drm/i915: remove unneeded visible check
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
6b383a7f 76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 77
f1f644dc
JB
78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
18442d08
VS
80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
f1f644dc 82
e7457a9a
DL
83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
85static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
5b18e57c
DV
89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
29407aab 94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
95static void haswell_set_pipeconf(struct drm_crtc *crtc);
96static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 97static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 98static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 99
0e32b39c
DA
100static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
101{
102 if (!connector->mst_port)
103 return connector->encoder;
104 else
105 return &connector->mst_port->mst_encoders[pipe]->base;
106}
107
79e53945 108typedef struct {
0206e353 109 int min, max;
79e53945
JB
110} intel_range_t;
111
112typedef struct {
0206e353
AJ
113 int dot_limit;
114 int p2_slow, p2_fast;
79e53945
JB
115} intel_p2_t;
116
d4906093
ML
117typedef struct intel_limit intel_limit_t;
118struct intel_limit {
0206e353
AJ
119 intel_range_t dot, vco, n, m, m1, m2, p, p1;
120 intel_p2_t p2;
d4906093 121};
79e53945 122
d2acd215
DV
123int
124intel_pch_rawclk(struct drm_device *dev)
125{
126 struct drm_i915_private *dev_priv = dev->dev_private;
127
128 WARN_ON(!HAS_PCH_SPLIT(dev));
129
130 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
131}
132
021357ac
CW
133static inline u32 /* units of 100MHz */
134intel_fdi_link_freq(struct drm_device *dev)
135{
8b99e68c
CW
136 if (IS_GEN5(dev)) {
137 struct drm_i915_private *dev_priv = dev->dev_private;
138 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
139 } else
140 return 27;
021357ac
CW
141}
142
5d536e28 143static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 144 .dot = { .min = 25000, .max = 350000 },
9c333719 145 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 146 .n = { .min = 2, .max = 16 },
0206e353
AJ
147 .m = { .min = 96, .max = 140 },
148 .m1 = { .min = 18, .max = 26 },
149 .m2 = { .min = 6, .max = 16 },
150 .p = { .min = 4, .max = 128 },
151 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
152 .p2 = { .dot_limit = 165000,
153 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
154};
155
5d536e28
DV
156static const intel_limit_t intel_limits_i8xx_dvo = {
157 .dot = { .min = 25000, .max = 350000 },
9c333719 158 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 159 .n = { .min = 2, .max = 16 },
5d536e28
DV
160 .m = { .min = 96, .max = 140 },
161 .m1 = { .min = 18, .max = 26 },
162 .m2 = { .min = 6, .max = 16 },
163 .p = { .min = 4, .max = 128 },
164 .p1 = { .min = 2, .max = 33 },
165 .p2 = { .dot_limit = 165000,
166 .p2_slow = 4, .p2_fast = 4 },
167};
168
e4b36699 169static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 170 .dot = { .min = 25000, .max = 350000 },
9c333719 171 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 172 .n = { .min = 2, .max = 16 },
0206e353
AJ
173 .m = { .min = 96, .max = 140 },
174 .m1 = { .min = 18, .max = 26 },
175 .m2 = { .min = 6, .max = 16 },
176 .p = { .min = 4, .max = 128 },
177 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
178 .p2 = { .dot_limit = 165000,
179 .p2_slow = 14, .p2_fast = 7 },
e4b36699 180};
273e27ca 181
e4b36699 182static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
183 .dot = { .min = 20000, .max = 400000 },
184 .vco = { .min = 1400000, .max = 2800000 },
185 .n = { .min = 1, .max = 6 },
186 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
187 .m1 = { .min = 8, .max = 18 },
188 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
189 .p = { .min = 5, .max = 80 },
190 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
191 .p2 = { .dot_limit = 200000,
192 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
193};
194
195static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
196 .dot = { .min = 20000, .max = 400000 },
197 .vco = { .min = 1400000, .max = 2800000 },
198 .n = { .min = 1, .max = 6 },
199 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
200 .m1 = { .min = 8, .max = 18 },
201 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
202 .p = { .min = 7, .max = 98 },
203 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
204 .p2 = { .dot_limit = 112000,
205 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
206};
207
273e27ca 208
e4b36699 209static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
210 .dot = { .min = 25000, .max = 270000 },
211 .vco = { .min = 1750000, .max = 3500000},
212 .n = { .min = 1, .max = 4 },
213 .m = { .min = 104, .max = 138 },
214 .m1 = { .min = 17, .max = 23 },
215 .m2 = { .min = 5, .max = 11 },
216 .p = { .min = 10, .max = 30 },
217 .p1 = { .min = 1, .max = 3},
218 .p2 = { .dot_limit = 270000,
219 .p2_slow = 10,
220 .p2_fast = 10
044c7c41 221 },
e4b36699
KP
222};
223
224static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
225 .dot = { .min = 22000, .max = 400000 },
226 .vco = { .min = 1750000, .max = 3500000},
227 .n = { .min = 1, .max = 4 },
228 .m = { .min = 104, .max = 138 },
229 .m1 = { .min = 16, .max = 23 },
230 .m2 = { .min = 5, .max = 11 },
231 .p = { .min = 5, .max = 80 },
232 .p1 = { .min = 1, .max = 8},
233 .p2 = { .dot_limit = 165000,
234 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
235};
236
237static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
238 .dot = { .min = 20000, .max = 115000 },
239 .vco = { .min = 1750000, .max = 3500000 },
240 .n = { .min = 1, .max = 3 },
241 .m = { .min = 104, .max = 138 },
242 .m1 = { .min = 17, .max = 23 },
243 .m2 = { .min = 5, .max = 11 },
244 .p = { .min = 28, .max = 112 },
245 .p1 = { .min = 2, .max = 8 },
246 .p2 = { .dot_limit = 0,
247 .p2_slow = 14, .p2_fast = 14
044c7c41 248 },
e4b36699
KP
249};
250
251static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
252 .dot = { .min = 80000, .max = 224000 },
253 .vco = { .min = 1750000, .max = 3500000 },
254 .n = { .min = 1, .max = 3 },
255 .m = { .min = 104, .max = 138 },
256 .m1 = { .min = 17, .max = 23 },
257 .m2 = { .min = 5, .max = 11 },
258 .p = { .min = 14, .max = 42 },
259 .p1 = { .min = 2, .max = 6 },
260 .p2 = { .dot_limit = 0,
261 .p2_slow = 7, .p2_fast = 7
044c7c41 262 },
e4b36699
KP
263};
264
f2b115e6 265static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
266 .dot = { .min = 20000, .max = 400000},
267 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 268 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
269 .n = { .min = 3, .max = 6 },
270 .m = { .min = 2, .max = 256 },
273e27ca 271 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
272 .m1 = { .min = 0, .max = 0 },
273 .m2 = { .min = 0, .max = 254 },
274 .p = { .min = 5, .max = 80 },
275 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
276 .p2 = { .dot_limit = 200000,
277 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
278};
279
f2b115e6 280static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
281 .dot = { .min = 20000, .max = 400000 },
282 .vco = { .min = 1700000, .max = 3500000 },
283 .n = { .min = 3, .max = 6 },
284 .m = { .min = 2, .max = 256 },
285 .m1 = { .min = 0, .max = 0 },
286 .m2 = { .min = 0, .max = 254 },
287 .p = { .min = 7, .max = 112 },
288 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
289 .p2 = { .dot_limit = 112000,
290 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
291};
292
273e27ca
EA
293/* Ironlake / Sandybridge
294 *
295 * We calculate clock using (register_value + 2) for N/M1/M2, so here
296 * the range value for them is (actual_value - 2).
297 */
b91ad0ec 298static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
299 .dot = { .min = 25000, .max = 350000 },
300 .vco = { .min = 1760000, .max = 3510000 },
301 .n = { .min = 1, .max = 5 },
302 .m = { .min = 79, .max = 127 },
303 .m1 = { .min = 12, .max = 22 },
304 .m2 = { .min = 5, .max = 9 },
305 .p = { .min = 5, .max = 80 },
306 .p1 = { .min = 1, .max = 8 },
307 .p2 = { .dot_limit = 225000,
308 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
309};
310
b91ad0ec 311static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
312 .dot = { .min = 25000, .max = 350000 },
313 .vco = { .min = 1760000, .max = 3510000 },
314 .n = { .min = 1, .max = 3 },
315 .m = { .min = 79, .max = 118 },
316 .m1 = { .min = 12, .max = 22 },
317 .m2 = { .min = 5, .max = 9 },
318 .p = { .min = 28, .max = 112 },
319 .p1 = { .min = 2, .max = 8 },
320 .p2 = { .dot_limit = 225000,
321 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
322};
323
324static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
325 .dot = { .min = 25000, .max = 350000 },
326 .vco = { .min = 1760000, .max = 3510000 },
327 .n = { .min = 1, .max = 3 },
328 .m = { .min = 79, .max = 127 },
329 .m1 = { .min = 12, .max = 22 },
330 .m2 = { .min = 5, .max = 9 },
331 .p = { .min = 14, .max = 56 },
332 .p1 = { .min = 2, .max = 8 },
333 .p2 = { .dot_limit = 225000,
334 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
335};
336
273e27ca 337/* LVDS 100mhz refclk limits. */
b91ad0ec 338static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
339 .dot = { .min = 25000, .max = 350000 },
340 .vco = { .min = 1760000, .max = 3510000 },
341 .n = { .min = 1, .max = 2 },
342 .m = { .min = 79, .max = 126 },
343 .m1 = { .min = 12, .max = 22 },
344 .m2 = { .min = 5, .max = 9 },
345 .p = { .min = 28, .max = 112 },
0206e353 346 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
347 .p2 = { .dot_limit = 225000,
348 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
349};
350
351static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
352 .dot = { .min = 25000, .max = 350000 },
353 .vco = { .min = 1760000, .max = 3510000 },
354 .n = { .min = 1, .max = 3 },
355 .m = { .min = 79, .max = 126 },
356 .m1 = { .min = 12, .max = 22 },
357 .m2 = { .min = 5, .max = 9 },
358 .p = { .min = 14, .max = 42 },
0206e353 359 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
360 .p2 = { .dot_limit = 225000,
361 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
362};
363
dc730512 364static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
365 /*
366 * These are the data rate limits (measured in fast clocks)
367 * since those are the strictest limits we have. The fast
368 * clock and actual rate limits are more relaxed, so checking
369 * them would make no difference.
370 */
371 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 372 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 373 .n = { .min = 1, .max = 7 },
a0c4da24
JB
374 .m1 = { .min = 2, .max = 3 },
375 .m2 = { .min = 11, .max = 156 },
b99ab663 376 .p1 = { .min = 2, .max = 3 },
5fdc9c49 377 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
378};
379
ef9348c8
CML
380static const intel_limit_t intel_limits_chv = {
381 /*
382 * These are the data rate limits (measured in fast clocks)
383 * since those are the strictest limits we have. The fast
384 * clock and actual rate limits are more relaxed, so checking
385 * them would make no difference.
386 */
387 .dot = { .min = 25000 * 5, .max = 540000 * 5},
388 .vco = { .min = 4860000, .max = 6700000 },
389 .n = { .min = 1, .max = 1 },
390 .m1 = { .min = 2, .max = 2 },
391 .m2 = { .min = 24 << 22, .max = 175 << 22 },
392 .p1 = { .min = 2, .max = 4 },
393 .p2 = { .p2_slow = 1, .p2_fast = 14 },
394};
395
6b4bf1c4
VS
396static void vlv_clock(int refclk, intel_clock_t *clock)
397{
398 clock->m = clock->m1 * clock->m2;
399 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
400 if (WARN_ON(clock->n == 0 || clock->p == 0))
401 return;
fb03ac01
VS
402 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
403 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
404}
405
e0638cdf
PZ
406/**
407 * Returns whether any output on the specified pipe is of the specified type
408 */
409ee761 409static bool intel_pipe_has_type(struct intel_crtc *crtc, int type)
e0638cdf 410{
409ee761 411 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
412 struct intel_encoder *encoder;
413
409ee761 414 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
415 if (encoder->type == type)
416 return true;
417
418 return false;
419}
420
409ee761 421static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 422 int refclk)
2c07245f 423{
409ee761 424 struct drm_device *dev = crtc->base.dev;
2c07245f 425 const intel_limit_t *limit;
b91ad0ec
ZW
426
427 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 428 if (intel_is_dual_link_lvds(dev)) {
1b894b59 429 if (refclk == 100000)
b91ad0ec
ZW
430 limit = &intel_limits_ironlake_dual_lvds_100m;
431 else
432 limit = &intel_limits_ironlake_dual_lvds;
433 } else {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_single_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_single_lvds;
438 }
c6bb3538 439 } else
b91ad0ec 440 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
441
442 return limit;
443}
444
409ee761 445static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 446{
409ee761 447 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
448 const intel_limit_t *limit;
449
450 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 451 if (intel_is_dual_link_lvds(dev))
e4b36699 452 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 453 else
e4b36699 454 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
455 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
456 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 457 limit = &intel_limits_g4x_hdmi;
044c7c41 458 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 459 limit = &intel_limits_g4x_sdvo;
044c7c41 460 } else /* The option is for other outputs */
e4b36699 461 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
462
463 return limit;
464}
465
409ee761 466static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 467{
409ee761 468 struct drm_device *dev = crtc->base.dev;
79e53945
JB
469 const intel_limit_t *limit;
470
bad720ff 471 if (HAS_PCH_SPLIT(dev))
1b894b59 472 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 473 else if (IS_G4X(dev)) {
044c7c41 474 limit = intel_g4x_limit(crtc);
f2b115e6 475 } else if (IS_PINEVIEW(dev)) {
2177832f 476 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 477 limit = &intel_limits_pineview_lvds;
2177832f 478 else
f2b115e6 479 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
480 } else if (IS_CHERRYVIEW(dev)) {
481 limit = &intel_limits_chv;
a0c4da24 482 } else if (IS_VALLEYVIEW(dev)) {
dc730512 483 limit = &intel_limits_vlv;
a6c45cf0
CW
484 } else if (!IS_GEN2(dev)) {
485 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
486 limit = &intel_limits_i9xx_lvds;
487 else
488 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
489 } else {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 491 limit = &intel_limits_i8xx_lvds;
5d536e28 492 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 493 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
494 else
495 limit = &intel_limits_i8xx_dac;
79e53945
JB
496 }
497 return limit;
498}
499
f2b115e6
AJ
500/* m1 is reserved as 0 in Pineview, n is a ring counter */
501static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 502{
2177832f
SL
503 clock->m = clock->m2 + 2;
504 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
505 if (WARN_ON(clock->n == 0 || clock->p == 0))
506 return;
fb03ac01
VS
507 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
508 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
509}
510
7429e9d4
DV
511static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
512{
513 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
514}
515
ac58c3f0 516static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 517{
7429e9d4 518 clock->m = i9xx_dpll_compute_m(clock);
79e53945 519 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
520 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
521 return;
fb03ac01
VS
522 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
523 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
524}
525
ef9348c8
CML
526static void chv_clock(int refclk, intel_clock_t *clock)
527{
528 clock->m = clock->m1 * clock->m2;
529 clock->p = clock->p1 * clock->p2;
530 if (WARN_ON(clock->n == 0 || clock->p == 0))
531 return;
532 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
533 clock->n << 22);
534 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
535}
536
7c04d1d9 537#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
538/**
539 * Returns whether the given set of divisors are valid for a given refclk with
540 * the given connectors.
541 */
542
1b894b59
CW
543static bool intel_PLL_is_valid(struct drm_device *dev,
544 const intel_limit_t *limit,
545 const intel_clock_t *clock)
79e53945 546{
f01b7962
VS
547 if (clock->n < limit->n.min || limit->n.max < clock->n)
548 INTELPllInvalid("n out of range\n");
79e53945 549 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 550 INTELPllInvalid("p1 out of range\n");
79e53945 551 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 552 INTELPllInvalid("m2 out of range\n");
79e53945 553 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 554 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
555
556 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
557 if (clock->m1 <= clock->m2)
558 INTELPllInvalid("m1 <= m2\n");
559
560 if (!IS_VALLEYVIEW(dev)) {
561 if (clock->p < limit->p.min || limit->p.max < clock->p)
562 INTELPllInvalid("p out of range\n");
563 if (clock->m < limit->m.min || limit->m.max < clock->m)
564 INTELPllInvalid("m out of range\n");
565 }
566
79e53945 567 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 568 INTELPllInvalid("vco out of range\n");
79e53945
JB
569 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
570 * connector, etc., rather than just a single range.
571 */
572 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 573 INTELPllInvalid("dot out of range\n");
79e53945
JB
574
575 return true;
576}
577
d4906093 578static bool
a919ff14 579i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
580 int target, int refclk, intel_clock_t *match_clock,
581 intel_clock_t *best_clock)
79e53945 582{
a919ff14 583 struct drm_device *dev = crtc->base.dev;
79e53945 584 intel_clock_t clock;
79e53945
JB
585 int err = target;
586
409ee761 587 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 588 /*
a210b028
DV
589 * For LVDS just rely on its current settings for dual-channel.
590 * We haven't figured out how to reliably set up different
591 * single/dual channel state, if we even can.
79e53945 592 */
1974cad0 593 if (intel_is_dual_link_lvds(dev))
79e53945
JB
594 clock.p2 = limit->p2.p2_fast;
595 else
596 clock.p2 = limit->p2.p2_slow;
597 } else {
598 if (target < limit->p2.dot_limit)
599 clock.p2 = limit->p2.p2_slow;
600 else
601 clock.p2 = limit->p2.p2_fast;
602 }
603
0206e353 604 memset(best_clock, 0, sizeof(*best_clock));
79e53945 605
42158660
ZY
606 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
607 clock.m1++) {
608 for (clock.m2 = limit->m2.min;
609 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 610 if (clock.m2 >= clock.m1)
42158660
ZY
611 break;
612 for (clock.n = limit->n.min;
613 clock.n <= limit->n.max; clock.n++) {
614 for (clock.p1 = limit->p1.min;
615 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
616 int this_err;
617
ac58c3f0
DV
618 i9xx_clock(refclk, &clock);
619 if (!intel_PLL_is_valid(dev, limit,
620 &clock))
621 continue;
622 if (match_clock &&
623 clock.p != match_clock->p)
624 continue;
625
626 this_err = abs(clock.dot - target);
627 if (this_err < err) {
628 *best_clock = clock;
629 err = this_err;
630 }
631 }
632 }
633 }
634 }
635
636 return (err != target);
637}
638
639static bool
a919ff14 640pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
641 int target, int refclk, intel_clock_t *match_clock,
642 intel_clock_t *best_clock)
79e53945 643{
a919ff14 644 struct drm_device *dev = crtc->base.dev;
79e53945 645 intel_clock_t clock;
79e53945
JB
646 int err = target;
647
409ee761 648 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 649 /*
a210b028
DV
650 * For LVDS just rely on its current settings for dual-channel.
651 * We haven't figured out how to reliably set up different
652 * single/dual channel state, if we even can.
79e53945 653 */
1974cad0 654 if (intel_is_dual_link_lvds(dev))
79e53945
JB
655 clock.p2 = limit->p2.p2_fast;
656 else
657 clock.p2 = limit->p2.p2_slow;
658 } else {
659 if (target < limit->p2.dot_limit)
660 clock.p2 = limit->p2.p2_slow;
661 else
662 clock.p2 = limit->p2.p2_fast;
663 }
664
0206e353 665 memset(best_clock, 0, sizeof(*best_clock));
79e53945 666
42158660
ZY
667 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668 clock.m1++) {
669 for (clock.m2 = limit->m2.min;
670 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
671 for (clock.n = limit->n.min;
672 clock.n <= limit->n.max; clock.n++) {
673 for (clock.p1 = limit->p1.min;
674 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
675 int this_err;
676
ac58c3f0 677 pineview_clock(refclk, &clock);
1b894b59
CW
678 if (!intel_PLL_is_valid(dev, limit,
679 &clock))
79e53945 680 continue;
cec2f356
SP
681 if (match_clock &&
682 clock.p != match_clock->p)
683 continue;
79e53945
JB
684
685 this_err = abs(clock.dot - target);
686 if (this_err < err) {
687 *best_clock = clock;
688 err = this_err;
689 }
690 }
691 }
692 }
693 }
694
695 return (err != target);
696}
697
d4906093 698static bool
a919ff14 699g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
700 int target, int refclk, intel_clock_t *match_clock,
701 intel_clock_t *best_clock)
d4906093 702{
a919ff14 703 struct drm_device *dev = crtc->base.dev;
d4906093
ML
704 intel_clock_t clock;
705 int max_n;
706 bool found;
6ba770dc
AJ
707 /* approximately equals target * 0.00585 */
708 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
709 found = false;
710
409ee761 711 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 712 if (intel_is_dual_link_lvds(dev))
d4906093
ML
713 clock.p2 = limit->p2.p2_fast;
714 else
715 clock.p2 = limit->p2.p2_slow;
716 } else {
717 if (target < limit->p2.dot_limit)
718 clock.p2 = limit->p2.p2_slow;
719 else
720 clock.p2 = limit->p2.p2_fast;
721 }
722
723 memset(best_clock, 0, sizeof(*best_clock));
724 max_n = limit->n.max;
f77f13e2 725 /* based on hardware requirement, prefer smaller n to precision */
d4906093 726 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 727 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
728 for (clock.m1 = limit->m1.max;
729 clock.m1 >= limit->m1.min; clock.m1--) {
730 for (clock.m2 = limit->m2.max;
731 clock.m2 >= limit->m2.min; clock.m2--) {
732 for (clock.p1 = limit->p1.max;
733 clock.p1 >= limit->p1.min; clock.p1--) {
734 int this_err;
735
ac58c3f0 736 i9xx_clock(refclk, &clock);
1b894b59
CW
737 if (!intel_PLL_is_valid(dev, limit,
738 &clock))
d4906093 739 continue;
1b894b59
CW
740
741 this_err = abs(clock.dot - target);
d4906093
ML
742 if (this_err < err_most) {
743 *best_clock = clock;
744 err_most = this_err;
745 max_n = clock.n;
746 found = true;
747 }
748 }
749 }
750 }
751 }
2c07245f
ZW
752 return found;
753}
754
a0c4da24 755static bool
a919ff14 756vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
757 int target, int refclk, intel_clock_t *match_clock,
758 intel_clock_t *best_clock)
a0c4da24 759{
a919ff14 760 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 761 intel_clock_t clock;
69e4f900 762 unsigned int bestppm = 1000000;
27e639bf
VS
763 /* min update 19.2 MHz */
764 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 765 bool found = false;
a0c4da24 766
6b4bf1c4
VS
767 target *= 5; /* fast clock */
768
769 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
770
771 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 772 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 773 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 774 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 775 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 776 clock.p = clock.p1 * clock.p2;
a0c4da24 777 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 778 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
779 unsigned int ppm, diff;
780
6b4bf1c4
VS
781 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
782 refclk * clock.m1);
783
784 vlv_clock(refclk, &clock);
43b0ac53 785
f01b7962
VS
786 if (!intel_PLL_is_valid(dev, limit,
787 &clock))
43b0ac53
VS
788 continue;
789
6b4bf1c4
VS
790 diff = abs(clock.dot - target);
791 ppm = div_u64(1000000ULL * diff, target);
792
793 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 794 bestppm = 0;
6b4bf1c4 795 *best_clock = clock;
49e497ef 796 found = true;
43b0ac53 797 }
6b4bf1c4 798
c686122c 799 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 800 bestppm = ppm;
6b4bf1c4 801 *best_clock = clock;
49e497ef 802 found = true;
a0c4da24
JB
803 }
804 }
805 }
806 }
807 }
a0c4da24 808
49e497ef 809 return found;
a0c4da24 810}
a4fc5ed6 811
ef9348c8 812static bool
a919ff14 813chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
814 int target, int refclk, intel_clock_t *match_clock,
815 intel_clock_t *best_clock)
816{
a919ff14 817 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
818 intel_clock_t clock;
819 uint64_t m2;
820 int found = false;
821
822 memset(best_clock, 0, sizeof(*best_clock));
823
824 /*
825 * Based on hardware doc, the n always set to 1, and m1 always
826 * set to 2. If requires to support 200Mhz refclk, we need to
827 * revisit this because n may not 1 anymore.
828 */
829 clock.n = 1, clock.m1 = 2;
830 target *= 5; /* fast clock */
831
832 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
833 for (clock.p2 = limit->p2.p2_fast;
834 clock.p2 >= limit->p2.p2_slow;
835 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
836
837 clock.p = clock.p1 * clock.p2;
838
839 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
840 clock.n) << 22, refclk * clock.m1);
841
842 if (m2 > INT_MAX/clock.m1)
843 continue;
844
845 clock.m2 = m2;
846
847 chv_clock(refclk, &clock);
848
849 if (!intel_PLL_is_valid(dev, limit, &clock))
850 continue;
851
852 /* based on hardware requirement, prefer bigger p
853 */
854 if (clock.p > best_clock->p) {
855 *best_clock = clock;
856 found = true;
857 }
858 }
859 }
860
861 return found;
862}
863
20ddf665
VS
864bool intel_crtc_active(struct drm_crtc *crtc)
865{
866 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
867
868 /* Be paranoid as we can arrive here with only partial
869 * state retrieved from the hardware during setup.
870 *
241bfc38 871 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
872 * as Haswell has gained clock readout/fastboot support.
873 *
66e514c1 874 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
875 * properly reconstruct framebuffers.
876 */
f4510a27 877 return intel_crtc->active && crtc->primary->fb &&
241bfc38 878 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
879}
880
a5c961d1
PZ
881enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
882 enum pipe pipe)
883{
884 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
885 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
886
3b117c8f 887 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
888}
889
fbf49ea2
VS
890static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
891{
892 struct drm_i915_private *dev_priv = dev->dev_private;
893 u32 reg = PIPEDSL(pipe);
894 u32 line1, line2;
895 u32 line_mask;
896
897 if (IS_GEN2(dev))
898 line_mask = DSL_LINEMASK_GEN2;
899 else
900 line_mask = DSL_LINEMASK_GEN3;
901
902 line1 = I915_READ(reg) & line_mask;
903 mdelay(5);
904 line2 = I915_READ(reg) & line_mask;
905
906 return line1 == line2;
907}
908
ab7ad7f6
KP
909/*
910 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 911 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
912 *
913 * After disabling a pipe, we can't wait for vblank in the usual way,
914 * spinning on the vblank interrupt status bit, since we won't actually
915 * see an interrupt when the pipe is disabled.
916 *
ab7ad7f6
KP
917 * On Gen4 and above:
918 * wait for the pipe register state bit to turn off
919 *
920 * Otherwise:
921 * wait for the display line value to settle (it usually
922 * ends up stopping at the start of the next frame).
58e10eb9 923 *
9d0498a2 924 */
575f7ab7 925static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 926{
575f7ab7 927 struct drm_device *dev = crtc->base.dev;
9d0498a2 928 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
929 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
930 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
931
932 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 933 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
934
935 /* Wait for the Pipe State to go off */
58e10eb9
CW
936 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
937 100))
284637d9 938 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 939 } else {
ab7ad7f6 940 /* Wait for the display line to settle */
fbf49ea2 941 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 942 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 943 }
79e53945
JB
944}
945
b0ea7d37
DL
946/*
947 * ibx_digital_port_connected - is the specified port connected?
948 * @dev_priv: i915 private structure
949 * @port: the port to test
950 *
951 * Returns true if @port is connected, false otherwise.
952 */
953bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
954 struct intel_digital_port *port)
955{
956 u32 bit;
957
c36346e3 958 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 959 switch (port->port) {
c36346e3
DL
960 case PORT_B:
961 bit = SDE_PORTB_HOTPLUG;
962 break;
963 case PORT_C:
964 bit = SDE_PORTC_HOTPLUG;
965 break;
966 case PORT_D:
967 bit = SDE_PORTD_HOTPLUG;
968 break;
969 default:
970 return true;
971 }
972 } else {
eba905b2 973 switch (port->port) {
c36346e3
DL
974 case PORT_B:
975 bit = SDE_PORTB_HOTPLUG_CPT;
976 break;
977 case PORT_C:
978 bit = SDE_PORTC_HOTPLUG_CPT;
979 break;
980 case PORT_D:
981 bit = SDE_PORTD_HOTPLUG_CPT;
982 break;
983 default:
984 return true;
985 }
b0ea7d37
DL
986 }
987
988 return I915_READ(SDEISR) & bit;
989}
990
b24e7179
JB
991static const char *state_string(bool enabled)
992{
993 return enabled ? "on" : "off";
994}
995
996/* Only for pre-ILK configs */
55607e8a
DV
997void assert_pll(struct drm_i915_private *dev_priv,
998 enum pipe pipe, bool state)
b24e7179
JB
999{
1000 int reg;
1001 u32 val;
1002 bool cur_state;
1003
1004 reg = DPLL(pipe);
1005 val = I915_READ(reg);
1006 cur_state = !!(val & DPLL_VCO_ENABLE);
1007 WARN(cur_state != state,
1008 "PLL state assertion failure (expected %s, current %s)\n",
1009 state_string(state), state_string(cur_state));
1010}
b24e7179 1011
23538ef1
JN
1012/* XXX: the dsi pll is shared between MIPI DSI ports */
1013static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1014{
1015 u32 val;
1016 bool cur_state;
1017
1018 mutex_lock(&dev_priv->dpio_lock);
1019 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1020 mutex_unlock(&dev_priv->dpio_lock);
1021
1022 cur_state = val & DSI_PLL_VCO_EN;
1023 WARN(cur_state != state,
1024 "DSI PLL state assertion failure (expected %s, current %s)\n",
1025 state_string(state), state_string(cur_state));
1026}
1027#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1028#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1029
55607e8a 1030struct intel_shared_dpll *
e2b78267
DV
1031intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1032{
1033 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1034
a43f6e0f 1035 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1036 return NULL;
1037
a43f6e0f 1038 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1039}
1040
040484af 1041/* For ILK+ */
55607e8a
DV
1042void assert_shared_dpll(struct drm_i915_private *dev_priv,
1043 struct intel_shared_dpll *pll,
1044 bool state)
040484af 1045{
040484af 1046 bool cur_state;
5358901f 1047 struct intel_dpll_hw_state hw_state;
040484af 1048
92b27b08 1049 if (WARN (!pll,
46edb027 1050 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1051 return;
ee7b9f93 1052
5358901f 1053 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1054 WARN(cur_state != state,
5358901f
DV
1055 "%s assertion failure (expected %s, current %s)\n",
1056 pll->name, state_string(state), state_string(cur_state));
040484af 1057}
040484af
JB
1058
1059static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1060 enum pipe pipe, bool state)
1061{
1062 int reg;
1063 u32 val;
1064 bool cur_state;
ad80a810
PZ
1065 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1066 pipe);
040484af 1067
affa9354
PZ
1068 if (HAS_DDI(dev_priv->dev)) {
1069 /* DDI does not have a specific FDI_TX register */
ad80a810 1070 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1071 val = I915_READ(reg);
ad80a810 1072 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1073 } else {
1074 reg = FDI_TX_CTL(pipe);
1075 val = I915_READ(reg);
1076 cur_state = !!(val & FDI_TX_ENABLE);
1077 }
040484af
JB
1078 WARN(cur_state != state,
1079 "FDI TX state assertion failure (expected %s, current %s)\n",
1080 state_string(state), state_string(cur_state));
1081}
1082#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1083#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1084
1085static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1086 enum pipe pipe, bool state)
1087{
1088 int reg;
1089 u32 val;
1090 bool cur_state;
1091
d63fa0dc
PZ
1092 reg = FDI_RX_CTL(pipe);
1093 val = I915_READ(reg);
1094 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1095 WARN(cur_state != state,
1096 "FDI RX state assertion failure (expected %s, current %s)\n",
1097 state_string(state), state_string(cur_state));
1098}
1099#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1100#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1101
1102static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1103 enum pipe pipe)
1104{
1105 int reg;
1106 u32 val;
1107
1108 /* ILK FDI PLL is always enabled */
3d13ef2e 1109 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1110 return;
1111
bf507ef7 1112 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1113 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1114 return;
1115
040484af
JB
1116 reg = FDI_TX_CTL(pipe);
1117 val = I915_READ(reg);
1118 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1119}
1120
55607e8a
DV
1121void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
040484af
JB
1123{
1124 int reg;
1125 u32 val;
55607e8a 1126 bool cur_state;
040484af
JB
1127
1128 reg = FDI_RX_CTL(pipe);
1129 val = I915_READ(reg);
55607e8a
DV
1130 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1131 WARN(cur_state != state,
1132 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
040484af
JB
1134}
1135
b680c37a
DV
1136void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1137 enum pipe pipe)
ea0760cf 1138{
bedd4dba
JN
1139 struct drm_device *dev = dev_priv->dev;
1140 int pp_reg;
ea0760cf
JB
1141 u32 val;
1142 enum pipe panel_pipe = PIPE_A;
0de3b485 1143 bool locked = true;
ea0760cf 1144
bedd4dba
JN
1145 if (WARN_ON(HAS_DDI(dev)))
1146 return;
1147
1148 if (HAS_PCH_SPLIT(dev)) {
1149 u32 port_sel;
1150
ea0760cf 1151 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1152 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1153
1154 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1155 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1156 panel_pipe = PIPE_B;
1157 /* XXX: else fix for eDP */
1158 } else if (IS_VALLEYVIEW(dev)) {
1159 /* presumably write lock depends on pipe, not port select */
1160 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1161 panel_pipe = pipe;
ea0760cf
JB
1162 } else {
1163 pp_reg = PP_CONTROL;
bedd4dba
JN
1164 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1165 panel_pipe = PIPE_B;
ea0760cf
JB
1166 }
1167
1168 val = I915_READ(pp_reg);
1169 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1170 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1171 locked = false;
1172
ea0760cf
JB
1173 WARN(panel_pipe == pipe && locked,
1174 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1175 pipe_name(pipe));
ea0760cf
JB
1176}
1177
93ce0ba6
JN
1178static void assert_cursor(struct drm_i915_private *dev_priv,
1179 enum pipe pipe, bool state)
1180{
1181 struct drm_device *dev = dev_priv->dev;
1182 bool cur_state;
1183
d9d82081 1184 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1185 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1186 else
5efb3e28 1187 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1188
1189 WARN(cur_state != state,
1190 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1191 pipe_name(pipe), state_string(state), state_string(cur_state));
1192}
1193#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1194#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1195
b840d907
JB
1196void assert_pipe(struct drm_i915_private *dev_priv,
1197 enum pipe pipe, bool state)
b24e7179
JB
1198{
1199 int reg;
1200 u32 val;
63d7bbe9 1201 bool cur_state;
702e7a56
PZ
1202 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1203 pipe);
b24e7179 1204
b6b5d049
VS
1205 /* if we need the pipe quirk it must be always on */
1206 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1207 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1208 state = true;
1209
f458ebbc 1210 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1211 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1212 cur_state = false;
1213 } else {
1214 reg = PIPECONF(cpu_transcoder);
1215 val = I915_READ(reg);
1216 cur_state = !!(val & PIPECONF_ENABLE);
1217 }
1218
63d7bbe9
JB
1219 WARN(cur_state != state,
1220 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1221 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1222}
1223
931872fc
CW
1224static void assert_plane(struct drm_i915_private *dev_priv,
1225 enum plane plane, bool state)
b24e7179
JB
1226{
1227 int reg;
1228 u32 val;
931872fc 1229 bool cur_state;
b24e7179
JB
1230
1231 reg = DSPCNTR(plane);
1232 val = I915_READ(reg);
931872fc
CW
1233 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1234 WARN(cur_state != state,
1235 "plane %c assertion failure (expected %s, current %s)\n",
1236 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1237}
1238
931872fc
CW
1239#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1240#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1241
b24e7179
JB
1242static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1243 enum pipe pipe)
1244{
653e1026 1245 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1246 int reg, i;
1247 u32 val;
1248 int cur_pipe;
1249
653e1026
VS
1250 /* Primary planes are fixed to pipes on gen4+ */
1251 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1252 reg = DSPCNTR(pipe);
1253 val = I915_READ(reg);
83f26f16 1254 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1255 "plane %c assertion failure, should be disabled but not\n",
1256 plane_name(pipe));
19ec1358 1257 return;
28c05794 1258 }
19ec1358 1259
b24e7179 1260 /* Need to check both planes against the pipe */
055e393f 1261 for_each_pipe(dev_priv, i) {
b24e7179
JB
1262 reg = DSPCNTR(i);
1263 val = I915_READ(reg);
1264 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1265 DISPPLANE_SEL_PIPE_SHIFT;
1266 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1267 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1268 plane_name(i), pipe_name(pipe));
b24e7179
JB
1269 }
1270}
1271
19332d7a
JB
1272static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1273 enum pipe pipe)
1274{
20674eef 1275 struct drm_device *dev = dev_priv->dev;
1fe47785 1276 int reg, sprite;
19332d7a
JB
1277 u32 val;
1278
7feb8b88
DL
1279 if (INTEL_INFO(dev)->gen >= 9) {
1280 for_each_sprite(pipe, sprite) {
1281 val = I915_READ(PLANE_CTL(pipe, sprite));
1282 WARN(val & PLANE_CTL_ENABLE,
1283 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1284 sprite, pipe_name(pipe));
1285 }
1286 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1287 for_each_sprite(pipe, sprite) {
1288 reg = SPCNTR(pipe, sprite);
20674eef 1289 val = I915_READ(reg);
83f26f16 1290 WARN(val & SP_ENABLE,
20674eef 1291 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1292 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1293 }
1294 } else if (INTEL_INFO(dev)->gen >= 7) {
1295 reg = SPRCTL(pipe);
19332d7a 1296 val = I915_READ(reg);
83f26f16 1297 WARN(val & SPRITE_ENABLE,
06da8da2 1298 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1299 plane_name(pipe), pipe_name(pipe));
1300 } else if (INTEL_INFO(dev)->gen >= 5) {
1301 reg = DVSCNTR(pipe);
19332d7a 1302 val = I915_READ(reg);
83f26f16 1303 WARN(val & DVS_ENABLE,
06da8da2 1304 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1305 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1306 }
1307}
1308
08c71e5e
VS
1309static void assert_vblank_disabled(struct drm_crtc *crtc)
1310{
1311 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1312 drm_crtc_vblank_put(crtc);
1313}
1314
89eff4be 1315static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1316{
1317 u32 val;
1318 bool enabled;
1319
89eff4be 1320 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1321
92f2584a
JB
1322 val = I915_READ(PCH_DREF_CONTROL);
1323 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1324 DREF_SUPERSPREAD_SOURCE_MASK));
1325 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1326}
1327
ab9412ba
DV
1328static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1329 enum pipe pipe)
92f2584a
JB
1330{
1331 int reg;
1332 u32 val;
1333 bool enabled;
1334
ab9412ba 1335 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1336 val = I915_READ(reg);
1337 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1338 WARN(enabled,
1339 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1340 pipe_name(pipe));
92f2584a
JB
1341}
1342
4e634389
KP
1343static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1344 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1345{
1346 if ((val & DP_PORT_EN) == 0)
1347 return false;
1348
1349 if (HAS_PCH_CPT(dev_priv->dev)) {
1350 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1351 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1352 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1353 return false;
44f37d1f
CML
1354 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1355 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1356 return false;
f0575e92
KP
1357 } else {
1358 if ((val & DP_PIPE_MASK) != (pipe << 30))
1359 return false;
1360 }
1361 return true;
1362}
1363
1519b995
KP
1364static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1365 enum pipe pipe, u32 val)
1366{
dc0fa718 1367 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1368 return false;
1369
1370 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1371 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1372 return false;
44f37d1f
CML
1373 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1374 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1375 return false;
1519b995 1376 } else {
dc0fa718 1377 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1378 return false;
1379 }
1380 return true;
1381}
1382
1383static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1384 enum pipe pipe, u32 val)
1385{
1386 if ((val & LVDS_PORT_EN) == 0)
1387 return false;
1388
1389 if (HAS_PCH_CPT(dev_priv->dev)) {
1390 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1391 return false;
1392 } else {
1393 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1394 return false;
1395 }
1396 return true;
1397}
1398
1399static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1400 enum pipe pipe, u32 val)
1401{
1402 if ((val & ADPA_DAC_ENABLE) == 0)
1403 return false;
1404 if (HAS_PCH_CPT(dev_priv->dev)) {
1405 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1406 return false;
1407 } else {
1408 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1409 return false;
1410 }
1411 return true;
1412}
1413
291906f1 1414static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1415 enum pipe pipe, int reg, u32 port_sel)
291906f1 1416{
47a05eca 1417 u32 val = I915_READ(reg);
4e634389 1418 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1419 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1420 reg, pipe_name(pipe));
de9a35ab 1421
75c5da27
DV
1422 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1423 && (val & DP_PIPEB_SELECT),
de9a35ab 1424 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1425}
1426
1427static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1428 enum pipe pipe, int reg)
1429{
47a05eca 1430 u32 val = I915_READ(reg);
b70ad586 1431 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1432 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1433 reg, pipe_name(pipe));
de9a35ab 1434
dc0fa718 1435 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1436 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1437 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1438}
1439
1440static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1441 enum pipe pipe)
1442{
1443 int reg;
1444 u32 val;
291906f1 1445
f0575e92
KP
1446 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1447 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1448 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1449
1450 reg = PCH_ADPA;
1451 val = I915_READ(reg);
b70ad586 1452 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1453 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1454 pipe_name(pipe));
291906f1
JB
1455
1456 reg = PCH_LVDS;
1457 val = I915_READ(reg);
b70ad586 1458 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1459 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1460 pipe_name(pipe));
291906f1 1461
e2debe91
PZ
1462 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1463 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1464 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1465}
1466
40e9cf64
JB
1467static void intel_init_dpio(struct drm_device *dev)
1468{
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470
1471 if (!IS_VALLEYVIEW(dev))
1472 return;
1473
a09caddd
CML
1474 /*
1475 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1476 * CHV x1 PHY (DP/HDMI D)
1477 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1478 */
1479 if (IS_CHERRYVIEW(dev)) {
1480 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1481 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1482 } else {
1483 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1484 }
5382f5f3
JB
1485}
1486
426115cf 1487static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1488{
426115cf
DV
1489 struct drm_device *dev = crtc->base.dev;
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491 int reg = DPLL(crtc->pipe);
1492 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1493
426115cf 1494 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1495
1496 /* No really, not for ILK+ */
1497 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1498
1499 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1500 if (IS_MOBILE(dev_priv->dev))
426115cf 1501 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1502
426115cf
DV
1503 I915_WRITE(reg, dpll);
1504 POSTING_READ(reg);
1505 udelay(150);
1506
1507 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1508 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1509
1510 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1511 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1512
1513 /* We do this three times for luck */
426115cf 1514 I915_WRITE(reg, dpll);
87442f73
DV
1515 POSTING_READ(reg);
1516 udelay(150); /* wait for warmup */
426115cf 1517 I915_WRITE(reg, dpll);
87442f73
DV
1518 POSTING_READ(reg);
1519 udelay(150); /* wait for warmup */
426115cf 1520 I915_WRITE(reg, dpll);
87442f73
DV
1521 POSTING_READ(reg);
1522 udelay(150); /* wait for warmup */
1523}
1524
9d556c99
CML
1525static void chv_enable_pll(struct intel_crtc *crtc)
1526{
1527 struct drm_device *dev = crtc->base.dev;
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1529 int pipe = crtc->pipe;
1530 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1531 u32 tmp;
1532
1533 assert_pipe_disabled(dev_priv, crtc->pipe);
1534
1535 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1536
1537 mutex_lock(&dev_priv->dpio_lock);
1538
1539 /* Enable back the 10bit clock to display controller */
1540 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1541 tmp |= DPIO_DCLKP_EN;
1542 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1543
1544 /*
1545 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1546 */
1547 udelay(1);
1548
1549 /* Enable PLL */
a11b0703 1550 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1551
1552 /* Check PLL is locked */
a11b0703 1553 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1554 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555
a11b0703
VS
1556 /* not sure when this should be written */
1557 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1558 POSTING_READ(DPLL_MD(pipe));
1559
9d556c99
CML
1560 mutex_unlock(&dev_priv->dpio_lock);
1561}
1562
1c4e0274
VS
1563static int intel_num_dvo_pipes(struct drm_device *dev)
1564{
1565 struct intel_crtc *crtc;
1566 int count = 0;
1567
1568 for_each_intel_crtc(dev, crtc)
1569 count += crtc->active &&
409ee761 1570 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1571
1572 return count;
1573}
1574
66e3d5c0 1575static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1576{
66e3d5c0
DV
1577 struct drm_device *dev = crtc->base.dev;
1578 struct drm_i915_private *dev_priv = dev->dev_private;
1579 int reg = DPLL(crtc->pipe);
1580 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1581
66e3d5c0 1582 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1583
63d7bbe9 1584 /* No really, not for ILK+ */
3d13ef2e 1585 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1586
1587 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1588 if (IS_MOBILE(dev) && !IS_I830(dev))
1589 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1590
1c4e0274
VS
1591 /* Enable DVO 2x clock on both PLLs if necessary */
1592 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1593 /*
1594 * It appears to be important that we don't enable this
1595 * for the current pipe before otherwise configuring the
1596 * PLL. No idea how this should be handled if multiple
1597 * DVO outputs are enabled simultaneosly.
1598 */
1599 dpll |= DPLL_DVO_2X_MODE;
1600 I915_WRITE(DPLL(!crtc->pipe),
1601 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1602 }
66e3d5c0
DV
1603
1604 /* Wait for the clocks to stabilize. */
1605 POSTING_READ(reg);
1606 udelay(150);
1607
1608 if (INTEL_INFO(dev)->gen >= 4) {
1609 I915_WRITE(DPLL_MD(crtc->pipe),
1610 crtc->config.dpll_hw_state.dpll_md);
1611 } else {
1612 /* The pixel multiplier can only be updated once the
1613 * DPLL is enabled and the clocks are stable.
1614 *
1615 * So write it again.
1616 */
1617 I915_WRITE(reg, dpll);
1618 }
63d7bbe9
JB
1619
1620 /* We do this three times for luck */
66e3d5c0 1621 I915_WRITE(reg, dpll);
63d7bbe9
JB
1622 POSTING_READ(reg);
1623 udelay(150); /* wait for warmup */
66e3d5c0 1624 I915_WRITE(reg, dpll);
63d7bbe9
JB
1625 POSTING_READ(reg);
1626 udelay(150); /* wait for warmup */
66e3d5c0 1627 I915_WRITE(reg, dpll);
63d7bbe9
JB
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
1630}
1631
1632/**
50b44a44 1633 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1634 * @dev_priv: i915 private structure
1635 * @pipe: pipe PLL to disable
1636 *
1637 * Disable the PLL for @pipe, making sure the pipe is off first.
1638 *
1639 * Note! This is for pre-ILK only.
1640 */
1c4e0274 1641static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1642{
1c4e0274
VS
1643 struct drm_device *dev = crtc->base.dev;
1644 struct drm_i915_private *dev_priv = dev->dev_private;
1645 enum pipe pipe = crtc->pipe;
1646
1647 /* Disable DVO 2x clock on both PLLs if necessary */
1648 if (IS_I830(dev) &&
409ee761 1649 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1650 intel_num_dvo_pipes(dev) == 1) {
1651 I915_WRITE(DPLL(PIPE_B),
1652 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1653 I915_WRITE(DPLL(PIPE_A),
1654 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1655 }
1656
b6b5d049
VS
1657 /* Don't disable pipe or pipe PLLs if needed */
1658 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1659 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1660 return;
1661
1662 /* Make sure the pipe isn't still relying on us */
1663 assert_pipe_disabled(dev_priv, pipe);
1664
50b44a44
DV
1665 I915_WRITE(DPLL(pipe), 0);
1666 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1667}
1668
f6071166
JB
1669static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1670{
1671 u32 val = 0;
1672
1673 /* Make sure the pipe isn't still relying on us */
1674 assert_pipe_disabled(dev_priv, pipe);
1675
e5cbfbfb
ID
1676 /*
1677 * Leave integrated clock source and reference clock enabled for pipe B.
1678 * The latter is needed for VGA hotplug / manual detection.
1679 */
f6071166 1680 if (pipe == PIPE_B)
e5cbfbfb 1681 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1682 I915_WRITE(DPLL(pipe), val);
1683 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1684
1685}
1686
1687static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1688{
d752048d 1689 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1690 u32 val;
1691
a11b0703
VS
1692 /* Make sure the pipe isn't still relying on us */
1693 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1694
a11b0703 1695 /* Set PLL en = 0 */
d17ec4ce 1696 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1697 if (pipe != PIPE_A)
1698 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1699 I915_WRITE(DPLL(pipe), val);
1700 POSTING_READ(DPLL(pipe));
d752048d
VS
1701
1702 mutex_lock(&dev_priv->dpio_lock);
1703
1704 /* Disable 10bit clock to display controller */
1705 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1706 val &= ~DPIO_DCLKP_EN;
1707 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1708
61407f6d
VS
1709 /* disable left/right clock distribution */
1710 if (pipe != PIPE_B) {
1711 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1712 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1713 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1714 } else {
1715 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1716 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1717 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1718 }
1719
d752048d 1720 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1721}
1722
e4607fcf
CML
1723void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1724 struct intel_digital_port *dport)
89b667f8
JB
1725{
1726 u32 port_mask;
00fc31b7 1727 int dpll_reg;
89b667f8 1728
e4607fcf
CML
1729 switch (dport->port) {
1730 case PORT_B:
89b667f8 1731 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1732 dpll_reg = DPLL(0);
e4607fcf
CML
1733 break;
1734 case PORT_C:
89b667f8 1735 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1736 dpll_reg = DPLL(0);
1737 break;
1738 case PORT_D:
1739 port_mask = DPLL_PORTD_READY_MASK;
1740 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1741 break;
1742 default:
1743 BUG();
1744 }
89b667f8 1745
00fc31b7 1746 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1747 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1748 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1749}
1750
b14b1055
DV
1751static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1752{
1753 struct drm_device *dev = crtc->base.dev;
1754 struct drm_i915_private *dev_priv = dev->dev_private;
1755 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1756
be19f0ff
CW
1757 if (WARN_ON(pll == NULL))
1758 return;
1759
b14b1055
DV
1760 WARN_ON(!pll->refcount);
1761 if (pll->active == 0) {
1762 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1763 WARN_ON(pll->on);
1764 assert_shared_dpll_disabled(dev_priv, pll);
1765
1766 pll->mode_set(dev_priv, pll);
1767 }
1768}
1769
92f2584a 1770/**
85b3894f 1771 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1772 * @dev_priv: i915 private structure
1773 * @pipe: pipe PLL to enable
1774 *
1775 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1776 * drives the transcoder clock.
1777 */
85b3894f 1778static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1779{
3d13ef2e
DL
1780 struct drm_device *dev = crtc->base.dev;
1781 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1782 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1783
87a875bb 1784 if (WARN_ON(pll == NULL))
48da64a8
CW
1785 return;
1786
1787 if (WARN_ON(pll->refcount == 0))
1788 return;
ee7b9f93 1789
74dd6928 1790 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1791 pll->name, pll->active, pll->on,
e2b78267 1792 crtc->base.base.id);
92f2584a 1793
cdbd2316
DV
1794 if (pll->active++) {
1795 WARN_ON(!pll->on);
e9d6944e 1796 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1797 return;
1798 }
f4a091c7 1799 WARN_ON(pll->on);
ee7b9f93 1800
bd2bb1b9
PZ
1801 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1802
46edb027 1803 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1804 pll->enable(dev_priv, pll);
ee7b9f93 1805 pll->on = true;
92f2584a
JB
1806}
1807
f6daaec2 1808static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1809{
3d13ef2e
DL
1810 struct drm_device *dev = crtc->base.dev;
1811 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1812 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1813
92f2584a 1814 /* PCH only available on ILK+ */
3d13ef2e 1815 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1816 if (WARN_ON(pll == NULL))
ee7b9f93 1817 return;
92f2584a 1818
48da64a8
CW
1819 if (WARN_ON(pll->refcount == 0))
1820 return;
7a419866 1821
46edb027
DV
1822 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1823 pll->name, pll->active, pll->on,
e2b78267 1824 crtc->base.base.id);
7a419866 1825
48da64a8 1826 if (WARN_ON(pll->active == 0)) {
e9d6944e 1827 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1828 return;
1829 }
1830
e9d6944e 1831 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1832 WARN_ON(!pll->on);
cdbd2316 1833 if (--pll->active)
7a419866 1834 return;
ee7b9f93 1835
46edb027 1836 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1837 pll->disable(dev_priv, pll);
ee7b9f93 1838 pll->on = false;
bd2bb1b9
PZ
1839
1840 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1841}
1842
b8a4f404
PZ
1843static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1844 enum pipe pipe)
040484af 1845{
23670b32 1846 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1847 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1849 uint32_t reg, val, pipeconf_val;
040484af
JB
1850
1851 /* PCH only available on ILK+ */
55522f37 1852 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1853
1854 /* Make sure PCH DPLL is enabled */
e72f9fbf 1855 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1856 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1857
1858 /* FDI must be feeding us bits for PCH ports */
1859 assert_fdi_tx_enabled(dev_priv, pipe);
1860 assert_fdi_rx_enabled(dev_priv, pipe);
1861
23670b32
DV
1862 if (HAS_PCH_CPT(dev)) {
1863 /* Workaround: Set the timing override bit before enabling the
1864 * pch transcoder. */
1865 reg = TRANS_CHICKEN2(pipe);
1866 val = I915_READ(reg);
1867 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1868 I915_WRITE(reg, val);
59c859d6 1869 }
23670b32 1870
ab9412ba 1871 reg = PCH_TRANSCONF(pipe);
040484af 1872 val = I915_READ(reg);
5f7f726d 1873 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1874
1875 if (HAS_PCH_IBX(dev_priv->dev)) {
1876 /*
1877 * make the BPC in transcoder be consistent with
1878 * that in pipeconf reg.
1879 */
dfd07d72
DV
1880 val &= ~PIPECONF_BPC_MASK;
1881 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1882 }
5f7f726d
PZ
1883
1884 val &= ~TRANS_INTERLACE_MASK;
1885 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1886 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1887 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1888 val |= TRANS_LEGACY_INTERLACED_ILK;
1889 else
1890 val |= TRANS_INTERLACED;
5f7f726d
PZ
1891 else
1892 val |= TRANS_PROGRESSIVE;
1893
040484af
JB
1894 I915_WRITE(reg, val | TRANS_ENABLE);
1895 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1896 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1897}
1898
8fb033d7 1899static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1900 enum transcoder cpu_transcoder)
040484af 1901{
8fb033d7 1902 u32 val, pipeconf_val;
8fb033d7
PZ
1903
1904 /* PCH only available on ILK+ */
55522f37 1905 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1906
8fb033d7 1907 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1908 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1909 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1910
223a6fdf
PZ
1911 /* Workaround: set timing override bit. */
1912 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1913 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1914 I915_WRITE(_TRANSA_CHICKEN2, val);
1915
25f3ef11 1916 val = TRANS_ENABLE;
937bb610 1917 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1918
9a76b1c6
PZ
1919 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1920 PIPECONF_INTERLACED_ILK)
a35f2679 1921 val |= TRANS_INTERLACED;
8fb033d7
PZ
1922 else
1923 val |= TRANS_PROGRESSIVE;
1924
ab9412ba
DV
1925 I915_WRITE(LPT_TRANSCONF, val);
1926 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1927 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1928}
1929
b8a4f404
PZ
1930static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1931 enum pipe pipe)
040484af 1932{
23670b32
DV
1933 struct drm_device *dev = dev_priv->dev;
1934 uint32_t reg, val;
040484af
JB
1935
1936 /* FDI relies on the transcoder */
1937 assert_fdi_tx_disabled(dev_priv, pipe);
1938 assert_fdi_rx_disabled(dev_priv, pipe);
1939
291906f1
JB
1940 /* Ports must be off as well */
1941 assert_pch_ports_disabled(dev_priv, pipe);
1942
ab9412ba 1943 reg = PCH_TRANSCONF(pipe);
040484af
JB
1944 val = I915_READ(reg);
1945 val &= ~TRANS_ENABLE;
1946 I915_WRITE(reg, val);
1947 /* wait for PCH transcoder off, transcoder state */
1948 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1949 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1950
1951 if (!HAS_PCH_IBX(dev)) {
1952 /* Workaround: Clear the timing override chicken bit again. */
1953 reg = TRANS_CHICKEN2(pipe);
1954 val = I915_READ(reg);
1955 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1956 I915_WRITE(reg, val);
1957 }
040484af
JB
1958}
1959
ab4d966c 1960static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1961{
8fb033d7
PZ
1962 u32 val;
1963
ab9412ba 1964 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1965 val &= ~TRANS_ENABLE;
ab9412ba 1966 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1967 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1968 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1969 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1970
1971 /* Workaround: clear timing override bit. */
1972 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1973 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1974 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1975}
1976
b24e7179 1977/**
309cfea8 1978 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1979 * @crtc: crtc responsible for the pipe
b24e7179 1980 *
0372264a 1981 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1982 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1983 */
e1fdc473 1984static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1985{
0372264a
PZ
1986 struct drm_device *dev = crtc->base.dev;
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1989 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1990 pipe);
1a240d4d 1991 enum pipe pch_transcoder;
b24e7179
JB
1992 int reg;
1993 u32 val;
1994
58c6eaa2 1995 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1996 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1997 assert_sprites_disabled(dev_priv, pipe);
1998
681e5811 1999 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2000 pch_transcoder = TRANSCODER_A;
2001 else
2002 pch_transcoder = pipe;
2003
b24e7179
JB
2004 /*
2005 * A pipe without a PLL won't actually be able to drive bits from
2006 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2007 * need the check.
2008 */
2009 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2010 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2011 assert_dsi_pll_enabled(dev_priv);
2012 else
2013 assert_pll_enabled(dev_priv, pipe);
040484af 2014 else {
30421c4f 2015 if (crtc->config.has_pch_encoder) {
040484af 2016 /* if driving the PCH, we need FDI enabled */
cc391bbb 2017 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2018 assert_fdi_tx_pll_enabled(dev_priv,
2019 (enum pipe) cpu_transcoder);
040484af
JB
2020 }
2021 /* FIXME: assert CPU port conditions for SNB+ */
2022 }
b24e7179 2023
702e7a56 2024 reg = PIPECONF(cpu_transcoder);
b24e7179 2025 val = I915_READ(reg);
7ad25d48 2026 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2027 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2028 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2029 return;
7ad25d48 2030 }
00d70b15
CW
2031
2032 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2033 POSTING_READ(reg);
b24e7179
JB
2034}
2035
2036/**
309cfea8 2037 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2038 * @crtc: crtc whose pipes is to be disabled
b24e7179 2039 *
575f7ab7
VS
2040 * Disable the pipe of @crtc, making sure that various hardware
2041 * specific requirements are met, if applicable, e.g. plane
2042 * disabled, panel fitter off, etc.
b24e7179
JB
2043 *
2044 * Will wait until the pipe has shut down before returning.
2045 */
575f7ab7 2046static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2047{
575f7ab7
VS
2048 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2049 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2050 enum pipe pipe = crtc->pipe;
b24e7179
JB
2051 int reg;
2052 u32 val;
2053
2054 /*
2055 * Make sure planes won't keep trying to pump pixels to us,
2056 * or we might hang the display.
2057 */
2058 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2059 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2060 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2061
702e7a56 2062 reg = PIPECONF(cpu_transcoder);
b24e7179 2063 val = I915_READ(reg);
00d70b15
CW
2064 if ((val & PIPECONF_ENABLE) == 0)
2065 return;
2066
67adc644
VS
2067 /*
2068 * Double wide has implications for planes
2069 * so best keep it disabled when not needed.
2070 */
2071 if (crtc->config.double_wide)
2072 val &= ~PIPECONF_DOUBLE_WIDE;
2073
2074 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2075 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2076 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2077 val &= ~PIPECONF_ENABLE;
2078
2079 I915_WRITE(reg, val);
2080 if ((val & PIPECONF_ENABLE) == 0)
2081 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2082}
2083
d74362c9
KP
2084/*
2085 * Plane regs are double buffered, going from enabled->disabled needs a
2086 * trigger in order to latch. The display address reg provides this.
2087 */
1dba99f4
VS
2088void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2089 enum plane plane)
d74362c9 2090{
3d13ef2e
DL
2091 struct drm_device *dev = dev_priv->dev;
2092 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2093
2094 I915_WRITE(reg, I915_READ(reg));
2095 POSTING_READ(reg);
d74362c9
KP
2096}
2097
b24e7179 2098/**
262ca2b0 2099 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2100 * @plane: plane to be enabled
2101 * @crtc: crtc for the plane
b24e7179 2102 *
fdd508a6 2103 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2104 */
fdd508a6
VS
2105static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2106 struct drm_crtc *crtc)
b24e7179 2107{
fdd508a6
VS
2108 struct drm_device *dev = plane->dev;
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2111
2112 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2113 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2114
98ec7739
VS
2115 if (intel_crtc->primary_enabled)
2116 return;
0037f71c 2117
4c445e0e 2118 intel_crtc->primary_enabled = true;
939c2fe8 2119
fdd508a6
VS
2120 dev_priv->display.update_primary_plane(crtc, plane->fb,
2121 crtc->x, crtc->y);
33c3b0d1
VS
2122
2123 /*
2124 * BDW signals flip done immediately if the plane
2125 * is disabled, even if the plane enable is already
2126 * armed to occur at the next vblank :(
2127 */
2128 if (IS_BROADWELL(dev))
2129 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2130}
2131
b24e7179 2132/**
262ca2b0 2133 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2134 * @plane: plane to be disabled
2135 * @crtc: crtc for the plane
b24e7179 2136 *
fdd508a6 2137 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2138 */
fdd508a6
VS
2139static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2140 struct drm_crtc *crtc)
b24e7179 2141{
fdd508a6
VS
2142 struct drm_device *dev = plane->dev;
2143 struct drm_i915_private *dev_priv = dev->dev_private;
2144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2145
2146 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2147
98ec7739
VS
2148 if (!intel_crtc->primary_enabled)
2149 return;
0037f71c 2150
4c445e0e 2151 intel_crtc->primary_enabled = false;
939c2fe8 2152
fdd508a6
VS
2153 dev_priv->display.update_primary_plane(crtc, plane->fb,
2154 crtc->x, crtc->y);
b24e7179
JB
2155}
2156
693db184
CW
2157static bool need_vtd_wa(struct drm_device *dev)
2158{
2159#ifdef CONFIG_INTEL_IOMMU
2160 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2161 return true;
2162#endif
2163 return false;
2164}
2165
a57ce0b2
JB
2166static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2167{
2168 int tile_height;
2169
2170 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2171 return ALIGN(height, tile_height);
2172}
2173
127bd2ac 2174int
48b956c5 2175intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2176 struct drm_i915_gem_object *obj,
a4872ba6 2177 struct intel_engine_cs *pipelined)
6b95a207 2178{
ce453d81 2179 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2180 u32 alignment;
2181 int ret;
2182
ebcdd39e
MR
2183 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2184
05394f39 2185 switch (obj->tiling_mode) {
6b95a207 2186 case I915_TILING_NONE:
1fada4cc
DL
2187 if (INTEL_INFO(dev)->gen >= 9)
2188 alignment = 256 * 1024;
2189 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2190 alignment = 128 * 1024;
a6c45cf0 2191 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2192 alignment = 4 * 1024;
2193 else
2194 alignment = 64 * 1024;
6b95a207
KH
2195 break;
2196 case I915_TILING_X:
1fada4cc
DL
2197 if (INTEL_INFO(dev)->gen >= 9)
2198 alignment = 256 * 1024;
2199 else {
2200 /* pin() will align the object as required by fence */
2201 alignment = 0;
2202 }
6b95a207
KH
2203 break;
2204 case I915_TILING_Y:
80075d49 2205 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2206 return -EINVAL;
2207 default:
2208 BUG();
2209 }
2210
693db184
CW
2211 /* Note that the w/a also requires 64 PTE of padding following the
2212 * bo. We currently fill all unused PTE with the shadow page and so
2213 * we should always have valid PTE following the scanout preventing
2214 * the VT-d warning.
2215 */
2216 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2217 alignment = 256 * 1024;
2218
d6dd6843
PZ
2219 /*
2220 * Global gtt pte registers are special registers which actually forward
2221 * writes to a chunk of system memory. Which means that there is no risk
2222 * that the register values disappear as soon as we call
2223 * intel_runtime_pm_put(), so it is correct to wrap only the
2224 * pin/unpin/fence and not more.
2225 */
2226 intel_runtime_pm_get(dev_priv);
2227
ce453d81 2228 dev_priv->mm.interruptible = false;
2da3b9b9 2229 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2230 if (ret)
ce453d81 2231 goto err_interruptible;
6b95a207
KH
2232
2233 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2234 * fence, whereas 965+ only requires a fence if using
2235 * framebuffer compression. For simplicity, we always install
2236 * a fence as the cost is not that onerous.
2237 */
06d98131 2238 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2239 if (ret)
2240 goto err_unpin;
1690e1eb 2241
9a5a53b3 2242 i915_gem_object_pin_fence(obj);
6b95a207 2243
ce453d81 2244 dev_priv->mm.interruptible = true;
d6dd6843 2245 intel_runtime_pm_put(dev_priv);
6b95a207 2246 return 0;
48b956c5
CW
2247
2248err_unpin:
cc98b413 2249 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2250err_interruptible:
2251 dev_priv->mm.interruptible = true;
d6dd6843 2252 intel_runtime_pm_put(dev_priv);
48b956c5 2253 return ret;
6b95a207
KH
2254}
2255
1690e1eb
CW
2256void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2257{
ebcdd39e
MR
2258 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2259
1690e1eb 2260 i915_gem_object_unpin_fence(obj);
cc98b413 2261 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2262}
2263
c2c75131
DV
2264/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2265 * is assumed to be a power-of-two. */
bc752862
CW
2266unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2267 unsigned int tiling_mode,
2268 unsigned int cpp,
2269 unsigned int pitch)
c2c75131 2270{
bc752862
CW
2271 if (tiling_mode != I915_TILING_NONE) {
2272 unsigned int tile_rows, tiles;
c2c75131 2273
bc752862
CW
2274 tile_rows = *y / 8;
2275 *y %= 8;
c2c75131 2276
bc752862
CW
2277 tiles = *x / (512/cpp);
2278 *x %= 512/cpp;
2279
2280 return tile_rows * pitch * 8 + tiles * 4096;
2281 } else {
2282 unsigned int offset;
2283
2284 offset = *y * pitch + *x * cpp;
2285 *y = 0;
2286 *x = (offset & 4095) / cpp;
2287 return offset & -4096;
2288 }
c2c75131
DV
2289}
2290
46f297fb
JB
2291int intel_format_to_fourcc(int format)
2292{
2293 switch (format) {
2294 case DISPPLANE_8BPP:
2295 return DRM_FORMAT_C8;
2296 case DISPPLANE_BGRX555:
2297 return DRM_FORMAT_XRGB1555;
2298 case DISPPLANE_BGRX565:
2299 return DRM_FORMAT_RGB565;
2300 default:
2301 case DISPPLANE_BGRX888:
2302 return DRM_FORMAT_XRGB8888;
2303 case DISPPLANE_RGBX888:
2304 return DRM_FORMAT_XBGR8888;
2305 case DISPPLANE_BGRX101010:
2306 return DRM_FORMAT_XRGB2101010;
2307 case DISPPLANE_RGBX101010:
2308 return DRM_FORMAT_XBGR2101010;
2309 }
2310}
2311
484b41dd 2312static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2313 struct intel_plane_config *plane_config)
2314{
2315 struct drm_device *dev = crtc->base.dev;
2316 struct drm_i915_gem_object *obj = NULL;
2317 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2318 u32 base = plane_config->base;
2319
ff2652ea
CW
2320 if (plane_config->size == 0)
2321 return false;
2322
46f297fb
JB
2323 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2324 plane_config->size);
2325 if (!obj)
484b41dd 2326 return false;
46f297fb
JB
2327
2328 if (plane_config->tiled) {
2329 obj->tiling_mode = I915_TILING_X;
66e514c1 2330 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2331 }
2332
66e514c1
DA
2333 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2334 mode_cmd.width = crtc->base.primary->fb->width;
2335 mode_cmd.height = crtc->base.primary->fb->height;
2336 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2337
2338 mutex_lock(&dev->struct_mutex);
2339
66e514c1 2340 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2341 &mode_cmd, obj)) {
46f297fb
JB
2342 DRM_DEBUG_KMS("intel fb init failed\n");
2343 goto out_unref_obj;
2344 }
2345
a071fa00 2346 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2347 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2348
2349 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2350 return true;
46f297fb
JB
2351
2352out_unref_obj:
2353 drm_gem_object_unreference(&obj->base);
2354 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2355 return false;
2356}
2357
2358static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2359 struct intel_plane_config *plane_config)
2360{
2361 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2362 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2363 struct drm_crtc *c;
2364 struct intel_crtc *i;
2ff8fde1 2365 struct drm_i915_gem_object *obj;
484b41dd 2366
66e514c1 2367 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2368 return;
2369
2370 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2371 return;
2372
66e514c1
DA
2373 kfree(intel_crtc->base.primary->fb);
2374 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2375
2376 /*
2377 * Failed to alloc the obj, check to see if we should share
2378 * an fb with another CRTC instead
2379 */
70e1e0ec 2380 for_each_crtc(dev, c) {
484b41dd
JB
2381 i = to_intel_crtc(c);
2382
2383 if (c == &intel_crtc->base)
2384 continue;
2385
2ff8fde1
MR
2386 if (!i->active)
2387 continue;
2388
2389 obj = intel_fb_obj(c->primary->fb);
2390 if (obj == NULL)
484b41dd
JB
2391 continue;
2392
2ff8fde1 2393 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2394 if (obj->tiling_mode != I915_TILING_NONE)
2395 dev_priv->preserve_bios_swizzle = true;
2396
66e514c1
DA
2397 drm_framebuffer_reference(c->primary->fb);
2398 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2399 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2400 break;
2401 }
2402 }
46f297fb
JB
2403}
2404
29b9bde6
DV
2405static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2406 struct drm_framebuffer *fb,
2407 int x, int y)
81255565
JB
2408{
2409 struct drm_device *dev = crtc->dev;
2410 struct drm_i915_private *dev_priv = dev->dev_private;
2411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2412 struct drm_i915_gem_object *obj;
81255565 2413 int plane = intel_crtc->plane;
e506a0c6 2414 unsigned long linear_offset;
81255565 2415 u32 dspcntr;
f45651ba 2416 u32 reg = DSPCNTR(plane);
48404c1e 2417 int pixel_size;
f45651ba 2418
fdd508a6
VS
2419 if (!intel_crtc->primary_enabled) {
2420 I915_WRITE(reg, 0);
2421 if (INTEL_INFO(dev)->gen >= 4)
2422 I915_WRITE(DSPSURF(plane), 0);
2423 else
2424 I915_WRITE(DSPADDR(plane), 0);
2425 POSTING_READ(reg);
2426 return;
2427 }
2428
c9ba6fad
VS
2429 obj = intel_fb_obj(fb);
2430 if (WARN_ON(obj == NULL))
2431 return;
2432
2433 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2434
f45651ba
VS
2435 dspcntr = DISPPLANE_GAMMA_ENABLE;
2436
fdd508a6 2437 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2438
2439 if (INTEL_INFO(dev)->gen < 4) {
2440 if (intel_crtc->pipe == PIPE_B)
2441 dspcntr |= DISPPLANE_SEL_PIPE_B;
2442
2443 /* pipesrc and dspsize control the size that is scaled from,
2444 * which should always be the user's requested size.
2445 */
2446 I915_WRITE(DSPSIZE(plane),
2447 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2448 (intel_crtc->config.pipe_src_w - 1));
2449 I915_WRITE(DSPPOS(plane), 0);
2450 }
81255565 2451
57779d06
VS
2452 switch (fb->pixel_format) {
2453 case DRM_FORMAT_C8:
81255565
JB
2454 dspcntr |= DISPPLANE_8BPP;
2455 break;
57779d06
VS
2456 case DRM_FORMAT_XRGB1555:
2457 case DRM_FORMAT_ARGB1555:
2458 dspcntr |= DISPPLANE_BGRX555;
81255565 2459 break;
57779d06
VS
2460 case DRM_FORMAT_RGB565:
2461 dspcntr |= DISPPLANE_BGRX565;
2462 break;
2463 case DRM_FORMAT_XRGB8888:
2464 case DRM_FORMAT_ARGB8888:
2465 dspcntr |= DISPPLANE_BGRX888;
2466 break;
2467 case DRM_FORMAT_XBGR8888:
2468 case DRM_FORMAT_ABGR8888:
2469 dspcntr |= DISPPLANE_RGBX888;
2470 break;
2471 case DRM_FORMAT_XRGB2101010:
2472 case DRM_FORMAT_ARGB2101010:
2473 dspcntr |= DISPPLANE_BGRX101010;
2474 break;
2475 case DRM_FORMAT_XBGR2101010:
2476 case DRM_FORMAT_ABGR2101010:
2477 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2478 break;
2479 default:
baba133a 2480 BUG();
81255565 2481 }
57779d06 2482
f45651ba
VS
2483 if (INTEL_INFO(dev)->gen >= 4 &&
2484 obj->tiling_mode != I915_TILING_NONE)
2485 dspcntr |= DISPPLANE_TILED;
81255565 2486
de1aa629
VS
2487 if (IS_G4X(dev))
2488 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2489
b9897127 2490 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2491
c2c75131
DV
2492 if (INTEL_INFO(dev)->gen >= 4) {
2493 intel_crtc->dspaddr_offset =
bc752862 2494 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2495 pixel_size,
bc752862 2496 fb->pitches[0]);
c2c75131
DV
2497 linear_offset -= intel_crtc->dspaddr_offset;
2498 } else {
e506a0c6 2499 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2500 }
e506a0c6 2501
48404c1e
SJ
2502 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2503 dspcntr |= DISPPLANE_ROTATE_180;
2504
2505 x += (intel_crtc->config.pipe_src_w - 1);
2506 y += (intel_crtc->config.pipe_src_h - 1);
2507
2508 /* Finding the last pixel of the last line of the display
2509 data and adding to linear_offset*/
2510 linear_offset +=
2511 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2512 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2513 }
2514
2515 I915_WRITE(reg, dspcntr);
2516
f343c5f6
BW
2517 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2518 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2519 fb->pitches[0]);
01f2c773 2520 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2521 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2522 I915_WRITE(DSPSURF(plane),
2523 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2524 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2525 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2526 } else
f343c5f6 2527 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2528 POSTING_READ(reg);
17638cd6
JB
2529}
2530
29b9bde6
DV
2531static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2532 struct drm_framebuffer *fb,
2533 int x, int y)
17638cd6
JB
2534{
2535 struct drm_device *dev = crtc->dev;
2536 struct drm_i915_private *dev_priv = dev->dev_private;
2537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2538 struct drm_i915_gem_object *obj;
17638cd6 2539 int plane = intel_crtc->plane;
e506a0c6 2540 unsigned long linear_offset;
17638cd6 2541 u32 dspcntr;
f45651ba 2542 u32 reg = DSPCNTR(plane);
48404c1e 2543 int pixel_size;
f45651ba 2544
fdd508a6
VS
2545 if (!intel_crtc->primary_enabled) {
2546 I915_WRITE(reg, 0);
2547 I915_WRITE(DSPSURF(plane), 0);
2548 POSTING_READ(reg);
2549 return;
2550 }
2551
c9ba6fad
VS
2552 obj = intel_fb_obj(fb);
2553 if (WARN_ON(obj == NULL))
2554 return;
2555
2556 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2557
f45651ba
VS
2558 dspcntr = DISPPLANE_GAMMA_ENABLE;
2559
fdd508a6 2560 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2561
2562 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2563 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2564
57779d06
VS
2565 switch (fb->pixel_format) {
2566 case DRM_FORMAT_C8:
17638cd6
JB
2567 dspcntr |= DISPPLANE_8BPP;
2568 break;
57779d06
VS
2569 case DRM_FORMAT_RGB565:
2570 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2571 break;
57779d06
VS
2572 case DRM_FORMAT_XRGB8888:
2573 case DRM_FORMAT_ARGB8888:
2574 dspcntr |= DISPPLANE_BGRX888;
2575 break;
2576 case DRM_FORMAT_XBGR8888:
2577 case DRM_FORMAT_ABGR8888:
2578 dspcntr |= DISPPLANE_RGBX888;
2579 break;
2580 case DRM_FORMAT_XRGB2101010:
2581 case DRM_FORMAT_ARGB2101010:
2582 dspcntr |= DISPPLANE_BGRX101010;
2583 break;
2584 case DRM_FORMAT_XBGR2101010:
2585 case DRM_FORMAT_ABGR2101010:
2586 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2587 break;
2588 default:
baba133a 2589 BUG();
17638cd6
JB
2590 }
2591
2592 if (obj->tiling_mode != I915_TILING_NONE)
2593 dspcntr |= DISPPLANE_TILED;
17638cd6 2594
f45651ba 2595 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2596 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2597
b9897127 2598 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2599 intel_crtc->dspaddr_offset =
bc752862 2600 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2601 pixel_size,
bc752862 2602 fb->pitches[0]);
c2c75131 2603 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2604 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2605 dspcntr |= DISPPLANE_ROTATE_180;
2606
2607 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2608 x += (intel_crtc->config.pipe_src_w - 1);
2609 y += (intel_crtc->config.pipe_src_h - 1);
2610
2611 /* Finding the last pixel of the last line of the display
2612 data and adding to linear_offset*/
2613 linear_offset +=
2614 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2615 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2616 }
2617 }
2618
2619 I915_WRITE(reg, dspcntr);
17638cd6 2620
f343c5f6
BW
2621 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2622 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2623 fb->pitches[0]);
01f2c773 2624 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2625 I915_WRITE(DSPSURF(plane),
2626 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2627 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2628 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2629 } else {
2630 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2631 I915_WRITE(DSPLINOFF(plane), linear_offset);
2632 }
17638cd6 2633 POSTING_READ(reg);
17638cd6
JB
2634}
2635
70d21f0e
DL
2636static void skylake_update_primary_plane(struct drm_crtc *crtc,
2637 struct drm_framebuffer *fb,
2638 int x, int y)
2639{
2640 struct drm_device *dev = crtc->dev;
2641 struct drm_i915_private *dev_priv = dev->dev_private;
2642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643 struct intel_framebuffer *intel_fb;
2644 struct drm_i915_gem_object *obj;
2645 int pipe = intel_crtc->pipe;
2646 u32 plane_ctl, stride;
2647
2648 if (!intel_crtc->primary_enabled) {
2649 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2650 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2651 POSTING_READ(PLANE_CTL(pipe, 0));
2652 return;
2653 }
2654
2655 plane_ctl = PLANE_CTL_ENABLE |
2656 PLANE_CTL_PIPE_GAMMA_ENABLE |
2657 PLANE_CTL_PIPE_CSC_ENABLE;
2658
2659 switch (fb->pixel_format) {
2660 case DRM_FORMAT_RGB565:
2661 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2662 break;
2663 case DRM_FORMAT_XRGB8888:
2664 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2665 break;
2666 case DRM_FORMAT_XBGR8888:
2667 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2668 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2669 break;
2670 case DRM_FORMAT_XRGB2101010:
2671 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2672 break;
2673 case DRM_FORMAT_XBGR2101010:
2674 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2675 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2676 break;
2677 default:
2678 BUG();
2679 }
2680
2681 intel_fb = to_intel_framebuffer(fb);
2682 obj = intel_fb->obj;
2683
2684 /*
2685 * The stride is either expressed as a multiple of 64 bytes chunks for
2686 * linear buffers or in number of tiles for tiled buffers.
2687 */
2688 switch (obj->tiling_mode) {
2689 case I915_TILING_NONE:
2690 stride = fb->pitches[0] >> 6;
2691 break;
2692 case I915_TILING_X:
2693 plane_ctl |= PLANE_CTL_TILED_X;
2694 stride = fb->pitches[0] >> 9;
2695 break;
2696 default:
2697 BUG();
2698 }
2699
2700 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
1447dde0
SJ
2701 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2702 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2703
2704 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2705
2706 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2707 i915_gem_obj_ggtt_offset(obj),
2708 x, y, fb->width, fb->height,
2709 fb->pitches[0]);
2710
2711 I915_WRITE(PLANE_POS(pipe, 0), 0);
2712 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2713 I915_WRITE(PLANE_SIZE(pipe, 0),
2714 (intel_crtc->config.pipe_src_h - 1) << 16 |
2715 (intel_crtc->config.pipe_src_w - 1));
2716 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2717 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2718
2719 POSTING_READ(PLANE_SURF(pipe, 0));
2720}
2721
17638cd6
JB
2722/* Assume fb object is pinned & idle & fenced and just update base pointers */
2723static int
2724intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2725 int x, int y, enum mode_set_atomic state)
2726{
2727 struct drm_device *dev = crtc->dev;
2728 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2729
6b8e6ed0
CW
2730 if (dev_priv->display.disable_fbc)
2731 dev_priv->display.disable_fbc(dev);
81255565 2732
29b9bde6
DV
2733 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2734
2735 return 0;
81255565
JB
2736}
2737
96a02917
VS
2738void intel_display_handle_reset(struct drm_device *dev)
2739{
2740 struct drm_i915_private *dev_priv = dev->dev_private;
2741 struct drm_crtc *crtc;
2742
2743 /*
2744 * Flips in the rings have been nuked by the reset,
2745 * so complete all pending flips so that user space
2746 * will get its events and not get stuck.
2747 *
2748 * Also update the base address of all primary
2749 * planes to the the last fb to make sure we're
2750 * showing the correct fb after a reset.
2751 *
2752 * Need to make two loops over the crtcs so that we
2753 * don't try to grab a crtc mutex before the
2754 * pending_flip_queue really got woken up.
2755 */
2756
70e1e0ec 2757 for_each_crtc(dev, crtc) {
96a02917
VS
2758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2759 enum plane plane = intel_crtc->plane;
2760
2761 intel_prepare_page_flip(dev, plane);
2762 intel_finish_page_flip_plane(dev, plane);
2763 }
2764
70e1e0ec 2765 for_each_crtc(dev, crtc) {
96a02917
VS
2766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2767
51fd371b 2768 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2769 /*
2770 * FIXME: Once we have proper support for primary planes (and
2771 * disabling them without disabling the entire crtc) allow again
66e514c1 2772 * a NULL crtc->primary->fb.
947fdaad 2773 */
f4510a27 2774 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2775 dev_priv->display.update_primary_plane(crtc,
66e514c1 2776 crtc->primary->fb,
262ca2b0
MR
2777 crtc->x,
2778 crtc->y);
51fd371b 2779 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2780 }
2781}
2782
14667a4b
CW
2783static int
2784intel_finish_fb(struct drm_framebuffer *old_fb)
2785{
2ff8fde1 2786 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2787 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2788 bool was_interruptible = dev_priv->mm.interruptible;
2789 int ret;
2790
14667a4b
CW
2791 /* Big Hammer, we also need to ensure that any pending
2792 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2793 * current scanout is retired before unpinning the old
2794 * framebuffer.
2795 *
2796 * This should only fail upon a hung GPU, in which case we
2797 * can safely continue.
2798 */
2799 dev_priv->mm.interruptible = false;
2800 ret = i915_gem_object_finish_gpu(obj);
2801 dev_priv->mm.interruptible = was_interruptible;
2802
2803 return ret;
2804}
2805
7d5e3799
CW
2806static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2807{
2808 struct drm_device *dev = crtc->dev;
2809 struct drm_i915_private *dev_priv = dev->dev_private;
2810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2811 bool pending;
2812
2813 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2814 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2815 return false;
2816
5e2d7afc 2817 spin_lock_irq(&dev->event_lock);
7d5e3799 2818 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2819 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2820
2821 return pending;
2822}
2823
e30e8f75
GP
2824static void intel_update_pipe_size(struct intel_crtc *crtc)
2825{
2826 struct drm_device *dev = crtc->base.dev;
2827 struct drm_i915_private *dev_priv = dev->dev_private;
2828 const struct drm_display_mode *adjusted_mode;
2829
2830 if (!i915.fastboot)
2831 return;
2832
2833 /*
2834 * Update pipe size and adjust fitter if needed: the reason for this is
2835 * that in compute_mode_changes we check the native mode (not the pfit
2836 * mode) to see if we can flip rather than do a full mode set. In the
2837 * fastboot case, we'll flip, but if we don't update the pipesrc and
2838 * pfit state, we'll end up with a big fb scanned out into the wrong
2839 * sized surface.
2840 *
2841 * To fix this properly, we need to hoist the checks up into
2842 * compute_mode_changes (or above), check the actual pfit state and
2843 * whether the platform allows pfit disable with pipe active, and only
2844 * then update the pipesrc and pfit state, even on the flip path.
2845 */
2846
2847 adjusted_mode = &crtc->config.adjusted_mode;
2848
2849 I915_WRITE(PIPESRC(crtc->pipe),
2850 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2851 (adjusted_mode->crtc_vdisplay - 1));
2852 if (!crtc->config.pch_pfit.enabled &&
409ee761
ACO
2853 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2854 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2855 I915_WRITE(PF_CTL(crtc->pipe), 0);
2856 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2857 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2858 }
2859 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2860 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2861}
2862
5c3b82e2 2863static int
3c4fdcfb 2864intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2865 struct drm_framebuffer *fb)
79e53945
JB
2866{
2867 struct drm_device *dev = crtc->dev;
6b8e6ed0 2868 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2870 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2871 struct drm_framebuffer *old_fb = crtc->primary->fb;
2872 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2873 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2874 int ret;
79e53945 2875
7d5e3799
CW
2876 if (intel_crtc_has_pending_flip(crtc)) {
2877 DRM_ERROR("pipe is still busy with an old pageflip\n");
2878 return -EBUSY;
2879 }
2880
79e53945 2881 /* no fb bound */
94352cf9 2882 if (!fb) {
a5071c2f 2883 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2884 return 0;
2885 }
2886
7eb552ae 2887 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2888 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2889 plane_name(intel_crtc->plane),
2890 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2891 return -EINVAL;
79e53945
JB
2892 }
2893
5c3b82e2 2894 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2895 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2896 if (ret == 0)
91565c85 2897 i915_gem_track_fb(old_obj, obj,
a071fa00 2898 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2899 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2900 if (ret != 0) {
a5071c2f 2901 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2902 return ret;
2903 }
79e53945 2904
e30e8f75 2905 intel_update_pipe_size(intel_crtc);
4d6a3e63 2906
29b9bde6 2907 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2908
f99d7069
DV
2909 if (intel_crtc->active)
2910 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2911
f4510a27 2912 crtc->primary->fb = fb;
6c4c86f5
DV
2913 crtc->x = x;
2914 crtc->y = y;
94352cf9 2915
b7f1de28 2916 if (old_fb) {
d7697eea
DV
2917 if (intel_crtc->active && old_fb != fb)
2918 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2919 mutex_lock(&dev->struct_mutex);
2ff8fde1 2920 intel_unpin_fb_obj(old_obj);
8ac36ec1 2921 mutex_unlock(&dev->struct_mutex);
b7f1de28 2922 }
652c393a 2923
8ac36ec1 2924 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2925 intel_update_fbc(dev);
5c3b82e2 2926 mutex_unlock(&dev->struct_mutex);
79e53945 2927
5c3b82e2 2928 return 0;
79e53945
JB
2929}
2930
5e84e1a4
ZW
2931static void intel_fdi_normal_train(struct drm_crtc *crtc)
2932{
2933 struct drm_device *dev = crtc->dev;
2934 struct drm_i915_private *dev_priv = dev->dev_private;
2935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2936 int pipe = intel_crtc->pipe;
2937 u32 reg, temp;
2938
2939 /* enable normal train */
2940 reg = FDI_TX_CTL(pipe);
2941 temp = I915_READ(reg);
61e499bf 2942 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2943 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2944 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2945 } else {
2946 temp &= ~FDI_LINK_TRAIN_NONE;
2947 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2948 }
5e84e1a4
ZW
2949 I915_WRITE(reg, temp);
2950
2951 reg = FDI_RX_CTL(pipe);
2952 temp = I915_READ(reg);
2953 if (HAS_PCH_CPT(dev)) {
2954 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2955 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2956 } else {
2957 temp &= ~FDI_LINK_TRAIN_NONE;
2958 temp |= FDI_LINK_TRAIN_NONE;
2959 }
2960 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2961
2962 /* wait one idle pattern time */
2963 POSTING_READ(reg);
2964 udelay(1000);
357555c0
JB
2965
2966 /* IVB wants error correction enabled */
2967 if (IS_IVYBRIDGE(dev))
2968 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2969 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2970}
2971
1fbc0d78 2972static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2973{
1fbc0d78
DV
2974 return crtc->base.enabled && crtc->active &&
2975 crtc->config.has_pch_encoder;
1e833f40
DV
2976}
2977
01a415fd
DV
2978static void ivb_modeset_global_resources(struct drm_device *dev)
2979{
2980 struct drm_i915_private *dev_priv = dev->dev_private;
2981 struct intel_crtc *pipe_B_crtc =
2982 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2983 struct intel_crtc *pipe_C_crtc =
2984 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2985 uint32_t temp;
2986
1e833f40
DV
2987 /*
2988 * When everything is off disable fdi C so that we could enable fdi B
2989 * with all lanes. Note that we don't care about enabled pipes without
2990 * an enabled pch encoder.
2991 */
2992 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2993 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2994 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2995 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2996
2997 temp = I915_READ(SOUTH_CHICKEN1);
2998 temp &= ~FDI_BC_BIFURCATION_SELECT;
2999 DRM_DEBUG_KMS("disabling fdi C rx\n");
3000 I915_WRITE(SOUTH_CHICKEN1, temp);
3001 }
3002}
3003
8db9d77b
ZW
3004/* The FDI link training functions for ILK/Ibexpeak. */
3005static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3006{
3007 struct drm_device *dev = crtc->dev;
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3010 int pipe = intel_crtc->pipe;
5eddb70b 3011 u32 reg, temp, tries;
8db9d77b 3012
1c8562f6 3013 /* FDI needs bits from pipe first */
0fc932b8 3014 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3015
e1a44743
AJ
3016 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3017 for train result */
5eddb70b
CW
3018 reg = FDI_RX_IMR(pipe);
3019 temp = I915_READ(reg);
e1a44743
AJ
3020 temp &= ~FDI_RX_SYMBOL_LOCK;
3021 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3022 I915_WRITE(reg, temp);
3023 I915_READ(reg);
e1a44743
AJ
3024 udelay(150);
3025
8db9d77b 3026 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3027 reg = FDI_TX_CTL(pipe);
3028 temp = I915_READ(reg);
627eb5a3
DV
3029 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3030 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3031 temp &= ~FDI_LINK_TRAIN_NONE;
3032 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3033 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3034
5eddb70b
CW
3035 reg = FDI_RX_CTL(pipe);
3036 temp = I915_READ(reg);
8db9d77b
ZW
3037 temp &= ~FDI_LINK_TRAIN_NONE;
3038 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3039 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3040
3041 POSTING_READ(reg);
8db9d77b
ZW
3042 udelay(150);
3043
5b2adf89 3044 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3045 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3046 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3047 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3048
5eddb70b 3049 reg = FDI_RX_IIR(pipe);
e1a44743 3050 for (tries = 0; tries < 5; tries++) {
5eddb70b 3051 temp = I915_READ(reg);
8db9d77b
ZW
3052 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3053
3054 if ((temp & FDI_RX_BIT_LOCK)) {
3055 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3056 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3057 break;
3058 }
8db9d77b 3059 }
e1a44743 3060 if (tries == 5)
5eddb70b 3061 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3062
3063 /* Train 2 */
5eddb70b
CW
3064 reg = FDI_TX_CTL(pipe);
3065 temp = I915_READ(reg);
8db9d77b
ZW
3066 temp &= ~FDI_LINK_TRAIN_NONE;
3067 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3068 I915_WRITE(reg, temp);
8db9d77b 3069
5eddb70b
CW
3070 reg = FDI_RX_CTL(pipe);
3071 temp = I915_READ(reg);
8db9d77b
ZW
3072 temp &= ~FDI_LINK_TRAIN_NONE;
3073 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3074 I915_WRITE(reg, temp);
8db9d77b 3075
5eddb70b
CW
3076 POSTING_READ(reg);
3077 udelay(150);
8db9d77b 3078
5eddb70b 3079 reg = FDI_RX_IIR(pipe);
e1a44743 3080 for (tries = 0; tries < 5; tries++) {
5eddb70b 3081 temp = I915_READ(reg);
8db9d77b
ZW
3082 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3083
3084 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3085 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3086 DRM_DEBUG_KMS("FDI train 2 done.\n");
3087 break;
3088 }
8db9d77b 3089 }
e1a44743 3090 if (tries == 5)
5eddb70b 3091 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3092
3093 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3094
8db9d77b
ZW
3095}
3096
0206e353 3097static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3098 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3099 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3100 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3101 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3102};
3103
3104/* The FDI link training functions for SNB/Cougarpoint. */
3105static void gen6_fdi_link_train(struct drm_crtc *crtc)
3106{
3107 struct drm_device *dev = crtc->dev;
3108 struct drm_i915_private *dev_priv = dev->dev_private;
3109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3110 int pipe = intel_crtc->pipe;
fa37d39e 3111 u32 reg, temp, i, retry;
8db9d77b 3112
e1a44743
AJ
3113 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3114 for train result */
5eddb70b
CW
3115 reg = FDI_RX_IMR(pipe);
3116 temp = I915_READ(reg);
e1a44743
AJ
3117 temp &= ~FDI_RX_SYMBOL_LOCK;
3118 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3119 I915_WRITE(reg, temp);
3120
3121 POSTING_READ(reg);
e1a44743
AJ
3122 udelay(150);
3123
8db9d77b 3124 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3125 reg = FDI_TX_CTL(pipe);
3126 temp = I915_READ(reg);
627eb5a3
DV
3127 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3128 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3129 temp &= ~FDI_LINK_TRAIN_NONE;
3130 temp |= FDI_LINK_TRAIN_PATTERN_1;
3131 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3132 /* SNB-B */
3133 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3134 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3135
d74cf324
DV
3136 I915_WRITE(FDI_RX_MISC(pipe),
3137 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3138
5eddb70b
CW
3139 reg = FDI_RX_CTL(pipe);
3140 temp = I915_READ(reg);
8db9d77b
ZW
3141 if (HAS_PCH_CPT(dev)) {
3142 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3143 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3144 } else {
3145 temp &= ~FDI_LINK_TRAIN_NONE;
3146 temp |= FDI_LINK_TRAIN_PATTERN_1;
3147 }
5eddb70b
CW
3148 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3149
3150 POSTING_READ(reg);
8db9d77b
ZW
3151 udelay(150);
3152
0206e353 3153 for (i = 0; i < 4; i++) {
5eddb70b
CW
3154 reg = FDI_TX_CTL(pipe);
3155 temp = I915_READ(reg);
8db9d77b
ZW
3156 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3157 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3158 I915_WRITE(reg, temp);
3159
3160 POSTING_READ(reg);
8db9d77b
ZW
3161 udelay(500);
3162
fa37d39e
SP
3163 for (retry = 0; retry < 5; retry++) {
3164 reg = FDI_RX_IIR(pipe);
3165 temp = I915_READ(reg);
3166 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3167 if (temp & FDI_RX_BIT_LOCK) {
3168 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3169 DRM_DEBUG_KMS("FDI train 1 done.\n");
3170 break;
3171 }
3172 udelay(50);
8db9d77b 3173 }
fa37d39e
SP
3174 if (retry < 5)
3175 break;
8db9d77b
ZW
3176 }
3177 if (i == 4)
5eddb70b 3178 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3179
3180 /* Train 2 */
5eddb70b
CW
3181 reg = FDI_TX_CTL(pipe);
3182 temp = I915_READ(reg);
8db9d77b
ZW
3183 temp &= ~FDI_LINK_TRAIN_NONE;
3184 temp |= FDI_LINK_TRAIN_PATTERN_2;
3185 if (IS_GEN6(dev)) {
3186 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3187 /* SNB-B */
3188 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3189 }
5eddb70b 3190 I915_WRITE(reg, temp);
8db9d77b 3191
5eddb70b
CW
3192 reg = FDI_RX_CTL(pipe);
3193 temp = I915_READ(reg);
8db9d77b
ZW
3194 if (HAS_PCH_CPT(dev)) {
3195 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3196 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3197 } else {
3198 temp &= ~FDI_LINK_TRAIN_NONE;
3199 temp |= FDI_LINK_TRAIN_PATTERN_2;
3200 }
5eddb70b
CW
3201 I915_WRITE(reg, temp);
3202
3203 POSTING_READ(reg);
8db9d77b
ZW
3204 udelay(150);
3205
0206e353 3206 for (i = 0; i < 4; i++) {
5eddb70b
CW
3207 reg = FDI_TX_CTL(pipe);
3208 temp = I915_READ(reg);
8db9d77b
ZW
3209 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3210 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3211 I915_WRITE(reg, temp);
3212
3213 POSTING_READ(reg);
8db9d77b
ZW
3214 udelay(500);
3215
fa37d39e
SP
3216 for (retry = 0; retry < 5; retry++) {
3217 reg = FDI_RX_IIR(pipe);
3218 temp = I915_READ(reg);
3219 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3220 if (temp & FDI_RX_SYMBOL_LOCK) {
3221 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3222 DRM_DEBUG_KMS("FDI train 2 done.\n");
3223 break;
3224 }
3225 udelay(50);
8db9d77b 3226 }
fa37d39e
SP
3227 if (retry < 5)
3228 break;
8db9d77b
ZW
3229 }
3230 if (i == 4)
5eddb70b 3231 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3232
3233 DRM_DEBUG_KMS("FDI train done.\n");
3234}
3235
357555c0
JB
3236/* Manual link training for Ivy Bridge A0 parts */
3237static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3238{
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3242 int pipe = intel_crtc->pipe;
139ccd3f 3243 u32 reg, temp, i, j;
357555c0
JB
3244
3245 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3246 for train result */
3247 reg = FDI_RX_IMR(pipe);
3248 temp = I915_READ(reg);
3249 temp &= ~FDI_RX_SYMBOL_LOCK;
3250 temp &= ~FDI_RX_BIT_LOCK;
3251 I915_WRITE(reg, temp);
3252
3253 POSTING_READ(reg);
3254 udelay(150);
3255
01a415fd
DV
3256 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3257 I915_READ(FDI_RX_IIR(pipe)));
3258
139ccd3f
JB
3259 /* Try each vswing and preemphasis setting twice before moving on */
3260 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3261 /* disable first in case we need to retry */
3262 reg = FDI_TX_CTL(pipe);
3263 temp = I915_READ(reg);
3264 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3265 temp &= ~FDI_TX_ENABLE;
3266 I915_WRITE(reg, temp);
357555c0 3267
139ccd3f
JB
3268 reg = FDI_RX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 temp &= ~FDI_LINK_TRAIN_AUTO;
3271 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3272 temp &= ~FDI_RX_ENABLE;
3273 I915_WRITE(reg, temp);
357555c0 3274
139ccd3f 3275 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3276 reg = FDI_TX_CTL(pipe);
3277 temp = I915_READ(reg);
139ccd3f
JB
3278 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3279 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3280 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3281 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3282 temp |= snb_b_fdi_train_param[j/2];
3283 temp |= FDI_COMPOSITE_SYNC;
3284 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3285
139ccd3f
JB
3286 I915_WRITE(FDI_RX_MISC(pipe),
3287 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3288
139ccd3f 3289 reg = FDI_RX_CTL(pipe);
357555c0 3290 temp = I915_READ(reg);
139ccd3f
JB
3291 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3292 temp |= FDI_COMPOSITE_SYNC;
3293 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3294
139ccd3f
JB
3295 POSTING_READ(reg);
3296 udelay(1); /* should be 0.5us */
357555c0 3297
139ccd3f
JB
3298 for (i = 0; i < 4; i++) {
3299 reg = FDI_RX_IIR(pipe);
3300 temp = I915_READ(reg);
3301 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3302
139ccd3f
JB
3303 if (temp & FDI_RX_BIT_LOCK ||
3304 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3305 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3306 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3307 i);
3308 break;
3309 }
3310 udelay(1); /* should be 0.5us */
3311 }
3312 if (i == 4) {
3313 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3314 continue;
3315 }
357555c0 3316
139ccd3f 3317 /* Train 2 */
357555c0
JB
3318 reg = FDI_TX_CTL(pipe);
3319 temp = I915_READ(reg);
139ccd3f
JB
3320 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3321 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3322 I915_WRITE(reg, temp);
3323
3324 reg = FDI_RX_CTL(pipe);
3325 temp = I915_READ(reg);
3326 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3327 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3328 I915_WRITE(reg, temp);
3329
3330 POSTING_READ(reg);
139ccd3f 3331 udelay(2); /* should be 1.5us */
357555c0 3332
139ccd3f
JB
3333 for (i = 0; i < 4; i++) {
3334 reg = FDI_RX_IIR(pipe);
3335 temp = I915_READ(reg);
3336 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3337
139ccd3f
JB
3338 if (temp & FDI_RX_SYMBOL_LOCK ||
3339 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3340 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3341 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3342 i);
3343 goto train_done;
3344 }
3345 udelay(2); /* should be 1.5us */
357555c0 3346 }
139ccd3f
JB
3347 if (i == 4)
3348 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3349 }
357555c0 3350
139ccd3f 3351train_done:
357555c0
JB
3352 DRM_DEBUG_KMS("FDI train done.\n");
3353}
3354
88cefb6c 3355static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3356{
88cefb6c 3357 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3358 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3359 int pipe = intel_crtc->pipe;
5eddb70b 3360 u32 reg, temp;
79e53945 3361
c64e311e 3362
c98e9dcf 3363 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3364 reg = FDI_RX_CTL(pipe);
3365 temp = I915_READ(reg);
627eb5a3
DV
3366 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3367 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3368 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3369 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3370
3371 POSTING_READ(reg);
c98e9dcf
JB
3372 udelay(200);
3373
3374 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3375 temp = I915_READ(reg);
3376 I915_WRITE(reg, temp | FDI_PCDCLK);
3377
3378 POSTING_READ(reg);
c98e9dcf
JB
3379 udelay(200);
3380
20749730
PZ
3381 /* Enable CPU FDI TX PLL, always on for Ironlake */
3382 reg = FDI_TX_CTL(pipe);
3383 temp = I915_READ(reg);
3384 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3385 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3386
20749730
PZ
3387 POSTING_READ(reg);
3388 udelay(100);
6be4a607 3389 }
0e23b99d
JB
3390}
3391
88cefb6c
DV
3392static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3393{
3394 struct drm_device *dev = intel_crtc->base.dev;
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 int pipe = intel_crtc->pipe;
3397 u32 reg, temp;
3398
3399 /* Switch from PCDclk to Rawclk */
3400 reg = FDI_RX_CTL(pipe);
3401 temp = I915_READ(reg);
3402 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3403
3404 /* Disable CPU FDI TX PLL */
3405 reg = FDI_TX_CTL(pipe);
3406 temp = I915_READ(reg);
3407 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3408
3409 POSTING_READ(reg);
3410 udelay(100);
3411
3412 reg = FDI_RX_CTL(pipe);
3413 temp = I915_READ(reg);
3414 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3415
3416 /* Wait for the clocks to turn off. */
3417 POSTING_READ(reg);
3418 udelay(100);
3419}
3420
0fc932b8
JB
3421static void ironlake_fdi_disable(struct drm_crtc *crtc)
3422{
3423 struct drm_device *dev = crtc->dev;
3424 struct drm_i915_private *dev_priv = dev->dev_private;
3425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3426 int pipe = intel_crtc->pipe;
3427 u32 reg, temp;
3428
3429 /* disable CPU FDI tx and PCH FDI rx */
3430 reg = FDI_TX_CTL(pipe);
3431 temp = I915_READ(reg);
3432 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3433 POSTING_READ(reg);
3434
3435 reg = FDI_RX_CTL(pipe);
3436 temp = I915_READ(reg);
3437 temp &= ~(0x7 << 16);
dfd07d72 3438 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3439 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3440
3441 POSTING_READ(reg);
3442 udelay(100);
3443
3444 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3445 if (HAS_PCH_IBX(dev))
6f06ce18 3446 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3447
3448 /* still set train pattern 1 */
3449 reg = FDI_TX_CTL(pipe);
3450 temp = I915_READ(reg);
3451 temp &= ~FDI_LINK_TRAIN_NONE;
3452 temp |= FDI_LINK_TRAIN_PATTERN_1;
3453 I915_WRITE(reg, temp);
3454
3455 reg = FDI_RX_CTL(pipe);
3456 temp = I915_READ(reg);
3457 if (HAS_PCH_CPT(dev)) {
3458 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3459 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3460 } else {
3461 temp &= ~FDI_LINK_TRAIN_NONE;
3462 temp |= FDI_LINK_TRAIN_PATTERN_1;
3463 }
3464 /* BPC in FDI rx is consistent with that in PIPECONF */
3465 temp &= ~(0x07 << 16);
dfd07d72 3466 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3467 I915_WRITE(reg, temp);
3468
3469 POSTING_READ(reg);
3470 udelay(100);
3471}
3472
5dce5b93
CW
3473bool intel_has_pending_fb_unpin(struct drm_device *dev)
3474{
3475 struct intel_crtc *crtc;
3476
3477 /* Note that we don't need to be called with mode_config.lock here
3478 * as our list of CRTC objects is static for the lifetime of the
3479 * device and so cannot disappear as we iterate. Similarly, we can
3480 * happily treat the predicates as racy, atomic checks as userspace
3481 * cannot claim and pin a new fb without at least acquring the
3482 * struct_mutex and so serialising with us.
3483 */
d3fcc808 3484 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3485 if (atomic_read(&crtc->unpin_work_count) == 0)
3486 continue;
3487
3488 if (crtc->unpin_work)
3489 intel_wait_for_vblank(dev, crtc->pipe);
3490
3491 return true;
3492 }
3493
3494 return false;
3495}
3496
d6bbafa1
CW
3497static void page_flip_completed(struct intel_crtc *intel_crtc)
3498{
3499 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3500 struct intel_unpin_work *work = intel_crtc->unpin_work;
3501
3502 /* ensure that the unpin work is consistent wrt ->pending. */
3503 smp_rmb();
3504 intel_crtc->unpin_work = NULL;
3505
3506 if (work->event)
3507 drm_send_vblank_event(intel_crtc->base.dev,
3508 intel_crtc->pipe,
3509 work->event);
3510
3511 drm_crtc_vblank_put(&intel_crtc->base);
3512
3513 wake_up_all(&dev_priv->pending_flip_queue);
3514 queue_work(dev_priv->wq, &work->work);
3515
3516 trace_i915_flip_complete(intel_crtc->plane,
3517 work->pending_flip_obj);
3518}
3519
46a55d30 3520void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3521{
0f91128d 3522 struct drm_device *dev = crtc->dev;
5bb61643 3523 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3524
2c10d571 3525 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3526 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3527 !intel_crtc_has_pending_flip(crtc),
3528 60*HZ) == 0)) {
3529 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3530
5e2d7afc 3531 spin_lock_irq(&dev->event_lock);
9c787942
CW
3532 if (intel_crtc->unpin_work) {
3533 WARN_ONCE(1, "Removing stuck page flip\n");
3534 page_flip_completed(intel_crtc);
3535 }
5e2d7afc 3536 spin_unlock_irq(&dev->event_lock);
9c787942 3537 }
5bb61643 3538
975d568a
CW
3539 if (crtc->primary->fb) {
3540 mutex_lock(&dev->struct_mutex);
3541 intel_finish_fb(crtc->primary->fb);
3542 mutex_unlock(&dev->struct_mutex);
3543 }
e6c3a2a6
CW
3544}
3545
e615efe4
ED
3546/* Program iCLKIP clock to the desired frequency */
3547static void lpt_program_iclkip(struct drm_crtc *crtc)
3548{
3549 struct drm_device *dev = crtc->dev;
3550 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3551 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3552 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3553 u32 temp;
3554
09153000
DV
3555 mutex_lock(&dev_priv->dpio_lock);
3556
e615efe4
ED
3557 /* It is necessary to ungate the pixclk gate prior to programming
3558 * the divisors, and gate it back when it is done.
3559 */
3560 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3561
3562 /* Disable SSCCTL */
3563 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3564 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3565 SBI_SSCCTL_DISABLE,
3566 SBI_ICLK);
e615efe4
ED
3567
3568 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3569 if (clock == 20000) {
e615efe4
ED
3570 auxdiv = 1;
3571 divsel = 0x41;
3572 phaseinc = 0x20;
3573 } else {
3574 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3575 * but the adjusted_mode->crtc_clock in in KHz. To get the
3576 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3577 * convert the virtual clock precision to KHz here for higher
3578 * precision.
3579 */
3580 u32 iclk_virtual_root_freq = 172800 * 1000;
3581 u32 iclk_pi_range = 64;
3582 u32 desired_divisor, msb_divisor_value, pi_value;
3583
12d7ceed 3584 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3585 msb_divisor_value = desired_divisor / iclk_pi_range;
3586 pi_value = desired_divisor % iclk_pi_range;
3587
3588 auxdiv = 0;
3589 divsel = msb_divisor_value - 2;
3590 phaseinc = pi_value;
3591 }
3592
3593 /* This should not happen with any sane values */
3594 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3595 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3596 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3597 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3598
3599 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3600 clock,
e615efe4
ED
3601 auxdiv,
3602 divsel,
3603 phasedir,
3604 phaseinc);
3605
3606 /* Program SSCDIVINTPHASE6 */
988d6ee8 3607 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3608 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3609 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3610 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3611 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3612 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3613 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3614 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3615
3616 /* Program SSCAUXDIV */
988d6ee8 3617 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3618 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3619 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3620 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3621
3622 /* Enable modulator and associated divider */
988d6ee8 3623 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3624 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3625 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3626
3627 /* Wait for initialization time */
3628 udelay(24);
3629
3630 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3631
3632 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3633}
3634
275f01b2
DV
3635static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3636 enum pipe pch_transcoder)
3637{
3638 struct drm_device *dev = crtc->base.dev;
3639 struct drm_i915_private *dev_priv = dev->dev_private;
3640 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3641
3642 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3643 I915_READ(HTOTAL(cpu_transcoder)));
3644 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3645 I915_READ(HBLANK(cpu_transcoder)));
3646 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3647 I915_READ(HSYNC(cpu_transcoder)));
3648
3649 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3650 I915_READ(VTOTAL(cpu_transcoder)));
3651 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3652 I915_READ(VBLANK(cpu_transcoder)));
3653 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3654 I915_READ(VSYNC(cpu_transcoder)));
3655 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3656 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3657}
3658
1fbc0d78
DV
3659static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3660{
3661 struct drm_i915_private *dev_priv = dev->dev_private;
3662 uint32_t temp;
3663
3664 temp = I915_READ(SOUTH_CHICKEN1);
3665 if (temp & FDI_BC_BIFURCATION_SELECT)
3666 return;
3667
3668 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3669 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3670
3671 temp |= FDI_BC_BIFURCATION_SELECT;
3672 DRM_DEBUG_KMS("enabling fdi C rx\n");
3673 I915_WRITE(SOUTH_CHICKEN1, temp);
3674 POSTING_READ(SOUTH_CHICKEN1);
3675}
3676
3677static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3678{
3679 struct drm_device *dev = intel_crtc->base.dev;
3680 struct drm_i915_private *dev_priv = dev->dev_private;
3681
3682 switch (intel_crtc->pipe) {
3683 case PIPE_A:
3684 break;
3685 case PIPE_B:
3686 if (intel_crtc->config.fdi_lanes > 2)
3687 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3688 else
3689 cpt_enable_fdi_bc_bifurcation(dev);
3690
3691 break;
3692 case PIPE_C:
3693 cpt_enable_fdi_bc_bifurcation(dev);
3694
3695 break;
3696 default:
3697 BUG();
3698 }
3699}
3700
f67a559d
JB
3701/*
3702 * Enable PCH resources required for PCH ports:
3703 * - PCH PLLs
3704 * - FDI training & RX/TX
3705 * - update transcoder timings
3706 * - DP transcoding bits
3707 * - transcoder
3708 */
3709static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3710{
3711 struct drm_device *dev = crtc->dev;
3712 struct drm_i915_private *dev_priv = dev->dev_private;
3713 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3714 int pipe = intel_crtc->pipe;
ee7b9f93 3715 u32 reg, temp;
2c07245f 3716
ab9412ba 3717 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3718
1fbc0d78
DV
3719 if (IS_IVYBRIDGE(dev))
3720 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3721
cd986abb
DV
3722 /* Write the TU size bits before fdi link training, so that error
3723 * detection works. */
3724 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3725 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3726
c98e9dcf 3727 /* For PCH output, training FDI link */
674cf967 3728 dev_priv->display.fdi_link_train(crtc);
2c07245f 3729
3ad8a208
DV
3730 /* We need to program the right clock selection before writing the pixel
3731 * mutliplier into the DPLL. */
303b81e0 3732 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3733 u32 sel;
4b645f14 3734
c98e9dcf 3735 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3736 temp |= TRANS_DPLL_ENABLE(pipe);
3737 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3738 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3739 temp |= sel;
3740 else
3741 temp &= ~sel;
c98e9dcf 3742 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3743 }
5eddb70b 3744
3ad8a208
DV
3745 /* XXX: pch pll's can be enabled any time before we enable the PCH
3746 * transcoder, and we actually should do this to not upset any PCH
3747 * transcoder that already use the clock when we share it.
3748 *
3749 * Note that enable_shared_dpll tries to do the right thing, but
3750 * get_shared_dpll unconditionally resets the pll - we need that to have
3751 * the right LVDS enable sequence. */
85b3894f 3752 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3753
d9b6cb56
JB
3754 /* set transcoder timing, panel must allow it */
3755 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3756 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3757
303b81e0 3758 intel_fdi_normal_train(crtc);
5e84e1a4 3759
c98e9dcf
JB
3760 /* For PCH DP, enable TRANS_DP_CTL */
3761 if (HAS_PCH_CPT(dev) &&
409ee761
ACO
3762 (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3763 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3764 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3765 reg = TRANS_DP_CTL(pipe);
3766 temp = I915_READ(reg);
3767 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3768 TRANS_DP_SYNC_MASK |
3769 TRANS_DP_BPC_MASK);
5eddb70b
CW
3770 temp |= (TRANS_DP_OUTPUT_ENABLE |
3771 TRANS_DP_ENH_FRAMING);
9325c9f0 3772 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3773
3774 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3775 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3776 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3777 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3778
3779 switch (intel_trans_dp_port_sel(crtc)) {
3780 case PCH_DP_B:
5eddb70b 3781 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3782 break;
3783 case PCH_DP_C:
5eddb70b 3784 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3785 break;
3786 case PCH_DP_D:
5eddb70b 3787 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3788 break;
3789 default:
e95d41e1 3790 BUG();
32f9d658 3791 }
2c07245f 3792
5eddb70b 3793 I915_WRITE(reg, temp);
6be4a607 3794 }
b52eb4dc 3795
b8a4f404 3796 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3797}
3798
1507e5bd
PZ
3799static void lpt_pch_enable(struct drm_crtc *crtc)
3800{
3801 struct drm_device *dev = crtc->dev;
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3804 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3805
ab9412ba 3806 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3807
8c52b5e8 3808 lpt_program_iclkip(crtc);
1507e5bd 3809
0540e488 3810 /* Set transcoder timing. */
275f01b2 3811 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3812
937bb610 3813 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3814}
3815
716c2e55 3816void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3817{
e2b78267 3818 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3819
3820 if (pll == NULL)
3821 return;
3822
3823 if (pll->refcount == 0) {
46edb027 3824 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3825 return;
3826 }
3827
f4a091c7
DV
3828 if (--pll->refcount == 0) {
3829 WARN_ON(pll->on);
3830 WARN_ON(pll->active);
3831 }
3832
a43f6e0f 3833 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3834}
3835
716c2e55 3836struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3837{
e2b78267
DV
3838 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3839 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3840 enum intel_dpll_id i;
ee7b9f93 3841
ee7b9f93 3842 if (pll) {
46edb027
DV
3843 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3844 crtc->base.base.id, pll->name);
e2b78267 3845 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3846 }
3847
98b6bd99
DV
3848 if (HAS_PCH_IBX(dev_priv->dev)) {
3849 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3850 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3851 pll = &dev_priv->shared_dplls[i];
98b6bd99 3852
46edb027
DV
3853 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3854 crtc->base.base.id, pll->name);
98b6bd99 3855
f2a69f44
DV
3856 WARN_ON(pll->refcount);
3857
98b6bd99
DV
3858 goto found;
3859 }
3860
e72f9fbf
DV
3861 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3862 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3863
3864 /* Only want to check enabled timings first */
3865 if (pll->refcount == 0)
3866 continue;
3867
b89a1d39
DV
3868 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3869 sizeof(pll->hw_state)) == 0) {
46edb027 3870 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3871 crtc->base.base.id,
46edb027 3872 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3873
3874 goto found;
3875 }
3876 }
3877
3878 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3879 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3880 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3881 if (pll->refcount == 0) {
46edb027
DV
3882 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3883 crtc->base.base.id, pll->name);
ee7b9f93
JB
3884 goto found;
3885 }
3886 }
3887
3888 return NULL;
3889
3890found:
f2a69f44
DV
3891 if (pll->refcount == 0)
3892 pll->hw_state = crtc->config.dpll_hw_state;
3893
a43f6e0f 3894 crtc->config.shared_dpll = i;
46edb027
DV
3895 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3896 pipe_name(crtc->pipe));
ee7b9f93 3897
cdbd2316 3898 pll->refcount++;
e04c7350 3899
ee7b9f93
JB
3900 return pll;
3901}
3902
a1520318 3903static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3904{
3905 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3906 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3907 u32 temp;
3908
3909 temp = I915_READ(dslreg);
3910 udelay(500);
3911 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3912 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3913 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3914 }
3915}
3916
b074cec8
JB
3917static void ironlake_pfit_enable(struct intel_crtc *crtc)
3918{
3919 struct drm_device *dev = crtc->base.dev;
3920 struct drm_i915_private *dev_priv = dev->dev_private;
3921 int pipe = crtc->pipe;
3922
fd4daa9c 3923 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3924 /* Force use of hard-coded filter coefficients
3925 * as some pre-programmed values are broken,
3926 * e.g. x201.
3927 */
3928 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3929 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3930 PF_PIPE_SEL_IVB(pipe));
3931 else
3932 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3933 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3934 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3935 }
3936}
3937
bb53d4ae
VS
3938static void intel_enable_planes(struct drm_crtc *crtc)
3939{
3940 struct drm_device *dev = crtc->dev;
3941 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3942 struct drm_plane *plane;
bb53d4ae
VS
3943 struct intel_plane *intel_plane;
3944
af2b653b
MR
3945 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3946 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3947 if (intel_plane->pipe == pipe)
3948 intel_plane_restore(&intel_plane->base);
af2b653b 3949 }
bb53d4ae
VS
3950}
3951
3952static void intel_disable_planes(struct drm_crtc *crtc)
3953{
3954 struct drm_device *dev = crtc->dev;
3955 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3956 struct drm_plane *plane;
bb53d4ae
VS
3957 struct intel_plane *intel_plane;
3958
af2b653b
MR
3959 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3960 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3961 if (intel_plane->pipe == pipe)
3962 intel_plane_disable(&intel_plane->base);
af2b653b 3963 }
bb53d4ae
VS
3964}
3965
20bc8673 3966void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3967{
cea165c3
VS
3968 struct drm_device *dev = crtc->base.dev;
3969 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3970
3971 if (!crtc->config.ips_enabled)
3972 return;
3973
cea165c3
VS
3974 /* We can only enable IPS after we enable a plane and wait for a vblank */
3975 intel_wait_for_vblank(dev, crtc->pipe);
3976
d77e4531 3977 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3978 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3979 mutex_lock(&dev_priv->rps.hw_lock);
3980 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3981 mutex_unlock(&dev_priv->rps.hw_lock);
3982 /* Quoting Art Runyan: "its not safe to expect any particular
3983 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3984 * mailbox." Moreover, the mailbox may return a bogus state,
3985 * so we need to just enable it and continue on.
2a114cc1
BW
3986 */
3987 } else {
3988 I915_WRITE(IPS_CTL, IPS_ENABLE);
3989 /* The bit only becomes 1 in the next vblank, so this wait here
3990 * is essentially intel_wait_for_vblank. If we don't have this
3991 * and don't wait for vblanks until the end of crtc_enable, then
3992 * the HW state readout code will complain that the expected
3993 * IPS_CTL value is not the one we read. */
3994 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3995 DRM_ERROR("Timed out waiting for IPS enable\n");
3996 }
d77e4531
PZ
3997}
3998
20bc8673 3999void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4000{
4001 struct drm_device *dev = crtc->base.dev;
4002 struct drm_i915_private *dev_priv = dev->dev_private;
4003
4004 if (!crtc->config.ips_enabled)
4005 return;
4006
4007 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4008 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4009 mutex_lock(&dev_priv->rps.hw_lock);
4010 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4011 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4012 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4013 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4014 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4015 } else {
2a114cc1 4016 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4017 POSTING_READ(IPS_CTL);
4018 }
d77e4531
PZ
4019
4020 /* We need to wait for a vblank before we can disable the plane. */
4021 intel_wait_for_vblank(dev, crtc->pipe);
4022}
4023
4024/** Loads the palette/gamma unit for the CRTC with the prepared values */
4025static void intel_crtc_load_lut(struct drm_crtc *crtc)
4026{
4027 struct drm_device *dev = crtc->dev;
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4030 enum pipe pipe = intel_crtc->pipe;
4031 int palreg = PALETTE(pipe);
4032 int i;
4033 bool reenable_ips = false;
4034
4035 /* The clocks have to be on to load the palette. */
4036 if (!crtc->enabled || !intel_crtc->active)
4037 return;
4038
4039 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4040 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4041 assert_dsi_pll_enabled(dev_priv);
4042 else
4043 assert_pll_enabled(dev_priv, pipe);
4044 }
4045
4046 /* use legacy palette for Ironlake */
7a1db49a 4047 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4048 palreg = LGC_PALETTE(pipe);
4049
4050 /* Workaround : Do not read or write the pipe palette/gamma data while
4051 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4052 */
41e6fc4c 4053 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4054 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4055 GAMMA_MODE_MODE_SPLIT)) {
4056 hsw_disable_ips(intel_crtc);
4057 reenable_ips = true;
4058 }
4059
4060 for (i = 0; i < 256; i++) {
4061 I915_WRITE(palreg + 4 * i,
4062 (intel_crtc->lut_r[i] << 16) |
4063 (intel_crtc->lut_g[i] << 8) |
4064 intel_crtc->lut_b[i]);
4065 }
4066
4067 if (reenable_ips)
4068 hsw_enable_ips(intel_crtc);
4069}
4070
d3eedb1a
VS
4071static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4072{
4073 if (!enable && intel_crtc->overlay) {
4074 struct drm_device *dev = intel_crtc->base.dev;
4075 struct drm_i915_private *dev_priv = dev->dev_private;
4076
4077 mutex_lock(&dev->struct_mutex);
4078 dev_priv->mm.interruptible = false;
4079 (void) intel_overlay_switch_off(intel_crtc->overlay);
4080 dev_priv->mm.interruptible = true;
4081 mutex_unlock(&dev->struct_mutex);
4082 }
4083
4084 /* Let userspace switch the overlay on again. In most cases userspace
4085 * has to recompute where to put it anyway.
4086 */
4087}
4088
d3eedb1a 4089static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4090{
4091 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4093 int pipe = intel_crtc->pipe;
a5c4d7bc 4094
fdd508a6 4095 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4096 intel_enable_planes(crtc);
4097 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4098 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4099
4100 hsw_enable_ips(intel_crtc);
4101
4102 mutex_lock(&dev->struct_mutex);
4103 intel_update_fbc(dev);
4104 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4105
4106 /*
4107 * FIXME: Once we grow proper nuclear flip support out of this we need
4108 * to compute the mask of flip planes precisely. For the time being
4109 * consider this a flip from a NULL plane.
4110 */
4111 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4112}
4113
d3eedb1a 4114static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4115{
4116 struct drm_device *dev = crtc->dev;
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119 int pipe = intel_crtc->pipe;
4120 int plane = intel_crtc->plane;
4121
4122 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4123
4124 if (dev_priv->fbc.plane == plane)
4125 intel_disable_fbc(dev);
4126
4127 hsw_disable_ips(intel_crtc);
4128
d3eedb1a 4129 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4130 intel_crtc_update_cursor(crtc, false);
4131 intel_disable_planes(crtc);
fdd508a6 4132 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4133
f99d7069
DV
4134 /*
4135 * FIXME: Once we grow proper nuclear flip support out of this we need
4136 * to compute the mask of flip planes precisely. For the time being
4137 * consider this a flip to a NULL plane.
4138 */
4139 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4140}
4141
f67a559d
JB
4142static void ironlake_crtc_enable(struct drm_crtc *crtc)
4143{
4144 struct drm_device *dev = crtc->dev;
4145 struct drm_i915_private *dev_priv = dev->dev_private;
4146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4147 struct intel_encoder *encoder;
f67a559d 4148 int pipe = intel_crtc->pipe;
f67a559d 4149
08a48469
DV
4150 WARN_ON(!crtc->enabled);
4151
f67a559d
JB
4152 if (intel_crtc->active)
4153 return;
4154
b14b1055
DV
4155 if (intel_crtc->config.has_pch_encoder)
4156 intel_prepare_shared_dpll(intel_crtc);
4157
29407aab
DV
4158 if (intel_crtc->config.has_dp_encoder)
4159 intel_dp_set_m_n(intel_crtc);
4160
4161 intel_set_pipe_timings(intel_crtc);
4162
4163 if (intel_crtc->config.has_pch_encoder) {
4164 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4165 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4166 }
4167
4168 ironlake_set_pipeconf(crtc);
4169
f67a559d 4170 intel_crtc->active = true;
8664281b 4171
a72e4c9f
DV
4172 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4173 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4174
f6736a1a 4175 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4176 if (encoder->pre_enable)
4177 encoder->pre_enable(encoder);
f67a559d 4178
5bfe2ac0 4179 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4180 /* Note: FDI PLL enabling _must_ be done before we enable the
4181 * cpu pipes, hence this is separate from all the other fdi/pch
4182 * enabling. */
88cefb6c 4183 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4184 } else {
4185 assert_fdi_tx_disabled(dev_priv, pipe);
4186 assert_fdi_rx_disabled(dev_priv, pipe);
4187 }
f67a559d 4188
b074cec8 4189 ironlake_pfit_enable(intel_crtc);
f67a559d 4190
9c54c0dd
JB
4191 /*
4192 * On ILK+ LUT must be loaded before the pipe is running but with
4193 * clocks enabled
4194 */
4195 intel_crtc_load_lut(crtc);
4196
f37fcc2a 4197 intel_update_watermarks(crtc);
e1fdc473 4198 intel_enable_pipe(intel_crtc);
f67a559d 4199
5bfe2ac0 4200 if (intel_crtc->config.has_pch_encoder)
f67a559d 4201 ironlake_pch_enable(crtc);
c98e9dcf 4202
fa5c73b1
DV
4203 for_each_encoder_on_crtc(dev, crtc, encoder)
4204 encoder->enable(encoder);
61b77ddd
DV
4205
4206 if (HAS_PCH_CPT(dev))
a1520318 4207 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4208
4b3a9526
VS
4209 assert_vblank_disabled(crtc);
4210 drm_crtc_vblank_on(crtc);
4211
d3eedb1a 4212 intel_crtc_enable_planes(crtc);
6be4a607
JB
4213}
4214
42db64ef
PZ
4215/* IPS only exists on ULT machines and is tied to pipe A. */
4216static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4217{
f5adf94e 4218 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4219}
4220
e4916946
PZ
4221/*
4222 * This implements the workaround described in the "notes" section of the mode
4223 * set sequence documentation. When going from no pipes or single pipe to
4224 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4225 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4226 */
4227static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4228{
4229 struct drm_device *dev = crtc->base.dev;
4230 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4231
4232 /* We want to get the other_active_crtc only if there's only 1 other
4233 * active crtc. */
d3fcc808 4234 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4235 if (!crtc_it->active || crtc_it == crtc)
4236 continue;
4237
4238 if (other_active_crtc)
4239 return;
4240
4241 other_active_crtc = crtc_it;
4242 }
4243 if (!other_active_crtc)
4244 return;
4245
4246 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4247 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4248}
4249
4f771f10
PZ
4250static void haswell_crtc_enable(struct drm_crtc *crtc)
4251{
4252 struct drm_device *dev = crtc->dev;
4253 struct drm_i915_private *dev_priv = dev->dev_private;
4254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4255 struct intel_encoder *encoder;
4256 int pipe = intel_crtc->pipe;
4f771f10
PZ
4257
4258 WARN_ON(!crtc->enabled);
4259
4260 if (intel_crtc->active)
4261 return;
4262
df8ad70c
DV
4263 if (intel_crtc_to_shared_dpll(intel_crtc))
4264 intel_enable_shared_dpll(intel_crtc);
4265
229fca97
DV
4266 if (intel_crtc->config.has_dp_encoder)
4267 intel_dp_set_m_n(intel_crtc);
4268
4269 intel_set_pipe_timings(intel_crtc);
4270
ebb69c95
CT
4271 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4272 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4273 intel_crtc->config.pixel_multiplier - 1);
4274 }
4275
229fca97
DV
4276 if (intel_crtc->config.has_pch_encoder) {
4277 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4278 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4279 }
4280
4281 haswell_set_pipeconf(crtc);
4282
4283 intel_set_pipe_csc(crtc);
4284
4f771f10 4285 intel_crtc->active = true;
8664281b 4286
a72e4c9f 4287 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4288 for_each_encoder_on_crtc(dev, crtc, encoder)
4289 if (encoder->pre_enable)
4290 encoder->pre_enable(encoder);
4291
4fe9467d 4292 if (intel_crtc->config.has_pch_encoder) {
a72e4c9f
DV
4293 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4294 true);
4fe9467d
ID
4295 dev_priv->display.fdi_link_train(crtc);
4296 }
4297
1f544388 4298 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4299
b074cec8 4300 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4301
4302 /*
4303 * On ILK+ LUT must be loaded before the pipe is running but with
4304 * clocks enabled
4305 */
4306 intel_crtc_load_lut(crtc);
4307
1f544388 4308 intel_ddi_set_pipe_settings(crtc);
8228c251 4309 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4310
f37fcc2a 4311 intel_update_watermarks(crtc);
e1fdc473 4312 intel_enable_pipe(intel_crtc);
42db64ef 4313
5bfe2ac0 4314 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4315 lpt_pch_enable(crtc);
4f771f10 4316
0e32b39c
DA
4317 if (intel_crtc->config.dp_encoder_is_mst)
4318 intel_ddi_set_vc_payload_alloc(crtc, true);
4319
8807e55b 4320 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4321 encoder->enable(encoder);
8807e55b
JN
4322 intel_opregion_notify_encoder(encoder, true);
4323 }
4f771f10 4324
4b3a9526
VS
4325 assert_vblank_disabled(crtc);
4326 drm_crtc_vblank_on(crtc);
4327
e4916946
PZ
4328 /* If we change the relative order between pipe/planes enabling, we need
4329 * to change the workaround. */
4330 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4331 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4332}
4333
3f8dce3a
DV
4334static void ironlake_pfit_disable(struct intel_crtc *crtc)
4335{
4336 struct drm_device *dev = crtc->base.dev;
4337 struct drm_i915_private *dev_priv = dev->dev_private;
4338 int pipe = crtc->pipe;
4339
4340 /* To avoid upsetting the power well on haswell only disable the pfit if
4341 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4342 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4343 I915_WRITE(PF_CTL(pipe), 0);
4344 I915_WRITE(PF_WIN_POS(pipe), 0);
4345 I915_WRITE(PF_WIN_SZ(pipe), 0);
4346 }
4347}
4348
6be4a607
JB
4349static void ironlake_crtc_disable(struct drm_crtc *crtc)
4350{
4351 struct drm_device *dev = crtc->dev;
4352 struct drm_i915_private *dev_priv = dev->dev_private;
4353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4354 struct intel_encoder *encoder;
6be4a607 4355 int pipe = intel_crtc->pipe;
5eddb70b 4356 u32 reg, temp;
b52eb4dc 4357
f7abfe8b
CW
4358 if (!intel_crtc->active)
4359 return;
4360
d3eedb1a 4361 intel_crtc_disable_planes(crtc);
a5c4d7bc 4362
4b3a9526
VS
4363 drm_crtc_vblank_off(crtc);
4364 assert_vblank_disabled(crtc);
4365
ea9d758d
DV
4366 for_each_encoder_on_crtc(dev, crtc, encoder)
4367 encoder->disable(encoder);
4368
d925c59a 4369 if (intel_crtc->config.has_pch_encoder)
a72e4c9f 4370 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4371
575f7ab7 4372 intel_disable_pipe(intel_crtc);
32f9d658 4373
3f8dce3a 4374 ironlake_pfit_disable(intel_crtc);
2c07245f 4375
bf49ec8c
DV
4376 for_each_encoder_on_crtc(dev, crtc, encoder)
4377 if (encoder->post_disable)
4378 encoder->post_disable(encoder);
2c07245f 4379
d925c59a
DV
4380 if (intel_crtc->config.has_pch_encoder) {
4381 ironlake_fdi_disable(crtc);
913d8d11 4382
d925c59a 4383 ironlake_disable_pch_transcoder(dev_priv, pipe);
a72e4c9f 4384 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 4385
d925c59a
DV
4386 if (HAS_PCH_CPT(dev)) {
4387 /* disable TRANS_DP_CTL */
4388 reg = TRANS_DP_CTL(pipe);
4389 temp = I915_READ(reg);
4390 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4391 TRANS_DP_PORT_SEL_MASK);
4392 temp |= TRANS_DP_PORT_SEL_NONE;
4393 I915_WRITE(reg, temp);
4394
4395 /* disable DPLL_SEL */
4396 temp = I915_READ(PCH_DPLL_SEL);
11887397 4397 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4398 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4399 }
e3421a18 4400
d925c59a 4401 /* disable PCH DPLL */
e72f9fbf 4402 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4403
d925c59a
DV
4404 ironlake_fdi_pll_disable(intel_crtc);
4405 }
6b383a7f 4406
f7abfe8b 4407 intel_crtc->active = false;
46ba614c 4408 intel_update_watermarks(crtc);
d1ebd816
BW
4409
4410 mutex_lock(&dev->struct_mutex);
6b383a7f 4411 intel_update_fbc(dev);
d1ebd816 4412 mutex_unlock(&dev->struct_mutex);
6be4a607 4413}
1b3c7a47 4414
4f771f10 4415static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4416{
4f771f10
PZ
4417 struct drm_device *dev = crtc->dev;
4418 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4419 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4420 struct intel_encoder *encoder;
3b117c8f 4421 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4422
4f771f10
PZ
4423 if (!intel_crtc->active)
4424 return;
4425
d3eedb1a 4426 intel_crtc_disable_planes(crtc);
dda9a66a 4427
4b3a9526
VS
4428 drm_crtc_vblank_off(crtc);
4429 assert_vblank_disabled(crtc);
4430
8807e55b
JN
4431 for_each_encoder_on_crtc(dev, crtc, encoder) {
4432 intel_opregion_notify_encoder(encoder, false);
4f771f10 4433 encoder->disable(encoder);
8807e55b 4434 }
4f771f10 4435
8664281b 4436 if (intel_crtc->config.has_pch_encoder)
a72e4c9f
DV
4437 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4438 false);
575f7ab7 4439 intel_disable_pipe(intel_crtc);
4f771f10 4440
a4bf214f
VS
4441 if (intel_crtc->config.dp_encoder_is_mst)
4442 intel_ddi_set_vc_payload_alloc(crtc, false);
4443
ad80a810 4444 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4445
3f8dce3a 4446 ironlake_pfit_disable(intel_crtc);
4f771f10 4447
1f544388 4448 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4449
88adfff1 4450 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4451 lpt_disable_pch_transcoder(dev_priv);
a72e4c9f
DV
4452 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4453 true);
1ad960f2 4454 intel_ddi_fdi_disable(crtc);
83616634 4455 }
4f771f10 4456
97b040aa
ID
4457 for_each_encoder_on_crtc(dev, crtc, encoder)
4458 if (encoder->post_disable)
4459 encoder->post_disable(encoder);
4460
4f771f10 4461 intel_crtc->active = false;
46ba614c 4462 intel_update_watermarks(crtc);
4f771f10
PZ
4463
4464 mutex_lock(&dev->struct_mutex);
4465 intel_update_fbc(dev);
4466 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4467
4468 if (intel_crtc_to_shared_dpll(intel_crtc))
4469 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4470}
4471
ee7b9f93
JB
4472static void ironlake_crtc_off(struct drm_crtc *crtc)
4473{
4474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4475 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4476}
4477
6441ab5f 4478
2dd24552
JB
4479static void i9xx_pfit_enable(struct intel_crtc *crtc)
4480{
4481 struct drm_device *dev = crtc->base.dev;
4482 struct drm_i915_private *dev_priv = dev->dev_private;
4483 struct intel_crtc_config *pipe_config = &crtc->config;
4484
328d8e82 4485 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4486 return;
4487
2dd24552 4488 /*
c0b03411
DV
4489 * The panel fitter should only be adjusted whilst the pipe is disabled,
4490 * according to register description and PRM.
2dd24552 4491 */
c0b03411
DV
4492 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4493 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4494
b074cec8
JB
4495 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4496 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4497
4498 /* Border color in case we don't scale up to the full screen. Black by
4499 * default, change to something else for debugging. */
4500 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4501}
4502
d05410f9
DA
4503static enum intel_display_power_domain port_to_power_domain(enum port port)
4504{
4505 switch (port) {
4506 case PORT_A:
4507 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4508 case PORT_B:
4509 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4510 case PORT_C:
4511 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4512 case PORT_D:
4513 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4514 default:
4515 WARN_ON_ONCE(1);
4516 return POWER_DOMAIN_PORT_OTHER;
4517 }
4518}
4519
77d22dca
ID
4520#define for_each_power_domain(domain, mask) \
4521 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4522 if ((1 << (domain)) & (mask))
4523
319be8ae
ID
4524enum intel_display_power_domain
4525intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4526{
4527 struct drm_device *dev = intel_encoder->base.dev;
4528 struct intel_digital_port *intel_dig_port;
4529
4530 switch (intel_encoder->type) {
4531 case INTEL_OUTPUT_UNKNOWN:
4532 /* Only DDI platforms should ever use this output type */
4533 WARN_ON_ONCE(!HAS_DDI(dev));
4534 case INTEL_OUTPUT_DISPLAYPORT:
4535 case INTEL_OUTPUT_HDMI:
4536 case INTEL_OUTPUT_EDP:
4537 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4538 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4539 case INTEL_OUTPUT_DP_MST:
4540 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4541 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4542 case INTEL_OUTPUT_ANALOG:
4543 return POWER_DOMAIN_PORT_CRT;
4544 case INTEL_OUTPUT_DSI:
4545 return POWER_DOMAIN_PORT_DSI;
4546 default:
4547 return POWER_DOMAIN_PORT_OTHER;
4548 }
4549}
4550
4551static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4552{
319be8ae
ID
4553 struct drm_device *dev = crtc->dev;
4554 struct intel_encoder *intel_encoder;
4555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4556 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4557 unsigned long mask;
4558 enum transcoder transcoder;
4559
4560 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4561
4562 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4563 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4564 if (intel_crtc->config.pch_pfit.enabled ||
4565 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4566 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4567
319be8ae
ID
4568 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4569 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4570
77d22dca
ID
4571 return mask;
4572}
4573
77d22dca
ID
4574static void modeset_update_crtc_power_domains(struct drm_device *dev)
4575{
4576 struct drm_i915_private *dev_priv = dev->dev_private;
4577 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4578 struct intel_crtc *crtc;
4579
4580 /*
4581 * First get all needed power domains, then put all unneeded, to avoid
4582 * any unnecessary toggling of the power wells.
4583 */
d3fcc808 4584 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4585 enum intel_display_power_domain domain;
4586
4587 if (!crtc->base.enabled)
4588 continue;
4589
319be8ae 4590 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4591
4592 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4593 intel_display_power_get(dev_priv, domain);
4594 }
4595
d3fcc808 4596 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4597 enum intel_display_power_domain domain;
4598
4599 for_each_power_domain(domain, crtc->enabled_power_domains)
4600 intel_display_power_put(dev_priv, domain);
4601
4602 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4603 }
4604
4605 intel_display_set_init_power(dev_priv, false);
4606}
4607
dfcab17e 4608/* returns HPLL frequency in kHz */
f8bf63fd 4609static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4610{
586f49dc 4611 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4612
586f49dc
JB
4613 /* Obtain SKU information */
4614 mutex_lock(&dev_priv->dpio_lock);
4615 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4616 CCK_FUSE_HPLL_FREQ_MASK;
4617 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4618
dfcab17e 4619 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4620}
4621
f8bf63fd
VS
4622static void vlv_update_cdclk(struct drm_device *dev)
4623{
4624 struct drm_i915_private *dev_priv = dev->dev_private;
4625
4626 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4627 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4628 dev_priv->vlv_cdclk_freq);
4629
4630 /*
4631 * Program the gmbus_freq based on the cdclk frequency.
4632 * BSpec erroneously claims we should aim for 4MHz, but
4633 * in fact 1MHz is the correct frequency.
4634 */
4635 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4636}
4637
30a970c6
JB
4638/* Adjust CDclk dividers to allow high res or save power if possible */
4639static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4640{
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642 u32 val, cmd;
4643
d197b7d3 4644 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4645
dfcab17e 4646 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4647 cmd = 2;
dfcab17e 4648 else if (cdclk == 266667)
30a970c6
JB
4649 cmd = 1;
4650 else
4651 cmd = 0;
4652
4653 mutex_lock(&dev_priv->rps.hw_lock);
4654 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4655 val &= ~DSPFREQGUAR_MASK;
4656 val |= (cmd << DSPFREQGUAR_SHIFT);
4657 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4658 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4659 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4660 50)) {
4661 DRM_ERROR("timed out waiting for CDclk change\n");
4662 }
4663 mutex_unlock(&dev_priv->rps.hw_lock);
4664
dfcab17e 4665 if (cdclk == 400000) {
30a970c6
JB
4666 u32 divider, vco;
4667
4668 vco = valleyview_get_vco(dev_priv);
dfcab17e 4669 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4670
4671 mutex_lock(&dev_priv->dpio_lock);
4672 /* adjust cdclk divider */
4673 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4674 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4675 val |= divider;
4676 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4677
4678 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4679 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4680 50))
4681 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4682 mutex_unlock(&dev_priv->dpio_lock);
4683 }
4684
4685 mutex_lock(&dev_priv->dpio_lock);
4686 /* adjust self-refresh exit latency value */
4687 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4688 val &= ~0x7f;
4689
4690 /*
4691 * For high bandwidth configs, we set a higher latency in the bunit
4692 * so that the core display fetch happens in time to avoid underruns.
4693 */
dfcab17e 4694 if (cdclk == 400000)
30a970c6
JB
4695 val |= 4500 / 250; /* 4.5 usec */
4696 else
4697 val |= 3000 / 250; /* 3.0 usec */
4698 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4699 mutex_unlock(&dev_priv->dpio_lock);
4700
f8bf63fd 4701 vlv_update_cdclk(dev);
30a970c6
JB
4702}
4703
383c5a6a
VS
4704static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4705{
4706 struct drm_i915_private *dev_priv = dev->dev_private;
4707 u32 val, cmd;
4708
4709 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4710
4711 switch (cdclk) {
4712 case 400000:
4713 cmd = 3;
4714 break;
4715 case 333333:
4716 case 320000:
4717 cmd = 2;
4718 break;
4719 case 266667:
4720 cmd = 1;
4721 break;
4722 case 200000:
4723 cmd = 0;
4724 break;
4725 default:
4726 WARN_ON(1);
4727 return;
4728 }
4729
4730 mutex_lock(&dev_priv->rps.hw_lock);
4731 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4732 val &= ~DSPFREQGUAR_MASK_CHV;
4733 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4734 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4735 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4736 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4737 50)) {
4738 DRM_ERROR("timed out waiting for CDclk change\n");
4739 }
4740 mutex_unlock(&dev_priv->rps.hw_lock);
4741
4742 vlv_update_cdclk(dev);
4743}
4744
30a970c6
JB
4745static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4746 int max_pixclk)
4747{
29dc7ef3
VS
4748 int vco = valleyview_get_vco(dev_priv);
4749 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4750
d49a340d
VS
4751 /* FIXME: Punit isn't quite ready yet */
4752 if (IS_CHERRYVIEW(dev_priv->dev))
4753 return 400000;
4754
30a970c6
JB
4755 /*
4756 * Really only a few cases to deal with, as only 4 CDclks are supported:
4757 * 200MHz
4758 * 267MHz
29dc7ef3 4759 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4760 * 400MHz
4761 * So we check to see whether we're above 90% of the lower bin and
4762 * adjust if needed.
e37c67a1
VS
4763 *
4764 * We seem to get an unstable or solid color picture at 200MHz.
4765 * Not sure what's wrong. For now use 200MHz only when all pipes
4766 * are off.
30a970c6 4767 */
29dc7ef3 4768 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4769 return 400000;
4770 else if (max_pixclk > 266667*9/10)
29dc7ef3 4771 return freq_320;
e37c67a1 4772 else if (max_pixclk > 0)
dfcab17e 4773 return 266667;
e37c67a1
VS
4774 else
4775 return 200000;
30a970c6
JB
4776}
4777
2f2d7aa1
VS
4778/* compute the max pixel clock for new configuration */
4779static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4780{
4781 struct drm_device *dev = dev_priv->dev;
4782 struct intel_crtc *intel_crtc;
4783 int max_pixclk = 0;
4784
d3fcc808 4785 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4786 if (intel_crtc->new_enabled)
30a970c6 4787 max_pixclk = max(max_pixclk,
2f2d7aa1 4788 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4789 }
4790
4791 return max_pixclk;
4792}
4793
4794static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4795 unsigned *prepare_pipes)
30a970c6
JB
4796{
4797 struct drm_i915_private *dev_priv = dev->dev_private;
4798 struct intel_crtc *intel_crtc;
2f2d7aa1 4799 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4800
d60c4473
ID
4801 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4802 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4803 return;
4804
2f2d7aa1 4805 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4806 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4807 if (intel_crtc->base.enabled)
4808 *prepare_pipes |= (1 << intel_crtc->pipe);
4809}
4810
4811static void valleyview_modeset_global_resources(struct drm_device *dev)
4812{
4813 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4814 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4815 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4816
383c5a6a
VS
4817 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4818 if (IS_CHERRYVIEW(dev))
4819 cherryview_set_cdclk(dev, req_cdclk);
4820 else
4821 valleyview_set_cdclk(dev, req_cdclk);
4822 }
4823
77961eb9 4824 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4825}
4826
89b667f8
JB
4827static void valleyview_crtc_enable(struct drm_crtc *crtc)
4828{
4829 struct drm_device *dev = crtc->dev;
a72e4c9f 4830 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
4831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4832 struct intel_encoder *encoder;
4833 int pipe = intel_crtc->pipe;
23538ef1 4834 bool is_dsi;
89b667f8
JB
4835
4836 WARN_ON(!crtc->enabled);
4837
4838 if (intel_crtc->active)
4839 return;
4840
409ee761 4841 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 4842
1ae0d137
VS
4843 if (!is_dsi) {
4844 if (IS_CHERRYVIEW(dev))
4845 chv_prepare_pll(intel_crtc);
4846 else
4847 vlv_prepare_pll(intel_crtc);
4848 }
5b18e57c
DV
4849
4850 if (intel_crtc->config.has_dp_encoder)
4851 intel_dp_set_m_n(intel_crtc);
4852
4853 intel_set_pipe_timings(intel_crtc);
4854
5b18e57c
DV
4855 i9xx_set_pipeconf(intel_crtc);
4856
89b667f8 4857 intel_crtc->active = true;
89b667f8 4858
a72e4c9f 4859 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4860
89b667f8
JB
4861 for_each_encoder_on_crtc(dev, crtc, encoder)
4862 if (encoder->pre_pll_enable)
4863 encoder->pre_pll_enable(encoder);
4864
9d556c99
CML
4865 if (!is_dsi) {
4866 if (IS_CHERRYVIEW(dev))
4867 chv_enable_pll(intel_crtc);
4868 else
4869 vlv_enable_pll(intel_crtc);
4870 }
89b667f8
JB
4871
4872 for_each_encoder_on_crtc(dev, crtc, encoder)
4873 if (encoder->pre_enable)
4874 encoder->pre_enable(encoder);
4875
2dd24552
JB
4876 i9xx_pfit_enable(intel_crtc);
4877
63cbb074
VS
4878 intel_crtc_load_lut(crtc);
4879
f37fcc2a 4880 intel_update_watermarks(crtc);
e1fdc473 4881 intel_enable_pipe(intel_crtc);
be6a6f8e 4882
5004945f
JN
4883 for_each_encoder_on_crtc(dev, crtc, encoder)
4884 encoder->enable(encoder);
9ab0460b 4885
4b3a9526
VS
4886 assert_vblank_disabled(crtc);
4887 drm_crtc_vblank_on(crtc);
4888
9ab0460b 4889 intel_crtc_enable_planes(crtc);
d40d9187 4890
56b80e1f 4891 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 4892 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
4893}
4894
f13c2ef3
DV
4895static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4896{
4897 struct drm_device *dev = crtc->base.dev;
4898 struct drm_i915_private *dev_priv = dev->dev_private;
4899
4900 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4901 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4902}
4903
0b8765c6 4904static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4905{
4906 struct drm_device *dev = crtc->dev;
a72e4c9f 4907 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 4908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4909 struct intel_encoder *encoder;
79e53945 4910 int pipe = intel_crtc->pipe;
79e53945 4911
08a48469
DV
4912 WARN_ON(!crtc->enabled);
4913
f7abfe8b
CW
4914 if (intel_crtc->active)
4915 return;
4916
f13c2ef3
DV
4917 i9xx_set_pll_dividers(intel_crtc);
4918
5b18e57c
DV
4919 if (intel_crtc->config.has_dp_encoder)
4920 intel_dp_set_m_n(intel_crtc);
4921
4922 intel_set_pipe_timings(intel_crtc);
4923
5b18e57c
DV
4924 i9xx_set_pipeconf(intel_crtc);
4925
f7abfe8b 4926 intel_crtc->active = true;
6b383a7f 4927
4a3436e8 4928 if (!IS_GEN2(dev))
a72e4c9f 4929 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4930
9d6d9f19
MK
4931 for_each_encoder_on_crtc(dev, crtc, encoder)
4932 if (encoder->pre_enable)
4933 encoder->pre_enable(encoder);
4934
f6736a1a
DV
4935 i9xx_enable_pll(intel_crtc);
4936
2dd24552
JB
4937 i9xx_pfit_enable(intel_crtc);
4938
63cbb074
VS
4939 intel_crtc_load_lut(crtc);
4940
f37fcc2a 4941 intel_update_watermarks(crtc);
e1fdc473 4942 intel_enable_pipe(intel_crtc);
be6a6f8e 4943
fa5c73b1
DV
4944 for_each_encoder_on_crtc(dev, crtc, encoder)
4945 encoder->enable(encoder);
9ab0460b 4946
4b3a9526
VS
4947 assert_vblank_disabled(crtc);
4948 drm_crtc_vblank_on(crtc);
4949
9ab0460b 4950 intel_crtc_enable_planes(crtc);
d40d9187 4951
4a3436e8
VS
4952 /*
4953 * Gen2 reports pipe underruns whenever all planes are disabled.
4954 * So don't enable underrun reporting before at least some planes
4955 * are enabled.
4956 * FIXME: Need to fix the logic to work when we turn off all planes
4957 * but leave the pipe running.
4958 */
4959 if (IS_GEN2(dev))
a72e4c9f 4960 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4961
56b80e1f 4962 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 4963 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 4964}
79e53945 4965
87476d63
DV
4966static void i9xx_pfit_disable(struct intel_crtc *crtc)
4967{
4968 struct drm_device *dev = crtc->base.dev;
4969 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4970
328d8e82
DV
4971 if (!crtc->config.gmch_pfit.control)
4972 return;
87476d63 4973
328d8e82 4974 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4975
328d8e82
DV
4976 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4977 I915_READ(PFIT_CONTROL));
4978 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4979}
4980
0b8765c6
JB
4981static void i9xx_crtc_disable(struct drm_crtc *crtc)
4982{
4983 struct drm_device *dev = crtc->dev;
4984 struct drm_i915_private *dev_priv = dev->dev_private;
4985 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4986 struct intel_encoder *encoder;
0b8765c6 4987 int pipe = intel_crtc->pipe;
ef9c3aee 4988
f7abfe8b
CW
4989 if (!intel_crtc->active)
4990 return;
4991
4a3436e8
VS
4992 /*
4993 * Gen2 reports pipe underruns whenever all planes are disabled.
4994 * So diasble underrun reporting before all the planes get disabled.
4995 * FIXME: Need to fix the logic to work when we turn off all planes
4996 * but leave the pipe running.
4997 */
4998 if (IS_GEN2(dev))
a72e4c9f 4999 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5000
564ed191
ID
5001 /*
5002 * Vblank time updates from the shadow to live plane control register
5003 * are blocked if the memory self-refresh mode is active at that
5004 * moment. So to make sure the plane gets truly disabled, disable
5005 * first the self-refresh mode. The self-refresh enable bit in turn
5006 * will be checked/applied by the HW only at the next frame start
5007 * event which is after the vblank start event, so we need to have a
5008 * wait-for-vblank between disabling the plane and the pipe.
5009 */
5010 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5011 intel_crtc_disable_planes(crtc);
5012
6304cd91
VS
5013 /*
5014 * On gen2 planes are double buffered but the pipe isn't, so we must
5015 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5016 * We also need to wait on all gmch platforms because of the
5017 * self-refresh mode constraint explained above.
6304cd91 5018 */
564ed191 5019 intel_wait_for_vblank(dev, pipe);
6304cd91 5020
4b3a9526
VS
5021 drm_crtc_vblank_off(crtc);
5022 assert_vblank_disabled(crtc);
5023
5024 for_each_encoder_on_crtc(dev, crtc, encoder)
5025 encoder->disable(encoder);
5026
575f7ab7 5027 intel_disable_pipe(intel_crtc);
24a1f16d 5028
87476d63 5029 i9xx_pfit_disable(intel_crtc);
24a1f16d 5030
89b667f8
JB
5031 for_each_encoder_on_crtc(dev, crtc, encoder)
5032 if (encoder->post_disable)
5033 encoder->post_disable(encoder);
5034
409ee761 5035 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5036 if (IS_CHERRYVIEW(dev))
5037 chv_disable_pll(dev_priv, pipe);
5038 else if (IS_VALLEYVIEW(dev))
5039 vlv_disable_pll(dev_priv, pipe);
5040 else
1c4e0274 5041 i9xx_disable_pll(intel_crtc);
076ed3b2 5042 }
0b8765c6 5043
4a3436e8 5044 if (!IS_GEN2(dev))
a72e4c9f 5045 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5046
f7abfe8b 5047 intel_crtc->active = false;
46ba614c 5048 intel_update_watermarks(crtc);
f37fcc2a 5049
efa9624e 5050 mutex_lock(&dev->struct_mutex);
6b383a7f 5051 intel_update_fbc(dev);
efa9624e 5052 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5053}
5054
ee7b9f93
JB
5055static void i9xx_crtc_off(struct drm_crtc *crtc)
5056{
5057}
5058
976f8a20
DV
5059static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5060 bool enabled)
2c07245f
ZW
5061{
5062 struct drm_device *dev = crtc->dev;
5063 struct drm_i915_master_private *master_priv;
5064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5065 int pipe = intel_crtc->pipe;
79e53945
JB
5066
5067 if (!dev->primary->master)
5068 return;
5069
5070 master_priv = dev->primary->master->driver_priv;
5071 if (!master_priv->sarea_priv)
5072 return;
5073
79e53945
JB
5074 switch (pipe) {
5075 case 0:
5076 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5077 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5078 break;
5079 case 1:
5080 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5081 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5082 break;
5083 default:
9db4a9c7 5084 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
5085 break;
5086 }
79e53945
JB
5087}
5088
b04c5bd6
BF
5089/* Master function to enable/disable CRTC and corresponding power wells */
5090void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5091{
5092 struct drm_device *dev = crtc->dev;
5093 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5095 enum intel_display_power_domain domain;
5096 unsigned long domains;
976f8a20 5097
0e572fe7
DV
5098 if (enable) {
5099 if (!intel_crtc->active) {
e1e9fb84
DV
5100 domains = get_crtc_power_domains(crtc);
5101 for_each_power_domain(domain, domains)
5102 intel_display_power_get(dev_priv, domain);
5103 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5104
5105 dev_priv->display.crtc_enable(crtc);
5106 }
5107 } else {
5108 if (intel_crtc->active) {
5109 dev_priv->display.crtc_disable(crtc);
5110
e1e9fb84
DV
5111 domains = intel_crtc->enabled_power_domains;
5112 for_each_power_domain(domain, domains)
5113 intel_display_power_put(dev_priv, domain);
5114 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5115 }
5116 }
b04c5bd6
BF
5117}
5118
5119/**
5120 * Sets the power management mode of the pipe and plane.
5121 */
5122void intel_crtc_update_dpms(struct drm_crtc *crtc)
5123{
5124 struct drm_device *dev = crtc->dev;
5125 struct intel_encoder *intel_encoder;
5126 bool enable = false;
5127
5128 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5129 enable |= intel_encoder->connectors_active;
5130
5131 intel_crtc_control(crtc, enable);
976f8a20
DV
5132
5133 intel_crtc_update_sarea(crtc, enable);
5134}
5135
cdd59983
CW
5136static void intel_crtc_disable(struct drm_crtc *crtc)
5137{
cdd59983 5138 struct drm_device *dev = crtc->dev;
976f8a20 5139 struct drm_connector *connector;
ee7b9f93 5140 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5141 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5142 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5143
976f8a20
DV
5144 /* crtc should still be enabled when we disable it. */
5145 WARN_ON(!crtc->enabled);
5146
5147 dev_priv->display.crtc_disable(crtc);
5148 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5149 dev_priv->display.off(crtc);
5150
f4510a27 5151 if (crtc->primary->fb) {
cdd59983 5152 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5153 intel_unpin_fb_obj(old_obj);
5154 i915_gem_track_fb(old_obj, NULL,
5155 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5156 mutex_unlock(&dev->struct_mutex);
f4510a27 5157 crtc->primary->fb = NULL;
976f8a20
DV
5158 }
5159
5160 /* Update computed state. */
5161 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5162 if (!connector->encoder || !connector->encoder->crtc)
5163 continue;
5164
5165 if (connector->encoder->crtc != crtc)
5166 continue;
5167
5168 connector->dpms = DRM_MODE_DPMS_OFF;
5169 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5170 }
5171}
5172
ea5b213a 5173void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5174{
4ef69c7a 5175 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5176
ea5b213a
CW
5177 drm_encoder_cleanup(encoder);
5178 kfree(intel_encoder);
7e7d76c3
JB
5179}
5180
9237329d 5181/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5182 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5183 * state of the entire output pipe. */
9237329d 5184static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5185{
5ab432ef
DV
5186 if (mode == DRM_MODE_DPMS_ON) {
5187 encoder->connectors_active = true;
5188
b2cabb0e 5189 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5190 } else {
5191 encoder->connectors_active = false;
5192
b2cabb0e 5193 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5194 }
79e53945
JB
5195}
5196
0a91ca29
DV
5197/* Cross check the actual hw state with our own modeset state tracking (and it's
5198 * internal consistency). */
b980514c 5199static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5200{
0a91ca29
DV
5201 if (connector->get_hw_state(connector)) {
5202 struct intel_encoder *encoder = connector->encoder;
5203 struct drm_crtc *crtc;
5204 bool encoder_enabled;
5205 enum pipe pipe;
5206
5207 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5208 connector->base.base.id,
c23cc417 5209 connector->base.name);
0a91ca29 5210
0e32b39c
DA
5211 /* there is no real hw state for MST connectors */
5212 if (connector->mst_port)
5213 return;
5214
0a91ca29
DV
5215 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5216 "wrong connector dpms state\n");
5217 WARN(connector->base.encoder != &encoder->base,
5218 "active connector not linked to encoder\n");
0a91ca29 5219
36cd7444
DA
5220 if (encoder) {
5221 WARN(!encoder->connectors_active,
5222 "encoder->connectors_active not set\n");
5223
5224 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5225 WARN(!encoder_enabled, "encoder not enabled\n");
5226 if (WARN_ON(!encoder->base.crtc))
5227 return;
0a91ca29 5228
36cd7444 5229 crtc = encoder->base.crtc;
0a91ca29 5230
36cd7444
DA
5231 WARN(!crtc->enabled, "crtc not enabled\n");
5232 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5233 WARN(pipe != to_intel_crtc(crtc)->pipe,
5234 "encoder active on the wrong pipe\n");
5235 }
0a91ca29 5236 }
79e53945
JB
5237}
5238
5ab432ef
DV
5239/* Even simpler default implementation, if there's really no special case to
5240 * consider. */
5241void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5242{
5ab432ef
DV
5243 /* All the simple cases only support two dpms states. */
5244 if (mode != DRM_MODE_DPMS_ON)
5245 mode = DRM_MODE_DPMS_OFF;
d4270e57 5246
5ab432ef
DV
5247 if (mode == connector->dpms)
5248 return;
5249
5250 connector->dpms = mode;
5251
5252 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5253 if (connector->encoder)
5254 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5255
b980514c 5256 intel_modeset_check_state(connector->dev);
79e53945
JB
5257}
5258
f0947c37
DV
5259/* Simple connector->get_hw_state implementation for encoders that support only
5260 * one connector and no cloning and hence the encoder state determines the state
5261 * of the connector. */
5262bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5263{
24929352 5264 enum pipe pipe = 0;
f0947c37 5265 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5266
f0947c37 5267 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5268}
5269
1857e1da
DV
5270static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5271 struct intel_crtc_config *pipe_config)
5272{
5273 struct drm_i915_private *dev_priv = dev->dev_private;
5274 struct intel_crtc *pipe_B_crtc =
5275 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5276
5277 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5278 pipe_name(pipe), pipe_config->fdi_lanes);
5279 if (pipe_config->fdi_lanes > 4) {
5280 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5281 pipe_name(pipe), pipe_config->fdi_lanes);
5282 return false;
5283 }
5284
bafb6553 5285 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5286 if (pipe_config->fdi_lanes > 2) {
5287 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5288 pipe_config->fdi_lanes);
5289 return false;
5290 } else {
5291 return true;
5292 }
5293 }
5294
5295 if (INTEL_INFO(dev)->num_pipes == 2)
5296 return true;
5297
5298 /* Ivybridge 3 pipe is really complicated */
5299 switch (pipe) {
5300 case PIPE_A:
5301 return true;
5302 case PIPE_B:
5303 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5304 pipe_config->fdi_lanes > 2) {
5305 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5306 pipe_name(pipe), pipe_config->fdi_lanes);
5307 return false;
5308 }
5309 return true;
5310 case PIPE_C:
1e833f40 5311 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5312 pipe_B_crtc->config.fdi_lanes <= 2) {
5313 if (pipe_config->fdi_lanes > 2) {
5314 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5315 pipe_name(pipe), pipe_config->fdi_lanes);
5316 return false;
5317 }
5318 } else {
5319 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5320 return false;
5321 }
5322 return true;
5323 default:
5324 BUG();
5325 }
5326}
5327
e29c22c0
DV
5328#define RETRY 1
5329static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5330 struct intel_crtc_config *pipe_config)
877d48d5 5331{
1857e1da 5332 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5333 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5334 int lane, link_bw, fdi_dotclock;
e29c22c0 5335 bool setup_ok, needs_recompute = false;
877d48d5 5336
e29c22c0 5337retry:
877d48d5
DV
5338 /* FDI is a binary signal running at ~2.7GHz, encoding
5339 * each output octet as 10 bits. The actual frequency
5340 * is stored as a divider into a 100MHz clock, and the
5341 * mode pixel clock is stored in units of 1KHz.
5342 * Hence the bw of each lane in terms of the mode signal
5343 * is:
5344 */
5345 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5346
241bfc38 5347 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5348
2bd89a07 5349 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5350 pipe_config->pipe_bpp);
5351
5352 pipe_config->fdi_lanes = lane;
5353
2bd89a07 5354 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5355 link_bw, &pipe_config->fdi_m_n);
1857e1da 5356
e29c22c0
DV
5357 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5358 intel_crtc->pipe, pipe_config);
5359 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5360 pipe_config->pipe_bpp -= 2*3;
5361 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5362 pipe_config->pipe_bpp);
5363 needs_recompute = true;
5364 pipe_config->bw_constrained = true;
5365
5366 goto retry;
5367 }
5368
5369 if (needs_recompute)
5370 return RETRY;
5371
5372 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5373}
5374
42db64ef
PZ
5375static void hsw_compute_ips_config(struct intel_crtc *crtc,
5376 struct intel_crtc_config *pipe_config)
5377{
d330a953 5378 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5379 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5380 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5381}
5382
a43f6e0f 5383static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5384 struct intel_crtc_config *pipe_config)
79e53945 5385{
a43f6e0f 5386 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5387 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5388
ad3a4479 5389 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5390 if (INTEL_INFO(dev)->gen < 4) {
5391 struct drm_i915_private *dev_priv = dev->dev_private;
5392 int clock_limit =
5393 dev_priv->display.get_display_clock_speed(dev);
5394
5395 /*
5396 * Enable pixel doubling when the dot clock
5397 * is > 90% of the (display) core speed.
5398 *
b397c96b
VS
5399 * GDG double wide on either pipe,
5400 * otherwise pipe A only.
cf532bb2 5401 */
b397c96b 5402 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5403 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5404 clock_limit *= 2;
cf532bb2 5405 pipe_config->double_wide = true;
ad3a4479
VS
5406 }
5407
241bfc38 5408 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5409 return -EINVAL;
2c07245f 5410 }
89749350 5411
1d1d0e27
VS
5412 /*
5413 * Pipe horizontal size must be even in:
5414 * - DVO ganged mode
5415 * - LVDS dual channel mode
5416 * - Double wide pipe
5417 */
409ee761 5418 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5419 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5420 pipe_config->pipe_src_w &= ~1;
5421
8693a824
DL
5422 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5423 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5424 */
5425 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5426 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5427 return -EINVAL;
44f46b42 5428
bd080ee5 5429 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5430 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5431 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5432 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5433 * for lvds. */
5434 pipe_config->pipe_bpp = 8*3;
5435 }
5436
f5adf94e 5437 if (HAS_IPS(dev))
a43f6e0f
DV
5438 hsw_compute_ips_config(crtc, pipe_config);
5439
12030431
DV
5440 /*
5441 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5442 * old clock survives for now.
5443 */
5444 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5445 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5446
877d48d5 5447 if (pipe_config->has_pch_encoder)
a43f6e0f 5448 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5449
e29c22c0 5450 return 0;
79e53945
JB
5451}
5452
25eb05fc
JB
5453static int valleyview_get_display_clock_speed(struct drm_device *dev)
5454{
d197b7d3
VS
5455 struct drm_i915_private *dev_priv = dev->dev_private;
5456 int vco = valleyview_get_vco(dev_priv);
5457 u32 val;
5458 int divider;
5459
d49a340d
VS
5460 /* FIXME: Punit isn't quite ready yet */
5461 if (IS_CHERRYVIEW(dev))
5462 return 400000;
5463
d197b7d3
VS
5464 mutex_lock(&dev_priv->dpio_lock);
5465 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5466 mutex_unlock(&dev_priv->dpio_lock);
5467
5468 divider = val & DISPLAY_FREQUENCY_VALUES;
5469
7d007f40
VS
5470 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5471 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5472 "cdclk change in progress\n");
5473
d197b7d3 5474 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5475}
5476
e70236a8
JB
5477static int i945_get_display_clock_speed(struct drm_device *dev)
5478{
5479 return 400000;
5480}
79e53945 5481
e70236a8 5482static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5483{
e70236a8
JB
5484 return 333000;
5485}
79e53945 5486
e70236a8
JB
5487static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5488{
5489 return 200000;
5490}
79e53945 5491
257a7ffc
DV
5492static int pnv_get_display_clock_speed(struct drm_device *dev)
5493{
5494 u16 gcfgc = 0;
5495
5496 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5497
5498 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5499 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5500 return 267000;
5501 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5502 return 333000;
5503 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5504 return 444000;
5505 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5506 return 200000;
5507 default:
5508 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5509 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5510 return 133000;
5511 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5512 return 167000;
5513 }
5514}
5515
e70236a8
JB
5516static int i915gm_get_display_clock_speed(struct drm_device *dev)
5517{
5518 u16 gcfgc = 0;
79e53945 5519
e70236a8
JB
5520 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5521
5522 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5523 return 133000;
5524 else {
5525 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5526 case GC_DISPLAY_CLOCK_333_MHZ:
5527 return 333000;
5528 default:
5529 case GC_DISPLAY_CLOCK_190_200_MHZ:
5530 return 190000;
79e53945 5531 }
e70236a8
JB
5532 }
5533}
5534
5535static int i865_get_display_clock_speed(struct drm_device *dev)
5536{
5537 return 266000;
5538}
5539
5540static int i855_get_display_clock_speed(struct drm_device *dev)
5541{
5542 u16 hpllcc = 0;
5543 /* Assume that the hardware is in the high speed state. This
5544 * should be the default.
5545 */
5546 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5547 case GC_CLOCK_133_200:
5548 case GC_CLOCK_100_200:
5549 return 200000;
5550 case GC_CLOCK_166_250:
5551 return 250000;
5552 case GC_CLOCK_100_133:
79e53945 5553 return 133000;
e70236a8 5554 }
79e53945 5555
e70236a8
JB
5556 /* Shouldn't happen */
5557 return 0;
5558}
79e53945 5559
e70236a8
JB
5560static int i830_get_display_clock_speed(struct drm_device *dev)
5561{
5562 return 133000;
79e53945
JB
5563}
5564
2c07245f 5565static void
a65851af 5566intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5567{
a65851af
VS
5568 while (*num > DATA_LINK_M_N_MASK ||
5569 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5570 *num >>= 1;
5571 *den >>= 1;
5572 }
5573}
5574
a65851af
VS
5575static void compute_m_n(unsigned int m, unsigned int n,
5576 uint32_t *ret_m, uint32_t *ret_n)
5577{
5578 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5579 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5580 intel_reduce_m_n_ratio(ret_m, ret_n);
5581}
5582
e69d0bc1
DV
5583void
5584intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5585 int pixel_clock, int link_clock,
5586 struct intel_link_m_n *m_n)
2c07245f 5587{
e69d0bc1 5588 m_n->tu = 64;
a65851af
VS
5589
5590 compute_m_n(bits_per_pixel * pixel_clock,
5591 link_clock * nlanes * 8,
5592 &m_n->gmch_m, &m_n->gmch_n);
5593
5594 compute_m_n(pixel_clock, link_clock,
5595 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5596}
5597
a7615030
CW
5598static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5599{
d330a953
JN
5600 if (i915.panel_use_ssc >= 0)
5601 return i915.panel_use_ssc != 0;
41aa3448 5602 return dev_priv->vbt.lvds_use_ssc
435793df 5603 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5604}
5605
409ee761 5606static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5607{
409ee761 5608 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5609 struct drm_i915_private *dev_priv = dev->dev_private;
5610 int refclk;
5611
a0c4da24 5612 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5613 refclk = 100000;
a0c4da24 5614 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5615 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5616 refclk = dev_priv->vbt.lvds_ssc_freq;
5617 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5618 } else if (!IS_GEN2(dev)) {
5619 refclk = 96000;
5620 } else {
5621 refclk = 48000;
5622 }
5623
5624 return refclk;
5625}
5626
7429e9d4 5627static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5628{
7df00d7a 5629 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5630}
f47709a9 5631
7429e9d4
DV
5632static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5633{
5634 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5635}
5636
f47709a9 5637static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5638 intel_clock_t *reduced_clock)
5639{
f47709a9 5640 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5641 u32 fp, fp2 = 0;
5642
5643 if (IS_PINEVIEW(dev)) {
7429e9d4 5644 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5645 if (reduced_clock)
7429e9d4 5646 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5647 } else {
7429e9d4 5648 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5649 if (reduced_clock)
7429e9d4 5650 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5651 }
5652
8bcc2795 5653 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5654
f47709a9 5655 crtc->lowfreq_avail = false;
409ee761 5656 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5657 reduced_clock && i915.powersave) {
8bcc2795 5658 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5659 crtc->lowfreq_avail = true;
a7516a05 5660 } else {
8bcc2795 5661 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5662 }
5663}
5664
5e69f97f
CML
5665static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5666 pipe)
89b667f8
JB
5667{
5668 u32 reg_val;
5669
5670 /*
5671 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5672 * and set it to a reasonable value instead.
5673 */
ab3c759a 5674 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5675 reg_val &= 0xffffff00;
5676 reg_val |= 0x00000030;
ab3c759a 5677 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5678
ab3c759a 5679 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5680 reg_val &= 0x8cffffff;
5681 reg_val = 0x8c000000;
ab3c759a 5682 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5683
ab3c759a 5684 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5685 reg_val &= 0xffffff00;
ab3c759a 5686 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5687
ab3c759a 5688 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5689 reg_val &= 0x00ffffff;
5690 reg_val |= 0xb0000000;
ab3c759a 5691 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5692}
5693
b551842d
DV
5694static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5695 struct intel_link_m_n *m_n)
5696{
5697 struct drm_device *dev = crtc->base.dev;
5698 struct drm_i915_private *dev_priv = dev->dev_private;
5699 int pipe = crtc->pipe;
5700
e3b95f1e
DV
5701 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5702 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5703 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5704 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5705}
5706
5707static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5708 struct intel_link_m_n *m_n,
5709 struct intel_link_m_n *m2_n2)
b551842d
DV
5710{
5711 struct drm_device *dev = crtc->base.dev;
5712 struct drm_i915_private *dev_priv = dev->dev_private;
5713 int pipe = crtc->pipe;
5714 enum transcoder transcoder = crtc->config.cpu_transcoder;
5715
5716 if (INTEL_INFO(dev)->gen >= 5) {
5717 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5718 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5719 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5720 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5721 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5722 * for gen < 8) and if DRRS is supported (to make sure the
5723 * registers are not unnecessarily accessed).
5724 */
5725 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5726 crtc->config.has_drrs) {
5727 I915_WRITE(PIPE_DATA_M2(transcoder),
5728 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5729 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5730 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5731 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5732 }
b551842d 5733 } else {
e3b95f1e
DV
5734 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5735 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5736 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5737 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5738 }
5739}
5740
f769cd24 5741void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5742{
5743 if (crtc->config.has_pch_encoder)
5744 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5745 else
f769cd24
VK
5746 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5747 &crtc->config.dp_m2_n2);
03afc4a2
DV
5748}
5749
f47709a9 5750static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5751{
5752 u32 dpll, dpll_md;
5753
5754 /*
5755 * Enable DPIO clock input. We should never disable the reference
5756 * clock for pipe B, since VGA hotplug / manual detection depends
5757 * on it.
5758 */
5759 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5760 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5761 /* We should never disable this, set it here for state tracking */
5762 if (crtc->pipe == PIPE_B)
5763 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5764 dpll |= DPLL_VCO_ENABLE;
5765 crtc->config.dpll_hw_state.dpll = dpll;
5766
5767 dpll_md = (crtc->config.pixel_multiplier - 1)
5768 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5769 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5770}
5771
5772static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5773{
f47709a9 5774 struct drm_device *dev = crtc->base.dev;
a0c4da24 5775 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5776 int pipe = crtc->pipe;
bdd4b6a6 5777 u32 mdiv;
a0c4da24 5778 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5779 u32 coreclk, reg_val;
a0c4da24 5780
09153000
DV
5781 mutex_lock(&dev_priv->dpio_lock);
5782
f47709a9
DV
5783 bestn = crtc->config.dpll.n;
5784 bestm1 = crtc->config.dpll.m1;
5785 bestm2 = crtc->config.dpll.m2;
5786 bestp1 = crtc->config.dpll.p1;
5787 bestp2 = crtc->config.dpll.p2;
a0c4da24 5788
89b667f8
JB
5789 /* See eDP HDMI DPIO driver vbios notes doc */
5790
5791 /* PLL B needs special handling */
bdd4b6a6 5792 if (pipe == PIPE_B)
5e69f97f 5793 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5794
5795 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5796 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5797
5798 /* Disable target IRef on PLL */
ab3c759a 5799 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5800 reg_val &= 0x00ffffff;
ab3c759a 5801 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5802
5803 /* Disable fast lock */
ab3c759a 5804 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5805
5806 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5807 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5808 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5809 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5810 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5811
5812 /*
5813 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5814 * but we don't support that).
5815 * Note: don't use the DAC post divider as it seems unstable.
5816 */
5817 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5818 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5819
a0c4da24 5820 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5821 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5822
89b667f8 5823 /* Set HBR and RBR LPF coefficients */
ff9a6750 5824 if (crtc->config.port_clock == 162000 ||
409ee761
ACO
5825 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5826 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5827 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5828 0x009f0003);
89b667f8 5829 else
ab3c759a 5830 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5831 0x00d0000f);
5832
409ee761
ACO
5833 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP) ||
5834 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
89b667f8 5835 /* Use SSC source */
bdd4b6a6 5836 if (pipe == PIPE_A)
ab3c759a 5837 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5838 0x0df40000);
5839 else
ab3c759a 5840 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5841 0x0df70000);
5842 } else { /* HDMI or VGA */
5843 /* Use bend source */
bdd4b6a6 5844 if (pipe == PIPE_A)
ab3c759a 5845 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5846 0x0df70000);
5847 else
ab3c759a 5848 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5849 0x0df40000);
5850 }
a0c4da24 5851
ab3c759a 5852 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 5853 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
5854 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5855 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 5856 coreclk |= 0x01000000;
ab3c759a 5857 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5858
ab3c759a 5859 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5860 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5861}
5862
9d556c99 5863static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5864{
5865 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5866 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5867 DPLL_VCO_ENABLE;
5868 if (crtc->pipe != PIPE_A)
5869 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5870
5871 crtc->config.dpll_hw_state.dpll_md =
5872 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5873}
5874
5875static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5876{
5877 struct drm_device *dev = crtc->base.dev;
5878 struct drm_i915_private *dev_priv = dev->dev_private;
5879 int pipe = crtc->pipe;
5880 int dpll_reg = DPLL(crtc->pipe);
5881 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5882 u32 loopfilter, intcoeff;
9d556c99
CML
5883 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5884 int refclk;
5885
9d556c99
CML
5886 bestn = crtc->config.dpll.n;
5887 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5888 bestm1 = crtc->config.dpll.m1;
5889 bestm2 = crtc->config.dpll.m2 >> 22;
5890 bestp1 = crtc->config.dpll.p1;
5891 bestp2 = crtc->config.dpll.p2;
5892
5893 /*
5894 * Enable Refclk and SSC
5895 */
a11b0703
VS
5896 I915_WRITE(dpll_reg,
5897 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5898
5899 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5900
9d556c99
CML
5901 /* p1 and p2 divider */
5902 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5903 5 << DPIO_CHV_S1_DIV_SHIFT |
5904 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5905 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5906 1 << DPIO_CHV_K_DIV_SHIFT);
5907
5908 /* Feedback post-divider - m2 */
5909 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5910
5911 /* Feedback refclk divider - n and m1 */
5912 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5913 DPIO_CHV_M1_DIV_BY_2 |
5914 1 << DPIO_CHV_N_DIV_SHIFT);
5915
5916 /* M2 fraction division */
5917 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5918
5919 /* M2 fraction division enable */
5920 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5921 DPIO_CHV_FRAC_DIV_EN |
5922 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5923
5924 /* Loop filter */
409ee761 5925 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
5926 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5927 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5928 if (refclk == 100000)
5929 intcoeff = 11;
5930 else if (refclk == 38400)
5931 intcoeff = 10;
5932 else
5933 intcoeff = 9;
5934 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5935 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5936
5937 /* AFC Recal */
5938 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5939 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5940 DPIO_AFC_RECAL);
5941
5942 mutex_unlock(&dev_priv->dpio_lock);
5943}
5944
f47709a9
DV
5945static void i9xx_update_pll(struct intel_crtc *crtc,
5946 intel_clock_t *reduced_clock,
eb1cbe48
DV
5947 int num_connectors)
5948{
f47709a9 5949 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5950 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5951 u32 dpll;
5952 bool is_sdvo;
f47709a9 5953 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5954
f47709a9 5955 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5956
409ee761
ACO
5957 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
5958 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5959
5960 dpll = DPLL_VGA_MODE_DIS;
5961
409ee761 5962 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5963 dpll |= DPLLB_MODE_LVDS;
5964 else
5965 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5966
ef1b460d 5967 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5968 dpll |= (crtc->config.pixel_multiplier - 1)
5969 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5970 }
198a037f
DV
5971
5972 if (is_sdvo)
4a33e48d 5973 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5974
409ee761 5975 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5976 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5977
5978 /* compute bitmask from p1 value */
5979 if (IS_PINEVIEW(dev))
5980 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5981 else {
5982 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5983 if (IS_G4X(dev) && reduced_clock)
5984 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5985 }
5986 switch (clock->p2) {
5987 case 5:
5988 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5989 break;
5990 case 7:
5991 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5992 break;
5993 case 10:
5994 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5995 break;
5996 case 14:
5997 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5998 break;
5999 }
6000 if (INTEL_INFO(dev)->gen >= 4)
6001 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6002
09ede541 6003 if (crtc->config.sdvo_tv_clock)
eb1cbe48 6004 dpll |= PLL_REF_INPUT_TVCLKINBC;
409ee761 6005 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6006 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6007 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6008 else
6009 dpll |= PLL_REF_INPUT_DREFCLK;
6010
6011 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
6012 crtc->config.dpll_hw_state.dpll = dpll;
6013
eb1cbe48 6014 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
6015 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
6016 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 6017 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6018 }
6019}
6020
f47709a9 6021static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 6022 intel_clock_t *reduced_clock,
eb1cbe48
DV
6023 int num_connectors)
6024{
f47709a9 6025 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6026 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6027 u32 dpll;
f47709a9 6028 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 6029
f47709a9 6030 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6031
eb1cbe48
DV
6032 dpll = DPLL_VGA_MODE_DIS;
6033
409ee761 6034 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6035 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6036 } else {
6037 if (clock->p1 == 2)
6038 dpll |= PLL_P1_DIVIDE_BY_TWO;
6039 else
6040 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6041 if (clock->p2 == 4)
6042 dpll |= PLL_P2_DIVIDE_BY_4;
6043 }
6044
409ee761 6045 if (!IS_I830(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6046 dpll |= DPLL_DVO_2X_MODE;
6047
409ee761 6048 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6049 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6050 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6051 else
6052 dpll |= PLL_REF_INPUT_DREFCLK;
6053
6054 dpll |= DPLL_VCO_ENABLE;
8bcc2795 6055 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6056}
6057
8a654f3b 6058static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6059{
6060 struct drm_device *dev = intel_crtc->base.dev;
6061 struct drm_i915_private *dev_priv = dev->dev_private;
6062 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6063 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6064 struct drm_display_mode *adjusted_mode =
6065 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6066 uint32_t crtc_vtotal, crtc_vblank_end;
6067 int vsyncshift = 0;
4d8a62ea
DV
6068
6069 /* We need to be careful not to changed the adjusted mode, for otherwise
6070 * the hw state checker will get angry at the mismatch. */
6071 crtc_vtotal = adjusted_mode->crtc_vtotal;
6072 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6073
609aeaca 6074 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6075 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6076 crtc_vtotal -= 1;
6077 crtc_vblank_end -= 1;
609aeaca 6078
409ee761 6079 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6080 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6081 else
6082 vsyncshift = adjusted_mode->crtc_hsync_start -
6083 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6084 if (vsyncshift < 0)
6085 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6086 }
6087
6088 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6089 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6090
fe2b8f9d 6091 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6092 (adjusted_mode->crtc_hdisplay - 1) |
6093 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6094 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6095 (adjusted_mode->crtc_hblank_start - 1) |
6096 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6097 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6098 (adjusted_mode->crtc_hsync_start - 1) |
6099 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6100
fe2b8f9d 6101 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6102 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6103 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6104 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6105 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6106 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6107 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6108 (adjusted_mode->crtc_vsync_start - 1) |
6109 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6110
b5e508d4
PZ
6111 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6112 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6113 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6114 * bits. */
6115 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6116 (pipe == PIPE_B || pipe == PIPE_C))
6117 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6118
b0e77b9c
PZ
6119 /* pipesrc controls the size that is scaled from, which should
6120 * always be the user's requested size.
6121 */
6122 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6123 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6124 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6125}
6126
1bd1bd80
DV
6127static void intel_get_pipe_timings(struct intel_crtc *crtc,
6128 struct intel_crtc_config *pipe_config)
6129{
6130 struct drm_device *dev = crtc->base.dev;
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6133 uint32_t tmp;
6134
6135 tmp = I915_READ(HTOTAL(cpu_transcoder));
6136 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6137 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6138 tmp = I915_READ(HBLANK(cpu_transcoder));
6139 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6140 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6141 tmp = I915_READ(HSYNC(cpu_transcoder));
6142 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6143 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6144
6145 tmp = I915_READ(VTOTAL(cpu_transcoder));
6146 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6147 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6148 tmp = I915_READ(VBLANK(cpu_transcoder));
6149 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6150 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6151 tmp = I915_READ(VSYNC(cpu_transcoder));
6152 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6153 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6154
6155 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6156 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6157 pipe_config->adjusted_mode.crtc_vtotal += 1;
6158 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6159 }
6160
6161 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6162 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6163 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6164
6165 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6166 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6167}
6168
f6a83288
DV
6169void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6170 struct intel_crtc_config *pipe_config)
babea61d 6171{
f6a83288
DV
6172 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6173 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6174 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6175 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6176
f6a83288
DV
6177 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6178 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6179 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6180 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6181
f6a83288 6182 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6183
f6a83288
DV
6184 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6185 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6186}
6187
84b046f3
DV
6188static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6189{
6190 struct drm_device *dev = intel_crtc->base.dev;
6191 struct drm_i915_private *dev_priv = dev->dev_private;
6192 uint32_t pipeconf;
6193
9f11a9e4 6194 pipeconf = 0;
84b046f3 6195
b6b5d049
VS
6196 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6197 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6198 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6199
cf532bb2
VS
6200 if (intel_crtc->config.double_wide)
6201 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6202
ff9ce46e
DV
6203 /* only g4x and later have fancy bpc/dither controls */
6204 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6205 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6206 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6207 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6208 PIPECONF_DITHER_TYPE_SP;
84b046f3 6209
ff9ce46e
DV
6210 switch (intel_crtc->config.pipe_bpp) {
6211 case 18:
6212 pipeconf |= PIPECONF_6BPC;
6213 break;
6214 case 24:
6215 pipeconf |= PIPECONF_8BPC;
6216 break;
6217 case 30:
6218 pipeconf |= PIPECONF_10BPC;
6219 break;
6220 default:
6221 /* Case prevented by intel_choose_pipe_bpp_dither. */
6222 BUG();
84b046f3
DV
6223 }
6224 }
6225
6226 if (HAS_PIPE_CXSR(dev)) {
6227 if (intel_crtc->lowfreq_avail) {
6228 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6229 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6230 } else {
6231 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6232 }
6233 }
6234
efc2cfff
VS
6235 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6236 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6237 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6238 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6239 else
6240 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6241 } else
84b046f3
DV
6242 pipeconf |= PIPECONF_PROGRESSIVE;
6243
9f11a9e4
DV
6244 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6245 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6246
84b046f3
DV
6247 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6248 POSTING_READ(PIPECONF(intel_crtc->pipe));
6249}
6250
c7653199 6251static int i9xx_crtc_mode_set(struct intel_crtc *crtc,
f564048e 6252 int x, int y,
94352cf9 6253 struct drm_framebuffer *fb)
79e53945 6254{
c7653199 6255 struct drm_device *dev = crtc->base.dev;
79e53945 6256 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6257 int refclk, num_connectors = 0;
652c393a 6258 intel_clock_t clock, reduced_clock;
a16af721 6259 bool ok, has_reduced_clock = false;
e9fd1c02 6260 bool is_lvds = false, is_dsi = false;
5eddb70b 6261 struct intel_encoder *encoder;
d4906093 6262 const intel_limit_t *limit;
79e53945 6263
c7653199 6264 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
5eddb70b 6265 switch (encoder->type) {
79e53945
JB
6266 case INTEL_OUTPUT_LVDS:
6267 is_lvds = true;
6268 break;
e9fd1c02
JN
6269 case INTEL_OUTPUT_DSI:
6270 is_dsi = true;
6271 break;
79e53945 6272 }
43565a06 6273
c751ce4f 6274 num_connectors++;
79e53945
JB
6275 }
6276
f2335330 6277 if (is_dsi)
5b18e57c 6278 return 0;
f2335330 6279
c7653199 6280 if (!crtc->config.clock_set) {
409ee761 6281 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6282
e9fd1c02
JN
6283 /*
6284 * Returns a set of divisors for the desired target clock with
6285 * the given refclk, or FALSE. The returned values represent
6286 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6287 * 2) / p1 / p2.
6288 */
409ee761 6289 limit = intel_limit(crtc, refclk);
c7653199
ACO
6290 ok = dev_priv->display.find_dpll(limit, crtc,
6291 crtc->config.port_clock,
e9fd1c02 6292 refclk, NULL, &clock);
f2335330 6293 if (!ok) {
e9fd1c02
JN
6294 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6295 return -EINVAL;
6296 }
79e53945 6297
f2335330
JN
6298 if (is_lvds && dev_priv->lvds_downclock_avail) {
6299 /*
6300 * Ensure we match the reduced clock's P to the target
6301 * clock. If the clocks don't match, we can't switch
6302 * the display clock by using the FP0/FP1. In such case
6303 * we will disable the LVDS downclock feature.
6304 */
6305 has_reduced_clock =
c7653199 6306 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6307 dev_priv->lvds_downclock,
6308 refclk, &clock,
6309 &reduced_clock);
6310 }
6311 /* Compat-code for transition, will disappear. */
c7653199
ACO
6312 crtc->config.dpll.n = clock.n;
6313 crtc->config.dpll.m1 = clock.m1;
6314 crtc->config.dpll.m2 = clock.m2;
6315 crtc->config.dpll.p1 = clock.p1;
6316 crtc->config.dpll.p2 = clock.p2;
f47709a9 6317 }
7026d4ac 6318
e9fd1c02 6319 if (IS_GEN2(dev)) {
c7653199 6320 i8xx_update_pll(crtc,
2a8f64ca
VP
6321 has_reduced_clock ? &reduced_clock : NULL,
6322 num_connectors);
9d556c99 6323 } else if (IS_CHERRYVIEW(dev)) {
c7653199 6324 chv_update_pll(crtc);
e9fd1c02 6325 } else if (IS_VALLEYVIEW(dev)) {
c7653199 6326 vlv_update_pll(crtc);
e9fd1c02 6327 } else {
c7653199 6328 i9xx_update_pll(crtc,
eb1cbe48 6329 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6330 num_connectors);
e9fd1c02 6331 }
79e53945 6332
c8f7a0db 6333 return 0;
f564048e
EA
6334}
6335
2fa2fe9a
DV
6336static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6337 struct intel_crtc_config *pipe_config)
6338{
6339 struct drm_device *dev = crtc->base.dev;
6340 struct drm_i915_private *dev_priv = dev->dev_private;
6341 uint32_t tmp;
6342
dc9e7dec
VS
6343 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6344 return;
6345
2fa2fe9a 6346 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6347 if (!(tmp & PFIT_ENABLE))
6348 return;
2fa2fe9a 6349
06922821 6350 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6351 if (INTEL_INFO(dev)->gen < 4) {
6352 if (crtc->pipe != PIPE_B)
6353 return;
2fa2fe9a
DV
6354 } else {
6355 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6356 return;
6357 }
6358
06922821 6359 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6360 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6361 if (INTEL_INFO(dev)->gen < 5)
6362 pipe_config->gmch_pfit.lvds_border_bits =
6363 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6364}
6365
acbec814
JB
6366static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6367 struct intel_crtc_config *pipe_config)
6368{
6369 struct drm_device *dev = crtc->base.dev;
6370 struct drm_i915_private *dev_priv = dev->dev_private;
6371 int pipe = pipe_config->cpu_transcoder;
6372 intel_clock_t clock;
6373 u32 mdiv;
662c6ecb 6374 int refclk = 100000;
acbec814 6375
f573de5a
SK
6376 /* In case of MIPI DPLL will not even be used */
6377 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6378 return;
6379
acbec814 6380 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6381 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6382 mutex_unlock(&dev_priv->dpio_lock);
6383
6384 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6385 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6386 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6387 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6388 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6389
f646628b 6390 vlv_clock(refclk, &clock);
acbec814 6391
f646628b
VS
6392 /* clock.dot is the fast clock */
6393 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6394}
6395
1ad292b5
JB
6396static void i9xx_get_plane_config(struct intel_crtc *crtc,
6397 struct intel_plane_config *plane_config)
6398{
6399 struct drm_device *dev = crtc->base.dev;
6400 struct drm_i915_private *dev_priv = dev->dev_private;
6401 u32 val, base, offset;
6402 int pipe = crtc->pipe, plane = crtc->plane;
6403 int fourcc, pixel_format;
6404 int aligned_height;
6405
66e514c1
DA
6406 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6407 if (!crtc->base.primary->fb) {
1ad292b5
JB
6408 DRM_DEBUG_KMS("failed to alloc fb\n");
6409 return;
6410 }
6411
6412 val = I915_READ(DSPCNTR(plane));
6413
6414 if (INTEL_INFO(dev)->gen >= 4)
6415 if (val & DISPPLANE_TILED)
6416 plane_config->tiled = true;
6417
6418 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6419 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6420 crtc->base.primary->fb->pixel_format = fourcc;
6421 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6422 drm_format_plane_cpp(fourcc, 0) * 8;
6423
6424 if (INTEL_INFO(dev)->gen >= 4) {
6425 if (plane_config->tiled)
6426 offset = I915_READ(DSPTILEOFF(plane));
6427 else
6428 offset = I915_READ(DSPLINOFF(plane));
6429 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6430 } else {
6431 base = I915_READ(DSPADDR(plane));
6432 }
6433 plane_config->base = base;
6434
6435 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6436 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6437 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6438
6439 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6440 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6441
66e514c1 6442 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6443 plane_config->tiled);
6444
1267a26b
FF
6445 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6446 aligned_height);
1ad292b5
JB
6447
6448 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6449 pipe, plane, crtc->base.primary->fb->width,
6450 crtc->base.primary->fb->height,
6451 crtc->base.primary->fb->bits_per_pixel, base,
6452 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6453 plane_config->size);
6454
6455}
6456
70b23a98
VS
6457static void chv_crtc_clock_get(struct intel_crtc *crtc,
6458 struct intel_crtc_config *pipe_config)
6459{
6460 struct drm_device *dev = crtc->base.dev;
6461 struct drm_i915_private *dev_priv = dev->dev_private;
6462 int pipe = pipe_config->cpu_transcoder;
6463 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6464 intel_clock_t clock;
6465 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6466 int refclk = 100000;
6467
6468 mutex_lock(&dev_priv->dpio_lock);
6469 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6470 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6471 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6472 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6473 mutex_unlock(&dev_priv->dpio_lock);
6474
6475 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6476 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6477 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6478 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6479 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6480
6481 chv_clock(refclk, &clock);
6482
6483 /* clock.dot is the fast clock */
6484 pipe_config->port_clock = clock.dot / 5;
6485}
6486
0e8ffe1b
DV
6487static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6488 struct intel_crtc_config *pipe_config)
6489{
6490 struct drm_device *dev = crtc->base.dev;
6491 struct drm_i915_private *dev_priv = dev->dev_private;
6492 uint32_t tmp;
6493
f458ebbc
DV
6494 if (!intel_display_power_is_enabled(dev_priv,
6495 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6496 return false;
6497
e143a21c 6498 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6499 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6500
0e8ffe1b
DV
6501 tmp = I915_READ(PIPECONF(crtc->pipe));
6502 if (!(tmp & PIPECONF_ENABLE))
6503 return false;
6504
42571aef
VS
6505 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6506 switch (tmp & PIPECONF_BPC_MASK) {
6507 case PIPECONF_6BPC:
6508 pipe_config->pipe_bpp = 18;
6509 break;
6510 case PIPECONF_8BPC:
6511 pipe_config->pipe_bpp = 24;
6512 break;
6513 case PIPECONF_10BPC:
6514 pipe_config->pipe_bpp = 30;
6515 break;
6516 default:
6517 break;
6518 }
6519 }
6520
b5a9fa09
DV
6521 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6522 pipe_config->limited_color_range = true;
6523
282740f7
VS
6524 if (INTEL_INFO(dev)->gen < 4)
6525 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6526
1bd1bd80
DV
6527 intel_get_pipe_timings(crtc, pipe_config);
6528
2fa2fe9a
DV
6529 i9xx_get_pfit_config(crtc, pipe_config);
6530
6c49f241
DV
6531 if (INTEL_INFO(dev)->gen >= 4) {
6532 tmp = I915_READ(DPLL_MD(crtc->pipe));
6533 pipe_config->pixel_multiplier =
6534 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6535 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6536 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6537 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6538 tmp = I915_READ(DPLL(crtc->pipe));
6539 pipe_config->pixel_multiplier =
6540 ((tmp & SDVO_MULTIPLIER_MASK)
6541 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6542 } else {
6543 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6544 * port and will be fixed up in the encoder->get_config
6545 * function. */
6546 pipe_config->pixel_multiplier = 1;
6547 }
8bcc2795
DV
6548 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6549 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6550 /*
6551 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6552 * on 830. Filter it out here so that we don't
6553 * report errors due to that.
6554 */
6555 if (IS_I830(dev))
6556 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6557
8bcc2795
DV
6558 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6559 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6560 } else {
6561 /* Mask out read-only status bits. */
6562 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6563 DPLL_PORTC_READY_MASK |
6564 DPLL_PORTB_READY_MASK);
8bcc2795 6565 }
6c49f241 6566
70b23a98
VS
6567 if (IS_CHERRYVIEW(dev))
6568 chv_crtc_clock_get(crtc, pipe_config);
6569 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6570 vlv_crtc_clock_get(crtc, pipe_config);
6571 else
6572 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6573
0e8ffe1b
DV
6574 return true;
6575}
6576
dde86e2d 6577static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6578{
6579 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6580 struct intel_encoder *encoder;
74cfd7ac 6581 u32 val, final;
13d83a67 6582 bool has_lvds = false;
199e5d79 6583 bool has_cpu_edp = false;
199e5d79 6584 bool has_panel = false;
99eb6a01
KP
6585 bool has_ck505 = false;
6586 bool can_ssc = false;
13d83a67
JB
6587
6588 /* We need to take the global config into account */
b2784e15 6589 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6590 switch (encoder->type) {
6591 case INTEL_OUTPUT_LVDS:
6592 has_panel = true;
6593 has_lvds = true;
6594 break;
6595 case INTEL_OUTPUT_EDP:
6596 has_panel = true;
2de6905f 6597 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6598 has_cpu_edp = true;
6599 break;
13d83a67
JB
6600 }
6601 }
6602
99eb6a01 6603 if (HAS_PCH_IBX(dev)) {
41aa3448 6604 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6605 can_ssc = has_ck505;
6606 } else {
6607 has_ck505 = false;
6608 can_ssc = true;
6609 }
6610
2de6905f
ID
6611 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6612 has_panel, has_lvds, has_ck505);
13d83a67
JB
6613
6614 /* Ironlake: try to setup display ref clock before DPLL
6615 * enabling. This is only under driver's control after
6616 * PCH B stepping, previous chipset stepping should be
6617 * ignoring this setting.
6618 */
74cfd7ac
CW
6619 val = I915_READ(PCH_DREF_CONTROL);
6620
6621 /* As we must carefully and slowly disable/enable each source in turn,
6622 * compute the final state we want first and check if we need to
6623 * make any changes at all.
6624 */
6625 final = val;
6626 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6627 if (has_ck505)
6628 final |= DREF_NONSPREAD_CK505_ENABLE;
6629 else
6630 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6631
6632 final &= ~DREF_SSC_SOURCE_MASK;
6633 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6634 final &= ~DREF_SSC1_ENABLE;
6635
6636 if (has_panel) {
6637 final |= DREF_SSC_SOURCE_ENABLE;
6638
6639 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6640 final |= DREF_SSC1_ENABLE;
6641
6642 if (has_cpu_edp) {
6643 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6644 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6645 else
6646 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6647 } else
6648 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6649 } else {
6650 final |= DREF_SSC_SOURCE_DISABLE;
6651 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6652 }
6653
6654 if (final == val)
6655 return;
6656
13d83a67 6657 /* Always enable nonspread source */
74cfd7ac 6658 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6659
99eb6a01 6660 if (has_ck505)
74cfd7ac 6661 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6662 else
74cfd7ac 6663 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6664
199e5d79 6665 if (has_panel) {
74cfd7ac
CW
6666 val &= ~DREF_SSC_SOURCE_MASK;
6667 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6668
199e5d79 6669 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6670 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6671 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6672 val |= DREF_SSC1_ENABLE;
e77166b5 6673 } else
74cfd7ac 6674 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6675
6676 /* Get SSC going before enabling the outputs */
74cfd7ac 6677 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6678 POSTING_READ(PCH_DREF_CONTROL);
6679 udelay(200);
6680
74cfd7ac 6681 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6682
6683 /* Enable CPU source on CPU attached eDP */
199e5d79 6684 if (has_cpu_edp) {
99eb6a01 6685 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6686 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6687 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6688 } else
74cfd7ac 6689 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6690 } else
74cfd7ac 6691 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6692
74cfd7ac 6693 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6694 POSTING_READ(PCH_DREF_CONTROL);
6695 udelay(200);
6696 } else {
6697 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6698
74cfd7ac 6699 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6700
6701 /* Turn off CPU output */
74cfd7ac 6702 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6703
74cfd7ac 6704 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6705 POSTING_READ(PCH_DREF_CONTROL);
6706 udelay(200);
6707
6708 /* Turn off the SSC source */
74cfd7ac
CW
6709 val &= ~DREF_SSC_SOURCE_MASK;
6710 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6711
6712 /* Turn off SSC1 */
74cfd7ac 6713 val &= ~DREF_SSC1_ENABLE;
199e5d79 6714
74cfd7ac 6715 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6716 POSTING_READ(PCH_DREF_CONTROL);
6717 udelay(200);
6718 }
74cfd7ac
CW
6719
6720 BUG_ON(val != final);
13d83a67
JB
6721}
6722
f31f2d55 6723static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6724{
f31f2d55 6725 uint32_t tmp;
dde86e2d 6726
0ff066a9
PZ
6727 tmp = I915_READ(SOUTH_CHICKEN2);
6728 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6729 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6730
0ff066a9
PZ
6731 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6732 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6733 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6734
0ff066a9
PZ
6735 tmp = I915_READ(SOUTH_CHICKEN2);
6736 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6737 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6738
0ff066a9
PZ
6739 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6740 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6741 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6742}
6743
6744/* WaMPhyProgramming:hsw */
6745static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6746{
6747 uint32_t tmp;
dde86e2d
PZ
6748
6749 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6750 tmp &= ~(0xFF << 24);
6751 tmp |= (0x12 << 24);
6752 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6753
dde86e2d
PZ
6754 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6755 tmp |= (1 << 11);
6756 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6757
6758 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6759 tmp |= (1 << 11);
6760 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6761
dde86e2d
PZ
6762 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6763 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6764 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6765
6766 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6767 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6768 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6769
0ff066a9
PZ
6770 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6771 tmp &= ~(7 << 13);
6772 tmp |= (5 << 13);
6773 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6774
0ff066a9
PZ
6775 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6776 tmp &= ~(7 << 13);
6777 tmp |= (5 << 13);
6778 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6779
6780 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6781 tmp &= ~0xFF;
6782 tmp |= 0x1C;
6783 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6784
6785 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6786 tmp &= ~0xFF;
6787 tmp |= 0x1C;
6788 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6789
6790 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6791 tmp &= ~(0xFF << 16);
6792 tmp |= (0x1C << 16);
6793 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6794
6795 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6796 tmp &= ~(0xFF << 16);
6797 tmp |= (0x1C << 16);
6798 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6799
0ff066a9
PZ
6800 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6801 tmp |= (1 << 27);
6802 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6803
0ff066a9
PZ
6804 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6805 tmp |= (1 << 27);
6806 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6807
0ff066a9
PZ
6808 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6809 tmp &= ~(0xF << 28);
6810 tmp |= (4 << 28);
6811 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6812
0ff066a9
PZ
6813 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6814 tmp &= ~(0xF << 28);
6815 tmp |= (4 << 28);
6816 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6817}
6818
2fa86a1f
PZ
6819/* Implements 3 different sequences from BSpec chapter "Display iCLK
6820 * Programming" based on the parameters passed:
6821 * - Sequence to enable CLKOUT_DP
6822 * - Sequence to enable CLKOUT_DP without spread
6823 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6824 */
6825static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6826 bool with_fdi)
f31f2d55
PZ
6827{
6828 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6829 uint32_t reg, tmp;
6830
6831 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6832 with_spread = true;
6833 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6834 with_fdi, "LP PCH doesn't have FDI\n"))
6835 with_fdi = false;
f31f2d55
PZ
6836
6837 mutex_lock(&dev_priv->dpio_lock);
6838
6839 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6840 tmp &= ~SBI_SSCCTL_DISABLE;
6841 tmp |= SBI_SSCCTL_PATHALT;
6842 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6843
6844 udelay(24);
6845
2fa86a1f
PZ
6846 if (with_spread) {
6847 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6848 tmp &= ~SBI_SSCCTL_PATHALT;
6849 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6850
2fa86a1f
PZ
6851 if (with_fdi) {
6852 lpt_reset_fdi_mphy(dev_priv);
6853 lpt_program_fdi_mphy(dev_priv);
6854 }
6855 }
dde86e2d 6856
2fa86a1f
PZ
6857 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6858 SBI_GEN0 : SBI_DBUFF0;
6859 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6860 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6861 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6862
6863 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6864}
6865
47701c3b
PZ
6866/* Sequence to disable CLKOUT_DP */
6867static void lpt_disable_clkout_dp(struct drm_device *dev)
6868{
6869 struct drm_i915_private *dev_priv = dev->dev_private;
6870 uint32_t reg, tmp;
6871
6872 mutex_lock(&dev_priv->dpio_lock);
6873
6874 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6875 SBI_GEN0 : SBI_DBUFF0;
6876 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6877 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6878 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6879
6880 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6881 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6882 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6883 tmp |= SBI_SSCCTL_PATHALT;
6884 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6885 udelay(32);
6886 }
6887 tmp |= SBI_SSCCTL_DISABLE;
6888 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6889 }
6890
6891 mutex_unlock(&dev_priv->dpio_lock);
6892}
6893
bf8fa3d3
PZ
6894static void lpt_init_pch_refclk(struct drm_device *dev)
6895{
bf8fa3d3
PZ
6896 struct intel_encoder *encoder;
6897 bool has_vga = false;
6898
b2784e15 6899 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6900 switch (encoder->type) {
6901 case INTEL_OUTPUT_ANALOG:
6902 has_vga = true;
6903 break;
6904 }
6905 }
6906
47701c3b
PZ
6907 if (has_vga)
6908 lpt_enable_clkout_dp(dev, true, true);
6909 else
6910 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6911}
6912
dde86e2d
PZ
6913/*
6914 * Initialize reference clocks when the driver loads
6915 */
6916void intel_init_pch_refclk(struct drm_device *dev)
6917{
6918 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6919 ironlake_init_pch_refclk(dev);
6920 else if (HAS_PCH_LPT(dev))
6921 lpt_init_pch_refclk(dev);
6922}
6923
d9d444cb
JB
6924static int ironlake_get_refclk(struct drm_crtc *crtc)
6925{
6926 struct drm_device *dev = crtc->dev;
6927 struct drm_i915_private *dev_priv = dev->dev_private;
6928 struct intel_encoder *encoder;
d9d444cb
JB
6929 int num_connectors = 0;
6930 bool is_lvds = false;
6931
6c2b7c12 6932 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6933 switch (encoder->type) {
6934 case INTEL_OUTPUT_LVDS:
6935 is_lvds = true;
6936 break;
d9d444cb
JB
6937 }
6938 num_connectors++;
6939 }
6940
6941 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6942 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6943 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6944 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6945 }
6946
6947 return 120000;
6948}
6949
6ff93609 6950static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6951{
c8203565 6952 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6953 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6954 int pipe = intel_crtc->pipe;
c8203565
PZ
6955 uint32_t val;
6956
78114071 6957 val = 0;
c8203565 6958
965e0c48 6959 switch (intel_crtc->config.pipe_bpp) {
c8203565 6960 case 18:
dfd07d72 6961 val |= PIPECONF_6BPC;
c8203565
PZ
6962 break;
6963 case 24:
dfd07d72 6964 val |= PIPECONF_8BPC;
c8203565
PZ
6965 break;
6966 case 30:
dfd07d72 6967 val |= PIPECONF_10BPC;
c8203565
PZ
6968 break;
6969 case 36:
dfd07d72 6970 val |= PIPECONF_12BPC;
c8203565
PZ
6971 break;
6972 default:
cc769b62
PZ
6973 /* Case prevented by intel_choose_pipe_bpp_dither. */
6974 BUG();
c8203565
PZ
6975 }
6976
d8b32247 6977 if (intel_crtc->config.dither)
c8203565
PZ
6978 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6979
6ff93609 6980 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6981 val |= PIPECONF_INTERLACED_ILK;
6982 else
6983 val |= PIPECONF_PROGRESSIVE;
6984
50f3b016 6985 if (intel_crtc->config.limited_color_range)
3685a8f3 6986 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6987
c8203565
PZ
6988 I915_WRITE(PIPECONF(pipe), val);
6989 POSTING_READ(PIPECONF(pipe));
6990}
6991
86d3efce
VS
6992/*
6993 * Set up the pipe CSC unit.
6994 *
6995 * Currently only full range RGB to limited range RGB conversion
6996 * is supported, but eventually this should handle various
6997 * RGB<->YCbCr scenarios as well.
6998 */
50f3b016 6999static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7000{
7001 struct drm_device *dev = crtc->dev;
7002 struct drm_i915_private *dev_priv = dev->dev_private;
7003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7004 int pipe = intel_crtc->pipe;
7005 uint16_t coeff = 0x7800; /* 1.0 */
7006
7007 /*
7008 * TODO: Check what kind of values actually come out of the pipe
7009 * with these coeff/postoff values and adjust to get the best
7010 * accuracy. Perhaps we even need to take the bpc value into
7011 * consideration.
7012 */
7013
50f3b016 7014 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7015 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7016
7017 /*
7018 * GY/GU and RY/RU should be the other way around according
7019 * to BSpec, but reality doesn't agree. Just set them up in
7020 * a way that results in the correct picture.
7021 */
7022 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7023 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7024
7025 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7026 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7027
7028 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7029 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7030
7031 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7032 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7033 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7034
7035 if (INTEL_INFO(dev)->gen > 6) {
7036 uint16_t postoff = 0;
7037
50f3b016 7038 if (intel_crtc->config.limited_color_range)
32cf0cb0 7039 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7040
7041 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7042 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7043 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7044
7045 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7046 } else {
7047 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7048
50f3b016 7049 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7050 mode |= CSC_BLACK_SCREEN_OFFSET;
7051
7052 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7053 }
7054}
7055
6ff93609 7056static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7057{
756f85cf
PZ
7058 struct drm_device *dev = crtc->dev;
7059 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7061 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7062 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7063 uint32_t val;
7064
3eff4faa 7065 val = 0;
ee2b0b38 7066
756f85cf 7067 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7068 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7069
6ff93609 7070 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7071 val |= PIPECONF_INTERLACED_ILK;
7072 else
7073 val |= PIPECONF_PROGRESSIVE;
7074
702e7a56
PZ
7075 I915_WRITE(PIPECONF(cpu_transcoder), val);
7076 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7077
7078 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7079 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7080
3cdf122c 7081 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7082 val = 0;
7083
7084 switch (intel_crtc->config.pipe_bpp) {
7085 case 18:
7086 val |= PIPEMISC_DITHER_6_BPC;
7087 break;
7088 case 24:
7089 val |= PIPEMISC_DITHER_8_BPC;
7090 break;
7091 case 30:
7092 val |= PIPEMISC_DITHER_10_BPC;
7093 break;
7094 case 36:
7095 val |= PIPEMISC_DITHER_12_BPC;
7096 break;
7097 default:
7098 /* Case prevented by pipe_config_set_bpp. */
7099 BUG();
7100 }
7101
7102 if (intel_crtc->config.dither)
7103 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7104
7105 I915_WRITE(PIPEMISC(pipe), val);
7106 }
ee2b0b38
PZ
7107}
7108
6591c6e4 7109static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7110 intel_clock_t *clock,
7111 bool *has_reduced_clock,
7112 intel_clock_t *reduced_clock)
7113{
7114 struct drm_device *dev = crtc->dev;
7115 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7117 int refclk;
d4906093 7118 const intel_limit_t *limit;
a16af721 7119 bool ret, is_lvds = false;
79e53945 7120
409ee761 7121 is_lvds = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7122
d9d444cb 7123 refclk = ironlake_get_refclk(crtc);
79e53945 7124
d4906093
ML
7125 /*
7126 * Returns a set of divisors for the desired target clock with the given
7127 * refclk, or FALSE. The returned values represent the clock equation:
7128 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7129 */
409ee761 7130 limit = intel_limit(intel_crtc, refclk);
a919ff14
ACO
7131 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7132 intel_crtc->config.port_clock,
ee9300bb 7133 refclk, NULL, clock);
6591c6e4
PZ
7134 if (!ret)
7135 return false;
cda4b7d3 7136
ddc9003c 7137 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7138 /*
7139 * Ensure we match the reduced clock's P to the target clock.
7140 * If the clocks don't match, we can't switch the display clock
7141 * by using the FP0/FP1. In such case we will disable the LVDS
7142 * downclock feature.
7143 */
ee9300bb 7144 *has_reduced_clock =
a919ff14 7145 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7146 dev_priv->lvds_downclock,
7147 refclk, clock,
7148 reduced_clock);
652c393a 7149 }
61e9653f 7150
6591c6e4
PZ
7151 return true;
7152}
7153
d4b1931c
PZ
7154int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7155{
7156 /*
7157 * Account for spread spectrum to avoid
7158 * oversubscribing the link. Max center spread
7159 * is 2.5%; use 5% for safety's sake.
7160 */
7161 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7162 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7163}
7164
7429e9d4 7165static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7166{
7429e9d4 7167 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7168}
7169
de13a2e3 7170static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7171 u32 *fp,
9a7c7890 7172 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7173{
de13a2e3 7174 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7175 struct drm_device *dev = crtc->dev;
7176 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7177 struct intel_encoder *intel_encoder;
7178 uint32_t dpll;
6cc5f341 7179 int factor, num_connectors = 0;
09ede541 7180 bool is_lvds = false, is_sdvo = false;
79e53945 7181
de13a2e3
PZ
7182 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7183 switch (intel_encoder->type) {
79e53945
JB
7184 case INTEL_OUTPUT_LVDS:
7185 is_lvds = true;
7186 break;
7187 case INTEL_OUTPUT_SDVO:
7d57382e 7188 case INTEL_OUTPUT_HDMI:
79e53945 7189 is_sdvo = true;
79e53945 7190 break;
79e53945 7191 }
43565a06 7192
c751ce4f 7193 num_connectors++;
79e53945 7194 }
79e53945 7195
c1858123 7196 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7197 factor = 21;
7198 if (is_lvds) {
7199 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7200 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7201 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7202 factor = 25;
09ede541 7203 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7204 factor = 20;
c1858123 7205
7429e9d4 7206 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7207 *fp |= FP_CB_TUNE;
2c07245f 7208
9a7c7890
DV
7209 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7210 *fp2 |= FP_CB_TUNE;
7211
5eddb70b 7212 dpll = 0;
2c07245f 7213
a07d6787
EA
7214 if (is_lvds)
7215 dpll |= DPLLB_MODE_LVDS;
7216 else
7217 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7218
ef1b460d
DV
7219 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7220 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7221
7222 if (is_sdvo)
4a33e48d 7223 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7224 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7225 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7226
a07d6787 7227 /* compute bitmask from p1 value */
7429e9d4 7228 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7229 /* also FPA1 */
7429e9d4 7230 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7231
7429e9d4 7232 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7233 case 5:
7234 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7235 break;
7236 case 7:
7237 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7238 break;
7239 case 10:
7240 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7241 break;
7242 case 14:
7243 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7244 break;
79e53945
JB
7245 }
7246
b4c09f3b 7247 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7248 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7249 else
7250 dpll |= PLL_REF_INPUT_DREFCLK;
7251
959e16d6 7252 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7253}
7254
c7653199 7255static int ironlake_crtc_mode_set(struct intel_crtc *crtc,
de13a2e3
PZ
7256 int x, int y,
7257 struct drm_framebuffer *fb)
7258{
c7653199 7259 struct drm_device *dev = crtc->base.dev;
de13a2e3 7260 intel_clock_t clock, reduced_clock;
cbbab5bd 7261 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7262 bool ok, has_reduced_clock = false;
8b47047b 7263 bool is_lvds = false;
e2b78267 7264 struct intel_shared_dpll *pll;
de13a2e3 7265
409ee761 7266 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7267
5dc5298b
PZ
7268 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7269 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7270
c7653199 7271 ok = ironlake_compute_clocks(&crtc->base, &clock,
de13a2e3 7272 &has_reduced_clock, &reduced_clock);
c7653199 7273 if (!ok && !crtc->config.clock_set) {
de13a2e3
PZ
7274 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7275 return -EINVAL;
79e53945 7276 }
f47709a9 7277 /* Compat-code for transition, will disappear. */
c7653199
ACO
7278 if (!crtc->config.clock_set) {
7279 crtc->config.dpll.n = clock.n;
7280 crtc->config.dpll.m1 = clock.m1;
7281 crtc->config.dpll.m2 = clock.m2;
7282 crtc->config.dpll.p1 = clock.p1;
7283 crtc->config.dpll.p2 = clock.p2;
f47709a9 7284 }
79e53945 7285
5dc5298b 7286 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
c7653199
ACO
7287 if (crtc->config.has_pch_encoder) {
7288 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
cbbab5bd 7289 if (has_reduced_clock)
7429e9d4 7290 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7291
c7653199 7292 dpll = ironlake_compute_dpll(crtc,
cbbab5bd
DV
7293 &fp, &reduced_clock,
7294 has_reduced_clock ? &fp2 : NULL);
7295
c7653199
ACO
7296 crtc->config.dpll_hw_state.dpll = dpll;
7297 crtc->config.dpll_hw_state.fp0 = fp;
66e985c0 7298 if (has_reduced_clock)
c7653199 7299 crtc->config.dpll_hw_state.fp1 = fp2;
66e985c0 7300 else
c7653199 7301 crtc->config.dpll_hw_state.fp1 = fp;
66e985c0 7302
c7653199 7303 pll = intel_get_shared_dpll(crtc);
ee7b9f93 7304 if (pll == NULL) {
84f44ce7 7305 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7306 pipe_name(crtc->pipe));
4b645f14
JB
7307 return -EINVAL;
7308 }
ee7b9f93 7309 } else
c7653199 7310 intel_put_shared_dpll(crtc);
79e53945 7311
d330a953 7312 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7313 crtc->lowfreq_avail = true;
bcd644e0 7314 else
c7653199 7315 crtc->lowfreq_avail = false;
e2b78267 7316
c8f7a0db 7317 return 0;
79e53945
JB
7318}
7319
eb14cb74
VS
7320static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7321 struct intel_link_m_n *m_n)
7322{
7323 struct drm_device *dev = crtc->base.dev;
7324 struct drm_i915_private *dev_priv = dev->dev_private;
7325 enum pipe pipe = crtc->pipe;
7326
7327 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7328 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7329 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7330 & ~TU_SIZE_MASK;
7331 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7332 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7333 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7334}
7335
7336static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7337 enum transcoder transcoder,
b95af8be
VK
7338 struct intel_link_m_n *m_n,
7339 struct intel_link_m_n *m2_n2)
72419203
DV
7340{
7341 struct drm_device *dev = crtc->base.dev;
7342 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7343 enum pipe pipe = crtc->pipe;
72419203 7344
eb14cb74
VS
7345 if (INTEL_INFO(dev)->gen >= 5) {
7346 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7347 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7348 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7349 & ~TU_SIZE_MASK;
7350 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7351 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7352 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7353 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7354 * gen < 8) and if DRRS is supported (to make sure the
7355 * registers are not unnecessarily read).
7356 */
7357 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7358 crtc->config.has_drrs) {
7359 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7360 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7361 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7362 & ~TU_SIZE_MASK;
7363 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7364 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7365 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7366 }
eb14cb74
VS
7367 } else {
7368 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7369 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7370 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7371 & ~TU_SIZE_MASK;
7372 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7373 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7374 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7375 }
7376}
7377
7378void intel_dp_get_m_n(struct intel_crtc *crtc,
7379 struct intel_crtc_config *pipe_config)
7380{
7381 if (crtc->config.has_pch_encoder)
7382 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7383 else
7384 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7385 &pipe_config->dp_m_n,
7386 &pipe_config->dp_m2_n2);
eb14cb74 7387}
72419203 7388
eb14cb74
VS
7389static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7390 struct intel_crtc_config *pipe_config)
7391{
7392 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7393 &pipe_config->fdi_m_n, NULL);
72419203
DV
7394}
7395
2fa2fe9a
DV
7396static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7397 struct intel_crtc_config *pipe_config)
7398{
7399 struct drm_device *dev = crtc->base.dev;
7400 struct drm_i915_private *dev_priv = dev->dev_private;
7401 uint32_t tmp;
7402
7403 tmp = I915_READ(PF_CTL(crtc->pipe));
7404
7405 if (tmp & PF_ENABLE) {
fd4daa9c 7406 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7407 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7408 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7409
7410 /* We currently do not free assignements of panel fitters on
7411 * ivb/hsw (since we don't use the higher upscaling modes which
7412 * differentiates them) so just WARN about this case for now. */
7413 if (IS_GEN7(dev)) {
7414 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7415 PF_PIPE_SEL_IVB(crtc->pipe));
7416 }
2fa2fe9a 7417 }
79e53945
JB
7418}
7419
4c6baa59
JB
7420static void ironlake_get_plane_config(struct intel_crtc *crtc,
7421 struct intel_plane_config *plane_config)
7422{
7423 struct drm_device *dev = crtc->base.dev;
7424 struct drm_i915_private *dev_priv = dev->dev_private;
7425 u32 val, base, offset;
7426 int pipe = crtc->pipe, plane = crtc->plane;
7427 int fourcc, pixel_format;
7428 int aligned_height;
7429
66e514c1
DA
7430 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7431 if (!crtc->base.primary->fb) {
4c6baa59
JB
7432 DRM_DEBUG_KMS("failed to alloc fb\n");
7433 return;
7434 }
7435
7436 val = I915_READ(DSPCNTR(plane));
7437
7438 if (INTEL_INFO(dev)->gen >= 4)
7439 if (val & DISPPLANE_TILED)
7440 plane_config->tiled = true;
7441
7442 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7443 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7444 crtc->base.primary->fb->pixel_format = fourcc;
7445 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7446 drm_format_plane_cpp(fourcc, 0) * 8;
7447
7448 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7449 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7450 offset = I915_READ(DSPOFFSET(plane));
7451 } else {
7452 if (plane_config->tiled)
7453 offset = I915_READ(DSPTILEOFF(plane));
7454 else
7455 offset = I915_READ(DSPLINOFF(plane));
7456 }
7457 plane_config->base = base;
7458
7459 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7460 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7461 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7462
7463 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7464 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7465
66e514c1 7466 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7467 plane_config->tiled);
7468
1267a26b
FF
7469 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7470 aligned_height);
4c6baa59
JB
7471
7472 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7473 pipe, plane, crtc->base.primary->fb->width,
7474 crtc->base.primary->fb->height,
7475 crtc->base.primary->fb->bits_per_pixel, base,
7476 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7477 plane_config->size);
7478}
7479
0e8ffe1b
DV
7480static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7481 struct intel_crtc_config *pipe_config)
7482{
7483 struct drm_device *dev = crtc->base.dev;
7484 struct drm_i915_private *dev_priv = dev->dev_private;
7485 uint32_t tmp;
7486
f458ebbc
DV
7487 if (!intel_display_power_is_enabled(dev_priv,
7488 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7489 return false;
7490
e143a21c 7491 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7492 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7493
0e8ffe1b
DV
7494 tmp = I915_READ(PIPECONF(crtc->pipe));
7495 if (!(tmp & PIPECONF_ENABLE))
7496 return false;
7497
42571aef
VS
7498 switch (tmp & PIPECONF_BPC_MASK) {
7499 case PIPECONF_6BPC:
7500 pipe_config->pipe_bpp = 18;
7501 break;
7502 case PIPECONF_8BPC:
7503 pipe_config->pipe_bpp = 24;
7504 break;
7505 case PIPECONF_10BPC:
7506 pipe_config->pipe_bpp = 30;
7507 break;
7508 case PIPECONF_12BPC:
7509 pipe_config->pipe_bpp = 36;
7510 break;
7511 default:
7512 break;
7513 }
7514
b5a9fa09
DV
7515 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7516 pipe_config->limited_color_range = true;
7517
ab9412ba 7518 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7519 struct intel_shared_dpll *pll;
7520
88adfff1
DV
7521 pipe_config->has_pch_encoder = true;
7522
627eb5a3
DV
7523 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7524 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7525 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7526
7527 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7528
c0d43d62 7529 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7530 pipe_config->shared_dpll =
7531 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7532 } else {
7533 tmp = I915_READ(PCH_DPLL_SEL);
7534 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7535 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7536 else
7537 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7538 }
66e985c0
DV
7539
7540 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7541
7542 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7543 &pipe_config->dpll_hw_state));
c93f54cf
DV
7544
7545 tmp = pipe_config->dpll_hw_state.dpll;
7546 pipe_config->pixel_multiplier =
7547 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7548 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7549
7550 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7551 } else {
7552 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7553 }
7554
1bd1bd80
DV
7555 intel_get_pipe_timings(crtc, pipe_config);
7556
2fa2fe9a
DV
7557 ironlake_get_pfit_config(crtc, pipe_config);
7558
0e8ffe1b
DV
7559 return true;
7560}
7561
be256dc7
PZ
7562static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7563{
7564 struct drm_device *dev = dev_priv->dev;
be256dc7 7565 struct intel_crtc *crtc;
be256dc7 7566
d3fcc808 7567 for_each_intel_crtc(dev, crtc)
798183c5 7568 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7569 pipe_name(crtc->pipe));
7570
7571 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7572 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7573 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7574 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7575 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7576 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7577 "CPU PWM1 enabled\n");
c5107b87
PZ
7578 if (IS_HASWELL(dev))
7579 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7580 "CPU PWM2 enabled\n");
be256dc7
PZ
7581 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7582 "PCH PWM1 enabled\n");
7583 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7584 "Utility pin enabled\n");
7585 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7586
9926ada1
PZ
7587 /*
7588 * In theory we can still leave IRQs enabled, as long as only the HPD
7589 * interrupts remain enabled. We used to check for that, but since it's
7590 * gen-specific and since we only disable LCPLL after we fully disable
7591 * the interrupts, the check below should be enough.
7592 */
9df7575f 7593 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7594}
7595
9ccd5aeb
PZ
7596static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7597{
7598 struct drm_device *dev = dev_priv->dev;
7599
7600 if (IS_HASWELL(dev))
7601 return I915_READ(D_COMP_HSW);
7602 else
7603 return I915_READ(D_COMP_BDW);
7604}
7605
3c4c9b81
PZ
7606static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7607{
7608 struct drm_device *dev = dev_priv->dev;
7609
7610 if (IS_HASWELL(dev)) {
7611 mutex_lock(&dev_priv->rps.hw_lock);
7612 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7613 val))
f475dadf 7614 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7615 mutex_unlock(&dev_priv->rps.hw_lock);
7616 } else {
9ccd5aeb
PZ
7617 I915_WRITE(D_COMP_BDW, val);
7618 POSTING_READ(D_COMP_BDW);
3c4c9b81 7619 }
be256dc7
PZ
7620}
7621
7622/*
7623 * This function implements pieces of two sequences from BSpec:
7624 * - Sequence for display software to disable LCPLL
7625 * - Sequence for display software to allow package C8+
7626 * The steps implemented here are just the steps that actually touch the LCPLL
7627 * register. Callers should take care of disabling all the display engine
7628 * functions, doing the mode unset, fixing interrupts, etc.
7629 */
6ff58d53
PZ
7630static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7631 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7632{
7633 uint32_t val;
7634
7635 assert_can_disable_lcpll(dev_priv);
7636
7637 val = I915_READ(LCPLL_CTL);
7638
7639 if (switch_to_fclk) {
7640 val |= LCPLL_CD_SOURCE_FCLK;
7641 I915_WRITE(LCPLL_CTL, val);
7642
7643 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7644 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7645 DRM_ERROR("Switching to FCLK failed\n");
7646
7647 val = I915_READ(LCPLL_CTL);
7648 }
7649
7650 val |= LCPLL_PLL_DISABLE;
7651 I915_WRITE(LCPLL_CTL, val);
7652 POSTING_READ(LCPLL_CTL);
7653
7654 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7655 DRM_ERROR("LCPLL still locked\n");
7656
9ccd5aeb 7657 val = hsw_read_dcomp(dev_priv);
be256dc7 7658 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7659 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7660 ndelay(100);
7661
9ccd5aeb
PZ
7662 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7663 1))
be256dc7
PZ
7664 DRM_ERROR("D_COMP RCOMP still in progress\n");
7665
7666 if (allow_power_down) {
7667 val = I915_READ(LCPLL_CTL);
7668 val |= LCPLL_POWER_DOWN_ALLOW;
7669 I915_WRITE(LCPLL_CTL, val);
7670 POSTING_READ(LCPLL_CTL);
7671 }
7672}
7673
7674/*
7675 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7676 * source.
7677 */
6ff58d53 7678static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7679{
7680 uint32_t val;
7681
7682 val = I915_READ(LCPLL_CTL);
7683
7684 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7685 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7686 return;
7687
a8a8bd54
PZ
7688 /*
7689 * Make sure we're not on PC8 state before disabling PC8, otherwise
7690 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7691 *
7692 * The other problem is that hsw_restore_lcpll() is called as part of
7693 * the runtime PM resume sequence, so we can't just call
7694 * gen6_gt_force_wake_get() because that function calls
7695 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7696 * while we are on the resume sequence. So to solve this problem we have
7697 * to call special forcewake code that doesn't touch runtime PM and
7698 * doesn't enable the forcewake delayed work.
7699 */
d2e40e27 7700 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7701 if (dev_priv->uncore.forcewake_count++ == 0)
7702 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
d2e40e27 7703 spin_unlock_irq(&dev_priv->uncore.lock);
215733fa 7704
be256dc7
PZ
7705 if (val & LCPLL_POWER_DOWN_ALLOW) {
7706 val &= ~LCPLL_POWER_DOWN_ALLOW;
7707 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7708 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7709 }
7710
9ccd5aeb 7711 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7712 val |= D_COMP_COMP_FORCE;
7713 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7714 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7715
7716 val = I915_READ(LCPLL_CTL);
7717 val &= ~LCPLL_PLL_DISABLE;
7718 I915_WRITE(LCPLL_CTL, val);
7719
7720 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7721 DRM_ERROR("LCPLL not locked yet\n");
7722
7723 if (val & LCPLL_CD_SOURCE_FCLK) {
7724 val = I915_READ(LCPLL_CTL);
7725 val &= ~LCPLL_CD_SOURCE_FCLK;
7726 I915_WRITE(LCPLL_CTL, val);
7727
7728 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7729 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7730 DRM_ERROR("Switching back to LCPLL failed\n");
7731 }
215733fa 7732
a8a8bd54 7733 /* See the big comment above. */
d2e40e27 7734 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7735 if (--dev_priv->uncore.forcewake_count == 0)
7736 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
d2e40e27 7737 spin_unlock_irq(&dev_priv->uncore.lock);
be256dc7
PZ
7738}
7739
765dab67
PZ
7740/*
7741 * Package states C8 and deeper are really deep PC states that can only be
7742 * reached when all the devices on the system allow it, so even if the graphics
7743 * device allows PC8+, it doesn't mean the system will actually get to these
7744 * states. Our driver only allows PC8+ when going into runtime PM.
7745 *
7746 * The requirements for PC8+ are that all the outputs are disabled, the power
7747 * well is disabled and most interrupts are disabled, and these are also
7748 * requirements for runtime PM. When these conditions are met, we manually do
7749 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7750 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7751 * hang the machine.
7752 *
7753 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7754 * the state of some registers, so when we come back from PC8+ we need to
7755 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7756 * need to take care of the registers kept by RC6. Notice that this happens even
7757 * if we don't put the device in PCI D3 state (which is what currently happens
7758 * because of the runtime PM support).
7759 *
7760 * For more, read "Display Sequences for Package C8" on the hardware
7761 * documentation.
7762 */
a14cb6fc 7763void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7764{
c67a470b
PZ
7765 struct drm_device *dev = dev_priv->dev;
7766 uint32_t val;
7767
c67a470b
PZ
7768 DRM_DEBUG_KMS("Enabling package C8+\n");
7769
c67a470b
PZ
7770 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7771 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7772 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7773 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7774 }
7775
7776 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7777 hsw_disable_lcpll(dev_priv, true, true);
7778}
7779
a14cb6fc 7780void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7781{
7782 struct drm_device *dev = dev_priv->dev;
7783 uint32_t val;
7784
c67a470b
PZ
7785 DRM_DEBUG_KMS("Disabling package C8+\n");
7786
7787 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7788 lpt_init_pch_refclk(dev);
7789
7790 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7791 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7792 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7793 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7794 }
7795
7796 intel_prepare_ddi(dev);
c67a470b
PZ
7797}
7798
9a952a0d
PZ
7799static void snb_modeset_global_resources(struct drm_device *dev)
7800{
7801 modeset_update_crtc_power_domains(dev);
7802}
7803
4f074129
ID
7804static void haswell_modeset_global_resources(struct drm_device *dev)
7805{
da723569 7806 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7807}
7808
c7653199 7809static int haswell_crtc_mode_set(struct intel_crtc *crtc,
09b4ddf9
PZ
7810 int x, int y,
7811 struct drm_framebuffer *fb)
7812{
c7653199 7813 if (!intel_ddi_pll_select(crtc))
6441ab5f 7814 return -EINVAL;
716c2e55 7815
c7653199 7816 crtc->lowfreq_avail = false;
644cef34 7817
c8f7a0db 7818 return 0;
79e53945
JB
7819}
7820
7d2c8175
DL
7821static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7822 enum port port,
7823 struct intel_crtc_config *pipe_config)
7824{
7825 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7826
7827 switch (pipe_config->ddi_pll_sel) {
7828 case PORT_CLK_SEL_WRPLL1:
7829 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7830 break;
7831 case PORT_CLK_SEL_WRPLL2:
7832 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7833 break;
7834 }
7835}
7836
26804afd
DV
7837static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7838 struct intel_crtc_config *pipe_config)
7839{
7840 struct drm_device *dev = crtc->base.dev;
7841 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7842 struct intel_shared_dpll *pll;
26804afd
DV
7843 enum port port;
7844 uint32_t tmp;
7845
7846 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7847
7848 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7849
7d2c8175 7850 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7851
d452c5b6
DV
7852 if (pipe_config->shared_dpll >= 0) {
7853 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7854
7855 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7856 &pipe_config->dpll_hw_state));
7857 }
7858
26804afd
DV
7859 /*
7860 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7861 * DDI E. So just check whether this pipe is wired to DDI E and whether
7862 * the PCH transcoder is on.
7863 */
ca370455
DL
7864 if (INTEL_INFO(dev)->gen < 9 &&
7865 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
7866 pipe_config->has_pch_encoder = true;
7867
7868 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7869 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7870 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7871
7872 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7873 }
7874}
7875
0e8ffe1b
DV
7876static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7877 struct intel_crtc_config *pipe_config)
7878{
7879 struct drm_device *dev = crtc->base.dev;
7880 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7881 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7882 uint32_t tmp;
7883
f458ebbc 7884 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
7885 POWER_DOMAIN_PIPE(crtc->pipe)))
7886 return false;
7887
e143a21c 7888 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7889 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7890
eccb140b
DV
7891 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7892 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7893 enum pipe trans_edp_pipe;
7894 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7895 default:
7896 WARN(1, "unknown pipe linked to edp transcoder\n");
7897 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7898 case TRANS_DDI_EDP_INPUT_A_ON:
7899 trans_edp_pipe = PIPE_A;
7900 break;
7901 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7902 trans_edp_pipe = PIPE_B;
7903 break;
7904 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7905 trans_edp_pipe = PIPE_C;
7906 break;
7907 }
7908
7909 if (trans_edp_pipe == crtc->pipe)
7910 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7911 }
7912
f458ebbc 7913 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 7914 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7915 return false;
7916
eccb140b 7917 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7918 if (!(tmp & PIPECONF_ENABLE))
7919 return false;
7920
26804afd 7921 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7922
1bd1bd80
DV
7923 intel_get_pipe_timings(crtc, pipe_config);
7924
2fa2fe9a 7925 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
f458ebbc 7926 if (intel_display_power_is_enabled(dev_priv, pfit_domain))
2fa2fe9a 7927 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7928
e59150dc
JB
7929 if (IS_HASWELL(dev))
7930 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7931 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7932
ebb69c95
CT
7933 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
7934 pipe_config->pixel_multiplier =
7935 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
7936 } else {
7937 pipe_config->pixel_multiplier = 1;
7938 }
6c49f241 7939
0e8ffe1b
DV
7940 return true;
7941}
7942
1a91510d
JN
7943static struct {
7944 int clock;
7945 u32 config;
7946} hdmi_audio_clock[] = {
7947 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7948 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7949 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7950 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7951 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7952 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7953 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7954 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7955 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7956 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7957};
7958
7959/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7960static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7961{
7962 int i;
7963
7964 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7965 if (mode->clock == hdmi_audio_clock[i].clock)
7966 break;
7967 }
7968
7969 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7970 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7971 i = 1;
7972 }
7973
7974 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7975 hdmi_audio_clock[i].clock,
7976 hdmi_audio_clock[i].config);
7977
7978 return hdmi_audio_clock[i].config;
7979}
7980
3a9627f4
WF
7981static bool intel_eld_uptodate(struct drm_connector *connector,
7982 int reg_eldv, uint32_t bits_eldv,
7983 int reg_elda, uint32_t bits_elda,
7984 int reg_edid)
7985{
7986 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7987 uint8_t *eld = connector->eld;
7988 uint32_t i;
7989
7990 i = I915_READ(reg_eldv);
7991 i &= bits_eldv;
7992
7993 if (!eld[0])
7994 return !i;
7995
7996 if (!i)
7997 return false;
7998
7999 i = I915_READ(reg_elda);
8000 i &= ~bits_elda;
8001 I915_WRITE(reg_elda, i);
8002
8003 for (i = 0; i < eld[2]; i++)
8004 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
8005 return false;
8006
8007 return true;
8008}
8009
e0dac65e 8010static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
8011 struct drm_crtc *crtc,
8012 struct drm_display_mode *mode)
e0dac65e
WF
8013{
8014 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8015 uint8_t *eld = connector->eld;
8016 uint32_t eldv;
8017 uint32_t len;
8018 uint32_t i;
8019
8020 i = I915_READ(G4X_AUD_VID_DID);
8021
8022 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
8023 eldv = G4X_ELDV_DEVCL_DEVBLC;
8024 else
8025 eldv = G4X_ELDV_DEVCTG;
8026
3a9627f4
WF
8027 if (intel_eld_uptodate(connector,
8028 G4X_AUD_CNTL_ST, eldv,
8029 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
8030 G4X_HDMIW_HDMIEDID))
8031 return;
8032
e0dac65e
WF
8033 i = I915_READ(G4X_AUD_CNTL_ST);
8034 i &= ~(eldv | G4X_ELD_ADDR);
8035 len = (i >> 9) & 0x1f; /* ELD buffer size */
8036 I915_WRITE(G4X_AUD_CNTL_ST, i);
8037
8038 if (!eld[0])
8039 return;
8040
8041 len = min_t(uint8_t, eld[2], len);
8042 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8043 for (i = 0; i < len; i++)
8044 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8045
8046 i = I915_READ(G4X_AUD_CNTL_ST);
8047 i |= eldv;
8048 I915_WRITE(G4X_AUD_CNTL_ST, i);
8049}
8050
83358c85 8051static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
8052 struct drm_crtc *crtc,
8053 struct drm_display_mode *mode)
83358c85
WX
8054{
8055 struct drm_i915_private *dev_priv = connector->dev->dev_private;
409ee761 8056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83358c85 8057 uint8_t *eld = connector->eld;
83358c85
WX
8058 uint32_t eldv;
8059 uint32_t i;
8060 int len;
8061 int pipe = to_intel_crtc(crtc)->pipe;
8062 int tmp;
8063
8064 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8065 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8066 int aud_config = HSW_AUD_CFG(pipe);
8067 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8068
83358c85
WX
8069 /* Audio output enable */
8070 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8071 tmp = I915_READ(aud_cntrl_st2);
8072 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8073 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 8074 POSTING_READ(aud_cntrl_st2);
83358c85 8075
c7905792 8076 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
8077
8078 /* Set ELD valid state */
8079 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8080 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
8081 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8082 I915_WRITE(aud_cntrl_st2, tmp);
8083 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8084 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
8085
8086 /* Enable HDMI mode */
8087 tmp = I915_READ(aud_config);
7e7cb34f 8088 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
8089 /* clear N_programing_enable and N_value_index */
8090 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8091 I915_WRITE(aud_config, tmp);
8092
8093 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8094
8095 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8096
409ee761 8097 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DISPLAYPORT)) {
83358c85
WX
8098 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8099 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8100 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8101 } else {
8102 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8103 }
83358c85
WX
8104
8105 if (intel_eld_uptodate(connector,
8106 aud_cntrl_st2, eldv,
8107 aud_cntl_st, IBX_ELD_ADDRESS,
8108 hdmiw_hdmiedid))
8109 return;
8110
8111 i = I915_READ(aud_cntrl_st2);
8112 i &= ~eldv;
8113 I915_WRITE(aud_cntrl_st2, i);
8114
8115 if (!eld[0])
8116 return;
8117
8118 i = I915_READ(aud_cntl_st);
8119 i &= ~IBX_ELD_ADDRESS;
8120 I915_WRITE(aud_cntl_st, i);
8121 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
8122 DRM_DEBUG_DRIVER("port num:%d\n", i);
8123
8124 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8125 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8126 for (i = 0; i < len; i++)
8127 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8128
8129 i = I915_READ(aud_cntrl_st2);
8130 i |= eldv;
8131 I915_WRITE(aud_cntrl_st2, i);
8132
8133}
8134
e0dac65e 8135static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
8136 struct drm_crtc *crtc,
8137 struct drm_display_mode *mode)
e0dac65e
WF
8138{
8139 struct drm_i915_private *dev_priv = connector->dev->dev_private;
409ee761 8140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e0dac65e
WF
8141 uint8_t *eld = connector->eld;
8142 uint32_t eldv;
8143 uint32_t i;
8144 int len;
8145 int hdmiw_hdmiedid;
b6daa025 8146 int aud_config;
e0dac65e
WF
8147 int aud_cntl_st;
8148 int aud_cntrl_st2;
9b138a83 8149 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 8150
b3f33cbf 8151 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
8152 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8153 aud_config = IBX_AUD_CFG(pipe);
8154 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 8155 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
8156 } else if (IS_VALLEYVIEW(connector->dev)) {
8157 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8158 aud_config = VLV_AUD_CFG(pipe);
8159 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8160 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 8161 } else {
9b138a83
WX
8162 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8163 aud_config = CPT_AUD_CFG(pipe);
8164 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8165 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8166 }
8167
9b138a83 8168 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8169
9ca2fe73
ML
8170 if (IS_VALLEYVIEW(connector->dev)) {
8171 struct intel_encoder *intel_encoder;
8172 struct intel_digital_port *intel_dig_port;
8173
8174 intel_encoder = intel_attached_encoder(connector);
8175 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8176 i = intel_dig_port->port;
8177 } else {
8178 i = I915_READ(aud_cntl_st);
8179 i = (i >> 29) & DIP_PORT_SEL_MASK;
8180 /* DIP_Port_Select, 0x1 = PortB */
8181 }
8182
e0dac65e
WF
8183 if (!i) {
8184 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8185 /* operate blindly on all ports */
1202b4c6
WF
8186 eldv = IBX_ELD_VALIDB;
8187 eldv |= IBX_ELD_VALIDB << 4;
8188 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8189 } else {
2582a850 8190 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8191 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8192 }
8193
409ee761 8194 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DISPLAYPORT)) {
3a9627f4
WF
8195 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8196 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8197 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8198 } else {
8199 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8200 }
e0dac65e 8201
3a9627f4
WF
8202 if (intel_eld_uptodate(connector,
8203 aud_cntrl_st2, eldv,
8204 aud_cntl_st, IBX_ELD_ADDRESS,
8205 hdmiw_hdmiedid))
8206 return;
8207
e0dac65e
WF
8208 i = I915_READ(aud_cntrl_st2);
8209 i &= ~eldv;
8210 I915_WRITE(aud_cntrl_st2, i);
8211
8212 if (!eld[0])
8213 return;
8214
e0dac65e 8215 i = I915_READ(aud_cntl_st);
1202b4c6 8216 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8217 I915_WRITE(aud_cntl_st, i);
8218
8219 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8220 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8221 for (i = 0; i < len; i++)
8222 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8223
8224 i = I915_READ(aud_cntrl_st2);
8225 i |= eldv;
8226 I915_WRITE(aud_cntrl_st2, i);
8227}
8228
8229void intel_write_eld(struct drm_encoder *encoder,
8230 struct drm_display_mode *mode)
8231{
8232 struct drm_crtc *crtc = encoder->crtc;
8233 struct drm_connector *connector;
8234 struct drm_device *dev = encoder->dev;
8235 struct drm_i915_private *dev_priv = dev->dev_private;
8236
8237 connector = drm_select_eld(encoder, mode);
8238 if (!connector)
8239 return;
8240
8241 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8242 connector->base.id,
c23cc417 8243 connector->name,
e0dac65e 8244 connector->encoder->base.id,
8e329a03 8245 connector->encoder->name);
e0dac65e
WF
8246
8247 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8248
8249 if (dev_priv->display.write_eld)
34427052 8250 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8251}
8252
560b85bb
CW
8253static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8254{
8255 struct drm_device *dev = crtc->dev;
8256 struct drm_i915_private *dev_priv = dev->dev_private;
8257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8258 uint32_t cntl = 0, size = 0;
560b85bb 8259
dc41c154
VS
8260 if (base) {
8261 unsigned int width = intel_crtc->cursor_width;
8262 unsigned int height = intel_crtc->cursor_height;
8263 unsigned int stride = roundup_pow_of_two(width) * 4;
8264
8265 switch (stride) {
8266 default:
8267 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8268 width, stride);
8269 stride = 256;
8270 /* fallthrough */
8271 case 256:
8272 case 512:
8273 case 1024:
8274 case 2048:
8275 break;
4b0e333e
CW
8276 }
8277
dc41c154
VS
8278 cntl |= CURSOR_ENABLE |
8279 CURSOR_GAMMA_ENABLE |
8280 CURSOR_FORMAT_ARGB |
8281 CURSOR_STRIDE(stride);
8282
8283 size = (height << 12) | width;
4b0e333e 8284 }
560b85bb 8285
dc41c154
VS
8286 if (intel_crtc->cursor_cntl != 0 &&
8287 (intel_crtc->cursor_base != base ||
8288 intel_crtc->cursor_size != size ||
8289 intel_crtc->cursor_cntl != cntl)) {
8290 /* On these chipsets we can only modify the base/size/stride
8291 * whilst the cursor is disabled.
8292 */
8293 I915_WRITE(_CURACNTR, 0);
4b0e333e 8294 POSTING_READ(_CURACNTR);
dc41c154 8295 intel_crtc->cursor_cntl = 0;
4b0e333e 8296 }
560b85bb 8297
99d1f387 8298 if (intel_crtc->cursor_base != base) {
9db4a9c7 8299 I915_WRITE(_CURABASE, base);
99d1f387
VS
8300 intel_crtc->cursor_base = base;
8301 }
4726e0b0 8302
dc41c154
VS
8303 if (intel_crtc->cursor_size != size) {
8304 I915_WRITE(CURSIZE, size);
8305 intel_crtc->cursor_size = size;
4b0e333e 8306 }
560b85bb 8307
4b0e333e 8308 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8309 I915_WRITE(_CURACNTR, cntl);
8310 POSTING_READ(_CURACNTR);
4b0e333e 8311 intel_crtc->cursor_cntl = cntl;
560b85bb 8312 }
560b85bb
CW
8313}
8314
560b85bb 8315static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8316{
8317 struct drm_device *dev = crtc->dev;
8318 struct drm_i915_private *dev_priv = dev->dev_private;
8319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8320 int pipe = intel_crtc->pipe;
4b0e333e
CW
8321 uint32_t cntl;
8322
8323 cntl = 0;
8324 if (base) {
8325 cntl = MCURSOR_GAMMA_ENABLE;
8326 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8327 case 64:
8328 cntl |= CURSOR_MODE_64_ARGB_AX;
8329 break;
8330 case 128:
8331 cntl |= CURSOR_MODE_128_ARGB_AX;
8332 break;
8333 case 256:
8334 cntl |= CURSOR_MODE_256_ARGB_AX;
8335 break;
8336 default:
8337 WARN_ON(1);
8338 return;
65a21cd6 8339 }
4b0e333e 8340 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8341
8342 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8343 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8344 }
65a21cd6 8345
4398ad45
VS
8346 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8347 cntl |= CURSOR_ROTATE_180;
8348
4b0e333e
CW
8349 if (intel_crtc->cursor_cntl != cntl) {
8350 I915_WRITE(CURCNTR(pipe), cntl);
8351 POSTING_READ(CURCNTR(pipe));
8352 intel_crtc->cursor_cntl = cntl;
65a21cd6 8353 }
4b0e333e 8354
65a21cd6 8355 /* and commit changes on next vblank */
5efb3e28
VS
8356 I915_WRITE(CURBASE(pipe), base);
8357 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8358
8359 intel_crtc->cursor_base = base;
65a21cd6
JB
8360}
8361
cda4b7d3 8362/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8363static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8364 bool on)
cda4b7d3
CW
8365{
8366 struct drm_device *dev = crtc->dev;
8367 struct drm_i915_private *dev_priv = dev->dev_private;
8368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8369 int pipe = intel_crtc->pipe;
3d7d6510
MR
8370 int x = crtc->cursor_x;
8371 int y = crtc->cursor_y;
d6e4db15 8372 u32 base = 0, pos = 0;
cda4b7d3 8373
d6e4db15 8374 if (on)
cda4b7d3 8375 base = intel_crtc->cursor_addr;
cda4b7d3 8376
d6e4db15
VS
8377 if (x >= intel_crtc->config.pipe_src_w)
8378 base = 0;
8379
8380 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8381 base = 0;
8382
8383 if (x < 0) {
efc9064e 8384 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8385 base = 0;
8386
8387 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8388 x = -x;
8389 }
8390 pos |= x << CURSOR_X_SHIFT;
8391
8392 if (y < 0) {
efc9064e 8393 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8394 base = 0;
8395
8396 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8397 y = -y;
8398 }
8399 pos |= y << CURSOR_Y_SHIFT;
8400
4b0e333e 8401 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8402 return;
8403
5efb3e28
VS
8404 I915_WRITE(CURPOS(pipe), pos);
8405
4398ad45
VS
8406 /* ILK+ do this automagically */
8407 if (HAS_GMCH_DISPLAY(dev) &&
8408 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8409 base += (intel_crtc->cursor_height *
8410 intel_crtc->cursor_width - 1) * 4;
8411 }
8412
8ac54669 8413 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8414 i845_update_cursor(crtc, base);
8415 else
8416 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8417}
8418
dc41c154
VS
8419static bool cursor_size_ok(struct drm_device *dev,
8420 uint32_t width, uint32_t height)
8421{
8422 if (width == 0 || height == 0)
8423 return false;
8424
8425 /*
8426 * 845g/865g are special in that they are only limited by
8427 * the width of their cursors, the height is arbitrary up to
8428 * the precision of the register. Everything else requires
8429 * square cursors, limited to a few power-of-two sizes.
8430 */
8431 if (IS_845G(dev) || IS_I865G(dev)) {
8432 if ((width & 63) != 0)
8433 return false;
8434
8435 if (width > (IS_845G(dev) ? 64 : 512))
8436 return false;
8437
8438 if (height > 1023)
8439 return false;
8440 } else {
8441 switch (width | height) {
8442 case 256:
8443 case 128:
8444 if (IS_GEN2(dev))
8445 return false;
8446 case 64:
8447 break;
8448 default:
8449 return false;
8450 }
8451 }
8452
8453 return true;
8454}
8455
e3287951
MR
8456static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8457 struct drm_i915_gem_object *obj,
8458 uint32_t width, uint32_t height)
79e53945
JB
8459{
8460 struct drm_device *dev = crtc->dev;
8461 struct drm_i915_private *dev_priv = dev->dev_private;
8462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8463 enum pipe pipe = intel_crtc->pipe;
757f9a3e 8464 unsigned old_width;
cda4b7d3 8465 uint32_t addr;
3f8bc370 8466 int ret;
79e53945 8467
79e53945 8468 /* if we want to turn off the cursor ignore width and height */
e3287951 8469 if (!obj) {
28c97730 8470 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8471 addr = 0;
5004417d 8472 mutex_lock(&dev->struct_mutex);
3f8bc370 8473 goto finish;
79e53945
JB
8474 }
8475
71acb5eb 8476 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8477 mutex_lock(&dev->struct_mutex);
3d13ef2e 8478 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8479 unsigned alignment;
8480
d6dd6843
PZ
8481 /*
8482 * Global gtt pte registers are special registers which actually
8483 * forward writes to a chunk of system memory. Which means that
8484 * there is no risk that the register values disappear as soon
8485 * as we call intel_runtime_pm_put(), so it is correct to wrap
8486 * only the pin/unpin/fence and not more.
8487 */
8488 intel_runtime_pm_get(dev_priv);
8489
693db184
CW
8490 /* Note that the w/a also requires 2 PTE of padding following
8491 * the bo. We currently fill all unused PTE with the shadow
8492 * page and so we should always have valid PTE following the
8493 * cursor preventing the VT-d warning.
8494 */
8495 alignment = 0;
8496 if (need_vtd_wa(dev))
8497 alignment = 64*1024;
8498
8499 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8500 if (ret) {
3b25b31f 8501 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8502 intel_runtime_pm_put(dev_priv);
2da3b9b9 8503 goto fail_locked;
e7b526bb
CW
8504 }
8505
d9e86c0e
CW
8506 ret = i915_gem_object_put_fence(obj);
8507 if (ret) {
3b25b31f 8508 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8509 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8510 goto fail_unpin;
8511 }
8512
f343c5f6 8513 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8514
8515 intel_runtime_pm_put(dev_priv);
71acb5eb 8516 } else {
6eeefaf3 8517 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8518 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8519 if (ret) {
3b25b31f 8520 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8521 goto fail_locked;
71acb5eb 8522 }
00731155 8523 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8524 }
8525
3f8bc370 8526 finish:
3f8bc370 8527 if (intel_crtc->cursor_bo) {
00731155 8528 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8529 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8530 }
80824003 8531
a071fa00
DV
8532 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8533 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8534 mutex_unlock(&dev->struct_mutex);
3f8bc370 8535
64f962e3
CW
8536 old_width = intel_crtc->cursor_width;
8537
3f8bc370 8538 intel_crtc->cursor_addr = addr;
05394f39 8539 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8540 intel_crtc->cursor_width = width;
8541 intel_crtc->cursor_height = height;
8542
64f962e3
CW
8543 if (intel_crtc->active) {
8544 if (old_width != width)
8545 intel_update_watermarks(crtc);
f2f5f771 8546 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
3f8bc370 8547
3f20df98
GP
8548 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8549 }
f99d7069 8550
79e53945 8551 return 0;
e7b526bb 8552fail_unpin:
cc98b413 8553 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8554fail_locked:
34b8686e
DA
8555 mutex_unlock(&dev->struct_mutex);
8556 return ret;
79e53945
JB
8557}
8558
79e53945 8559static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8560 u16 *blue, uint32_t start, uint32_t size)
79e53945 8561{
7203425a 8562 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8564
7203425a 8565 for (i = start; i < end; i++) {
79e53945
JB
8566 intel_crtc->lut_r[i] = red[i] >> 8;
8567 intel_crtc->lut_g[i] = green[i] >> 8;
8568 intel_crtc->lut_b[i] = blue[i] >> 8;
8569 }
8570
8571 intel_crtc_load_lut(crtc);
8572}
8573
79e53945
JB
8574/* VESA 640x480x72Hz mode to set on the pipe */
8575static struct drm_display_mode load_detect_mode = {
8576 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8577 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8578};
8579
a8bb6818
DV
8580struct drm_framebuffer *
8581__intel_framebuffer_create(struct drm_device *dev,
8582 struct drm_mode_fb_cmd2 *mode_cmd,
8583 struct drm_i915_gem_object *obj)
d2dff872
CW
8584{
8585 struct intel_framebuffer *intel_fb;
8586 int ret;
8587
8588 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8589 if (!intel_fb) {
8590 drm_gem_object_unreference_unlocked(&obj->base);
8591 return ERR_PTR(-ENOMEM);
8592 }
8593
8594 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8595 if (ret)
8596 goto err;
d2dff872
CW
8597
8598 return &intel_fb->base;
dd4916c5
DV
8599err:
8600 drm_gem_object_unreference_unlocked(&obj->base);
8601 kfree(intel_fb);
8602
8603 return ERR_PTR(ret);
d2dff872
CW
8604}
8605
b5ea642a 8606static struct drm_framebuffer *
a8bb6818
DV
8607intel_framebuffer_create(struct drm_device *dev,
8608 struct drm_mode_fb_cmd2 *mode_cmd,
8609 struct drm_i915_gem_object *obj)
8610{
8611 struct drm_framebuffer *fb;
8612 int ret;
8613
8614 ret = i915_mutex_lock_interruptible(dev);
8615 if (ret)
8616 return ERR_PTR(ret);
8617 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8618 mutex_unlock(&dev->struct_mutex);
8619
8620 return fb;
8621}
8622
d2dff872
CW
8623static u32
8624intel_framebuffer_pitch_for_width(int width, int bpp)
8625{
8626 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8627 return ALIGN(pitch, 64);
8628}
8629
8630static u32
8631intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8632{
8633 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8634 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8635}
8636
8637static struct drm_framebuffer *
8638intel_framebuffer_create_for_mode(struct drm_device *dev,
8639 struct drm_display_mode *mode,
8640 int depth, int bpp)
8641{
8642 struct drm_i915_gem_object *obj;
0fed39bd 8643 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8644
8645 obj = i915_gem_alloc_object(dev,
8646 intel_framebuffer_size_for_mode(mode, bpp));
8647 if (obj == NULL)
8648 return ERR_PTR(-ENOMEM);
8649
8650 mode_cmd.width = mode->hdisplay;
8651 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8652 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8653 bpp);
5ca0c34a 8654 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8655
8656 return intel_framebuffer_create(dev, &mode_cmd, obj);
8657}
8658
8659static struct drm_framebuffer *
8660mode_fits_in_fbdev(struct drm_device *dev,
8661 struct drm_display_mode *mode)
8662{
4520f53a 8663#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8664 struct drm_i915_private *dev_priv = dev->dev_private;
8665 struct drm_i915_gem_object *obj;
8666 struct drm_framebuffer *fb;
8667
4c0e5528 8668 if (!dev_priv->fbdev)
d2dff872
CW
8669 return NULL;
8670
4c0e5528 8671 if (!dev_priv->fbdev->fb)
d2dff872
CW
8672 return NULL;
8673
4c0e5528
DV
8674 obj = dev_priv->fbdev->fb->obj;
8675 BUG_ON(!obj);
8676
8bcd4553 8677 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8678 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8679 fb->bits_per_pixel))
d2dff872
CW
8680 return NULL;
8681
01f2c773 8682 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8683 return NULL;
8684
8685 return fb;
4520f53a
DV
8686#else
8687 return NULL;
8688#endif
d2dff872
CW
8689}
8690
d2434ab7 8691bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8692 struct drm_display_mode *mode,
51fd371b
RC
8693 struct intel_load_detect_pipe *old,
8694 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8695{
8696 struct intel_crtc *intel_crtc;
d2434ab7
DV
8697 struct intel_encoder *intel_encoder =
8698 intel_attached_encoder(connector);
79e53945 8699 struct drm_crtc *possible_crtc;
4ef69c7a 8700 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8701 struct drm_crtc *crtc = NULL;
8702 struct drm_device *dev = encoder->dev;
94352cf9 8703 struct drm_framebuffer *fb;
51fd371b
RC
8704 struct drm_mode_config *config = &dev->mode_config;
8705 int ret, i = -1;
79e53945 8706
d2dff872 8707 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8708 connector->base.id, connector->name,
8e329a03 8709 encoder->base.id, encoder->name);
d2dff872 8710
51fd371b
RC
8711retry:
8712 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8713 if (ret)
8714 goto fail_unlock;
6e9f798d 8715
79e53945
JB
8716 /*
8717 * Algorithm gets a little messy:
7a5e4805 8718 *
79e53945
JB
8719 * - if the connector already has an assigned crtc, use it (but make
8720 * sure it's on first)
7a5e4805 8721 *
79e53945
JB
8722 * - try to find the first unused crtc that can drive this connector,
8723 * and use that if we find one
79e53945
JB
8724 */
8725
8726 /* See if we already have a CRTC for this connector */
8727 if (encoder->crtc) {
8728 crtc = encoder->crtc;
8261b191 8729
51fd371b
RC
8730 ret = drm_modeset_lock(&crtc->mutex, ctx);
8731 if (ret)
8732 goto fail_unlock;
7b24056b 8733
24218aac 8734 old->dpms_mode = connector->dpms;
8261b191
CW
8735 old->load_detect_temp = false;
8736
8737 /* Make sure the crtc and connector are running */
24218aac
DV
8738 if (connector->dpms != DRM_MODE_DPMS_ON)
8739 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8740
7173188d 8741 return true;
79e53945
JB
8742 }
8743
8744 /* Find an unused one (if possible) */
70e1e0ec 8745 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8746 i++;
8747 if (!(encoder->possible_crtcs & (1 << i)))
8748 continue;
a459249c
VS
8749 if (possible_crtc->enabled)
8750 continue;
8751 /* This can occur when applying the pipe A quirk on resume. */
8752 if (to_intel_crtc(possible_crtc)->new_enabled)
8753 continue;
8754
8755 crtc = possible_crtc;
8756 break;
79e53945
JB
8757 }
8758
8759 /*
8760 * If we didn't find an unused CRTC, don't use any.
8761 */
8762 if (!crtc) {
7173188d 8763 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8764 goto fail_unlock;
79e53945
JB
8765 }
8766
51fd371b
RC
8767 ret = drm_modeset_lock(&crtc->mutex, ctx);
8768 if (ret)
8769 goto fail_unlock;
fc303101
DV
8770 intel_encoder->new_crtc = to_intel_crtc(crtc);
8771 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8772
8773 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8774 intel_crtc->new_enabled = true;
8775 intel_crtc->new_config = &intel_crtc->config;
24218aac 8776 old->dpms_mode = connector->dpms;
8261b191 8777 old->load_detect_temp = true;
d2dff872 8778 old->release_fb = NULL;
79e53945 8779
6492711d
CW
8780 if (!mode)
8781 mode = &load_detect_mode;
79e53945 8782
d2dff872
CW
8783 /* We need a framebuffer large enough to accommodate all accesses
8784 * that the plane may generate whilst we perform load detection.
8785 * We can not rely on the fbcon either being present (we get called
8786 * during its initialisation to detect all boot displays, or it may
8787 * not even exist) or that it is large enough to satisfy the
8788 * requested mode.
8789 */
94352cf9
DV
8790 fb = mode_fits_in_fbdev(dev, mode);
8791 if (fb == NULL) {
d2dff872 8792 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8793 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8794 old->release_fb = fb;
d2dff872
CW
8795 } else
8796 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8797 if (IS_ERR(fb)) {
d2dff872 8798 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8799 goto fail;
79e53945 8800 }
79e53945 8801
c0c36b94 8802 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8803 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8804 if (old->release_fb)
8805 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8806 goto fail;
79e53945 8807 }
7173188d 8808
79e53945 8809 /* let the connector get through one full cycle before testing */
9d0498a2 8810 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8811 return true;
412b61d8
VS
8812
8813 fail:
8814 intel_crtc->new_enabled = crtc->enabled;
8815 if (intel_crtc->new_enabled)
8816 intel_crtc->new_config = &intel_crtc->config;
8817 else
8818 intel_crtc->new_config = NULL;
51fd371b
RC
8819fail_unlock:
8820 if (ret == -EDEADLK) {
8821 drm_modeset_backoff(ctx);
8822 goto retry;
8823 }
8824
412b61d8 8825 return false;
79e53945
JB
8826}
8827
d2434ab7 8828void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8829 struct intel_load_detect_pipe *old)
79e53945 8830{
d2434ab7
DV
8831 struct intel_encoder *intel_encoder =
8832 intel_attached_encoder(connector);
4ef69c7a 8833 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8834 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8836
d2dff872 8837 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8838 connector->base.id, connector->name,
8e329a03 8839 encoder->base.id, encoder->name);
d2dff872 8840
8261b191 8841 if (old->load_detect_temp) {
fc303101
DV
8842 to_intel_connector(connector)->new_encoder = NULL;
8843 intel_encoder->new_crtc = NULL;
412b61d8
VS
8844 intel_crtc->new_enabled = false;
8845 intel_crtc->new_config = NULL;
fc303101 8846 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8847
36206361
DV
8848 if (old->release_fb) {
8849 drm_framebuffer_unregister_private(old->release_fb);
8850 drm_framebuffer_unreference(old->release_fb);
8851 }
d2dff872 8852
0622a53c 8853 return;
79e53945
JB
8854 }
8855
c751ce4f 8856 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8857 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8858 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8859}
8860
da4a1efa
VS
8861static int i9xx_pll_refclk(struct drm_device *dev,
8862 const struct intel_crtc_config *pipe_config)
8863{
8864 struct drm_i915_private *dev_priv = dev->dev_private;
8865 u32 dpll = pipe_config->dpll_hw_state.dpll;
8866
8867 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8868 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8869 else if (HAS_PCH_SPLIT(dev))
8870 return 120000;
8871 else if (!IS_GEN2(dev))
8872 return 96000;
8873 else
8874 return 48000;
8875}
8876
79e53945 8877/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8878static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8879 struct intel_crtc_config *pipe_config)
79e53945 8880{
f1f644dc 8881 struct drm_device *dev = crtc->base.dev;
79e53945 8882 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8883 int pipe = pipe_config->cpu_transcoder;
293623f7 8884 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8885 u32 fp;
8886 intel_clock_t clock;
da4a1efa 8887 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8888
8889 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8890 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8891 else
293623f7 8892 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8893
8894 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8895 if (IS_PINEVIEW(dev)) {
8896 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8897 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8898 } else {
8899 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8900 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8901 }
8902
a6c45cf0 8903 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8904 if (IS_PINEVIEW(dev))
8905 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8906 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8907 else
8908 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8909 DPLL_FPA01_P1_POST_DIV_SHIFT);
8910
8911 switch (dpll & DPLL_MODE_MASK) {
8912 case DPLLB_MODE_DAC_SERIAL:
8913 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8914 5 : 10;
8915 break;
8916 case DPLLB_MODE_LVDS:
8917 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8918 7 : 14;
8919 break;
8920 default:
28c97730 8921 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8922 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8923 return;
79e53945
JB
8924 }
8925
ac58c3f0 8926 if (IS_PINEVIEW(dev))
da4a1efa 8927 pineview_clock(refclk, &clock);
ac58c3f0 8928 else
da4a1efa 8929 i9xx_clock(refclk, &clock);
79e53945 8930 } else {
0fb58223 8931 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8932 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8933
8934 if (is_lvds) {
8935 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8936 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8937
8938 if (lvds & LVDS_CLKB_POWER_UP)
8939 clock.p2 = 7;
8940 else
8941 clock.p2 = 14;
79e53945
JB
8942 } else {
8943 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8944 clock.p1 = 2;
8945 else {
8946 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8947 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8948 }
8949 if (dpll & PLL_P2_DIVIDE_BY_4)
8950 clock.p2 = 4;
8951 else
8952 clock.p2 = 2;
79e53945 8953 }
da4a1efa
VS
8954
8955 i9xx_clock(refclk, &clock);
79e53945
JB
8956 }
8957
18442d08
VS
8958 /*
8959 * This value includes pixel_multiplier. We will use
241bfc38 8960 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8961 * encoder's get_config() function.
8962 */
8963 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8964}
8965
6878da05
VS
8966int intel_dotclock_calculate(int link_freq,
8967 const struct intel_link_m_n *m_n)
f1f644dc 8968{
f1f644dc
JB
8969 /*
8970 * The calculation for the data clock is:
1041a02f 8971 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8972 * But we want to avoid losing precison if possible, so:
1041a02f 8973 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8974 *
8975 * and the link clock is simpler:
1041a02f 8976 * link_clock = (m * link_clock) / n
f1f644dc
JB
8977 */
8978
6878da05
VS
8979 if (!m_n->link_n)
8980 return 0;
f1f644dc 8981
6878da05
VS
8982 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8983}
f1f644dc 8984
18442d08
VS
8985static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8986 struct intel_crtc_config *pipe_config)
6878da05
VS
8987{
8988 struct drm_device *dev = crtc->base.dev;
79e53945 8989
18442d08
VS
8990 /* read out port_clock from the DPLL */
8991 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8992
f1f644dc 8993 /*
18442d08 8994 * This value does not include pixel_multiplier.
241bfc38 8995 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8996 * agree once we know their relationship in the encoder's
8997 * get_config() function.
79e53945 8998 */
241bfc38 8999 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
9000 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9001 &pipe_config->fdi_m_n);
79e53945
JB
9002}
9003
9004/** Returns the currently programmed mode of the given pipe. */
9005struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9006 struct drm_crtc *crtc)
9007{
548f245b 9008 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 9009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 9010 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 9011 struct drm_display_mode *mode;
f1f644dc 9012 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
9013 int htot = I915_READ(HTOTAL(cpu_transcoder));
9014 int hsync = I915_READ(HSYNC(cpu_transcoder));
9015 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9016 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 9017 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
9018
9019 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9020 if (!mode)
9021 return NULL;
9022
f1f644dc
JB
9023 /*
9024 * Construct a pipe_config sufficient for getting the clock info
9025 * back out of crtc_clock_get.
9026 *
9027 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9028 * to use a real value here instead.
9029 */
293623f7 9030 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9031 pipe_config.pixel_multiplier = 1;
293623f7
VS
9032 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9033 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9034 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9035 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9036
773ae034 9037 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9038 mode->hdisplay = (htot & 0xffff) + 1;
9039 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9040 mode->hsync_start = (hsync & 0xffff) + 1;
9041 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9042 mode->vdisplay = (vtot & 0xffff) + 1;
9043 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9044 mode->vsync_start = (vsync & 0xffff) + 1;
9045 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9046
9047 drm_mode_set_name(mode);
79e53945
JB
9048
9049 return mode;
9050}
9051
652c393a
JB
9052static void intel_decrease_pllclock(struct drm_crtc *crtc)
9053{
9054 struct drm_device *dev = crtc->dev;
fbee40df 9055 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9057
baff296c 9058 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9059 return;
9060
9061 if (!dev_priv->lvds_downclock_avail)
9062 return;
9063
9064 /*
9065 * Since this is called by a timer, we should never get here in
9066 * the manual case.
9067 */
9068 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9069 int pipe = intel_crtc->pipe;
9070 int dpll_reg = DPLL(pipe);
9071 int dpll;
f6e5b160 9072
44d98a61 9073 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9074
8ac5a6d5 9075 assert_panel_unlocked(dev_priv, pipe);
652c393a 9076
dc257cf1 9077 dpll = I915_READ(dpll_reg);
652c393a
JB
9078 dpll |= DISPLAY_RATE_SELECT_FPA1;
9079 I915_WRITE(dpll_reg, dpll);
9d0498a2 9080 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9081 dpll = I915_READ(dpll_reg);
9082 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9083 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9084 }
9085
9086}
9087
f047e395
CW
9088void intel_mark_busy(struct drm_device *dev)
9089{
c67a470b
PZ
9090 struct drm_i915_private *dev_priv = dev->dev_private;
9091
f62a0076
CW
9092 if (dev_priv->mm.busy)
9093 return;
9094
43694d69 9095 intel_runtime_pm_get(dev_priv);
c67a470b 9096 i915_update_gfx_val(dev_priv);
f62a0076 9097 dev_priv->mm.busy = true;
f047e395
CW
9098}
9099
9100void intel_mark_idle(struct drm_device *dev)
652c393a 9101{
c67a470b 9102 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9103 struct drm_crtc *crtc;
652c393a 9104
f62a0076
CW
9105 if (!dev_priv->mm.busy)
9106 return;
9107
9108 dev_priv->mm.busy = false;
9109
d330a953 9110 if (!i915.powersave)
bb4cdd53 9111 goto out;
652c393a 9112
70e1e0ec 9113 for_each_crtc(dev, crtc) {
f4510a27 9114 if (!crtc->primary->fb)
652c393a
JB
9115 continue;
9116
725a5b54 9117 intel_decrease_pllclock(crtc);
652c393a 9118 }
b29c19b6 9119
3d13ef2e 9120 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9121 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9122
9123out:
43694d69 9124 intel_runtime_pm_put(dev_priv);
652c393a
JB
9125}
9126
79e53945
JB
9127static void intel_crtc_destroy(struct drm_crtc *crtc)
9128{
9129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9130 struct drm_device *dev = crtc->dev;
9131 struct intel_unpin_work *work;
67e77c5a 9132
5e2d7afc 9133 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9134 work = intel_crtc->unpin_work;
9135 intel_crtc->unpin_work = NULL;
5e2d7afc 9136 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9137
9138 if (work) {
9139 cancel_work_sync(&work->work);
9140 kfree(work);
9141 }
79e53945
JB
9142
9143 drm_crtc_cleanup(crtc);
67e77c5a 9144
79e53945
JB
9145 kfree(intel_crtc);
9146}
9147
6b95a207
KH
9148static void intel_unpin_work_fn(struct work_struct *__work)
9149{
9150 struct intel_unpin_work *work =
9151 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9152 struct drm_device *dev = work->crtc->dev;
f99d7069 9153 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9154
b4a98e57 9155 mutex_lock(&dev->struct_mutex);
1690e1eb 9156 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9157 drm_gem_object_unreference(&work->pending_flip_obj->base);
9158 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9159
b4a98e57
CW
9160 intel_update_fbc(dev);
9161 mutex_unlock(&dev->struct_mutex);
9162
f99d7069
DV
9163 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9164
b4a98e57
CW
9165 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9166 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9167
6b95a207
KH
9168 kfree(work);
9169}
9170
1afe3e9d 9171static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9172 struct drm_crtc *crtc)
6b95a207 9173{
6b95a207
KH
9174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9175 struct intel_unpin_work *work;
6b95a207
KH
9176 unsigned long flags;
9177
9178 /* Ignore early vblank irqs */
9179 if (intel_crtc == NULL)
9180 return;
9181
f326038a
DV
9182 /*
9183 * This is called both by irq handlers and the reset code (to complete
9184 * lost pageflips) so needs the full irqsave spinlocks.
9185 */
6b95a207
KH
9186 spin_lock_irqsave(&dev->event_lock, flags);
9187 work = intel_crtc->unpin_work;
e7d841ca
CW
9188
9189 /* Ensure we don't miss a work->pending update ... */
9190 smp_rmb();
9191
9192 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9193 spin_unlock_irqrestore(&dev->event_lock, flags);
9194 return;
9195 }
9196
d6bbafa1 9197 page_flip_completed(intel_crtc);
0af7e4df 9198
6b95a207 9199 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9200}
9201
1afe3e9d
JB
9202void intel_finish_page_flip(struct drm_device *dev, int pipe)
9203{
fbee40df 9204 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9205 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9206
49b14a5c 9207 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9208}
9209
9210void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9211{
fbee40df 9212 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9213 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9214
49b14a5c 9215 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9216}
9217
75f7f3ec
VS
9218/* Is 'a' after or equal to 'b'? */
9219static bool g4x_flip_count_after_eq(u32 a, u32 b)
9220{
9221 return !((a - b) & 0x80000000);
9222}
9223
9224static bool page_flip_finished(struct intel_crtc *crtc)
9225{
9226 struct drm_device *dev = crtc->base.dev;
9227 struct drm_i915_private *dev_priv = dev->dev_private;
9228
9229 /*
9230 * The relevant registers doen't exist on pre-ctg.
9231 * As the flip done interrupt doesn't trigger for mmio
9232 * flips on gmch platforms, a flip count check isn't
9233 * really needed there. But since ctg has the registers,
9234 * include it in the check anyway.
9235 */
9236 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9237 return true;
9238
9239 /*
9240 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9241 * used the same base address. In that case the mmio flip might
9242 * have completed, but the CS hasn't even executed the flip yet.
9243 *
9244 * A flip count check isn't enough as the CS might have updated
9245 * the base address just after start of vblank, but before we
9246 * managed to process the interrupt. This means we'd complete the
9247 * CS flip too soon.
9248 *
9249 * Combining both checks should get us a good enough result. It may
9250 * still happen that the CS flip has been executed, but has not
9251 * yet actually completed. But in case the base address is the same
9252 * anyway, we don't really care.
9253 */
9254 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9255 crtc->unpin_work->gtt_offset &&
9256 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9257 crtc->unpin_work->flip_count);
9258}
9259
6b95a207
KH
9260void intel_prepare_page_flip(struct drm_device *dev, int plane)
9261{
fbee40df 9262 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9263 struct intel_crtc *intel_crtc =
9264 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9265 unsigned long flags;
9266
f326038a
DV
9267
9268 /*
9269 * This is called both by irq handlers and the reset code (to complete
9270 * lost pageflips) so needs the full irqsave spinlocks.
9271 *
9272 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9273 * generate a page-flip completion irq, i.e. every modeset
9274 * is also accompanied by a spurious intel_prepare_page_flip().
9275 */
6b95a207 9276 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9277 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9278 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9279 spin_unlock_irqrestore(&dev->event_lock, flags);
9280}
9281
eba905b2 9282static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9283{
9284 /* Ensure that the work item is consistent when activating it ... */
9285 smp_wmb();
9286 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9287 /* and that it is marked active as soon as the irq could fire. */
9288 smp_wmb();
9289}
9290
8c9f3aaf
JB
9291static int intel_gen2_queue_flip(struct drm_device *dev,
9292 struct drm_crtc *crtc,
9293 struct drm_framebuffer *fb,
ed8d1975 9294 struct drm_i915_gem_object *obj,
a4872ba6 9295 struct intel_engine_cs *ring,
ed8d1975 9296 uint32_t flags)
8c9f3aaf 9297{
8c9f3aaf 9298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9299 u32 flip_mask;
9300 int ret;
9301
6d90c952 9302 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9303 if (ret)
4fa62c89 9304 return ret;
8c9f3aaf
JB
9305
9306 /* Can't queue multiple flips, so wait for the previous
9307 * one to finish before executing the next.
9308 */
9309 if (intel_crtc->plane)
9310 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9311 else
9312 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9313 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9314 intel_ring_emit(ring, MI_NOOP);
9315 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9316 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9317 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9318 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9319 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9320
9321 intel_mark_page_flip_active(intel_crtc);
09246732 9322 __intel_ring_advance(ring);
83d4092b 9323 return 0;
8c9f3aaf
JB
9324}
9325
9326static int intel_gen3_queue_flip(struct drm_device *dev,
9327 struct drm_crtc *crtc,
9328 struct drm_framebuffer *fb,
ed8d1975 9329 struct drm_i915_gem_object *obj,
a4872ba6 9330 struct intel_engine_cs *ring,
ed8d1975 9331 uint32_t flags)
8c9f3aaf 9332{
8c9f3aaf 9333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9334 u32 flip_mask;
9335 int ret;
9336
6d90c952 9337 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9338 if (ret)
4fa62c89 9339 return ret;
8c9f3aaf
JB
9340
9341 if (intel_crtc->plane)
9342 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9343 else
9344 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9345 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9346 intel_ring_emit(ring, MI_NOOP);
9347 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9348 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9349 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9350 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9351 intel_ring_emit(ring, MI_NOOP);
9352
e7d841ca 9353 intel_mark_page_flip_active(intel_crtc);
09246732 9354 __intel_ring_advance(ring);
83d4092b 9355 return 0;
8c9f3aaf
JB
9356}
9357
9358static int intel_gen4_queue_flip(struct drm_device *dev,
9359 struct drm_crtc *crtc,
9360 struct drm_framebuffer *fb,
ed8d1975 9361 struct drm_i915_gem_object *obj,
a4872ba6 9362 struct intel_engine_cs *ring,
ed8d1975 9363 uint32_t flags)
8c9f3aaf
JB
9364{
9365 struct drm_i915_private *dev_priv = dev->dev_private;
9366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9367 uint32_t pf, pipesrc;
9368 int ret;
9369
6d90c952 9370 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9371 if (ret)
4fa62c89 9372 return ret;
8c9f3aaf
JB
9373
9374 /* i965+ uses the linear or tiled offsets from the
9375 * Display Registers (which do not change across a page-flip)
9376 * so we need only reprogram the base address.
9377 */
6d90c952
DV
9378 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9379 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9380 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9381 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9382 obj->tiling_mode);
8c9f3aaf
JB
9383
9384 /* XXX Enabling the panel-fitter across page-flip is so far
9385 * untested on non-native modes, so ignore it for now.
9386 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9387 */
9388 pf = 0;
9389 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9390 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9391
9392 intel_mark_page_flip_active(intel_crtc);
09246732 9393 __intel_ring_advance(ring);
83d4092b 9394 return 0;
8c9f3aaf
JB
9395}
9396
9397static int intel_gen6_queue_flip(struct drm_device *dev,
9398 struct drm_crtc *crtc,
9399 struct drm_framebuffer *fb,
ed8d1975 9400 struct drm_i915_gem_object *obj,
a4872ba6 9401 struct intel_engine_cs *ring,
ed8d1975 9402 uint32_t flags)
8c9f3aaf
JB
9403{
9404 struct drm_i915_private *dev_priv = dev->dev_private;
9405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9406 uint32_t pf, pipesrc;
9407 int ret;
9408
6d90c952 9409 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9410 if (ret)
4fa62c89 9411 return ret;
8c9f3aaf 9412
6d90c952
DV
9413 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9414 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9415 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9416 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9417
dc257cf1
DV
9418 /* Contrary to the suggestions in the documentation,
9419 * "Enable Panel Fitter" does not seem to be required when page
9420 * flipping with a non-native mode, and worse causes a normal
9421 * modeset to fail.
9422 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9423 */
9424 pf = 0;
8c9f3aaf 9425 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9426 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9427
9428 intel_mark_page_flip_active(intel_crtc);
09246732 9429 __intel_ring_advance(ring);
83d4092b 9430 return 0;
8c9f3aaf
JB
9431}
9432
7c9017e5
JB
9433static int intel_gen7_queue_flip(struct drm_device *dev,
9434 struct drm_crtc *crtc,
9435 struct drm_framebuffer *fb,
ed8d1975 9436 struct drm_i915_gem_object *obj,
a4872ba6 9437 struct intel_engine_cs *ring,
ed8d1975 9438 uint32_t flags)
7c9017e5 9439{
7c9017e5 9440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9441 uint32_t plane_bit = 0;
ffe74d75
CW
9442 int len, ret;
9443
eba905b2 9444 switch (intel_crtc->plane) {
cb05d8de
DV
9445 case PLANE_A:
9446 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9447 break;
9448 case PLANE_B:
9449 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9450 break;
9451 case PLANE_C:
9452 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9453 break;
9454 default:
9455 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9456 return -ENODEV;
cb05d8de
DV
9457 }
9458
ffe74d75 9459 len = 4;
f476828a 9460 if (ring->id == RCS) {
ffe74d75 9461 len += 6;
f476828a
DL
9462 /*
9463 * On Gen 8, SRM is now taking an extra dword to accommodate
9464 * 48bits addresses, and we need a NOOP for the batch size to
9465 * stay even.
9466 */
9467 if (IS_GEN8(dev))
9468 len += 2;
9469 }
ffe74d75 9470
f66fab8e
VS
9471 /*
9472 * BSpec MI_DISPLAY_FLIP for IVB:
9473 * "The full packet must be contained within the same cache line."
9474 *
9475 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9476 * cacheline, if we ever start emitting more commands before
9477 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9478 * then do the cacheline alignment, and finally emit the
9479 * MI_DISPLAY_FLIP.
9480 */
9481 ret = intel_ring_cacheline_align(ring);
9482 if (ret)
4fa62c89 9483 return ret;
f66fab8e 9484
ffe74d75 9485 ret = intel_ring_begin(ring, len);
7c9017e5 9486 if (ret)
4fa62c89 9487 return ret;
7c9017e5 9488
ffe74d75
CW
9489 /* Unmask the flip-done completion message. Note that the bspec says that
9490 * we should do this for both the BCS and RCS, and that we must not unmask
9491 * more than one flip event at any time (or ensure that one flip message
9492 * can be sent by waiting for flip-done prior to queueing new flips).
9493 * Experimentation says that BCS works despite DERRMR masking all
9494 * flip-done completion events and that unmasking all planes at once
9495 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9496 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9497 */
9498 if (ring->id == RCS) {
9499 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9500 intel_ring_emit(ring, DERRMR);
9501 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9502 DERRMR_PIPEB_PRI_FLIP_DONE |
9503 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9504 if (IS_GEN8(dev))
9505 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9506 MI_SRM_LRM_GLOBAL_GTT);
9507 else
9508 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9509 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9510 intel_ring_emit(ring, DERRMR);
9511 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9512 if (IS_GEN8(dev)) {
9513 intel_ring_emit(ring, 0);
9514 intel_ring_emit(ring, MI_NOOP);
9515 }
ffe74d75
CW
9516 }
9517
cb05d8de 9518 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9519 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9520 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9521 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9522
9523 intel_mark_page_flip_active(intel_crtc);
09246732 9524 __intel_ring_advance(ring);
83d4092b 9525 return 0;
7c9017e5
JB
9526}
9527
84c33a64
SG
9528static bool use_mmio_flip(struct intel_engine_cs *ring,
9529 struct drm_i915_gem_object *obj)
9530{
9531 /*
9532 * This is not being used for older platforms, because
9533 * non-availability of flip done interrupt forces us to use
9534 * CS flips. Older platforms derive flip done using some clever
9535 * tricks involving the flip_pending status bits and vblank irqs.
9536 * So using MMIO flips there would disrupt this mechanism.
9537 */
9538
8e09bf83
CW
9539 if (ring == NULL)
9540 return true;
9541
84c33a64
SG
9542 if (INTEL_INFO(ring->dev)->gen < 5)
9543 return false;
9544
9545 if (i915.use_mmio_flip < 0)
9546 return false;
9547 else if (i915.use_mmio_flip > 0)
9548 return true;
14bf993e
OM
9549 else if (i915.enable_execlists)
9550 return true;
84c33a64
SG
9551 else
9552 return ring != obj->ring;
9553}
9554
9555static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9556{
9557 struct drm_device *dev = intel_crtc->base.dev;
9558 struct drm_i915_private *dev_priv = dev->dev_private;
9559 struct intel_framebuffer *intel_fb =
9560 to_intel_framebuffer(intel_crtc->base.primary->fb);
9561 struct drm_i915_gem_object *obj = intel_fb->obj;
9562 u32 dspcntr;
9563 u32 reg;
9564
9565 intel_mark_page_flip_active(intel_crtc);
9566
9567 reg = DSPCNTR(intel_crtc->plane);
9568 dspcntr = I915_READ(reg);
9569
c5d97472
DL
9570 if (obj->tiling_mode != I915_TILING_NONE)
9571 dspcntr |= DISPPLANE_TILED;
9572 else
9573 dspcntr &= ~DISPPLANE_TILED;
9574
84c33a64
SG
9575 I915_WRITE(reg, dspcntr);
9576
9577 I915_WRITE(DSPSURF(intel_crtc->plane),
9578 intel_crtc->unpin_work->gtt_offset);
9579 POSTING_READ(DSPSURF(intel_crtc->plane));
9580}
9581
9582static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9583{
9584 struct intel_engine_cs *ring;
9585 int ret;
9586
9587 lockdep_assert_held(&obj->base.dev->struct_mutex);
9588
9589 if (!obj->last_write_seqno)
9590 return 0;
9591
9592 ring = obj->ring;
9593
9594 if (i915_seqno_passed(ring->get_seqno(ring, true),
9595 obj->last_write_seqno))
9596 return 0;
9597
9598 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9599 if (ret)
9600 return ret;
9601
9602 if (WARN_ON(!ring->irq_get(ring)))
9603 return 0;
9604
9605 return 1;
9606}
9607
9608void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9609{
9610 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9611 struct intel_crtc *intel_crtc;
9612 unsigned long irq_flags;
9613 u32 seqno;
9614
9615 seqno = ring->get_seqno(ring, false);
9616
9617 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9618 for_each_intel_crtc(ring->dev, intel_crtc) {
9619 struct intel_mmio_flip *mmio_flip;
9620
9621 mmio_flip = &intel_crtc->mmio_flip;
9622 if (mmio_flip->seqno == 0)
9623 continue;
9624
9625 if (ring->id != mmio_flip->ring_id)
9626 continue;
9627
9628 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9629 intel_do_mmio_flip(intel_crtc);
9630 mmio_flip->seqno = 0;
9631 ring->irq_put(ring);
9632 }
9633 }
9634 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9635}
9636
9637static int intel_queue_mmio_flip(struct drm_device *dev,
9638 struct drm_crtc *crtc,
9639 struct drm_framebuffer *fb,
9640 struct drm_i915_gem_object *obj,
9641 struct intel_engine_cs *ring,
9642 uint32_t flags)
9643{
9644 struct drm_i915_private *dev_priv = dev->dev_private;
9645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64
SG
9646 int ret;
9647
9648 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9649 return -EBUSY;
9650
9651 ret = intel_postpone_flip(obj);
9652 if (ret < 0)
9653 return ret;
9654 if (ret == 0) {
9655 intel_do_mmio_flip(intel_crtc);
9656 return 0;
9657 }
9658
24955f24 9659 spin_lock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9660 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9661 intel_crtc->mmio_flip.ring_id = obj->ring->id;
24955f24 9662 spin_unlock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9663
9664 /*
9665 * Double check to catch cases where irq fired before
9666 * mmio flip data was ready
9667 */
9668 intel_notify_mmio_flip(obj->ring);
9669 return 0;
9670}
9671
8c9f3aaf
JB
9672static int intel_default_queue_flip(struct drm_device *dev,
9673 struct drm_crtc *crtc,
9674 struct drm_framebuffer *fb,
ed8d1975 9675 struct drm_i915_gem_object *obj,
a4872ba6 9676 struct intel_engine_cs *ring,
ed8d1975 9677 uint32_t flags)
8c9f3aaf
JB
9678{
9679 return -ENODEV;
9680}
9681
d6bbafa1
CW
9682static bool __intel_pageflip_stall_check(struct drm_device *dev,
9683 struct drm_crtc *crtc)
9684{
9685 struct drm_i915_private *dev_priv = dev->dev_private;
9686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9687 struct intel_unpin_work *work = intel_crtc->unpin_work;
9688 u32 addr;
9689
9690 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9691 return true;
9692
9693 if (!work->enable_stall_check)
9694 return false;
9695
9696 if (work->flip_ready_vblank == 0) {
9697 if (work->flip_queued_ring &&
9698 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9699 work->flip_queued_seqno))
9700 return false;
9701
9702 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9703 }
9704
9705 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9706 return false;
9707
9708 /* Potential stall - if we see that the flip has happened,
9709 * assume a missed interrupt. */
9710 if (INTEL_INFO(dev)->gen >= 4)
9711 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9712 else
9713 addr = I915_READ(DSPADDR(intel_crtc->plane));
9714
9715 /* There is a potential issue here with a false positive after a flip
9716 * to the same address. We could address this by checking for a
9717 * non-incrementing frame counter.
9718 */
9719 return addr == work->gtt_offset;
9720}
9721
9722void intel_check_page_flip(struct drm_device *dev, int pipe)
9723{
9724 struct drm_i915_private *dev_priv = dev->dev_private;
9725 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9727
9728 WARN_ON(!in_irq());
d6bbafa1
CW
9729
9730 if (crtc == NULL)
9731 return;
9732
f326038a 9733 spin_lock(&dev->event_lock);
d6bbafa1
CW
9734 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9735 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9736 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9737 page_flip_completed(intel_crtc);
9738 }
f326038a 9739 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9740}
9741
6b95a207
KH
9742static int intel_crtc_page_flip(struct drm_crtc *crtc,
9743 struct drm_framebuffer *fb,
ed8d1975
KP
9744 struct drm_pending_vblank_event *event,
9745 uint32_t page_flip_flags)
6b95a207
KH
9746{
9747 struct drm_device *dev = crtc->dev;
9748 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9749 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9750 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9752 enum pipe pipe = intel_crtc->pipe;
6b95a207 9753 struct intel_unpin_work *work;
a4872ba6 9754 struct intel_engine_cs *ring;
52e68630 9755 int ret;
6b95a207 9756
2ff8fde1
MR
9757 /*
9758 * drm_mode_page_flip_ioctl() should already catch this, but double
9759 * check to be safe. In the future we may enable pageflipping from
9760 * a disabled primary plane.
9761 */
9762 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9763 return -EBUSY;
9764
e6a595d2 9765 /* Can't change pixel format via MI display flips. */
f4510a27 9766 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9767 return -EINVAL;
9768
9769 /*
9770 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9771 * Note that pitch changes could also affect these register.
9772 */
9773 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9774 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9775 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9776 return -EINVAL;
9777
f900db47
CW
9778 if (i915_terminally_wedged(&dev_priv->gpu_error))
9779 goto out_hang;
9780
b14c5679 9781 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9782 if (work == NULL)
9783 return -ENOMEM;
9784
6b95a207 9785 work->event = event;
b4a98e57 9786 work->crtc = crtc;
2ff8fde1 9787 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9788 INIT_WORK(&work->work, intel_unpin_work_fn);
9789
87b6b101 9790 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9791 if (ret)
9792 goto free_work;
9793
6b95a207 9794 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9795 spin_lock_irq(&dev->event_lock);
6b95a207 9796 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9797 /* Before declaring the flip queue wedged, check if
9798 * the hardware completed the operation behind our backs.
9799 */
9800 if (__intel_pageflip_stall_check(dev, crtc)) {
9801 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9802 page_flip_completed(intel_crtc);
9803 } else {
9804 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9805 spin_unlock_irq(&dev->event_lock);
468f0b44 9806
d6bbafa1
CW
9807 drm_crtc_vblank_put(crtc);
9808 kfree(work);
9809 return -EBUSY;
9810 }
6b95a207
KH
9811 }
9812 intel_crtc->unpin_work = work;
5e2d7afc 9813 spin_unlock_irq(&dev->event_lock);
6b95a207 9814
b4a98e57
CW
9815 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9816 flush_workqueue(dev_priv->wq);
9817
79158103
CW
9818 ret = i915_mutex_lock_interruptible(dev);
9819 if (ret)
9820 goto cleanup;
6b95a207 9821
75dfca80 9822 /* Reference the objects for the scheduled work. */
05394f39
CW
9823 drm_gem_object_reference(&work->old_fb_obj->base);
9824 drm_gem_object_reference(&obj->base);
6b95a207 9825
f4510a27 9826 crtc->primary->fb = fb;
96b099fd 9827
e1f99ce6 9828 work->pending_flip_obj = obj;
e1f99ce6 9829
b4a98e57 9830 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9831 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9832
75f7f3ec 9833 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9834 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9835
4fa62c89
VS
9836 if (IS_VALLEYVIEW(dev)) {
9837 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9838 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9839 /* vlv: DISPLAY_FLIP fails to change tiling */
9840 ring = NULL;
2a92d5bc
CW
9841 } else if (IS_IVYBRIDGE(dev)) {
9842 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9843 } else if (INTEL_INFO(dev)->gen >= 7) {
9844 ring = obj->ring;
9845 if (ring == NULL || ring->id != RCS)
9846 ring = &dev_priv->ring[BCS];
9847 } else {
9848 ring = &dev_priv->ring[RCS];
9849 }
9850
9851 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9852 if (ret)
9853 goto cleanup_pending;
6b95a207 9854
4fa62c89
VS
9855 work->gtt_offset =
9856 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9857
d6bbafa1 9858 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9859 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9860 page_flip_flags);
d6bbafa1
CW
9861 if (ret)
9862 goto cleanup_unpin;
9863
9864 work->flip_queued_seqno = obj->last_write_seqno;
9865 work->flip_queued_ring = obj->ring;
9866 } else {
84c33a64 9867 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9868 page_flip_flags);
9869 if (ret)
9870 goto cleanup_unpin;
9871
9872 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9873 work->flip_queued_ring = ring;
9874 }
9875
9876 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9877 work->enable_stall_check = true;
4fa62c89 9878
a071fa00
DV
9879 i915_gem_track_fb(work->old_fb_obj, obj,
9880 INTEL_FRONTBUFFER_PRIMARY(pipe));
9881
7782de3b 9882 intel_disable_fbc(dev);
f99d7069 9883 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9884 mutex_unlock(&dev->struct_mutex);
9885
e5510fac
JB
9886 trace_i915_flip_request(intel_crtc->plane, obj);
9887
6b95a207 9888 return 0;
96b099fd 9889
4fa62c89
VS
9890cleanup_unpin:
9891 intel_unpin_fb_obj(obj);
8c9f3aaf 9892cleanup_pending:
b4a98e57 9893 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9894 crtc->primary->fb = old_fb;
05394f39
CW
9895 drm_gem_object_unreference(&work->old_fb_obj->base);
9896 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9897 mutex_unlock(&dev->struct_mutex);
9898
79158103 9899cleanup:
5e2d7afc 9900 spin_lock_irq(&dev->event_lock);
96b099fd 9901 intel_crtc->unpin_work = NULL;
5e2d7afc 9902 spin_unlock_irq(&dev->event_lock);
96b099fd 9903
87b6b101 9904 drm_crtc_vblank_put(crtc);
7317c75e 9905free_work:
96b099fd
CW
9906 kfree(work);
9907
f900db47
CW
9908 if (ret == -EIO) {
9909out_hang:
9910 intel_crtc_wait_for_pending_flips(crtc);
9911 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
f0d3dad3 9912 if (ret == 0 && event) {
5e2d7afc 9913 spin_lock_irq(&dev->event_lock);
a071fa00 9914 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9915 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9916 }
f900db47 9917 }
96b099fd 9918 return ret;
6b95a207
KH
9919}
9920
f6e5b160 9921static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9922 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9923 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9924};
9925
9a935856
DV
9926/**
9927 * intel_modeset_update_staged_output_state
9928 *
9929 * Updates the staged output configuration state, e.g. after we've read out the
9930 * current hw state.
9931 */
9932static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9933{
7668851f 9934 struct intel_crtc *crtc;
9a935856
DV
9935 struct intel_encoder *encoder;
9936 struct intel_connector *connector;
f6e5b160 9937
9a935856
DV
9938 list_for_each_entry(connector, &dev->mode_config.connector_list,
9939 base.head) {
9940 connector->new_encoder =
9941 to_intel_encoder(connector->base.encoder);
9942 }
f6e5b160 9943
b2784e15 9944 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9945 encoder->new_crtc =
9946 to_intel_crtc(encoder->base.crtc);
9947 }
7668851f 9948
d3fcc808 9949 for_each_intel_crtc(dev, crtc) {
7668851f 9950 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9951
9952 if (crtc->new_enabled)
9953 crtc->new_config = &crtc->config;
9954 else
9955 crtc->new_config = NULL;
7668851f 9956 }
f6e5b160
CW
9957}
9958
9a935856
DV
9959/**
9960 * intel_modeset_commit_output_state
9961 *
9962 * This function copies the stage display pipe configuration to the real one.
9963 */
9964static void intel_modeset_commit_output_state(struct drm_device *dev)
9965{
7668851f 9966 struct intel_crtc *crtc;
9a935856
DV
9967 struct intel_encoder *encoder;
9968 struct intel_connector *connector;
f6e5b160 9969
9a935856
DV
9970 list_for_each_entry(connector, &dev->mode_config.connector_list,
9971 base.head) {
9972 connector->base.encoder = &connector->new_encoder->base;
9973 }
f6e5b160 9974
b2784e15 9975 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9976 encoder->base.crtc = &encoder->new_crtc->base;
9977 }
7668851f 9978
d3fcc808 9979 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9980 crtc->base.enabled = crtc->new_enabled;
9981 }
9a935856
DV
9982}
9983
050f7aeb 9984static void
eba905b2 9985connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9986 struct intel_crtc_config *pipe_config)
9987{
9988 int bpp = pipe_config->pipe_bpp;
9989
9990 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9991 connector->base.base.id,
c23cc417 9992 connector->base.name);
050f7aeb
DV
9993
9994 /* Don't use an invalid EDID bpc value */
9995 if (connector->base.display_info.bpc &&
9996 connector->base.display_info.bpc * 3 < bpp) {
9997 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9998 bpp, connector->base.display_info.bpc*3);
9999 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10000 }
10001
10002 /* Clamp bpp to 8 on screens without EDID 1.4 */
10003 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10004 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10005 bpp);
10006 pipe_config->pipe_bpp = 24;
10007 }
10008}
10009
4e53c2e0 10010static int
050f7aeb
DV
10011compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10012 struct drm_framebuffer *fb,
10013 struct intel_crtc_config *pipe_config)
4e53c2e0 10014{
050f7aeb
DV
10015 struct drm_device *dev = crtc->base.dev;
10016 struct intel_connector *connector;
4e53c2e0
DV
10017 int bpp;
10018
d42264b1
DV
10019 switch (fb->pixel_format) {
10020 case DRM_FORMAT_C8:
4e53c2e0
DV
10021 bpp = 8*3; /* since we go through a colormap */
10022 break;
d42264b1
DV
10023 case DRM_FORMAT_XRGB1555:
10024 case DRM_FORMAT_ARGB1555:
10025 /* checked in intel_framebuffer_init already */
10026 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10027 return -EINVAL;
10028 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10029 bpp = 6*3; /* min is 18bpp */
10030 break;
d42264b1
DV
10031 case DRM_FORMAT_XBGR8888:
10032 case DRM_FORMAT_ABGR8888:
10033 /* checked in intel_framebuffer_init already */
10034 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10035 return -EINVAL;
10036 case DRM_FORMAT_XRGB8888:
10037 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10038 bpp = 8*3;
10039 break;
d42264b1
DV
10040 case DRM_FORMAT_XRGB2101010:
10041 case DRM_FORMAT_ARGB2101010:
10042 case DRM_FORMAT_XBGR2101010:
10043 case DRM_FORMAT_ABGR2101010:
10044 /* checked in intel_framebuffer_init already */
10045 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10046 return -EINVAL;
4e53c2e0
DV
10047 bpp = 10*3;
10048 break;
baba133a 10049 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10050 default:
10051 DRM_DEBUG_KMS("unsupported depth\n");
10052 return -EINVAL;
10053 }
10054
4e53c2e0
DV
10055 pipe_config->pipe_bpp = bpp;
10056
10057 /* Clamp display bpp to EDID value */
10058 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10059 base.head) {
1b829e05
DV
10060 if (!connector->new_encoder ||
10061 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10062 continue;
10063
050f7aeb 10064 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10065 }
10066
10067 return bpp;
10068}
10069
644db711
DV
10070static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10071{
10072 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10073 "type: 0x%x flags: 0x%x\n",
1342830c 10074 mode->crtc_clock,
644db711
DV
10075 mode->crtc_hdisplay, mode->crtc_hsync_start,
10076 mode->crtc_hsync_end, mode->crtc_htotal,
10077 mode->crtc_vdisplay, mode->crtc_vsync_start,
10078 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10079}
10080
c0b03411
DV
10081static void intel_dump_pipe_config(struct intel_crtc *crtc,
10082 struct intel_crtc_config *pipe_config,
10083 const char *context)
10084{
10085 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10086 context, pipe_name(crtc->pipe));
10087
10088 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10089 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10090 pipe_config->pipe_bpp, pipe_config->dither);
10091 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10092 pipe_config->has_pch_encoder,
10093 pipe_config->fdi_lanes,
10094 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10095 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10096 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10097 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10098 pipe_config->has_dp_encoder,
10099 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10100 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10101 pipe_config->dp_m_n.tu);
b95af8be
VK
10102
10103 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10104 pipe_config->has_dp_encoder,
10105 pipe_config->dp_m2_n2.gmch_m,
10106 pipe_config->dp_m2_n2.gmch_n,
10107 pipe_config->dp_m2_n2.link_m,
10108 pipe_config->dp_m2_n2.link_n,
10109 pipe_config->dp_m2_n2.tu);
10110
c0b03411
DV
10111 DRM_DEBUG_KMS("requested mode:\n");
10112 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10113 DRM_DEBUG_KMS("adjusted mode:\n");
10114 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10115 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10116 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10117 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10118 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10119 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10120 pipe_config->gmch_pfit.control,
10121 pipe_config->gmch_pfit.pgm_ratios,
10122 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10123 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10124 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10125 pipe_config->pch_pfit.size,
10126 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10127 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10128 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10129}
10130
bc079e8b
VS
10131static bool encoders_cloneable(const struct intel_encoder *a,
10132 const struct intel_encoder *b)
accfc0c5 10133{
bc079e8b
VS
10134 /* masks could be asymmetric, so check both ways */
10135 return a == b || (a->cloneable & (1 << b->type) &&
10136 b->cloneable & (1 << a->type));
10137}
10138
10139static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10140 struct intel_encoder *encoder)
10141{
10142 struct drm_device *dev = crtc->base.dev;
10143 struct intel_encoder *source_encoder;
10144
b2784e15 10145 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10146 if (source_encoder->new_crtc != crtc)
10147 continue;
10148
10149 if (!encoders_cloneable(encoder, source_encoder))
10150 return false;
10151 }
10152
10153 return true;
10154}
10155
10156static bool check_encoder_cloning(struct intel_crtc *crtc)
10157{
10158 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10159 struct intel_encoder *encoder;
10160
b2784e15 10161 for_each_intel_encoder(dev, encoder) {
bc079e8b 10162 if (encoder->new_crtc != crtc)
accfc0c5
DV
10163 continue;
10164
bc079e8b
VS
10165 if (!check_single_encoder_cloning(crtc, encoder))
10166 return false;
accfc0c5
DV
10167 }
10168
bc079e8b 10169 return true;
accfc0c5
DV
10170}
10171
b8cecdf5
DV
10172static struct intel_crtc_config *
10173intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10174 struct drm_framebuffer *fb,
b8cecdf5 10175 struct drm_display_mode *mode)
ee7b9f93 10176{
7758a113 10177 struct drm_device *dev = crtc->dev;
7758a113 10178 struct intel_encoder *encoder;
b8cecdf5 10179 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10180 int plane_bpp, ret = -EINVAL;
10181 bool retry = true;
ee7b9f93 10182
bc079e8b 10183 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10184 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10185 return ERR_PTR(-EINVAL);
10186 }
10187
b8cecdf5
DV
10188 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10189 if (!pipe_config)
7758a113
DV
10190 return ERR_PTR(-ENOMEM);
10191
b8cecdf5
DV
10192 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10193 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10194
e143a21c
DV
10195 pipe_config->cpu_transcoder =
10196 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10197 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10198
2960bc9c
ID
10199 /*
10200 * Sanitize sync polarity flags based on requested ones. If neither
10201 * positive or negative polarity is requested, treat this as meaning
10202 * negative polarity.
10203 */
10204 if (!(pipe_config->adjusted_mode.flags &
10205 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10206 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10207
10208 if (!(pipe_config->adjusted_mode.flags &
10209 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10210 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10211
050f7aeb
DV
10212 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10213 * plane pixel format and any sink constraints into account. Returns the
10214 * source plane bpp so that dithering can be selected on mismatches
10215 * after encoders and crtc also have had their say. */
10216 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10217 fb, pipe_config);
4e53c2e0
DV
10218 if (plane_bpp < 0)
10219 goto fail;
10220
e41a56be
VS
10221 /*
10222 * Determine the real pipe dimensions. Note that stereo modes can
10223 * increase the actual pipe size due to the frame doubling and
10224 * insertion of additional space for blanks between the frame. This
10225 * is stored in the crtc timings. We use the requested mode to do this
10226 * computation to clearly distinguish it from the adjusted mode, which
10227 * can be changed by the connectors in the below retry loop.
10228 */
10229 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10230 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10231 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10232
e29c22c0 10233encoder_retry:
ef1b460d 10234 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10235 pipe_config->port_clock = 0;
ef1b460d 10236 pipe_config->pixel_multiplier = 1;
ff9a6750 10237
135c81b8 10238 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10239 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10240
7758a113
DV
10241 /* Pass our mode to the connectors and the CRTC to give them a chance to
10242 * adjust it according to limitations or connector properties, and also
10243 * a chance to reject the mode entirely.
47f1c6c9 10244 */
b2784e15 10245 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10246
7758a113
DV
10247 if (&encoder->new_crtc->base != crtc)
10248 continue;
7ae89233 10249
efea6e8e
DV
10250 if (!(encoder->compute_config(encoder, pipe_config))) {
10251 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10252 goto fail;
10253 }
ee7b9f93 10254 }
47f1c6c9 10255
ff9a6750
DV
10256 /* Set default port clock if not overwritten by the encoder. Needs to be
10257 * done afterwards in case the encoder adjusts the mode. */
10258 if (!pipe_config->port_clock)
241bfc38
DL
10259 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10260 * pipe_config->pixel_multiplier;
ff9a6750 10261
a43f6e0f 10262 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10263 if (ret < 0) {
7758a113
DV
10264 DRM_DEBUG_KMS("CRTC fixup failed\n");
10265 goto fail;
ee7b9f93 10266 }
e29c22c0
DV
10267
10268 if (ret == RETRY) {
10269 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10270 ret = -EINVAL;
10271 goto fail;
10272 }
10273
10274 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10275 retry = false;
10276 goto encoder_retry;
10277 }
10278
4e53c2e0
DV
10279 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10280 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10281 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10282
b8cecdf5 10283 return pipe_config;
7758a113 10284fail:
b8cecdf5 10285 kfree(pipe_config);
e29c22c0 10286 return ERR_PTR(ret);
ee7b9f93 10287}
47f1c6c9 10288
e2e1ed41
DV
10289/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10290 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10291static void
10292intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10293 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10294{
10295 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10296 struct drm_device *dev = crtc->dev;
10297 struct intel_encoder *encoder;
10298 struct intel_connector *connector;
10299 struct drm_crtc *tmp_crtc;
79e53945 10300
e2e1ed41 10301 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10302
e2e1ed41
DV
10303 /* Check which crtcs have changed outputs connected to them, these need
10304 * to be part of the prepare_pipes mask. We don't (yet) support global
10305 * modeset across multiple crtcs, so modeset_pipes will only have one
10306 * bit set at most. */
10307 list_for_each_entry(connector, &dev->mode_config.connector_list,
10308 base.head) {
10309 if (connector->base.encoder == &connector->new_encoder->base)
10310 continue;
79e53945 10311
e2e1ed41
DV
10312 if (connector->base.encoder) {
10313 tmp_crtc = connector->base.encoder->crtc;
10314
10315 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10316 }
10317
10318 if (connector->new_encoder)
10319 *prepare_pipes |=
10320 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10321 }
10322
b2784e15 10323 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10324 if (encoder->base.crtc == &encoder->new_crtc->base)
10325 continue;
10326
10327 if (encoder->base.crtc) {
10328 tmp_crtc = encoder->base.crtc;
10329
10330 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10331 }
10332
10333 if (encoder->new_crtc)
10334 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10335 }
10336
7668851f 10337 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10338 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10339 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10340 continue;
7e7d76c3 10341
7668851f 10342 if (!intel_crtc->new_enabled)
e2e1ed41 10343 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10344 else
10345 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10346 }
10347
e2e1ed41
DV
10348
10349 /* set_mode is also used to update properties on life display pipes. */
10350 intel_crtc = to_intel_crtc(crtc);
7668851f 10351 if (intel_crtc->new_enabled)
e2e1ed41
DV
10352 *prepare_pipes |= 1 << intel_crtc->pipe;
10353
b6c5164d
DV
10354 /*
10355 * For simplicity do a full modeset on any pipe where the output routing
10356 * changed. We could be more clever, but that would require us to be
10357 * more careful with calling the relevant encoder->mode_set functions.
10358 */
e2e1ed41
DV
10359 if (*prepare_pipes)
10360 *modeset_pipes = *prepare_pipes;
10361
10362 /* ... and mask these out. */
10363 *modeset_pipes &= ~(*disable_pipes);
10364 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10365
10366 /*
10367 * HACK: We don't (yet) fully support global modesets. intel_set_config
10368 * obies this rule, but the modeset restore mode of
10369 * intel_modeset_setup_hw_state does not.
10370 */
10371 *modeset_pipes &= 1 << intel_crtc->pipe;
10372 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10373
10374 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10375 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10376}
79e53945 10377
ea9d758d 10378static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10379{
ea9d758d 10380 struct drm_encoder *encoder;
f6e5b160 10381 struct drm_device *dev = crtc->dev;
f6e5b160 10382
ea9d758d
DV
10383 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10384 if (encoder->crtc == crtc)
10385 return true;
10386
10387 return false;
10388}
10389
10390static void
10391intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10392{
10393 struct intel_encoder *intel_encoder;
10394 struct intel_crtc *intel_crtc;
10395 struct drm_connector *connector;
10396
b2784e15 10397 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10398 if (!intel_encoder->base.crtc)
10399 continue;
10400
10401 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10402
10403 if (prepare_pipes & (1 << intel_crtc->pipe))
10404 intel_encoder->connectors_active = false;
10405 }
10406
10407 intel_modeset_commit_output_state(dev);
10408
7668851f 10409 /* Double check state. */
d3fcc808 10410 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10411 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10412 WARN_ON(intel_crtc->new_config &&
10413 intel_crtc->new_config != &intel_crtc->config);
10414 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10415 }
10416
10417 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10418 if (!connector->encoder || !connector->encoder->crtc)
10419 continue;
10420
10421 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10422
10423 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10424 struct drm_property *dpms_property =
10425 dev->mode_config.dpms_property;
10426
ea9d758d 10427 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10428 drm_object_property_set_value(&connector->base,
68d34720
DV
10429 dpms_property,
10430 DRM_MODE_DPMS_ON);
ea9d758d
DV
10431
10432 intel_encoder = to_intel_encoder(connector->encoder);
10433 intel_encoder->connectors_active = true;
10434 }
10435 }
10436
10437}
10438
3bd26263 10439static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10440{
3bd26263 10441 int diff;
f1f644dc
JB
10442
10443 if (clock1 == clock2)
10444 return true;
10445
10446 if (!clock1 || !clock2)
10447 return false;
10448
10449 diff = abs(clock1 - clock2);
10450
10451 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10452 return true;
10453
10454 return false;
10455}
10456
25c5b266
DV
10457#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10458 list_for_each_entry((intel_crtc), \
10459 &(dev)->mode_config.crtc_list, \
10460 base.head) \
0973f18f 10461 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10462
0e8ffe1b 10463static bool
2fa2fe9a
DV
10464intel_pipe_config_compare(struct drm_device *dev,
10465 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10466 struct intel_crtc_config *pipe_config)
10467{
66e985c0
DV
10468#define PIPE_CONF_CHECK_X(name) \
10469 if (current_config->name != pipe_config->name) { \
10470 DRM_ERROR("mismatch in " #name " " \
10471 "(expected 0x%08x, found 0x%08x)\n", \
10472 current_config->name, \
10473 pipe_config->name); \
10474 return false; \
10475 }
10476
08a24034
DV
10477#define PIPE_CONF_CHECK_I(name) \
10478 if (current_config->name != pipe_config->name) { \
10479 DRM_ERROR("mismatch in " #name " " \
10480 "(expected %i, found %i)\n", \
10481 current_config->name, \
10482 pipe_config->name); \
10483 return false; \
88adfff1
DV
10484 }
10485
b95af8be
VK
10486/* This is required for BDW+ where there is only one set of registers for
10487 * switching between high and low RR.
10488 * This macro can be used whenever a comparison has to be made between one
10489 * hw state and multiple sw state variables.
10490 */
10491#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10492 if ((current_config->name != pipe_config->name) && \
10493 (current_config->alt_name != pipe_config->name)) { \
10494 DRM_ERROR("mismatch in " #name " " \
10495 "(expected %i or %i, found %i)\n", \
10496 current_config->name, \
10497 current_config->alt_name, \
10498 pipe_config->name); \
10499 return false; \
10500 }
10501
1bd1bd80
DV
10502#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10503 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10504 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10505 "(expected %i, found %i)\n", \
10506 current_config->name & (mask), \
10507 pipe_config->name & (mask)); \
10508 return false; \
10509 }
10510
5e550656
VS
10511#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10512 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10513 DRM_ERROR("mismatch in " #name " " \
10514 "(expected %i, found %i)\n", \
10515 current_config->name, \
10516 pipe_config->name); \
10517 return false; \
10518 }
10519
bb760063
DV
10520#define PIPE_CONF_QUIRK(quirk) \
10521 ((current_config->quirks | pipe_config->quirks) & (quirk))
10522
eccb140b
DV
10523 PIPE_CONF_CHECK_I(cpu_transcoder);
10524
08a24034
DV
10525 PIPE_CONF_CHECK_I(has_pch_encoder);
10526 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10527 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10528 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10529 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10530 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10531 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10532
eb14cb74 10533 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10534
10535 if (INTEL_INFO(dev)->gen < 8) {
10536 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10537 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10538 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10539 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10540 PIPE_CONF_CHECK_I(dp_m_n.tu);
10541
10542 if (current_config->has_drrs) {
10543 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10544 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10545 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10546 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10547 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10548 }
10549 } else {
10550 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10551 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10552 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10553 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10554 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10555 }
eb14cb74 10556
1bd1bd80
DV
10557 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10558 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10559 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10560 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10561 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10562 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10563
10564 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10565 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10566 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10567 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10568 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10569 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10570
c93f54cf 10571 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10572 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10573 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10574 IS_VALLEYVIEW(dev))
10575 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10576
9ed109a7
DV
10577 PIPE_CONF_CHECK_I(has_audio);
10578
1bd1bd80
DV
10579 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10580 DRM_MODE_FLAG_INTERLACE);
10581
bb760063
DV
10582 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10583 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10584 DRM_MODE_FLAG_PHSYNC);
10585 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10586 DRM_MODE_FLAG_NHSYNC);
10587 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10588 DRM_MODE_FLAG_PVSYNC);
10589 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10590 DRM_MODE_FLAG_NVSYNC);
10591 }
045ac3b5 10592
37327abd
VS
10593 PIPE_CONF_CHECK_I(pipe_src_w);
10594 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10595
9953599b
DV
10596 /*
10597 * FIXME: BIOS likes to set up a cloned config with lvds+external
10598 * screen. Since we don't yet re-compute the pipe config when moving
10599 * just the lvds port away to another pipe the sw tracking won't match.
10600 *
10601 * Proper atomic modesets with recomputed global state will fix this.
10602 * Until then just don't check gmch state for inherited modes.
10603 */
10604 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10605 PIPE_CONF_CHECK_I(gmch_pfit.control);
10606 /* pfit ratios are autocomputed by the hw on gen4+ */
10607 if (INTEL_INFO(dev)->gen < 4)
10608 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10609 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10610 }
10611
fd4daa9c
CW
10612 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10613 if (current_config->pch_pfit.enabled) {
10614 PIPE_CONF_CHECK_I(pch_pfit.pos);
10615 PIPE_CONF_CHECK_I(pch_pfit.size);
10616 }
2fa2fe9a 10617
e59150dc
JB
10618 /* BDW+ don't expose a synchronous way to read the state */
10619 if (IS_HASWELL(dev))
10620 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10621
282740f7
VS
10622 PIPE_CONF_CHECK_I(double_wide);
10623
26804afd
DV
10624 PIPE_CONF_CHECK_X(ddi_pll_sel);
10625
c0d43d62 10626 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10627 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10628 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10629 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10630 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10631 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10632
42571aef
VS
10633 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10634 PIPE_CONF_CHECK_I(pipe_bpp);
10635
a9a7e98a
JB
10636 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10637 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10638
66e985c0 10639#undef PIPE_CONF_CHECK_X
08a24034 10640#undef PIPE_CONF_CHECK_I
b95af8be 10641#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10642#undef PIPE_CONF_CHECK_FLAGS
5e550656 10643#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10644#undef PIPE_CONF_QUIRK
88adfff1 10645
0e8ffe1b
DV
10646 return true;
10647}
10648
91d1b4bd
DV
10649static void
10650check_connector_state(struct drm_device *dev)
8af6cf88 10651{
8af6cf88
DV
10652 struct intel_connector *connector;
10653
10654 list_for_each_entry(connector, &dev->mode_config.connector_list,
10655 base.head) {
10656 /* This also checks the encoder/connector hw state with the
10657 * ->get_hw_state callbacks. */
10658 intel_connector_check_state(connector);
10659
10660 WARN(&connector->new_encoder->base != connector->base.encoder,
10661 "connector's staged encoder doesn't match current encoder\n");
10662 }
91d1b4bd
DV
10663}
10664
10665static void
10666check_encoder_state(struct drm_device *dev)
10667{
10668 struct intel_encoder *encoder;
10669 struct intel_connector *connector;
8af6cf88 10670
b2784e15 10671 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10672 bool enabled = false;
10673 bool active = false;
10674 enum pipe pipe, tracked_pipe;
10675
10676 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10677 encoder->base.base.id,
8e329a03 10678 encoder->base.name);
8af6cf88
DV
10679
10680 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10681 "encoder's stage crtc doesn't match current crtc\n");
10682 WARN(encoder->connectors_active && !encoder->base.crtc,
10683 "encoder's active_connectors set, but no crtc\n");
10684
10685 list_for_each_entry(connector, &dev->mode_config.connector_list,
10686 base.head) {
10687 if (connector->base.encoder != &encoder->base)
10688 continue;
10689 enabled = true;
10690 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10691 active = true;
10692 }
0e32b39c
DA
10693 /*
10694 * for MST connectors if we unplug the connector is gone
10695 * away but the encoder is still connected to a crtc
10696 * until a modeset happens in response to the hotplug.
10697 */
10698 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10699 continue;
10700
8af6cf88
DV
10701 WARN(!!encoder->base.crtc != enabled,
10702 "encoder's enabled state mismatch "
10703 "(expected %i, found %i)\n",
10704 !!encoder->base.crtc, enabled);
10705 WARN(active && !encoder->base.crtc,
10706 "active encoder with no crtc\n");
10707
10708 WARN(encoder->connectors_active != active,
10709 "encoder's computed active state doesn't match tracked active state "
10710 "(expected %i, found %i)\n", active, encoder->connectors_active);
10711
10712 active = encoder->get_hw_state(encoder, &pipe);
10713 WARN(active != encoder->connectors_active,
10714 "encoder's hw state doesn't match sw tracking "
10715 "(expected %i, found %i)\n",
10716 encoder->connectors_active, active);
10717
10718 if (!encoder->base.crtc)
10719 continue;
10720
10721 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10722 WARN(active && pipe != tracked_pipe,
10723 "active encoder's pipe doesn't match"
10724 "(expected %i, found %i)\n",
10725 tracked_pipe, pipe);
10726
10727 }
91d1b4bd
DV
10728}
10729
10730static void
10731check_crtc_state(struct drm_device *dev)
10732{
fbee40df 10733 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10734 struct intel_crtc *crtc;
10735 struct intel_encoder *encoder;
10736 struct intel_crtc_config pipe_config;
8af6cf88 10737
d3fcc808 10738 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10739 bool enabled = false;
10740 bool active = false;
10741
045ac3b5
JB
10742 memset(&pipe_config, 0, sizeof(pipe_config));
10743
8af6cf88
DV
10744 DRM_DEBUG_KMS("[CRTC:%d]\n",
10745 crtc->base.base.id);
10746
10747 WARN(crtc->active && !crtc->base.enabled,
10748 "active crtc, but not enabled in sw tracking\n");
10749
b2784e15 10750 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10751 if (encoder->base.crtc != &crtc->base)
10752 continue;
10753 enabled = true;
10754 if (encoder->connectors_active)
10755 active = true;
10756 }
6c49f241 10757
8af6cf88
DV
10758 WARN(active != crtc->active,
10759 "crtc's computed active state doesn't match tracked active state "
10760 "(expected %i, found %i)\n", active, crtc->active);
10761 WARN(enabled != crtc->base.enabled,
10762 "crtc's computed enabled state doesn't match tracked enabled state "
10763 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10764
0e8ffe1b
DV
10765 active = dev_priv->display.get_pipe_config(crtc,
10766 &pipe_config);
d62cf62a 10767
b6b5d049
VS
10768 /* hw state is inconsistent with the pipe quirk */
10769 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10770 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10771 active = crtc->active;
10772
b2784e15 10773 for_each_intel_encoder(dev, encoder) {
3eaba51c 10774 enum pipe pipe;
6c49f241
DV
10775 if (encoder->base.crtc != &crtc->base)
10776 continue;
1d37b689 10777 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10778 encoder->get_config(encoder, &pipe_config);
10779 }
10780
0e8ffe1b
DV
10781 WARN(crtc->active != active,
10782 "crtc active state doesn't match with hw state "
10783 "(expected %i, found %i)\n", crtc->active, active);
10784
c0b03411
DV
10785 if (active &&
10786 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10787 WARN(1, "pipe state doesn't match!\n");
10788 intel_dump_pipe_config(crtc, &pipe_config,
10789 "[hw state]");
10790 intel_dump_pipe_config(crtc, &crtc->config,
10791 "[sw state]");
10792 }
8af6cf88
DV
10793 }
10794}
10795
91d1b4bd
DV
10796static void
10797check_shared_dpll_state(struct drm_device *dev)
10798{
fbee40df 10799 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10800 struct intel_crtc *crtc;
10801 struct intel_dpll_hw_state dpll_hw_state;
10802 int i;
5358901f
DV
10803
10804 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10805 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10806 int enabled_crtcs = 0, active_crtcs = 0;
10807 bool active;
10808
10809 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10810
10811 DRM_DEBUG_KMS("%s\n", pll->name);
10812
10813 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10814
10815 WARN(pll->active > pll->refcount,
10816 "more active pll users than references: %i vs %i\n",
10817 pll->active, pll->refcount);
10818 WARN(pll->active && !pll->on,
10819 "pll in active use but not on in sw tracking\n");
35c95375
DV
10820 WARN(pll->on && !pll->active,
10821 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10822 WARN(pll->on != active,
10823 "pll on state mismatch (expected %i, found %i)\n",
10824 pll->on, active);
10825
d3fcc808 10826 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10827 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10828 enabled_crtcs++;
10829 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10830 active_crtcs++;
10831 }
10832 WARN(pll->active != active_crtcs,
10833 "pll active crtcs mismatch (expected %i, found %i)\n",
10834 pll->active, active_crtcs);
10835 WARN(pll->refcount != enabled_crtcs,
10836 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10837 pll->refcount, enabled_crtcs);
66e985c0
DV
10838
10839 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10840 sizeof(dpll_hw_state)),
10841 "pll hw state mismatch\n");
5358901f 10842 }
8af6cf88
DV
10843}
10844
91d1b4bd
DV
10845void
10846intel_modeset_check_state(struct drm_device *dev)
10847{
10848 check_connector_state(dev);
10849 check_encoder_state(dev);
10850 check_crtc_state(dev);
10851 check_shared_dpll_state(dev);
10852}
10853
18442d08
VS
10854void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10855 int dotclock)
10856{
10857 /*
10858 * FDI already provided one idea for the dotclock.
10859 * Yell if the encoder disagrees.
10860 */
241bfc38 10861 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10862 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10863 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10864}
10865
80715b2f
VS
10866static void update_scanline_offset(struct intel_crtc *crtc)
10867{
10868 struct drm_device *dev = crtc->base.dev;
10869
10870 /*
10871 * The scanline counter increments at the leading edge of hsync.
10872 *
10873 * On most platforms it starts counting from vtotal-1 on the
10874 * first active line. That means the scanline counter value is
10875 * always one less than what we would expect. Ie. just after
10876 * start of vblank, which also occurs at start of hsync (on the
10877 * last active line), the scanline counter will read vblank_start-1.
10878 *
10879 * On gen2 the scanline counter starts counting from 1 instead
10880 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10881 * to keep the value positive), instead of adding one.
10882 *
10883 * On HSW+ the behaviour of the scanline counter depends on the output
10884 * type. For DP ports it behaves like most other platforms, but on HDMI
10885 * there's an extra 1 line difference. So we need to add two instead of
10886 * one to the value.
10887 */
10888 if (IS_GEN2(dev)) {
10889 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10890 int vtotal;
10891
10892 vtotal = mode->crtc_vtotal;
10893 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10894 vtotal /= 2;
10895
10896 crtc->scanline_offset = vtotal - 1;
10897 } else if (HAS_DDI(dev) &&
409ee761 10898 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10899 crtc->scanline_offset = 2;
10900 } else
10901 crtc->scanline_offset = 1;
10902}
10903
f30da187
DV
10904static int __intel_set_mode(struct drm_crtc *crtc,
10905 struct drm_display_mode *mode,
10906 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10907{
10908 struct drm_device *dev = crtc->dev;
fbee40df 10909 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10910 struct drm_display_mode *saved_mode;
b8cecdf5 10911 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10912 struct intel_crtc *intel_crtc;
10913 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10914 int ret = 0;
a6778b3c 10915
4b4b9238 10916 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10917 if (!saved_mode)
10918 return -ENOMEM;
a6778b3c 10919
e2e1ed41 10920 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10921 &prepare_pipes, &disable_pipes);
10922
3ac18232 10923 *saved_mode = crtc->mode;
a6778b3c 10924
25c5b266
DV
10925 /* Hack: Because we don't (yet) support global modeset on multiple
10926 * crtcs, we don't keep track of the new mode for more than one crtc.
10927 * Hence simply check whether any bit is set in modeset_pipes in all the
10928 * pieces of code that are not yet converted to deal with mutliple crtcs
10929 * changing their mode at the same time. */
25c5b266 10930 if (modeset_pipes) {
4e53c2e0 10931 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10932 if (IS_ERR(pipe_config)) {
10933 ret = PTR_ERR(pipe_config);
10934 pipe_config = NULL;
10935
3ac18232 10936 goto out;
25c5b266 10937 }
c0b03411
DV
10938 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10939 "[modeset]");
50741abc 10940 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10941 }
a6778b3c 10942
30a970c6
JB
10943 /*
10944 * See if the config requires any additional preparation, e.g.
10945 * to adjust global state with pipes off. We need to do this
10946 * here so we can get the modeset_pipe updated config for the new
10947 * mode set on this crtc. For other crtcs we need to use the
10948 * adjusted_mode bits in the crtc directly.
10949 */
c164f833 10950 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10951 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10952
c164f833
VS
10953 /* may have added more to prepare_pipes than we should */
10954 prepare_pipes &= ~disable_pipes;
10955 }
10956
460da916
DV
10957 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10958 intel_crtc_disable(&intel_crtc->base);
10959
ea9d758d
DV
10960 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10961 if (intel_crtc->base.enabled)
10962 dev_priv->display.crtc_disable(&intel_crtc->base);
10963 }
a6778b3c 10964
6c4c86f5
DV
10965 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10966 * to set it here already despite that we pass it down the callchain.
f6e5b160 10967 */
b8cecdf5 10968 if (modeset_pipes) {
25c5b266 10969 crtc->mode = *mode;
b8cecdf5
DV
10970 /* mode_set/enable/disable functions rely on a correct pipe
10971 * config. */
10972 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10973 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10974
10975 /*
10976 * Calculate and store various constants which
10977 * are later needed by vblank and swap-completion
10978 * timestamping. They are derived from true hwmode.
10979 */
10980 drm_calc_timestamping_constants(crtc,
10981 &pipe_config->adjusted_mode);
b8cecdf5 10982 }
7758a113 10983
ea9d758d
DV
10984 /* Only after disabling all output pipelines that will be changed can we
10985 * update the the output configuration. */
10986 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10987
47fab737
DV
10988 if (dev_priv->display.modeset_global_resources)
10989 dev_priv->display.modeset_global_resources(dev);
10990
a6778b3c
DV
10991 /* Set up the DPLL and any encoders state that needs to adjust or depend
10992 * on the DPLL.
f6e5b160 10993 */
25c5b266 10994 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10995 struct drm_framebuffer *old_fb = crtc->primary->fb;
10996 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10997 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10998
10999 mutex_lock(&dev->struct_mutex);
11000 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 11001 obj,
4c10794f
DV
11002 NULL);
11003 if (ret != 0) {
11004 DRM_ERROR("pin & fence failed\n");
11005 mutex_unlock(&dev->struct_mutex);
11006 goto done;
11007 }
2ff8fde1 11008 if (old_fb)
a071fa00 11009 intel_unpin_fb_obj(old_obj);
a071fa00
DV
11010 i915_gem_track_fb(old_obj, obj,
11011 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
11012 mutex_unlock(&dev->struct_mutex);
11013
11014 crtc->primary->fb = fb;
11015 crtc->x = x;
11016 crtc->y = y;
11017
c7653199 11018 ret = dev_priv->display.crtc_mode_set(intel_crtc, x, y, fb);
c0c36b94
CW
11019 if (ret)
11020 goto done;
a6778b3c
DV
11021 }
11022
11023 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11024 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11025 update_scanline_offset(intel_crtc);
11026
25c5b266 11027 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11028 }
a6778b3c 11029
a6778b3c
DV
11030 /* FIXME: add subpixel order */
11031done:
4b4b9238 11032 if (ret && crtc->enabled)
3ac18232 11033 crtc->mode = *saved_mode;
a6778b3c 11034
3ac18232 11035out:
b8cecdf5 11036 kfree(pipe_config);
3ac18232 11037 kfree(saved_mode);
a6778b3c 11038 return ret;
f6e5b160
CW
11039}
11040
e7457a9a
DL
11041static int intel_set_mode(struct drm_crtc *crtc,
11042 struct drm_display_mode *mode,
11043 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11044{
11045 int ret;
11046
11047 ret = __intel_set_mode(crtc, mode, x, y, fb);
11048
11049 if (ret == 0)
11050 intel_modeset_check_state(crtc->dev);
11051
11052 return ret;
11053}
11054
c0c36b94
CW
11055void intel_crtc_restore_mode(struct drm_crtc *crtc)
11056{
f4510a27 11057 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11058}
11059
25c5b266
DV
11060#undef for_each_intel_crtc_masked
11061
d9e55608
DV
11062static void intel_set_config_free(struct intel_set_config *config)
11063{
11064 if (!config)
11065 return;
11066
1aa4b628
DV
11067 kfree(config->save_connector_encoders);
11068 kfree(config->save_encoder_crtcs);
7668851f 11069 kfree(config->save_crtc_enabled);
d9e55608
DV
11070 kfree(config);
11071}
11072
85f9eb71
DV
11073static int intel_set_config_save_state(struct drm_device *dev,
11074 struct intel_set_config *config)
11075{
7668851f 11076 struct drm_crtc *crtc;
85f9eb71
DV
11077 struct drm_encoder *encoder;
11078 struct drm_connector *connector;
11079 int count;
11080
7668851f
VS
11081 config->save_crtc_enabled =
11082 kcalloc(dev->mode_config.num_crtc,
11083 sizeof(bool), GFP_KERNEL);
11084 if (!config->save_crtc_enabled)
11085 return -ENOMEM;
11086
1aa4b628
DV
11087 config->save_encoder_crtcs =
11088 kcalloc(dev->mode_config.num_encoder,
11089 sizeof(struct drm_crtc *), GFP_KERNEL);
11090 if (!config->save_encoder_crtcs)
85f9eb71
DV
11091 return -ENOMEM;
11092
1aa4b628
DV
11093 config->save_connector_encoders =
11094 kcalloc(dev->mode_config.num_connector,
11095 sizeof(struct drm_encoder *), GFP_KERNEL);
11096 if (!config->save_connector_encoders)
85f9eb71
DV
11097 return -ENOMEM;
11098
11099 /* Copy data. Note that driver private data is not affected.
11100 * Should anything bad happen only the expected state is
11101 * restored, not the drivers personal bookkeeping.
11102 */
7668851f 11103 count = 0;
70e1e0ec 11104 for_each_crtc(dev, crtc) {
7668851f
VS
11105 config->save_crtc_enabled[count++] = crtc->enabled;
11106 }
11107
85f9eb71
DV
11108 count = 0;
11109 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11110 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11111 }
11112
11113 count = 0;
11114 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11115 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11116 }
11117
11118 return 0;
11119}
11120
11121static void intel_set_config_restore_state(struct drm_device *dev,
11122 struct intel_set_config *config)
11123{
7668851f 11124 struct intel_crtc *crtc;
9a935856
DV
11125 struct intel_encoder *encoder;
11126 struct intel_connector *connector;
85f9eb71
DV
11127 int count;
11128
7668851f 11129 count = 0;
d3fcc808 11130 for_each_intel_crtc(dev, crtc) {
7668851f 11131 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11132
11133 if (crtc->new_enabled)
11134 crtc->new_config = &crtc->config;
11135 else
11136 crtc->new_config = NULL;
7668851f
VS
11137 }
11138
85f9eb71 11139 count = 0;
b2784e15 11140 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11141 encoder->new_crtc =
11142 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11143 }
11144
11145 count = 0;
9a935856
DV
11146 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11147 connector->new_encoder =
11148 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11149 }
11150}
11151
e3de42b6 11152static bool
2e57f47d 11153is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11154{
11155 int i;
11156
2e57f47d
CW
11157 if (set->num_connectors == 0)
11158 return false;
11159
11160 if (WARN_ON(set->connectors == NULL))
11161 return false;
11162
11163 for (i = 0; i < set->num_connectors; i++)
11164 if (set->connectors[i]->encoder &&
11165 set->connectors[i]->encoder->crtc == set->crtc &&
11166 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11167 return true;
11168
11169 return false;
11170}
11171
5e2b584e
DV
11172static void
11173intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11174 struct intel_set_config *config)
11175{
11176
11177 /* We should be able to check here if the fb has the same properties
11178 * and then just flip_or_move it */
2e57f47d
CW
11179 if (is_crtc_connector_off(set)) {
11180 config->mode_changed = true;
f4510a27 11181 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11182 /*
11183 * If we have no fb, we can only flip as long as the crtc is
11184 * active, otherwise we need a full mode set. The crtc may
11185 * be active if we've only disabled the primary plane, or
11186 * in fastboot situations.
11187 */
f4510a27 11188 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11189 struct intel_crtc *intel_crtc =
11190 to_intel_crtc(set->crtc);
11191
3b150f08 11192 if (intel_crtc->active) {
319d9827
JB
11193 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11194 config->fb_changed = true;
11195 } else {
11196 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11197 config->mode_changed = true;
11198 }
5e2b584e
DV
11199 } else if (set->fb == NULL) {
11200 config->mode_changed = true;
72f4901e 11201 } else if (set->fb->pixel_format !=
f4510a27 11202 set->crtc->primary->fb->pixel_format) {
5e2b584e 11203 config->mode_changed = true;
e3de42b6 11204 } else {
5e2b584e 11205 config->fb_changed = true;
e3de42b6 11206 }
5e2b584e
DV
11207 }
11208
835c5873 11209 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11210 config->fb_changed = true;
11211
11212 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11213 DRM_DEBUG_KMS("modes are different, full mode set\n");
11214 drm_mode_debug_printmodeline(&set->crtc->mode);
11215 drm_mode_debug_printmodeline(set->mode);
11216 config->mode_changed = true;
11217 }
a1d95703
CW
11218
11219 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11220 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11221}
11222
2e431051 11223static int
9a935856
DV
11224intel_modeset_stage_output_state(struct drm_device *dev,
11225 struct drm_mode_set *set,
11226 struct intel_set_config *config)
50f56119 11227{
9a935856
DV
11228 struct intel_connector *connector;
11229 struct intel_encoder *encoder;
7668851f 11230 struct intel_crtc *crtc;
f3f08572 11231 int ro;
50f56119 11232
9abdda74 11233 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11234 * of connectors. For paranoia, double-check this. */
11235 WARN_ON(!set->fb && (set->num_connectors != 0));
11236 WARN_ON(set->fb && (set->num_connectors == 0));
11237
9a935856
DV
11238 list_for_each_entry(connector, &dev->mode_config.connector_list,
11239 base.head) {
11240 /* Otherwise traverse passed in connector list and get encoders
11241 * for them. */
50f56119 11242 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11243 if (set->connectors[ro] == &connector->base) {
0e32b39c 11244 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11245 break;
11246 }
11247 }
11248
9a935856
DV
11249 /* If we disable the crtc, disable all its connectors. Also, if
11250 * the connector is on the changing crtc but not on the new
11251 * connector list, disable it. */
11252 if ((!set->fb || ro == set->num_connectors) &&
11253 connector->base.encoder &&
11254 connector->base.encoder->crtc == set->crtc) {
11255 connector->new_encoder = NULL;
11256
11257 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11258 connector->base.base.id,
c23cc417 11259 connector->base.name);
9a935856
DV
11260 }
11261
11262
11263 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11264 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11265 config->mode_changed = true;
50f56119
DV
11266 }
11267 }
9a935856 11268 /* connector->new_encoder is now updated for all connectors. */
50f56119 11269
9a935856 11270 /* Update crtc of enabled connectors. */
9a935856
DV
11271 list_for_each_entry(connector, &dev->mode_config.connector_list,
11272 base.head) {
7668851f
VS
11273 struct drm_crtc *new_crtc;
11274
9a935856 11275 if (!connector->new_encoder)
50f56119
DV
11276 continue;
11277
9a935856 11278 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11279
11280 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11281 if (set->connectors[ro] == &connector->base)
50f56119
DV
11282 new_crtc = set->crtc;
11283 }
11284
11285 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11286 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11287 new_crtc)) {
5e2b584e 11288 return -EINVAL;
50f56119 11289 }
0e32b39c 11290 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11291
11292 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11293 connector->base.base.id,
c23cc417 11294 connector->base.name,
9a935856
DV
11295 new_crtc->base.id);
11296 }
11297
11298 /* Check for any encoders that needs to be disabled. */
b2784e15 11299 for_each_intel_encoder(dev, encoder) {
5a65f358 11300 int num_connectors = 0;
9a935856
DV
11301 list_for_each_entry(connector,
11302 &dev->mode_config.connector_list,
11303 base.head) {
11304 if (connector->new_encoder == encoder) {
11305 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11306 num_connectors++;
9a935856
DV
11307 }
11308 }
5a65f358
PZ
11309
11310 if (num_connectors == 0)
11311 encoder->new_crtc = NULL;
11312 else if (num_connectors > 1)
11313 return -EINVAL;
11314
9a935856
DV
11315 /* Only now check for crtc changes so we don't miss encoders
11316 * that will be disabled. */
11317 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11318 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11319 config->mode_changed = true;
50f56119
DV
11320 }
11321 }
9a935856 11322 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11323 list_for_each_entry(connector, &dev->mode_config.connector_list,
11324 base.head) {
11325 if (connector->new_encoder)
11326 if (connector->new_encoder != connector->encoder)
11327 connector->encoder = connector->new_encoder;
11328 }
d3fcc808 11329 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11330 crtc->new_enabled = false;
11331
b2784e15 11332 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11333 if (encoder->new_crtc == crtc) {
11334 crtc->new_enabled = true;
11335 break;
11336 }
11337 }
11338
11339 if (crtc->new_enabled != crtc->base.enabled) {
11340 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11341 crtc->new_enabled ? "en" : "dis");
11342 config->mode_changed = true;
11343 }
7bd0a8e7
VS
11344
11345 if (crtc->new_enabled)
11346 crtc->new_config = &crtc->config;
11347 else
11348 crtc->new_config = NULL;
7668851f
VS
11349 }
11350
2e431051
DV
11351 return 0;
11352}
11353
7d00a1f5
VS
11354static void disable_crtc_nofb(struct intel_crtc *crtc)
11355{
11356 struct drm_device *dev = crtc->base.dev;
11357 struct intel_encoder *encoder;
11358 struct intel_connector *connector;
11359
11360 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11361 pipe_name(crtc->pipe));
11362
11363 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11364 if (connector->new_encoder &&
11365 connector->new_encoder->new_crtc == crtc)
11366 connector->new_encoder = NULL;
11367 }
11368
b2784e15 11369 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11370 if (encoder->new_crtc == crtc)
11371 encoder->new_crtc = NULL;
11372 }
11373
11374 crtc->new_enabled = false;
7bd0a8e7 11375 crtc->new_config = NULL;
7d00a1f5
VS
11376}
11377
2e431051
DV
11378static int intel_crtc_set_config(struct drm_mode_set *set)
11379{
11380 struct drm_device *dev;
2e431051
DV
11381 struct drm_mode_set save_set;
11382 struct intel_set_config *config;
11383 int ret;
2e431051 11384
8d3e375e
DV
11385 BUG_ON(!set);
11386 BUG_ON(!set->crtc);
11387 BUG_ON(!set->crtc->helper_private);
2e431051 11388
7e53f3a4
DV
11389 /* Enforce sane interface api - has been abused by the fb helper. */
11390 BUG_ON(!set->mode && set->fb);
11391 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11392
2e431051
DV
11393 if (set->fb) {
11394 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11395 set->crtc->base.id, set->fb->base.id,
11396 (int)set->num_connectors, set->x, set->y);
11397 } else {
11398 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11399 }
11400
11401 dev = set->crtc->dev;
11402
11403 ret = -ENOMEM;
11404 config = kzalloc(sizeof(*config), GFP_KERNEL);
11405 if (!config)
11406 goto out_config;
11407
11408 ret = intel_set_config_save_state(dev, config);
11409 if (ret)
11410 goto out_config;
11411
11412 save_set.crtc = set->crtc;
11413 save_set.mode = &set->crtc->mode;
11414 save_set.x = set->crtc->x;
11415 save_set.y = set->crtc->y;
f4510a27 11416 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11417
11418 /* Compute whether we need a full modeset, only an fb base update or no
11419 * change at all. In the future we might also check whether only the
11420 * mode changed, e.g. for LVDS where we only change the panel fitter in
11421 * such cases. */
11422 intel_set_config_compute_mode_changes(set, config);
11423
9a935856 11424 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11425 if (ret)
11426 goto fail;
11427
5e2b584e 11428 if (config->mode_changed) {
c0c36b94
CW
11429 ret = intel_set_mode(set->crtc, set->mode,
11430 set->x, set->y, set->fb);
5e2b584e 11431 } else if (config->fb_changed) {
3b150f08
MR
11432 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11433
4878cae2
VS
11434 intel_crtc_wait_for_pending_flips(set->crtc);
11435
4f660f49 11436 ret = intel_pipe_set_base(set->crtc,
94352cf9 11437 set->x, set->y, set->fb);
3b150f08
MR
11438
11439 /*
11440 * We need to make sure the primary plane is re-enabled if it
11441 * has previously been turned off.
11442 */
11443 if (!intel_crtc->primary_enabled && ret == 0) {
11444 WARN_ON(!intel_crtc->active);
fdd508a6 11445 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11446 }
11447
7ca51a3a
JB
11448 /*
11449 * In the fastboot case this may be our only check of the
11450 * state after boot. It would be better to only do it on
11451 * the first update, but we don't have a nice way of doing that
11452 * (and really, set_config isn't used much for high freq page
11453 * flipping, so increasing its cost here shouldn't be a big
11454 * deal).
11455 */
d330a953 11456 if (i915.fastboot && ret == 0)
7ca51a3a 11457 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11458 }
11459
2d05eae1 11460 if (ret) {
bf67dfeb
DV
11461 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11462 set->crtc->base.id, ret);
50f56119 11463fail:
2d05eae1 11464 intel_set_config_restore_state(dev, config);
50f56119 11465
7d00a1f5
VS
11466 /*
11467 * HACK: if the pipe was on, but we didn't have a framebuffer,
11468 * force the pipe off to avoid oopsing in the modeset code
11469 * due to fb==NULL. This should only happen during boot since
11470 * we don't yet reconstruct the FB from the hardware state.
11471 */
11472 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11473 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11474
2d05eae1
CW
11475 /* Try to restore the config */
11476 if (config->mode_changed &&
11477 intel_set_mode(save_set.crtc, save_set.mode,
11478 save_set.x, save_set.y, save_set.fb))
11479 DRM_ERROR("failed to restore config after modeset failure\n");
11480 }
50f56119 11481
d9e55608
DV
11482out_config:
11483 intel_set_config_free(config);
50f56119
DV
11484 return ret;
11485}
f6e5b160
CW
11486
11487static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11488 .gamma_set = intel_crtc_gamma_set,
50f56119 11489 .set_config = intel_crtc_set_config,
f6e5b160
CW
11490 .destroy = intel_crtc_destroy,
11491 .page_flip = intel_crtc_page_flip,
11492};
11493
5358901f
DV
11494static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11495 struct intel_shared_dpll *pll,
11496 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11497{
5358901f 11498 uint32_t val;
ee7b9f93 11499
f458ebbc 11500 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11501 return false;
11502
5358901f 11503 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11504 hw_state->dpll = val;
11505 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11506 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11507
11508 return val & DPLL_VCO_ENABLE;
11509}
11510
15bdd4cf
DV
11511static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11512 struct intel_shared_dpll *pll)
11513{
11514 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11515 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11516}
11517
e7b903d2
DV
11518static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11519 struct intel_shared_dpll *pll)
11520{
e7b903d2 11521 /* PCH refclock must be enabled first */
89eff4be 11522 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11523
15bdd4cf
DV
11524 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11525
11526 /* Wait for the clocks to stabilize. */
11527 POSTING_READ(PCH_DPLL(pll->id));
11528 udelay(150);
11529
11530 /* The pixel multiplier can only be updated once the
11531 * DPLL is enabled and the clocks are stable.
11532 *
11533 * So write it again.
11534 */
11535 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11536 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11537 udelay(200);
11538}
11539
11540static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11541 struct intel_shared_dpll *pll)
11542{
11543 struct drm_device *dev = dev_priv->dev;
11544 struct intel_crtc *crtc;
e7b903d2
DV
11545
11546 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11547 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11548 if (intel_crtc_to_shared_dpll(crtc) == pll)
11549 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11550 }
11551
15bdd4cf
DV
11552 I915_WRITE(PCH_DPLL(pll->id), 0);
11553 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11554 udelay(200);
11555}
11556
46edb027
DV
11557static char *ibx_pch_dpll_names[] = {
11558 "PCH DPLL A",
11559 "PCH DPLL B",
11560};
11561
7c74ade1 11562static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11563{
e7b903d2 11564 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11565 int i;
11566
7c74ade1 11567 dev_priv->num_shared_dpll = 2;
ee7b9f93 11568
e72f9fbf 11569 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11570 dev_priv->shared_dplls[i].id = i;
11571 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11572 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11573 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11574 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11575 dev_priv->shared_dplls[i].get_hw_state =
11576 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11577 }
11578}
11579
7c74ade1
DV
11580static void intel_shared_dpll_init(struct drm_device *dev)
11581{
e7b903d2 11582 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11583
9cd86933
DV
11584 if (HAS_DDI(dev))
11585 intel_ddi_pll_init(dev);
11586 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11587 ibx_pch_dpll_init(dev);
11588 else
11589 dev_priv->num_shared_dpll = 0;
11590
11591 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11592}
11593
465c120c
MR
11594static int
11595intel_primary_plane_disable(struct drm_plane *plane)
11596{
11597 struct drm_device *dev = plane->dev;
465c120c
MR
11598 struct intel_crtc *intel_crtc;
11599
11600 if (!plane->fb)
11601 return 0;
11602
11603 BUG_ON(!plane->crtc);
11604
11605 intel_crtc = to_intel_crtc(plane->crtc);
11606
11607 /*
11608 * Even though we checked plane->fb above, it's still possible that
11609 * the primary plane has been implicitly disabled because the crtc
11610 * coordinates given weren't visible, or because we detected
11611 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11612 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11613 * In either case, we need to unpin the FB and let the fb pointer get
11614 * updated, but otherwise we don't need to touch the hardware.
11615 */
11616 if (!intel_crtc->primary_enabled)
11617 goto disable_unpin;
11618
11619 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11620 intel_disable_primary_hw_plane(plane, plane->crtc);
11621
465c120c 11622disable_unpin:
4c34574f 11623 mutex_lock(&dev->struct_mutex);
2ff8fde1 11624 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11625 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11626 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11627 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11628 plane->fb = NULL;
11629
11630 return 0;
11631}
11632
11633static int
3c692a41
GP
11634intel_check_primary_plane(struct drm_plane *plane,
11635 struct intel_plane_state *state)
11636{
11637 struct drm_crtc *crtc = state->crtc;
11638 struct drm_framebuffer *fb = state->fb;
11639 struct drm_rect *dest = &state->dst;
11640 struct drm_rect *src = &state->src;
11641 const struct drm_rect *clip = &state->clip;
ccc759dc 11642
3ead8bb2
GP
11643 return drm_plane_helper_check_update(plane, crtc, fb,
11644 src, dest, clip,
11645 DRM_PLANE_HELPER_NO_SCALING,
11646 DRM_PLANE_HELPER_NO_SCALING,
11647 false, true, &state->visible);
3c692a41
GP
11648}
11649
11650static int
11651intel_commit_primary_plane(struct drm_plane *plane,
11652 struct intel_plane_state *state)
465c120c 11653{
3c692a41
GP
11654 struct drm_crtc *crtc = state->crtc;
11655 struct drm_framebuffer *fb = state->fb;
465c120c 11656 struct drm_device *dev = crtc->dev;
48404c1e 11657 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ccc759dc
GP
11659 enum pipe pipe = intel_crtc->pipe;
11660 struct drm_framebuffer *old_fb = plane->fb;
2ff8fde1
MR
11661 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11662 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
ce54d85a 11663 struct intel_plane *intel_plane = to_intel_plane(plane);
3c692a41 11664 struct drm_rect *src = &state->src;
465c120c
MR
11665 int ret;
11666
465c120c
MR
11667 intel_crtc_wait_for_pending_flips(crtc);
11668
ccc759dc
GP
11669 if (intel_crtc_has_pending_flip(crtc)) {
11670 DRM_ERROR("pipe is still busy with an old pageflip\n");
11671 return -EBUSY;
11672 }
11673
11674 if (plane->fb != fb) {
4c34574f 11675 mutex_lock(&dev->struct_mutex);
ccc759dc
GP
11676 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11677 if (ret == 0)
11678 i915_gem_track_fb(old_obj, obj,
11679 INTEL_FRONTBUFFER_PRIMARY(pipe));
11680 mutex_unlock(&dev->struct_mutex);
11681 if (ret != 0) {
11682 DRM_DEBUG_KMS("pin & fence failed\n");
11683 return ret;
11684 }
11685 }
11686
11687 crtc->primary->fb = fb;
11688 crtc->x = src->x1;
11689 crtc->y = src->y1;
11690
11691 intel_plane->crtc_x = state->orig_dst.x1;
11692 intel_plane->crtc_y = state->orig_dst.y1;
11693 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11694 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11695 intel_plane->src_x = state->orig_src.x1;
11696 intel_plane->src_y = state->orig_src.y1;
11697 intel_plane->src_w = drm_rect_width(&state->orig_src);
11698 intel_plane->src_h = drm_rect_height(&state->orig_src);
11699 intel_plane->obj = obj;
4c34574f 11700
ccc759dc 11701 if (intel_crtc->active) {
465c120c 11702 /*
ccc759dc
GP
11703 * FBC does not work on some platforms for rotated
11704 * planes, so disable it when rotation is not 0 and
11705 * update it when rotation is set back to 0.
11706 *
11707 * FIXME: This is redundant with the fbc update done in
11708 * the primary plane enable function except that that
11709 * one is done too late. We eventually need to unify
11710 * this.
465c120c 11711 */
ccc759dc
GP
11712 if (intel_crtc->primary_enabled &&
11713 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11714 dev_priv->fbc.plane == intel_crtc->plane &&
11715 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11716 intel_disable_fbc(dev);
465c120c
MR
11717 }
11718
ccc759dc
GP
11719 if (state->visible) {
11720 bool was_enabled = intel_crtc->primary_enabled;
465c120c 11721
ccc759dc
GP
11722 /* FIXME: kill this fastboot hack */
11723 intel_update_pipe_size(intel_crtc);
465c120c 11724
ccc759dc 11725 intel_crtc->primary_enabled = true;
465c120c 11726
ccc759dc
GP
11727 dev_priv->display.update_primary_plane(crtc, plane->fb,
11728 crtc->x, crtc->y);
4c34574f 11729
48404c1e 11730 /*
ccc759dc
GP
11731 * BDW signals flip done immediately if the plane
11732 * is disabled, even if the plane enable is already
11733 * armed to occur at the next vblank :(
48404c1e 11734 */
ccc759dc
GP
11735 if (IS_BROADWELL(dev) && !was_enabled)
11736 intel_wait_for_vblank(dev, intel_crtc->pipe);
11737 } else {
11738 /*
11739 * If clipping results in a non-visible primary plane,
11740 * we'll disable the primary plane. Note that this is
11741 * a bit different than what happens if userspace
11742 * explicitly disables the plane by passing fb=0
11743 * because plane->fb still gets set and pinned.
11744 */
11745 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11746 }
465c120c 11747
ccc759dc
GP
11748 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11749
11750 mutex_lock(&dev->struct_mutex);
11751 intel_update_fbc(dev);
11752 mutex_unlock(&dev->struct_mutex);
ce54d85a 11753 }
465c120c 11754
ccc759dc
GP
11755 if (old_fb && old_fb != fb) {
11756 if (intel_crtc->active)
11757 intel_wait_for_vblank(dev, intel_crtc->pipe);
11758
11759 mutex_lock(&dev->struct_mutex);
11760 intel_unpin_fb_obj(old_obj);
11761 mutex_unlock(&dev->struct_mutex);
11762 }
465c120c
MR
11763
11764 return 0;
11765}
11766
3c692a41
GP
11767static int
11768intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11769 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11770 unsigned int crtc_w, unsigned int crtc_h,
11771 uint32_t src_x, uint32_t src_y,
11772 uint32_t src_w, uint32_t src_h)
11773{
11774 struct intel_plane_state state;
11775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11776 int ret;
11777
11778 state.crtc = crtc;
11779 state.fb = fb;
11780
11781 /* sample coordinates in 16.16 fixed point */
11782 state.src.x1 = src_x;
11783 state.src.x2 = src_x + src_w;
11784 state.src.y1 = src_y;
11785 state.src.y2 = src_y + src_h;
11786
11787 /* integer pixels */
11788 state.dst.x1 = crtc_x;
11789 state.dst.x2 = crtc_x + crtc_w;
11790 state.dst.y1 = crtc_y;
11791 state.dst.y2 = crtc_y + crtc_h;
11792
11793 state.clip.x1 = 0;
11794 state.clip.y1 = 0;
11795 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11796 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11797
11798 state.orig_src = state.src;
11799 state.orig_dst = state.dst;
11800
11801 ret = intel_check_primary_plane(plane, &state);
11802 if (ret)
11803 return ret;
11804
11805 intel_commit_primary_plane(plane, &state);
11806
11807 return 0;
11808}
11809
3d7d6510
MR
11810/* Common destruction function for both primary and cursor planes */
11811static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11812{
11813 struct intel_plane *intel_plane = to_intel_plane(plane);
11814 drm_plane_cleanup(plane);
11815 kfree(intel_plane);
11816}
11817
11818static const struct drm_plane_funcs intel_primary_plane_funcs = {
11819 .update_plane = intel_primary_plane_setplane,
11820 .disable_plane = intel_primary_plane_disable,
3d7d6510 11821 .destroy = intel_plane_destroy,
48404c1e 11822 .set_property = intel_plane_set_property
465c120c
MR
11823};
11824
11825static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11826 int pipe)
11827{
11828 struct intel_plane *primary;
11829 const uint32_t *intel_primary_formats;
11830 int num_formats;
11831
11832 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11833 if (primary == NULL)
11834 return NULL;
11835
11836 primary->can_scale = false;
11837 primary->max_downscale = 1;
11838 primary->pipe = pipe;
11839 primary->plane = pipe;
48404c1e 11840 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11841 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11842 primary->plane = !pipe;
11843
11844 if (INTEL_INFO(dev)->gen <= 3) {
11845 intel_primary_formats = intel_primary_formats_gen2;
11846 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11847 } else {
11848 intel_primary_formats = intel_primary_formats_gen4;
11849 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11850 }
11851
11852 drm_universal_plane_init(dev, &primary->base, 0,
11853 &intel_primary_plane_funcs,
11854 intel_primary_formats, num_formats,
11855 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11856
11857 if (INTEL_INFO(dev)->gen >= 4) {
11858 if (!dev->mode_config.rotation_property)
11859 dev->mode_config.rotation_property =
11860 drm_mode_create_rotation_property(dev,
11861 BIT(DRM_ROTATE_0) |
11862 BIT(DRM_ROTATE_180));
11863 if (dev->mode_config.rotation_property)
11864 drm_object_attach_property(&primary->base.base,
11865 dev->mode_config.rotation_property,
11866 primary->rotation);
11867 }
11868
465c120c
MR
11869 return &primary->base;
11870}
11871
3d7d6510
MR
11872static int
11873intel_cursor_plane_disable(struct drm_plane *plane)
11874{
11875 if (!plane->fb)
11876 return 0;
11877
11878 BUG_ON(!plane->crtc);
11879
11880 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11881}
11882
11883static int
852e787c
GP
11884intel_check_cursor_plane(struct drm_plane *plane,
11885 struct intel_plane_state *state)
3d7d6510 11886{
852e787c 11887 struct drm_crtc *crtc = state->crtc;
757f9a3e 11888 struct drm_device *dev = crtc->dev;
852e787c
GP
11889 struct drm_framebuffer *fb = state->fb;
11890 struct drm_rect *dest = &state->dst;
11891 struct drm_rect *src = &state->src;
11892 const struct drm_rect *clip = &state->clip;
757f9a3e
GP
11893 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11894 int crtc_w, crtc_h;
11895 unsigned stride;
11896 int ret;
3d7d6510 11897
757f9a3e 11898 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 11899 src, dest, clip,
3d7d6510
MR
11900 DRM_PLANE_HELPER_NO_SCALING,
11901 DRM_PLANE_HELPER_NO_SCALING,
852e787c 11902 true, true, &state->visible);
757f9a3e
GP
11903 if (ret)
11904 return ret;
11905
11906
11907 /* if we want to turn off the cursor ignore width and height */
11908 if (!obj)
11909 return 0;
11910
757f9a3e
GP
11911 /* Check for which cursor types we support */
11912 crtc_w = drm_rect_width(&state->orig_dst);
11913 crtc_h = drm_rect_height(&state->orig_dst);
11914 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11915 DRM_DEBUG("Cursor dimension not supported\n");
11916 return -EINVAL;
11917 }
11918
11919 stride = roundup_pow_of_two(crtc_w) * 4;
11920 if (obj->base.size < stride * crtc_h) {
11921 DRM_DEBUG_KMS("buffer is too small\n");
11922 return -ENOMEM;
11923 }
11924
e391ea88
GP
11925 if (fb == crtc->cursor->fb)
11926 return 0;
11927
757f9a3e
GP
11928 /* we only need to pin inside GTT if cursor is non-phy */
11929 mutex_lock(&dev->struct_mutex);
11930 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11931 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11932 ret = -EINVAL;
11933 }
11934 mutex_unlock(&dev->struct_mutex);
11935
11936 return ret;
852e787c 11937}
3d7d6510 11938
852e787c
GP
11939static int
11940intel_commit_cursor_plane(struct drm_plane *plane,
11941 struct intel_plane_state *state)
11942{
11943 struct drm_crtc *crtc = state->crtc;
11944 struct drm_framebuffer *fb = state->fb;
11945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a919db90 11946 struct intel_plane *intel_plane = to_intel_plane(plane);
852e787c
GP
11947 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11948 struct drm_i915_gem_object *obj = intel_fb->obj;
11949 int crtc_w, crtc_h;
11950
11951 crtc->cursor_x = state->orig_dst.x1;
11952 crtc->cursor_y = state->orig_dst.y1;
a919db90
SJ
11953
11954 intel_plane->crtc_x = state->orig_dst.x1;
11955 intel_plane->crtc_y = state->orig_dst.y1;
11956 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11957 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11958 intel_plane->src_x = state->orig_src.x1;
11959 intel_plane->src_y = state->orig_src.y1;
11960 intel_plane->src_w = drm_rect_width(&state->orig_src);
11961 intel_plane->src_h = drm_rect_height(&state->orig_src);
11962 intel_plane->obj = obj;
11963
3d7d6510 11964 if (fb != crtc->cursor->fb) {
852e787c
GP
11965 crtc_w = drm_rect_width(&state->orig_dst);
11966 crtc_h = drm_rect_height(&state->orig_dst);
3d7d6510
MR
11967 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11968 } else {
852e787c 11969 intel_crtc_update_cursor(crtc, state->visible);
4ed91096
DV
11970
11971 intel_frontbuffer_flip(crtc->dev,
11972 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11973
3d7d6510
MR
11974 return 0;
11975 }
11976}
852e787c
GP
11977
11978static int
11979intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11980 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11981 unsigned int crtc_w, unsigned int crtc_h,
11982 uint32_t src_x, uint32_t src_y,
11983 uint32_t src_w, uint32_t src_h)
11984{
11985 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11986 struct intel_plane_state state;
11987 int ret;
11988
11989 state.crtc = crtc;
11990 state.fb = fb;
11991
11992 /* sample coordinates in 16.16 fixed point */
11993 state.src.x1 = src_x;
11994 state.src.x2 = src_x + src_w;
11995 state.src.y1 = src_y;
11996 state.src.y2 = src_y + src_h;
11997
11998 /* integer pixels */
11999 state.dst.x1 = crtc_x;
12000 state.dst.x2 = crtc_x + crtc_w;
12001 state.dst.y1 = crtc_y;
12002 state.dst.y2 = crtc_y + crtc_h;
12003
12004 state.clip.x1 = 0;
12005 state.clip.y1 = 0;
12006 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12007 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12008
12009 state.orig_src = state.src;
12010 state.orig_dst = state.dst;
12011
12012 ret = intel_check_cursor_plane(plane, &state);
12013 if (ret)
12014 return ret;
12015
12016 return intel_commit_cursor_plane(plane, &state);
12017}
12018
3d7d6510
MR
12019static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12020 .update_plane = intel_cursor_plane_update,
12021 .disable_plane = intel_cursor_plane_disable,
12022 .destroy = intel_plane_destroy,
4398ad45 12023 .set_property = intel_plane_set_property,
3d7d6510
MR
12024};
12025
12026static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12027 int pipe)
12028{
12029 struct intel_plane *cursor;
12030
12031 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12032 if (cursor == NULL)
12033 return NULL;
12034
12035 cursor->can_scale = false;
12036 cursor->max_downscale = 1;
12037 cursor->pipe = pipe;
12038 cursor->plane = pipe;
4398ad45 12039 cursor->rotation = BIT(DRM_ROTATE_0);
3d7d6510
MR
12040
12041 drm_universal_plane_init(dev, &cursor->base, 0,
12042 &intel_cursor_plane_funcs,
12043 intel_cursor_formats,
12044 ARRAY_SIZE(intel_cursor_formats),
12045 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12046
12047 if (INTEL_INFO(dev)->gen >= 4) {
12048 if (!dev->mode_config.rotation_property)
12049 dev->mode_config.rotation_property =
12050 drm_mode_create_rotation_property(dev,
12051 BIT(DRM_ROTATE_0) |
12052 BIT(DRM_ROTATE_180));
12053 if (dev->mode_config.rotation_property)
12054 drm_object_attach_property(&cursor->base.base,
12055 dev->mode_config.rotation_property,
12056 cursor->rotation);
12057 }
12058
3d7d6510
MR
12059 return &cursor->base;
12060}
12061
b358d0a6 12062static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12063{
fbee40df 12064 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12065 struct intel_crtc *intel_crtc;
3d7d6510
MR
12066 struct drm_plane *primary = NULL;
12067 struct drm_plane *cursor = NULL;
465c120c 12068 int i, ret;
79e53945 12069
955382f3 12070 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12071 if (intel_crtc == NULL)
12072 return;
12073
465c120c 12074 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12075 if (!primary)
12076 goto fail;
12077
12078 cursor = intel_cursor_plane_create(dev, pipe);
12079 if (!cursor)
12080 goto fail;
12081
465c120c 12082 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12083 cursor, &intel_crtc_funcs);
12084 if (ret)
12085 goto fail;
79e53945
JB
12086
12087 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12088 for (i = 0; i < 256; i++) {
12089 intel_crtc->lut_r[i] = i;
12090 intel_crtc->lut_g[i] = i;
12091 intel_crtc->lut_b[i] = i;
12092 }
12093
1f1c2e24
VS
12094 /*
12095 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12096 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12097 */
80824003
JB
12098 intel_crtc->pipe = pipe;
12099 intel_crtc->plane = pipe;
3a77c4c4 12100 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12101 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12102 intel_crtc->plane = !pipe;
80824003
JB
12103 }
12104
4b0e333e
CW
12105 intel_crtc->cursor_base = ~0;
12106 intel_crtc->cursor_cntl = ~0;
dc41c154 12107 intel_crtc->cursor_size = ~0;
8d7849db 12108
22fd0fab
JB
12109 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12110 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12111 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12112 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12113
79e53945 12114 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12115
12116 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12117 return;
12118
12119fail:
12120 if (primary)
12121 drm_plane_cleanup(primary);
12122 if (cursor)
12123 drm_plane_cleanup(cursor);
12124 kfree(intel_crtc);
79e53945
JB
12125}
12126
752aa88a
JB
12127enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12128{
12129 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12130 struct drm_device *dev = connector->base.dev;
752aa88a 12131
51fd371b 12132 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
12133
12134 if (!encoder)
12135 return INVALID_PIPE;
12136
12137 return to_intel_crtc(encoder->crtc)->pipe;
12138}
12139
08d7b3d1 12140int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12141 struct drm_file *file)
08d7b3d1 12142{
08d7b3d1 12143 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12144 struct drm_crtc *drmmode_crtc;
c05422d5 12145 struct intel_crtc *crtc;
08d7b3d1 12146
1cff8f6b
DV
12147 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12148 return -ENODEV;
08d7b3d1 12149
7707e653 12150 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12151
7707e653 12152 if (!drmmode_crtc) {
08d7b3d1 12153 DRM_ERROR("no such CRTC id\n");
3f2c2057 12154 return -ENOENT;
08d7b3d1
CW
12155 }
12156
7707e653 12157 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12158 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12159
c05422d5 12160 return 0;
08d7b3d1
CW
12161}
12162
66a9278e 12163static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12164{
66a9278e
DV
12165 struct drm_device *dev = encoder->base.dev;
12166 struct intel_encoder *source_encoder;
79e53945 12167 int index_mask = 0;
79e53945
JB
12168 int entry = 0;
12169
b2784e15 12170 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12171 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12172 index_mask |= (1 << entry);
12173
79e53945
JB
12174 entry++;
12175 }
4ef69c7a 12176
79e53945
JB
12177 return index_mask;
12178}
12179
4d302442
CW
12180static bool has_edp_a(struct drm_device *dev)
12181{
12182 struct drm_i915_private *dev_priv = dev->dev_private;
12183
12184 if (!IS_MOBILE(dev))
12185 return false;
12186
12187 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12188 return false;
12189
e3589908 12190 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12191 return false;
12192
12193 return true;
12194}
12195
ba0fbca4
DL
12196const char *intel_output_name(int output)
12197{
12198 static const char *names[] = {
12199 [INTEL_OUTPUT_UNUSED] = "Unused",
12200 [INTEL_OUTPUT_ANALOG] = "Analog",
12201 [INTEL_OUTPUT_DVO] = "DVO",
12202 [INTEL_OUTPUT_SDVO] = "SDVO",
12203 [INTEL_OUTPUT_LVDS] = "LVDS",
12204 [INTEL_OUTPUT_TVOUT] = "TV",
12205 [INTEL_OUTPUT_HDMI] = "HDMI",
12206 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12207 [INTEL_OUTPUT_EDP] = "eDP",
12208 [INTEL_OUTPUT_DSI] = "DSI",
12209 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12210 };
12211
12212 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12213 return "Invalid";
12214
12215 return names[output];
12216}
12217
84b4e042
JB
12218static bool intel_crt_present(struct drm_device *dev)
12219{
12220 struct drm_i915_private *dev_priv = dev->dev_private;
12221
884497ed
DL
12222 if (INTEL_INFO(dev)->gen >= 9)
12223 return false;
12224
cf404ce4 12225 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12226 return false;
12227
12228 if (IS_CHERRYVIEW(dev))
12229 return false;
12230
12231 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12232 return false;
12233
12234 return true;
12235}
12236
79e53945
JB
12237static void intel_setup_outputs(struct drm_device *dev)
12238{
725e30ad 12239 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12240 struct intel_encoder *encoder;
cb0953d7 12241 bool dpd_is_edp = false;
79e53945 12242
c9093354 12243 intel_lvds_init(dev);
79e53945 12244
84b4e042 12245 if (intel_crt_present(dev))
79935fca 12246 intel_crt_init(dev);
cb0953d7 12247
affa9354 12248 if (HAS_DDI(dev)) {
0e72a5b5
ED
12249 int found;
12250
12251 /* Haswell uses DDI functions to detect digital outputs */
12252 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12253 /* DDI A only supports eDP */
12254 if (found)
12255 intel_ddi_init(dev, PORT_A);
12256
12257 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12258 * register */
12259 found = I915_READ(SFUSE_STRAP);
12260
12261 if (found & SFUSE_STRAP_DDIB_DETECTED)
12262 intel_ddi_init(dev, PORT_B);
12263 if (found & SFUSE_STRAP_DDIC_DETECTED)
12264 intel_ddi_init(dev, PORT_C);
12265 if (found & SFUSE_STRAP_DDID_DETECTED)
12266 intel_ddi_init(dev, PORT_D);
12267 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12268 int found;
5d8a7752 12269 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12270
12271 if (has_edp_a(dev))
12272 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12273
dc0fa718 12274 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12275 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12276 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12277 if (!found)
e2debe91 12278 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12279 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12280 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12281 }
12282
dc0fa718 12283 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12284 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12285
dc0fa718 12286 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12287 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12288
5eb08b69 12289 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12290 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12291
270b3042 12292 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12293 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12294 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12295 /*
12296 * The DP_DETECTED bit is the latched state of the DDC
12297 * SDA pin at boot. However since eDP doesn't require DDC
12298 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12299 * eDP ports may have been muxed to an alternate function.
12300 * Thus we can't rely on the DP_DETECTED bit alone to detect
12301 * eDP ports. Consult the VBT as well as DP_DETECTED to
12302 * detect eDP ports.
12303 */
12304 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
585a94b8
AB
12305 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12306 PORT_B);
e17ac6db
VS
12307 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12308 intel_dp_is_edp(dev, PORT_B))
12309 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12310
e17ac6db 12311 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
6f6005a5
JB
12312 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12313 PORT_C);
e17ac6db
VS
12314 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12315 intel_dp_is_edp(dev, PORT_C))
12316 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12317
9418c1f1 12318 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12319 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12320 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12321 PORT_D);
e17ac6db
VS
12322 /* eDP not supported on port D, so don't check VBT */
12323 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12324 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12325 }
12326
3cfca973 12327 intel_dsi_init(dev);
103a196f 12328 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12329 bool found = false;
7d57382e 12330
e2debe91 12331 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12332 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12333 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12334 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12335 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12336 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12337 }
27185ae1 12338
e7281eab 12339 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12340 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12341 }
13520b05
KH
12342
12343 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12344
e2debe91 12345 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12346 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12347 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12348 }
27185ae1 12349
e2debe91 12350 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12351
b01f2c3a
JB
12352 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12353 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12354 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12355 }
e7281eab 12356 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12357 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12358 }
27185ae1 12359
b01f2c3a 12360 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12361 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12362 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12363 } else if (IS_GEN2(dev))
79e53945
JB
12364 intel_dvo_init(dev);
12365
103a196f 12366 if (SUPPORTS_TV(dev))
79e53945
JB
12367 intel_tv_init(dev);
12368
7c8f8a70
RV
12369 intel_edp_psr_init(dev);
12370
b2784e15 12371 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12372 encoder->base.possible_crtcs = encoder->crtc_mask;
12373 encoder->base.possible_clones =
66a9278e 12374 intel_encoder_clones(encoder);
79e53945 12375 }
47356eb6 12376
dde86e2d 12377 intel_init_pch_refclk(dev);
270b3042
DV
12378
12379 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12380}
12381
12382static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12383{
60a5ca01 12384 struct drm_device *dev = fb->dev;
79e53945 12385 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12386
ef2d633e 12387 drm_framebuffer_cleanup(fb);
60a5ca01 12388 mutex_lock(&dev->struct_mutex);
ef2d633e 12389 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12390 drm_gem_object_unreference(&intel_fb->obj->base);
12391 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12392 kfree(intel_fb);
12393}
12394
12395static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12396 struct drm_file *file,
79e53945
JB
12397 unsigned int *handle)
12398{
12399 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12400 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12401
05394f39 12402 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12403}
12404
12405static const struct drm_framebuffer_funcs intel_fb_funcs = {
12406 .destroy = intel_user_framebuffer_destroy,
12407 .create_handle = intel_user_framebuffer_create_handle,
12408};
12409
b5ea642a
DV
12410static int intel_framebuffer_init(struct drm_device *dev,
12411 struct intel_framebuffer *intel_fb,
12412 struct drm_mode_fb_cmd2 *mode_cmd,
12413 struct drm_i915_gem_object *obj)
79e53945 12414{
a57ce0b2 12415 int aligned_height;
a35cdaa0 12416 int pitch_limit;
79e53945
JB
12417 int ret;
12418
dd4916c5
DV
12419 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12420
c16ed4be
CW
12421 if (obj->tiling_mode == I915_TILING_Y) {
12422 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12423 return -EINVAL;
c16ed4be 12424 }
57cd6508 12425
c16ed4be
CW
12426 if (mode_cmd->pitches[0] & 63) {
12427 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12428 mode_cmd->pitches[0]);
57cd6508 12429 return -EINVAL;
c16ed4be 12430 }
57cd6508 12431
a35cdaa0
CW
12432 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12433 pitch_limit = 32*1024;
12434 } else if (INTEL_INFO(dev)->gen >= 4) {
12435 if (obj->tiling_mode)
12436 pitch_limit = 16*1024;
12437 else
12438 pitch_limit = 32*1024;
12439 } else if (INTEL_INFO(dev)->gen >= 3) {
12440 if (obj->tiling_mode)
12441 pitch_limit = 8*1024;
12442 else
12443 pitch_limit = 16*1024;
12444 } else
12445 /* XXX DSPC is limited to 4k tiled */
12446 pitch_limit = 8*1024;
12447
12448 if (mode_cmd->pitches[0] > pitch_limit) {
12449 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12450 obj->tiling_mode ? "tiled" : "linear",
12451 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12452 return -EINVAL;
c16ed4be 12453 }
5d7bd705
VS
12454
12455 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12456 mode_cmd->pitches[0] != obj->stride) {
12457 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12458 mode_cmd->pitches[0], obj->stride);
5d7bd705 12459 return -EINVAL;
c16ed4be 12460 }
5d7bd705 12461
57779d06 12462 /* Reject formats not supported by any plane early. */
308e5bcb 12463 switch (mode_cmd->pixel_format) {
57779d06 12464 case DRM_FORMAT_C8:
04b3924d
VS
12465 case DRM_FORMAT_RGB565:
12466 case DRM_FORMAT_XRGB8888:
12467 case DRM_FORMAT_ARGB8888:
57779d06
VS
12468 break;
12469 case DRM_FORMAT_XRGB1555:
12470 case DRM_FORMAT_ARGB1555:
c16ed4be 12471 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12472 DRM_DEBUG("unsupported pixel format: %s\n",
12473 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12474 return -EINVAL;
c16ed4be 12475 }
57779d06
VS
12476 break;
12477 case DRM_FORMAT_XBGR8888:
12478 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12479 case DRM_FORMAT_XRGB2101010:
12480 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12481 case DRM_FORMAT_XBGR2101010:
12482 case DRM_FORMAT_ABGR2101010:
c16ed4be 12483 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12484 DRM_DEBUG("unsupported pixel format: %s\n",
12485 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12486 return -EINVAL;
c16ed4be 12487 }
b5626747 12488 break;
04b3924d
VS
12489 case DRM_FORMAT_YUYV:
12490 case DRM_FORMAT_UYVY:
12491 case DRM_FORMAT_YVYU:
12492 case DRM_FORMAT_VYUY:
c16ed4be 12493 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12494 DRM_DEBUG("unsupported pixel format: %s\n",
12495 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12496 return -EINVAL;
c16ed4be 12497 }
57cd6508
CW
12498 break;
12499 default:
4ee62c76
VS
12500 DRM_DEBUG("unsupported pixel format: %s\n",
12501 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12502 return -EINVAL;
12503 }
12504
90f9a336
VS
12505 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12506 if (mode_cmd->offsets[0] != 0)
12507 return -EINVAL;
12508
a57ce0b2
JB
12509 aligned_height = intel_align_height(dev, mode_cmd->height,
12510 obj->tiling_mode);
53155c0a
DV
12511 /* FIXME drm helper for size checks (especially planar formats)? */
12512 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12513 return -EINVAL;
12514
c7d73f6a
DV
12515 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12516 intel_fb->obj = obj;
80075d49 12517 intel_fb->obj->framebuffer_references++;
c7d73f6a 12518
79e53945
JB
12519 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12520 if (ret) {
12521 DRM_ERROR("framebuffer init failed %d\n", ret);
12522 return ret;
12523 }
12524
79e53945
JB
12525 return 0;
12526}
12527
79e53945
JB
12528static struct drm_framebuffer *
12529intel_user_framebuffer_create(struct drm_device *dev,
12530 struct drm_file *filp,
308e5bcb 12531 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12532{
05394f39 12533 struct drm_i915_gem_object *obj;
79e53945 12534
308e5bcb
JB
12535 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12536 mode_cmd->handles[0]));
c8725226 12537 if (&obj->base == NULL)
cce13ff7 12538 return ERR_PTR(-ENOENT);
79e53945 12539
d2dff872 12540 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12541}
12542
4520f53a 12543#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12544static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12545{
12546}
12547#endif
12548
79e53945 12549static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12550 .fb_create = intel_user_framebuffer_create,
0632fef6 12551 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12552};
12553
e70236a8
JB
12554/* Set up chip specific display functions */
12555static void intel_init_display(struct drm_device *dev)
12556{
12557 struct drm_i915_private *dev_priv = dev->dev_private;
12558
ee9300bb
DV
12559 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12560 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12561 else if (IS_CHERRYVIEW(dev))
12562 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12563 else if (IS_VALLEYVIEW(dev))
12564 dev_priv->display.find_dpll = vlv_find_best_dpll;
12565 else if (IS_PINEVIEW(dev))
12566 dev_priv->display.find_dpll = pnv_find_best_dpll;
12567 else
12568 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12569
affa9354 12570 if (HAS_DDI(dev)) {
0e8ffe1b 12571 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12572 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12573 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12574 dev_priv->display.crtc_enable = haswell_crtc_enable;
12575 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12576 dev_priv->display.off = ironlake_crtc_off;
70d21f0e
DL
12577 if (INTEL_INFO(dev)->gen >= 9)
12578 dev_priv->display.update_primary_plane =
12579 skylake_update_primary_plane;
12580 else
12581 dev_priv->display.update_primary_plane =
12582 ironlake_update_primary_plane;
09b4ddf9 12583 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12584 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12585 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12586 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12587 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12588 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12589 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12590 dev_priv->display.update_primary_plane =
12591 ironlake_update_primary_plane;
89b667f8
JB
12592 } else if (IS_VALLEYVIEW(dev)) {
12593 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12594 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12595 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12596 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12597 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12598 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12599 dev_priv->display.update_primary_plane =
12600 i9xx_update_primary_plane;
f564048e 12601 } else {
0e8ffe1b 12602 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12603 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12604 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12605 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12606 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12607 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12608 dev_priv->display.update_primary_plane =
12609 i9xx_update_primary_plane;
f564048e 12610 }
e70236a8 12611
e70236a8 12612 /* Returns the core display clock speed */
25eb05fc
JB
12613 if (IS_VALLEYVIEW(dev))
12614 dev_priv->display.get_display_clock_speed =
12615 valleyview_get_display_clock_speed;
12616 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12617 dev_priv->display.get_display_clock_speed =
12618 i945_get_display_clock_speed;
12619 else if (IS_I915G(dev))
12620 dev_priv->display.get_display_clock_speed =
12621 i915_get_display_clock_speed;
257a7ffc 12622 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12623 dev_priv->display.get_display_clock_speed =
12624 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12625 else if (IS_PINEVIEW(dev))
12626 dev_priv->display.get_display_clock_speed =
12627 pnv_get_display_clock_speed;
e70236a8
JB
12628 else if (IS_I915GM(dev))
12629 dev_priv->display.get_display_clock_speed =
12630 i915gm_get_display_clock_speed;
12631 else if (IS_I865G(dev))
12632 dev_priv->display.get_display_clock_speed =
12633 i865_get_display_clock_speed;
f0f8a9ce 12634 else if (IS_I85X(dev))
e70236a8
JB
12635 dev_priv->display.get_display_clock_speed =
12636 i855_get_display_clock_speed;
12637 else /* 852, 830 */
12638 dev_priv->display.get_display_clock_speed =
12639 i830_get_display_clock_speed;
12640
3bb11b53 12641 if (IS_G4X(dev)) {
e0dac65e 12642 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12643 } else if (IS_GEN5(dev)) {
12644 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12645 dev_priv->display.write_eld = ironlake_write_eld;
12646 } else if (IS_GEN6(dev)) {
12647 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12648 dev_priv->display.write_eld = ironlake_write_eld;
12649 dev_priv->display.modeset_global_resources =
12650 snb_modeset_global_resources;
12651 } else if (IS_IVYBRIDGE(dev)) {
12652 /* FIXME: detect B0+ stepping and use auto training */
12653 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12654 dev_priv->display.write_eld = ironlake_write_eld;
12655 dev_priv->display.modeset_global_resources =
12656 ivb_modeset_global_resources;
059b2fe9 12657 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53
SJ
12658 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12659 dev_priv->display.write_eld = haswell_write_eld;
12660 dev_priv->display.modeset_global_resources =
12661 haswell_modeset_global_resources;
30a970c6
JB
12662 } else if (IS_VALLEYVIEW(dev)) {
12663 dev_priv->display.modeset_global_resources =
12664 valleyview_modeset_global_resources;
9ca2fe73 12665 dev_priv->display.write_eld = ironlake_write_eld;
02c29259
S
12666 } else if (INTEL_INFO(dev)->gen >= 9) {
12667 dev_priv->display.write_eld = haswell_write_eld;
12668 dev_priv->display.modeset_global_resources =
12669 haswell_modeset_global_resources;
e70236a8 12670 }
8c9f3aaf
JB
12671
12672 /* Default just returns -ENODEV to indicate unsupported */
12673 dev_priv->display.queue_flip = intel_default_queue_flip;
12674
12675 switch (INTEL_INFO(dev)->gen) {
12676 case 2:
12677 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12678 break;
12679
12680 case 3:
12681 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12682 break;
12683
12684 case 4:
12685 case 5:
12686 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12687 break;
12688
12689 case 6:
12690 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12691 break;
7c9017e5 12692 case 7:
4e0bbc31 12693 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12694 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12695 break;
8c9f3aaf 12696 }
7bd688cd
JN
12697
12698 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12699
12700 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12701}
12702
b690e96c
JB
12703/*
12704 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12705 * resume, or other times. This quirk makes sure that's the case for
12706 * affected systems.
12707 */
0206e353 12708static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12709{
12710 struct drm_i915_private *dev_priv = dev->dev_private;
12711
12712 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12713 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12714}
12715
b6b5d049
VS
12716static void quirk_pipeb_force(struct drm_device *dev)
12717{
12718 struct drm_i915_private *dev_priv = dev->dev_private;
12719
12720 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12721 DRM_INFO("applying pipe b force quirk\n");
12722}
12723
435793df
KP
12724/*
12725 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12726 */
12727static void quirk_ssc_force_disable(struct drm_device *dev)
12728{
12729 struct drm_i915_private *dev_priv = dev->dev_private;
12730 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12731 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12732}
12733
4dca20ef 12734/*
5a15ab5b
CE
12735 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12736 * brightness value
4dca20ef
CE
12737 */
12738static void quirk_invert_brightness(struct drm_device *dev)
12739{
12740 struct drm_i915_private *dev_priv = dev->dev_private;
12741 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12742 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12743}
12744
9c72cc6f
SD
12745/* Some VBT's incorrectly indicate no backlight is present */
12746static void quirk_backlight_present(struct drm_device *dev)
12747{
12748 struct drm_i915_private *dev_priv = dev->dev_private;
12749 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12750 DRM_INFO("applying backlight present quirk\n");
12751}
12752
b690e96c
JB
12753struct intel_quirk {
12754 int device;
12755 int subsystem_vendor;
12756 int subsystem_device;
12757 void (*hook)(struct drm_device *dev);
12758};
12759
5f85f176
EE
12760/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12761struct intel_dmi_quirk {
12762 void (*hook)(struct drm_device *dev);
12763 const struct dmi_system_id (*dmi_id_list)[];
12764};
12765
12766static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12767{
12768 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12769 return 1;
12770}
12771
12772static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12773 {
12774 .dmi_id_list = &(const struct dmi_system_id[]) {
12775 {
12776 .callback = intel_dmi_reverse_brightness,
12777 .ident = "NCR Corporation",
12778 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12779 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12780 },
12781 },
12782 { } /* terminating entry */
12783 },
12784 .hook = quirk_invert_brightness,
12785 },
12786};
12787
c43b5634 12788static struct intel_quirk intel_quirks[] = {
b690e96c 12789 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12790 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12791
b690e96c
JB
12792 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12793 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12794
b690e96c
JB
12795 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12796 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12797
5f080c0f
VS
12798 /* 830 needs to leave pipe A & dpll A up */
12799 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12800
b6b5d049
VS
12801 /* 830 needs to leave pipe B & dpll B up */
12802 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12803
435793df
KP
12804 /* Lenovo U160 cannot use SSC on LVDS */
12805 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12806
12807 /* Sony Vaio Y cannot use SSC on LVDS */
12808 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12809
be505f64
AH
12810 /* Acer Aspire 5734Z must invert backlight brightness */
12811 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12812
12813 /* Acer/eMachines G725 */
12814 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12815
12816 /* Acer/eMachines e725 */
12817 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12818
12819 /* Acer/Packard Bell NCL20 */
12820 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12821
12822 /* Acer Aspire 4736Z */
12823 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12824
12825 /* Acer Aspire 5336 */
12826 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12827
12828 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12829 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12830
dfb3d47b
SD
12831 /* Acer C720 Chromebook (Core i3 4005U) */
12832 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12833
d4967d8c
SD
12834 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12835 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12836
12837 /* HP Chromebook 14 (Celeron 2955U) */
12838 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12839};
12840
12841static void intel_init_quirks(struct drm_device *dev)
12842{
12843 struct pci_dev *d = dev->pdev;
12844 int i;
12845
12846 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12847 struct intel_quirk *q = &intel_quirks[i];
12848
12849 if (d->device == q->device &&
12850 (d->subsystem_vendor == q->subsystem_vendor ||
12851 q->subsystem_vendor == PCI_ANY_ID) &&
12852 (d->subsystem_device == q->subsystem_device ||
12853 q->subsystem_device == PCI_ANY_ID))
12854 q->hook(dev);
12855 }
5f85f176
EE
12856 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12857 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12858 intel_dmi_quirks[i].hook(dev);
12859 }
b690e96c
JB
12860}
12861
9cce37f4
JB
12862/* Disable the VGA plane that we never use */
12863static void i915_disable_vga(struct drm_device *dev)
12864{
12865 struct drm_i915_private *dev_priv = dev->dev_private;
12866 u8 sr1;
766aa1c4 12867 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12868
2b37c616 12869 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12870 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12871 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12872 sr1 = inb(VGA_SR_DATA);
12873 outb(sr1 | 1<<5, VGA_SR_DATA);
12874 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12875 udelay(300);
12876
69769f9a
VS
12877 /*
12878 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12879 * from S3 without preserving (some of?) the other bits.
12880 */
12881 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12882 POSTING_READ(vga_reg);
12883}
12884
f817586c
DV
12885void intel_modeset_init_hw(struct drm_device *dev)
12886{
a8f78b58
ED
12887 intel_prepare_ddi(dev);
12888
f8bf63fd
VS
12889 if (IS_VALLEYVIEW(dev))
12890 vlv_update_cdclk(dev);
12891
f817586c
DV
12892 intel_init_clock_gating(dev);
12893
8090c6b9 12894 intel_enable_gt_powersave(dev);
f817586c
DV
12895}
12896
79e53945
JB
12897void intel_modeset_init(struct drm_device *dev)
12898{
652c393a 12899 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12900 int sprite, ret;
8cc87b75 12901 enum pipe pipe;
46f297fb 12902 struct intel_crtc *crtc;
79e53945
JB
12903
12904 drm_mode_config_init(dev);
12905
12906 dev->mode_config.min_width = 0;
12907 dev->mode_config.min_height = 0;
12908
019d96cb
DA
12909 dev->mode_config.preferred_depth = 24;
12910 dev->mode_config.prefer_shadow = 1;
12911
e6ecefaa 12912 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12913
b690e96c
JB
12914 intel_init_quirks(dev);
12915
1fa61106
ED
12916 intel_init_pm(dev);
12917
e3c74757
BW
12918 if (INTEL_INFO(dev)->num_pipes == 0)
12919 return;
12920
e70236a8
JB
12921 intel_init_display(dev);
12922
a6c45cf0
CW
12923 if (IS_GEN2(dev)) {
12924 dev->mode_config.max_width = 2048;
12925 dev->mode_config.max_height = 2048;
12926 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12927 dev->mode_config.max_width = 4096;
12928 dev->mode_config.max_height = 4096;
79e53945 12929 } else {
a6c45cf0
CW
12930 dev->mode_config.max_width = 8192;
12931 dev->mode_config.max_height = 8192;
79e53945 12932 }
068be561 12933
dc41c154
VS
12934 if (IS_845G(dev) || IS_I865G(dev)) {
12935 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12936 dev->mode_config.cursor_height = 1023;
12937 } else if (IS_GEN2(dev)) {
068be561
DL
12938 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12939 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12940 } else {
12941 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12942 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12943 }
12944
5d4545ae 12945 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12946
28c97730 12947 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12948 INTEL_INFO(dev)->num_pipes,
12949 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12950
055e393f 12951 for_each_pipe(dev_priv, pipe) {
8cc87b75 12952 intel_crtc_init(dev, pipe);
1fe47785
DL
12953 for_each_sprite(pipe, sprite) {
12954 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12955 if (ret)
06da8da2 12956 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12957 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12958 }
79e53945
JB
12959 }
12960
f42bb70d
JB
12961 intel_init_dpio(dev);
12962
e72f9fbf 12963 intel_shared_dpll_init(dev);
ee7b9f93 12964
69769f9a
VS
12965 /* save the BIOS value before clobbering it */
12966 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
12967 /* Just disable it once at startup */
12968 i915_disable_vga(dev);
79e53945 12969 intel_setup_outputs(dev);
11be49eb
CW
12970
12971 /* Just in case the BIOS is doing something questionable. */
12972 intel_disable_fbc(dev);
fa9fa083 12973
6e9f798d 12974 drm_modeset_lock_all(dev);
fa9fa083 12975 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12976 drm_modeset_unlock_all(dev);
46f297fb 12977
d3fcc808 12978 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12979 if (!crtc->active)
12980 continue;
12981
46f297fb 12982 /*
46f297fb
JB
12983 * Note that reserving the BIOS fb up front prevents us
12984 * from stuffing other stolen allocations like the ring
12985 * on top. This prevents some ugliness at boot time, and
12986 * can even allow for smooth boot transitions if the BIOS
12987 * fb is large enough for the active pipe configuration.
12988 */
12989 if (dev_priv->display.get_plane_config) {
12990 dev_priv->display.get_plane_config(crtc,
12991 &crtc->plane_config);
12992 /*
12993 * If the fb is shared between multiple heads, we'll
12994 * just get the first one.
12995 */
484b41dd 12996 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12997 }
46f297fb 12998 }
2c7111db
CW
12999}
13000
7fad798e
DV
13001static void intel_enable_pipe_a(struct drm_device *dev)
13002{
13003 struct intel_connector *connector;
13004 struct drm_connector *crt = NULL;
13005 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13006 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13007
13008 /* We can't just switch on the pipe A, we need to set things up with a
13009 * proper mode and output configuration. As a gross hack, enable pipe A
13010 * by enabling the load detect pipe once. */
13011 list_for_each_entry(connector,
13012 &dev->mode_config.connector_list,
13013 base.head) {
13014 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13015 crt = &connector->base;
13016 break;
13017 }
13018 }
13019
13020 if (!crt)
13021 return;
13022
208bf9fd
VS
13023 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13024 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13025}
13026
fa555837
DV
13027static bool
13028intel_check_plane_mapping(struct intel_crtc *crtc)
13029{
7eb552ae
BW
13030 struct drm_device *dev = crtc->base.dev;
13031 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13032 u32 reg, val;
13033
7eb552ae 13034 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13035 return true;
13036
13037 reg = DSPCNTR(!crtc->plane);
13038 val = I915_READ(reg);
13039
13040 if ((val & DISPLAY_PLANE_ENABLE) &&
13041 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13042 return false;
13043
13044 return true;
13045}
13046
24929352
DV
13047static void intel_sanitize_crtc(struct intel_crtc *crtc)
13048{
13049 struct drm_device *dev = crtc->base.dev;
13050 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13051 u32 reg;
24929352 13052
24929352 13053 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 13054 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
13055 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13056
d3eaf884 13057 /* restore vblank interrupts to correct state */
d297e103
VS
13058 if (crtc->active) {
13059 update_scanline_offset(crtc);
d3eaf884 13060 drm_vblank_on(dev, crtc->pipe);
d297e103 13061 } else
d3eaf884
VS
13062 drm_vblank_off(dev, crtc->pipe);
13063
24929352 13064 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13065 * disable the crtc (and hence change the state) if it is wrong. Note
13066 * that gen4+ has a fixed plane -> pipe mapping. */
13067 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13068 struct intel_connector *connector;
13069 bool plane;
13070
24929352
DV
13071 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13072 crtc->base.base.id);
13073
13074 /* Pipe has the wrong plane attached and the plane is active.
13075 * Temporarily change the plane mapping and disable everything
13076 * ... */
13077 plane = crtc->plane;
13078 crtc->plane = !plane;
9c8958bc 13079 crtc->primary_enabled = true;
24929352
DV
13080 dev_priv->display.crtc_disable(&crtc->base);
13081 crtc->plane = plane;
13082
13083 /* ... and break all links. */
13084 list_for_each_entry(connector, &dev->mode_config.connector_list,
13085 base.head) {
13086 if (connector->encoder->base.crtc != &crtc->base)
13087 continue;
13088
7f1950fb
EE
13089 connector->base.dpms = DRM_MODE_DPMS_OFF;
13090 connector->base.encoder = NULL;
24929352 13091 }
7f1950fb
EE
13092 /* multiple connectors may have the same encoder:
13093 * handle them and break crtc link separately */
13094 list_for_each_entry(connector, &dev->mode_config.connector_list,
13095 base.head)
13096 if (connector->encoder->base.crtc == &crtc->base) {
13097 connector->encoder->base.crtc = NULL;
13098 connector->encoder->connectors_active = false;
13099 }
24929352
DV
13100
13101 WARN_ON(crtc->active);
13102 crtc->base.enabled = false;
13103 }
24929352 13104
7fad798e
DV
13105 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13106 crtc->pipe == PIPE_A && !crtc->active) {
13107 /* BIOS forgot to enable pipe A, this mostly happens after
13108 * resume. Force-enable the pipe to fix this, the update_dpms
13109 * call below we restore the pipe to the right state, but leave
13110 * the required bits on. */
13111 intel_enable_pipe_a(dev);
13112 }
13113
24929352
DV
13114 /* Adjust the state of the output pipe according to whether we
13115 * have active connectors/encoders. */
13116 intel_crtc_update_dpms(&crtc->base);
13117
13118 if (crtc->active != crtc->base.enabled) {
13119 struct intel_encoder *encoder;
13120
13121 /* This can happen either due to bugs in the get_hw_state
13122 * functions or because the pipe is force-enabled due to the
13123 * pipe A quirk. */
13124 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13125 crtc->base.base.id,
13126 crtc->base.enabled ? "enabled" : "disabled",
13127 crtc->active ? "enabled" : "disabled");
13128
13129 crtc->base.enabled = crtc->active;
13130
13131 /* Because we only establish the connector -> encoder ->
13132 * crtc links if something is active, this means the
13133 * crtc is now deactivated. Break the links. connector
13134 * -> encoder links are only establish when things are
13135 * actually up, hence no need to break them. */
13136 WARN_ON(crtc->active);
13137
13138 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13139 WARN_ON(encoder->connectors_active);
13140 encoder->base.crtc = NULL;
13141 }
13142 }
c5ab3bc0 13143
a3ed6aad 13144 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13145 /*
13146 * We start out with underrun reporting disabled to avoid races.
13147 * For correct bookkeeping mark this on active crtcs.
13148 *
c5ab3bc0
DV
13149 * Also on gmch platforms we dont have any hardware bits to
13150 * disable the underrun reporting. Which means we need to start
13151 * out with underrun reporting disabled also on inactive pipes,
13152 * since otherwise we'll complain about the garbage we read when
13153 * e.g. coming up after runtime pm.
13154 *
4cc31489
DV
13155 * No protection against concurrent access is required - at
13156 * worst a fifo underrun happens which also sets this to false.
13157 */
13158 crtc->cpu_fifo_underrun_disabled = true;
13159 crtc->pch_fifo_underrun_disabled = true;
13160 }
24929352
DV
13161}
13162
13163static void intel_sanitize_encoder(struct intel_encoder *encoder)
13164{
13165 struct intel_connector *connector;
13166 struct drm_device *dev = encoder->base.dev;
13167
13168 /* We need to check both for a crtc link (meaning that the
13169 * encoder is active and trying to read from a pipe) and the
13170 * pipe itself being active. */
13171 bool has_active_crtc = encoder->base.crtc &&
13172 to_intel_crtc(encoder->base.crtc)->active;
13173
13174 if (encoder->connectors_active && !has_active_crtc) {
13175 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13176 encoder->base.base.id,
8e329a03 13177 encoder->base.name);
24929352
DV
13178
13179 /* Connector is active, but has no active pipe. This is
13180 * fallout from our resume register restoring. Disable
13181 * the encoder manually again. */
13182 if (encoder->base.crtc) {
13183 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13184 encoder->base.base.id,
8e329a03 13185 encoder->base.name);
24929352 13186 encoder->disable(encoder);
a62d1497
VS
13187 if (encoder->post_disable)
13188 encoder->post_disable(encoder);
24929352 13189 }
7f1950fb
EE
13190 encoder->base.crtc = NULL;
13191 encoder->connectors_active = false;
24929352
DV
13192
13193 /* Inconsistent output/port/pipe state happens presumably due to
13194 * a bug in one of the get_hw_state functions. Or someplace else
13195 * in our code, like the register restore mess on resume. Clamp
13196 * things to off as a safer default. */
13197 list_for_each_entry(connector,
13198 &dev->mode_config.connector_list,
13199 base.head) {
13200 if (connector->encoder != encoder)
13201 continue;
7f1950fb
EE
13202 connector->base.dpms = DRM_MODE_DPMS_OFF;
13203 connector->base.encoder = NULL;
24929352
DV
13204 }
13205 }
13206 /* Enabled encoders without active connectors will be fixed in
13207 * the crtc fixup. */
13208}
13209
04098753 13210void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13211{
13212 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13213 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13214
04098753
ID
13215 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13216 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13217 i915_disable_vga(dev);
13218 }
13219}
13220
13221void i915_redisable_vga(struct drm_device *dev)
13222{
13223 struct drm_i915_private *dev_priv = dev->dev_private;
13224
8dc8a27c
PZ
13225 /* This function can be called both from intel_modeset_setup_hw_state or
13226 * at a very early point in our resume sequence, where the power well
13227 * structures are not yet restored. Since this function is at a very
13228 * paranoid "someone might have enabled VGA while we were not looking"
13229 * level, just check if the power well is enabled instead of trying to
13230 * follow the "don't touch the power well if we don't need it" policy
13231 * the rest of the driver uses. */
f458ebbc 13232 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13233 return;
13234
04098753 13235 i915_redisable_vga_power_on(dev);
0fde901f
KM
13236}
13237
98ec7739
VS
13238static bool primary_get_hw_state(struct intel_crtc *crtc)
13239{
13240 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13241
13242 if (!crtc->active)
13243 return false;
13244
13245 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13246}
13247
30e984df 13248static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13249{
13250 struct drm_i915_private *dev_priv = dev->dev_private;
13251 enum pipe pipe;
24929352
DV
13252 struct intel_crtc *crtc;
13253 struct intel_encoder *encoder;
13254 struct intel_connector *connector;
5358901f 13255 int i;
24929352 13256
d3fcc808 13257 for_each_intel_crtc(dev, crtc) {
88adfff1 13258 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13259
9953599b
DV
13260 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13261
0e8ffe1b
DV
13262 crtc->active = dev_priv->display.get_pipe_config(crtc,
13263 &crtc->config);
24929352
DV
13264
13265 crtc->base.enabled = crtc->active;
98ec7739 13266 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13267
13268 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13269 crtc->base.base.id,
13270 crtc->active ? "enabled" : "disabled");
13271 }
13272
5358901f
DV
13273 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13274 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13275
13276 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13277 pll->active = 0;
d3fcc808 13278 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13279 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13280 pll->active++;
13281 }
13282 pll->refcount = pll->active;
13283
35c95375
DV
13284 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13285 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13286
13287 if (pll->refcount)
13288 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13289 }
13290
b2784e15 13291 for_each_intel_encoder(dev, encoder) {
24929352
DV
13292 pipe = 0;
13293
13294 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13295 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13296 encoder->base.crtc = &crtc->base;
1d37b689 13297 encoder->get_config(encoder, &crtc->config);
24929352
DV
13298 } else {
13299 encoder->base.crtc = NULL;
13300 }
13301
13302 encoder->connectors_active = false;
6f2bcceb 13303 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13304 encoder->base.base.id,
8e329a03 13305 encoder->base.name,
24929352 13306 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13307 pipe_name(pipe));
24929352
DV
13308 }
13309
13310 list_for_each_entry(connector, &dev->mode_config.connector_list,
13311 base.head) {
13312 if (connector->get_hw_state(connector)) {
13313 connector->base.dpms = DRM_MODE_DPMS_ON;
13314 connector->encoder->connectors_active = true;
13315 connector->base.encoder = &connector->encoder->base;
13316 } else {
13317 connector->base.dpms = DRM_MODE_DPMS_OFF;
13318 connector->base.encoder = NULL;
13319 }
13320 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13321 connector->base.base.id,
c23cc417 13322 connector->base.name,
24929352
DV
13323 connector->base.encoder ? "enabled" : "disabled");
13324 }
30e984df
DV
13325}
13326
13327/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13328 * and i915 state tracking structures. */
13329void intel_modeset_setup_hw_state(struct drm_device *dev,
13330 bool force_restore)
13331{
13332 struct drm_i915_private *dev_priv = dev->dev_private;
13333 enum pipe pipe;
30e984df
DV
13334 struct intel_crtc *crtc;
13335 struct intel_encoder *encoder;
35c95375 13336 int i;
30e984df
DV
13337
13338 intel_modeset_readout_hw_state(dev);
24929352 13339
babea61d
JB
13340 /*
13341 * Now that we have the config, copy it to each CRTC struct
13342 * Note that this could go away if we move to using crtc_config
13343 * checking everywhere.
13344 */
d3fcc808 13345 for_each_intel_crtc(dev, crtc) {
d330a953 13346 if (crtc->active && i915.fastboot) {
f6a83288 13347 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13348 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13349 crtc->base.base.id);
13350 drm_mode_debug_printmodeline(&crtc->base.mode);
13351 }
13352 }
13353
24929352 13354 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13355 for_each_intel_encoder(dev, encoder) {
24929352
DV
13356 intel_sanitize_encoder(encoder);
13357 }
13358
055e393f 13359 for_each_pipe(dev_priv, pipe) {
24929352
DV
13360 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13361 intel_sanitize_crtc(crtc);
c0b03411 13362 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13363 }
9a935856 13364
35c95375
DV
13365 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13366 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13367
13368 if (!pll->on || pll->active)
13369 continue;
13370
13371 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13372
13373 pll->disable(dev_priv, pll);
13374 pll->on = false;
13375 }
13376
96f90c54 13377 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13378 ilk_wm_get_hw_state(dev);
13379
45e2b5f6 13380 if (force_restore) {
7d0bc1ea
VS
13381 i915_redisable_vga(dev);
13382
f30da187
DV
13383 /*
13384 * We need to use raw interfaces for restoring state to avoid
13385 * checking (bogus) intermediate states.
13386 */
055e393f 13387 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13388 struct drm_crtc *crtc =
13389 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13390
13391 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13392 crtc->primary->fb);
45e2b5f6
DV
13393 }
13394 } else {
13395 intel_modeset_update_staged_output_state(dev);
13396 }
8af6cf88
DV
13397
13398 intel_modeset_check_state(dev);
2c7111db
CW
13399}
13400
13401void intel_modeset_gem_init(struct drm_device *dev)
13402{
484b41dd 13403 struct drm_crtc *c;
2ff8fde1 13404 struct drm_i915_gem_object *obj;
484b41dd 13405
ae48434c
ID
13406 mutex_lock(&dev->struct_mutex);
13407 intel_init_gt_powersave(dev);
13408 mutex_unlock(&dev->struct_mutex);
13409
1833b134 13410 intel_modeset_init_hw(dev);
02e792fb
DV
13411
13412 intel_setup_overlay(dev);
484b41dd
JB
13413
13414 /*
13415 * Make sure any fbs we allocated at startup are properly
13416 * pinned & fenced. When we do the allocation it's too early
13417 * for this.
13418 */
13419 mutex_lock(&dev->struct_mutex);
70e1e0ec 13420 for_each_crtc(dev, c) {
2ff8fde1
MR
13421 obj = intel_fb_obj(c->primary->fb);
13422 if (obj == NULL)
484b41dd
JB
13423 continue;
13424
2ff8fde1 13425 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13426 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13427 to_intel_crtc(c)->pipe);
66e514c1
DA
13428 drm_framebuffer_unreference(c->primary->fb);
13429 c->primary->fb = NULL;
484b41dd
JB
13430 }
13431 }
13432 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13433}
13434
4932e2c3
ID
13435void intel_connector_unregister(struct intel_connector *intel_connector)
13436{
13437 struct drm_connector *connector = &intel_connector->base;
13438
13439 intel_panel_destroy_backlight(connector);
34ea3d38 13440 drm_connector_unregister(connector);
4932e2c3
ID
13441}
13442
79e53945
JB
13443void intel_modeset_cleanup(struct drm_device *dev)
13444{
652c393a 13445 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13446 struct drm_connector *connector;
652c393a 13447
fd0c0642
DV
13448 /*
13449 * Interrupts and polling as the first thing to avoid creating havoc.
13450 * Too much stuff here (turning of rps, connectors, ...) would
13451 * experience fancy races otherwise.
13452 */
2aeb7d3a 13453 intel_irq_uninstall(dev_priv);
eb21b92b 13454
fd0c0642
DV
13455 /*
13456 * Due to the hpd irq storm handling the hotplug work can re-arm the
13457 * poll handlers. Hence disable polling after hpd handling is shut down.
13458 */
f87ea761 13459 drm_kms_helper_poll_fini(dev);
fd0c0642 13460
652c393a
JB
13461 mutex_lock(&dev->struct_mutex);
13462
723bfd70
JB
13463 intel_unregister_dsm_handler();
13464
973d04f9 13465 intel_disable_fbc(dev);
e70236a8 13466
8090c6b9 13467 intel_disable_gt_powersave(dev);
0cdab21f 13468
930ebb46
DV
13469 ironlake_teardown_rc6(dev);
13470
69341a5e
KH
13471 mutex_unlock(&dev->struct_mutex);
13472
1630fe75
CW
13473 /* flush any delayed tasks or pending work */
13474 flush_scheduled_work();
13475
db31af1d
JN
13476 /* destroy the backlight and sysfs files before encoders/connectors */
13477 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13478 struct intel_connector *intel_connector;
13479
13480 intel_connector = to_intel_connector(connector);
13481 intel_connector->unregister(intel_connector);
db31af1d 13482 }
d9255d57 13483
79e53945 13484 drm_mode_config_cleanup(dev);
4d7bb011
DV
13485
13486 intel_cleanup_overlay(dev);
ae48434c
ID
13487
13488 mutex_lock(&dev->struct_mutex);
13489 intel_cleanup_gt_powersave(dev);
13490 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13491}
13492
f1c79df3
ZW
13493/*
13494 * Return which encoder is currently attached for connector.
13495 */
df0e9248 13496struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13497{
df0e9248
CW
13498 return &intel_attached_encoder(connector)->base;
13499}
f1c79df3 13500
df0e9248
CW
13501void intel_connector_attach_encoder(struct intel_connector *connector,
13502 struct intel_encoder *encoder)
13503{
13504 connector->encoder = encoder;
13505 drm_mode_connector_attach_encoder(&connector->base,
13506 &encoder->base);
79e53945 13507}
28d52043
DA
13508
13509/*
13510 * set vga decode state - true == enable VGA decode
13511 */
13512int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13513{
13514 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13515 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13516 u16 gmch_ctrl;
13517
75fa041d
CW
13518 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13519 DRM_ERROR("failed to read control word\n");
13520 return -EIO;
13521 }
13522
c0cc8a55
CW
13523 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13524 return 0;
13525
28d52043
DA
13526 if (state)
13527 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13528 else
13529 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13530
13531 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13532 DRM_ERROR("failed to write control word\n");
13533 return -EIO;
13534 }
13535
28d52043
DA
13536 return 0;
13537}
c4a1d9e4 13538
c4a1d9e4 13539struct intel_display_error_state {
ff57f1b0
PZ
13540
13541 u32 power_well_driver;
13542
63b66e5b
CW
13543 int num_transcoders;
13544
c4a1d9e4
CW
13545 struct intel_cursor_error_state {
13546 u32 control;
13547 u32 position;
13548 u32 base;
13549 u32 size;
52331309 13550 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13551
13552 struct intel_pipe_error_state {
ddf9c536 13553 bool power_domain_on;
c4a1d9e4 13554 u32 source;
f301b1e1 13555 u32 stat;
52331309 13556 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13557
13558 struct intel_plane_error_state {
13559 u32 control;
13560 u32 stride;
13561 u32 size;
13562 u32 pos;
13563 u32 addr;
13564 u32 surface;
13565 u32 tile_offset;
52331309 13566 } plane[I915_MAX_PIPES];
63b66e5b
CW
13567
13568 struct intel_transcoder_error_state {
ddf9c536 13569 bool power_domain_on;
63b66e5b
CW
13570 enum transcoder cpu_transcoder;
13571
13572 u32 conf;
13573
13574 u32 htotal;
13575 u32 hblank;
13576 u32 hsync;
13577 u32 vtotal;
13578 u32 vblank;
13579 u32 vsync;
13580 } transcoder[4];
c4a1d9e4
CW
13581};
13582
13583struct intel_display_error_state *
13584intel_display_capture_error_state(struct drm_device *dev)
13585{
fbee40df 13586 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13587 struct intel_display_error_state *error;
63b66e5b
CW
13588 int transcoders[] = {
13589 TRANSCODER_A,
13590 TRANSCODER_B,
13591 TRANSCODER_C,
13592 TRANSCODER_EDP,
13593 };
c4a1d9e4
CW
13594 int i;
13595
63b66e5b
CW
13596 if (INTEL_INFO(dev)->num_pipes == 0)
13597 return NULL;
13598
9d1cb914 13599 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13600 if (error == NULL)
13601 return NULL;
13602
190be112 13603 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13604 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13605
055e393f 13606 for_each_pipe(dev_priv, i) {
ddf9c536 13607 error->pipe[i].power_domain_on =
f458ebbc
DV
13608 __intel_display_power_is_enabled(dev_priv,
13609 POWER_DOMAIN_PIPE(i));
ddf9c536 13610 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13611 continue;
13612
5efb3e28
VS
13613 error->cursor[i].control = I915_READ(CURCNTR(i));
13614 error->cursor[i].position = I915_READ(CURPOS(i));
13615 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13616
13617 error->plane[i].control = I915_READ(DSPCNTR(i));
13618 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13619 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13620 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13621 error->plane[i].pos = I915_READ(DSPPOS(i));
13622 }
ca291363
PZ
13623 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13624 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13625 if (INTEL_INFO(dev)->gen >= 4) {
13626 error->plane[i].surface = I915_READ(DSPSURF(i));
13627 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13628 }
13629
c4a1d9e4 13630 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13631
3abfce77 13632 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13633 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13634 }
13635
13636 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13637 if (HAS_DDI(dev_priv->dev))
13638 error->num_transcoders++; /* Account for eDP. */
13639
13640 for (i = 0; i < error->num_transcoders; i++) {
13641 enum transcoder cpu_transcoder = transcoders[i];
13642
ddf9c536 13643 error->transcoder[i].power_domain_on =
f458ebbc 13644 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13645 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13646 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13647 continue;
13648
63b66e5b
CW
13649 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13650
13651 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13652 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13653 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13654 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13655 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13656 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13657 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13658 }
13659
13660 return error;
13661}
13662
edc3d884
MK
13663#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13664
c4a1d9e4 13665void
edc3d884 13666intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13667 struct drm_device *dev,
13668 struct intel_display_error_state *error)
13669{
055e393f 13670 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13671 int i;
13672
63b66e5b
CW
13673 if (!error)
13674 return;
13675
edc3d884 13676 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13677 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13678 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13679 error->power_well_driver);
055e393f 13680 for_each_pipe(dev_priv, i) {
edc3d884 13681 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13682 err_printf(m, " Power: %s\n",
13683 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13684 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13685 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13686
13687 err_printf(m, "Plane [%d]:\n", i);
13688 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13689 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13690 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13691 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13692 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13693 }
4b71a570 13694 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13695 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13696 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13697 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13698 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13699 }
13700
edc3d884
MK
13701 err_printf(m, "Cursor [%d]:\n", i);
13702 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13703 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13704 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13705 }
63b66e5b
CW
13706
13707 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13708 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13709 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13710 err_printf(m, " Power: %s\n",
13711 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13712 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13713 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13714 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13715 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13716 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13717 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13718 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13719 }
c4a1d9e4 13720}
e2fcdaa9
VS
13721
13722void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13723{
13724 struct intel_crtc *crtc;
13725
13726 for_each_intel_crtc(dev, crtc) {
13727 struct intel_unpin_work *work;
e2fcdaa9 13728
5e2d7afc 13729 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
13730
13731 work = crtc->unpin_work;
13732
13733 if (work && work->event &&
13734 work->event->base.file_priv == file) {
13735 kfree(work->event);
13736 work->event = NULL;
13737 }
13738
5e2d7afc 13739 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
13740 }
13741}
This page took 2.409248 seconds and 5 git commands to generate.