
2995 I915_WRITE(tc2reg, 0);
2996 if (wait_for(I915_READ(dslreg) != temp, 5))
2997 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2998 }
2999}
3000
f67a559d
JB
3001static void ironlake_crtc_enable(struct drm_crtc *crtc)
3002{
3003 struct drm_device *dev = crtc->dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3006 int pipe = intel_crtc->pipe;
3007 int plane = intel_crtc->plane;
3008 u32 temp;
3009 bool is_pch_port;
3010
3011 if (intel_crtc->active)
3012 return;
3013
3014 intel_crtc->active = true;
3015 intel_update_watermarks(dev);
3016
3017 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3018 temp = I915_READ(PCH_LVDS);
3019 if ((temp & LVDS_PORT_EN) == 0)
3020 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3021 }
3022
3023 is_pch_port = intel_crtc_driving_pch(crtc);
3024
3025 if (is_pch_port)
357555c0 3026 ironlake_fdi_pll_enable(crtc);
f67a559d
JB
3027 else
3028 ironlake_fdi_disable(crtc);
3029
3030 /* Enable panel fitting for LVDS */
3031 if (dev_priv->pch_pf_size &&
3032 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3033 /* Force use of hard-coded filter coefficients
3034 * as some pre-programmed values are broken,
3035 * e.g. x201.
3036 */
9db4a9c7
JB
3037 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3038 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3039 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3040 }
3041
9c54c0dd
JB
3042 /*
3043 * On ILK+ LUT must be loaded before the pipe is running but with
3044 * clocks enabled
3045 */
3046 intel_crtc_load_lut(crtc);
3047
f67a559d
JB
3048 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3049 intel_enable_plane(dev_priv, plane, pipe);
3050
3051 if (is_pch_port)
3052 ironlake_pch_enable(crtc);
c98e9dcf 3053
d1ebd816 3054 mutex_lock(&dev->struct_mutex);
bed4a673 3055 intel_update_fbc(dev);
d1ebd816
BW
3056 mutex_unlock(&dev->struct_mutex);
3057
6b383a7f 3058 intel_crtc_update_cursor(crtc, true);
6be4a607
JB
3059}
3060
3061static void ironlake_crtc_disable(struct drm_crtc *crtc)
3062{
3063 struct drm_device *dev = crtc->dev;
3064 struct drm_i915_private *dev_priv = dev->dev_private;
3065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066 int pipe = intel_crtc->pipe;
3067 int plane = intel_crtc->plane;
5eddb70b 3068 u32 reg, temp;
b52eb4dc 3069
f7abfe8b
CW
3070 if (!intel_crtc->active)
3071 return;
3072
e6c3a2a6 3073 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3074 drm_vblank_off(dev, pipe);
6b383a7f 3075 intel_crtc_update_cursor(crtc, false);
5eddb70b 3076
b24e7179 3077 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3078
973d04f9
CW
3079 if (dev_priv->cfb_plane == plane)
3080 intel_disable_fbc(dev);
2c07245f 3081
b24e7179 3082 intel_disable_pipe(dev_priv, pipe);
32f9d658 3083
6be4a607 3084 /* Disable PF */
9db4a9c7
JB
3085 I915_WRITE(PF_CTL(pipe), 0);
3086 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3087
0fc932b8 3088 ironlake_fdi_disable(crtc);
2c07245f 3089
47a05eca
JB
3090 /* This is a horrible layering violation; we should be doing this in
3091 * the connector/encoder ->prepare instead, but we don't always have
3092 * enough information there about the config to know whether it will
3093 * actually be necessary or just cause undesired flicker.
3094 */
3095 intel_disable_pch_ports(dev_priv, pipe);
249c0e64 3096
040484af 3097 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3098
6be4a607
JB
3099 if (HAS_PCH_CPT(dev)) {
3100 /* disable TRANS_DP_CTL */
5eddb70b
CW
3101 reg = TRANS_DP_CTL(pipe);
3102 temp = I915_READ(reg);
3103 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3104 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3105 I915_WRITE(reg, temp);
6be4a607
JB
3106
3107 /* disable DPLL_SEL */
3108 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3109 switch (pipe) {
3110 case 0:
d64311ab 3111 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3112 break;
3113 case 1:
6be4a607 3114 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3115 break;
3116 case 2:
4b645f14 3117 /* C shares PLL A or B */
d64311ab 3118 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3119 break;
3120 default:
3121 BUG(); /* wtf */
3122 }
6be4a607 3123 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3124 }
e3421a18 3125
6be4a607 3126 /* disable PCH DPLL */
4b645f14
JB
3127 if (!intel_crtc->no_pll)
3128 intel_disable_pch_pll(dev_priv, pipe);
8db9d77b 3129
6be4a607 3130 /* Switch from PCDclk to Rawclk */
5eddb70b
CW
3131 reg = FDI_RX_CTL(pipe);
3132 temp = I915_READ(reg);
3133 I915_WRITE(reg, temp & ~FDI_PCDCLK);
8db9d77b 3134
6be4a607 3135 /* Disable CPU FDI TX PLL */
5eddb70b
CW
3136 reg = FDI_TX_CTL(pipe);
3137 temp = I915_READ(reg);
3138 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3139
3140 POSTING_READ(reg);
6be4a607 3141 udelay(100);
8db9d77b 3142
5eddb70b
CW
3143 reg = FDI_RX_CTL(pipe);
3144 temp = I915_READ(reg);
3145 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2c07245f 3146
6be4a607 3147 /* Wait for the clocks to turn off. */
5eddb70b 3148 POSTING_READ(reg);
6be4a607 3149 udelay(100);
6b383a7f 3150
f7abfe8b 3151 intel_crtc->active = false;
6b383a7f 3152 intel_update_watermarks(dev);
d1ebd816
BW
3153
3154 mutex_lock(&dev->struct_mutex);
6b383a7f
CW
3155 intel_update_fbc(dev);
3156 intel_clear_scanline_wait(dev);
d1ebd816 3157 mutex_unlock(&dev->struct_mutex);
6be4a607 3158}
1b3c7a47 3159
6be4a607
JB
3160static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3161{
3162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163 int pipe = intel_crtc->pipe;
3164 int plane = intel_crtc->plane;
8db9d77b 3165
6be4a607
JB
3166 /* XXX: When our outputs are all unaware of DPMS modes other than off
3167 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3168 */
3169 switch (mode) {
3170 case DRM_MODE_DPMS_ON:
3171 case DRM_MODE_DPMS_STANDBY:
3172 case DRM_MODE_DPMS_SUSPEND:
3173 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3174 ironlake_crtc_enable(crtc);
3175 break;
1b3c7a47 3176
6be4a607
JB
3177 case DRM_MODE_DPMS_OFF:
3178 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3179 ironlake_crtc_disable(crtc);
2c07245f
ZW
3180 break;
3181 }
3182}
3183
02e792fb
DV
3184static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3185{
02e792fb 3186 if (!enable && intel_crtc->overlay) {
23f09ce3 3187 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3188 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3189
23f09ce3 3190 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3191 dev_priv->mm.interruptible = false;
3192 (void) intel_overlay_switch_off(intel_crtc->overlay);
3193 dev_priv->mm.interruptible = true;
23f09ce3 3194 mutex_unlock(&dev->struct_mutex);
02e792fb 3195 }
02e792fb 3196
5dcdbcb0
CW
3197 /* Let userspace switch the overlay on again. In most cases userspace
3198 * has to recompute where to put it anyway.
3199 */
02e792fb
DV
3200}
3201
0b8765c6 3202static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3203{
3204 struct drm_device *dev = crtc->dev;
79e53945
JB
3205 struct drm_i915_private *dev_priv = dev->dev_private;
3206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3207 int pipe = intel_crtc->pipe;
80824003 3208 int plane = intel_crtc->plane;
79e53945 3209
f7abfe8b
CW
3210 if (intel_crtc->active)
3211 return;
3212
3213 intel_crtc->active = true;
6b383a7f
CW
3214 intel_update_watermarks(dev);
3215
63d7bbe9 3216 intel_enable_pll(dev_priv, pipe);
040484af 3217 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3218 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3219
0b8765c6 3220 intel_crtc_load_lut(crtc);
bed4a673 3221 intel_update_fbc(dev);
79e53945 3222
0b8765c6
JB
3223 /* Give the overlay scaler a chance to enable if it's on this pipe */
3224 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3225 intel_crtc_update_cursor(crtc, true);
0b8765c6 3226}
79e53945 3227
0b8765c6
JB
3228static void i9xx_crtc_disable(struct drm_crtc *crtc)
3229{
3230 struct drm_device *dev = crtc->dev;
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3233 int pipe = intel_crtc->pipe;
3234 int plane = intel_crtc->plane;
b690e96c 3235
f7abfe8b
CW
3236 if (!intel_crtc->active)
3237 return;
3238
0b8765c6 3239 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3240 intel_crtc_wait_for_pending_flips(crtc);
3241 drm_vblank_off(dev, pipe);
0b8765c6 3242 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3243 intel_crtc_update_cursor(crtc, false);
0b8765c6 3244
973d04f9
CW
3245 if (dev_priv->cfb_plane == plane)
3246 intel_disable_fbc(dev);
79e53945 3247
b24e7179 3248 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3249 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3250 intel_disable_pll(dev_priv, pipe);
0b8765c6 3251
f7abfe8b 3252 intel_crtc->active = false;
6b383a7f
CW
3253 intel_update_fbc(dev);
3254 intel_update_watermarks(dev);
3255 intel_clear_scanline_wait(dev);
0b8765c6
JB
3256}
3257
3258static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3259{
3260 /* XXX: When our outputs are all unaware of DPMS modes other than off
3261 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3262 */
3263 switch (mode) {
3264 case DRM_MODE_DPMS_ON:
3265 case DRM_MODE_DPMS_STANDBY:
3266 case DRM_MODE_DPMS_SUSPEND:
3267 i9xx_crtc_enable(crtc);
3268 break;
3269 case DRM_MODE_DPMS_OFF:
3270 i9xx_crtc_disable(crtc);
79e53945
JB
3271 break;
3272 }
2c07245f
ZW
3273}
3274
3275/**
3276 * Sets the power management mode of the pipe and plane.
2c07245f
ZW
3277 */
3278static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3279{
3280 struct drm_device *dev = crtc->dev;
e70236a8 3281 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f
ZW
3282 struct drm_i915_master_private *master_priv;
3283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 int pipe = intel_crtc->pipe;
3285 bool enabled;
3286
032d2a0d
CW
3287 if (intel_crtc->dpms_mode == mode)
3288 return;
3289
65655d4a 3290 intel_crtc->dpms_mode = mode;
debcaddc 3291
e70236a8 3292 dev_priv->display.dpms(crtc, mode);
79e53945
JB
3293
3294 if (!dev->primary->master)
3295 return;
3296
3297 master_priv = dev->primary->master->driver_priv;
3298 if (!master_priv->sarea_priv)
3299 return;
3300
3301 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3302
3303 switch (pipe) {
3304 case 0:
3305 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3306 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3307 break;
3308 case 1:
3309 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3310 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3311 break;
3312 default:
9db4a9c7 3313 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3314 break;
3315 }
79e53945
JB
3316}
3317
cdd59983
CW
3318static void intel_crtc_disable(struct drm_crtc *crtc)
3319{
3320 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3321 struct drm_device *dev = crtc->dev;
3322
3323 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3324
3325 if (crtc->fb) {
3326 mutex_lock(&dev->struct_mutex);
3327 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3328 mutex_unlock(&dev->struct_mutex);
3329 }
3330}
3331
7e7d76c3
JB
3332/* Prepare for a mode set.
3333 *
3334 * Note we could be a lot smarter here. We need to figure out which outputs
3335 * will be enabled, which disabled (in short, how the config will changes)
3336 * and perform the minimum necessary steps to accomplish that, e.g. updating
3337 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3338 * panel fitting is in the proper state, etc.
3339 */
3340static void i9xx_crtc_prepare(struct drm_crtc *crtc)
79e53945 3341{
7e7d76c3 3342 i9xx_crtc_disable(crtc);
79e53945
JB
3343}
3344
7e7d76c3 3345static void i9xx_crtc_commit(struct drm_crtc *crtc)
79e53945 3346{
7e7d76c3 3347 i9xx_crtc_enable(crtc);
7e7d76c3
JB
3348}
3349
3350static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3351{
7e7d76c3 3352 ironlake_crtc_disable(crtc);
7e7d76c3
JB
3353}
3354
3355static void ironlake_crtc_commit(struct drm_crtc *crtc)
3356{
7e7d76c3 3357 ironlake_crtc_enable(crtc);
79e53945
JB
3358}
3359
0206e353 3360void intel_encoder_prepare(struct drm_encoder *encoder)
79e53945
JB
3361{
3362 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3363 /* lvds has its own version of prepare see intel_lvds_prepare */
3364 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3365}
3366
0206e353 3367void intel_encoder_commit(struct drm_encoder *encoder)
79e53945
JB
3368{
3369 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
d4270e57
JB
3370 struct drm_device *dev = encoder->dev;
3371 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3372 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3373
79e53945
JB
3374 /* lvds has its own version of commit see intel_lvds_commit */
3375 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
d4270e57
JB
3376
3377 if (HAS_PCH_CPT(dev))
3378 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
79e53945
JB
3379}
3380
ea5b213a
CW
3381void intel_encoder_destroy(struct drm_encoder *encoder)
3382{
4ef69c7a 3383 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3384
ea5b213a
CW
3385 drm_encoder_cleanup(encoder);
3386 kfree(intel_encoder);
3387}
3388
79e53945
JB
3389static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3390 struct drm_display_mode *mode,
3391 struct drm_display_mode *adjusted_mode)
3392{
2c07245f 3393 struct drm_device *dev = crtc->dev;
89749350 3394
bad720ff 3395 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3396 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3397 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3398 return false;
2c07245f 3399 }
89749350
CW
3400
3401 /* XXX some encoders set the crtcinfo, others don't.
3402 * Obviously we need some form of conflict resolution here...
3403 */
3404 if (adjusted_mode->crtc_htotal == 0)
3405 drm_mode_set_crtcinfo(adjusted_mode, 0);
3406
79e53945
JB
3407 return true;
3408}
3409
e70236a8
JB
3410static int i945_get_display_clock_speed(struct drm_device *dev)
3411{
3412 return 400000;
3413}
79e53945 3414
e70236a8 3415static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3416{
e70236a8
JB
3417 return 333000;
3418}
79e53945 3419
e70236a8
JB
3420static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3421{
3422 return 200000;
3423}
79e53945 3424
e70236a8
JB
3425static int i915gm_get_display_clock_speed(struct drm_device *dev)
3426{
3427 u16 gcfgc = 0;
79e53945 3428
e70236a8
JB
3429 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3430
3431 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3432 return 133000;
3433 else {
3434 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3435 case GC_DISPLAY_CLOCK_333_MHZ:
3436 return 333000;
3437 default:
3438 case GC_DISPLAY_CLOCK_190_200_MHZ:
3439 return 190000;
79e53945 3440 }
e70236a8
JB
3441 }
3442}
3443
3444static int i865_get_display_clock_speed(struct drm_device *dev)
3445{
3446 return 266000;
3447}
3448
3449static int i855_get_display_clock_speed(struct drm_device *dev)
3450{
3451 u16 hpllcc = 0;
3452 /* Assume that the hardware is in the high speed state. This
3453 * should be the default.
3454 */
3455 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3456 case GC_CLOCK_133_200:
3457 case GC_CLOCK_100_200:
3458 return 200000;
3459 case GC_CLOCK_166_250:
3460 return 250000;
3461 case GC_CLOCK_100_133:
79e53945 3462 return 133000;
e70236a8 3463 }
79e53945 3464
e70236a8
JB
3465 /* Shouldn't happen */
3466 return 0;
3467}
79e53945 3468
e70236a8
JB
3469static int i830_get_display_clock_speed(struct drm_device *dev)
3470{
3471 return 133000;
79e53945
JB
3472}
3473
2c07245f
ZW
3474struct fdi_m_n {
3475 u32 tu;
3476 u32 gmch_m;
3477 u32 gmch_n;
3478 u32 link_m;
3479 u32 link_n;
3480};
3481
3482static void
3483fdi_reduce_ratio(u32 *num, u32 *den)
3484{
3485 while (*num > 0xffffff || *den > 0xffffff) {
3486 *num >>= 1;
3487 *den >>= 1;
3488 }
3489}
3490
2c07245f 3491static void
f2b115e6
AJ
3492ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3493 int link_clock, struct fdi_m_n *m_n)
2c07245f 3494{
2c07245f
ZW
3495 m_n->tu = 64; /* default size */
3496
22ed1113
CW
3497 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3498 m_n->gmch_m = bits_per_pixel * pixel_clock;
3499 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3500 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3501
22ed1113
CW
3502 m_n->link_m = pixel_clock;
3503 m_n->link_n = link_clock;
2c07245f
ZW
3504 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3505}
3506
3507
7662c8bd
SL
3508struct intel_watermark_params {
3509 unsigned long fifo_size;
3510 unsigned long max_wm;
3511 unsigned long default_wm;
3512 unsigned long guard_size;
3513 unsigned long cacheline_size;
3514};
3515
f2b115e6 3516/* Pineview has different values for various configs */
d210246a 3517static const struct intel_watermark_params pineview_display_wm = {
f2b115e6
AJ
3518 PINEVIEW_DISPLAY_FIFO,
3519 PINEVIEW_MAX_WM,
3520 PINEVIEW_DFT_WM,
3521 PINEVIEW_GUARD_WM,
3522 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3523};
d210246a 3524static const struct intel_watermark_params pineview_display_hplloff_wm = {
f2b115e6
AJ
3525 PINEVIEW_DISPLAY_FIFO,
3526 PINEVIEW_MAX_WM,
3527 PINEVIEW_DFT_HPLLOFF_WM,
3528 PINEVIEW_GUARD_WM,
3529 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3530};
d210246a 3531static const struct intel_watermark_params pineview_cursor_wm = {
f2b115e6
AJ
3532 PINEVIEW_CURSOR_FIFO,
3533 PINEVIEW_CURSOR_MAX_WM,
3534 PINEVIEW_CURSOR_DFT_WM,
3535 PINEVIEW_CURSOR_GUARD_WM,
3536 PINEVIEW_FIFO_LINE_SIZE,
7662c8bd 3537};
d210246a 3538static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
f2b115e6
AJ
3539 PINEVIEW_CURSOR_FIFO,
3540 PINEVIEW_CURSOR_MAX_WM,
3541 PINEVIEW_CURSOR_DFT_WM,
3542 PINEVIEW_CURSOR_GUARD_WM,
3543 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3544};
d210246a 3545static const struct intel_watermark_params g4x_wm_info = {
0e442c60
JB
3546 G4X_FIFO_SIZE,
3547 G4X_MAX_WM,
3548 G4X_MAX_WM,
3549 2,
3550 G4X_FIFO_LINE_SIZE,
3551};
d210246a 3552static const struct intel_watermark_params g4x_cursor_wm_info = {
4fe5e611
ZY
3553 I965_CURSOR_FIFO,
3554 I965_CURSOR_MAX_WM,
3555 I965_CURSOR_DFT_WM,
3556 2,
3557 G4X_FIFO_LINE_SIZE,
3558};
d210246a 3559static const struct intel_watermark_params i965_cursor_wm_info = {
4fe5e611
ZY
3560 I965_CURSOR_FIFO,
3561 I965_CURSOR_MAX_WM,
3562 I965_CURSOR_DFT_WM,
3563 2,
3564 I915_FIFO_LINE_SIZE,
3565};
d210246a 3566static const struct intel_watermark_params i945_wm_info = {
dff33cfc 3567 I945_FIFO_SIZE,
7662c8bd
SL
3568 I915_MAX_WM,
3569 1,
dff33cfc
JB
3570 2,
3571 I915_FIFO_LINE_SIZE
7662c8bd 3572};
d210246a 3573static const struct intel_watermark_params i915_wm_info = {
dff33cfc 3574 I915_FIFO_SIZE,
7662c8bd
SL
3575 I915_MAX_WM,
3576 1,
dff33cfc 3577 2,
7662c8bd
SL
3578 I915_FIFO_LINE_SIZE
3579};
d210246a 3580static const struct intel_watermark_params i855_wm_info = {
7662c8bd
SL
3581 I855GM_FIFO_SIZE,
3582 I915_MAX_WM,
3583 1,
dff33cfc 3584 2,
7662c8bd
SL
3585 I830_FIFO_LINE_SIZE
3586};
d210246a 3587static const struct intel_watermark_params i830_wm_info = {
7662c8bd
SL
3588 I830_FIFO_SIZE,
3589 I915_MAX_WM,
3590 1,
dff33cfc 3591 2,
7662c8bd
SL
3592 I830_FIFO_LINE_SIZE
3593};
3594
d210246a 3595static const struct intel_watermark_params ironlake_display_wm_info = {
7f8a8569
ZW
3596 ILK_DISPLAY_FIFO,
3597 ILK_DISPLAY_MAXWM,
3598 ILK_DISPLAY_DFTWM,
3599 2,
3600 ILK_FIFO_LINE_SIZE
3601};
d210246a 3602static const struct intel_watermark_params ironlake_cursor_wm_info = {
c936f44d
ZY
3603 ILK_CURSOR_FIFO,
3604 ILK_CURSOR_MAXWM,
3605 ILK_CURSOR_DFTWM,
3606 2,
3607 ILK_FIFO_LINE_SIZE
3608};
d210246a 3609static const struct intel_watermark_params ironlake_display_srwm_info = {
7f8a8569
ZW
3610 ILK_DISPLAY_SR_FIFO,
3611 ILK_DISPLAY_MAX_SRWM,
3612 ILK_DISPLAY_DFT_SRWM,
3613 2,
3614 ILK_FIFO_LINE_SIZE
3615};
d210246a 3616static const struct intel_watermark_params ironlake_cursor_srwm_info = {
7f8a8569
ZW
3617 ILK_CURSOR_SR_FIFO,
3618 ILK_CURSOR_MAX_SRWM,
3619 ILK_CURSOR_DFT_SRWM,
3620 2,
3621 ILK_FIFO_LINE_SIZE
3622};
3623
d210246a 3624static const struct intel_watermark_params sandybridge_display_wm_info = {
1398261a
YL
3625 SNB_DISPLAY_FIFO,
3626 SNB_DISPLAY_MAXWM,
3627 SNB_DISPLAY_DFTWM,
3628 2,
3629 SNB_FIFO_LINE_SIZE
3630};
d210246a 3631static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1398261a
YL
3632 SNB_CURSOR_FIFO,
3633 SNB_CURSOR_MAXWM,
3634 SNB_CURSOR_DFTWM,
3635 2,
3636 SNB_FIFO_LINE_SIZE
3637};
d210246a 3638static const struct intel_watermark_params sandybridge_display_srwm_info = {
1398261a
YL
3639 SNB_DISPLAY_SR_FIFO,
3640 SNB_DISPLAY_MAX_SRWM,
3641 SNB_DISPLAY_DFT_SRWM,
3642 2,
3643 SNB_FIFO_LINE_SIZE
3644};
d210246a 3645static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1398261a
YL
3646 SNB_CURSOR_SR_FIFO,
3647 SNB_CURSOR_MAX_SRWM,
3648 SNB_CURSOR_DFT_SRWM,
3649 2,
3650 SNB_FIFO_LINE_SIZE
3651};
3652
3653
dff33cfc
JB
3654/**
3655 * intel_calculate_wm - calculate watermark level
3656 * @clock_in_khz: pixel clock
3657 * @wm: chip FIFO params
3658 * @pixel_size: display pixel size
3659 * @latency_ns: memory latency for the platform
3660 *
3661 * Calculate the watermark level (the level at which the display plane will
3662 * start fetching from memory again). Each chip has a different display
3663 * FIFO size and allocation, so the caller needs to figure that out and pass
3664 * in the correct intel_watermark_params structure.
3665 *
3666 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3667 * on the pixel size. When it reaches the watermark level, it'll start
3668 * fetching FIFO line sized based chunks from memory until the FIFO fills
3669 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3670 * will occur, and a display engine hang could result.
3671 */
7662c8bd 3672static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
d210246a
CW
3673 const struct intel_watermark_params *wm,
3674 int fifo_size,
7662c8bd
SL
3675 int pixel_size,
3676 unsigned long latency_ns)
3677{
390c4dd4 3678 long entries_required, wm_size;
dff33cfc 3679
d660467c
JB
3680 /*
3681 * Note: we need to make sure we don't overflow for various clock &
3682 * latency values.
3683 * clocks go from a few thousand to several hundred thousand.
3684 * latency is usually a few thousand
3685 */
3686 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3687 1000;
8de9b311 3688 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
7662c8bd 3689
bbb0aef5 3690 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
dff33cfc 3691
d210246a 3692 wm_size = fifo_size - (entries_required + wm->guard_size);
dff33cfc 3693
bbb0aef5 3694 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
7662c8bd 3695
390c4dd4
JB
3696 /* Don't promote wm_size to unsigned... */
3697 if (wm_size > (long)wm->max_wm)
7662c8bd 3698 wm_size = wm->max_wm;
c3add4b6 3699 if (wm_size <= 0)
7662c8bd
SL
3700 wm_size = wm->default_wm;
3701 return wm_size;
3702}
3703
3704struct cxsr_latency {
3705 int is_desktop;
95534263 3706 int is_ddr3;
7662c8bd
SL
3707 unsigned long fsb_freq;
3708 unsigned long mem_freq;
3709 unsigned long display_sr;
3710 unsigned long display_hpll_disable;
3711 unsigned long cursor_sr;
3712 unsigned long cursor_hpll_disable;
3713};
3714
403c89ff 3715static const struct cxsr_latency cxsr_latency_table[] = {
95534263
LP
3716 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3717 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3718 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3719 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3720 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3721
3722 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3723 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3724 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3725 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3726 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3727
3728 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3729 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3730 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3731 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3732 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3733
3734 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3735 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3736 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3737 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3738 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3739
3740 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3741 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3742 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3743 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3744 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3745
3746 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3747 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3748 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3749 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3750 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
7662c8bd
SL
3751};
3752
403c89ff
CW
3753static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3754 int is_ddr3,
3755 int fsb,
3756 int mem)
7662c8bd 3757{
403c89ff 3758 const struct cxsr_latency *latency;
7662c8bd 3759 int i;
7662c8bd
SL
3760
3761 if (fsb == 0 || mem == 0)
3762 return NULL;
3763
3764 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3765 latency = &cxsr_latency_table[i];
3766 if (is_desktop == latency->is_desktop &&
95534263 3767 is_ddr3 == latency->is_ddr3 &&
decbbcda
JSR
3768 fsb == latency->fsb_freq && mem == latency->mem_freq)
3769 return latency;
7662c8bd 3770 }
decbbcda 3771
28c97730 3772 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
decbbcda
JSR
3773
3774 return NULL;
7662c8bd
SL
3775}
3776
f2b115e6 3777static void pineview_disable_cxsr(struct drm_device *dev)
7662c8bd
SL
3778{
3779 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd
SL
3780
3781 /* deactivate cxsr */
3e33d94d 3782 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
7662c8bd
SL
3783}
3784
bcc24fb4
JB
3785/*
3786 * Latency for FIFO fetches is dependent on several factors:
3787 * - memory configuration (speed, channels)
3788 * - chipset
3789 * - current MCH state
3790 * It can be fairly high in some situations, so here we assume a fairly
3791 * pessimal value. It's a tradeoff between extra memory fetches (if we
3792 * set this value too high, the FIFO will fetch frequently to stay full)
3793 * and power consumption (set it too low to save power and we might see
3794 * FIFO underruns and display "flicker").
3795 *
3796 * A value of 5us seems to be a good balance; safe for very low end
3797 * platforms but not overly aggressive on lower latency configs.
3798 */
69e302a9 3799static const int latency_ns = 5000;
7662c8bd 3800
e70236a8 3801static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
dff33cfc
JB
3802{
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 uint32_t dsparb = I915_READ(DSPARB);
3805 int size;
3806
8de9b311
CW
3807 size = dsparb & 0x7f;
3808 if (plane)
3809 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
dff33cfc 3810
28c97730 3811 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3812 plane ? "B" : "A", size);
dff33cfc
JB
3813
3814 return size;
3815}
7662c8bd 3816
e70236a8
JB
3817static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3818{
3819 struct drm_i915_private *dev_priv = dev->dev_private;
3820 uint32_t dsparb = I915_READ(DSPARB);
3821 int size;
3822
8de9b311
CW
3823 size = dsparb & 0x1ff;
3824 if (plane)
3825 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
e70236a8 3826 size >>= 1; /* Convert to cachelines */
dff33cfc 3827
28c97730 3828 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3829 plane ? "B" : "A", size);
dff33cfc
JB
3830
3831 return size;
3832}
7662c8bd 3833
e70236a8
JB
3834static int i845_get_fifo_size(struct drm_device *dev, int plane)
3835{
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 uint32_t dsparb = I915_READ(DSPARB);
3838 int size;
3839
3840 size = dsparb & 0x7f;
3841 size >>= 2; /* Convert to cachelines */
3842
28c97730 3843 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b
CW
3844 plane ? "B" : "A",
3845 size);
e70236a8
JB
3846
3847 return size;
3848}
3849
3850static int i830_get_fifo_size(struct drm_device *dev, int plane)
3851{
3852 struct drm_i915_private *dev_priv = dev->dev_private;
3853 uint32_t dsparb = I915_READ(DSPARB);
3854 int size;
3855
3856 size = dsparb & 0x7f;
3857 size >>= 1; /* Convert to cachelines */
3858
28c97730 3859 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3860 plane ? "B" : "A", size);
e70236a8
JB
3861
3862 return size;
3863}
3864
d210246a
CW
3865static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3866{
3867 struct drm_crtc *crtc, *enabled = NULL;
3868
3869 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3870 if (crtc->enabled && crtc->fb) {
3871 if (enabled)
3872 return NULL;
3873 enabled = crtc;
3874 }
3875 }
3876
3877 return enabled;
3878}
3879
3880static void pineview_update_wm(struct drm_device *dev)
d4294342
ZY
3881{
3882 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 3883 struct drm_crtc *crtc;
403c89ff 3884 const struct cxsr_latency *latency;
d4294342
ZY
3885 u32 reg;
3886 unsigned long wm;
d4294342 3887
403c89ff 3888 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
95534263 3889 dev_priv->fsb_freq, dev_priv->mem_freq);
d4294342
ZY
3890 if (!latency) {
3891 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3892 pineview_disable_cxsr(dev);
3893 return;
3894 }
3895
d210246a
CW
3896 crtc = single_enabled_crtc(dev);
3897 if (crtc) {
3898 int clock = crtc->mode.clock;
3899 int pixel_size = crtc->fb->bits_per_pixel / 8;
d4294342
ZY
3900
3901 /* Display SR */
d210246a
CW
3902 wm = intel_calculate_wm(clock, &pineview_display_wm,
3903 pineview_display_wm.fifo_size,
d4294342
ZY
3904 pixel_size, latency->display_sr);
3905 reg = I915_READ(DSPFW1);
3906 reg &= ~DSPFW_SR_MASK;
3907 reg |= wm << DSPFW_SR_SHIFT;
3908 I915_WRITE(DSPFW1, reg);
3909 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3910
3911 /* cursor SR */
d210246a
CW
3912 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3913 pineview_display_wm.fifo_size,
d4294342
ZY
3914 pixel_size, latency->cursor_sr);
3915 reg = I915_READ(DSPFW3);
3916 reg &= ~DSPFW_CURSOR_SR_MASK;
3917 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3918 I915_WRITE(DSPFW3, reg);
3919
3920 /* Display HPLL off SR */
d210246a
CW
3921 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3922 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3923 pixel_size, latency->display_hpll_disable);
3924 reg = I915_READ(DSPFW3);
3925 reg &= ~DSPFW_HPLL_SR_MASK;
3926 reg |= wm & DSPFW_HPLL_SR_MASK;
3927 I915_WRITE(DSPFW3, reg);
3928
3929 /* cursor HPLL off SR */
d210246a
CW
3930 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3931 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3932 pixel_size, latency->cursor_hpll_disable);
3933 reg = I915_READ(DSPFW3);
3934 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3935 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3936 I915_WRITE(DSPFW3, reg);
3937 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3938
3939 /* activate cxsr */
3e33d94d
CW
3940 I915_WRITE(DSPFW3,
3941 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
d4294342
ZY
3942 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3943 } else {
3944 pineview_disable_cxsr(dev);
3945 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3946 }
3947}
3948
417ae147
CW
3949static bool g4x_compute_wm0(struct drm_device *dev,
3950 int plane,
3951 const struct intel_watermark_params *display,
3952 int display_latency_ns,
3953 const struct intel_watermark_params *cursor,
3954 int cursor_latency_ns,
3955 int *plane_wm,
3956 int *cursor_wm)
3957{
3958 struct drm_crtc *crtc;
3959 int htotal, hdisplay, clock, pixel_size;
3960 int line_time_us, line_count;
3961 int entries, tlb_miss;
3962
3963 crtc = intel_get_crtc_for_plane(dev, plane);
5c72d064
CW
3964 if (crtc->fb == NULL || !crtc->enabled) {
3965 *cursor_wm = cursor->guard_size;
3966 *plane_wm = display->guard_size;
417ae147 3967 return false;
5c72d064 3968 }
417ae147
CW
3969
3970 htotal = crtc->mode.htotal;
3971 hdisplay = crtc->mode.hdisplay;
3972 clock = crtc->mode.clock;
3973 pixel_size = crtc->fb->bits_per_pixel / 8;
3974
3975 /* Use the small buffer method to calculate plane watermark */
3976 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3977 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3978 if (tlb_miss > 0)
3979 entries += tlb_miss;
3980 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3981 *plane_wm = entries + display->guard_size;
3982 if (*plane_wm > (int)display->max_wm)
3983 *plane_wm = display->max_wm;
3984
3985 /* Use the large buffer method to calculate cursor watermark */
3986 line_time_us = ((htotal * 1000) / clock);
3987 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3988 entries = line_count * 64 * pixel_size;
3989 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3990 if (tlb_miss > 0)
3991 entries += tlb_miss;
3992 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3993 *cursor_wm = entries + cursor->guard_size;
3994 if (*cursor_wm > (int)cursor->max_wm)
3995 *cursor_wm = (int)cursor->max_wm;
3996
3997 return true;
3998}
3999
4000/*
4001 * Check the wm result.
4002 *
4003 * If any calculated watermark values is larger than the maximum value that
4004 * can be programmed into the associated watermark register, that watermark
4005 * must be disabled.
4006 */
4007static bool g4x_check_srwm(struct drm_device *dev,
4008 int display_wm, int cursor_wm,
4009 const struct intel_watermark_params *display,
4010 const struct intel_watermark_params *cursor)
652c393a 4011{
417ae147
CW
4012 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4013 display_wm, cursor_wm);
652c393a 4014
417ae147 4015 if (display_wm > display->max_wm) {
bbb0aef5 4016 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
417ae147
CW
4017 display_wm, display->max_wm);
4018 return false;
4019 }
0e442c60 4020
417ae147 4021 if (cursor_wm > cursor->max_wm) {
bbb0aef5 4022 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
417ae147
CW
4023 cursor_wm, cursor->max_wm);
4024 return false;
4025 }
0e442c60 4026
417ae147
CW
4027 if (!(display_wm || cursor_wm)) {
4028 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4029 return false;
4030 }
0e442c60 4031
417ae147
CW
4032 return true;
4033}
0e442c60 4034
417ae147 4035static bool g4x_compute_srwm(struct drm_device *dev,
d210246a
CW
4036 int plane,
4037 int latency_ns,
417ae147
CW
4038 const struct intel_watermark_params *display,
4039 const struct intel_watermark_params *cursor,
4040 int *display_wm, int *cursor_wm)
4041{
d210246a
CW
4042 struct drm_crtc *crtc;
4043 int hdisplay, htotal, pixel_size, clock;
417ae147
CW
4044 unsigned long line_time_us;
4045 int line_count, line_size;
4046 int small, large;
4047 int entries;
0e442c60 4048
417ae147
CW
4049 if (!latency_ns) {
4050 *display_wm = *cursor_wm = 0;
4051 return false;
4052 }
0e442c60 4053
d210246a
CW
4054 crtc = intel_get_crtc_for_plane(dev, plane);
4055 hdisplay = crtc->mode.hdisplay;
4056 htotal = crtc->mode.htotal;
4057 clock = crtc->mode.clock;
4058 pixel_size = crtc->fb->bits_per_pixel / 8;
4059
417ae147
CW
4060 line_time_us = (htotal * 1000) / clock;
4061 line_count = (latency_ns / line_time_us + 1000) / 1000;
4062 line_size = hdisplay * pixel_size;
0e442c60 4063
417ae147
CW
4064 /* Use the minimum of the small and large buffer method for primary */
4065 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4066 large = line_count * line_size;
0e442c60 4067
417ae147
CW
4068 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4069 *display_wm = entries + display->guard_size;
4fe5e611 4070
417ae147
CW
4071 /* calculate the self-refresh watermark for display cursor */
4072 entries = line_count * pixel_size * 64;
4073 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4074 *cursor_wm = entries + cursor->guard_size;
4fe5e611 4075
417ae147
CW
4076 return g4x_check_srwm(dev,
4077 *display_wm, *cursor_wm,
4078 display, cursor);
4079}
4fe5e611 4080
7ccb4a53 4081#define single_plane_enabled(mask) is_power_of_2(mask)
d210246a
CW
4082
4083static void g4x_update_wm(struct drm_device *dev)
417ae147
CW
4084{
4085 static const int sr_latency_ns = 12000;
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
d210246a
CW
4088 int plane_sr, cursor_sr;
4089 unsigned int enabled = 0;
417ae147
CW
4090
4091 if (g4x_compute_wm0(dev, 0,
4092 &g4x_wm_info, latency_ns,
4093 &g4x_cursor_wm_info, latency_ns,
4094 &planea_wm, &cursora_wm))
d210246a 4095 enabled |= 1;
417ae147
CW
4096
4097 if (g4x_compute_wm0(dev, 1,
4098 &g4x_wm_info, latency_ns,
4099 &g4x_cursor_wm_info, latency_ns,
4100 &planeb_wm, &cursorb_wm))
d210246a 4101 enabled |= 2;
417ae147
CW
4102
4103 plane_sr = cursor_sr = 0;
d210246a
CW
4104 if (single_plane_enabled(enabled) &&
4105 g4x_compute_srwm(dev, ffs(enabled) - 1,
4106 sr_latency_ns,
417ae147
CW
4107 &g4x_wm_info,
4108 &g4x_cursor_wm_info,
4109 &plane_sr, &cursor_sr))
0e442c60 4110 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
417ae147
CW
4111 else
4112 I915_WRITE(FW_BLC_SELF,
4113 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
0e442c60 4114
308977ac
CW
4115 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4116 planea_wm, cursora_wm,
4117 planeb_wm, cursorb_wm,
4118 plane_sr, cursor_sr);
0e442c60 4119
417ae147
CW
4120 I915_WRITE(DSPFW1,
4121 (plane_sr << DSPFW_SR_SHIFT) |
0e442c60 4122 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
417ae147
CW
4123 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4124 planea_wm);
4125 I915_WRITE(DSPFW2,
4126 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
0e442c60
JB
4127 (cursora_wm << DSPFW_CURSORA_SHIFT));
4128 /* HPLL off in SR has some issues on G4x... disable it */
417ae147
CW
4129 I915_WRITE(DSPFW3,
4130 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
0e442c60 4131 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
652c393a
JB
4132}
4133
d210246a 4134static void i965_update_wm(struct drm_device *dev)
7662c8bd
SL
4135{
4136 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4137 struct drm_crtc *crtc;
4138 int srwm = 1;
4fe5e611 4139 int cursor_sr = 16;
1dc7546d
JB
4140
4141 /* Calc sr entries for one plane configs */
d210246a
CW
4142 crtc = single_enabled_crtc(dev);
4143 if (crtc) {
1dc7546d 4144 /* self-refresh has much higher latency */
69e302a9 4145 static const int sr_latency_ns = 12000;
d210246a
CW
4146 int clock = crtc->mode.clock;
4147 int htotal = crtc->mode.htotal;
4148 int hdisplay = crtc->mode.hdisplay;
4149 int pixel_size = crtc->fb->bits_per_pixel / 8;
4150 unsigned long line_time_us;
4151 int entries;
1dc7546d 4152
d210246a 4153 line_time_us = ((htotal * 1000) / clock);
1dc7546d
JB
4154
4155 /* Use ns/us then divide to preserve precision */
d210246a
CW
4156 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4157 pixel_size * hdisplay;
4158 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
d210246a 4159 srwm = I965_FIFO_SIZE - entries;
1dc7546d
JB
4160 if (srwm < 0)
4161 srwm = 1;
1b07e04e 4162 srwm &= 0x1ff;
308977ac
CW
4163 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4164 entries, srwm);
4fe5e611 4165
d210246a 4166 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
5eddb70b 4167 pixel_size * 64;
d210246a 4168 entries = DIV_ROUND_UP(entries,
8de9b311 4169 i965_cursor_wm_info.cacheline_size);
4fe5e611 4170 cursor_sr = i965_cursor_wm_info.fifo_size -
d210246a 4171 (entries + i965_cursor_wm_info.guard_size);
4fe5e611
ZY
4172
4173 if (cursor_sr > i965_cursor_wm_info.max_wm)
4174 cursor_sr = i965_cursor_wm_info.max_wm;
4175
4176 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4177 "cursor %d\n", srwm, cursor_sr);
4178
a6c45cf0 4179 if (IS_CRESTLINE(dev))
adcdbc66 4180 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
33c5fd12
DJ
4181 } else {
4182 /* Turn off self refresh if both pipes are enabled */
a6c45cf0 4183 if (IS_CRESTLINE(dev))
adcdbc66
JB
4184 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4185 & ~FW_BLC_SELF_EN);
1dc7546d 4186 }
7662c8bd 4187
1dc7546d
JB
4188 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4189 srwm);
7662c8bd
SL
4190
4191 /* 965 has limitations... */
417ae147
CW
4192 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4193 (8 << 16) | (8 << 8) | (8 << 0));
7662c8bd 4194 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4fe5e611
ZY
4195 /* update cursor SR watermark */
4196 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
7662c8bd
SL
4197}
4198
d210246a 4199static void i9xx_update_wm(struct drm_device *dev)
7662c8bd
SL
4200{
4201 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 4202 const struct intel_watermark_params *wm_info;
dff33cfc
JB
4203 uint32_t fwater_lo;
4204 uint32_t fwater_hi;
d210246a
CW
4205 int cwm, srwm = 1;
4206 int fifo_size;
dff33cfc 4207 int planea_wm, planeb_wm;
d210246a 4208 struct drm_crtc *crtc, *enabled = NULL;
7662c8bd 4209
72557b4f 4210 if (IS_I945GM(dev))
d210246a 4211 wm_info = &i945_wm_info;
a6c45cf0 4212 else if (!IS_GEN2(dev))
d210246a 4213 wm_info = &i915_wm_info;
7662c8bd 4214 else
d210246a
CW
4215 wm_info = &i855_wm_info;
4216
4217 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4218 crtc = intel_get_crtc_for_plane(dev, 0);
4219 if (crtc->enabled && crtc->fb) {
4220 planea_wm = intel_calculate_wm(crtc->mode.clock,
4221 wm_info, fifo_size,
4222 crtc->fb->bits_per_pixel / 8,
4223 latency_ns);
4224 enabled = crtc;
4225 } else
4226 planea_wm = fifo_size - wm_info->guard_size;
4227
4228 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4229 crtc = intel_get_crtc_for_plane(dev, 1);
4230 if (crtc->enabled && crtc->fb) {
4231 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4232 wm_info, fifo_size,
4233 crtc->fb->bits_per_pixel / 8,
4234 latency_ns);
4235 if (enabled == NULL)
4236 enabled = crtc;
4237 else
4238 enabled = NULL;
4239 } else
4240 planeb_wm = fifo_size - wm_info->guard_size;
7662c8bd 4241
28c97730 4242 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
7662c8bd
SL
4243
4244 /*
4245 * Overlay gets an aggressive default since video jitter is bad.
4246 */
4247 cwm = 2;
4248
18b2190c
AL
4249 /* Play safe and disable self-refresh before adjusting watermarks. */
4250 if (IS_I945G(dev) || IS_I945GM(dev))
4251 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4252 else if (IS_I915GM(dev))
4253 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4254
dff33cfc 4255 /* Calc sr entries for one plane configs */
d210246a 4256 if (HAS_FW_BLC(dev) && enabled) {
dff33cfc 4257 /* self-refresh has much higher latency */
69e302a9 4258 static const int sr_latency_ns = 6000;
d210246a
CW
4259 int clock = enabled->mode.clock;
4260 int htotal = enabled->mode.htotal;
4261 int hdisplay = enabled->mode.hdisplay;
4262 int pixel_size = enabled->fb->bits_per_pixel / 8;
4263 unsigned long line_time_us;
4264 int entries;
dff33cfc 4265
d210246a 4266 line_time_us = (htotal * 1000) / clock;
dff33cfc
JB
4267
4268 /* Use ns/us then divide to preserve precision */
d210246a
CW
4269 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4270 pixel_size * hdisplay;
4271 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4272 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4273 srwm = wm_info->fifo_size - entries;
dff33cfc
JB
4274 if (srwm < 0)
4275 srwm = 1;
ee980b80
LP
4276
4277 if (IS_I945G(dev) || IS_I945GM(dev))
18b2190c
AL
4278 I915_WRITE(FW_BLC_SELF,
4279 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4280 else if (IS_I915GM(dev))
ee980b80 4281 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
7662c8bd
SL
4282 }
4283
28c97730 4284 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
5eddb70b 4285 planea_wm, planeb_wm, cwm, srwm);
7662c8bd 4286
dff33cfc
JB
4287 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4288 fwater_hi = (cwm & 0x1f);
4289
4290 /* Set request length to 8 cachelines per fetch */
4291 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4292 fwater_hi = fwater_hi | (1 << 8);
7662c8bd
SL
4293
4294 I915_WRITE(FW_BLC, fwater_lo);
4295 I915_WRITE(FW_BLC2, fwater_hi);
18b2190c 4296
d210246a
CW
4297 if (HAS_FW_BLC(dev)) {
4298 if (enabled) {
4299 if (IS_I945G(dev) || IS_I945GM(dev))
4300 I915_WRITE(FW_BLC_SELF,
4301 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4302 else if (IS_I915GM(dev))
4303 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4304 DRM_DEBUG_KMS("memory self refresh enabled\n");
4305 } else
4306 DRM_DEBUG_KMS("memory self refresh disabled\n");
4307 }
7662c8bd
SL
4308}
4309
d210246a 4310static void i830_update_wm(struct drm_device *dev)
7662c8bd
SL
4311{
4312 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4313 struct drm_crtc *crtc;
4314 uint32_t fwater_lo;
dff33cfc 4315 int planea_wm;
7662c8bd 4316
d210246a
CW
4317 crtc = single_enabled_crtc(dev);
4318 if (crtc == NULL)
4319 return;
7662c8bd 4320
d210246a
CW
4321 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4322 dev_priv->display.get_fifo_size(dev, 0),
4323 crtc->fb->bits_per_pixel / 8,
4324 latency_ns);
4325 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
f3601326
JB
4326 fwater_lo |= (3<<8) | planea_wm;
4327
28c97730 4328 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
7662c8bd
SL
4329
4330 I915_WRITE(FW_BLC, fwater_lo);
4331}
4332
7f8a8569 4333#define ILK_LP0_PLANE_LATENCY 700
c936f44d 4334#define ILK_LP0_CURSOR_LATENCY 1300
7f8a8569 4335
1398261a
YL
4336/*
4337 * Check the wm result.
4338 *
4339 * If any calculated watermark values is larger than the maximum value that
4340 * can be programmed into the associated watermark register, that watermark
4341 * must be disabled.
1398261a 4342 */
b79d4990
JB
4343static bool ironlake_check_srwm(struct drm_device *dev, int level,
4344 int fbc_wm, int display_wm, int cursor_wm,
4345 const struct intel_watermark_params *display,
4346 const struct intel_watermark_params *cursor)
1398261a
YL
4347{
4348 struct drm_i915_private *dev_priv = dev->dev_private;
4349
4350 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4351 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4352
4353 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4354 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4355 fbc_wm, SNB_FBC_MAX_SRWM, level);
1398261a
YL
4356
4357 /* fbc has it's own way to disable FBC WM */
4358 I915_WRITE(DISP_ARB_CTL,
4359 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4360 return false;
4361 }
4362
b79d4990 4363 if (display_wm > display->max_wm) {
1398261a 4364 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4365 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1398261a
YL
4366 return false;
4367 }
4368
b79d4990 4369 if (cursor_wm > cursor->max_wm) {
1398261a 4370 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4371 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1398261a
YL
4372 return false;
4373 }
4374
4375 if (!(fbc_wm || display_wm || cursor_wm)) {
4376 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4377 return false;
4378 }
4379
4380 return true;
4381}
4382
4383/*
4384 * Compute watermark values of WM[1-3],
4385 */
d210246a
CW
4386static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4387 int latency_ns,
b79d4990
JB
4388 const struct intel_watermark_params *display,
4389 const struct intel_watermark_params *cursor,
4390 int *fbc_wm, int *display_wm, int *cursor_wm)
1398261a 4391{
d210246a 4392 struct drm_crtc *crtc;
1398261a 4393 unsigned long line_time_us;
d210246a 4394 int hdisplay, htotal, pixel_size, clock;
b79d4990 4395 int line_count, line_size;
1398261a
YL
4396 int small, large;
4397 int entries;
1398261a
YL
4398
4399 if (!latency_ns) {
4400 *fbc_wm = *display_wm = *cursor_wm = 0;
4401 return false;
4402 }
4403
d210246a
CW
4404 crtc = intel_get_crtc_for_plane(dev, plane);
4405 hdisplay = crtc->mode.hdisplay;
4406 htotal = crtc->mode.htotal;
4407 clock = crtc->mode.clock;
4408 pixel_size = crtc->fb->bits_per_pixel / 8;
4409
1398261a
YL
4410 line_time_us = (htotal * 1000) / clock;
4411 line_count = (latency_ns / line_time_us + 1000) / 1000;
4412 line_size = hdisplay * pixel_size;
4413
4414 /* Use the minimum of the small and large buffer method for primary */
4415 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4416 large = line_count * line_size;
4417
b79d4990
JB
4418 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4419 *display_wm = entries + display->guard_size;
1398261a
YL
4420
4421 /*
b79d4990 4422 * Spec says:
1398261a
YL
4423 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4424 */
4425 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4426
4427 /* calculate the self-refresh watermark for display cursor */
4428 entries = line_count * pixel_size * 64;
b79d4990
JB
4429 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4430 *cursor_wm = entries + cursor->guard_size;
1398261a 4431
b79d4990
JB
4432 return ironlake_check_srwm(dev, level,
4433 *fbc_wm, *display_wm, *cursor_wm,
4434 display, cursor);
4435}
4436
d210246a 4437static void ironlake_update_wm(struct drm_device *dev)
b79d4990
JB
4438{
4439 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4440 int fbc_wm, plane_wm, cursor_wm;
4441 unsigned int enabled;
b79d4990
JB
4442
4443 enabled = 0;
9f405100
CW
4444 if (g4x_compute_wm0(dev, 0,
4445 &ironlake_display_wm_info,
4446 ILK_LP0_PLANE_LATENCY,
4447 &ironlake_cursor_wm_info,
4448 ILK_LP0_CURSOR_LATENCY,
4449 &plane_wm, &cursor_wm)) {
b79d4990
JB
4450 I915_WRITE(WM0_PIPEA_ILK,
4451 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4452 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4453 " plane %d, " "cursor: %d\n",
4454 plane_wm, cursor_wm);
d210246a 4455 enabled |= 1;
b79d4990
JB
4456 }
4457
9f405100
CW
4458 if (g4x_compute_wm0(dev, 1,
4459 &ironlake_display_wm_info,
4460 ILK_LP0_PLANE_LATENCY,
4461 &ironlake_cursor_wm_info,
4462 ILK_LP0_CURSOR_LATENCY,
4463 &plane_wm, &cursor_wm)) {
b79d4990
JB
4464 I915_WRITE(WM0_PIPEB_ILK,
4465 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4466 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4467 " plane %d, cursor: %d\n",
4468 plane_wm, cursor_wm);
d210246a 4469 enabled |= 2;
b79d4990
JB
4470 }
4471
4472 /*
4473 * Calculate and update the self-refresh watermark only when one
4474 * display plane is used.
4475 */
4476 I915_WRITE(WM3_LP_ILK, 0);
4477 I915_WRITE(WM2_LP_ILK, 0);
4478 I915_WRITE(WM1_LP_ILK, 0);
4479
d210246a 4480 if (!single_plane_enabled(enabled))
b79d4990 4481 return;
d210246a 4482 enabled = ffs(enabled) - 1;
b79d4990
JB
4483
4484 /* WM1 */
d210246a
CW
4485 if (!ironlake_compute_srwm(dev, 1, enabled,
4486 ILK_READ_WM1_LATENCY() * 500,
b79d4990
JB
4487 &ironlake_display_srwm_info,
4488 &ironlake_cursor_srwm_info,
4489 &fbc_wm, &plane_wm, &cursor_wm))
4490 return;
4491
4492 I915_WRITE(WM1_LP_ILK,
4493 WM1_LP_SR_EN |
4494 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4495 (fbc_wm << WM1_LP_FBC_SHIFT) |
4496 (plane_wm << WM1_LP_SR_SHIFT) |
4497 cursor_wm);
4498
4499 /* WM2 */
d210246a
CW
4500 if (!ironlake_compute_srwm(dev, 2, enabled,
4501 ILK_READ_WM2_LATENCY() * 500,
b79d4990
JB
4502 &ironlake_display_srwm_info,
4503 &ironlake_cursor_srwm_info,
4504 &fbc_wm, &plane_wm, &cursor_wm))
4505 return;
4506
4507 I915_WRITE(WM2_LP_ILK,
4508 WM2_LP_EN |
4509 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4510 (fbc_wm << WM1_LP_FBC_SHIFT) |
4511 (plane_wm << WM1_LP_SR_SHIFT) |
4512 cursor_wm);
4513
4514 /*
4515 * WM3 is unsupported on ILK, probably because we don't have latency
4516 * data for that power state
4517 */
1398261a
YL
4518}
4519
b840d907 4520void sandybridge_update_wm(struct drm_device *dev)
1398261a
YL
4521{
4522 struct drm_i915_private *dev_priv = dev->dev_private;
a0fa62d3 4523 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
d210246a
CW
4524 int fbc_wm, plane_wm, cursor_wm;
4525 unsigned int enabled;
1398261a
YL
4526
4527 enabled = 0;
9f405100
CW
4528 if (g4x_compute_wm0(dev, 0,
4529 &sandybridge_display_wm_info, latency,
4530 &sandybridge_cursor_wm_info, latency,
4531 &plane_wm, &cursor_wm)) {
1398261a
YL
4532 I915_WRITE(WM0_PIPEA_ILK,
4533 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4534 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4535 " plane %d, " "cursor: %d\n",
4536 plane_wm, cursor_wm);
d210246a 4537 enabled |= 1;
1398261a
YL
4538 }
4539
9f405100
CW
4540 if (g4x_compute_wm0(dev, 1,
4541 &sandybridge_display_wm_info, latency,
4542 &sandybridge_cursor_wm_info, latency,
4543 &plane_wm, &cursor_wm)) {
1398261a
YL
4544 I915_WRITE(WM0_PIPEB_ILK,
4545 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4546 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4547 " plane %d, cursor: %d\n",
4548 plane_wm, cursor_wm);
d210246a 4549 enabled |= 2;
1398261a
YL
4550 }
4551
d6c892df
JB
4552 /* IVB has 3 pipes */
4553 if (IS_IVYBRIDGE(dev) &&
4554 g4x_compute_wm0(dev, 2,
4555 &sandybridge_display_wm_info, latency,
4556 &sandybridge_cursor_wm_info, latency,
4557 &plane_wm, &cursor_wm)) {
4558 I915_WRITE(WM0_PIPEC_IVB,
4559 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4560 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4561 " plane %d, cursor: %d\n",
4562 plane_wm, cursor_wm);
4563 enabled |= 3;
4564 }
4565
1398261a
YL
4566 /*
4567 * Calculate and update the self-refresh watermark only when one
4568 * display plane is used.
4569 *
4570 * SNB support 3 levels of watermark.
4571 *
4572 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4573 * and disabled in the descending order
4574 *
4575 */
4576 I915_WRITE(WM3_LP_ILK, 0);
4577 I915_WRITE(WM2_LP_ILK, 0);
4578 I915_WRITE(WM1_LP_ILK, 0);
4579
b840d907
JB
4580 if (!single_plane_enabled(enabled) ||
4581 dev_priv->sprite_scaling_enabled)
1398261a 4582 return;
d210246a 4583 enabled = ffs(enabled) - 1;
1398261a
YL
4584
4585 /* WM1 */
d210246a
CW
4586 if (!ironlake_compute_srwm(dev, 1, enabled,
4587 SNB_READ_WM1_LATENCY() * 500,
b79d4990
JB
4588 &sandybridge_display_srwm_info,
4589 &sandybridge_cursor_srwm_info,
4590 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4591 return;
4592
4593 I915_WRITE(WM1_LP_ILK,
4594 WM1_LP_SR_EN |
4595 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4596 (fbc_wm << WM1_LP_FBC_SHIFT) |
4597 (plane_wm << WM1_LP_SR_SHIFT) |
4598 cursor_wm);
4599
4600 /* WM2 */
d210246a
CW
4601 if (!ironlake_compute_srwm(dev, 2, enabled,
4602 SNB_READ_WM2_LATENCY() * 500,
b79d4990
JB
4603 &sandybridge_display_srwm_info,
4604 &sandybridge_cursor_srwm_info,
4605 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4606 return;
4607
4608 I915_WRITE(WM2_LP_ILK,
4609 WM2_LP_EN |
4610 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4611 (fbc_wm << WM1_LP_FBC_SHIFT) |
4612 (plane_wm << WM1_LP_SR_SHIFT) |
4613 cursor_wm);
4614
4615 /* WM3 */
d210246a
CW
4616 if (!ironlake_compute_srwm(dev, 3, enabled,
4617 SNB_READ_WM3_LATENCY() * 500,
b79d4990
JB
4618 &sandybridge_display_srwm_info,
4619 &sandybridge_cursor_srwm_info,
4620 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4621 return;
4622
4623 I915_WRITE(WM3_LP_ILK,
4624 WM3_LP_EN |
4625 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4626 (fbc_wm << WM1_LP_FBC_SHIFT) |
4627 (plane_wm << WM1_LP_SR_SHIFT) |
4628 cursor_wm);
4629}
4630
b840d907
JB
4631static bool
4632sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4633 uint32_t sprite_width, int pixel_size,
4634 const struct intel_watermark_params *display,
4635 int display_latency_ns, int *sprite_wm)
4636{
4637 struct drm_crtc *crtc;
4638 int clock;
4639 int entries, tlb_miss;
4640
4641 crtc = intel_get_crtc_for_plane(dev, plane);
4642 if (crtc->fb == NULL || !crtc->enabled) {
4643 *sprite_wm = display->guard_size;
4644 return false;
4645 }
4646
4647 clock = crtc->mode.clock;
4648
4649 /* Use the small buffer method to calculate the sprite watermark */
4650 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4651 tlb_miss = display->fifo_size*display->cacheline_size -
4652 sprite_width * 8;
4653 if (tlb_miss > 0)
4654 entries += tlb_miss;
4655 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4656 *sprite_wm = entries + display->guard_size;
4657 if (*sprite_wm > (int)display->max_wm)
4658 *sprite_wm = display->max_wm;
4659
4660 return true;
4661}
4662
4663static bool
4664sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4665 uint32_t sprite_width, int pixel_size,
4666 const struct intel_watermark_params *display,
4667 int latency_ns, int *sprite_wm)
4668{
4669 struct drm_crtc *crtc;
4670 unsigned long line_time_us;
4671 int clock;
4672 int line_count, line_size;
4673 int small, large;
4674 int entries;
4675
4676 if (!latency_ns) {
4677 *sprite_wm = 0;
4678 return false;
4679 }
4680
4681 crtc = intel_get_crtc_for_plane(dev, plane);
4682 clock = crtc->mode.clock;
4683
4684 line_time_us = (sprite_width * 1000) / clock;
4685 line_count = (latency_ns / line_time_us + 1000) / 1000;
4686 line_size = sprite_width * pixel_size;
4687
4688 /* Use the minimum of the small and large buffer method for primary */
4689 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4690 large = line_count * line_size;
4691
4692 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4693 *sprite_wm = entries + display->guard_size;
4694
4695 return *sprite_wm > 0x3ff ? false : true;
4696}
4697
4698static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4699 uint32_t sprite_width, int pixel_size)
4700{
4701 struct drm_i915_private *dev_priv = dev->dev_private;
4702 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4703 int sprite_wm, reg;
4704 int ret;
4705
4706 switch (pipe) {
4707 case 0:
4708 reg = WM0_PIPEA_ILK;
4709 break;
4710 case 1:
4711 reg = WM0_PIPEB_ILK;
4712 break;
4713 case 2:
4714 reg = WM0_PIPEC_IVB;
4715 break;
4716 default:
4717 return; /* bad pipe */
4718 }
4719
4720 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4721 &sandybridge_display_wm_info,
4722 latency, &sprite_wm);
4723 if (!ret) {
4724 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4725 pipe);
4726 return;
4727 }
4728
4729 I915_WRITE(reg, I915_READ(reg) | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4730 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4731
4732
4733 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4734 pixel_size,
4735 &sandybridge_display_srwm_info,
4736 SNB_READ_WM1_LATENCY() * 500,
4737 &sprite_wm);
4738 if (!ret) {
4739 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4740 pipe);
4741 return;
4742 }
4743 I915_WRITE(WM1S_LP_ILK, sprite_wm);
4744
4745 /* Only IVB has two more LP watermarks for sprite */
4746 if (!IS_IVYBRIDGE(dev))
4747 return;
4748
4749 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4750 pixel_size,
4751 &sandybridge_display_srwm_info,
4752 SNB_READ_WM2_LATENCY() * 500,
4753 &sprite_wm);
4754 if (!ret) {
4755 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4756 pipe);
4757 return;
4758 }
4759 I915_WRITE(WM2S_LP_IVB, sprite_wm);
4760
4761 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4762 pixel_size,
4763 &sandybridge_display_srwm_info,
4764 SNB_READ_WM3_LATENCY() * 500,
4765 &sprite_wm);
4766 if (!ret) {
4767 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4768 pipe);
4769 return;
4770 }
4771 I915_WRITE(WM3S_LP_IVB, sprite_wm);
4772}
4773
7662c8bd
SL
4774/**
4775 * intel_update_watermarks - update FIFO watermark values based on current modes
4776 *
4777 * Calculate watermark values for the various WM regs based on current mode
4778 * and plane configuration.
4779 *
4780 * There are several cases to deal with here:
4781 * - normal (i.e. non-self-refresh)
4782 * - self-refresh (SR) mode
4783 * - lines are large relative to FIFO size (buffer can hold up to 2)
4784 * - lines are small relative to FIFO size (buffer can hold more than 2
4785 * lines), so need to account for TLB latency
4786 *
4787 * The normal calculation is:
4788 * watermark = dotclock * bytes per pixel * latency
4789 * where latency is platform & configuration dependent (we assume pessimal
4790 * values here).
4791 *
4792 * The SR calculation is:
4793 * watermark = (trunc(latency/line time)+1) * surface width *
4794 * bytes per pixel
4795 * where
4796 * line time = htotal / dotclock
fa143215 4797 * surface width = hdisplay for normal plane and 64 for cursor
7662c8bd
SL
4798 * and latency is assumed to be high, as above.
4799 *
4800 * The final value programmed to the register should always be rounded up,
4801 * and include an extra 2 entries to account for clock crossings.
4802 *
4803 * We don't use the sprite, so we can ignore that. And on Crestline we have
4804 * to set the non-SR watermarks to 8.
5eddb70b 4805 */
7662c8bd
SL
4806static void intel_update_watermarks(struct drm_device *dev)
4807{
e70236a8 4808 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd 4809
d210246a
CW
4810 if (dev_priv->display.update_wm)
4811 dev_priv->display.update_wm(dev);
7662c8bd
SL
4812}
4813
b840d907
JB
4814void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4815 uint32_t sprite_width, int pixel_size)
4816{
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4818
4819 if (dev_priv->display.update_sprite_wm)
4820 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4821 pixel_size);
4822}
4823
a7615030
CW
4824static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4825{
72bbe58c
KP
4826 if (i915_panel_use_ssc >= 0)
4827 return i915_panel_use_ssc != 0;
4828 return dev_priv->lvds_use_ssc
435793df 4829 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4830}
4831
5a354204
JB
4832/**
4833 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4834 * @crtc: CRTC structure
3b5c78a3 4835 * @mode: requested mode
5a354204
JB
4836 *
4837 * A pipe may be connected to one or more outputs. Based on the depth of the
4838 * attached framebuffer, choose a good color depth to use on the pipe.
4839 *
4840 * If possible, match the pipe depth to the fb depth. In some cases, this
4841 * isn't ideal, because the connected output supports a lesser or restricted
4842 * set of depths. Resolve that here:
4843 * LVDS typically supports only 6bpc, so clamp down in that case
4844 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4845 * Displays may support a restricted set as well, check EDID and clamp as
4846 * appropriate.
3b5c78a3 4847 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
4848 *
4849 * RETURNS:
4850 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4851 * true if they don't match).
4852 */
4853static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3b5c78a3
AJ
4854 unsigned int *pipe_bpp,
4855 struct drm_display_mode *mode)
5a354204
JB
4856{
4857 struct drm_device *dev = crtc->dev;
4858 struct drm_i915_private *dev_priv = dev->dev_private;
4859 struct drm_encoder *encoder;
4860 struct drm_connector *connector;
4861 unsigned int display_bpc = UINT_MAX, bpc;
4862
4863 /* Walk the encoders & connectors on this crtc, get min bpc */
4864 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4865 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4866
4867 if (encoder->crtc != crtc)
4868 continue;
4869
4870 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4871 unsigned int lvds_bpc;
4872
4873 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4874 LVDS_A3_POWER_UP)
4875 lvds_bpc = 8;
4876 else
4877 lvds_bpc = 6;
4878
4879 if (lvds_bpc < display_bpc) {
82820490 4880 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4881 display_bpc = lvds_bpc;
4882 }
4883 continue;
4884 }
4885
4886 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4887 /* Use VBT settings if we have an eDP panel */
4888 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4889
4890 if (edp_bpc < display_bpc) {
82820490 4891 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5a354204
JB
4892 display_bpc = edp_bpc;
4893 }
4894 continue;
4895 }
4896
4897 /* Not one of the known troublemakers, check the EDID */
4898 list_for_each_entry(connector, &dev->mode_config.connector_list,
4899 head) {
4900 if (connector->encoder != encoder)
4901 continue;
4902
62ac41a6
JB
4903 /* Don't use an invalid EDID bpc value */
4904 if (connector->display_info.bpc &&
4905 connector->display_info.bpc < display_bpc) {
82820490 4906 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4907 display_bpc = connector->display_info.bpc;
4908 }
4909 }
4910
4911 /*
4912 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4913 * through, clamp it down. (Note: >12bpc will be caught below.)
4914 */
4915 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4916 if (display_bpc > 8 && display_bpc < 12) {
82820490 4917 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4918 display_bpc = 12;
4919 } else {
82820490 4920 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4921 display_bpc = 8;
4922 }
4923 }
4924 }
4925
3b5c78a3
AJ
4926 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4927 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4928 display_bpc = 6;
4929 }
4930
5a354204
JB
4931 /*
4932 * We could just drive the pipe at the highest bpc all the time and
4933 * enable dithering as needed, but that costs bandwidth. So choose
4934 * the minimum value that expresses the full color range of the fb but
4935 * also stays within the max display bpc discovered above.
4936 */
4937
4938 switch (crtc->fb->depth) {
4939 case 8:
4940 bpc = 8; /* since we go through a colormap */
4941 break;
4942 case 15:
4943 case 16:
4944 bpc = 6; /* min is 18bpp */
4945 break;
4946 case 24:
578393cd 4947 bpc = 8;
5a354204
JB
4948 break;
4949 case 30:
578393cd 4950 bpc = 10;
5a354204
JB
4951 break;
4952 case 48:
578393cd 4953 bpc = 12;
5a354204
JB
4954 break;
4955 default:
4956 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4957 bpc = min((unsigned int)8, display_bpc);
4958 break;
4959 }
4960
578393cd
KP
4961 display_bpc = min(display_bpc, bpc);
4962
82820490
AJ
4963 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4964 bpc, display_bpc);
5a354204 4965
578393cd 4966 *pipe_bpp = display_bpc * 3;
5a354204
JB
4967
4968 return display_bpc != bpc;
4969}
4970
f564048e
EA
4971static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4972 struct drm_display_mode *mode,
4973 struct drm_display_mode *adjusted_mode,
4974 int x, int y,
4975 struct drm_framebuffer *old_fb)
79e53945
JB
4976{
4977 struct drm_device *dev = crtc->dev;
4978 struct drm_i915_private *dev_priv = dev->dev_private;
4979 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4980 int pipe = intel_crtc->pipe;
80824003 4981 int plane = intel_crtc->plane;
c751ce4f 4982 int refclk, num_connectors = 0;
652c393a 4983 intel_clock_t clock, reduced_clock;
5eddb70b 4984 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
652c393a 4985 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
a4fc5ed6 4986 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
79e53945 4987 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 4988 struct intel_encoder *encoder;
d4906093 4989 const intel_limit_t *limit;
5c3b82e2 4990 int ret;
fae14981 4991 u32 temp;
aa9b500d 4992 u32 lvds_sync = 0;
79e53945 4993
5eddb70b
CW
4994 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4995 if (encoder->base.crtc != crtc)
79e53945
JB
4996 continue;
4997
5eddb70b 4998 switch (encoder->type) {
79e53945
JB
4999 case INTEL_OUTPUT_LVDS:
5000 is_lvds = true;
5001 break;
5002 case INTEL_OUTPUT_SDVO:
7d57382e 5003 case INTEL_OUTPUT_HDMI:
79e53945 5004 is_sdvo = true;
5eddb70b 5005 if (encoder->needs_tv_clock)
e2f0ba97 5006 is_tv = true;
79e53945
JB
5007 break;
5008 case INTEL_OUTPUT_DVO:
5009 is_dvo = true;
5010 break;
5011 case INTEL_OUTPUT_TVOUT:
5012 is_tv = true;
5013 break;
5014 case INTEL_OUTPUT_ANALOG:
5015 is_crt = true;
5016 break;
a4fc5ed6
KP
5017 case INTEL_OUTPUT_DISPLAYPORT:
5018 is_dp = true;
5019 break;
79e53945 5020 }
43565a06 5021
c751ce4f 5022 num_connectors++;
79e53945
JB
5023 }
5024
a7615030 5025 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
43565a06 5026 refclk = dev_priv->lvds_ssc_freq * 1000;
28c97730 5027 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5eddb70b 5028 refclk / 1000);
a6c45cf0 5029 } else if (!IS_GEN2(dev)) {
79e53945
JB
5030 refclk = 96000;
5031 } else {
5032 refclk = 48000;
5033 }
5034
d4906093
ML
5035 /*
5036 * Returns a set of divisors for the desired target clock with the given
5037 * refclk, or FALSE. The returned values represent the clock equation:
5038 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5039 */
1b894b59 5040 limit = intel_limit(crtc, refclk);
d4906093 5041 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
5042 if (!ok) {
5043 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 5044 return -EINVAL;
79e53945
JB
5045 }
5046
cda4b7d3 5047 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 5048 intel_crtc_update_cursor(crtc, true);
cda4b7d3 5049
ddc9003c
ZY
5050 if (is_lvds && dev_priv->lvds_downclock_avail) {
5051 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
5052 dev_priv->lvds_downclock,
5053 refclk,
5054 &reduced_clock);
18f9ed12
ZY
5055 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5056 /*
5057 * If the different P is found, it means that we can't
5058 * switch the display clock by using the FP0/FP1.
5059 * In such case we will disable the LVDS downclock
5060 * feature.
5061 */
5062 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 5063 "LVDS clock/downclock\n");
18f9ed12
ZY
5064 has_reduced_clock = 0;
5065 }
652c393a 5066 }
7026d4ac
ZW
5067 /* SDVO TV has fixed PLL values depend on its clock range,
5068 this mirrors vbios setting. */
5069 if (is_sdvo && is_tv) {
5070 if (adjusted_mode->clock >= 100000
5eddb70b 5071 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
5072 clock.p1 = 2;
5073 clock.p2 = 10;
5074 clock.n = 3;
5075 clock.m1 = 16;
5076 clock.m2 = 8;
5077 } else if (adjusted_mode->clock >= 140500
5eddb70b 5078 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
5079 clock.p1 = 1;
5080 clock.p2 = 10;
5081 clock.n = 6;
5082 clock.m1 = 12;
5083 clock.m2 = 8;
5084 }
5085 }
5086
f2b115e6 5087 if (IS_PINEVIEW(dev)) {
2177832f 5088 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
5089 if (has_reduced_clock)
5090 fp2 = (1 << reduced_clock.n) << 16 |
5091 reduced_clock.m1 << 8 | reduced_clock.m2;
5092 } else {
2177832f 5093 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
5094 if (has_reduced_clock)
5095 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5096 reduced_clock.m2;
5097 }
79e53945 5098
929c77fb 5099 dpll = DPLL_VGA_MODE_DIS;
2c07245f 5100
a6c45cf0 5101 if (!IS_GEN2(dev)) {
79e53945
JB
5102 if (is_lvds)
5103 dpll |= DPLLB_MODE_LVDS;
5104 else
5105 dpll |= DPLLB_MODE_DAC_SERIAL;
5106 if (is_sdvo) {
6c9547ff
CW
5107 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5108 if (pixel_multiplier > 1) {
5109 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5110 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
6c9547ff 5111 }
79e53945 5112 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5113 }
929c77fb 5114 if (is_dp)
a4fc5ed6 5115 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945
JB
5116
5117 /* compute bitmask from p1 value */
f2b115e6
AJ
5118 if (IS_PINEVIEW(dev))
5119 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
2c07245f 5120 else {
2177832f 5121 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
652c393a
JB
5122 if (IS_G4X(dev) && has_reduced_clock)
5123 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2c07245f 5124 }
79e53945
JB
5125 switch (clock.p2) {
5126 case 5:
5127 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5128 break;
5129 case 7:
5130 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5131 break;
5132 case 10:
5133 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5134 break;
5135 case 14:
5136 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5137 break;
5138 }
929c77fb 5139 if (INTEL_INFO(dev)->gen >= 4)
79e53945
JB
5140 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5141 } else {
5142 if (is_lvds) {
5143 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5144 } else {
5145 if (clock.p1 == 2)
5146 dpll |= PLL_P1_DIVIDE_BY_TWO;
5147 else
5148 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5149 if (clock.p2 == 4)
5150 dpll |= PLL_P2_DIVIDE_BY_4;
5151 }
5152 }
5153
43565a06
KH
5154 if (is_sdvo && is_tv)
5155 dpll |= PLL_REF_INPUT_TVCLKINBC;
5156 else if (is_tv)
79e53945 5157 /* XXX: just matching BIOS for now */
43565a06 5158 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5159 dpll |= 3;
a7615030 5160 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5161 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5162 else
5163 dpll |= PLL_REF_INPUT_DREFCLK;
5164
5165 /* setup pipeconf */
5eddb70b 5166 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
5167
5168 /* Set up the display plane register */
5169 dspcntr = DISPPLANE_GAMMA_ENABLE;
5170
f2b115e6 5171 /* Ironlake's plane is forced to pipe, bit 24 is to
2c07245f 5172 enable color space conversion */
929c77fb
EA
5173 if (pipe == 0)
5174 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5175 else
5176 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 5177
a6c45cf0 5178 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
5179 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5180 * core speed.
5181 *
5182 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5183 * pipe == 0 check?
5184 */
e70236a8
JB
5185 if (mode->clock >
5186 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 5187 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 5188 else
5eddb70b 5189 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
5190 }
5191
3b5c78a3
AJ
5192 /* default to 8bpc */
5193 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5194 if (is_dp) {
5195 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5196 pipeconf |= PIPECONF_BPP_6 |
5197 PIPECONF_DITHER_EN |
5198 PIPECONF_DITHER_TYPE_SP;
5199 }
5200 }
5201
929c77fb 5202 dpll |= DPLL_VCO_ENABLE;
8d86dc6a 5203
28c97730 5204 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
5205 drm_mode_debug_printmodeline(mode);
5206
fae14981
EA
5207 I915_WRITE(FP0(pipe), fp);
5208 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5eddb70b 5209
fae14981 5210 POSTING_READ(DPLL(pipe));
c713bb08 5211 udelay(150);
8db9d77b 5212
79e53945
JB
5213 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5214 * This is an exception to the general rule that mode_set doesn't turn
5215 * things on.
5216 */
5217 if (is_lvds) {
fae14981 5218 temp = I915_READ(LVDS);
5eddb70b 5219 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
b3b095b3 5220 if (pipe == 1) {
929c77fb 5221 temp |= LVDS_PIPEB_SELECT;
b3b095b3 5222 } else {
929c77fb 5223 temp &= ~LVDS_PIPEB_SELECT;
b3b095b3 5224 }
a3e17eb8 5225 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5226 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5227 /* Set the B0-B3 data pairs corresponding to whether we're going to
5228 * set the DPLLs for dual-channel mode or not.
5229 */
5230 if (clock.p2 == 7)
5eddb70b 5231 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5232 else
5eddb70b 5233 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5234
5235 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5236 * appropriately here, but we need to look more thoroughly into how
5237 * panels behave in the two modes.
5238 */
929c77fb
EA
5239 /* set the dithering flag on LVDS as needed */
5240 if (INTEL_INFO(dev)->gen >= 4) {
434ed097 5241 if (dev_priv->lvds_dither)
5eddb70b 5242 temp |= LVDS_ENABLE_DITHER;
434ed097 5243 else
5eddb70b 5244 temp &= ~LVDS_ENABLE_DITHER;
898822ce 5245 }
aa9b500d
BF
5246 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5247 lvds_sync |= LVDS_HSYNC_POLARITY;
5248 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5249 lvds_sync |= LVDS_VSYNC_POLARITY;
5250 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5251 != lvds_sync) {
5252 char flags[2] = "-+";
5253 DRM_INFO("Changing LVDS panel from "
5254 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5255 flags[!(temp & LVDS_HSYNC_POLARITY)],
5256 flags[!(temp & LVDS_VSYNC_POLARITY)],
5257 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5258 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5259 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5260 temp |= lvds_sync;
5261 }
fae14981 5262 I915_WRITE(LVDS, temp);
79e53945 5263 }
434ed097 5264
929c77fb 5265 if (is_dp) {
a4fc5ed6 5266 intel_dp_set_m_n(crtc, mode, adjusted_mode);
434ed097
JB
5267 }
5268
fae14981 5269 I915_WRITE(DPLL(pipe), dpll);
5eddb70b 5270
c713bb08 5271 /* Wait for the clocks to stabilize. */
fae14981 5272 POSTING_READ(DPLL(pipe));
c713bb08 5273 udelay(150);
32f9d658 5274
c713bb08
EA
5275 if (INTEL_INFO(dev)->gen >= 4) {
5276 temp = 0;
5277 if (is_sdvo) {
5278 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5279 if (temp > 1)
5280 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5281 else
5282 temp = 0;
32f9d658 5283 }
c713bb08
EA
5284 I915_WRITE(DPLL_MD(pipe), temp);
5285 } else {
5286 /* The pixel multiplier can only be updated once the
5287 * DPLL is enabled and the clocks are stable.
5288 *
5289 * So write it again.
5290 */
fae14981 5291 I915_WRITE(DPLL(pipe), dpll);
79e53945 5292 }
79e53945 5293
5eddb70b 5294 intel_crtc->lowfreq_avail = false;
652c393a 5295 if (is_lvds && has_reduced_clock && i915_powersave) {
fae14981 5296 I915_WRITE(FP1(pipe), fp2);
652c393a
JB
5297 intel_crtc->lowfreq_avail = true;
5298 if (HAS_PIPE_CXSR(dev)) {
28c97730 5299 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a
JB
5300 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5301 }
5302 } else {
fae14981 5303 I915_WRITE(FP1(pipe), fp);
652c393a 5304 if (HAS_PIPE_CXSR(dev)) {
28c97730 5305 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
5306 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5307 }
5308 }
5309
617cf884 5310 pipeconf &= ~PIPECONF_INTERLACE_MASK;
734b4157
KH
5311 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5312 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5313 /* the chip adds 2 halflines automatically */
5314 adjusted_mode->crtc_vdisplay -= 1;
5315 adjusted_mode->crtc_vtotal -= 1;
5316 adjusted_mode->crtc_vblank_start -= 1;
5317 adjusted_mode->crtc_vblank_end -= 1;
5318 adjusted_mode->crtc_vsync_end -= 1;
5319 adjusted_mode->crtc_vsync_start -= 1;
5320 } else
617cf884 5321 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 5322
5eddb70b
CW
5323 I915_WRITE(HTOTAL(pipe),
5324 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5325 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5326 I915_WRITE(HBLANK(pipe),
5327 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5328 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5329 I915_WRITE(HSYNC(pipe),
5330 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5331 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5332
5333 I915_WRITE(VTOTAL(pipe),
5334 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5335 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5336 I915_WRITE(VBLANK(pipe),
5337 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5338 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5339 I915_WRITE(VSYNC(pipe),
5340 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5341 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b
CW
5342
5343 /* pipesrc and dspsize control the size that is scaled from,
5344 * which should always be the user's requested size.
79e53945 5345 */
929c77fb
EA
5346 I915_WRITE(DSPSIZE(plane),
5347 ((mode->vdisplay - 1) << 16) |
5348 (mode->hdisplay - 1));
5349 I915_WRITE(DSPPOS(plane), 0);
5eddb70b
CW
5350 I915_WRITE(PIPESRC(pipe),
5351 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5352
f564048e
EA
5353 I915_WRITE(PIPECONF(pipe), pipeconf);
5354 POSTING_READ(PIPECONF(pipe));
929c77fb 5355 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
5356
5357 intel_wait_for_vblank(dev, pipe);
5358
f564048e
EA
5359 I915_WRITE(DSPCNTR(plane), dspcntr);
5360 POSTING_READ(DSPCNTR(plane));
284d9529 5361 intel_enable_plane(dev_priv, plane, pipe);
f564048e
EA
5362
5363 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5364
5365 intel_update_watermarks(dev);
5366
f564048e
EA
5367 return ret;
5368}
5369
9fb526db
KP
5370/*
5371 * Initialize reference clocks when the driver loads
5372 */
5373void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
5374{
5375 struct drm_i915_private *dev_priv = dev->dev_private;
5376 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 5377 struct intel_encoder *encoder;
13d83a67
JB
5378 u32 temp;
5379 bool has_lvds = false;
199e5d79
KP
5380 bool has_cpu_edp = false;
5381 bool has_pch_edp = false;
5382 bool has_panel = false;
99eb6a01
KP
5383 bool has_ck505 = false;
5384 bool can_ssc = false;
13d83a67
JB
5385
5386 /* We need to take the global config into account */
199e5d79
KP
5387 list_for_each_entry(encoder, &mode_config->encoder_list,
5388 base.head) {
5389 switch (encoder->type) {
5390 case INTEL_OUTPUT_LVDS:
5391 has_panel = true;
5392 has_lvds = true;
5393 break;
5394 case INTEL_OUTPUT_EDP:
5395 has_panel = true;
5396 if (intel_encoder_is_pch_edp(&encoder->base))
5397 has_pch_edp = true;
5398 else
5399 has_cpu_edp = true;
5400 break;
13d83a67
JB
5401 }
5402 }
5403
99eb6a01
KP
5404 if (HAS_PCH_IBX(dev)) {
5405 has_ck505 = dev_priv->display_clock_mode;
5406 can_ssc = has_ck505;
5407 } else {
5408 has_ck505 = false;
5409 can_ssc = true;
5410 }
5411
5412 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5413 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5414 has_ck505);
13d83a67
JB
5415
5416 /* Ironlake: try to setup display ref clock before DPLL
5417 * enabling. This is only under driver's control after
5418 * PCH B stepping, previous chipset stepping should be
5419 * ignoring this setting.
5420 */
5421 temp = I915_READ(PCH_DREF_CONTROL);
5422 /* Always enable nonspread source */
5423 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 5424
99eb6a01
KP
5425 if (has_ck505)
5426 temp |= DREF_NONSPREAD_CK505_ENABLE;
5427 else
5428 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 5429
199e5d79
KP
5430 if (has_panel) {
5431 temp &= ~DREF_SSC_SOURCE_MASK;
5432 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 5433
199e5d79 5434 /* SSC must be turned on before enabling the CPU output */
99eb6a01 5435 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 5436 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 5437 temp |= DREF_SSC1_ENABLE;
13d83a67 5438 }
199e5d79
KP
5439
5440 /* Get SSC going before enabling the outputs */
5441 I915_WRITE(PCH_DREF_CONTROL, temp);
5442 POSTING_READ(PCH_DREF_CONTROL);
5443 udelay(200);
5444
13d83a67
JB
5445 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5446
5447 /* Enable CPU source on CPU attached eDP */
199e5d79 5448 if (has_cpu_edp) {
99eb6a01 5449 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 5450 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 5451 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 5452 }
13d83a67
JB
5453 else
5454 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
5455 } else
5456 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5457
5458 I915_WRITE(PCH_DREF_CONTROL, temp);
5459 POSTING_READ(PCH_DREF_CONTROL);
5460 udelay(200);
5461 } else {
5462 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5463
5464 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5465
5466 /* Turn off CPU output */
5467 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5468
5469 I915_WRITE(PCH_DREF_CONTROL, temp);
5470 POSTING_READ(PCH_DREF_CONTROL);
5471 udelay(200);
5472
5473 /* Turn off the SSC source */
5474 temp &= ~DREF_SSC_SOURCE_MASK;
5475 temp |= DREF_SSC_SOURCE_DISABLE;
5476
5477 /* Turn off SSC1 */
5478 temp &= ~ DREF_SSC1_ENABLE;
5479
13d83a67
JB
5480 I915_WRITE(PCH_DREF_CONTROL, temp);
5481 POSTING_READ(PCH_DREF_CONTROL);
5482 udelay(200);
5483 }
5484}
5485
d9d444cb
JB
5486static int ironlake_get_refclk(struct drm_crtc *crtc)
5487{
5488 struct drm_device *dev = crtc->dev;
5489 struct drm_i915_private *dev_priv = dev->dev_private;
5490 struct intel_encoder *encoder;
5491 struct drm_mode_config *mode_config = &dev->mode_config;
5492 struct intel_encoder *edp_encoder = NULL;
5493 int num_connectors = 0;
5494 bool is_lvds = false;
5495
5496 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5497 if (encoder->base.crtc != crtc)
5498 continue;
5499
5500 switch (encoder->type) {
5501 case INTEL_OUTPUT_LVDS:
5502 is_lvds = true;
5503 break;
5504 case INTEL_OUTPUT_EDP:
5505 edp_encoder = encoder;
5506 break;
5507 }
5508 num_connectors++;
5509 }
5510
5511 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5512 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5513 dev_priv->lvds_ssc_freq);
5514 return dev_priv->lvds_ssc_freq * 1000;
5515 }
5516
5517 return 120000;
5518}
5519
f564048e
EA
5520static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5521 struct drm_display_mode *mode,
5522 struct drm_display_mode *adjusted_mode,
5523 int x, int y,
5524 struct drm_framebuffer *old_fb)
79e53945
JB
5525{
5526 struct drm_device *dev = crtc->dev;
5527 struct drm_i915_private *dev_priv = dev->dev_private;
5528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5529 int pipe = intel_crtc->pipe;
80824003 5530 int plane = intel_crtc->plane;
c751ce4f 5531 int refclk, num_connectors = 0;
652c393a 5532 intel_clock_t clock, reduced_clock;
5eddb70b 5533 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
a07d6787 5534 bool ok, has_reduced_clock = false, is_sdvo = false;
a4fc5ed6 5535 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
8e647a27 5536 struct intel_encoder *has_edp_encoder = NULL;
79e53945 5537 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 5538 struct intel_encoder *encoder;
d4906093 5539 const intel_limit_t *limit;
5c3b82e2 5540 int ret;
2c07245f 5541 struct fdi_m_n m_n = {0};
fae14981 5542 u32 temp;
aa9b500d 5543 u32 lvds_sync = 0;
5a354204
JB
5544 int target_clock, pixel_multiplier, lane, link_bw, factor;
5545 unsigned int pipe_bpp;
5546 bool dither;
79e53945 5547
5eddb70b
CW
5548 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5549 if (encoder->base.crtc != crtc)
79e53945
JB
5550 continue;
5551
5eddb70b 5552 switch (encoder->type) {
79e53945
JB
5553 case INTEL_OUTPUT_LVDS:
5554 is_lvds = true;
5555 break;
5556 case INTEL_OUTPUT_SDVO:
7d57382e 5557 case INTEL_OUTPUT_HDMI:
79e53945 5558 is_sdvo = true;
5eddb70b 5559 if (encoder->needs_tv_clock)
e2f0ba97 5560 is_tv = true;
79e53945 5561 break;
79e53945
JB
5562 case INTEL_OUTPUT_TVOUT:
5563 is_tv = true;
5564 break;
5565 case INTEL_OUTPUT_ANALOG:
5566 is_crt = true;
5567 break;
a4fc5ed6
KP
5568 case INTEL_OUTPUT_DISPLAYPORT:
5569 is_dp = true;
5570 break;
32f9d658 5571 case INTEL_OUTPUT_EDP:
5eddb70b 5572 has_edp_encoder = encoder;
32f9d658 5573 break;
79e53945 5574 }
43565a06 5575
c751ce4f 5576 num_connectors++;
79e53945
JB
5577 }
5578
d9d444cb 5579 refclk = ironlake_get_refclk(crtc);
79e53945 5580
d4906093
ML
5581 /*
5582 * Returns a set of divisors for the desired target clock with the given
5583 * refclk, or FALSE. The returned values represent the clock equation:
5584 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5585 */
1b894b59 5586 limit = intel_limit(crtc, refclk);
d4906093 5587 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
5588 if (!ok) {
5589 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 5590 return -EINVAL;
79e53945
JB
5591 }
5592
cda4b7d3 5593 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 5594 intel_crtc_update_cursor(crtc, true);
cda4b7d3 5595
ddc9003c
ZY
5596 if (is_lvds && dev_priv->lvds_downclock_avail) {
5597 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
5598 dev_priv->lvds_downclock,
5599 refclk,
5600 &reduced_clock);
18f9ed12
ZY
5601 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5602 /*
5603 * If the different P is found, it means that we can't
5604 * switch the display clock by using the FP0/FP1.
5605 * In such case we will disable the LVDS downclock
5606 * feature.
5607 */
5608 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 5609 "LVDS clock/downclock\n");
18f9ed12
ZY
5610 has_reduced_clock = 0;
5611 }
652c393a 5612 }
7026d4ac
ZW
5613 /* SDVO TV has fixed PLL values depend on its clock range,
5614 this mirrors vbios setting. */
5615 if (is_sdvo && is_tv) {
5616 if (adjusted_mode->clock >= 100000
5eddb70b 5617 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
5618 clock.p1 = 2;
5619 clock.p2 = 10;
5620 clock.n = 3;
5621 clock.m1 = 16;
5622 clock.m2 = 8;
5623 } else if (adjusted_mode->clock >= 140500
5eddb70b 5624 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
5625 clock.p1 = 1;
5626 clock.p2 = 10;
5627 clock.n = 6;
5628 clock.m1 = 12;
5629 clock.m2 = 8;
5630 }
5631 }
5632
2c07245f 5633 /* FDI link */
8febb297
EA
5634 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5635 lane = 0;
5636 /* CPU eDP doesn't require FDI link, so just set DP M/N
5637 according to current link config */
5638 if (has_edp_encoder &&
5639 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5640 target_clock = mode->clock;
5641 intel_edp_link_config(has_edp_encoder,
5642 &lane, &link_bw);
5643 } else {
5644 /* [e]DP over FDI requires target mode clock
5645 instead of link clock */
5646 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5eb08b69 5647 target_clock = mode->clock;
8febb297
EA
5648 else
5649 target_clock = adjusted_mode->clock;
5650
5651 /* FDI is a binary signal running at ~2.7GHz, encoding
5652 * each output octet as 10 bits. The actual frequency
5653 * is stored as a divider into a 100MHz clock, and the
5654 * mode pixel clock is stored in units of 1KHz.
5655 * Hence the bw of each lane in terms of the mode signal
5656 * is:
5657 */
5658 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5659 }
58a27471 5660
8febb297
EA
5661 /* determine panel color depth */
5662 temp = I915_READ(PIPECONF(pipe));
5663 temp &= ~PIPE_BPC_MASK;
3b5c78a3 5664 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5a354204
JB
5665 switch (pipe_bpp) {
5666 case 18:
5667 temp |= PIPE_6BPC;
8febb297 5668 break;
5a354204
JB
5669 case 24:
5670 temp |= PIPE_8BPC;
8febb297 5671 break;
5a354204
JB
5672 case 30:
5673 temp |= PIPE_10BPC;
8febb297 5674 break;
5a354204
JB
5675 case 36:
5676 temp |= PIPE_12BPC;
8febb297
EA
5677 break;
5678 default:
62ac41a6
JB
5679 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5680 pipe_bpp);
5a354204
JB
5681 temp |= PIPE_8BPC;
5682 pipe_bpp = 24;
5683 break;
8febb297 5684 }
77ffb597 5685
5a354204
JB
5686 intel_crtc->bpp = pipe_bpp;
5687 I915_WRITE(PIPECONF(pipe), temp);
5688
8febb297
EA
5689 if (!lane) {
5690 /*
5691 * Account for spread spectrum to avoid
5692 * oversubscribing the link. Max center spread
5693 * is 2.5%; use 5% for safety's sake.
5694 */
5a354204 5695 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 5696 lane = bps / (link_bw * 8) + 1;
5eb08b69 5697 }
2c07245f 5698
8febb297
EA
5699 intel_crtc->fdi_lanes = lane;
5700
5701 if (pixel_multiplier > 1)
5702 link_bw *= pixel_multiplier;
5a354204
JB
5703 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5704 &m_n);
8febb297 5705
a07d6787
EA
5706 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5707 if (has_reduced_clock)
5708 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5709 reduced_clock.m2;
79e53945 5710
c1858123 5711 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5712 factor = 21;
5713 if (is_lvds) {
5714 if ((intel_panel_use_ssc(dev_priv) &&
5715 dev_priv->lvds_ssc_freq == 100) ||
5716 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5717 factor = 25;
5718 } else if (is_sdvo && is_tv)
5719 factor = 20;
c1858123 5720
cb0e0931 5721 if (clock.m < factor * clock.n)
8febb297 5722 fp |= FP_CB_TUNE;
2c07245f 5723
5eddb70b 5724 dpll = 0;
2c07245f 5725
a07d6787
EA
5726 if (is_lvds)
5727 dpll |= DPLLB_MODE_LVDS;
5728 else
5729 dpll |= DPLLB_MODE_DAC_SERIAL;
5730 if (is_sdvo) {
5731 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5732 if (pixel_multiplier > 1) {
5733 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5734 }
a07d6787
EA
5735 dpll |= DPLL_DVO_HIGH_SPEED;
5736 }
5737 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5738 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5739
a07d6787
EA
5740 /* compute bitmask from p1 value */
5741 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5742 /* also FPA1 */
5743 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5744
5745 switch (clock.p2) {
5746 case 5:
5747 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5748 break;
5749 case 7:
5750 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5751 break;
5752 case 10:
5753 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5754 break;
5755 case 14:
5756 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5757 break;
79e53945
JB
5758 }
5759
43565a06
KH
5760 if (is_sdvo && is_tv)
5761 dpll |= PLL_REF_INPUT_TVCLKINBC;
5762 else if (is_tv)
79e53945 5763 /* XXX: just matching BIOS for now */
43565a06 5764 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5765 dpll |= 3;
a7615030 5766 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5767 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5768 else
5769 dpll |= PLL_REF_INPUT_DREFCLK;
5770
5771 /* setup pipeconf */
5eddb70b 5772 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
5773
5774 /* Set up the display plane register */
5775 dspcntr = DISPPLANE_GAMMA_ENABLE;
5776
f7cb34d4 5777 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5778 drm_mode_debug_printmodeline(mode);
5779
5c5313c8 5780 /* PCH eDP needs FDI, but CPU eDP does not */
4b645f14
JB
5781 if (!intel_crtc->no_pll) {
5782 if (!has_edp_encoder ||
5783 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5784 I915_WRITE(PCH_FP0(pipe), fp);
5785 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5786
5787 POSTING_READ(PCH_DPLL(pipe));
5788 udelay(150);
5789 }
5790 } else {
5791 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5792 fp == I915_READ(PCH_FP0(0))) {
5793 intel_crtc->use_pll_a = true;
5794 DRM_DEBUG_KMS("using pipe a dpll\n");
5795 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5796 fp == I915_READ(PCH_FP0(1))) {
5797 intel_crtc->use_pll_a = false;
5798 DRM_DEBUG_KMS("using pipe b dpll\n");
5799 } else {
5800 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5801 return -EINVAL;
5802 }
79e53945
JB
5803 }
5804
5805 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5806 * This is an exception to the general rule that mode_set doesn't turn
5807 * things on.
5808 */
5809 if (is_lvds) {
fae14981 5810 temp = I915_READ(PCH_LVDS);
5eddb70b 5811 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5812 if (HAS_PCH_CPT(dev)) {
5813 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5814 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5815 } else {
5816 if (pipe == 1)
5817 temp |= LVDS_PIPEB_SELECT;
5818 else
5819 temp &= ~LVDS_PIPEB_SELECT;
5820 }
4b645f14 5821
a3e17eb8 5822 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5823 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5824 /* Set the B0-B3 data pairs corresponding to whether we're going to
5825 * set the DPLLs for dual-channel mode or not.
5826 */
5827 if (clock.p2 == 7)
5eddb70b 5828 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5829 else
5eddb70b 5830 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5831
5832 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5833 * appropriately here, but we need to look more thoroughly into how
5834 * panels behave in the two modes.
5835 */
aa9b500d
BF
5836 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5837 lvds_sync |= LVDS_HSYNC_POLARITY;
5838 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5839 lvds_sync |= LVDS_VSYNC_POLARITY;
5840 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5841 != lvds_sync) {
5842 char flags[2] = "-+";
5843 DRM_INFO("Changing LVDS panel from "
5844 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5845 flags[!(temp & LVDS_HSYNC_POLARITY)],
5846 flags[!(temp & LVDS_VSYNC_POLARITY)],
5847 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5848 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5849 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5850 temp |= lvds_sync;
5851 }
fae14981 5852 I915_WRITE(PCH_LVDS, temp);
79e53945 5853 }
434ed097 5854
8febb297
EA
5855 pipeconf &= ~PIPECONF_DITHER_EN;
5856 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5a354204 5857 if ((is_lvds && dev_priv->lvds_dither) || dither) {
8febb297 5858 pipeconf |= PIPECONF_DITHER_EN;
f74974c7 5859 pipeconf |= PIPECONF_DITHER_TYPE_SP;
434ed097 5860 }
5c5313c8 5861 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
a4fc5ed6 5862 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5863 } else {
8db9d77b 5864 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5865 I915_WRITE(TRANSDATA_M1(pipe), 0);
5866 I915_WRITE(TRANSDATA_N1(pipe), 0);
5867 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5868 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5869 }
79e53945 5870
4b645f14
JB
5871 if (!intel_crtc->no_pll &&
5872 (!has_edp_encoder ||
5873 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
fae14981 5874 I915_WRITE(PCH_DPLL(pipe), dpll);
5eddb70b 5875
32f9d658 5876 /* Wait for the clocks to stabilize. */
fae14981 5877 POSTING_READ(PCH_DPLL(pipe));
32f9d658
ZW
5878 udelay(150);
5879
8febb297
EA
5880 /* The pixel multiplier can only be updated once the
5881 * DPLL is enabled and the clocks are stable.
5882 *
5883 * So write it again.
5884 */
fae14981 5885 I915_WRITE(PCH_DPLL(pipe), dpll);
79e53945 5886 }
79e53945 5887
5eddb70b 5888 intel_crtc->lowfreq_avail = false;
4b645f14
JB
5889 if (!intel_crtc->no_pll) {
5890 if (is_lvds && has_reduced_clock && i915_powersave) {
5891 I915_WRITE(PCH_FP1(pipe), fp2);
5892 intel_crtc->lowfreq_avail = true;
5893 if (HAS_PIPE_CXSR(dev)) {
5894 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5895 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5896 }
5897 } else {
5898 I915_WRITE(PCH_FP1(pipe), fp);
5899 if (HAS_PIPE_CXSR(dev)) {
5900 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5901 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5902 }
652c393a
JB
5903 }
5904 }
5905
617cf884 5906 pipeconf &= ~PIPECONF_INTERLACE_MASK;
734b4157
KH
5907 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5908 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5909 /* the chip adds 2 halflines automatically */
5910 adjusted_mode->crtc_vdisplay -= 1;
5911 adjusted_mode->crtc_vtotal -= 1;
5912 adjusted_mode->crtc_vblank_start -= 1;
5913 adjusted_mode->crtc_vblank_end -= 1;
5914 adjusted_mode->crtc_vsync_end -= 1;
5915 adjusted_mode->crtc_vsync_start -= 1;
5916 } else
617cf884 5917 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 5918
5eddb70b
CW
5919 I915_WRITE(HTOTAL(pipe),
5920 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5921 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5922 I915_WRITE(HBLANK(pipe),
5923 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5924 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5925 I915_WRITE(HSYNC(pipe),
5926 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5927 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5928
5929 I915_WRITE(VTOTAL(pipe),
5930 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5931 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5932 I915_WRITE(VBLANK(pipe),
5933 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5934 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5935 I915_WRITE(VSYNC(pipe),
5936 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5937 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b 5938
8febb297
EA
5939 /* pipesrc controls the size that is scaled from, which should
5940 * always be the user's requested size.
79e53945 5941 */
5eddb70b
CW
5942 I915_WRITE(PIPESRC(pipe),
5943 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5944
8febb297
EA
5945 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5946 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5947 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5948 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2c07245f 5949
8febb297
EA
5950 if (has_edp_encoder &&
5951 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5952 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f
ZW
5953 }
5954
5eddb70b
CW
5955 I915_WRITE(PIPECONF(pipe), pipeconf);
5956 POSTING_READ(PIPECONF(pipe));
79e53945 5957
9d0498a2 5958 intel_wait_for_vblank(dev, pipe);
79e53945 5959
f00a3ddf 5960 if (IS_GEN5(dev)) {
553bd149
ZW
5961 /* enable address swizzle for tiling buffer */
5962 temp = I915_READ(DISP_ARB_CTL);
5963 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5964 }
5965
5eddb70b 5966 I915_WRITE(DSPCNTR(plane), dspcntr);
b24e7179 5967 POSTING_READ(DSPCNTR(plane));
79e53945 5968
5c3b82e2 5969 ret = intel_pipe_set_base(crtc, x, y, old_fb);
7662c8bd
SL
5970
5971 intel_update_watermarks(dev);
5972
1f803ee5 5973 return ret;
79e53945
JB
5974}
5975
f564048e
EA
5976static int intel_crtc_mode_set(struct drm_crtc *crtc,
5977 struct drm_display_mode *mode,
5978 struct drm_display_mode *adjusted_mode,
5979 int x, int y,
5980 struct drm_framebuffer *old_fb)
5981{
5982 struct drm_device *dev = crtc->dev;
5983 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5985 int pipe = intel_crtc->pipe;
f564048e
EA
5986 int ret;
5987
0b701d27 5988 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5989
f564048e
EA
5990 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5991 x, y, old_fb);
79e53945 5992 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5993
d8e70a25
JB
5994 if (ret)
5995 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
5996 else
5997 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
120eced9 5998
1f803ee5 5999 return ret;
79e53945
JB
6000}
6001
3a9627f4
WF
6002static bool intel_eld_uptodate(struct drm_connector *connector,
6003 int reg_eldv, uint32_t bits_eldv,
6004 int reg_elda, uint32_t bits_elda,
6005 int reg_edid)
6006{
6007 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6008 uint8_t *eld = connector->eld;
6009 uint32_t i;
6010
6011 i = I915_READ(reg_eldv);
6012 i &= bits_eldv;
6013
6014 if (!eld[0])
6015 return !i;
6016
6017 if (!i)
6018 return false;
6019
6020 i = I915_READ(reg_elda);
6021 i &= ~bits_elda;
6022 I915_WRITE(reg_elda, i);
6023
6024 for (i = 0; i < eld[2]; i++)
6025 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6026 return false;
6027
6028 return true;
6029}
6030
e0dac65e
WF
6031static void g4x_write_eld(struct drm_connector *connector,
6032 struct drm_crtc *crtc)
6033{
6034 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6035 uint8_t *eld = connector->eld;
6036 uint32_t eldv;
6037 uint32_t len;
6038 uint32_t i;
6039
6040 i = I915_READ(G4X_AUD_VID_DID);
6041
6042 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6043 eldv = G4X_ELDV_DEVCL_DEVBLC;
6044 else
6045 eldv = G4X_ELDV_DEVCTG;
6046
3a9627f4
WF
6047 if (intel_eld_uptodate(connector,
6048 G4X_AUD_CNTL_ST, eldv,
6049 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6050 G4X_HDMIW_HDMIEDID))
6051 return;
6052
e0dac65e
WF
6053 i = I915_READ(G4X_AUD_CNTL_ST);
6054 i &= ~(eldv | G4X_ELD_ADDR);
6055 len = (i >> 9) & 0x1f; /* ELD buffer size */
6056 I915_WRITE(G4X_AUD_CNTL_ST, i);
6057
6058 if (!eld[0])
6059 return;
6060
6061 len = min_t(uint8_t, eld[2], len);
6062 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6063 for (i = 0; i < len; i++)
6064 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6065
6066 i = I915_READ(G4X_AUD_CNTL_ST);
6067 i |= eldv;
6068 I915_WRITE(G4X_AUD_CNTL_ST, i);
6069}
6070
6071static void ironlake_write_eld(struct drm_connector *connector,
6072 struct drm_crtc *crtc)
6073{
6074 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6075 uint8_t *eld = connector->eld;
6076 uint32_t eldv;
6077 uint32_t i;
6078 int len;
6079 int hdmiw_hdmiedid;
6080 int aud_cntl_st;
6081 int aud_cntrl_st2;
6082
b3f33cbf 6083 if (HAS_PCH_IBX(connector->dev)) {
1202b4c6
WF
6084 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6085 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6086 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 6087 } else {
1202b4c6
WF
6088 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6089 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6090 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
6091 }
6092
6093 i = to_intel_crtc(crtc)->pipe;
6094 hdmiw_hdmiedid += i * 0x100;
6095 aud_cntl_st += i * 0x100;
6096
6097 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6098
6099 i = I915_READ(aud_cntl_st);
6100 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6101 if (!i) {
6102 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6103 /* operate blindly on all ports */
1202b4c6
WF
6104 eldv = IBX_ELD_VALIDB;
6105 eldv |= IBX_ELD_VALIDB << 4;
6106 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
6107 } else {
6108 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 6109 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
6110 }
6111
3a9627f4
WF
6112 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6113 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6114 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
e0dac65e
WF
6115 }
6116
3a9627f4
WF
6117 if (intel_eld_uptodate(connector,
6118 aud_cntrl_st2, eldv,
6119 aud_cntl_st, IBX_ELD_ADDRESS,
6120 hdmiw_hdmiedid))
6121 return;
6122
e0dac65e
WF
6123 i = I915_READ(aud_cntrl_st2);
6124 i &= ~eldv;
6125 I915_WRITE(aud_cntrl_st2, i);
6126
6127 if (!eld[0])
6128 return;
6129
e0dac65e 6130 i = I915_READ(aud_cntl_st);
1202b4c6 6131 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
6132 I915_WRITE(aud_cntl_st, i);
6133
6134 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6135 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6136 for (i = 0; i < len; i++)
6137 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6138
6139 i = I915_READ(aud_cntrl_st2);
6140 i |= eldv;
6141 I915_WRITE(aud_cntrl_st2, i);
6142}
6143
6144void intel_write_eld(struct drm_encoder *encoder,
6145 struct drm_display_mode *mode)
6146{
6147 struct drm_crtc *crtc = encoder->crtc;
6148 struct drm_connector *connector;
6149 struct drm_device *dev = encoder->dev;
6150 struct drm_i915_private *dev_priv = dev->dev_private;
6151
6152 connector = drm_select_eld(encoder, mode);
6153 if (!connector)
6154 return;
6155
6156 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6157 connector->base.id,
6158 drm_get_connector_name(connector),
6159 connector->encoder->base.id,
6160 drm_get_encoder_name(connector->encoder));
6161
6162 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6163
6164 if (dev_priv->display.write_eld)
6165 dev_priv->display.write_eld(connector, crtc);
6166}
6167
79e53945
JB
6168/** Loads the palette/gamma unit for the CRTC with the prepared values */
6169void intel_crtc_load_lut(struct drm_crtc *crtc)
6170{
6171 struct drm_device *dev = crtc->dev;
6172 struct drm_i915_private *dev_priv = dev->dev_private;
6173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 6174 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
6175 int i;
6176
6177 /* The clocks have to be on to load the palette. */
6178 if (!crtc->enabled)
6179 return;
6180
f2b115e6 6181 /* use legacy palette for Ironlake */
bad720ff 6182 if (HAS_PCH_SPLIT(dev))
9db4a9c7 6183 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 6184
79e53945
JB
6185 for (i = 0; i < 256; i++) {
6186 I915_WRITE(palreg + 4 * i,
6187 (intel_crtc->lut_r[i] << 16) |
6188 (intel_crtc->lut_g[i] << 8) |
6189 intel_crtc->lut_b[i]);
6190 }
6191}
6192
560b85bb
CW
6193static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6194{
6195 struct drm_device *dev = crtc->dev;
6196 struct drm_i915_private *dev_priv = dev->dev_private;
6197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6198 bool visible = base != 0;
6199 u32 cntl;
6200
6201 if (intel_crtc->cursor_visible == visible)
6202 return;
6203
9db4a9c7 6204 cntl = I915_READ(_CURACNTR);
560b85bb
CW
6205 if (visible) {
6206 /* On these chipsets we can only modify the base whilst
6207 * the cursor is disabled.
6208 */
9db4a9c7 6209 I915_WRITE(_CURABASE, base);
560b85bb
CW
6210
6211 cntl &= ~(CURSOR_FORMAT_MASK);
6212 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6213 cntl |= CURSOR_ENABLE |
6214 CURSOR_GAMMA_ENABLE |
6215 CURSOR_FORMAT_ARGB;
6216 } else
6217 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6218 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6219
6220 intel_crtc->cursor_visible = visible;
6221}
6222
6223static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6224{
6225 struct drm_device *dev = crtc->dev;
6226 struct drm_i915_private *dev_priv = dev->dev_private;
6227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6228 int pipe = intel_crtc->pipe;
6229 bool visible = base != 0;
6230
6231 if (intel_crtc->cursor_visible != visible) {
548f245b 6232 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6233 if (base) {
6234 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6235 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6236 cntl |= pipe << 28; /* Connect to correct pipe */
6237 } else {
6238 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6239 cntl |= CURSOR_MODE_DISABLE;
6240 }
9db4a9c7 6241 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6242
6243 intel_crtc->cursor_visible = visible;
6244 }
6245 /* and commit changes on next vblank */
9db4a9c7 6246 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6247}
6248
65a21cd6
JB
6249static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6250{
6251 struct drm_device *dev = crtc->dev;
6252 struct drm_i915_private *dev_priv = dev->dev_private;
6253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6254 int pipe = intel_crtc->pipe;
6255 bool visible = base != 0;
6256
6257 if (intel_crtc->cursor_visible != visible) {
6258 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6259 if (base) {
6260 cntl &= ~CURSOR_MODE;
6261 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6262 } else {
6263 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6264 cntl |= CURSOR_MODE_DISABLE;
6265 }
6266 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6267
6268 intel_crtc->cursor_visible = visible;
6269 }
6270 /* and commit changes on next vblank */
6271 I915_WRITE(CURBASE_IVB(pipe), base);
6272}
6273
cda4b7d3 6274/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6275static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6276 bool on)
cda4b7d3
CW
6277{
6278 struct drm_device *dev = crtc->dev;
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281 int pipe = intel_crtc->pipe;
6282 int x = intel_crtc->cursor_x;
6283 int y = intel_crtc->cursor_y;
560b85bb 6284 u32 base, pos;
cda4b7d3
CW
6285 bool visible;
6286
6287 pos = 0;
6288
6b383a7f 6289 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6290 base = intel_crtc->cursor_addr;
6291 if (x > (int) crtc->fb->width)
6292 base = 0;
6293
6294 if (y > (int) crtc->fb->height)
6295 base = 0;
6296 } else
6297 base = 0;
6298
6299 if (x < 0) {
6300 if (x + intel_crtc->cursor_width < 0)
6301 base = 0;
6302
6303 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6304 x = -x;
6305 }
6306 pos |= x << CURSOR_X_SHIFT;
6307
6308 if (y < 0) {
6309 if (y + intel_crtc->cursor_height < 0)
6310 base = 0;
6311
6312 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6313 y = -y;
6314 }
6315 pos |= y << CURSOR_Y_SHIFT;
6316
6317 visible = base != 0;
560b85bb 6318 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6319 return;
6320
65a21cd6
JB
6321 if (IS_IVYBRIDGE(dev)) {
6322 I915_WRITE(CURPOS_IVB(pipe), pos);
6323 ivb_update_cursor(crtc, base);
6324 } else {
6325 I915_WRITE(CURPOS(pipe), pos);
6326 if (IS_845G(dev) || IS_I865G(dev))
6327 i845_update_cursor(crtc, base);
6328 else
6329 i9xx_update_cursor(crtc, base);
6330 }
cda4b7d3
CW
6331
6332 if (visible)
6333 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6334}
6335
79e53945 6336static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6337 struct drm_file *file,
79e53945
JB
6338 uint32_t handle,
6339 uint32_t width, uint32_t height)
6340{
6341 struct drm_device *dev = crtc->dev;
6342 struct drm_i915_private *dev_priv = dev->dev_private;
6343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6344 struct drm_i915_gem_object *obj;
cda4b7d3 6345 uint32_t addr;
3f8bc370 6346 int ret;
79e53945 6347
28c97730 6348 DRM_DEBUG_KMS("\n");
79e53945
JB
6349
6350 /* if we want to turn off the cursor ignore width and height */
6351 if (!handle) {
28c97730 6352 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6353 addr = 0;
05394f39 6354 obj = NULL;
5004417d 6355 mutex_lock(&dev->struct_mutex);
3f8bc370 6356 goto finish;
79e53945
JB
6357 }
6358
6359 /* Currently we only support 64x64 cursors */
6360 if (width != 64 || height != 64) {
6361 DRM_ERROR("we currently only support 64x64 cursors\n");
6362 return -EINVAL;
6363 }
6364
05394f39 6365 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6366 if (&obj->base == NULL)
79e53945
JB
6367 return -ENOENT;
6368
05394f39 6369 if (obj->base.size < width * height * 4) {
79e53945 6370 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6371 ret = -ENOMEM;
6372 goto fail;
79e53945
JB
6373 }
6374
71acb5eb 6375 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6376 mutex_lock(&dev->struct_mutex);
b295d1b6 6377 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6378 if (obj->tiling_mode) {
6379 DRM_ERROR("cursor cannot be tiled\n");
6380 ret = -EINVAL;
6381 goto fail_locked;
6382 }
6383
2da3b9b9 6384 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6385 if (ret) {
6386 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6387 goto fail_locked;
e7b526bb
CW
6388 }
6389
d9e86c0e
CW
6390 ret = i915_gem_object_put_fence(obj);
6391 if (ret) {
2da3b9b9 6392 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6393 goto fail_unpin;
6394 }
6395
05394f39 6396 addr = obj->gtt_offset;
71acb5eb 6397 } else {
6eeefaf3 6398 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6399 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6400 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6401 align);
71acb5eb
DA
6402 if (ret) {
6403 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6404 goto fail_locked;
71acb5eb 6405 }
05394f39 6406 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6407 }
6408
a6c45cf0 6409 if (IS_GEN2(dev))
14b60391
JB
6410 I915_WRITE(CURSIZE, (height << 12) | width);
6411
3f8bc370 6412 finish:
3f8bc370 6413 if (intel_crtc->cursor_bo) {
b295d1b6 6414 if (dev_priv->info->cursor_needs_physical) {
05394f39 6415 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6416 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6417 } else
6418 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6419 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6420 }
80824003 6421
7f9872e0 6422 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6423
6424 intel_crtc->cursor_addr = addr;
05394f39 6425 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6426 intel_crtc->cursor_width = width;
6427 intel_crtc->cursor_height = height;
6428
6b383a7f 6429 intel_crtc_update_cursor(crtc, true);
3f8bc370 6430
79e53945 6431 return 0;
e7b526bb 6432fail_unpin:
05394f39 6433 i915_gem_object_unpin(obj);
7f9872e0 6434fail_locked:
34b8686e 6435 mutex_unlock(&dev->struct_mutex);
bc9025bd 6436fail:
05394f39 6437 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6438 return ret;
79e53945
JB
6439}
6440
6441static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6442{
79e53945 6443 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6444
cda4b7d3
CW
6445 intel_crtc->cursor_x = x;
6446 intel_crtc->cursor_y = y;
652c393a 6447
6b383a7f 6448 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6449
6450 return 0;
6451}
6452
6453/** Sets the color ramps on behalf of RandR */
6454void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6455 u16 blue, int regno)
6456{
6457 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6458
6459 intel_crtc->lut_r[regno] = red >> 8;
6460 intel_crtc->lut_g[regno] = green >> 8;
6461 intel_crtc->lut_b[regno] = blue >> 8;
6462}
6463
b8c00ac5
DA
6464void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6465 u16 *blue, int regno)
6466{
6467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6468
6469 *red = intel_crtc->lut_r[regno] << 8;
6470 *green = intel_crtc->lut_g[regno] << 8;
6471 *blue = intel_crtc->lut_b[regno] << 8;
6472}
6473
79e53945 6474static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6475 u16 *blue, uint32_t start, uint32_t size)
79e53945 6476{
7203425a 6477 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6479
7203425a 6480 for (i = start; i < end; i++) {
79e53945
JB
6481 intel_crtc->lut_r[i] = red[i] >> 8;
6482 intel_crtc->lut_g[i] = green[i] >> 8;
6483 intel_crtc->lut_b[i] = blue[i] >> 8;
6484 }
6485
6486 intel_crtc_load_lut(crtc);
6487}
6488
6489/**
6490 * Get a pipe with a simple mode set on it for doing load-based monitor
6491 * detection.
6492 *
6493 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6494 * its requirements. The pipe will be connected to no other encoders.
79e53945 6495 *
c751ce4f 6496 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6497 * configured for it. In the future, it could choose to temporarily disable
6498 * some outputs to free up a pipe for its use.
6499 *
6500 * \return crtc, or NULL if no pipes are available.
6501 */
6502
6503/* VESA 640x480x72Hz mode to set on the pipe */
6504static struct drm_display_mode load_detect_mode = {
6505 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6506 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6507};
6508
d2dff872
CW
6509static struct drm_framebuffer *
6510intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6511 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6512 struct drm_i915_gem_object *obj)
6513{
6514 struct intel_framebuffer *intel_fb;
6515 int ret;
6516
6517 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6518 if (!intel_fb) {
6519 drm_gem_object_unreference_unlocked(&obj->base);
6520 return ERR_PTR(-ENOMEM);
6521 }
6522
6523 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6524 if (ret) {
6525 drm_gem_object_unreference_unlocked(&obj->base);
6526 kfree(intel_fb);
6527 return ERR_PTR(ret);
6528 }
6529
6530 return &intel_fb->base;
6531}
6532
6533static u32
6534intel_framebuffer_pitch_for_width(int width, int bpp)
6535{
6536 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6537 return ALIGN(pitch, 64);
6538}
6539
6540static u32
6541intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6542{
6543 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6544 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6545}
6546
6547static struct drm_framebuffer *
6548intel_framebuffer_create_for_mode(struct drm_device *dev,
6549 struct drm_display_mode *mode,
6550 int depth, int bpp)
6551{
6552 struct drm_i915_gem_object *obj;
308e5bcb 6553 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
6554
6555 obj = i915_gem_alloc_object(dev,
6556 intel_framebuffer_size_for_mode(mode, bpp));
6557 if (obj == NULL)
6558 return ERR_PTR(-ENOMEM);
6559
6560 mode_cmd.width = mode->hdisplay;
6561 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6562 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6563 bpp);
6564 mode_cmd.pixel_format = 0;
d2dff872
CW
6565
6566 return intel_framebuffer_create(dev, &mode_cmd, obj);
6567}
6568
6569static struct drm_framebuffer *
6570mode_fits_in_fbdev(struct drm_device *dev,
6571 struct drm_display_mode *mode)
6572{
6573 struct drm_i915_private *dev_priv = dev->dev_private;
6574 struct drm_i915_gem_object *obj;
6575 struct drm_framebuffer *fb;
6576
6577 if (dev_priv->fbdev == NULL)
6578 return NULL;
6579
6580 obj = dev_priv->fbdev->ifb.obj;
6581 if (obj == NULL)
6582 return NULL;
6583
6584 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6585 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6586 fb->bits_per_pixel))
d2dff872
CW
6587 return NULL;
6588
01f2c773 6589 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6590 return NULL;
6591
6592 return fb;
6593}
6594
7173188d
CW
6595bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6596 struct drm_connector *connector,
6597 struct drm_display_mode *mode,
8261b191 6598 struct intel_load_detect_pipe *old)
79e53945
JB
6599{
6600 struct intel_crtc *intel_crtc;
6601 struct drm_crtc *possible_crtc;
4ef69c7a 6602 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6603 struct drm_crtc *crtc = NULL;
6604 struct drm_device *dev = encoder->dev;
d2dff872 6605 struct drm_framebuffer *old_fb;
79e53945
JB
6606 int i = -1;
6607
d2dff872
CW
6608 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6609 connector->base.id, drm_get_connector_name(connector),
6610 encoder->base.id, drm_get_encoder_name(encoder));
6611
79e53945
JB
6612 /*
6613 * Algorithm gets a little messy:
7a5e4805 6614 *
79e53945
JB
6615 * - if the connector already has an assigned crtc, use it (but make
6616 * sure it's on first)
7a5e4805 6617 *
79e53945
JB
6618 * - try to find the first unused crtc that can drive this connector,
6619 * and use that if we find one
79e53945
JB
6620 */
6621
6622 /* See if we already have a CRTC for this connector */
6623 if (encoder->crtc) {
6624 crtc = encoder->crtc;
8261b191 6625
79e53945 6626 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6627 old->dpms_mode = intel_crtc->dpms_mode;
6628 old->load_detect_temp = false;
6629
6630 /* Make sure the crtc and connector are running */
79e53945 6631 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6492711d
CW
6632 struct drm_encoder_helper_funcs *encoder_funcs;
6633 struct drm_crtc_helper_funcs *crtc_funcs;
6634
79e53945
JB
6635 crtc_funcs = crtc->helper_private;
6636 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6492711d
CW
6637
6638 encoder_funcs = encoder->helper_private;
79e53945
JB
6639 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6640 }
8261b191 6641
7173188d 6642 return true;
79e53945
JB
6643 }
6644
6645 /* Find an unused one (if possible) */
6646 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6647 i++;
6648 if (!(encoder->possible_crtcs & (1 << i)))
6649 continue;
6650 if (!possible_crtc->enabled) {
6651 crtc = possible_crtc;
6652 break;
6653 }
79e53945
JB
6654 }
6655
6656 /*
6657 * If we didn't find an unused CRTC, don't use any.
6658 */
6659 if (!crtc) {
7173188d
CW
6660 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6661 return false;
79e53945
JB
6662 }
6663
6664 encoder->crtc = crtc;
c1c43977 6665 connector->encoder = encoder;
79e53945
JB
6666
6667 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6668 old->dpms_mode = intel_crtc->dpms_mode;
6669 old->load_detect_temp = true;
d2dff872 6670 old->release_fb = NULL;
79e53945 6671
6492711d
CW
6672 if (!mode)
6673 mode = &load_detect_mode;
79e53945 6674
d2dff872
CW
6675 old_fb = crtc->fb;
6676
6677 /* We need a framebuffer large enough to accommodate all accesses
6678 * that the plane may generate whilst we perform load detection.
6679 * We can not rely on the fbcon either being present (we get called
6680 * during its initialisation to detect all boot displays, or it may
6681 * not even exist) or that it is large enough to satisfy the
6682 * requested mode.
6683 */
6684 crtc->fb = mode_fits_in_fbdev(dev, mode);
6685 if (crtc->fb == NULL) {
6686 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6687 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6688 old->release_fb = crtc->fb;
6689 } else
6690 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6691 if (IS_ERR(crtc->fb)) {
6692 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6693 crtc->fb = old_fb;
6694 return false;
79e53945 6695 }
79e53945 6696
d2dff872 6697 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6492711d 6698 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6699 if (old->release_fb)
6700 old->release_fb->funcs->destroy(old->release_fb);
6701 crtc->fb = old_fb;
6492711d 6702 return false;
79e53945 6703 }
7173188d 6704
79e53945 6705 /* let the connector get through one full cycle before testing */
9d0498a2 6706 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6707
7173188d 6708 return true;
79e53945
JB
6709}
6710
c1c43977 6711void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
8261b191
CW
6712 struct drm_connector *connector,
6713 struct intel_load_detect_pipe *old)
79e53945 6714{
4ef69c7a 6715 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6716 struct drm_device *dev = encoder->dev;
6717 struct drm_crtc *crtc = encoder->crtc;
6718 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6719 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6720
d2dff872
CW
6721 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6722 connector->base.id, drm_get_connector_name(connector),
6723 encoder->base.id, drm_get_encoder_name(encoder));
6724
8261b191 6725 if (old->load_detect_temp) {
c1c43977 6726 connector->encoder = NULL;
79e53945 6727 drm_helper_disable_unused_functions(dev);
d2dff872
CW
6728
6729 if (old->release_fb)
6730 old->release_fb->funcs->destroy(old->release_fb);
6731
0622a53c 6732 return;
79e53945
JB
6733 }
6734
c751ce4f 6735 /* Switch crtc and encoder back off if necessary */
0622a53c
CW
6736 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6737 encoder_funcs->dpms(encoder, old->dpms_mode);
8261b191 6738 crtc_funcs->dpms(crtc, old->dpms_mode);
79e53945
JB
6739 }
6740}
6741
6742/* Returns the clock of the currently programmed mode of the given pipe. */
6743static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6744{
6745 struct drm_i915_private *dev_priv = dev->dev_private;
6746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6747 int pipe = intel_crtc->pipe;
548f245b 6748 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6749 u32 fp;
6750 intel_clock_t clock;
6751
6752 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6753 fp = I915_READ(FP0(pipe));
79e53945 6754 else
39adb7a5 6755 fp = I915_READ(FP1(pipe));
79e53945
JB
6756
6757 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6758 if (IS_PINEVIEW(dev)) {
6759 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6760 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6761 } else {
6762 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6763 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6764 }
6765
a6c45cf0 6766 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6767 if (IS_PINEVIEW(dev))
6768 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6769 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6770 else
6771 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6772 DPLL_FPA01_P1_POST_DIV_SHIFT);
6773
6774 switch (dpll & DPLL_MODE_MASK) {
6775 case DPLLB_MODE_DAC_SERIAL:
6776 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6777 5 : 10;
6778 break;
6779 case DPLLB_MODE_LVDS:
6780 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6781 7 : 14;
6782 break;
6783 default:
28c97730 6784 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6785 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6786 return 0;
6787 }
6788
6789 /* XXX: Handle the 100Mhz refclk */
2177832f 6790 intel_clock(dev, 96000, &clock);
79e53945
JB
6791 } else {
6792 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6793
6794 if (is_lvds) {
6795 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6796 DPLL_FPA01_P1_POST_DIV_SHIFT);
6797 clock.p2 = 14;
6798
6799 if ((dpll & PLL_REF_INPUT_MASK) ==
6800 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6801 /* XXX: might not be 66MHz */
2177832f 6802 intel_clock(dev, 66000, &clock);
79e53945 6803 } else
2177832f 6804 intel_clock(dev, 48000, &clock);
79e53945
JB
6805 } else {
6806 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6807 clock.p1 = 2;
6808 else {
6809 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6810 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6811 }
6812 if (dpll & PLL_P2_DIVIDE_BY_4)
6813 clock.p2 = 4;
6814 else
6815 clock.p2 = 2;
6816
2177832f 6817 intel_clock(dev, 48000, &clock);
79e53945
JB
6818 }
6819 }
6820
6821 /* XXX: It would be nice to validate the clocks, but we can't reuse
6822 * i830PllIsValid() because it relies on the xf86_config connector
6823 * configuration being accurate, which it isn't necessarily.
6824 */
6825
6826 return clock.dot;
6827}
6828
6829/** Returns the currently programmed mode of the given pipe. */
6830struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6831 struct drm_crtc *crtc)
6832{
548f245b 6833 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6835 int pipe = intel_crtc->pipe;
6836 struct drm_display_mode *mode;
548f245b
JB
6837 int htot = I915_READ(HTOTAL(pipe));
6838 int hsync = I915_READ(HSYNC(pipe));
6839 int vtot = I915_READ(VTOTAL(pipe));
6840 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6841
6842 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6843 if (!mode)
6844 return NULL;
6845
6846 mode->clock = intel_crtc_clock_get(dev, crtc);
6847 mode->hdisplay = (htot & 0xffff) + 1;
6848 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6849 mode->hsync_start = (hsync & 0xffff) + 1;
6850 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6851 mode->vdisplay = (vtot & 0xffff) + 1;
6852 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6853 mode->vsync_start = (vsync & 0xffff) + 1;
6854 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6855
6856 drm_mode_set_name(mode);
6857 drm_mode_set_crtcinfo(mode, 0);
6858
6859 return mode;
6860}
6861
652c393a
JB
6862#define GPU_IDLE_TIMEOUT 500 /* ms */
6863
6864/* When this timer fires, we've been idle for awhile */
6865static void intel_gpu_idle_timer(unsigned long arg)
6866{
6867 struct drm_device *dev = (struct drm_device *)arg;
6868 drm_i915_private_t *dev_priv = dev->dev_private;
6869
ff7ea4c0
CW
6870 if (!list_empty(&dev_priv->mm.active_list)) {
6871 /* Still processing requests, so just re-arm the timer. */
6872 mod_timer(&dev_priv->idle_timer, jiffies +
6873 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6874 return;
6875 }
652c393a 6876
ff7ea4c0 6877 dev_priv->busy = false;
01dfba93 6878 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6879}
6880
652c393a
JB
6881#define CRTC_IDLE_TIMEOUT 1000 /* ms */
6882
6883static void intel_crtc_idle_timer(unsigned long arg)
6884{
6885 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6886 struct drm_crtc *crtc = &intel_crtc->base;
6887 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
ff7ea4c0 6888 struct intel_framebuffer *intel_fb;
652c393a 6889
ff7ea4c0
CW
6890 intel_fb = to_intel_framebuffer(crtc->fb);
6891 if (intel_fb && intel_fb->obj->active) {
6892 /* The framebuffer is still being accessed by the GPU. */
6893 mod_timer(&intel_crtc->idle_timer, jiffies +
6894 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6895 return;
6896 }
652c393a 6897
ff7ea4c0 6898 intel_crtc->busy = false;
01dfba93 6899 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6900}
6901
3dec0095 6902static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6903{
6904 struct drm_device *dev = crtc->dev;
6905 drm_i915_private_t *dev_priv = dev->dev_private;
6906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6907 int pipe = intel_crtc->pipe;
dbdc6479
JB
6908 int dpll_reg = DPLL(pipe);
6909 int dpll;
652c393a 6910
bad720ff 6911 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6912 return;
6913
6914 if (!dev_priv->lvds_downclock_avail)
6915 return;
6916
dbdc6479 6917 dpll = I915_READ(dpll_reg);
652c393a 6918 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6919 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a
JB
6920
6921 /* Unlock panel regs */
dbdc6479
JB
6922 I915_WRITE(PP_CONTROL,
6923 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
652c393a
JB
6924
6925 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6926 I915_WRITE(dpll_reg, dpll);
9d0498a2 6927 intel_wait_for_vblank(dev, pipe);
dbdc6479 6928
652c393a
JB
6929 dpll = I915_READ(dpll_reg);
6930 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6931 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a
JB
6932
6933 /* ...and lock them again */
6934 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6935 }
6936
6937 /* Schedule downclock */
3dec0095
DV
6938 mod_timer(&intel_crtc->idle_timer, jiffies +
6939 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
652c393a
JB
6940}
6941
6942static void intel_decrease_pllclock(struct drm_crtc *crtc)
6943{
6944 struct drm_device *dev = crtc->dev;
6945 drm_i915_private_t *dev_priv = dev->dev_private;
6946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6947 int pipe = intel_crtc->pipe;
9db4a9c7 6948 int dpll_reg = DPLL(pipe);
652c393a
JB
6949 int dpll = I915_READ(dpll_reg);
6950
bad720ff 6951 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6952 return;
6953
6954 if (!dev_priv->lvds_downclock_avail)
6955 return;
6956
6957 /*
6958 * Since this is called by a timer, we should never get here in
6959 * the manual case.
6960 */
6961 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
44d98a61 6962 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a
JB
6963
6964 /* Unlock panel regs */
4a655f04
JB
6965 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6966 PANEL_UNLOCK_REGS);
652c393a
JB
6967
6968 dpll |= DISPLAY_RATE_SELECT_FPA1;
6969 I915_WRITE(dpll_reg, dpll);
9d0498a2 6970 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6971 dpll = I915_READ(dpll_reg);
6972 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6973 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6974
6975 /* ...and lock them again */
6976 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6977 }
6978
6979}
6980
6981/**
6982 * intel_idle_update - adjust clocks for idleness
6983 * @work: work struct
6984 *
6985 * Either the GPU or display (or both) went idle. Check the busy status
6986 * here and adjust the CRTC and GPU clocks as necessary.
6987 */
6988static void intel_idle_update(struct work_struct *work)
6989{
6990 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6991 idle_work);
6992 struct drm_device *dev = dev_priv->dev;
6993 struct drm_crtc *crtc;
6994 struct intel_crtc *intel_crtc;
6995
6996 if (!i915_powersave)
6997 return;
6998
6999 mutex_lock(&dev->struct_mutex);
7000
7648fa99
JB
7001 i915_update_gfx_val(dev_priv);
7002
652c393a
JB
7003 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7004 /* Skip inactive CRTCs */
7005 if (!crtc->fb)
7006 continue;
7007
7008 intel_crtc = to_intel_crtc(crtc);
7009 if (!intel_crtc->busy)
7010 intel_decrease_pllclock(crtc);
7011 }
7012
45ac22c8 7013
652c393a
JB
7014 mutex_unlock(&dev->struct_mutex);
7015}
7016
7017/**
7018 * intel_mark_busy - mark the GPU and possibly the display busy
7019 * @dev: drm device
7020 * @obj: object we're operating on
7021 *
7022 * Callers can use this function to indicate that the GPU is busy processing
7023 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7024 * buffer), we'll also mark the display as busy, so we know to increase its
7025 * clock frequency.
7026 */
05394f39 7027void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
652c393a
JB
7028{
7029 drm_i915_private_t *dev_priv = dev->dev_private;
7030 struct drm_crtc *crtc = NULL;
7031 struct intel_framebuffer *intel_fb;
7032 struct intel_crtc *intel_crtc;
7033
5e17ee74
ZW
7034 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7035 return;
7036
18b2190c 7037 if (!dev_priv->busy)
28cf798f 7038 dev_priv->busy = true;
18b2190c 7039 else
28cf798f
CW
7040 mod_timer(&dev_priv->idle_timer, jiffies +
7041 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
652c393a
JB
7042
7043 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7044 if (!crtc->fb)
7045 continue;
7046
7047 intel_crtc = to_intel_crtc(crtc);
7048 intel_fb = to_intel_framebuffer(crtc->fb);
7049 if (intel_fb->obj == obj) {
7050 if (!intel_crtc->busy) {
7051 /* Non-busy -> busy, upclock */
3dec0095 7052 intel_increase_pllclock(crtc);
652c393a
JB
7053 intel_crtc->busy = true;
7054 } else {
7055 /* Busy -> busy, put off timer */
7056 mod_timer(&intel_crtc->idle_timer, jiffies +
7057 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7058 }
7059 }
7060 }
7061}
7062
79e53945
JB
7063static void intel_crtc_destroy(struct drm_crtc *crtc)
7064{
7065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
7066 struct drm_device *dev = crtc->dev;
7067 struct intel_unpin_work *work;
7068 unsigned long flags;
7069
7070 spin_lock_irqsave(&dev->event_lock, flags);
7071 work = intel_crtc->unpin_work;
7072 intel_crtc->unpin_work = NULL;
7073 spin_unlock_irqrestore(&dev->event_lock, flags);
7074
7075 if (work) {
7076 cancel_work_sync(&work->work);
7077 kfree(work);
7078 }
79e53945
JB
7079
7080 drm_crtc_cleanup(crtc);
67e77c5a 7081
79e53945
JB
7082 kfree(intel_crtc);
7083}
7084
6b95a207
KH
7085static void intel_unpin_work_fn(struct work_struct *__work)
7086{
7087 struct intel_unpin_work *work =
7088 container_of(__work, struct intel_unpin_work, work);
7089
7090 mutex_lock(&work->dev->struct_mutex);
b1b87f6b 7091 i915_gem_object_unpin(work->old_fb_obj);
05394f39
CW
7092 drm_gem_object_unreference(&work->pending_flip_obj->base);
7093 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 7094
7782de3b 7095 intel_update_fbc(work->dev);
6b95a207
KH
7096 mutex_unlock(&work->dev->struct_mutex);
7097 kfree(work);
7098}
7099
1afe3e9d 7100static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 7101 struct drm_crtc *crtc)
6b95a207
KH
7102{
7103 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
7104 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7105 struct intel_unpin_work *work;
05394f39 7106 struct drm_i915_gem_object *obj;
6b95a207 7107 struct drm_pending_vblank_event *e;
49b14a5c 7108 struct timeval tnow, tvbl;
6b95a207
KH
7109 unsigned long flags;
7110
7111 /* Ignore early vblank irqs */
7112 if (intel_crtc == NULL)
7113 return;
7114
49b14a5c
MK
7115 do_gettimeofday(&tnow);
7116
6b95a207
KH
7117 spin_lock_irqsave(&dev->event_lock, flags);
7118 work = intel_crtc->unpin_work;
7119 if (work == NULL || !work->pending) {
7120 spin_unlock_irqrestore(&dev->event_lock, flags);
7121 return;
7122 }
7123
7124 intel_crtc->unpin_work = NULL;
6b95a207
KH
7125
7126 if (work->event) {
7127 e = work->event;
49b14a5c 7128 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
7129
7130 /* Called before vblank count and timestamps have
7131 * been updated for the vblank interval of flip
7132 * completion? Need to increment vblank count and
7133 * add one videorefresh duration to returned timestamp
49b14a5c
MK
7134 * to account for this. We assume this happened if we
7135 * get called over 0.9 frame durations after the last
7136 * timestamped vblank.
7137 *
7138 * This calculation can not be used with vrefresh rates
7139 * below 5Hz (10Hz to be on the safe side) without
7140 * promoting to 64 integers.
0af7e4df 7141 */
49b14a5c
MK
7142 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7143 9 * crtc->framedur_ns) {
0af7e4df 7144 e->event.sequence++;
49b14a5c
MK
7145 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7146 crtc->framedur_ns);
0af7e4df
MK
7147 }
7148
49b14a5c
MK
7149 e->event.tv_sec = tvbl.tv_sec;
7150 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 7151
6b95a207
KH
7152 list_add_tail(&e->base.link,
7153 &e->base.file_priv->event_list);
7154 wake_up_interruptible(&e->base.file_priv->event_wait);
7155 }
7156
0af7e4df
MK
7157 drm_vblank_put(dev, intel_crtc->pipe);
7158
6b95a207
KH
7159 spin_unlock_irqrestore(&dev->event_lock, flags);
7160
05394f39 7161 obj = work->old_fb_obj;
d9e86c0e 7162
e59f2bac 7163 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
7164 &obj->pending_flip.counter);
7165 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 7166 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 7167
6b95a207 7168 schedule_work(&work->work);
e5510fac
JB
7169
7170 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
7171}
7172
1afe3e9d
JB
7173void intel_finish_page_flip(struct drm_device *dev, int pipe)
7174{
7175 drm_i915_private_t *dev_priv = dev->dev_private;
7176 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7177
49b14a5c 7178 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
7179}
7180
7181void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7182{
7183 drm_i915_private_t *dev_priv = dev->dev_private;
7184 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7185
49b14a5c 7186 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
7187}
7188
6b95a207
KH
7189void intel_prepare_page_flip(struct drm_device *dev, int plane)
7190{
7191 drm_i915_private_t *dev_priv = dev->dev_private;
7192 struct intel_crtc *intel_crtc =
7193 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7194 unsigned long flags;
7195
7196 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 7197 if (intel_crtc->unpin_work) {
4e5359cd
SF
7198 if ((++intel_crtc->unpin_work->pending) > 1)
7199 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
7200 } else {
7201 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7202 }
6b95a207
KH
7203 spin_unlock_irqrestore(&dev->event_lock, flags);
7204}
7205
8c9f3aaf
JB
7206static int intel_gen2_queue_flip(struct drm_device *dev,
7207 struct drm_crtc *crtc,
7208 struct drm_framebuffer *fb,
7209 struct drm_i915_gem_object *obj)
7210{
7211 struct drm_i915_private *dev_priv = dev->dev_private;
7212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7213 unsigned long offset;
7214 u32 flip_mask;
7215 int ret;
7216
7217 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7218 if (ret)
7219 goto out;
7220
7221 /* Offset into the new buffer for cases of shared fbs between CRTCs */
01f2c773 7222 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
8c9f3aaf
JB
7223
7224 ret = BEGIN_LP_RING(6);
7225 if (ret)
7226 goto out;
7227
7228 /* Can't queue multiple flips, so wait for the previous
7229 * one to finish before executing the next.
7230 */
7231 if (intel_crtc->plane)
7232 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7233 else
7234 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7235 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7236 OUT_RING(MI_NOOP);
7237 OUT_RING(MI_DISPLAY_FLIP |
7238 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
01f2c773 7239 OUT_RING(fb->pitches[0]);
8c9f3aaf
JB
7240 OUT_RING(obj->gtt_offset + offset);
7241 OUT_RING(MI_NOOP);
7242 ADVANCE_LP_RING();
7243out:
7244 return ret;
7245}
7246
7247static int intel_gen3_queue_flip(struct drm_device *dev,
7248 struct drm_crtc *crtc,
7249 struct drm_framebuffer *fb,
7250 struct drm_i915_gem_object *obj)
7251{
7252 struct drm_i915_private *dev_priv = dev->dev_private;
7253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7254 unsigned long offset;
7255 u32 flip_mask;
7256 int ret;
7257
7258 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7259 if (ret)
7260 goto out;
7261
7262 /* Offset into the new buffer for cases of shared fbs between CRTCs */
01f2c773 7263 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
8c9f3aaf
JB
7264
7265 ret = BEGIN_LP_RING(6);
7266 if (ret)
7267 goto out;
7268
7269 if (intel_crtc->plane)
7270 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7271 else
7272 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7273 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7274 OUT_RING(MI_NOOP);
7275 OUT_RING(MI_DISPLAY_FLIP_I915 |
7276 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
01f2c773 7277 OUT_RING(fb->pitches[0]);
8c9f3aaf
JB
7278 OUT_RING(obj->gtt_offset + offset);
7279 OUT_RING(MI_NOOP);
7280
7281 ADVANCE_LP_RING();
7282out:
7283 return ret;
7284}
7285
7286static int intel_gen4_queue_flip(struct drm_device *dev,
7287 struct drm_crtc *crtc,
7288 struct drm_framebuffer *fb,
7289 struct drm_i915_gem_object *obj)
7290{
7291 struct drm_i915_private *dev_priv = dev->dev_private;
7292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7293 uint32_t pf, pipesrc;
7294 int ret;
7295
7296 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7297 if (ret)
7298 goto out;
7299
7300 ret = BEGIN_LP_RING(4);
7301 if (ret)
7302 goto out;
7303
7304 /* i965+ uses the linear or tiled offsets from the
7305 * Display Registers (which do not change across a page-flip)
7306 * so we need only reprogram the base address.
7307 */
7308 OUT_RING(MI_DISPLAY_FLIP |
7309 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
01f2c773 7310 OUT_RING(fb->pitches[0]);
8c9f3aaf
JB
7311 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7312
7313 /* XXX Enabling the panel-fitter across page-flip is so far
7314 * untested on non-native modes, so ignore it for now.
7315 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7316 */
7317 pf = 0;
7318 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7319 OUT_RING(pf | pipesrc);
7320 ADVANCE_LP_RING();
7321out:
7322 return ret;
7323}
7324
7325static int intel_gen6_queue_flip(struct drm_device *dev,
7326 struct drm_crtc *crtc,
7327 struct drm_framebuffer *fb,
7328 struct drm_i915_gem_object *obj)
7329{
7330 struct drm_i915_private *dev_priv = dev->dev_private;
7331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7332 uint32_t pf, pipesrc;
7333 int ret;
7334
7335 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7336 if (ret)
7337 goto out;
7338
7339 ret = BEGIN_LP_RING(4);
7340 if (ret)
7341 goto out;
7342
7343 OUT_RING(MI_DISPLAY_FLIP |
7344 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
01f2c773 7345 OUT_RING(fb->pitches[0] | obj->tiling_mode);
8c9f3aaf
JB
7346 OUT_RING(obj->gtt_offset);
7347
7348 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7349 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7350 OUT_RING(pf | pipesrc);
7351 ADVANCE_LP_RING();
7352out:
7353 return ret;
7354}
7355
7c9017e5
JB
7356/*
7357 * On gen7 we currently use the blit ring because (in early silicon at least)
7358 * the render ring doesn't give us interrpts for page flip completion, which
7359 * means clients will hang after the first flip is queued. Fortunately the
7360 * blit ring generates interrupts properly, so use it instead.
7361 */
7362static int intel_gen7_queue_flip(struct drm_device *dev,
7363 struct drm_crtc *crtc,
7364 struct drm_framebuffer *fb,
7365 struct drm_i915_gem_object *obj)
7366{
7367 struct drm_i915_private *dev_priv = dev->dev_private;
7368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7369 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7370 int ret;
7371
7372 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7373 if (ret)
7374 goto out;
7375
7376 ret = intel_ring_begin(ring, 4);
7377 if (ret)
7378 goto out;
7379
7380 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
01f2c773 7381 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7c9017e5
JB
7382 intel_ring_emit(ring, (obj->gtt_offset));
7383 intel_ring_emit(ring, (MI_NOOP));
7384 intel_ring_advance(ring);
7385out:
7386 return ret;
7387}
7388
8c9f3aaf
JB
7389static int intel_default_queue_flip(struct drm_device *dev,
7390 struct drm_crtc *crtc,
7391 struct drm_framebuffer *fb,
7392 struct drm_i915_gem_object *obj)
7393{
7394 return -ENODEV;
7395}
7396
6b95a207
KH
7397static int intel_crtc_page_flip(struct drm_crtc *crtc,
7398 struct drm_framebuffer *fb,
7399 struct drm_pending_vblank_event *event)
7400{
7401 struct drm_device *dev = crtc->dev;
7402 struct drm_i915_private *dev_priv = dev->dev_private;
7403 struct intel_framebuffer *intel_fb;
05394f39 7404 struct drm_i915_gem_object *obj;
6b95a207
KH
7405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7406 struct intel_unpin_work *work;
8c9f3aaf 7407 unsigned long flags;
52e68630 7408 int ret;
6b95a207
KH
7409
7410 work = kzalloc(sizeof *work, GFP_KERNEL);
7411 if (work == NULL)
7412 return -ENOMEM;
7413
6b95a207
KH
7414 work->event = event;
7415 work->dev = crtc->dev;
7416 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7417 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7418 INIT_WORK(&work->work, intel_unpin_work_fn);
7419
7317c75e
JB
7420 ret = drm_vblank_get(dev, intel_crtc->pipe);
7421 if (ret)
7422 goto free_work;
7423
6b95a207
KH
7424 /* We borrow the event spin lock for protecting unpin_work */
7425 spin_lock_irqsave(&dev->event_lock, flags);
7426 if (intel_crtc->unpin_work) {
7427 spin_unlock_irqrestore(&dev->event_lock, flags);
7428 kfree(work);
7317c75e 7429 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7430
7431 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7432 return -EBUSY;
7433 }
7434 intel_crtc->unpin_work = work;
7435 spin_unlock_irqrestore(&dev->event_lock, flags);
7436
7437 intel_fb = to_intel_framebuffer(fb);
7438 obj = intel_fb->obj;
7439
468f0b44 7440 mutex_lock(&dev->struct_mutex);
6b95a207 7441
75dfca80 7442 /* Reference the objects for the scheduled work. */
05394f39
CW
7443 drm_gem_object_reference(&work->old_fb_obj->base);
7444 drm_gem_object_reference(&obj->base);
6b95a207
KH
7445
7446 crtc->fb = fb;
96b099fd 7447
e1f99ce6 7448 work->pending_flip_obj = obj;
e1f99ce6 7449
4e5359cd
SF
7450 work->enable_stall_check = true;
7451
e1f99ce6
CW
7452 /* Block clients from rendering to the new back buffer until
7453 * the flip occurs and the object is no longer visible.
7454 */
05394f39 7455 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 7456
8c9f3aaf
JB
7457 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7458 if (ret)
7459 goto cleanup_pending;
6b95a207 7460
7782de3b 7461 intel_disable_fbc(dev);
6b95a207
KH
7462 mutex_unlock(&dev->struct_mutex);
7463
e5510fac
JB
7464 trace_i915_flip_request(intel_crtc->plane, obj);
7465
6b95a207 7466 return 0;
96b099fd 7467
8c9f3aaf
JB
7468cleanup_pending:
7469 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7470 drm_gem_object_unreference(&work->old_fb_obj->base);
7471 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7472 mutex_unlock(&dev->struct_mutex);
7473
7474 spin_lock_irqsave(&dev->event_lock, flags);
7475 intel_crtc->unpin_work = NULL;
7476 spin_unlock_irqrestore(&dev->event_lock, flags);
7477
7317c75e
JB
7478 drm_vblank_put(dev, intel_crtc->pipe);
7479free_work:
96b099fd
CW
7480 kfree(work);
7481
7482 return ret;
6b95a207
KH
7483}
7484
47f1c6c9
CW
7485static void intel_sanitize_modesetting(struct drm_device *dev,
7486 int pipe, int plane)
7487{
7488 struct drm_i915_private *dev_priv = dev->dev_private;
7489 u32 reg, val;
7490
7491 if (HAS_PCH_SPLIT(dev))
7492 return;
7493
7494 /* Who knows what state these registers were left in by the BIOS or
7495 * grub?
7496 *
7497 * If we leave the registers in a conflicting state (e.g. with the
7498 * display plane reading from the other pipe than the one we intend
7499 * to use) then when we attempt to teardown the active mode, we will
7500 * not disable the pipes and planes in the correct order -- leaving
7501 * a plane reading from a disabled pipe and possibly leading to
7502 * undefined behaviour.
7503 */
7504
7505 reg = DSPCNTR(plane);
7506 val = I915_READ(reg);
7507
7508 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7509 return;
7510 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7511 return;
7512
7513 /* This display plane is active and attached to the other CPU pipe. */
7514 pipe = !pipe;
7515
7516 /* Disable the plane and wait for it to stop reading from the pipe. */
b24e7179
JB
7517 intel_disable_plane(dev_priv, plane, pipe);
7518 intel_disable_pipe(dev_priv, pipe);
47f1c6c9 7519}
79e53945 7520
f6e5b160
CW
7521static void intel_crtc_reset(struct drm_crtc *crtc)
7522{
7523 struct drm_device *dev = crtc->dev;
7524 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7525
7526 /* Reset flags back to the 'unknown' status so that they
7527 * will be correctly set on the initial modeset.
7528 */
7529 intel_crtc->dpms_mode = -1;
7530
7531 /* We need to fix up any BIOS configuration that conflicts with
7532 * our expectations.
7533 */
7534 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7535}
7536
7537static struct drm_crtc_helper_funcs intel_helper_funcs = {
7538 .dpms = intel_crtc_dpms,
7539 .mode_fixup = intel_crtc_mode_fixup,
7540 .mode_set = intel_crtc_mode_set,
7541 .mode_set_base = intel_pipe_set_base,
7542 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7543 .load_lut = intel_crtc_load_lut,
7544 .disable = intel_crtc_disable,
7545};
7546
7547static const struct drm_crtc_funcs intel_crtc_funcs = {
7548 .reset = intel_crtc_reset,
7549 .cursor_set = intel_crtc_cursor_set,
7550 .cursor_move = intel_crtc_cursor_move,
7551 .gamma_set = intel_crtc_gamma_set,
7552 .set_config = drm_crtc_helper_set_config,
7553 .destroy = intel_crtc_destroy,
7554 .page_flip = intel_crtc_page_flip,
7555};
7556
b358d0a6 7557static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7558{
22fd0fab 7559 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7560 struct intel_crtc *intel_crtc;
7561 int i;
7562
7563 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7564 if (intel_crtc == NULL)
7565 return;
7566
7567 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7568
7569 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7570 for (i = 0; i < 256; i++) {
7571 intel_crtc->lut_r[i] = i;
7572 intel_crtc->lut_g[i] = i;
7573 intel_crtc->lut_b[i] = i;
7574 }
7575
80824003
JB
7576 /* Swap pipes & planes for FBC on pre-965 */
7577 intel_crtc->pipe = pipe;
7578 intel_crtc->plane = pipe;
e2e767ab 7579 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7580 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7581 intel_crtc->plane = !pipe;
80824003
JB
7582 }
7583
22fd0fab
JB
7584 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7585 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7586 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7587 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7588
5d1d0cc8 7589 intel_crtc_reset(&intel_crtc->base);
04dbff52 7590 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5a354204 7591 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3
JB
7592
7593 if (HAS_PCH_SPLIT(dev)) {
4b645f14
JB
7594 if (pipe == 2 && IS_IVYBRIDGE(dev))
7595 intel_crtc->no_pll = true;
7e7d76c3
JB
7596 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7597 intel_helper_funcs.commit = ironlake_crtc_commit;
7598 } else {
7599 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7600 intel_helper_funcs.commit = i9xx_crtc_commit;
7601 }
7602
79e53945
JB
7603 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7604
652c393a
JB
7605 intel_crtc->busy = false;
7606
7607 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7608 (unsigned long)intel_crtc);
79e53945
JB
7609}
7610
08d7b3d1 7611int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7612 struct drm_file *file)
08d7b3d1
CW
7613{
7614 drm_i915_private_t *dev_priv = dev->dev_private;
7615 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7616 struct drm_mode_object *drmmode_obj;
7617 struct intel_crtc *crtc;
08d7b3d1
CW
7618
7619 if (!dev_priv) {
7620 DRM_ERROR("called with no initialization\n");
7621 return -EINVAL;
7622 }
7623
c05422d5
DV
7624 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7625 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7626
c05422d5 7627 if (!drmmode_obj) {
08d7b3d1
CW
7628 DRM_ERROR("no such CRTC id\n");
7629 return -EINVAL;
7630 }
7631
c05422d5
DV
7632 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7633 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7634
c05422d5 7635 return 0;
08d7b3d1
CW
7636}
7637
c5e4df33 7638static int intel_encoder_clones(struct drm_device *dev, int type_mask)
79e53945 7639{
4ef69c7a 7640 struct intel_encoder *encoder;
79e53945 7641 int index_mask = 0;
79e53945
JB
7642 int entry = 0;
7643
4ef69c7a
CW
7644 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7645 if (type_mask & encoder->clone_mask)
79e53945
JB
7646 index_mask |= (1 << entry);
7647 entry++;
7648 }
4ef69c7a 7649
79e53945
JB
7650 return index_mask;
7651}
7652
4d302442
CW
7653static bool has_edp_a(struct drm_device *dev)
7654{
7655 struct drm_i915_private *dev_priv = dev->dev_private;
7656
7657 if (!IS_MOBILE(dev))
7658 return false;
7659
7660 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7661 return false;
7662
7663 if (IS_GEN5(dev) &&
7664 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7665 return false;
7666
7667 return true;
7668}
7669
79e53945
JB
7670static void intel_setup_outputs(struct drm_device *dev)
7671{
725e30ad 7672 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7673 struct intel_encoder *encoder;
cb0953d7 7674 bool dpd_is_edp = false;
c5d1b51d 7675 bool has_lvds = false;
79e53945 7676
541998a1 7677 if (IS_MOBILE(dev) && !IS_I830(dev))
c5d1b51d
CW
7678 has_lvds = intel_lvds_init(dev);
7679 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7680 /* disable the panel fitter on everything but LVDS */
7681 I915_WRITE(PFIT_CONTROL, 0);
7682 }
79e53945 7683
bad720ff 7684 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7685 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7686
4d302442 7687 if (has_edp_a(dev))
32f9d658
ZW
7688 intel_dp_init(dev, DP_A);
7689
cb0953d7
AJ
7690 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7691 intel_dp_init(dev, PCH_DP_D);
7692 }
7693
7694 intel_crt_init(dev);
7695
7696 if (HAS_PCH_SPLIT(dev)) {
7697 int found;
7698
30ad48b7 7699 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca
ZY
7700 /* PCH SDVOB multiplex with HDMIB */
7701 found = intel_sdvo_init(dev, PCH_SDVOB);
30ad48b7
ZW
7702 if (!found)
7703 intel_hdmi_init(dev, HDMIB);
5eb08b69
ZW
7704 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7705 intel_dp_init(dev, PCH_DP_B);
30ad48b7
ZW
7706 }
7707
7708 if (I915_READ(HDMIC) & PORT_DETECTED)
7709 intel_hdmi_init(dev, HDMIC);
7710
7711 if (I915_READ(HDMID) & PORT_DETECTED)
7712 intel_hdmi_init(dev, HDMID);
7713
5eb08b69
ZW
7714 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7715 intel_dp_init(dev, PCH_DP_C);
7716
cb0953d7 7717 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5eb08b69
ZW
7718 intel_dp_init(dev, PCH_DP_D);
7719
103a196f 7720 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7721 bool found = false;
7d57382e 7722
725e30ad 7723 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7724 DRM_DEBUG_KMS("probing SDVOB\n");
725e30ad 7725 found = intel_sdvo_init(dev, SDVOB);
b01f2c3a
JB
7726 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7727 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
725e30ad 7728 intel_hdmi_init(dev, SDVOB);
b01f2c3a 7729 }
27185ae1 7730
b01f2c3a
JB
7731 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7732 DRM_DEBUG_KMS("probing DP_B\n");
a4fc5ed6 7733 intel_dp_init(dev, DP_B);
b01f2c3a 7734 }
725e30ad 7735 }
13520b05
KH
7736
7737 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7738
b01f2c3a
JB
7739 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7740 DRM_DEBUG_KMS("probing SDVOC\n");
725e30ad 7741 found = intel_sdvo_init(dev, SDVOC);
b01f2c3a 7742 }
27185ae1
ML
7743
7744 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7745
b01f2c3a
JB
7746 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7747 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
725e30ad 7748 intel_hdmi_init(dev, SDVOC);
b01f2c3a
JB
7749 }
7750 if (SUPPORTS_INTEGRATED_DP(dev)) {
7751 DRM_DEBUG_KMS("probing DP_C\n");
a4fc5ed6 7752 intel_dp_init(dev, DP_C);
b01f2c3a 7753 }
725e30ad 7754 }
27185ae1 7755
b01f2c3a
JB
7756 if (SUPPORTS_INTEGRATED_DP(dev) &&
7757 (I915_READ(DP_D) & DP_DETECTED)) {
7758 DRM_DEBUG_KMS("probing DP_D\n");
a4fc5ed6 7759 intel_dp_init(dev, DP_D);
b01f2c3a 7760 }
bad720ff 7761 } else if (IS_GEN2(dev))
79e53945
JB
7762 intel_dvo_init(dev);
7763
103a196f 7764 if (SUPPORTS_TV(dev))
79e53945
JB
7765 intel_tv_init(dev);
7766
4ef69c7a
CW
7767 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7768 encoder->base.possible_crtcs = encoder->crtc_mask;
7769 encoder->base.possible_clones =
7770 intel_encoder_clones(dev, encoder->clone_mask);
79e53945 7771 }
47356eb6 7772
2c7111db
CW
7773 /* disable all the possible outputs/crtcs before entering KMS mode */
7774 drm_helper_disable_unused_functions(dev);
9fb526db
KP
7775
7776 if (HAS_PCH_SPLIT(dev))
7777 ironlake_init_pch_refclk(dev);
79e53945
JB
7778}
7779
7780static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7781{
7782 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7783
7784 drm_framebuffer_cleanup(fb);
05394f39 7785 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7786
7787 kfree(intel_fb);
7788}
7789
7790static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7791 struct drm_file *file,
79e53945
JB
7792 unsigned int *handle)
7793{
7794 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7795 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7796
05394f39 7797 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7798}
7799
7800static const struct drm_framebuffer_funcs intel_fb_funcs = {
7801 .destroy = intel_user_framebuffer_destroy,
7802 .create_handle = intel_user_framebuffer_create_handle,
7803};
7804
38651674
DA
7805int intel_framebuffer_init(struct drm_device *dev,
7806 struct intel_framebuffer *intel_fb,
308e5bcb 7807 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 7808 struct drm_i915_gem_object *obj)
79e53945 7809{
79e53945
JB
7810 int ret;
7811
05394f39 7812 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7813 return -EINVAL;
7814
308e5bcb 7815 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
7816 return -EINVAL;
7817
308e5bcb 7818 switch (mode_cmd->pixel_format) {
04b3924d
VS
7819 case DRM_FORMAT_RGB332:
7820 case DRM_FORMAT_RGB565:
7821 case DRM_FORMAT_XRGB8888:
7822 case DRM_FORMAT_ARGB8888:
7823 case DRM_FORMAT_XRGB2101010:
7824 case DRM_FORMAT_ARGB2101010:
308e5bcb 7825 /* RGB formats are common across chipsets */
b5626747 7826 break;
04b3924d
VS
7827 case DRM_FORMAT_YUYV:
7828 case DRM_FORMAT_UYVY:
7829 case DRM_FORMAT_YVYU:
7830 case DRM_FORMAT_VYUY:
57cd6508
CW
7831 break;
7832 default:
308e5bcb 7833 DRM_ERROR("unsupported pixel format\n");
57cd6508
CW
7834 return -EINVAL;
7835 }
7836
79e53945
JB
7837 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7838 if (ret) {
7839 DRM_ERROR("framebuffer init failed %d\n", ret);
7840 return ret;
7841 }
7842
7843 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7844 intel_fb->obj = obj;
79e53945
JB
7845 return 0;
7846}
7847
79e53945
JB
7848static struct drm_framebuffer *
7849intel_user_framebuffer_create(struct drm_device *dev,
7850 struct drm_file *filp,
308e5bcb 7851 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 7852{
05394f39 7853 struct drm_i915_gem_object *obj;
79e53945 7854
308e5bcb
JB
7855 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7856 mode_cmd->handles[0]));
c8725226 7857 if (&obj->base == NULL)
cce13ff7 7858 return ERR_PTR(-ENOENT);
79e53945 7859
d2dff872 7860 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7861}
7862
79e53945 7863static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7864 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7865 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7866};
7867
05394f39 7868static struct drm_i915_gem_object *
aa40d6bb 7869intel_alloc_context_page(struct drm_device *dev)
9ea8d059 7870{
05394f39 7871 struct drm_i915_gem_object *ctx;
9ea8d059
CW
7872 int ret;
7873
2c34b850
BW
7874 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7875
aa40d6bb
ZN
7876 ctx = i915_gem_alloc_object(dev, 4096);
7877 if (!ctx) {
9ea8d059
CW
7878 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7879 return NULL;
7880 }
7881
75e9e915 7882 ret = i915_gem_object_pin(ctx, 4096, true);
9ea8d059
CW
7883 if (ret) {
7884 DRM_ERROR("failed to pin power context: %d\n", ret);
7885 goto err_unref;
7886 }
7887
aa40d6bb 7888 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
9ea8d059
CW
7889 if (ret) {
7890 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7891 goto err_unpin;
7892 }
9ea8d059 7893
aa40d6bb 7894 return ctx;
9ea8d059
CW
7895
7896err_unpin:
aa40d6bb 7897 i915_gem_object_unpin(ctx);
9ea8d059 7898err_unref:
05394f39 7899 drm_gem_object_unreference(&ctx->base);
9ea8d059
CW
7900 mutex_unlock(&dev->struct_mutex);
7901 return NULL;
7902}
7903
7648fa99
JB
7904bool ironlake_set_drps(struct drm_device *dev, u8 val)
7905{
7906 struct drm_i915_private *dev_priv = dev->dev_private;
7907 u16 rgvswctl;
7908
7909 rgvswctl = I915_READ16(MEMSWCTL);
7910 if (rgvswctl & MEMCTL_CMD_STS) {
7911 DRM_DEBUG("gpu busy, RCS change rejected\n");
7912 return false; /* still busy with another command */
7913 }
7914
7915 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7916 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7917 I915_WRITE16(MEMSWCTL, rgvswctl);
7918 POSTING_READ16(MEMSWCTL);
7919
7920 rgvswctl |= MEMCTL_CMD_STS;
7921 I915_WRITE16(MEMSWCTL, rgvswctl);
7922
7923 return true;
7924}
7925
f97108d1
JB
7926void ironlake_enable_drps(struct drm_device *dev)
7927{
7928 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7929 u32 rgvmodectl = I915_READ(MEMMODECTL);
f97108d1 7930 u8 fmax, fmin, fstart, vstart;
f97108d1 7931
ea056c14
JB
7932 /* Enable temp reporting */
7933 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7934 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7935
f97108d1
JB
7936 /* 100ms RC evaluation intervals */
7937 I915_WRITE(RCUPEI, 100000);
7938 I915_WRITE(RCDNEI, 100000);
7939
7940 /* Set max/min thresholds to 90ms and 80ms respectively */
7941 I915_WRITE(RCBMAXAVG, 90000);
7942 I915_WRITE(RCBMINAVG, 80000);
7943
7944 I915_WRITE(MEMIHYST, 1);
7945
7946 /* Set up min, max, and cur for interrupt handling */
7947 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7948 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7949 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7950 MEMMODE_FSTART_SHIFT;
7648fa99 7951
f97108d1
JB
7952 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7953 PXVFREQ_PX_SHIFT;
7954
80dbf4b7 7955 dev_priv->fmax = fmax; /* IPS callback will increase this */
7648fa99
JB
7956 dev_priv->fstart = fstart;
7957
80dbf4b7 7958 dev_priv->max_delay = fstart;
f97108d1
JB
7959 dev_priv->min_delay = fmin;
7960 dev_priv->cur_delay = fstart;
7961
80dbf4b7
JB
7962 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7963 fmax, fmin, fstart);
7648fa99 7964
f97108d1
JB
7965 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7966
7967 /*
7968 * Interrupts will be enabled in ironlake_irq_postinstall
7969 */
7970
7971 I915_WRITE(VIDSTART, vstart);
7972 POSTING_READ(VIDSTART);
7973
7974 rgvmodectl |= MEMMODE_SWMODE_EN;
7975 I915_WRITE(MEMMODECTL, rgvmodectl);
7976
481b6af3 7977 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
913d8d11 7978 DRM_ERROR("stuck trying to change perf mode\n");
f97108d1
JB
7979 msleep(1);
7980
7648fa99 7981 ironlake_set_drps(dev, fstart);
f97108d1 7982
7648fa99
JB
7983 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7984 I915_READ(0x112e0);
7985 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7986 dev_priv->last_count2 = I915_READ(0x112f4);
7987 getrawmonotonic(&dev_priv->last_time2);
f97108d1
JB
7988}
7989
7990void ironlake_disable_drps(struct drm_device *dev)
7991{
7992 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7993 u16 rgvswctl = I915_READ16(MEMSWCTL);
f97108d1
JB
7994
7995 /* Ack interrupts, disable EFC interrupt */
7996 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7997 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7998 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7999 I915_WRITE(DEIIR, DE_PCU_EVENT);
8000 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8001
8002 /* Go back to the starting frequency */
7648fa99 8003 ironlake_set_drps(dev, dev_priv->fstart);
f97108d1
JB
8004 msleep(1);
8005 rgvswctl |= MEMCTL_CMD_STS;
8006 I915_WRITE(MEMSWCTL, rgvswctl);
8007 msleep(1);
8008
8009}
8010
3b8d8d91
JB
8011void gen6_set_rps(struct drm_device *dev, u8 val)
8012{
8013 struct drm_i915_private *dev_priv = dev->dev_private;
8014 u32 swreq;
8015
8016 swreq = (val & 0x3ff) << 25;
8017 I915_WRITE(GEN6_RPNSWREQ, swreq);
8018}
8019
8020void gen6_disable_rps(struct drm_device *dev)
8021{
8022 struct drm_i915_private *dev_priv = dev->dev_private;
8023
8024 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8025 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8026 I915_WRITE(GEN6_PMIER, 0);
6fdd4d98
DV
8027 /* Complete PM interrupt masking here doesn't race with the rps work
8028 * item again unmasking PM interrupts because that is using a different
8029 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8030 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
4912d041
BW
8031
8032 spin_lock_irq(&dev_priv->rps_lock);
8033 dev_priv->pm_iir = 0;
8034 spin_unlock_irq(&dev_priv->rps_lock);
8035
3b8d8d91
JB
8036 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8037}
8038
7648fa99
JB
8039static unsigned long intel_pxfreq(u32 vidfreq)
8040{
8041 unsigned long freq;
8042 int div = (vidfreq & 0x3f0000) >> 16;
8043 int post = (vidfreq & 0x3000) >> 12;
8044 int pre = (vidfreq & 0x7);
8045
8046 if (!pre)
8047 return 0;
8048
8049 freq = ((div * 133333) / ((1<<post) * pre));
8050
8051 return freq;
8052}
8053
8054void intel_init_emon(struct drm_device *dev)
8055{
8056 struct drm_i915_private *dev_priv = dev->dev_private;
8057 u32 lcfuse;
8058 u8 pxw[16];
8059 int i;
8060
8061 /* Disable to program */
8062 I915_WRITE(ECR, 0);
8063 POSTING_READ(ECR);
8064
8065 /* Program energy weights for various events */
8066 I915_WRITE(SDEW, 0x15040d00);
8067 I915_WRITE(CSIEW0, 0x007f0000);
8068 I915_WRITE(CSIEW1, 0x1e220004);
8069 I915_WRITE(CSIEW2, 0x04000004);
8070
8071 for (i = 0; i < 5; i++)
8072 I915_WRITE(PEW + (i * 4), 0);
8073 for (i = 0; i < 3; i++)
8074 I915_WRITE(DEW + (i * 4), 0);
8075
8076 /* Program P-state weights to account for frequency power adjustment */
8077 for (i = 0; i < 16; i++) {
8078 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8079 unsigned long freq = intel_pxfreq(pxvidfreq);
8080 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8081 PXVFREQ_PX_SHIFT;
8082 unsigned long val;
8083
8084 val = vid * vid;
8085 val *= (freq / 1000);
8086 val *= 255;
8087 val /= (127*127*900);
8088 if (val > 0xff)
8089 DRM_ERROR("bad pxval: %ld\n", val);
8090 pxw[i] = val;
8091 }
8092 /* Render standby states get 0 weight */
8093 pxw[14] = 0;
8094 pxw[15] = 0;
8095
8096 for (i = 0; i < 4; i++) {
8097 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8098 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8099 I915_WRITE(PXW + (i * 4), val);
8100 }
8101
8102 /* Adjust magic regs to magic values (more experimental results) */
8103 I915_WRITE(OGW0, 0);
8104 I915_WRITE(OGW1, 0);
8105 I915_WRITE(EG0, 0x00007f00);
8106 I915_WRITE(EG1, 0x0000000e);
8107 I915_WRITE(EG2, 0x000e0000);
8108 I915_WRITE(EG3, 0x68000300);
8109 I915_WRITE(EG4, 0x42000000);
8110 I915_WRITE(EG5, 0x00140031);
8111 I915_WRITE(EG6, 0);
8112 I915_WRITE(EG7, 0);
8113
8114 for (i = 0; i < 8; i++)
8115 I915_WRITE(PXWL + (i * 4), 0);
8116
8117 /* Enable PMON + select events */
8118 I915_WRITE(ECR, 0x80000019);
8119
8120 lcfuse = I915_READ(LCFUSE02);
8121
8122 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8123}
8124
c0f372b3
KP
8125static bool intel_enable_rc6(struct drm_device *dev)
8126{
8127 /*
8128 * Respect the kernel parameter if it is set
8129 */
8130 if (i915_enable_rc6 >= 0)
8131 return i915_enable_rc6;
8132
8133 /*
8134 * Disable RC6 on Ironlake
8135 */
8136 if (INTEL_INFO(dev)->gen == 5)
8137 return 0;
8138
8139 /*
371de6e4 8140 * Disable rc6 on Sandybridge
c0f372b3
KP
8141 */
8142 if (INTEL_INFO(dev)->gen == 6) {
371de6e4
KP
8143 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8144 return 0;
c0f372b3
KP
8145 }
8146 DRM_DEBUG_DRIVER("RC6 enabled\n");
8147 return 1;
8148}
8149
3b8d8d91 8150void gen6_enable_rps(struct drm_i915_private *dev_priv)
8fd26859 8151{
a6044e23
JB
8152 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8153 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7df8721b 8154 u32 pcu_mbox, rc6_mask = 0;
a6044e23 8155 int cur_freq, min_freq, max_freq;
8fd26859
CW
8156 int i;
8157
8158 /* Here begins a magic sequence of register writes to enable
8159 * auto-downclocking.
8160 *
8161 * Perhaps there might be some value in exposing these to
8162 * userspace...
8163 */
8164 I915_WRITE(GEN6_RC_STATE, 0);
d1ebd816 8165 mutex_lock(&dev_priv->dev->struct_mutex);
fcca7926 8166 gen6_gt_force_wake_get(dev_priv);
8fd26859 8167
3b8d8d91 8168 /* disable the counters and set deterministic thresholds */
8fd26859
CW
8169 I915_WRITE(GEN6_RC_CONTROL, 0);
8170
8171 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8172 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8173 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8174 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8175 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8176
8177 for (i = 0; i < I915_NUM_RINGS; i++)
8178 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8179
8180 I915_WRITE(GEN6_RC_SLEEP, 0);
8181 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8182 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8183 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8184 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8185
c0f372b3 8186 if (intel_enable_rc6(dev_priv->dev))
1c8ecf80
ED
8187 rc6_mask = GEN6_RC_CTL_RC6_ENABLE |
8188 (IS_GEN7(dev_priv->dev)) ? GEN6_RC_CTL_RC6p_ENABLE : 0;
7df8721b 8189
8fd26859 8190 I915_WRITE(GEN6_RC_CONTROL,
7df8721b 8191 rc6_mask |
9c3d2f7f 8192 GEN6_RC_CTL_EI_MODE(1) |
8fd26859
CW
8193 GEN6_RC_CTL_HW_ENABLE);
8194
3b8d8d91 8195 I915_WRITE(GEN6_RPNSWREQ,
8fd26859
CW
8196 GEN6_FREQUENCY(10) |
8197 GEN6_OFFSET(0) |
8198 GEN6_AGGRESSIVE_TURBO);
8199 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8200 GEN6_FREQUENCY(12));
8201
8202 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8203 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8204 18 << 24 |
8205 6 << 16);
ccab5c82
JB
8206 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8207 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8fd26859 8208 I915_WRITE(GEN6_RP_UP_EI, 100000);
ccab5c82 8209 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8fd26859
CW
8210 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8211 I915_WRITE(GEN6_RP_CONTROL,
8212 GEN6_RP_MEDIA_TURBO |
6ed55ee7 8213 GEN6_RP_MEDIA_HW_MODE |
8fd26859
CW
8214 GEN6_RP_MEDIA_IS_GFX |
8215 GEN6_RP_ENABLE |
ccab5c82
JB
8216 GEN6_RP_UP_BUSY_AVG |
8217 GEN6_RP_DOWN_IDLE_CONT);
8fd26859
CW
8218
8219 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8220 500))
8221 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8222
8223 I915_WRITE(GEN6_PCODE_DATA, 0);
8224 I915_WRITE(GEN6_PCODE_MAILBOX,
8225 GEN6_PCODE_READY |
8226 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8227 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8228 500))
8229 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8230
a6044e23
JB
8231 min_freq = (rp_state_cap & 0xff0000) >> 16;
8232 max_freq = rp_state_cap & 0xff;
8233 cur_freq = (gt_perf_status & 0xff00) >> 8;
8234
8235 /* Check for overclock support */
8236 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8237 500))
8238 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8239 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8240 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8241 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8242 500))
8243 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8244 if (pcu_mbox & (1<<31)) { /* OC supported */
8245 max_freq = pcu_mbox & 0xff;
e281fcaa 8246 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
a6044e23
JB
8247 }
8248
8249 /* In units of 100MHz */
8250 dev_priv->max_delay = max_freq;
8251 dev_priv->min_delay = min_freq;
8252 dev_priv->cur_delay = cur_freq;
8253
8fd26859
CW
8254 /* requires MSI enabled */
8255 I915_WRITE(GEN6_PMIER,
8256 GEN6_PM_MBOX_EVENT |
8257 GEN6_PM_THERMAL_EVENT |
8258 GEN6_PM_RP_DOWN_TIMEOUT |
8259 GEN6_PM_RP_UP_THRESHOLD |
8260 GEN6_PM_RP_DOWN_THRESHOLD |
8261 GEN6_PM_RP_UP_EI_EXPIRED |
8262 GEN6_PM_RP_DOWN_EI_EXPIRED);
4912d041
BW
8263 spin_lock_irq(&dev_priv->rps_lock);
8264 WARN_ON(dev_priv->pm_iir != 0);
3b8d8d91 8265 I915_WRITE(GEN6_PMIMR, 0);
4912d041 8266 spin_unlock_irq(&dev_priv->rps_lock);
3b8d8d91
JB
8267 /* enable all PM interrupts */
8268 I915_WRITE(GEN6_PMINTRMSK, 0);
8fd26859 8269
fcca7926 8270 gen6_gt_force_wake_put(dev_priv);
d1ebd816 8271 mutex_unlock(&dev_priv->dev->struct_mutex);
8fd26859
CW
8272}
8273
23b2f8bb
JB
8274void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8275{
8276 int min_freq = 15;
8277 int gpu_freq, ia_freq, max_ia_freq;
8278 int scaling_factor = 180;
8279
8280 max_ia_freq = cpufreq_quick_get_max(0);
8281 /*
8282 * Default to measured freq if none found, PCU will ensure we don't go
8283 * over
8284 */
8285 if (!max_ia_freq)
8286 max_ia_freq = tsc_khz;
8287
8288 /* Convert from kHz to MHz */
8289 max_ia_freq /= 1000;
8290
8291 mutex_lock(&dev_priv->dev->struct_mutex);
8292
8293 /*
8294 * For each potential GPU frequency, load a ring frequency we'd like
8295 * to use for memory access. We do this by specifying the IA frequency
8296 * the PCU should use as a reference to determine the ring frequency.
8297 */
8298 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8299 gpu_freq--) {
8300 int diff = dev_priv->max_delay - gpu_freq;
8301
8302 /*
8303 * For GPU frequencies less than 750MHz, just use the lowest
8304 * ring freq.
8305 */
8306 if (gpu_freq < min_freq)
8307 ia_freq = 800;
8308 else
8309 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8310 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8311
8312 I915_WRITE(GEN6_PCODE_DATA,
8313 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8314 gpu_freq);
8315 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8316 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8317 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8318 GEN6_PCODE_READY) == 0, 10)) {
8319 DRM_ERROR("pcode write of freq table timed out\n");
8320 continue;
8321 }
8322 }
8323
8324 mutex_unlock(&dev_priv->dev->struct_mutex);
8325}
8326
6067aaea
JB
8327static void ironlake_init_clock_gating(struct drm_device *dev)
8328{
8329 struct drm_i915_private *dev_priv = dev->dev_private;
8330 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8331
8332 /* Required for FBC */
8333 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8334 DPFCRUNIT_CLOCK_GATE_DISABLE |
8335 DPFDUNIT_CLOCK_GATE_DISABLE;
8336 /* Required for CxSR */
8337 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8338
8339 I915_WRITE(PCH_3DCGDIS0,
8340 MARIUNIT_CLOCK_GATE_DISABLE |
8341 SVSMUNIT_CLOCK_GATE_DISABLE);
8342 I915_WRITE(PCH_3DCGDIS1,
8343 VFMUNIT_CLOCK_GATE_DISABLE);
8344
8345 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8346
6067aaea
JB
8347 /*
8348 * According to the spec the following bits should be set in
8349 * order to enable memory self-refresh
8350 * The bit 22/21 of 0x42004
8351 * The bit 5 of 0x42020
8352 * The bit 15 of 0x45000
8353 */
8354 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8355 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8356 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8357 I915_WRITE(ILK_DSPCLK_GATE,
8358 (I915_READ(ILK_DSPCLK_GATE) |
8359 ILK_DPARB_CLK_GATE));
8360 I915_WRITE(DISP_ARB_CTL,
8361 (I915_READ(DISP_ARB_CTL) |
8362 DISP_FBC_WM_DIS));
8363 I915_WRITE(WM3_LP_ILK, 0);
8364 I915_WRITE(WM2_LP_ILK, 0);
8365 I915_WRITE(WM1_LP_ILK, 0);
8366
8367 /*
8368 * Based on the document from hardware guys the following bits
8369 * should be set unconditionally in order to enable FBC.
8370 * The bit 22 of 0x42000
8371 * The bit 22 of 0x42004
8372 * The bit 7,8,9 of 0x42020.
8373 */
8374 if (IS_IRONLAKE_M(dev)) {
8375 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8376 I915_READ(ILK_DISPLAY_CHICKEN1) |
8377 ILK_FBCQ_DIS);
8378 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8379 I915_READ(ILK_DISPLAY_CHICKEN2) |
8380 ILK_DPARB_GATE);
8381 I915_WRITE(ILK_DSPCLK_GATE,
8382 I915_READ(ILK_DSPCLK_GATE) |
8383 ILK_DPFC_DIS1 |
8384 ILK_DPFC_DIS2 |
8385 ILK_CLK_FBC);
8386 }
8387
8388 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8389 I915_READ(ILK_DISPLAY_CHICKEN2) |
8390 ILK_ELPIN_409_SELECT);
8391 I915_WRITE(_3D_CHICKEN2,
8392 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8393 _3D_CHICKEN2_WM_READ_PIPELINED);
8fd26859
CW
8394}
8395
6067aaea 8396static void gen6_init_clock_gating(struct drm_device *dev)
652c393a
JB
8397{
8398 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 8399 int pipe;
6067aaea
JB
8400 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8401
8402 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
652c393a 8403
6067aaea
JB
8404 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8405 I915_READ(ILK_DISPLAY_CHICKEN2) |
8406 ILK_ELPIN_409_SELECT);
8956c8bb 8407
6067aaea
JB
8408 I915_WRITE(WM3_LP_ILK, 0);
8409 I915_WRITE(WM2_LP_ILK, 0);
8410 I915_WRITE(WM1_LP_ILK, 0);
652c393a 8411
406478dc
EA
8412 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8413 * gating disable must be set. Failure to set it results in
8414 * flickering pixels due to Z write ordering failures after
8415 * some amount of runtime in the Mesa "fire" demo, and Unigine
8416 * Sanctuary and Tropics, and apparently anything else with
8417 * alpha test or pixel discard.
9ca1d10d
EA
8418 *
8419 * According to the spec, bit 11 (RCCUNIT) must also be set,
8420 * but we didn't debug actual testcases to find it out.
406478dc 8421 */
9ca1d10d
EA
8422 I915_WRITE(GEN6_UCGCTL2,
8423 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8424 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
406478dc 8425
652c393a 8426 /*
6067aaea
JB
8427 * According to the spec the following bits should be
8428 * set in order to enable memory self-refresh and fbc:
8429 * The bit21 and bit22 of 0x42000
8430 * The bit21 and bit22 of 0x42004
8431 * The bit5 and bit7 of 0x42020
8432 * The bit14 of 0x70180
8433 * The bit14 of 0x71180
652c393a 8434 */
6067aaea
JB
8435 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8436 I915_READ(ILK_DISPLAY_CHICKEN1) |
8437 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8438 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8439 I915_READ(ILK_DISPLAY_CHICKEN2) |
8440 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8441 I915_WRITE(ILK_DSPCLK_GATE,
8442 I915_READ(ILK_DSPCLK_GATE) |
8443 ILK_DPARB_CLK_GATE |
8444 ILK_DPFD_CLK_GATE);
8956c8bb 8445
d74362c9 8446 for_each_pipe(pipe) {
6067aaea
JB
8447 I915_WRITE(DSPCNTR(pipe),
8448 I915_READ(DSPCNTR(pipe)) |
8449 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
8450 intel_flush_display_plane(dev_priv, pipe);
8451 }
6067aaea 8452}
8956c8bb 8453
28963a3e
JB
8454static void ivybridge_init_clock_gating(struct drm_device *dev)
8455{
8456 struct drm_i915_private *dev_priv = dev->dev_private;
8457 int pipe;
8458 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7f8a8569 8459
28963a3e 8460 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
382b0936 8461
28963a3e
JB
8462 I915_WRITE(WM3_LP_ILK, 0);
8463 I915_WRITE(WM2_LP_ILK, 0);
8464 I915_WRITE(WM1_LP_ILK, 0);
de6e2eaf 8465
eae66b50
ED
8466 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8467 * This implements the WaDisableRCZUnitClockGating workaround.
8468 */
8469 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8470
28963a3e 8471 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
67e92af0 8472
116ac8d2
EA
8473 I915_WRITE(IVB_CHICKEN3,
8474 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8475 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8476
d71de14d
KG
8477 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8478 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8479 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8480
e4e0c058
ED
8481 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8482 I915_WRITE(GEN7_L3CNTLREG1,
8483 GEN7_WA_FOR_GEN7_L3_CONTROL);
8484 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8485 GEN7_WA_L3_CHICKEN_MODE);
8486
db099c8f
ED
8487 /* This is required by WaCatErrorRejectionIssue */
8488 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8489 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8490 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8491
d74362c9 8492 for_each_pipe(pipe) {
28963a3e
JB
8493 I915_WRITE(DSPCNTR(pipe),
8494 I915_READ(DSPCNTR(pipe)) |
8495 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
8496 intel_flush_display_plane(dev_priv, pipe);
8497 }
28963a3e
JB
8498}
8499
6067aaea
JB
8500static void g4x_init_clock_gating(struct drm_device *dev)
8501{
8502 struct drm_i915_private *dev_priv = dev->dev_private;
8503 uint32_t dspclk_gate;
8fd26859 8504
6067aaea
JB
8505 I915_WRITE(RENCLK_GATE_D1, 0);
8506 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8507 GS_UNIT_CLOCK_GATE_DISABLE |
8508 CL_UNIT_CLOCK_GATE_DISABLE);
8509 I915_WRITE(RAMCLK_GATE_D, 0);
8510 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8511 OVRUNIT_CLOCK_GATE_DISABLE |
8512 OVCUNIT_CLOCK_GATE_DISABLE;
8513 if (IS_GM45(dev))
8514 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8515 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8516}
1398261a 8517
6067aaea
JB
8518static void crestline_init_clock_gating(struct drm_device *dev)
8519{
8520 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8521
6067aaea
JB
8522 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8523 I915_WRITE(RENCLK_GATE_D2, 0);
8524 I915_WRITE(DSPCLK_GATE_D, 0);
8525 I915_WRITE(RAMCLK_GATE_D, 0);
8526 I915_WRITE16(DEUC, 0);
8527}
652c393a 8528
6067aaea
JB
8529static void broadwater_init_clock_gating(struct drm_device *dev)
8530{
8531 struct drm_i915_private *dev_priv = dev->dev_private;
8532
8533 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8534 I965_RCC_CLOCK_GATE_DISABLE |
8535 I965_RCPB_CLOCK_GATE_DISABLE |
8536 I965_ISC_CLOCK_GATE_DISABLE |
8537 I965_FBC_CLOCK_GATE_DISABLE);
8538 I915_WRITE(RENCLK_GATE_D2, 0);
8539}
8540
8541static void gen3_init_clock_gating(struct drm_device *dev)
8542{
8543 struct drm_i915_private *dev_priv = dev->dev_private;
8544 u32 dstate = I915_READ(D_STATE);
8545
8546 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8547 DSTATE_DOT_CLOCK_GATING;
8548 I915_WRITE(D_STATE, dstate);
8549}
8550
8551static void i85x_init_clock_gating(struct drm_device *dev)
8552{
8553 struct drm_i915_private *dev_priv = dev->dev_private;
8554
8555 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8556}
8557
8558static void i830_init_clock_gating(struct drm_device *dev)
8559{
8560 struct drm_i915_private *dev_priv = dev->dev_private;
8561
8562 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
652c393a
JB
8563}
8564
645c62a5
JB
8565static void ibx_init_clock_gating(struct drm_device *dev)
8566{
8567 struct drm_i915_private *dev_priv = dev->dev_private;
8568
8569 /*
8570 * On Ibex Peak and Cougar Point, we need to disable clock
8571 * gating for the panel power sequencer or it will fail to
8572 * start up when no ports are active.
8573 */
8574 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8575}
8576
8577static void cpt_init_clock_gating(struct drm_device *dev)
8578{
8579 struct drm_i915_private *dev_priv = dev->dev_private;
3bcf603f 8580 int pipe;
645c62a5
JB
8581
8582 /*
8583 * On Ibex Peak and Cougar Point, we need to disable clock
8584 * gating for the panel power sequencer or it will fail to
8585 * start up when no ports are active.
8586 */
8587 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8588 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8589 DPLS_EDP_PPS_FIX_DIS);
3bcf603f
JB
8590 /* Without this, mode sets may fail silently on FDI */
8591 for_each_pipe(pipe)
8592 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
652c393a
JB
8593}
8594
ac668088 8595static void ironlake_teardown_rc6(struct drm_device *dev)
0cdab21f
CW
8596{
8597 struct drm_i915_private *dev_priv = dev->dev_private;
8598
8599 if (dev_priv->renderctx) {
ac668088
CW
8600 i915_gem_object_unpin(dev_priv->renderctx);
8601 drm_gem_object_unreference(&dev_priv->renderctx->base);
0cdab21f
CW
8602 dev_priv->renderctx = NULL;
8603 }
8604
8605 if (dev_priv->pwrctx) {
ac668088
CW
8606 i915_gem_object_unpin(dev_priv->pwrctx);
8607 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8608 dev_priv->pwrctx = NULL;
8609 }
8610}
8611
8612static void ironlake_disable_rc6(struct drm_device *dev)
8613{
8614 struct drm_i915_private *dev_priv = dev->dev_private;
8615
8616 if (I915_READ(PWRCTXA)) {
8617 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8618 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8619 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8620 50);
0cdab21f
CW
8621
8622 I915_WRITE(PWRCTXA, 0);
8623 POSTING_READ(PWRCTXA);
8624
ac668088
CW
8625 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8626 POSTING_READ(RSTDBYCTL);
0cdab21f 8627 }
ac668088 8628
99507307 8629 ironlake_teardown_rc6(dev);
0cdab21f
CW
8630}
8631
ac668088 8632static int ironlake_setup_rc6(struct drm_device *dev)
d5bb081b
JB
8633{
8634 struct drm_i915_private *dev_priv = dev->dev_private;
8635
ac668088
CW
8636 if (dev_priv->renderctx == NULL)
8637 dev_priv->renderctx = intel_alloc_context_page(dev);
8638 if (!dev_priv->renderctx)
8639 return -ENOMEM;
8640
8641 if (dev_priv->pwrctx == NULL)
8642 dev_priv->pwrctx = intel_alloc_context_page(dev);
8643 if (!dev_priv->pwrctx) {
8644 ironlake_teardown_rc6(dev);
8645 return -ENOMEM;
8646 }
8647
8648 return 0;
d5bb081b
JB
8649}
8650
8651void ironlake_enable_rc6(struct drm_device *dev)
8652{
8653 struct drm_i915_private *dev_priv = dev->dev_private;
8654 int ret;
8655
ac668088
CW
8656 /* rc6 disabled by default due to repeated reports of hanging during
8657 * boot and resume.
8658 */
c0f372b3 8659 if (!intel_enable_rc6(dev))
ac668088
CW
8660 return;
8661
2c34b850 8662 mutex_lock(&dev->struct_mutex);
ac668088 8663 ret = ironlake_setup_rc6(dev);
2c34b850
BW
8664 if (ret) {
8665 mutex_unlock(&dev->struct_mutex);
ac668088 8666 return;
2c34b850 8667 }
ac668088 8668
d5bb081b
JB
8669 /*
8670 * GPU can automatically power down the render unit if given a page
8671 * to save state.
8672 */
8673 ret = BEGIN_LP_RING(6);
8674 if (ret) {
ac668088 8675 ironlake_teardown_rc6(dev);
2c34b850 8676 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8677 return;
8678 }
ac668088 8679
d5bb081b
JB
8680 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8681 OUT_RING(MI_SET_CONTEXT);
8682 OUT_RING(dev_priv->renderctx->gtt_offset |
8683 MI_MM_SPACE_GTT |
8684 MI_SAVE_EXT_STATE_EN |
8685 MI_RESTORE_EXT_STATE_EN |
8686 MI_RESTORE_INHIBIT);
8687 OUT_RING(MI_SUSPEND_FLUSH);
8688 OUT_RING(MI_NOOP);
8689 OUT_RING(MI_FLUSH);
8690 ADVANCE_LP_RING();
8691
4a246cfc
BW
8692 /*
8693 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8694 * does an implicit flush, combined with MI_FLUSH above, it should be
8695 * safe to assume that renderctx is valid
8696 */
8697 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8698 if (ret) {
8699 DRM_ERROR("failed to enable ironlake power power savings\n");
8700 ironlake_teardown_rc6(dev);
8701 mutex_unlock(&dev->struct_mutex);
8702 return;
8703 }
8704
d5bb081b
JB
8705 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8706 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2c34b850 8707 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8708}
8709
645c62a5
JB
8710void intel_init_clock_gating(struct drm_device *dev)
8711{
8712 struct drm_i915_private *dev_priv = dev->dev_private;
8713
8714 dev_priv->display.init_clock_gating(dev);
8715
8716 if (dev_priv->display.init_pch_clock_gating)
8717 dev_priv->display.init_pch_clock_gating(dev);
8718}
ac668088 8719
e70236a8
JB
8720/* Set up chip specific display functions */
8721static void intel_init_display(struct drm_device *dev)
8722{
8723 struct drm_i915_private *dev_priv = dev->dev_private;
8724
8725 /* We always want a DPMS function */
f564048e 8726 if (HAS_PCH_SPLIT(dev)) {
f2b115e6 8727 dev_priv->display.dpms = ironlake_crtc_dpms;
f564048e 8728 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
17638cd6 8729 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8730 } else {
e70236a8 8731 dev_priv->display.dpms = i9xx_crtc_dpms;
f564048e 8732 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
17638cd6 8733 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8734 }
e70236a8 8735
ee5382ae 8736 if (I915_HAS_FBC(dev)) {
9c04f015 8737 if (HAS_PCH_SPLIT(dev)) {
b52eb4dc
ZY
8738 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8739 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8740 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8741 } else if (IS_GM45(dev)) {
74dff282
JB
8742 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8743 dev_priv->display.enable_fbc = g4x_enable_fbc;
8744 dev_priv->display.disable_fbc = g4x_disable_fbc;
a6c45cf0 8745 } else if (IS_CRESTLINE(dev)) {
e70236a8
JB
8746 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8747 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8748 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8749 }
74dff282 8750 /* 855GM needs testing */
e70236a8
JB
8751 }
8752
8753 /* Returns the core display clock speed */
0206e353 8754 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8755 dev_priv->display.get_display_clock_speed =
8756 i945_get_display_clock_speed;
8757 else if (IS_I915G(dev))
8758 dev_priv->display.get_display_clock_speed =
8759 i915_get_display_clock_speed;
f2b115e6 8760 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8761 dev_priv->display.get_display_clock_speed =
8762 i9xx_misc_get_display_clock_speed;
8763 else if (IS_I915GM(dev))
8764 dev_priv->display.get_display_clock_speed =
8765 i915gm_get_display_clock_speed;
8766 else if (IS_I865G(dev))
8767 dev_priv->display.get_display_clock_speed =
8768 i865_get_display_clock_speed;
f0f8a9ce 8769 else if (IS_I85X(dev))
e70236a8
JB
8770 dev_priv->display.get_display_clock_speed =
8771 i855_get_display_clock_speed;
8772 else /* 852, 830 */
8773 dev_priv->display.get_display_clock_speed =
8774 i830_get_display_clock_speed;
8775
8776 /* For FIFO watermark updates */
7f8a8569 8777 if (HAS_PCH_SPLIT(dev)) {
8d715f00
KP
8778 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8779 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8780
8781 /* IVB configs may use multi-threaded forcewake */
8782 if (IS_IVYBRIDGE(dev)) {
8783 u32 ecobus;
8784
c7dffff7
KP
8785 /* A small trick here - if the bios hasn't configured MT forcewake,
8786 * and if the device is in RC6, then force_wake_mt_get will not wake
8787 * the device and the ECOBUS read will return zero. Which will be
8788 * (correctly) interpreted by the test below as MT forcewake being
8789 * disabled.
8790 */
8d715f00
KP
8791 mutex_lock(&dev->struct_mutex);
8792 __gen6_gt_force_wake_mt_get(dev_priv);
c7dffff7 8793 ecobus = I915_READ_NOTRACE(ECOBUS);
8d715f00
KP
8794 __gen6_gt_force_wake_mt_put(dev_priv);
8795 mutex_unlock(&dev->struct_mutex);
8796
8797 if (ecobus & FORCEWAKE_MT_ENABLE) {
8798 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8799 dev_priv->display.force_wake_get =
8800 __gen6_gt_force_wake_mt_get;
8801 dev_priv->display.force_wake_put =
8802 __gen6_gt_force_wake_mt_put;
8803 }
8804 }
8805
645c62a5
JB
8806 if (HAS_PCH_IBX(dev))
8807 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8808 else if (HAS_PCH_CPT(dev))
8809 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8810
f00a3ddf 8811 if (IS_GEN5(dev)) {
7f8a8569
ZW
8812 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8813 dev_priv->display.update_wm = ironlake_update_wm;
8814 else {
8815 DRM_DEBUG_KMS("Failed to get proper latency. "
8816 "Disable CxSR\n");
8817 dev_priv->display.update_wm = NULL;
1398261a 8818 }
674cf967 8819 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6067aaea 8820 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
e0dac65e 8821 dev_priv->display.write_eld = ironlake_write_eld;
1398261a
YL
8822 } else if (IS_GEN6(dev)) {
8823 if (SNB_READ_WM0_LATENCY()) {
8824 dev_priv->display.update_wm = sandybridge_update_wm;
b840d907 8825 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
1398261a
YL
8826 } else {
8827 DRM_DEBUG_KMS("Failed to read display plane latency. "
8828 "Disable CxSR\n");
8829 dev_priv->display.update_wm = NULL;
7f8a8569 8830 }
674cf967 8831 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6067aaea 8832 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
e0dac65e 8833 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8834 } else if (IS_IVYBRIDGE(dev)) {
8835 /* FIXME: detect B0+ stepping and use auto training */
8836 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
fe100d4d
JB
8837 if (SNB_READ_WM0_LATENCY()) {
8838 dev_priv->display.update_wm = sandybridge_update_wm;
b840d907 8839 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
fe100d4d
JB
8840 } else {
8841 DRM_DEBUG_KMS("Failed to read display plane latency. "
8842 "Disable CxSR\n");
8843 dev_priv->display.update_wm = NULL;
8844 }
28963a3e 8845 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
e0dac65e 8846 dev_priv->display.write_eld = ironlake_write_eld;
7f8a8569
ZW
8847 } else
8848 dev_priv->display.update_wm = NULL;
8849 } else if (IS_PINEVIEW(dev)) {
d4294342 8850 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
95534263 8851 dev_priv->is_ddr3,
d4294342
ZY
8852 dev_priv->fsb_freq,
8853 dev_priv->mem_freq)) {
8854 DRM_INFO("failed to find known CxSR latency "
95534263 8855 "(found ddr%s fsb freq %d, mem freq %d), "
d4294342 8856 "disabling CxSR\n",
0206e353 8857 (dev_priv->is_ddr3 == 1) ? "3" : "2",
d4294342
ZY
8858 dev_priv->fsb_freq, dev_priv->mem_freq);
8859 /* Disable CxSR and never update its watermark again */
8860 pineview_disable_cxsr(dev);
8861 dev_priv->display.update_wm = NULL;
8862 } else
8863 dev_priv->display.update_wm = pineview_update_wm;
95e0ee92 8864 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6067aaea 8865 } else if (IS_G4X(dev)) {
e0dac65e 8866 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8867 dev_priv->display.update_wm = g4x_update_wm;
6067aaea
JB
8868 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8869 } else if (IS_GEN4(dev)) {
e70236a8 8870 dev_priv->display.update_wm = i965_update_wm;
6067aaea
JB
8871 if (IS_CRESTLINE(dev))
8872 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8873 else if (IS_BROADWATER(dev))
8874 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8875 } else if (IS_GEN3(dev)) {
e70236a8
JB
8876 dev_priv->display.update_wm = i9xx_update_wm;
8877 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6067aaea
JB
8878 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8879 } else if (IS_I865G(dev)) {
8880 dev_priv->display.update_wm = i830_update_wm;
8881 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8882 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8f4695ed
AJ
8883 } else if (IS_I85X(dev)) {
8884 dev_priv->display.update_wm = i9xx_update_wm;
8885 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6067aaea 8886 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
e70236a8 8887 } else {
8f4695ed 8888 dev_priv->display.update_wm = i830_update_wm;
6067aaea 8889 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8f4695ed 8890 if (IS_845G(dev))
e70236a8
JB
8891 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8892 else
8893 dev_priv->display.get_fifo_size = i830_get_fifo_size;
e70236a8 8894 }
8c9f3aaf
JB
8895
8896 /* Default just returns -ENODEV to indicate unsupported */
8897 dev_priv->display.queue_flip = intel_default_queue_flip;
8898
8899 switch (INTEL_INFO(dev)->gen) {
8900 case 2:
8901 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8902 break;
8903
8904 case 3:
8905 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8906 break;
8907
8908 case 4:
8909 case 5:
8910 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8911 break;
8912
8913 case 6:
8914 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8915 break;
7c9017e5
JB
8916 case 7:
8917 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8918 break;
8c9f3aaf 8919 }
e70236a8
JB
8920}
8921
b690e96c
JB
8922/*
8923 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8924 * resume, or other times. This quirk makes sure that's the case for
8925 * affected systems.
8926 */
0206e353 8927static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8928{
8929 struct drm_i915_private *dev_priv = dev->dev_private;
8930
8931 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8932 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8933}
8934
435793df
KP
8935/*
8936 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8937 */
8938static void quirk_ssc_force_disable(struct drm_device *dev)
8939{
8940 struct drm_i915_private *dev_priv = dev->dev_private;
8941 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8942}
8943
b690e96c
JB
8944struct intel_quirk {
8945 int device;
8946 int subsystem_vendor;
8947 int subsystem_device;
8948 void (*hook)(struct drm_device *dev);
8949};
8950
8951struct intel_quirk intel_quirks[] = {
8952 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8953 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8954 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8955 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c
JB
8956
8957 /* Thinkpad R31 needs pipe A force quirk */
8958 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8959 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8960 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8961
8962 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8963 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8964 /* ThinkPad X40 needs pipe A force quirk */
8965
8966 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8967 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8968
8969 /* 855 & before need to leave pipe A & dpll A up */
8970 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8971 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8972
8973 /* Lenovo U160 cannot use SSC on LVDS */
8974 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8975
8976 /* Sony Vaio Y cannot use SSC on LVDS */
8977 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
b690e96c
JB
8978};
8979
8980static void intel_init_quirks(struct drm_device *dev)
8981{
8982 struct pci_dev *d = dev->pdev;
8983 int i;
8984
8985 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8986 struct intel_quirk *q = &intel_quirks[i];
8987
8988 if (d->device == q->device &&
8989 (d->subsystem_vendor == q->subsystem_vendor ||
8990 q->subsystem_vendor == PCI_ANY_ID) &&
8991 (d->subsystem_device == q->subsystem_device ||
8992 q->subsystem_device == PCI_ANY_ID))
8993 q->hook(dev);
8994 }
8995}
8996
9cce37f4
JB
8997/* Disable the VGA plane that we never use */
8998static void i915_disable_vga(struct drm_device *dev)
8999{
9000 struct drm_i915_private *dev_priv = dev->dev_private;
9001 u8 sr1;
9002 u32 vga_reg;
9003
9004 if (HAS_PCH_SPLIT(dev))
9005 vga_reg = CPU_VGACNTRL;
9006 else
9007 vga_reg = VGACNTRL;
9008
9009 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9010 outb(1, VGA_SR_INDEX);
9011 sr1 = inb(VGA_SR_DATA);
9012 outb(sr1 | 1<<5, VGA_SR_DATA);
9013 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9014 udelay(300);
9015
9016 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9017 POSTING_READ(vga_reg);
9018}
9019
79e53945
JB
9020void intel_modeset_init(struct drm_device *dev)
9021{
652c393a 9022 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 9023 int i, ret;
79e53945
JB
9024
9025 drm_mode_config_init(dev);
9026
9027 dev->mode_config.min_width = 0;
9028 dev->mode_config.min_height = 0;
9029
9030 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9031
b690e96c
JB
9032 intel_init_quirks(dev);
9033
e70236a8
JB
9034 intel_init_display(dev);
9035
a6c45cf0
CW
9036 if (IS_GEN2(dev)) {
9037 dev->mode_config.max_width = 2048;
9038 dev->mode_config.max_height = 2048;
9039 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
9040 dev->mode_config.max_width = 4096;
9041 dev->mode_config.max_height = 4096;
79e53945 9042 } else {
a6c45cf0
CW
9043 dev->mode_config.max_width = 8192;
9044 dev->mode_config.max_height = 8192;
79e53945 9045 }
35c3047a 9046 dev->mode_config.fb_base = dev->agp->base;
79e53945 9047
28c97730 9048 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 9049 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 9050
a3524f1b 9051 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 9052 intel_crtc_init(dev, i);
00c2064b
JB
9053 ret = intel_plane_init(dev, i);
9054 if (ret)
9055 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
9056 }
9057
9cce37f4
JB
9058 /* Just disable it once at startup */
9059 i915_disable_vga(dev);
79e53945 9060 intel_setup_outputs(dev);
652c393a 9061
645c62a5 9062 intel_init_clock_gating(dev);
9cce37f4 9063
7648fa99 9064 if (IS_IRONLAKE_M(dev)) {
f97108d1 9065 ironlake_enable_drps(dev);
7648fa99
JB
9066 intel_init_emon(dev);
9067 }
f97108d1 9068
1c70c0ce 9069 if (IS_GEN6(dev) || IS_GEN7(dev)) {
3b8d8d91 9070 gen6_enable_rps(dev_priv);
23b2f8bb
JB
9071 gen6_update_ring_freq(dev_priv);
9072 }
3b8d8d91 9073
652c393a
JB
9074 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9075 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9076 (unsigned long)dev);
2c7111db
CW
9077}
9078
9079void intel_modeset_gem_init(struct drm_device *dev)
9080{
9081 if (IS_IRONLAKE_M(dev))
9082 ironlake_enable_rc6(dev);
02e792fb
DV
9083
9084 intel_setup_overlay(dev);
79e53945
JB
9085}
9086
9087void intel_modeset_cleanup(struct drm_device *dev)
9088{
652c393a
JB
9089 struct drm_i915_private *dev_priv = dev->dev_private;
9090 struct drm_crtc *crtc;
9091 struct intel_crtc *intel_crtc;
9092
f87ea761 9093 drm_kms_helper_poll_fini(dev);
652c393a
JB
9094 mutex_lock(&dev->struct_mutex);
9095
723bfd70
JB
9096 intel_unregister_dsm_handler();
9097
9098
652c393a
JB
9099 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9100 /* Skip inactive CRTCs */
9101 if (!crtc->fb)
9102 continue;
9103
9104 intel_crtc = to_intel_crtc(crtc);
3dec0095 9105 intel_increase_pllclock(crtc);
652c393a
JB
9106 }
9107
973d04f9 9108 intel_disable_fbc(dev);
e70236a8 9109
f97108d1
JB
9110 if (IS_IRONLAKE_M(dev))
9111 ironlake_disable_drps(dev);
1c70c0ce 9112 if (IS_GEN6(dev) || IS_GEN7(dev))
3b8d8d91 9113 gen6_disable_rps(dev);
f97108d1 9114
d5bb081b
JB
9115 if (IS_IRONLAKE_M(dev))
9116 ironlake_disable_rc6(dev);
0cdab21f 9117
69341a5e
KH
9118 mutex_unlock(&dev->struct_mutex);
9119
6c0d9350
DV
9120 /* Disable the irq before mode object teardown, for the irq might
9121 * enqueue unpin/hotplug work. */
9122 drm_irq_uninstall(dev);
9123 cancel_work_sync(&dev_priv->hotplug_work);
6fdd4d98 9124 cancel_work_sync(&dev_priv->rps_work);
6c0d9350 9125
1630fe75
CW
9126 /* flush any delayed tasks or pending work */
9127 flush_scheduled_work();
9128
3dec0095
DV
9129 /* Shut off idle work before the crtcs get freed. */
9130 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9131 intel_crtc = to_intel_crtc(crtc);
9132 del_timer_sync(&intel_crtc->idle_timer);
9133 }
9134 del_timer_sync(&dev_priv->idle_timer);
9135 cancel_work_sync(&dev_priv->idle_work);
9136
79e53945
JB
9137 drm_mode_config_cleanup(dev);
9138}
9139
f1c79df3
ZW
9140/*
9141 * Return which encoder is currently attached for connector.
9142 */
df0e9248 9143struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 9144{
df0e9248
CW
9145 return &intel_attached_encoder(connector)->base;
9146}
f1c79df3 9147
df0e9248
CW
9148void intel_connector_attach_encoder(struct intel_connector *connector,
9149 struct intel_encoder *encoder)
9150{
9151 connector->encoder = encoder;
9152 drm_mode_connector_attach_encoder(&connector->base,
9153 &encoder->base);
79e53945 9154}
28d52043
DA
9155
9156/*
9157 * set vga decode state - true == enable VGA decode
9158 */
9159int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9160{
9161 struct drm_i915_private *dev_priv = dev->dev_private;
9162 u16 gmch_ctrl;
9163
9164 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9165 if (state)
9166 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9167 else
9168 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9169 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9170 return 0;
9171}
c4a1d9e4
CW
9172
9173#ifdef CONFIG_DEBUG_FS
9174#include <linux/seq_file.h>
9175
9176struct intel_display_error_state {
9177 struct intel_cursor_error_state {
9178 u32 control;
9179 u32 position;
9180 u32 base;
9181 u32 size;
9182 } cursor[2];
9183
9184 struct intel_pipe_error_state {
9185 u32 conf;
9186 u32 source;
9187
9188 u32 htotal;
9189 u32 hblank;
9190 u32 hsync;
9191 u32 vtotal;
9192 u32 vblank;
9193 u32 vsync;
9194 } pipe[2];
9195
9196 struct intel_plane_error_state {
9197 u32 control;
9198 u32 stride;
9199 u32 size;
9200 u32 pos;
9201 u32 addr;
9202 u32 surface;
9203 u32 tile_offset;
9204 } plane[2];
9205};
9206
9207struct intel_display_error_state *
9208intel_display_capture_error_state(struct drm_device *dev)
9209{
0206e353 9210 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
9211 struct intel_display_error_state *error;
9212 int i;
9213
9214 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9215 if (error == NULL)
9216 return NULL;
9217
9218 for (i = 0; i < 2; i++) {
9219 error->cursor[i].control = I915_READ(CURCNTR(i));
9220 error->cursor[i].position = I915_READ(CURPOS(i));
9221 error->cursor[i].base = I915_READ(CURBASE(i));
9222
9223 error->plane[i].control = I915_READ(DSPCNTR(i));
9224 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9225 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 9226 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
9227 error->plane[i].addr = I915_READ(DSPADDR(i));
9228 if (INTEL_INFO(dev)->gen >= 4) {
9229 error->plane[i].surface = I915_READ(DSPSURF(i));
9230 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9231 }
9232
9233 error->pipe[i].conf = I915_READ(PIPECONF(i));
9234 error->pipe[i].source = I915_READ(PIPESRC(i));
9235 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9236 error->pipe[i].hblank = I915_READ(HBLANK(i));
9237 error->pipe[i].hsync = I915_READ(HSYNC(i));
9238 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9239 error->pipe[i].vblank = I915_READ(VBLANK(i));
9240 error->pipe[i].vsync = I915_READ(VSYNC(i));
9241 }
9242
9243 return error;
9244}
9245
9246void
9247intel_display_print_error_state(struct seq_file *m,
9248 struct drm_device *dev,
9249 struct intel_display_error_state *error)
9250{
9251 int i;
9252
9253 for (i = 0; i < 2; i++) {
9254 seq_printf(m, "Pipe [%d]:\n", i);
9255 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9256 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9257 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9258 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9259 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9260 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9261 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9262 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9263
9264 seq_printf(m, "Plane [%d]:\n", i);
9265 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9266 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9267 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9268 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9269 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9270 if (INTEL_INFO(dev)->gen >= 4) {
9271 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9272 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9273 }
9274
9275 seq_printf(m, "Cursor [%d]:\n", i);
9276 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9277 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9278 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9279 }
9280}
9281#endif
This page took 1.80059 seconds and 5 git commands to generate.