drm/i915: Covert ILK-IVB to choose DPLLS before disabling CRTCs
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
6b383a7f 76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 77
f1f644dc
JB
78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
18442d08
VS
80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
f1f644dc 82
e7457a9a
DL
83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
85static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
5b18e57c
DV
89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
29407aab 94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
95static void haswell_set_pipeconf(struct drm_crtc *crtc);
96static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f
VS
97static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_config *pipe_config);
99static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_config *pipe_config);
e7457a9a 101
0e32b39c
DA
102static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103{
104 if (!connector->mst_port)
105 return connector->encoder;
106 else
107 return &connector->mst_port->mst_encoders[pipe]->base;
108}
109
79e53945 110typedef struct {
0206e353 111 int min, max;
79e53945
JB
112} intel_range_t;
113
114typedef struct {
0206e353
AJ
115 int dot_limit;
116 int p2_slow, p2_fast;
79e53945
JB
117} intel_p2_t;
118
d4906093
ML
119typedef struct intel_limit intel_limit_t;
120struct intel_limit {
0206e353
AJ
121 intel_range_t dot, vco, n, m, m1, m2, p, p1;
122 intel_p2_t p2;
d4906093 123};
79e53945 124
d2acd215
DV
125int
126intel_pch_rawclk(struct drm_device *dev)
127{
128 struct drm_i915_private *dev_priv = dev->dev_private;
129
130 WARN_ON(!HAS_PCH_SPLIT(dev));
131
132 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133}
134
021357ac
CW
135static inline u32 /* units of 100MHz */
136intel_fdi_link_freq(struct drm_device *dev)
137{
8b99e68c
CW
138 if (IS_GEN5(dev)) {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141 } else
142 return 27;
021357ac
CW
143}
144
5d536e28 145static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 146 .dot = { .min = 25000, .max = 350000 },
9c333719 147 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 148 .n = { .min = 2, .max = 16 },
0206e353
AJ
149 .m = { .min = 96, .max = 140 },
150 .m1 = { .min = 18, .max = 26 },
151 .m2 = { .min = 6, .max = 16 },
152 .p = { .min = 4, .max = 128 },
153 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
154 .p2 = { .dot_limit = 165000,
155 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
156};
157
5d536e28
DV
158static const intel_limit_t intel_limits_i8xx_dvo = {
159 .dot = { .min = 25000, .max = 350000 },
9c333719 160 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 161 .n = { .min = 2, .max = 16 },
5d536e28
DV
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 4 },
169};
170
e4b36699 171static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 172 .dot = { .min = 25000, .max = 350000 },
9c333719 173 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 174 .n = { .min = 2, .max = 16 },
0206e353
AJ
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 14, .p2_fast = 7 },
e4b36699 182};
273e27ca 183
e4b36699 184static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
185 .dot = { .min = 20000, .max = 400000 },
186 .vco = { .min = 1400000, .max = 2800000 },
187 .n = { .min = 1, .max = 6 },
188 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
189 .m1 = { .min = 8, .max = 18 },
190 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
193 .p2 = { .dot_limit = 200000,
194 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
195};
196
197static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
204 .p = { .min = 7, .max = 98 },
205 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
206 .p2 = { .dot_limit = 112000,
207 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
208};
209
273e27ca 210
e4b36699 211static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
212 .dot = { .min = 25000, .max = 270000 },
213 .vco = { .min = 1750000, .max = 3500000},
214 .n = { .min = 1, .max = 4 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 10, .max = 30 },
219 .p1 = { .min = 1, .max = 3},
220 .p2 = { .dot_limit = 270000,
221 .p2_slow = 10,
222 .p2_fast = 10
044c7c41 223 },
e4b36699
KP
224};
225
226static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
227 .dot = { .min = 22000, .max = 400000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 16, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 5, .max = 80 },
234 .p1 = { .min = 1, .max = 8},
235 .p2 = { .dot_limit = 165000,
236 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
237};
238
239static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
240 .dot = { .min = 20000, .max = 115000 },
241 .vco = { .min = 1750000, .max = 3500000 },
242 .n = { .min = 1, .max = 3 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 17, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 28, .max = 112 },
247 .p1 = { .min = 2, .max = 8 },
248 .p2 = { .dot_limit = 0,
249 .p2_slow = 14, .p2_fast = 14
044c7c41 250 },
e4b36699
KP
251};
252
253static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
254 .dot = { .min = 80000, .max = 224000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 14, .max = 42 },
261 .p1 = { .min = 2, .max = 6 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 7, .p2_fast = 7
044c7c41 264 },
e4b36699
KP
265};
266
f2b115e6 267static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
268 .dot = { .min = 20000, .max = 400000},
269 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 270 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
271 .n = { .min = 3, .max = 6 },
272 .m = { .min = 2, .max = 256 },
273e27ca 273 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
274 .m1 = { .min = 0, .max = 0 },
275 .m2 = { .min = 0, .max = 254 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
278 .p2 = { .dot_limit = 200000,
279 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
280};
281
f2b115e6 282static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
283 .dot = { .min = 20000, .max = 400000 },
284 .vco = { .min = 1700000, .max = 3500000 },
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 7, .max = 112 },
290 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
291 .p2 = { .dot_limit = 112000,
292 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
293};
294
273e27ca
EA
295/* Ironlake / Sandybridge
296 *
297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
298 * the range value for them is (actual_value - 2).
299 */
b91ad0ec 300static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 5 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 5, .max = 80 },
308 .p1 = { .min = 1, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
311};
312
b91ad0ec 313static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 3 },
317 .m = { .min = 79, .max = 118 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 28, .max = 112 },
321 .p1 = { .min = 2, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
324};
325
326static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 127 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 14, .max = 56 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
337};
338
273e27ca 339/* LVDS 100mhz refclk limits. */
b91ad0ec 340static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 2 },
344 .m = { .min = 79, .max = 126 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 28, .max = 112 },
0206e353 348 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
351};
352
353static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 3 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 14, .max = 42 },
0206e353 361 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
364};
365
dc730512 366static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
367 /*
368 * These are the data rate limits (measured in fast clocks)
369 * since those are the strictest limits we have. The fast
370 * clock and actual rate limits are more relaxed, so checking
371 * them would make no difference.
372 */
373 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 374 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 375 .n = { .min = 1, .max = 7 },
a0c4da24
JB
376 .m1 = { .min = 2, .max = 3 },
377 .m2 = { .min = 11, .max = 156 },
b99ab663 378 .p1 = { .min = 2, .max = 3 },
5fdc9c49 379 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
380};
381
ef9348c8
CML
382static const intel_limit_t intel_limits_chv = {
383 /*
384 * These are the data rate limits (measured in fast clocks)
385 * since those are the strictest limits we have. The fast
386 * clock and actual rate limits are more relaxed, so checking
387 * them would make no difference.
388 */
389 .dot = { .min = 25000 * 5, .max = 540000 * 5},
390 .vco = { .min = 4860000, .max = 6700000 },
391 .n = { .min = 1, .max = 1 },
392 .m1 = { .min = 2, .max = 2 },
393 .m2 = { .min = 24 << 22, .max = 175 << 22 },
394 .p1 = { .min = 2, .max = 4 },
395 .p2 = { .p2_slow = 1, .p2_fast = 14 },
396};
397
6b4bf1c4
VS
398static void vlv_clock(int refclk, intel_clock_t *clock)
399{
400 clock->m = clock->m1 * clock->m2;
401 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
402 if (WARN_ON(clock->n == 0 || clock->p == 0))
403 return;
fb03ac01
VS
404 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
406}
407
e0638cdf
PZ
408/**
409 * Returns whether any output on the specified pipe is of the specified type
410 */
7c10a2b5 411bool intel_pipe_has_type(struct intel_crtc *crtc, int type)
e0638cdf 412{
409ee761 413 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
414 struct intel_encoder *encoder;
415
409ee761 416 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
417 if (encoder->type == type)
418 return true;
419
420 return false;
421}
422
d0737e1d
ACO
423/**
424 * Returns whether any output on the specified pipe will have the specified
425 * type after a staged modeset is complete, i.e., the same as
426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427 * encoder->crtc.
428 */
429static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430{
431 struct drm_device *dev = crtc->base.dev;
432 struct intel_encoder *encoder;
433
434 for_each_intel_encoder(dev, encoder)
435 if (encoder->new_crtc == crtc && encoder->type == type)
436 return true;
437
438 return false;
439}
440
409ee761 441static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 442 int refclk)
2c07245f 443{
409ee761 444 struct drm_device *dev = crtc->base.dev;
2c07245f 445 const intel_limit_t *limit;
b91ad0ec 446
d0737e1d 447 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 448 if (intel_is_dual_link_lvds(dev)) {
1b894b59 449 if (refclk == 100000)
b91ad0ec
ZW
450 limit = &intel_limits_ironlake_dual_lvds_100m;
451 else
452 limit = &intel_limits_ironlake_dual_lvds;
453 } else {
1b894b59 454 if (refclk == 100000)
b91ad0ec
ZW
455 limit = &intel_limits_ironlake_single_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_single_lvds;
458 }
c6bb3538 459 } else
b91ad0ec 460 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
461
462 return limit;
463}
464
409ee761 465static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 466{
409ee761 467 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
468 const intel_limit_t *limit;
469
d0737e1d 470 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 471 if (intel_is_dual_link_lvds(dev))
e4b36699 472 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 473 else
e4b36699 474 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
475 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 477 limit = &intel_limits_g4x_hdmi;
d0737e1d 478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 479 limit = &intel_limits_g4x_sdvo;
044c7c41 480 } else /* The option is for other outputs */
e4b36699 481 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
482
483 return limit;
484}
485
409ee761 486static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 487{
409ee761 488 struct drm_device *dev = crtc->base.dev;
79e53945
JB
489 const intel_limit_t *limit;
490
bad720ff 491 if (HAS_PCH_SPLIT(dev))
1b894b59 492 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 493 else if (IS_G4X(dev)) {
044c7c41 494 limit = intel_g4x_limit(crtc);
f2b115e6 495 } else if (IS_PINEVIEW(dev)) {
d0737e1d 496 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 497 limit = &intel_limits_pineview_lvds;
2177832f 498 else
f2b115e6 499 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
500 } else if (IS_CHERRYVIEW(dev)) {
501 limit = &intel_limits_chv;
a0c4da24 502 } else if (IS_VALLEYVIEW(dev)) {
dc730512 503 limit = &intel_limits_vlv;
a6c45cf0 504 } else if (!IS_GEN2(dev)) {
d0737e1d 505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
506 limit = &intel_limits_i9xx_lvds;
507 else
508 limit = &intel_limits_i9xx_sdvo;
79e53945 509 } else {
d0737e1d 510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 511 limit = &intel_limits_i8xx_lvds;
d0737e1d 512 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 513 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
514 else
515 limit = &intel_limits_i8xx_dac;
79e53945
JB
516 }
517 return limit;
518}
519
f2b115e6
AJ
520/* m1 is reserved as 0 in Pineview, n is a ring counter */
521static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 522{
2177832f
SL
523 clock->m = clock->m2 + 2;
524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
529}
530
7429e9d4
DV
531static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532{
533 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534}
535
ac58c3f0 536static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 537{
7429e9d4 538 clock->m = i9xx_dpll_compute_m(clock);
79e53945 539 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
540 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541 return;
fb03ac01
VS
542 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
544}
545
ef9348c8
CML
546static void chv_clock(int refclk, intel_clock_t *clock)
547{
548 clock->m = clock->m1 * clock->m2;
549 clock->p = clock->p1 * clock->p2;
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
552 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553 clock->n << 22);
554 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555}
556
7c04d1d9 557#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
558/**
559 * Returns whether the given set of divisors are valid for a given refclk with
560 * the given connectors.
561 */
562
1b894b59
CW
563static bool intel_PLL_is_valid(struct drm_device *dev,
564 const intel_limit_t *limit,
565 const intel_clock_t *clock)
79e53945 566{
f01b7962
VS
567 if (clock->n < limit->n.min || limit->n.max < clock->n)
568 INTELPllInvalid("n out of range\n");
79e53945 569 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 570 INTELPllInvalid("p1 out of range\n");
79e53945 571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 572 INTELPllInvalid("m2 out of range\n");
79e53945 573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 574 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
575
576 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577 if (clock->m1 <= clock->m2)
578 INTELPllInvalid("m1 <= m2\n");
579
580 if (!IS_VALLEYVIEW(dev)) {
581 if (clock->p < limit->p.min || limit->p.max < clock->p)
582 INTELPllInvalid("p out of range\n");
583 if (clock->m < limit->m.min || limit->m.max < clock->m)
584 INTELPllInvalid("m out of range\n");
585 }
586
79e53945 587 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 588 INTELPllInvalid("vco out of range\n");
79e53945
JB
589 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590 * connector, etc., rather than just a single range.
591 */
592 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 593 INTELPllInvalid("dot out of range\n");
79e53945
JB
594
595 return true;
596}
597
d4906093 598static bool
a919ff14 599i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
600 int target, int refclk, intel_clock_t *match_clock,
601 intel_clock_t *best_clock)
79e53945 602{
a919ff14 603 struct drm_device *dev = crtc->base.dev;
79e53945 604 intel_clock_t clock;
79e53945
JB
605 int err = target;
606
d0737e1d 607 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 608 /*
a210b028
DV
609 * For LVDS just rely on its current settings for dual-channel.
610 * We haven't figured out how to reliably set up different
611 * single/dual channel state, if we even can.
79e53945 612 */
1974cad0 613 if (intel_is_dual_link_lvds(dev))
79e53945
JB
614 clock.p2 = limit->p2.p2_fast;
615 else
616 clock.p2 = limit->p2.p2_slow;
617 } else {
618 if (target < limit->p2.dot_limit)
619 clock.p2 = limit->p2.p2_slow;
620 else
621 clock.p2 = limit->p2.p2_fast;
622 }
623
0206e353 624 memset(best_clock, 0, sizeof(*best_clock));
79e53945 625
42158660
ZY
626 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627 clock.m1++) {
628 for (clock.m2 = limit->m2.min;
629 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 630 if (clock.m2 >= clock.m1)
42158660
ZY
631 break;
632 for (clock.n = limit->n.min;
633 clock.n <= limit->n.max; clock.n++) {
634 for (clock.p1 = limit->p1.min;
635 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
636 int this_err;
637
ac58c3f0
DV
638 i9xx_clock(refclk, &clock);
639 if (!intel_PLL_is_valid(dev, limit,
640 &clock))
641 continue;
642 if (match_clock &&
643 clock.p != match_clock->p)
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err) {
648 *best_clock = clock;
649 err = this_err;
650 }
651 }
652 }
653 }
654 }
655
656 return (err != target);
657}
658
659static bool
a919ff14 660pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
661 int target, int refclk, intel_clock_t *match_clock,
662 intel_clock_t *best_clock)
79e53945 663{
a919ff14 664 struct drm_device *dev = crtc->base.dev;
79e53945 665 intel_clock_t clock;
79e53945
JB
666 int err = target;
667
d0737e1d 668 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 669 /*
a210b028
DV
670 * For LVDS just rely on its current settings for dual-channel.
671 * We haven't figured out how to reliably set up different
672 * single/dual channel state, if we even can.
79e53945 673 */
1974cad0 674 if (intel_is_dual_link_lvds(dev))
79e53945
JB
675 clock.p2 = limit->p2.p2_fast;
676 else
677 clock.p2 = limit->p2.p2_slow;
678 } else {
679 if (target < limit->p2.dot_limit)
680 clock.p2 = limit->p2.p2_slow;
681 else
682 clock.p2 = limit->p2.p2_fast;
683 }
684
0206e353 685 memset(best_clock, 0, sizeof(*best_clock));
79e53945 686
42158660
ZY
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
695 int this_err;
696
ac58c3f0 697 pineview_clock(refclk, &clock);
1b894b59
CW
698 if (!intel_PLL_is_valid(dev, limit,
699 &clock))
79e53945 700 continue;
cec2f356
SP
701 if (match_clock &&
702 clock.p != match_clock->p)
703 continue;
79e53945
JB
704
705 this_err = abs(clock.dot - target);
706 if (this_err < err) {
707 *best_clock = clock;
708 err = this_err;
709 }
710 }
711 }
712 }
713 }
714
715 return (err != target);
716}
717
d4906093 718static bool
a919ff14 719g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
d4906093 722{
a919ff14 723 struct drm_device *dev = crtc->base.dev;
d4906093
ML
724 intel_clock_t clock;
725 int max_n;
726 bool found;
6ba770dc
AJ
727 /* approximately equals target * 0.00585 */
728 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
729 found = false;
730
d0737e1d 731 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 732 if (intel_is_dual_link_lvds(dev))
d4906093
ML
733 clock.p2 = limit->p2.p2_fast;
734 else
735 clock.p2 = limit->p2.p2_slow;
736 } else {
737 if (target < limit->p2.dot_limit)
738 clock.p2 = limit->p2.p2_slow;
739 else
740 clock.p2 = limit->p2.p2_fast;
741 }
742
743 memset(best_clock, 0, sizeof(*best_clock));
744 max_n = limit->n.max;
f77f13e2 745 /* based on hardware requirement, prefer smaller n to precision */
d4906093 746 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 747 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
748 for (clock.m1 = limit->m1.max;
749 clock.m1 >= limit->m1.min; clock.m1--) {
750 for (clock.m2 = limit->m2.max;
751 clock.m2 >= limit->m2.min; clock.m2--) {
752 for (clock.p1 = limit->p1.max;
753 clock.p1 >= limit->p1.min; clock.p1--) {
754 int this_err;
755
ac58c3f0 756 i9xx_clock(refclk, &clock);
1b894b59
CW
757 if (!intel_PLL_is_valid(dev, limit,
758 &clock))
d4906093 759 continue;
1b894b59
CW
760
761 this_err = abs(clock.dot - target);
d4906093
ML
762 if (this_err < err_most) {
763 *best_clock = clock;
764 err_most = this_err;
765 max_n = clock.n;
766 found = true;
767 }
768 }
769 }
770 }
771 }
2c07245f
ZW
772 return found;
773}
774
a0c4da24 775static bool
a919ff14 776vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
a0c4da24 779{
a919ff14 780 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 781 intel_clock_t clock;
69e4f900 782 unsigned int bestppm = 1000000;
27e639bf
VS
783 /* min update 19.2 MHz */
784 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 785 bool found = false;
a0c4da24 786
6b4bf1c4
VS
787 target *= 5; /* fast clock */
788
789 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
790
791 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 793 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 794 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 795 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 796 clock.p = clock.p1 * clock.p2;
a0c4da24 797 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 798 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
799 unsigned int ppm, diff;
800
6b4bf1c4
VS
801 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802 refclk * clock.m1);
803
804 vlv_clock(refclk, &clock);
43b0ac53 805
f01b7962
VS
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
43b0ac53
VS
808 continue;
809
6b4bf1c4
VS
810 diff = abs(clock.dot - target);
811 ppm = div_u64(1000000ULL * diff, target);
812
813 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 814 bestppm = 0;
6b4bf1c4 815 *best_clock = clock;
49e497ef 816 found = true;
43b0ac53 817 }
6b4bf1c4 818
c686122c 819 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 820 bestppm = ppm;
6b4bf1c4 821 *best_clock = clock;
49e497ef 822 found = true;
a0c4da24
JB
823 }
824 }
825 }
826 }
827 }
a0c4da24 828
49e497ef 829 return found;
a0c4da24 830}
a4fc5ed6 831
ef9348c8 832static bool
a919ff14 833chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
834 int target, int refclk, intel_clock_t *match_clock,
835 intel_clock_t *best_clock)
836{
a919ff14 837 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
838 intel_clock_t clock;
839 uint64_t m2;
840 int found = false;
841
842 memset(best_clock, 0, sizeof(*best_clock));
843
844 /*
845 * Based on hardware doc, the n always set to 1, and m1 always
846 * set to 2. If requires to support 200Mhz refclk, we need to
847 * revisit this because n may not 1 anymore.
848 */
849 clock.n = 1, clock.m1 = 2;
850 target *= 5; /* fast clock */
851
852 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853 for (clock.p2 = limit->p2.p2_fast;
854 clock.p2 >= limit->p2.p2_slow;
855 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857 clock.p = clock.p1 * clock.p2;
858
859 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860 clock.n) << 22, refclk * clock.m1);
861
862 if (m2 > INT_MAX/clock.m1)
863 continue;
864
865 clock.m2 = m2;
866
867 chv_clock(refclk, &clock);
868
869 if (!intel_PLL_is_valid(dev, limit, &clock))
870 continue;
871
872 /* based on hardware requirement, prefer bigger p
873 */
874 if (clock.p > best_clock->p) {
875 *best_clock = clock;
876 found = true;
877 }
878 }
879 }
880
881 return found;
882}
883
20ddf665
VS
884bool intel_crtc_active(struct drm_crtc *crtc)
885{
886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888 /* Be paranoid as we can arrive here with only partial
889 * state retrieved from the hardware during setup.
890 *
241bfc38 891 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
892 * as Haswell has gained clock readout/fastboot support.
893 *
66e514c1 894 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
895 * properly reconstruct framebuffers.
896 */
f4510a27 897 return intel_crtc->active && crtc->primary->fb &&
241bfc38 898 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
899}
900
a5c961d1
PZ
901enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902 enum pipe pipe)
903{
904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
3b117c8f 907 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
908}
909
fbf49ea2
VS
910static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911{
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 u32 reg = PIPEDSL(pipe);
914 u32 line1, line2;
915 u32 line_mask;
916
917 if (IS_GEN2(dev))
918 line_mask = DSL_LINEMASK_GEN2;
919 else
920 line_mask = DSL_LINEMASK_GEN3;
921
922 line1 = I915_READ(reg) & line_mask;
923 mdelay(5);
924 line2 = I915_READ(reg) & line_mask;
925
926 return line1 == line2;
927}
928
ab7ad7f6
KP
929/*
930 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 931 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
932 *
933 * After disabling a pipe, we can't wait for vblank in the usual way,
934 * spinning on the vblank interrupt status bit, since we won't actually
935 * see an interrupt when the pipe is disabled.
936 *
ab7ad7f6
KP
937 * On Gen4 and above:
938 * wait for the pipe register state bit to turn off
939 *
940 * Otherwise:
941 * wait for the display line value to settle (it usually
942 * ends up stopping at the start of the next frame).
58e10eb9 943 *
9d0498a2 944 */
575f7ab7 945static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 946{
575f7ab7 947 struct drm_device *dev = crtc->base.dev;
9d0498a2 948 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
949 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
951
952 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 953 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
954
955 /* Wait for the Pipe State to go off */
58e10eb9
CW
956 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957 100))
284637d9 958 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 959 } else {
ab7ad7f6 960 /* Wait for the display line to settle */
fbf49ea2 961 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 962 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 963 }
79e53945
JB
964}
965
b0ea7d37
DL
966/*
967 * ibx_digital_port_connected - is the specified port connected?
968 * @dev_priv: i915 private structure
969 * @port: the port to test
970 *
971 * Returns true if @port is connected, false otherwise.
972 */
973bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974 struct intel_digital_port *port)
975{
976 u32 bit;
977
c36346e3 978 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 979 switch (port->port) {
c36346e3
DL
980 case PORT_B:
981 bit = SDE_PORTB_HOTPLUG;
982 break;
983 case PORT_C:
984 bit = SDE_PORTC_HOTPLUG;
985 break;
986 case PORT_D:
987 bit = SDE_PORTD_HOTPLUG;
988 break;
989 default:
990 return true;
991 }
992 } else {
eba905b2 993 switch (port->port) {
c36346e3
DL
994 case PORT_B:
995 bit = SDE_PORTB_HOTPLUG_CPT;
996 break;
997 case PORT_C:
998 bit = SDE_PORTC_HOTPLUG_CPT;
999 break;
1000 case PORT_D:
1001 bit = SDE_PORTD_HOTPLUG_CPT;
1002 break;
1003 default:
1004 return true;
1005 }
b0ea7d37
DL
1006 }
1007
1008 return I915_READ(SDEISR) & bit;
1009}
1010
b24e7179
JB
1011static const char *state_string(bool enabled)
1012{
1013 return enabled ? "on" : "off";
1014}
1015
1016/* Only for pre-ILK configs */
55607e8a
DV
1017void assert_pll(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, bool state)
b24e7179
JB
1019{
1020 int reg;
1021 u32 val;
1022 bool cur_state;
1023
1024 reg = DPLL(pipe);
1025 val = I915_READ(reg);
1026 cur_state = !!(val & DPLL_VCO_ENABLE);
1027 WARN(cur_state != state,
1028 "PLL state assertion failure (expected %s, current %s)\n",
1029 state_string(state), state_string(cur_state));
1030}
b24e7179 1031
23538ef1
JN
1032/* XXX: the dsi pll is shared between MIPI DSI ports */
1033static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034{
1035 u32 val;
1036 bool cur_state;
1037
1038 mutex_lock(&dev_priv->dpio_lock);
1039 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040 mutex_unlock(&dev_priv->dpio_lock);
1041
1042 cur_state = val & DSI_PLL_VCO_EN;
1043 WARN(cur_state != state,
1044 "DSI PLL state assertion failure (expected %s, current %s)\n",
1045 state_string(state), state_string(cur_state));
1046}
1047#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
55607e8a 1050struct intel_shared_dpll *
e2b78267
DV
1051intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052{
1053 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
a43f6e0f 1055 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1056 return NULL;
1057
a43f6e0f 1058 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1059}
1060
040484af 1061/* For ILK+ */
55607e8a
DV
1062void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063 struct intel_shared_dpll *pll,
1064 bool state)
040484af 1065{
040484af 1066 bool cur_state;
5358901f 1067 struct intel_dpll_hw_state hw_state;
040484af 1068
92b27b08 1069 if (WARN (!pll,
46edb027 1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1071 return;
ee7b9f93 1072
5358901f 1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1074 WARN(cur_state != state,
5358901f
DV
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
040484af 1077}
040484af
JB
1078
1079static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081{
1082 int reg;
1083 u32 val;
1084 bool cur_state;
ad80a810
PZ
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
040484af 1087
affa9354
PZ
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
ad80a810 1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1091 val = I915_READ(reg);
ad80a810 1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
040484af
JB
1098 WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101}
1102#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107{
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
d63fa0dc
PZ
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1115 WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118}
1119#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124{
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
3d13ef2e 1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1130 return;
1131
bf507ef7 1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1133 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1134 return;
1135
040484af
JB
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139}
1140
55607e8a
DV
1141void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
040484af
JB
1143{
1144 int reg;
1145 u32 val;
55607e8a 1146 bool cur_state;
040484af
JB
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
55607e8a
DV
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
040484af
JB
1154}
1155
b680c37a
DV
1156void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
ea0760cf 1158{
bedd4dba
JN
1159 struct drm_device *dev = dev_priv->dev;
1160 int pp_reg;
ea0760cf
JB
1161 u32 val;
1162 enum pipe panel_pipe = PIPE_A;
0de3b485 1163 bool locked = true;
ea0760cf 1164
bedd4dba
JN
1165 if (WARN_ON(HAS_DDI(dev)))
1166 return;
1167
1168 if (HAS_PCH_SPLIT(dev)) {
1169 u32 port_sel;
1170
ea0760cf 1171 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1172 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176 panel_pipe = PIPE_B;
1177 /* XXX: else fix for eDP */
1178 } else if (IS_VALLEYVIEW(dev)) {
1179 /* presumably write lock depends on pipe, not port select */
1180 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181 panel_pipe = pipe;
ea0760cf
JB
1182 } else {
1183 pp_reg = PP_CONTROL;
bedd4dba
JN
1184 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185 panel_pipe = PIPE_B;
ea0760cf
JB
1186 }
1187
1188 val = I915_READ(pp_reg);
1189 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1190 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1191 locked = false;
1192
ea0760cf
JB
1193 WARN(panel_pipe == pipe && locked,
1194 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1195 pipe_name(pipe));
ea0760cf
JB
1196}
1197
93ce0ba6
JN
1198static void assert_cursor(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200{
1201 struct drm_device *dev = dev_priv->dev;
1202 bool cur_state;
1203
d9d82081 1204 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1205 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1206 else
5efb3e28 1207 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1208
1209 WARN(cur_state != state,
1210 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211 pipe_name(pipe), state_string(state), state_string(cur_state));
1212}
1213#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
b840d907
JB
1216void assert_pipe(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
b24e7179
JB
1218{
1219 int reg;
1220 u32 val;
63d7bbe9 1221 bool cur_state;
702e7a56
PZ
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
b24e7179 1224
b6b5d049
VS
1225 /* if we need the pipe quirk it must be always on */
1226 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1228 state = true;
1229
f458ebbc 1230 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1231 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
63d7bbe9
JB
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1241 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1242}
1243
931872fc
CW
1244static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
b24e7179
JB
1246{
1247 int reg;
1248 u32 val;
931872fc 1249 bool cur_state;
b24e7179
JB
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
931872fc
CW
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1257}
1258
931872fc
CW
1259#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
b24e7179
JB
1262static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264{
653e1026 1265 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1266 int reg, i;
1267 u32 val;
1268 int cur_pipe;
1269
653e1026
VS
1270 /* Primary planes are fixed to pipes on gen4+ */
1271 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1272 reg = DSPCNTR(pipe);
1273 val = I915_READ(reg);
83f26f16 1274 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1275 "plane %c assertion failure, should be disabled but not\n",
1276 plane_name(pipe));
19ec1358 1277 return;
28c05794 1278 }
19ec1358 1279
b24e7179 1280 /* Need to check both planes against the pipe */
055e393f 1281 for_each_pipe(dev_priv, i) {
b24e7179
JB
1282 reg = DSPCNTR(i);
1283 val = I915_READ(reg);
1284 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285 DISPPLANE_SEL_PIPE_SHIFT;
1286 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1287 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288 plane_name(i), pipe_name(pipe));
b24e7179
JB
1289 }
1290}
1291
19332d7a
JB
1292static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294{
20674eef 1295 struct drm_device *dev = dev_priv->dev;
1fe47785 1296 int reg, sprite;
19332d7a
JB
1297 u32 val;
1298
7feb8b88
DL
1299 if (INTEL_INFO(dev)->gen >= 9) {
1300 for_each_sprite(pipe, sprite) {
1301 val = I915_READ(PLANE_CTL(pipe, sprite));
1302 WARN(val & PLANE_CTL_ENABLE,
1303 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304 sprite, pipe_name(pipe));
1305 }
1306 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1307 for_each_sprite(pipe, sprite) {
1308 reg = SPCNTR(pipe, sprite);
20674eef 1309 val = I915_READ(reg);
83f26f16 1310 WARN(val & SP_ENABLE,
20674eef 1311 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1312 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1313 }
1314 } else if (INTEL_INFO(dev)->gen >= 7) {
1315 reg = SPRCTL(pipe);
19332d7a 1316 val = I915_READ(reg);
83f26f16 1317 WARN(val & SPRITE_ENABLE,
06da8da2 1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1319 plane_name(pipe), pipe_name(pipe));
1320 } else if (INTEL_INFO(dev)->gen >= 5) {
1321 reg = DVSCNTR(pipe);
19332d7a 1322 val = I915_READ(reg);
83f26f16 1323 WARN(val & DVS_ENABLE,
06da8da2 1324 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1325 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1326 }
1327}
1328
08c71e5e
VS
1329static void assert_vblank_disabled(struct drm_crtc *crtc)
1330{
1331 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332 drm_crtc_vblank_put(crtc);
1333}
1334
89eff4be 1335static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1336{
1337 u32 val;
1338 bool enabled;
1339
89eff4be 1340 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1341
92f2584a
JB
1342 val = I915_READ(PCH_DREF_CONTROL);
1343 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344 DREF_SUPERSPREAD_SOURCE_MASK));
1345 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346}
1347
ab9412ba
DV
1348static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349 enum pipe pipe)
92f2584a
JB
1350{
1351 int reg;
1352 u32 val;
1353 bool enabled;
1354
ab9412ba 1355 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1356 val = I915_READ(reg);
1357 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1358 WARN(enabled,
1359 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360 pipe_name(pipe));
92f2584a
JB
1361}
1362
4e634389
KP
1363static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1365{
1366 if ((val & DP_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373 return false;
44f37d1f
CML
1374 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376 return false;
f0575e92
KP
1377 } else {
1378 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379 return false;
1380 }
1381 return true;
1382}
1383
1519b995
KP
1384static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, u32 val)
1386{
dc0fa718 1387 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1388 return false;
1389
1390 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1391 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1392 return false;
44f37d1f
CML
1393 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395 return false;
1519b995 1396 } else {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1398 return false;
1399 }
1400 return true;
1401}
1402
1403static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, u32 val)
1405{
1406 if ((val & LVDS_PORT_EN) == 0)
1407 return false;
1408
1409 if (HAS_PCH_CPT(dev_priv->dev)) {
1410 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411 return false;
1412 } else {
1413 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414 return false;
1415 }
1416 return true;
1417}
1418
1419static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, u32 val)
1421{
1422 if ((val & ADPA_DAC_ENABLE) == 0)
1423 return false;
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429 return false;
1430 }
1431 return true;
1432}
1433
291906f1 1434static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1435 enum pipe pipe, int reg, u32 port_sel)
291906f1 1436{
47a05eca 1437 u32 val = I915_READ(reg);
4e634389 1438 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1439 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1440 reg, pipe_name(pipe));
de9a35ab 1441
75c5da27
DV
1442 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443 && (val & DP_PIPEB_SELECT),
de9a35ab 1444 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1445}
1446
1447static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448 enum pipe pipe, int reg)
1449{
47a05eca 1450 u32 val = I915_READ(reg);
b70ad586 1451 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1452 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1453 reg, pipe_name(pipe));
de9a35ab 1454
dc0fa718 1455 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1456 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1457 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1458}
1459
1460static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe)
1462{
1463 int reg;
1464 u32 val;
291906f1 1465
f0575e92
KP
1466 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1469
1470 reg = PCH_ADPA;
1471 val = I915_READ(reg);
b70ad586 1472 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1473 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1474 pipe_name(pipe));
291906f1
JB
1475
1476 reg = PCH_LVDS;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1 1481
e2debe91
PZ
1482 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1485}
1486
40e9cf64
JB
1487static void intel_init_dpio(struct drm_device *dev)
1488{
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491 if (!IS_VALLEYVIEW(dev))
1492 return;
1493
a09caddd
CML
1494 /*
1495 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496 * CHV x1 PHY (DP/HDMI D)
1497 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498 */
1499 if (IS_CHERRYVIEW(dev)) {
1500 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502 } else {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504 }
5382f5f3
JB
1505}
1506
d288f65f
VS
1507static void vlv_enable_pll(struct intel_crtc *crtc,
1508 const struct intel_crtc_config *pipe_config)
87442f73 1509{
426115cf
DV
1510 struct drm_device *dev = crtc->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 int reg = DPLL(crtc->pipe);
d288f65f 1513 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1514
426115cf 1515 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1516
1517 /* No really, not for ILK+ */
1518 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1521 if (IS_MOBILE(dev_priv->dev))
426115cf 1522 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1523
426115cf
DV
1524 I915_WRITE(reg, dpll);
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
d288f65f 1531 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1532 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1533
1534 /* We do this three times for luck */
426115cf 1535 I915_WRITE(reg, dpll);
87442f73
DV
1536 POSTING_READ(reg);
1537 udelay(150); /* wait for warmup */
426115cf 1538 I915_WRITE(reg, dpll);
87442f73
DV
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
426115cf 1541 I915_WRITE(reg, dpll);
87442f73
DV
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544}
1545
d288f65f
VS
1546static void chv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_config *pipe_config)
9d556c99
CML
1548{
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int pipe = crtc->pipe;
1552 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1553 u32 tmp;
1554
1555 assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559 mutex_lock(&dev_priv->dpio_lock);
1560
1561 /* Enable back the 10bit clock to display controller */
1562 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563 tmp |= DPIO_DCLKP_EN;
1564 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566 /*
1567 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568 */
1569 udelay(1);
1570
1571 /* Enable PLL */
d288f65f 1572 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1573
1574 /* Check PLL is locked */
a11b0703 1575 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1576 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
a11b0703 1578 /* not sure when this should be written */
d288f65f 1579 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1580 POSTING_READ(DPLL_MD(pipe));
1581
9d556c99
CML
1582 mutex_unlock(&dev_priv->dpio_lock);
1583}
1584
1c4e0274
VS
1585static int intel_num_dvo_pipes(struct drm_device *dev)
1586{
1587 struct intel_crtc *crtc;
1588 int count = 0;
1589
1590 for_each_intel_crtc(dev, crtc)
1591 count += crtc->active &&
409ee761 1592 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1593
1594 return count;
1595}
1596
66e3d5c0 1597static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1598{
66e3d5c0
DV
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int reg = DPLL(crtc->pipe);
1602 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1603
66e3d5c0 1604 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1605
63d7bbe9 1606 /* No really, not for ILK+ */
3d13ef2e 1607 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1608
1609 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1610 if (IS_MOBILE(dev) && !IS_I830(dev))
1611 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1612
1c4e0274
VS
1613 /* Enable DVO 2x clock on both PLLs if necessary */
1614 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615 /*
1616 * It appears to be important that we don't enable this
1617 * for the current pipe before otherwise configuring the
1618 * PLL. No idea how this should be handled if multiple
1619 * DVO outputs are enabled simultaneosly.
1620 */
1621 dpll |= DPLL_DVO_2X_MODE;
1622 I915_WRITE(DPLL(!crtc->pipe),
1623 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624 }
66e3d5c0
DV
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
63d7bbe9
JB
1641
1642 /* We do this three times for luck */
66e3d5c0 1643 I915_WRITE(reg, dpll);
63d7bbe9
JB
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652}
1653
1654/**
50b44a44 1655 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1c4e0274 1663static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1664{
1c4e0274
VS
1665 struct drm_device *dev = crtc->base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 enum pipe pipe = crtc->pipe;
1668
1669 /* Disable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) &&
409ee761 1671 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1672 intel_num_dvo_pipes(dev) == 1) {
1673 I915_WRITE(DPLL(PIPE_B),
1674 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675 I915_WRITE(DPLL(PIPE_A),
1676 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677 }
1678
b6b5d049
VS
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
50b44a44
DV
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1689}
1690
f6071166
JB
1691static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692{
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
e5cbfbfb
ID
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
f6071166 1702 if (pipe == PIPE_B)
e5cbfbfb 1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1706
1707}
1708
1709static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710{
d752048d 1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1712 u32 val;
1713
a11b0703
VS
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1716
a11b0703 1717 /* Set PLL en = 0 */
d17ec4ce 1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
d752048d
VS
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
61407f6d
VS
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
d752048d 1742 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1743}
1744
e4607fcf
CML
1745void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
89b667f8
JB
1747{
1748 u32 port_mask;
00fc31b7 1749 int dpll_reg;
89b667f8 1750
e4607fcf
CML
1751 switch (dport->port) {
1752 case PORT_B:
89b667f8 1753 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1754 dpll_reg = DPLL(0);
e4607fcf
CML
1755 break;
1756 case PORT_C:
89b667f8 1757 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1763 break;
1764 default:
1765 BUG();
1766 }
89b667f8 1767
00fc31b7 1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1770 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1771}
1772
b14b1055
DV
1773static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774{
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
be19f0ff
CW
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
3e369b76 1782 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790}
1791
92f2584a 1792/**
85b3894f 1793 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
85b3894f 1800static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1801{
3d13ef2e
DL
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1805
87a875bb 1806 if (WARN_ON(pll == NULL))
48da64a8
CW
1807 return;
1808
3e369b76 1809 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1810 return;
ee7b9f93 1811
74dd6928 1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1813 pll->name, pll->active, pll->on,
e2b78267 1814 crtc->base.base.id);
92f2584a 1815
cdbd2316
DV
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
e9d6944e 1818 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1819 return;
1820 }
f4a091c7 1821 WARN_ON(pll->on);
ee7b9f93 1822
bd2bb1b9
PZ
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
46edb027 1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1826 pll->enable(dev_priv, pll);
ee7b9f93 1827 pll->on = true;
92f2584a
JB
1828}
1829
f6daaec2 1830static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1831{
3d13ef2e
DL
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1835
92f2584a 1836 /* PCH only available on ILK+ */
3d13ef2e 1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1838 if (WARN_ON(pll == NULL))
ee7b9f93 1839 return;
92f2584a 1840
3e369b76 1841 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1842 return;
7a419866 1843
46edb027
DV
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
e2b78267 1846 crtc->base.base.id);
7a419866 1847
48da64a8 1848 if (WARN_ON(pll->active == 0)) {
e9d6944e 1849 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1850 return;
1851 }
1852
e9d6944e 1853 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1854 WARN_ON(!pll->on);
cdbd2316 1855 if (--pll->active)
7a419866 1856 return;
ee7b9f93 1857
46edb027 1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1859 pll->disable(dev_priv, pll);
ee7b9f93 1860 pll->on = false;
bd2bb1b9
PZ
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1863}
1864
b8a4f404
PZ
1865static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
040484af 1867{
23670b32 1868 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1871 uint32_t reg, val, pipeconf_val;
040484af
JB
1872
1873 /* PCH only available on ILK+ */
55522f37 1874 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1875
1876 /* Make sure PCH DPLL is enabled */
e72f9fbf 1877 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1878 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
23670b32
DV
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
59c859d6 1891 }
23670b32 1892
ab9412ba 1893 reg = PCH_TRANSCONF(pipe);
040484af 1894 val = I915_READ(reg);
5f7f726d 1895 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
dfd07d72
DV
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1904 }
5f7f726d
PZ
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1908 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1909 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
5f7f726d
PZ
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
040484af
JB
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1919}
1920
8fb033d7 1921static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1922 enum transcoder cpu_transcoder)
040484af 1923{
8fb033d7 1924 u32 val, pipeconf_val;
8fb033d7
PZ
1925
1926 /* PCH only available on ILK+ */
55522f37 1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1928
8fb033d7 1929 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1932
223a6fdf
PZ
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
25f3ef11 1938 val = TRANS_ENABLE;
937bb610 1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1940
9a76b1c6
PZ
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
a35f2679 1943 val |= TRANS_INTERLACED;
8fb033d7
PZ
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
ab9412ba
DV
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1949 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1950}
1951
b8a4f404
PZ
1952static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
040484af 1954{
23670b32
DV
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
040484af
JB
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
291906f1
JB
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
ab9412ba 1965 reg = PCH_TRANSCONF(pipe);
040484af
JB
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
040484af
JB
1980}
1981
ab4d966c 1982static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1983{
8fb033d7
PZ
1984 u32 val;
1985
ab9412ba 1986 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1987 val &= ~TRANS_ENABLE;
ab9412ba 1988 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1989 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1991 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1996 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1997}
1998
b24e7179 1999/**
309cfea8 2000 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2001 * @crtc: crtc responsible for the pipe
b24e7179 2002 *
0372264a 2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2005 */
e1fdc473 2006static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2007{
0372264a
PZ
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
1a240d4d 2013 enum pipe pch_transcoder;
b24e7179
JB
2014 int reg;
2015 u32 val;
2016
58c6eaa2 2017 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2018 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2019 assert_sprites_disabled(dev_priv, pipe);
2020
681e5811 2021 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
b24e7179
JB
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
040484af 2036 else {
30421c4f 2037 if (crtc->config.has_pch_encoder) {
040484af 2038 /* if driving the PCH, we need FDI enabled */
cc391bbb 2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
040484af
JB
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
b24e7179 2045
702e7a56 2046 reg = PIPECONF(cpu_transcoder);
b24e7179 2047 val = I915_READ(reg);
7ad25d48 2048 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2051 return;
7ad25d48 2052 }
00d70b15
CW
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2055 POSTING_READ(reg);
b24e7179
JB
2056}
2057
2058/**
309cfea8 2059 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2060 * @crtc: crtc whose pipes is to be disabled
b24e7179 2061 *
575f7ab7
VS
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
b24e7179
JB
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
575f7ab7 2068static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2069{
575f7ab7
VS
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
b24e7179
JB
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2081 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2082 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2083
702e7a56 2084 reg = PIPECONF(cpu_transcoder);
b24e7179 2085 val = I915_READ(reg);
00d70b15
CW
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
67adc644
VS
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2104}
2105
d74362c9
KP
2106/*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
1dba99f4
VS
2110void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
d74362c9 2112{
3d13ef2e
DL
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
d74362c9
KP
2118}
2119
b24e7179 2120/**
262ca2b0 2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
b24e7179 2124 *
fdd508a6 2125 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2126 */
fdd508a6
VS
2127static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
b24e7179 2129{
fdd508a6
VS
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2136
98ec7739
VS
2137 if (intel_crtc->primary_enabled)
2138 return;
0037f71c 2139
4c445e0e 2140 intel_crtc->primary_enabled = true;
939c2fe8 2141
fdd508a6
VS
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
33c3b0d1
VS
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2152}
2153
b24e7179 2154/**
262ca2b0 2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
b24e7179 2158 *
fdd508a6 2159 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2160 */
fdd508a6
VS
2161static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
b24e7179 2163{
fdd508a6
VS
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2169
98ec7739
VS
2170 if (!intel_crtc->primary_enabled)
2171 return;
0037f71c 2172
4c445e0e 2173 intel_crtc->primary_enabled = false;
939c2fe8 2174
fdd508a6
VS
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
b24e7179
JB
2177}
2178
693db184
CW
2179static bool need_vtd_wa(struct drm_device *dev)
2180{
2181#ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184#endif
2185 return false;
2186}
2187
a57ce0b2
JB
2188static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189{
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194}
2195
127bd2ac 2196int
48b956c5 2197intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2198 struct drm_i915_gem_object *obj,
a4872ba6 2199 struct intel_engine_cs *pipelined)
6b95a207 2200{
ce453d81 2201 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2202 u32 alignment;
2203 int ret;
2204
ebcdd39e
MR
2205 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2206
05394f39 2207 switch (obj->tiling_mode) {
6b95a207 2208 case I915_TILING_NONE:
1fada4cc
DL
2209 if (INTEL_INFO(dev)->gen >= 9)
2210 alignment = 256 * 1024;
2211 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2212 alignment = 128 * 1024;
a6c45cf0 2213 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2214 alignment = 4 * 1024;
2215 else
2216 alignment = 64 * 1024;
6b95a207
KH
2217 break;
2218 case I915_TILING_X:
1fada4cc
DL
2219 if (INTEL_INFO(dev)->gen >= 9)
2220 alignment = 256 * 1024;
2221 else {
2222 /* pin() will align the object as required by fence */
2223 alignment = 0;
2224 }
6b95a207
KH
2225 break;
2226 case I915_TILING_Y:
80075d49 2227 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2228 return -EINVAL;
2229 default:
2230 BUG();
2231 }
2232
693db184
CW
2233 /* Note that the w/a also requires 64 PTE of padding following the
2234 * bo. We currently fill all unused PTE with the shadow page and so
2235 * we should always have valid PTE following the scanout preventing
2236 * the VT-d warning.
2237 */
2238 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2239 alignment = 256 * 1024;
2240
d6dd6843
PZ
2241 /*
2242 * Global gtt pte registers are special registers which actually forward
2243 * writes to a chunk of system memory. Which means that there is no risk
2244 * that the register values disappear as soon as we call
2245 * intel_runtime_pm_put(), so it is correct to wrap only the
2246 * pin/unpin/fence and not more.
2247 */
2248 intel_runtime_pm_get(dev_priv);
2249
ce453d81 2250 dev_priv->mm.interruptible = false;
2da3b9b9 2251 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2252 if (ret)
ce453d81 2253 goto err_interruptible;
6b95a207
KH
2254
2255 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256 * fence, whereas 965+ only requires a fence if using
2257 * framebuffer compression. For simplicity, we always install
2258 * a fence as the cost is not that onerous.
2259 */
06d98131 2260 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2261 if (ret)
2262 goto err_unpin;
1690e1eb 2263
9a5a53b3 2264 i915_gem_object_pin_fence(obj);
6b95a207 2265
ce453d81 2266 dev_priv->mm.interruptible = true;
d6dd6843 2267 intel_runtime_pm_put(dev_priv);
6b95a207 2268 return 0;
48b956c5
CW
2269
2270err_unpin:
cc98b413 2271 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2272err_interruptible:
2273 dev_priv->mm.interruptible = true;
d6dd6843 2274 intel_runtime_pm_put(dev_priv);
48b956c5 2275 return ret;
6b95a207
KH
2276}
2277
1690e1eb
CW
2278void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2279{
ebcdd39e
MR
2280 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2281
1690e1eb 2282 i915_gem_object_unpin_fence(obj);
cc98b413 2283 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2284}
2285
c2c75131
DV
2286/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2287 * is assumed to be a power-of-two. */
bc752862
CW
2288unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2289 unsigned int tiling_mode,
2290 unsigned int cpp,
2291 unsigned int pitch)
c2c75131 2292{
bc752862
CW
2293 if (tiling_mode != I915_TILING_NONE) {
2294 unsigned int tile_rows, tiles;
c2c75131 2295
bc752862
CW
2296 tile_rows = *y / 8;
2297 *y %= 8;
c2c75131 2298
bc752862
CW
2299 tiles = *x / (512/cpp);
2300 *x %= 512/cpp;
2301
2302 return tile_rows * pitch * 8 + tiles * 4096;
2303 } else {
2304 unsigned int offset;
2305
2306 offset = *y * pitch + *x * cpp;
2307 *y = 0;
2308 *x = (offset & 4095) / cpp;
2309 return offset & -4096;
2310 }
c2c75131
DV
2311}
2312
46f297fb
JB
2313int intel_format_to_fourcc(int format)
2314{
2315 switch (format) {
2316 case DISPPLANE_8BPP:
2317 return DRM_FORMAT_C8;
2318 case DISPPLANE_BGRX555:
2319 return DRM_FORMAT_XRGB1555;
2320 case DISPPLANE_BGRX565:
2321 return DRM_FORMAT_RGB565;
2322 default:
2323 case DISPPLANE_BGRX888:
2324 return DRM_FORMAT_XRGB8888;
2325 case DISPPLANE_RGBX888:
2326 return DRM_FORMAT_XBGR8888;
2327 case DISPPLANE_BGRX101010:
2328 return DRM_FORMAT_XRGB2101010;
2329 case DISPPLANE_RGBX101010:
2330 return DRM_FORMAT_XBGR2101010;
2331 }
2332}
2333
484b41dd 2334static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2335 struct intel_plane_config *plane_config)
2336{
2337 struct drm_device *dev = crtc->base.dev;
2338 struct drm_i915_gem_object *obj = NULL;
2339 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2340 u32 base = plane_config->base;
2341
ff2652ea
CW
2342 if (plane_config->size == 0)
2343 return false;
2344
46f297fb
JB
2345 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2346 plane_config->size);
2347 if (!obj)
484b41dd 2348 return false;
46f297fb
JB
2349
2350 if (plane_config->tiled) {
2351 obj->tiling_mode = I915_TILING_X;
66e514c1 2352 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2353 }
2354
66e514c1
DA
2355 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2356 mode_cmd.width = crtc->base.primary->fb->width;
2357 mode_cmd.height = crtc->base.primary->fb->height;
2358 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2359
2360 mutex_lock(&dev->struct_mutex);
2361
66e514c1 2362 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2363 &mode_cmd, obj)) {
46f297fb
JB
2364 DRM_DEBUG_KMS("intel fb init failed\n");
2365 goto out_unref_obj;
2366 }
2367
a071fa00 2368 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2369 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2370
2371 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2372 return true;
46f297fb
JB
2373
2374out_unref_obj:
2375 drm_gem_object_unreference(&obj->base);
2376 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2377 return false;
2378}
2379
2380static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2381 struct intel_plane_config *plane_config)
2382{
2383 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2384 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2385 struct drm_crtc *c;
2386 struct intel_crtc *i;
2ff8fde1 2387 struct drm_i915_gem_object *obj;
484b41dd 2388
66e514c1 2389 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2390 return;
2391
2392 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2393 return;
2394
66e514c1
DA
2395 kfree(intel_crtc->base.primary->fb);
2396 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2397
2398 /*
2399 * Failed to alloc the obj, check to see if we should share
2400 * an fb with another CRTC instead
2401 */
70e1e0ec 2402 for_each_crtc(dev, c) {
484b41dd
JB
2403 i = to_intel_crtc(c);
2404
2405 if (c == &intel_crtc->base)
2406 continue;
2407
2ff8fde1
MR
2408 if (!i->active)
2409 continue;
2410
2411 obj = intel_fb_obj(c->primary->fb);
2412 if (obj == NULL)
484b41dd
JB
2413 continue;
2414
2ff8fde1 2415 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2416 if (obj->tiling_mode != I915_TILING_NONE)
2417 dev_priv->preserve_bios_swizzle = true;
2418
66e514c1
DA
2419 drm_framebuffer_reference(c->primary->fb);
2420 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2421 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2422 break;
2423 }
2424 }
46f297fb
JB
2425}
2426
29b9bde6
DV
2427static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2428 struct drm_framebuffer *fb,
2429 int x, int y)
81255565
JB
2430{
2431 struct drm_device *dev = crtc->dev;
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2434 struct drm_i915_gem_object *obj;
81255565 2435 int plane = intel_crtc->plane;
e506a0c6 2436 unsigned long linear_offset;
81255565 2437 u32 dspcntr;
f45651ba 2438 u32 reg = DSPCNTR(plane);
48404c1e 2439 int pixel_size;
f45651ba 2440
fdd508a6
VS
2441 if (!intel_crtc->primary_enabled) {
2442 I915_WRITE(reg, 0);
2443 if (INTEL_INFO(dev)->gen >= 4)
2444 I915_WRITE(DSPSURF(plane), 0);
2445 else
2446 I915_WRITE(DSPADDR(plane), 0);
2447 POSTING_READ(reg);
2448 return;
2449 }
2450
c9ba6fad
VS
2451 obj = intel_fb_obj(fb);
2452 if (WARN_ON(obj == NULL))
2453 return;
2454
2455 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2456
f45651ba
VS
2457 dspcntr = DISPPLANE_GAMMA_ENABLE;
2458
fdd508a6 2459 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2460
2461 if (INTEL_INFO(dev)->gen < 4) {
2462 if (intel_crtc->pipe == PIPE_B)
2463 dspcntr |= DISPPLANE_SEL_PIPE_B;
2464
2465 /* pipesrc and dspsize control the size that is scaled from,
2466 * which should always be the user's requested size.
2467 */
2468 I915_WRITE(DSPSIZE(plane),
2469 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2470 (intel_crtc->config.pipe_src_w - 1));
2471 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2472 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2473 I915_WRITE(PRIMSIZE(plane),
2474 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2475 (intel_crtc->config.pipe_src_w - 1));
2476 I915_WRITE(PRIMPOS(plane), 0);
2477 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2478 }
81255565 2479
57779d06
VS
2480 switch (fb->pixel_format) {
2481 case DRM_FORMAT_C8:
81255565
JB
2482 dspcntr |= DISPPLANE_8BPP;
2483 break;
57779d06
VS
2484 case DRM_FORMAT_XRGB1555:
2485 case DRM_FORMAT_ARGB1555:
2486 dspcntr |= DISPPLANE_BGRX555;
81255565 2487 break;
57779d06
VS
2488 case DRM_FORMAT_RGB565:
2489 dspcntr |= DISPPLANE_BGRX565;
2490 break;
2491 case DRM_FORMAT_XRGB8888:
2492 case DRM_FORMAT_ARGB8888:
2493 dspcntr |= DISPPLANE_BGRX888;
2494 break;
2495 case DRM_FORMAT_XBGR8888:
2496 case DRM_FORMAT_ABGR8888:
2497 dspcntr |= DISPPLANE_RGBX888;
2498 break;
2499 case DRM_FORMAT_XRGB2101010:
2500 case DRM_FORMAT_ARGB2101010:
2501 dspcntr |= DISPPLANE_BGRX101010;
2502 break;
2503 case DRM_FORMAT_XBGR2101010:
2504 case DRM_FORMAT_ABGR2101010:
2505 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2506 break;
2507 default:
baba133a 2508 BUG();
81255565 2509 }
57779d06 2510
f45651ba
VS
2511 if (INTEL_INFO(dev)->gen >= 4 &&
2512 obj->tiling_mode != I915_TILING_NONE)
2513 dspcntr |= DISPPLANE_TILED;
81255565 2514
de1aa629
VS
2515 if (IS_G4X(dev))
2516 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2517
b9897127 2518 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2519
c2c75131
DV
2520 if (INTEL_INFO(dev)->gen >= 4) {
2521 intel_crtc->dspaddr_offset =
bc752862 2522 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2523 pixel_size,
bc752862 2524 fb->pitches[0]);
c2c75131
DV
2525 linear_offset -= intel_crtc->dspaddr_offset;
2526 } else {
e506a0c6 2527 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2528 }
e506a0c6 2529
48404c1e
SJ
2530 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2531 dspcntr |= DISPPLANE_ROTATE_180;
2532
2533 x += (intel_crtc->config.pipe_src_w - 1);
2534 y += (intel_crtc->config.pipe_src_h - 1);
2535
2536 /* Finding the last pixel of the last line of the display
2537 data and adding to linear_offset*/
2538 linear_offset +=
2539 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2540 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2541 }
2542
2543 I915_WRITE(reg, dspcntr);
2544
f343c5f6
BW
2545 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2546 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2547 fb->pitches[0]);
01f2c773 2548 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2549 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2550 I915_WRITE(DSPSURF(plane),
2551 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2552 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2553 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2554 } else
f343c5f6 2555 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2556 POSTING_READ(reg);
17638cd6
JB
2557}
2558
29b9bde6
DV
2559static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2560 struct drm_framebuffer *fb,
2561 int x, int y)
17638cd6
JB
2562{
2563 struct drm_device *dev = crtc->dev;
2564 struct drm_i915_private *dev_priv = dev->dev_private;
2565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2566 struct drm_i915_gem_object *obj;
17638cd6 2567 int plane = intel_crtc->plane;
e506a0c6 2568 unsigned long linear_offset;
17638cd6 2569 u32 dspcntr;
f45651ba 2570 u32 reg = DSPCNTR(plane);
48404c1e 2571 int pixel_size;
f45651ba 2572
fdd508a6
VS
2573 if (!intel_crtc->primary_enabled) {
2574 I915_WRITE(reg, 0);
2575 I915_WRITE(DSPSURF(plane), 0);
2576 POSTING_READ(reg);
2577 return;
2578 }
2579
c9ba6fad
VS
2580 obj = intel_fb_obj(fb);
2581 if (WARN_ON(obj == NULL))
2582 return;
2583
2584 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2585
f45651ba
VS
2586 dspcntr = DISPPLANE_GAMMA_ENABLE;
2587
fdd508a6 2588 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2589
2590 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2591 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2592
57779d06
VS
2593 switch (fb->pixel_format) {
2594 case DRM_FORMAT_C8:
17638cd6
JB
2595 dspcntr |= DISPPLANE_8BPP;
2596 break;
57779d06
VS
2597 case DRM_FORMAT_RGB565:
2598 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2599 break;
57779d06
VS
2600 case DRM_FORMAT_XRGB8888:
2601 case DRM_FORMAT_ARGB8888:
2602 dspcntr |= DISPPLANE_BGRX888;
2603 break;
2604 case DRM_FORMAT_XBGR8888:
2605 case DRM_FORMAT_ABGR8888:
2606 dspcntr |= DISPPLANE_RGBX888;
2607 break;
2608 case DRM_FORMAT_XRGB2101010:
2609 case DRM_FORMAT_ARGB2101010:
2610 dspcntr |= DISPPLANE_BGRX101010;
2611 break;
2612 case DRM_FORMAT_XBGR2101010:
2613 case DRM_FORMAT_ABGR2101010:
2614 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2615 break;
2616 default:
baba133a 2617 BUG();
17638cd6
JB
2618 }
2619
2620 if (obj->tiling_mode != I915_TILING_NONE)
2621 dspcntr |= DISPPLANE_TILED;
17638cd6 2622
f45651ba 2623 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2624 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2625
b9897127 2626 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2627 intel_crtc->dspaddr_offset =
bc752862 2628 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2629 pixel_size,
bc752862 2630 fb->pitches[0]);
c2c75131 2631 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2632 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2633 dspcntr |= DISPPLANE_ROTATE_180;
2634
2635 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2636 x += (intel_crtc->config.pipe_src_w - 1);
2637 y += (intel_crtc->config.pipe_src_h - 1);
2638
2639 /* Finding the last pixel of the last line of the display
2640 data and adding to linear_offset*/
2641 linear_offset +=
2642 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2643 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2644 }
2645 }
2646
2647 I915_WRITE(reg, dspcntr);
17638cd6 2648
f343c5f6
BW
2649 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2650 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2651 fb->pitches[0]);
01f2c773 2652 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2653 I915_WRITE(DSPSURF(plane),
2654 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2655 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2656 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2657 } else {
2658 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2659 I915_WRITE(DSPLINOFF(plane), linear_offset);
2660 }
17638cd6 2661 POSTING_READ(reg);
17638cd6
JB
2662}
2663
70d21f0e
DL
2664static void skylake_update_primary_plane(struct drm_crtc *crtc,
2665 struct drm_framebuffer *fb,
2666 int x, int y)
2667{
2668 struct drm_device *dev = crtc->dev;
2669 struct drm_i915_private *dev_priv = dev->dev_private;
2670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2671 struct intel_framebuffer *intel_fb;
2672 struct drm_i915_gem_object *obj;
2673 int pipe = intel_crtc->pipe;
2674 u32 plane_ctl, stride;
2675
2676 if (!intel_crtc->primary_enabled) {
2677 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2678 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2679 POSTING_READ(PLANE_CTL(pipe, 0));
2680 return;
2681 }
2682
2683 plane_ctl = PLANE_CTL_ENABLE |
2684 PLANE_CTL_PIPE_GAMMA_ENABLE |
2685 PLANE_CTL_PIPE_CSC_ENABLE;
2686
2687 switch (fb->pixel_format) {
2688 case DRM_FORMAT_RGB565:
2689 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2690 break;
2691 case DRM_FORMAT_XRGB8888:
2692 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2693 break;
2694 case DRM_FORMAT_XBGR8888:
2695 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2696 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2697 break;
2698 case DRM_FORMAT_XRGB2101010:
2699 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2700 break;
2701 case DRM_FORMAT_XBGR2101010:
2702 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2703 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2704 break;
2705 default:
2706 BUG();
2707 }
2708
2709 intel_fb = to_intel_framebuffer(fb);
2710 obj = intel_fb->obj;
2711
2712 /*
2713 * The stride is either expressed as a multiple of 64 bytes chunks for
2714 * linear buffers or in number of tiles for tiled buffers.
2715 */
2716 switch (obj->tiling_mode) {
2717 case I915_TILING_NONE:
2718 stride = fb->pitches[0] >> 6;
2719 break;
2720 case I915_TILING_X:
2721 plane_ctl |= PLANE_CTL_TILED_X;
2722 stride = fb->pitches[0] >> 9;
2723 break;
2724 default:
2725 BUG();
2726 }
2727
2728 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
1447dde0
SJ
2729 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2730 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2731
2732 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2733
2734 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2735 i915_gem_obj_ggtt_offset(obj),
2736 x, y, fb->width, fb->height,
2737 fb->pitches[0]);
2738
2739 I915_WRITE(PLANE_POS(pipe, 0), 0);
2740 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2741 I915_WRITE(PLANE_SIZE(pipe, 0),
2742 (intel_crtc->config.pipe_src_h - 1) << 16 |
2743 (intel_crtc->config.pipe_src_w - 1));
2744 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2745 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2746
2747 POSTING_READ(PLANE_SURF(pipe, 0));
2748}
2749
17638cd6
JB
2750/* Assume fb object is pinned & idle & fenced and just update base pointers */
2751static int
2752intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2753 int x, int y, enum mode_set_atomic state)
2754{
2755 struct drm_device *dev = crtc->dev;
2756 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2757
6b8e6ed0
CW
2758 if (dev_priv->display.disable_fbc)
2759 dev_priv->display.disable_fbc(dev);
81255565 2760
29b9bde6
DV
2761 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2762
2763 return 0;
81255565
JB
2764}
2765
96a02917
VS
2766void intel_display_handle_reset(struct drm_device *dev)
2767{
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct drm_crtc *crtc;
2770
2771 /*
2772 * Flips in the rings have been nuked by the reset,
2773 * so complete all pending flips so that user space
2774 * will get its events and not get stuck.
2775 *
2776 * Also update the base address of all primary
2777 * planes to the the last fb to make sure we're
2778 * showing the correct fb after a reset.
2779 *
2780 * Need to make two loops over the crtcs so that we
2781 * don't try to grab a crtc mutex before the
2782 * pending_flip_queue really got woken up.
2783 */
2784
70e1e0ec 2785 for_each_crtc(dev, crtc) {
96a02917
VS
2786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2787 enum plane plane = intel_crtc->plane;
2788
2789 intel_prepare_page_flip(dev, plane);
2790 intel_finish_page_flip_plane(dev, plane);
2791 }
2792
70e1e0ec 2793 for_each_crtc(dev, crtc) {
96a02917
VS
2794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2795
51fd371b 2796 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2797 /*
2798 * FIXME: Once we have proper support for primary planes (and
2799 * disabling them without disabling the entire crtc) allow again
66e514c1 2800 * a NULL crtc->primary->fb.
947fdaad 2801 */
f4510a27 2802 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2803 dev_priv->display.update_primary_plane(crtc,
66e514c1 2804 crtc->primary->fb,
262ca2b0
MR
2805 crtc->x,
2806 crtc->y);
51fd371b 2807 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2808 }
2809}
2810
14667a4b
CW
2811static int
2812intel_finish_fb(struct drm_framebuffer *old_fb)
2813{
2ff8fde1 2814 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2815 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2816 bool was_interruptible = dev_priv->mm.interruptible;
2817 int ret;
2818
14667a4b
CW
2819 /* Big Hammer, we also need to ensure that any pending
2820 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2821 * current scanout is retired before unpinning the old
2822 * framebuffer.
2823 *
2824 * This should only fail upon a hung GPU, in which case we
2825 * can safely continue.
2826 */
2827 dev_priv->mm.interruptible = false;
2828 ret = i915_gem_object_finish_gpu(obj);
2829 dev_priv->mm.interruptible = was_interruptible;
2830
2831 return ret;
2832}
2833
7d5e3799
CW
2834static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2835{
2836 struct drm_device *dev = crtc->dev;
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2839 bool pending;
2840
2841 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2842 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2843 return false;
2844
5e2d7afc 2845 spin_lock_irq(&dev->event_lock);
7d5e3799 2846 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2847 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2848
2849 return pending;
2850}
2851
e30e8f75
GP
2852static void intel_update_pipe_size(struct intel_crtc *crtc)
2853{
2854 struct drm_device *dev = crtc->base.dev;
2855 struct drm_i915_private *dev_priv = dev->dev_private;
2856 const struct drm_display_mode *adjusted_mode;
2857
2858 if (!i915.fastboot)
2859 return;
2860
2861 /*
2862 * Update pipe size and adjust fitter if needed: the reason for this is
2863 * that in compute_mode_changes we check the native mode (not the pfit
2864 * mode) to see if we can flip rather than do a full mode set. In the
2865 * fastboot case, we'll flip, but if we don't update the pipesrc and
2866 * pfit state, we'll end up with a big fb scanned out into the wrong
2867 * sized surface.
2868 *
2869 * To fix this properly, we need to hoist the checks up into
2870 * compute_mode_changes (or above), check the actual pfit state and
2871 * whether the platform allows pfit disable with pipe active, and only
2872 * then update the pipesrc and pfit state, even on the flip path.
2873 */
2874
2875 adjusted_mode = &crtc->config.adjusted_mode;
2876
2877 I915_WRITE(PIPESRC(crtc->pipe),
2878 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2879 (adjusted_mode->crtc_vdisplay - 1));
2880 if (!crtc->config.pch_pfit.enabled &&
409ee761
ACO
2881 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2882 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2883 I915_WRITE(PF_CTL(crtc->pipe), 0);
2884 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2885 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2886 }
2887 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2888 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2889}
2890
5c3b82e2 2891static int
3c4fdcfb 2892intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2893 struct drm_framebuffer *fb)
79e53945
JB
2894{
2895 struct drm_device *dev = crtc->dev;
6b8e6ed0 2896 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2898 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2899 struct drm_framebuffer *old_fb = crtc->primary->fb;
2900 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2901 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2902 int ret;
79e53945 2903
7d5e3799
CW
2904 if (intel_crtc_has_pending_flip(crtc)) {
2905 DRM_ERROR("pipe is still busy with an old pageflip\n");
2906 return -EBUSY;
2907 }
2908
79e53945 2909 /* no fb bound */
94352cf9 2910 if (!fb) {
a5071c2f 2911 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2912 return 0;
2913 }
2914
7eb552ae 2915 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2916 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2917 plane_name(intel_crtc->plane),
2918 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2919 return -EINVAL;
79e53945
JB
2920 }
2921
5c3b82e2 2922 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2923 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2924 if (ret == 0)
91565c85 2925 i915_gem_track_fb(old_obj, obj,
a071fa00 2926 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2927 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2928 if (ret != 0) {
a5071c2f 2929 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2930 return ret;
2931 }
79e53945 2932
e30e8f75 2933 intel_update_pipe_size(intel_crtc);
4d6a3e63 2934
29b9bde6 2935 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2936
f99d7069
DV
2937 if (intel_crtc->active)
2938 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2939
f4510a27 2940 crtc->primary->fb = fb;
6c4c86f5
DV
2941 crtc->x = x;
2942 crtc->y = y;
94352cf9 2943
b7f1de28 2944 if (old_fb) {
d7697eea
DV
2945 if (intel_crtc->active && old_fb != fb)
2946 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2947 mutex_lock(&dev->struct_mutex);
2ff8fde1 2948 intel_unpin_fb_obj(old_obj);
8ac36ec1 2949 mutex_unlock(&dev->struct_mutex);
b7f1de28 2950 }
652c393a 2951
8ac36ec1 2952 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2953 intel_update_fbc(dev);
5c3b82e2 2954 mutex_unlock(&dev->struct_mutex);
79e53945 2955
5c3b82e2 2956 return 0;
79e53945
JB
2957}
2958
5e84e1a4
ZW
2959static void intel_fdi_normal_train(struct drm_crtc *crtc)
2960{
2961 struct drm_device *dev = crtc->dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964 int pipe = intel_crtc->pipe;
2965 u32 reg, temp;
2966
2967 /* enable normal train */
2968 reg = FDI_TX_CTL(pipe);
2969 temp = I915_READ(reg);
61e499bf 2970 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2971 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2972 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2973 } else {
2974 temp &= ~FDI_LINK_TRAIN_NONE;
2975 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2976 }
5e84e1a4
ZW
2977 I915_WRITE(reg, temp);
2978
2979 reg = FDI_RX_CTL(pipe);
2980 temp = I915_READ(reg);
2981 if (HAS_PCH_CPT(dev)) {
2982 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2983 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2984 } else {
2985 temp &= ~FDI_LINK_TRAIN_NONE;
2986 temp |= FDI_LINK_TRAIN_NONE;
2987 }
2988 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2989
2990 /* wait one idle pattern time */
2991 POSTING_READ(reg);
2992 udelay(1000);
357555c0
JB
2993
2994 /* IVB wants error correction enabled */
2995 if (IS_IVYBRIDGE(dev))
2996 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2997 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2998}
2999
1fbc0d78 3000static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3001{
1fbc0d78
DV
3002 return crtc->base.enabled && crtc->active &&
3003 crtc->config.has_pch_encoder;
1e833f40
DV
3004}
3005
01a415fd
DV
3006static void ivb_modeset_global_resources(struct drm_device *dev)
3007{
3008 struct drm_i915_private *dev_priv = dev->dev_private;
3009 struct intel_crtc *pipe_B_crtc =
3010 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3011 struct intel_crtc *pipe_C_crtc =
3012 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3013 uint32_t temp;
3014
1e833f40
DV
3015 /*
3016 * When everything is off disable fdi C so that we could enable fdi B
3017 * with all lanes. Note that we don't care about enabled pipes without
3018 * an enabled pch encoder.
3019 */
3020 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3021 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3022 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3023 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3024
3025 temp = I915_READ(SOUTH_CHICKEN1);
3026 temp &= ~FDI_BC_BIFURCATION_SELECT;
3027 DRM_DEBUG_KMS("disabling fdi C rx\n");
3028 I915_WRITE(SOUTH_CHICKEN1, temp);
3029 }
3030}
3031
8db9d77b
ZW
3032/* The FDI link training functions for ILK/Ibexpeak. */
3033static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3034{
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038 int pipe = intel_crtc->pipe;
5eddb70b 3039 u32 reg, temp, tries;
8db9d77b 3040
1c8562f6 3041 /* FDI needs bits from pipe first */
0fc932b8 3042 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3043
e1a44743
AJ
3044 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3045 for train result */
5eddb70b
CW
3046 reg = FDI_RX_IMR(pipe);
3047 temp = I915_READ(reg);
e1a44743
AJ
3048 temp &= ~FDI_RX_SYMBOL_LOCK;
3049 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3050 I915_WRITE(reg, temp);
3051 I915_READ(reg);
e1a44743
AJ
3052 udelay(150);
3053
8db9d77b 3054 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3055 reg = FDI_TX_CTL(pipe);
3056 temp = I915_READ(reg);
627eb5a3
DV
3057 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3058 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3059 temp &= ~FDI_LINK_TRAIN_NONE;
3060 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3061 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3062
5eddb70b
CW
3063 reg = FDI_RX_CTL(pipe);
3064 temp = I915_READ(reg);
8db9d77b
ZW
3065 temp &= ~FDI_LINK_TRAIN_NONE;
3066 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3067 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3068
3069 POSTING_READ(reg);
8db9d77b
ZW
3070 udelay(150);
3071
5b2adf89 3072 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3073 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3074 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3075 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3076
5eddb70b 3077 reg = FDI_RX_IIR(pipe);
e1a44743 3078 for (tries = 0; tries < 5; tries++) {
5eddb70b 3079 temp = I915_READ(reg);
8db9d77b
ZW
3080 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081
3082 if ((temp & FDI_RX_BIT_LOCK)) {
3083 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3084 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3085 break;
3086 }
8db9d77b 3087 }
e1a44743 3088 if (tries == 5)
5eddb70b 3089 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3090
3091 /* Train 2 */
5eddb70b
CW
3092 reg = FDI_TX_CTL(pipe);
3093 temp = I915_READ(reg);
8db9d77b
ZW
3094 temp &= ~FDI_LINK_TRAIN_NONE;
3095 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3096 I915_WRITE(reg, temp);
8db9d77b 3097
5eddb70b
CW
3098 reg = FDI_RX_CTL(pipe);
3099 temp = I915_READ(reg);
8db9d77b
ZW
3100 temp &= ~FDI_LINK_TRAIN_NONE;
3101 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3102 I915_WRITE(reg, temp);
8db9d77b 3103
5eddb70b
CW
3104 POSTING_READ(reg);
3105 udelay(150);
8db9d77b 3106
5eddb70b 3107 reg = FDI_RX_IIR(pipe);
e1a44743 3108 for (tries = 0; tries < 5; tries++) {
5eddb70b 3109 temp = I915_READ(reg);
8db9d77b
ZW
3110 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111
3112 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3113 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3114 DRM_DEBUG_KMS("FDI train 2 done.\n");
3115 break;
3116 }
8db9d77b 3117 }
e1a44743 3118 if (tries == 5)
5eddb70b 3119 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3120
3121 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3122
8db9d77b
ZW
3123}
3124
0206e353 3125static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3126 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3127 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3128 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3129 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3130};
3131
3132/* The FDI link training functions for SNB/Cougarpoint. */
3133static void gen6_fdi_link_train(struct drm_crtc *crtc)
3134{
3135 struct drm_device *dev = crtc->dev;
3136 struct drm_i915_private *dev_priv = dev->dev_private;
3137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3138 int pipe = intel_crtc->pipe;
fa37d39e 3139 u32 reg, temp, i, retry;
8db9d77b 3140
e1a44743
AJ
3141 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3142 for train result */
5eddb70b
CW
3143 reg = FDI_RX_IMR(pipe);
3144 temp = I915_READ(reg);
e1a44743
AJ
3145 temp &= ~FDI_RX_SYMBOL_LOCK;
3146 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3147 I915_WRITE(reg, temp);
3148
3149 POSTING_READ(reg);
e1a44743
AJ
3150 udelay(150);
3151
8db9d77b 3152 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3153 reg = FDI_TX_CTL(pipe);
3154 temp = I915_READ(reg);
627eb5a3
DV
3155 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3156 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3157 temp &= ~FDI_LINK_TRAIN_NONE;
3158 temp |= FDI_LINK_TRAIN_PATTERN_1;
3159 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3160 /* SNB-B */
3161 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3162 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3163
d74cf324
DV
3164 I915_WRITE(FDI_RX_MISC(pipe),
3165 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3166
5eddb70b
CW
3167 reg = FDI_RX_CTL(pipe);
3168 temp = I915_READ(reg);
8db9d77b
ZW
3169 if (HAS_PCH_CPT(dev)) {
3170 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3171 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3172 } else {
3173 temp &= ~FDI_LINK_TRAIN_NONE;
3174 temp |= FDI_LINK_TRAIN_PATTERN_1;
3175 }
5eddb70b
CW
3176 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3177
3178 POSTING_READ(reg);
8db9d77b
ZW
3179 udelay(150);
3180
0206e353 3181 for (i = 0; i < 4; i++) {
5eddb70b
CW
3182 reg = FDI_TX_CTL(pipe);
3183 temp = I915_READ(reg);
8db9d77b
ZW
3184 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3185 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3186 I915_WRITE(reg, temp);
3187
3188 POSTING_READ(reg);
8db9d77b
ZW
3189 udelay(500);
3190
fa37d39e
SP
3191 for (retry = 0; retry < 5; retry++) {
3192 reg = FDI_RX_IIR(pipe);
3193 temp = I915_READ(reg);
3194 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3195 if (temp & FDI_RX_BIT_LOCK) {
3196 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3197 DRM_DEBUG_KMS("FDI train 1 done.\n");
3198 break;
3199 }
3200 udelay(50);
8db9d77b 3201 }
fa37d39e
SP
3202 if (retry < 5)
3203 break;
8db9d77b
ZW
3204 }
3205 if (i == 4)
5eddb70b 3206 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3207
3208 /* Train 2 */
5eddb70b
CW
3209 reg = FDI_TX_CTL(pipe);
3210 temp = I915_READ(reg);
8db9d77b
ZW
3211 temp &= ~FDI_LINK_TRAIN_NONE;
3212 temp |= FDI_LINK_TRAIN_PATTERN_2;
3213 if (IS_GEN6(dev)) {
3214 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215 /* SNB-B */
3216 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3217 }
5eddb70b 3218 I915_WRITE(reg, temp);
8db9d77b 3219
5eddb70b
CW
3220 reg = FDI_RX_CTL(pipe);
3221 temp = I915_READ(reg);
8db9d77b
ZW
3222 if (HAS_PCH_CPT(dev)) {
3223 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3224 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3225 } else {
3226 temp &= ~FDI_LINK_TRAIN_NONE;
3227 temp |= FDI_LINK_TRAIN_PATTERN_2;
3228 }
5eddb70b
CW
3229 I915_WRITE(reg, temp);
3230
3231 POSTING_READ(reg);
8db9d77b
ZW
3232 udelay(150);
3233
0206e353 3234 for (i = 0; i < 4; i++) {
5eddb70b
CW
3235 reg = FDI_TX_CTL(pipe);
3236 temp = I915_READ(reg);
8db9d77b
ZW
3237 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3238 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3239 I915_WRITE(reg, temp);
3240
3241 POSTING_READ(reg);
8db9d77b
ZW
3242 udelay(500);
3243
fa37d39e
SP
3244 for (retry = 0; retry < 5; retry++) {
3245 reg = FDI_RX_IIR(pipe);
3246 temp = I915_READ(reg);
3247 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3248 if (temp & FDI_RX_SYMBOL_LOCK) {
3249 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3250 DRM_DEBUG_KMS("FDI train 2 done.\n");
3251 break;
3252 }
3253 udelay(50);
8db9d77b 3254 }
fa37d39e
SP
3255 if (retry < 5)
3256 break;
8db9d77b
ZW
3257 }
3258 if (i == 4)
5eddb70b 3259 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3260
3261 DRM_DEBUG_KMS("FDI train done.\n");
3262}
3263
357555c0
JB
3264/* Manual link training for Ivy Bridge A0 parts */
3265static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3266{
3267 struct drm_device *dev = crtc->dev;
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3270 int pipe = intel_crtc->pipe;
139ccd3f 3271 u32 reg, temp, i, j;
357555c0
JB
3272
3273 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3274 for train result */
3275 reg = FDI_RX_IMR(pipe);
3276 temp = I915_READ(reg);
3277 temp &= ~FDI_RX_SYMBOL_LOCK;
3278 temp &= ~FDI_RX_BIT_LOCK;
3279 I915_WRITE(reg, temp);
3280
3281 POSTING_READ(reg);
3282 udelay(150);
3283
01a415fd
DV
3284 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3285 I915_READ(FDI_RX_IIR(pipe)));
3286
139ccd3f
JB
3287 /* Try each vswing and preemphasis setting twice before moving on */
3288 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3289 /* disable first in case we need to retry */
3290 reg = FDI_TX_CTL(pipe);
3291 temp = I915_READ(reg);
3292 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3293 temp &= ~FDI_TX_ENABLE;
3294 I915_WRITE(reg, temp);
357555c0 3295
139ccd3f
JB
3296 reg = FDI_RX_CTL(pipe);
3297 temp = I915_READ(reg);
3298 temp &= ~FDI_LINK_TRAIN_AUTO;
3299 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300 temp &= ~FDI_RX_ENABLE;
3301 I915_WRITE(reg, temp);
357555c0 3302
139ccd3f 3303 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3304 reg = FDI_TX_CTL(pipe);
3305 temp = I915_READ(reg);
139ccd3f
JB
3306 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3307 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3308 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3309 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3310 temp |= snb_b_fdi_train_param[j/2];
3311 temp |= FDI_COMPOSITE_SYNC;
3312 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3313
139ccd3f
JB
3314 I915_WRITE(FDI_RX_MISC(pipe),
3315 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3316
139ccd3f 3317 reg = FDI_RX_CTL(pipe);
357555c0 3318 temp = I915_READ(reg);
139ccd3f
JB
3319 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3320 temp |= FDI_COMPOSITE_SYNC;
3321 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3322
139ccd3f
JB
3323 POSTING_READ(reg);
3324 udelay(1); /* should be 0.5us */
357555c0 3325
139ccd3f
JB
3326 for (i = 0; i < 4; i++) {
3327 reg = FDI_RX_IIR(pipe);
3328 temp = I915_READ(reg);
3329 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3330
139ccd3f
JB
3331 if (temp & FDI_RX_BIT_LOCK ||
3332 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3333 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3334 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3335 i);
3336 break;
3337 }
3338 udelay(1); /* should be 0.5us */
3339 }
3340 if (i == 4) {
3341 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3342 continue;
3343 }
357555c0 3344
139ccd3f 3345 /* Train 2 */
357555c0
JB
3346 reg = FDI_TX_CTL(pipe);
3347 temp = I915_READ(reg);
139ccd3f
JB
3348 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3350 I915_WRITE(reg, temp);
3351
3352 reg = FDI_RX_CTL(pipe);
3353 temp = I915_READ(reg);
3354 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3355 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3356 I915_WRITE(reg, temp);
3357
3358 POSTING_READ(reg);
139ccd3f 3359 udelay(2); /* should be 1.5us */
357555c0 3360
139ccd3f
JB
3361 for (i = 0; i < 4; i++) {
3362 reg = FDI_RX_IIR(pipe);
3363 temp = I915_READ(reg);
3364 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3365
139ccd3f
JB
3366 if (temp & FDI_RX_SYMBOL_LOCK ||
3367 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3368 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3369 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3370 i);
3371 goto train_done;
3372 }
3373 udelay(2); /* should be 1.5us */
357555c0 3374 }
139ccd3f
JB
3375 if (i == 4)
3376 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3377 }
357555c0 3378
139ccd3f 3379train_done:
357555c0
JB
3380 DRM_DEBUG_KMS("FDI train done.\n");
3381}
3382
88cefb6c 3383static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3384{
88cefb6c 3385 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3386 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3387 int pipe = intel_crtc->pipe;
5eddb70b 3388 u32 reg, temp;
79e53945 3389
c64e311e 3390
c98e9dcf 3391 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3392 reg = FDI_RX_CTL(pipe);
3393 temp = I915_READ(reg);
627eb5a3
DV
3394 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3395 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3396 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3397 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3398
3399 POSTING_READ(reg);
c98e9dcf
JB
3400 udelay(200);
3401
3402 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3403 temp = I915_READ(reg);
3404 I915_WRITE(reg, temp | FDI_PCDCLK);
3405
3406 POSTING_READ(reg);
c98e9dcf
JB
3407 udelay(200);
3408
20749730
PZ
3409 /* Enable CPU FDI TX PLL, always on for Ironlake */
3410 reg = FDI_TX_CTL(pipe);
3411 temp = I915_READ(reg);
3412 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3413 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3414
20749730
PZ
3415 POSTING_READ(reg);
3416 udelay(100);
6be4a607 3417 }
0e23b99d
JB
3418}
3419
88cefb6c
DV
3420static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3421{
3422 struct drm_device *dev = intel_crtc->base.dev;
3423 struct drm_i915_private *dev_priv = dev->dev_private;
3424 int pipe = intel_crtc->pipe;
3425 u32 reg, temp;
3426
3427 /* Switch from PCDclk to Rawclk */
3428 reg = FDI_RX_CTL(pipe);
3429 temp = I915_READ(reg);
3430 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3431
3432 /* Disable CPU FDI TX PLL */
3433 reg = FDI_TX_CTL(pipe);
3434 temp = I915_READ(reg);
3435 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3436
3437 POSTING_READ(reg);
3438 udelay(100);
3439
3440 reg = FDI_RX_CTL(pipe);
3441 temp = I915_READ(reg);
3442 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3443
3444 /* Wait for the clocks to turn off. */
3445 POSTING_READ(reg);
3446 udelay(100);
3447}
3448
0fc932b8
JB
3449static void ironlake_fdi_disable(struct drm_crtc *crtc)
3450{
3451 struct drm_device *dev = crtc->dev;
3452 struct drm_i915_private *dev_priv = dev->dev_private;
3453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454 int pipe = intel_crtc->pipe;
3455 u32 reg, temp;
3456
3457 /* disable CPU FDI tx and PCH FDI rx */
3458 reg = FDI_TX_CTL(pipe);
3459 temp = I915_READ(reg);
3460 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3461 POSTING_READ(reg);
3462
3463 reg = FDI_RX_CTL(pipe);
3464 temp = I915_READ(reg);
3465 temp &= ~(0x7 << 16);
dfd07d72 3466 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3467 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3468
3469 POSTING_READ(reg);
3470 udelay(100);
3471
3472 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3473 if (HAS_PCH_IBX(dev))
6f06ce18 3474 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3475
3476 /* still set train pattern 1 */
3477 reg = FDI_TX_CTL(pipe);
3478 temp = I915_READ(reg);
3479 temp &= ~FDI_LINK_TRAIN_NONE;
3480 temp |= FDI_LINK_TRAIN_PATTERN_1;
3481 I915_WRITE(reg, temp);
3482
3483 reg = FDI_RX_CTL(pipe);
3484 temp = I915_READ(reg);
3485 if (HAS_PCH_CPT(dev)) {
3486 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3487 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3488 } else {
3489 temp &= ~FDI_LINK_TRAIN_NONE;
3490 temp |= FDI_LINK_TRAIN_PATTERN_1;
3491 }
3492 /* BPC in FDI rx is consistent with that in PIPECONF */
3493 temp &= ~(0x07 << 16);
dfd07d72 3494 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3495 I915_WRITE(reg, temp);
3496
3497 POSTING_READ(reg);
3498 udelay(100);
3499}
3500
5dce5b93
CW
3501bool intel_has_pending_fb_unpin(struct drm_device *dev)
3502{
3503 struct intel_crtc *crtc;
3504
3505 /* Note that we don't need to be called with mode_config.lock here
3506 * as our list of CRTC objects is static for the lifetime of the
3507 * device and so cannot disappear as we iterate. Similarly, we can
3508 * happily treat the predicates as racy, atomic checks as userspace
3509 * cannot claim and pin a new fb without at least acquring the
3510 * struct_mutex and so serialising with us.
3511 */
d3fcc808 3512 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3513 if (atomic_read(&crtc->unpin_work_count) == 0)
3514 continue;
3515
3516 if (crtc->unpin_work)
3517 intel_wait_for_vblank(dev, crtc->pipe);
3518
3519 return true;
3520 }
3521
3522 return false;
3523}
3524
d6bbafa1
CW
3525static void page_flip_completed(struct intel_crtc *intel_crtc)
3526{
3527 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3528 struct intel_unpin_work *work = intel_crtc->unpin_work;
3529
3530 /* ensure that the unpin work is consistent wrt ->pending. */
3531 smp_rmb();
3532 intel_crtc->unpin_work = NULL;
3533
3534 if (work->event)
3535 drm_send_vblank_event(intel_crtc->base.dev,
3536 intel_crtc->pipe,
3537 work->event);
3538
3539 drm_crtc_vblank_put(&intel_crtc->base);
3540
3541 wake_up_all(&dev_priv->pending_flip_queue);
3542 queue_work(dev_priv->wq, &work->work);
3543
3544 trace_i915_flip_complete(intel_crtc->plane,
3545 work->pending_flip_obj);
3546}
3547
46a55d30 3548void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3549{
0f91128d 3550 struct drm_device *dev = crtc->dev;
5bb61643 3551 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3552
2c10d571 3553 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3554 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3555 !intel_crtc_has_pending_flip(crtc),
3556 60*HZ) == 0)) {
3557 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3558
5e2d7afc 3559 spin_lock_irq(&dev->event_lock);
9c787942
CW
3560 if (intel_crtc->unpin_work) {
3561 WARN_ONCE(1, "Removing stuck page flip\n");
3562 page_flip_completed(intel_crtc);
3563 }
5e2d7afc 3564 spin_unlock_irq(&dev->event_lock);
9c787942 3565 }
5bb61643 3566
975d568a
CW
3567 if (crtc->primary->fb) {
3568 mutex_lock(&dev->struct_mutex);
3569 intel_finish_fb(crtc->primary->fb);
3570 mutex_unlock(&dev->struct_mutex);
3571 }
e6c3a2a6
CW
3572}
3573
e615efe4
ED
3574/* Program iCLKIP clock to the desired frequency */
3575static void lpt_program_iclkip(struct drm_crtc *crtc)
3576{
3577 struct drm_device *dev = crtc->dev;
3578 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3579 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3580 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3581 u32 temp;
3582
09153000
DV
3583 mutex_lock(&dev_priv->dpio_lock);
3584
e615efe4
ED
3585 /* It is necessary to ungate the pixclk gate prior to programming
3586 * the divisors, and gate it back when it is done.
3587 */
3588 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3589
3590 /* Disable SSCCTL */
3591 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3592 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3593 SBI_SSCCTL_DISABLE,
3594 SBI_ICLK);
e615efe4
ED
3595
3596 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3597 if (clock == 20000) {
e615efe4
ED
3598 auxdiv = 1;
3599 divsel = 0x41;
3600 phaseinc = 0x20;
3601 } else {
3602 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3603 * but the adjusted_mode->crtc_clock in in KHz. To get the
3604 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3605 * convert the virtual clock precision to KHz here for higher
3606 * precision.
3607 */
3608 u32 iclk_virtual_root_freq = 172800 * 1000;
3609 u32 iclk_pi_range = 64;
3610 u32 desired_divisor, msb_divisor_value, pi_value;
3611
12d7ceed 3612 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3613 msb_divisor_value = desired_divisor / iclk_pi_range;
3614 pi_value = desired_divisor % iclk_pi_range;
3615
3616 auxdiv = 0;
3617 divsel = msb_divisor_value - 2;
3618 phaseinc = pi_value;
3619 }
3620
3621 /* This should not happen with any sane values */
3622 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3623 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3624 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3625 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3626
3627 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3628 clock,
e615efe4
ED
3629 auxdiv,
3630 divsel,
3631 phasedir,
3632 phaseinc);
3633
3634 /* Program SSCDIVINTPHASE6 */
988d6ee8 3635 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3636 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3637 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3638 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3639 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3640 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3641 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3642 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3643
3644 /* Program SSCAUXDIV */
988d6ee8 3645 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3646 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3647 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3648 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3649
3650 /* Enable modulator and associated divider */
988d6ee8 3651 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3652 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3653 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3654
3655 /* Wait for initialization time */
3656 udelay(24);
3657
3658 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3659
3660 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3661}
3662
275f01b2
DV
3663static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3664 enum pipe pch_transcoder)
3665{
3666 struct drm_device *dev = crtc->base.dev;
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3669
3670 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3671 I915_READ(HTOTAL(cpu_transcoder)));
3672 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3673 I915_READ(HBLANK(cpu_transcoder)));
3674 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3675 I915_READ(HSYNC(cpu_transcoder)));
3676
3677 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3678 I915_READ(VTOTAL(cpu_transcoder)));
3679 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3680 I915_READ(VBLANK(cpu_transcoder)));
3681 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3682 I915_READ(VSYNC(cpu_transcoder)));
3683 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3684 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3685}
3686
1fbc0d78
DV
3687static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3688{
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690 uint32_t temp;
3691
3692 temp = I915_READ(SOUTH_CHICKEN1);
3693 if (temp & FDI_BC_BIFURCATION_SELECT)
3694 return;
3695
3696 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3697 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3698
3699 temp |= FDI_BC_BIFURCATION_SELECT;
3700 DRM_DEBUG_KMS("enabling fdi C rx\n");
3701 I915_WRITE(SOUTH_CHICKEN1, temp);
3702 POSTING_READ(SOUTH_CHICKEN1);
3703}
3704
3705static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3706{
3707 struct drm_device *dev = intel_crtc->base.dev;
3708 struct drm_i915_private *dev_priv = dev->dev_private;
3709
3710 switch (intel_crtc->pipe) {
3711 case PIPE_A:
3712 break;
3713 case PIPE_B:
3714 if (intel_crtc->config.fdi_lanes > 2)
3715 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3716 else
3717 cpt_enable_fdi_bc_bifurcation(dev);
3718
3719 break;
3720 case PIPE_C:
3721 cpt_enable_fdi_bc_bifurcation(dev);
3722
3723 break;
3724 default:
3725 BUG();
3726 }
3727}
3728
f67a559d
JB
3729/*
3730 * Enable PCH resources required for PCH ports:
3731 * - PCH PLLs
3732 * - FDI training & RX/TX
3733 * - update transcoder timings
3734 * - DP transcoding bits
3735 * - transcoder
3736 */
3737static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3738{
3739 struct drm_device *dev = crtc->dev;
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742 int pipe = intel_crtc->pipe;
ee7b9f93 3743 u32 reg, temp;
2c07245f 3744
ab9412ba 3745 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3746
1fbc0d78
DV
3747 if (IS_IVYBRIDGE(dev))
3748 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3749
cd986abb
DV
3750 /* Write the TU size bits before fdi link training, so that error
3751 * detection works. */
3752 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3753 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3754
c98e9dcf 3755 /* For PCH output, training FDI link */
674cf967 3756 dev_priv->display.fdi_link_train(crtc);
2c07245f 3757
3ad8a208
DV
3758 /* We need to program the right clock selection before writing the pixel
3759 * mutliplier into the DPLL. */
303b81e0 3760 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3761 u32 sel;
4b645f14 3762
c98e9dcf 3763 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3764 temp |= TRANS_DPLL_ENABLE(pipe);
3765 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3766 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3767 temp |= sel;
3768 else
3769 temp &= ~sel;
c98e9dcf 3770 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3771 }
5eddb70b 3772
3ad8a208
DV
3773 /* XXX: pch pll's can be enabled any time before we enable the PCH
3774 * transcoder, and we actually should do this to not upset any PCH
3775 * transcoder that already use the clock when we share it.
3776 *
3777 * Note that enable_shared_dpll tries to do the right thing, but
3778 * get_shared_dpll unconditionally resets the pll - we need that to have
3779 * the right LVDS enable sequence. */
85b3894f 3780 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3781
d9b6cb56
JB
3782 /* set transcoder timing, panel must allow it */
3783 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3784 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3785
303b81e0 3786 intel_fdi_normal_train(crtc);
5e84e1a4 3787
c98e9dcf 3788 /* For PCH DP, enable TRANS_DP_CTL */
0a88818d 3789 if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
dfd07d72 3790 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3791 reg = TRANS_DP_CTL(pipe);
3792 temp = I915_READ(reg);
3793 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3794 TRANS_DP_SYNC_MASK |
3795 TRANS_DP_BPC_MASK);
5eddb70b
CW
3796 temp |= (TRANS_DP_OUTPUT_ENABLE |
3797 TRANS_DP_ENH_FRAMING);
9325c9f0 3798 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3799
3800 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3801 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3802 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3803 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3804
3805 switch (intel_trans_dp_port_sel(crtc)) {
3806 case PCH_DP_B:
5eddb70b 3807 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3808 break;
3809 case PCH_DP_C:
5eddb70b 3810 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3811 break;
3812 case PCH_DP_D:
5eddb70b 3813 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3814 break;
3815 default:
e95d41e1 3816 BUG();
32f9d658 3817 }
2c07245f 3818
5eddb70b 3819 I915_WRITE(reg, temp);
6be4a607 3820 }
b52eb4dc 3821
b8a4f404 3822 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3823}
3824
1507e5bd
PZ
3825static void lpt_pch_enable(struct drm_crtc *crtc)
3826{
3827 struct drm_device *dev = crtc->dev;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3830 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3831
ab9412ba 3832 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3833
8c52b5e8 3834 lpt_program_iclkip(crtc);
1507e5bd 3835
0540e488 3836 /* Set transcoder timing. */
275f01b2 3837 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3838
937bb610 3839 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3840}
3841
716c2e55 3842void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3843{
e2b78267 3844 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3845
3846 if (pll == NULL)
3847 return;
3848
3e369b76 3849 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3850 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3851 return;
3852 }
3853
3e369b76
ACO
3854 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3855 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3856 WARN_ON(pll->on);
3857 WARN_ON(pll->active);
3858 }
3859
a43f6e0f 3860 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3861}
3862
716c2e55 3863struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3864{
e2b78267 3865 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3866 struct intel_shared_dpll *pll;
e2b78267 3867 enum intel_dpll_id i;
ee7b9f93 3868
98b6bd99
DV
3869 if (HAS_PCH_IBX(dev_priv->dev)) {
3870 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3871 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3872 pll = &dev_priv->shared_dplls[i];
98b6bd99 3873
46edb027
DV
3874 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3875 crtc->base.base.id, pll->name);
98b6bd99 3876
8bd31e67 3877 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3878
98b6bd99
DV
3879 goto found;
3880 }
3881
e72f9fbf
DV
3882 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3883 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3884
3885 /* Only want to check enabled timings first */
8bd31e67 3886 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3887 continue;
3888
8bd31e67
ACO
3889 if (memcmp(&crtc->new_config->dpll_hw_state,
3890 &pll->new_config->hw_state,
3891 sizeof(pll->new_config->hw_state)) == 0) {
3892 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3893 crtc->base.base.id, pll->name,
8bd31e67
ACO
3894 pll->new_config->crtc_mask,
3895 pll->active);
ee7b9f93
JB
3896 goto found;
3897 }
3898 }
3899
3900 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3901 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3902 pll = &dev_priv->shared_dplls[i];
8bd31e67 3903 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3904 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3905 crtc->base.base.id, pll->name);
ee7b9f93
JB
3906 goto found;
3907 }
3908 }
3909
3910 return NULL;
3911
3912found:
8bd31e67
ACO
3913 if (pll->new_config->crtc_mask == 0)
3914 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
f2a69f44 3915
8bd31e67 3916 crtc->new_config->shared_dpll = i;
46edb027
DV
3917 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3918 pipe_name(crtc->pipe));
ee7b9f93 3919
8bd31e67 3920 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3921
ee7b9f93
JB
3922 return pll;
3923}
3924
8bd31e67
ACO
3925/**
3926 * intel_shared_dpll_start_config - start a new PLL staged config
3927 * @dev_priv: DRM device
3928 * @clear_pipes: mask of pipes that will have their PLLs freed
3929 *
3930 * Starts a new PLL staged config, copying the current config but
3931 * releasing the references of pipes specified in clear_pipes.
3932 */
3933static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3934 unsigned clear_pipes)
3935{
3936 struct intel_shared_dpll *pll;
3937 enum intel_dpll_id i;
3938
3939 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3940 pll = &dev_priv->shared_dplls[i];
3941
3942 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3943 GFP_KERNEL);
3944 if (!pll->new_config)
3945 goto cleanup;
3946
3947 pll->new_config->crtc_mask &= ~clear_pipes;
3948 }
3949
3950 return 0;
3951
3952cleanup:
3953 while (--i >= 0) {
3954 pll = &dev_priv->shared_dplls[i];
3955 pll->new_config = NULL;
3956 }
3957
3958 return -ENOMEM;
3959}
3960
3961static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3962{
3963 struct intel_shared_dpll *pll;
3964 enum intel_dpll_id i;
3965
3966 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3967 pll = &dev_priv->shared_dplls[i];
3968
3969 WARN_ON(pll->new_config == &pll->config);
3970
3971 pll->config = *pll->new_config;
3972 kfree(pll->new_config);
3973 pll->new_config = NULL;
3974 }
3975}
3976
3977static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3978{
3979 struct intel_shared_dpll *pll;
3980 enum intel_dpll_id i;
3981
3982 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3983 pll = &dev_priv->shared_dplls[i];
3984
3985 WARN_ON(pll->new_config == &pll->config);
3986
3987 kfree(pll->new_config);
3988 pll->new_config = NULL;
3989 }
3990}
3991
a1520318 3992static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3993{
3994 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3995 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3996 u32 temp;
3997
3998 temp = I915_READ(dslreg);
3999 udelay(500);
4000 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4001 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4002 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4003 }
4004}
4005
b074cec8
JB
4006static void ironlake_pfit_enable(struct intel_crtc *crtc)
4007{
4008 struct drm_device *dev = crtc->base.dev;
4009 struct drm_i915_private *dev_priv = dev->dev_private;
4010 int pipe = crtc->pipe;
4011
fd4daa9c 4012 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
4013 /* Force use of hard-coded filter coefficients
4014 * as some pre-programmed values are broken,
4015 * e.g. x201.
4016 */
4017 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4018 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4019 PF_PIPE_SEL_IVB(pipe));
4020 else
4021 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4022 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4023 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
4024 }
4025}
4026
bb53d4ae
VS
4027static void intel_enable_planes(struct drm_crtc *crtc)
4028{
4029 struct drm_device *dev = crtc->dev;
4030 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4031 struct drm_plane *plane;
bb53d4ae
VS
4032 struct intel_plane *intel_plane;
4033
af2b653b
MR
4034 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4035 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4036 if (intel_plane->pipe == pipe)
4037 intel_plane_restore(&intel_plane->base);
af2b653b 4038 }
bb53d4ae
VS
4039}
4040
4041static void intel_disable_planes(struct drm_crtc *crtc)
4042{
4043 struct drm_device *dev = crtc->dev;
4044 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4045 struct drm_plane *plane;
bb53d4ae
VS
4046 struct intel_plane *intel_plane;
4047
af2b653b
MR
4048 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4049 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4050 if (intel_plane->pipe == pipe)
4051 intel_plane_disable(&intel_plane->base);
af2b653b 4052 }
bb53d4ae
VS
4053}
4054
20bc8673 4055void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4056{
cea165c3
VS
4057 struct drm_device *dev = crtc->base.dev;
4058 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
4059
4060 if (!crtc->config.ips_enabled)
4061 return;
4062
cea165c3
VS
4063 /* We can only enable IPS after we enable a plane and wait for a vblank */
4064 intel_wait_for_vblank(dev, crtc->pipe);
4065
d77e4531 4066 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4067 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4068 mutex_lock(&dev_priv->rps.hw_lock);
4069 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4070 mutex_unlock(&dev_priv->rps.hw_lock);
4071 /* Quoting Art Runyan: "its not safe to expect any particular
4072 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4073 * mailbox." Moreover, the mailbox may return a bogus state,
4074 * so we need to just enable it and continue on.
2a114cc1
BW
4075 */
4076 } else {
4077 I915_WRITE(IPS_CTL, IPS_ENABLE);
4078 /* The bit only becomes 1 in the next vblank, so this wait here
4079 * is essentially intel_wait_for_vblank. If we don't have this
4080 * and don't wait for vblanks until the end of crtc_enable, then
4081 * the HW state readout code will complain that the expected
4082 * IPS_CTL value is not the one we read. */
4083 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4084 DRM_ERROR("Timed out waiting for IPS enable\n");
4085 }
d77e4531
PZ
4086}
4087
20bc8673 4088void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4089{
4090 struct drm_device *dev = crtc->base.dev;
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092
4093 if (!crtc->config.ips_enabled)
4094 return;
4095
4096 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4097 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4098 mutex_lock(&dev_priv->rps.hw_lock);
4099 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4100 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4101 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4102 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4103 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4104 } else {
2a114cc1 4105 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4106 POSTING_READ(IPS_CTL);
4107 }
d77e4531
PZ
4108
4109 /* We need to wait for a vblank before we can disable the plane. */
4110 intel_wait_for_vblank(dev, crtc->pipe);
4111}
4112
4113/** Loads the palette/gamma unit for the CRTC with the prepared values */
4114static void intel_crtc_load_lut(struct drm_crtc *crtc)
4115{
4116 struct drm_device *dev = crtc->dev;
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119 enum pipe pipe = intel_crtc->pipe;
4120 int palreg = PALETTE(pipe);
4121 int i;
4122 bool reenable_ips = false;
4123
4124 /* The clocks have to be on to load the palette. */
4125 if (!crtc->enabled || !intel_crtc->active)
4126 return;
4127
4128 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4129 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4130 assert_dsi_pll_enabled(dev_priv);
4131 else
4132 assert_pll_enabled(dev_priv, pipe);
4133 }
4134
4135 /* use legacy palette for Ironlake */
7a1db49a 4136 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4137 palreg = LGC_PALETTE(pipe);
4138
4139 /* Workaround : Do not read or write the pipe palette/gamma data while
4140 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4141 */
41e6fc4c 4142 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4143 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4144 GAMMA_MODE_MODE_SPLIT)) {
4145 hsw_disable_ips(intel_crtc);
4146 reenable_ips = true;
4147 }
4148
4149 for (i = 0; i < 256; i++) {
4150 I915_WRITE(palreg + 4 * i,
4151 (intel_crtc->lut_r[i] << 16) |
4152 (intel_crtc->lut_g[i] << 8) |
4153 intel_crtc->lut_b[i]);
4154 }
4155
4156 if (reenable_ips)
4157 hsw_enable_ips(intel_crtc);
4158}
4159
d3eedb1a
VS
4160static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4161{
4162 if (!enable && intel_crtc->overlay) {
4163 struct drm_device *dev = intel_crtc->base.dev;
4164 struct drm_i915_private *dev_priv = dev->dev_private;
4165
4166 mutex_lock(&dev->struct_mutex);
4167 dev_priv->mm.interruptible = false;
4168 (void) intel_overlay_switch_off(intel_crtc->overlay);
4169 dev_priv->mm.interruptible = true;
4170 mutex_unlock(&dev->struct_mutex);
4171 }
4172
4173 /* Let userspace switch the overlay on again. In most cases userspace
4174 * has to recompute where to put it anyway.
4175 */
4176}
4177
d3eedb1a 4178static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4179{
4180 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182 int pipe = intel_crtc->pipe;
a5c4d7bc 4183
fdd508a6 4184 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4185 intel_enable_planes(crtc);
4186 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4187 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4188
4189 hsw_enable_ips(intel_crtc);
4190
4191 mutex_lock(&dev->struct_mutex);
4192 intel_update_fbc(dev);
4193 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4194
4195 /*
4196 * FIXME: Once we grow proper nuclear flip support out of this we need
4197 * to compute the mask of flip planes precisely. For the time being
4198 * consider this a flip from a NULL plane.
4199 */
4200 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4201}
4202
d3eedb1a 4203static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4204{
4205 struct drm_device *dev = crtc->dev;
4206 struct drm_i915_private *dev_priv = dev->dev_private;
4207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4208 int pipe = intel_crtc->pipe;
4209 int plane = intel_crtc->plane;
4210
4211 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4212
4213 if (dev_priv->fbc.plane == plane)
4214 intel_disable_fbc(dev);
4215
4216 hsw_disable_ips(intel_crtc);
4217
d3eedb1a 4218 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4219 intel_crtc_update_cursor(crtc, false);
4220 intel_disable_planes(crtc);
fdd508a6 4221 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4222
f99d7069
DV
4223 /*
4224 * FIXME: Once we grow proper nuclear flip support out of this we need
4225 * to compute the mask of flip planes precisely. For the time being
4226 * consider this a flip to a NULL plane.
4227 */
4228 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4229}
4230
f67a559d
JB
4231static void ironlake_crtc_enable(struct drm_crtc *crtc)
4232{
4233 struct drm_device *dev = crtc->dev;
4234 struct drm_i915_private *dev_priv = dev->dev_private;
4235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4236 struct intel_encoder *encoder;
f67a559d 4237 int pipe = intel_crtc->pipe;
f67a559d 4238
08a48469
DV
4239 WARN_ON(!crtc->enabled);
4240
f67a559d
JB
4241 if (intel_crtc->active)
4242 return;
4243
b14b1055
DV
4244 if (intel_crtc->config.has_pch_encoder)
4245 intel_prepare_shared_dpll(intel_crtc);
4246
29407aab
DV
4247 if (intel_crtc->config.has_dp_encoder)
4248 intel_dp_set_m_n(intel_crtc);
4249
4250 intel_set_pipe_timings(intel_crtc);
4251
4252 if (intel_crtc->config.has_pch_encoder) {
4253 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4254 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4255 }
4256
4257 ironlake_set_pipeconf(crtc);
4258
f67a559d 4259 intel_crtc->active = true;
8664281b 4260
a72e4c9f
DV
4261 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4262 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4263
f6736a1a 4264 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4265 if (encoder->pre_enable)
4266 encoder->pre_enable(encoder);
f67a559d 4267
5bfe2ac0 4268 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4269 /* Note: FDI PLL enabling _must_ be done before we enable the
4270 * cpu pipes, hence this is separate from all the other fdi/pch
4271 * enabling. */
88cefb6c 4272 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4273 } else {
4274 assert_fdi_tx_disabled(dev_priv, pipe);
4275 assert_fdi_rx_disabled(dev_priv, pipe);
4276 }
f67a559d 4277
b074cec8 4278 ironlake_pfit_enable(intel_crtc);
f67a559d 4279
9c54c0dd
JB
4280 /*
4281 * On ILK+ LUT must be loaded before the pipe is running but with
4282 * clocks enabled
4283 */
4284 intel_crtc_load_lut(crtc);
4285
f37fcc2a 4286 intel_update_watermarks(crtc);
e1fdc473 4287 intel_enable_pipe(intel_crtc);
f67a559d 4288
5bfe2ac0 4289 if (intel_crtc->config.has_pch_encoder)
f67a559d 4290 ironlake_pch_enable(crtc);
c98e9dcf 4291
fa5c73b1
DV
4292 for_each_encoder_on_crtc(dev, crtc, encoder)
4293 encoder->enable(encoder);
61b77ddd
DV
4294
4295 if (HAS_PCH_CPT(dev))
a1520318 4296 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4297
4b3a9526
VS
4298 assert_vblank_disabled(crtc);
4299 drm_crtc_vblank_on(crtc);
4300
d3eedb1a 4301 intel_crtc_enable_planes(crtc);
6be4a607
JB
4302}
4303
42db64ef
PZ
4304/* IPS only exists on ULT machines and is tied to pipe A. */
4305static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4306{
f5adf94e 4307 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4308}
4309
e4916946
PZ
4310/*
4311 * This implements the workaround described in the "notes" section of the mode
4312 * set sequence documentation. When going from no pipes or single pipe to
4313 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4314 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4315 */
4316static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4317{
4318 struct drm_device *dev = crtc->base.dev;
4319 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4320
4321 /* We want to get the other_active_crtc only if there's only 1 other
4322 * active crtc. */
d3fcc808 4323 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4324 if (!crtc_it->active || crtc_it == crtc)
4325 continue;
4326
4327 if (other_active_crtc)
4328 return;
4329
4330 other_active_crtc = crtc_it;
4331 }
4332 if (!other_active_crtc)
4333 return;
4334
4335 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4336 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4337}
4338
4f771f10
PZ
4339static void haswell_crtc_enable(struct drm_crtc *crtc)
4340{
4341 struct drm_device *dev = crtc->dev;
4342 struct drm_i915_private *dev_priv = dev->dev_private;
4343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344 struct intel_encoder *encoder;
4345 int pipe = intel_crtc->pipe;
4f771f10
PZ
4346
4347 WARN_ON(!crtc->enabled);
4348
4349 if (intel_crtc->active)
4350 return;
4351
df8ad70c
DV
4352 if (intel_crtc_to_shared_dpll(intel_crtc))
4353 intel_enable_shared_dpll(intel_crtc);
4354
229fca97
DV
4355 if (intel_crtc->config.has_dp_encoder)
4356 intel_dp_set_m_n(intel_crtc);
4357
4358 intel_set_pipe_timings(intel_crtc);
4359
ebb69c95
CT
4360 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4361 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4362 intel_crtc->config.pixel_multiplier - 1);
4363 }
4364
229fca97
DV
4365 if (intel_crtc->config.has_pch_encoder) {
4366 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4367 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4368 }
4369
4370 haswell_set_pipeconf(crtc);
4371
4372 intel_set_pipe_csc(crtc);
4373
4f771f10 4374 intel_crtc->active = true;
8664281b 4375
a72e4c9f 4376 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4377 for_each_encoder_on_crtc(dev, crtc, encoder)
4378 if (encoder->pre_enable)
4379 encoder->pre_enable(encoder);
4380
4fe9467d 4381 if (intel_crtc->config.has_pch_encoder) {
a72e4c9f
DV
4382 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4383 true);
4fe9467d
ID
4384 dev_priv->display.fdi_link_train(crtc);
4385 }
4386
1f544388 4387 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4388
b074cec8 4389 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4390
4391 /*
4392 * On ILK+ LUT must be loaded before the pipe is running but with
4393 * clocks enabled
4394 */
4395 intel_crtc_load_lut(crtc);
4396
1f544388 4397 intel_ddi_set_pipe_settings(crtc);
8228c251 4398 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4399
f37fcc2a 4400 intel_update_watermarks(crtc);
e1fdc473 4401 intel_enable_pipe(intel_crtc);
42db64ef 4402
5bfe2ac0 4403 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4404 lpt_pch_enable(crtc);
4f771f10 4405
0e32b39c
DA
4406 if (intel_crtc->config.dp_encoder_is_mst)
4407 intel_ddi_set_vc_payload_alloc(crtc, true);
4408
8807e55b 4409 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4410 encoder->enable(encoder);
8807e55b
JN
4411 intel_opregion_notify_encoder(encoder, true);
4412 }
4f771f10 4413
4b3a9526
VS
4414 assert_vblank_disabled(crtc);
4415 drm_crtc_vblank_on(crtc);
4416
e4916946
PZ
4417 /* If we change the relative order between pipe/planes enabling, we need
4418 * to change the workaround. */
4419 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4420 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4421}
4422
3f8dce3a
DV
4423static void ironlake_pfit_disable(struct intel_crtc *crtc)
4424{
4425 struct drm_device *dev = crtc->base.dev;
4426 struct drm_i915_private *dev_priv = dev->dev_private;
4427 int pipe = crtc->pipe;
4428
4429 /* To avoid upsetting the power well on haswell only disable the pfit if
4430 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4431 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4432 I915_WRITE(PF_CTL(pipe), 0);
4433 I915_WRITE(PF_WIN_POS(pipe), 0);
4434 I915_WRITE(PF_WIN_SZ(pipe), 0);
4435 }
4436}
4437
6be4a607
JB
4438static void ironlake_crtc_disable(struct drm_crtc *crtc)
4439{
4440 struct drm_device *dev = crtc->dev;
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4443 struct intel_encoder *encoder;
6be4a607 4444 int pipe = intel_crtc->pipe;
5eddb70b 4445 u32 reg, temp;
b52eb4dc 4446
f7abfe8b
CW
4447 if (!intel_crtc->active)
4448 return;
4449
d3eedb1a 4450 intel_crtc_disable_planes(crtc);
a5c4d7bc 4451
4b3a9526
VS
4452 drm_crtc_vblank_off(crtc);
4453 assert_vblank_disabled(crtc);
4454
ea9d758d
DV
4455 for_each_encoder_on_crtc(dev, crtc, encoder)
4456 encoder->disable(encoder);
4457
d925c59a 4458 if (intel_crtc->config.has_pch_encoder)
a72e4c9f 4459 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4460
575f7ab7 4461 intel_disable_pipe(intel_crtc);
32f9d658 4462
3f8dce3a 4463 ironlake_pfit_disable(intel_crtc);
2c07245f 4464
bf49ec8c
DV
4465 for_each_encoder_on_crtc(dev, crtc, encoder)
4466 if (encoder->post_disable)
4467 encoder->post_disable(encoder);
2c07245f 4468
d925c59a
DV
4469 if (intel_crtc->config.has_pch_encoder) {
4470 ironlake_fdi_disable(crtc);
913d8d11 4471
d925c59a 4472 ironlake_disable_pch_transcoder(dev_priv, pipe);
a72e4c9f 4473 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 4474
d925c59a
DV
4475 if (HAS_PCH_CPT(dev)) {
4476 /* disable TRANS_DP_CTL */
4477 reg = TRANS_DP_CTL(pipe);
4478 temp = I915_READ(reg);
4479 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4480 TRANS_DP_PORT_SEL_MASK);
4481 temp |= TRANS_DP_PORT_SEL_NONE;
4482 I915_WRITE(reg, temp);
4483
4484 /* disable DPLL_SEL */
4485 temp = I915_READ(PCH_DPLL_SEL);
11887397 4486 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4487 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4488 }
e3421a18 4489
d925c59a 4490 /* disable PCH DPLL */
e72f9fbf 4491 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4492
d925c59a
DV
4493 ironlake_fdi_pll_disable(intel_crtc);
4494 }
6b383a7f 4495
f7abfe8b 4496 intel_crtc->active = false;
46ba614c 4497 intel_update_watermarks(crtc);
d1ebd816
BW
4498
4499 mutex_lock(&dev->struct_mutex);
6b383a7f 4500 intel_update_fbc(dev);
d1ebd816 4501 mutex_unlock(&dev->struct_mutex);
6be4a607 4502}
1b3c7a47 4503
4f771f10 4504static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4505{
4f771f10
PZ
4506 struct drm_device *dev = crtc->dev;
4507 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4509 struct intel_encoder *encoder;
3b117c8f 4510 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4511
4f771f10
PZ
4512 if (!intel_crtc->active)
4513 return;
4514
d3eedb1a 4515 intel_crtc_disable_planes(crtc);
dda9a66a 4516
4b3a9526
VS
4517 drm_crtc_vblank_off(crtc);
4518 assert_vblank_disabled(crtc);
4519
8807e55b
JN
4520 for_each_encoder_on_crtc(dev, crtc, encoder) {
4521 intel_opregion_notify_encoder(encoder, false);
4f771f10 4522 encoder->disable(encoder);
8807e55b 4523 }
4f771f10 4524
8664281b 4525 if (intel_crtc->config.has_pch_encoder)
a72e4c9f
DV
4526 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4527 false);
575f7ab7 4528 intel_disable_pipe(intel_crtc);
4f771f10 4529
a4bf214f
VS
4530 if (intel_crtc->config.dp_encoder_is_mst)
4531 intel_ddi_set_vc_payload_alloc(crtc, false);
4532
ad80a810 4533 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4534
3f8dce3a 4535 ironlake_pfit_disable(intel_crtc);
4f771f10 4536
1f544388 4537 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4538
88adfff1 4539 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4540 lpt_disable_pch_transcoder(dev_priv);
a72e4c9f
DV
4541 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4542 true);
1ad960f2 4543 intel_ddi_fdi_disable(crtc);
83616634 4544 }
4f771f10 4545
97b040aa
ID
4546 for_each_encoder_on_crtc(dev, crtc, encoder)
4547 if (encoder->post_disable)
4548 encoder->post_disable(encoder);
4549
4f771f10 4550 intel_crtc->active = false;
46ba614c 4551 intel_update_watermarks(crtc);
4f771f10
PZ
4552
4553 mutex_lock(&dev->struct_mutex);
4554 intel_update_fbc(dev);
4555 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4556
4557 if (intel_crtc_to_shared_dpll(intel_crtc))
4558 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4559}
4560
ee7b9f93
JB
4561static void ironlake_crtc_off(struct drm_crtc *crtc)
4562{
4563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4564 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4565}
4566
6441ab5f 4567
2dd24552
JB
4568static void i9xx_pfit_enable(struct intel_crtc *crtc)
4569{
4570 struct drm_device *dev = crtc->base.dev;
4571 struct drm_i915_private *dev_priv = dev->dev_private;
4572 struct intel_crtc_config *pipe_config = &crtc->config;
4573
328d8e82 4574 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4575 return;
4576
2dd24552 4577 /*
c0b03411
DV
4578 * The panel fitter should only be adjusted whilst the pipe is disabled,
4579 * according to register description and PRM.
2dd24552 4580 */
c0b03411
DV
4581 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4582 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4583
b074cec8
JB
4584 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4585 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4586
4587 /* Border color in case we don't scale up to the full screen. Black by
4588 * default, change to something else for debugging. */
4589 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4590}
4591
d05410f9
DA
4592static enum intel_display_power_domain port_to_power_domain(enum port port)
4593{
4594 switch (port) {
4595 case PORT_A:
4596 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4597 case PORT_B:
4598 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4599 case PORT_C:
4600 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4601 case PORT_D:
4602 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4603 default:
4604 WARN_ON_ONCE(1);
4605 return POWER_DOMAIN_PORT_OTHER;
4606 }
4607}
4608
77d22dca
ID
4609#define for_each_power_domain(domain, mask) \
4610 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4611 if ((1 << (domain)) & (mask))
4612
319be8ae
ID
4613enum intel_display_power_domain
4614intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4615{
4616 struct drm_device *dev = intel_encoder->base.dev;
4617 struct intel_digital_port *intel_dig_port;
4618
4619 switch (intel_encoder->type) {
4620 case INTEL_OUTPUT_UNKNOWN:
4621 /* Only DDI platforms should ever use this output type */
4622 WARN_ON_ONCE(!HAS_DDI(dev));
4623 case INTEL_OUTPUT_DISPLAYPORT:
4624 case INTEL_OUTPUT_HDMI:
4625 case INTEL_OUTPUT_EDP:
4626 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4627 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4628 case INTEL_OUTPUT_DP_MST:
4629 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4630 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4631 case INTEL_OUTPUT_ANALOG:
4632 return POWER_DOMAIN_PORT_CRT;
4633 case INTEL_OUTPUT_DSI:
4634 return POWER_DOMAIN_PORT_DSI;
4635 default:
4636 return POWER_DOMAIN_PORT_OTHER;
4637 }
4638}
4639
4640static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4641{
319be8ae
ID
4642 struct drm_device *dev = crtc->dev;
4643 struct intel_encoder *intel_encoder;
4644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4645 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4646 unsigned long mask;
4647 enum transcoder transcoder;
4648
4649 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4650
4651 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4652 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4653 if (intel_crtc->config.pch_pfit.enabled ||
4654 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4655 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4656
319be8ae
ID
4657 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4658 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4659
77d22dca
ID
4660 return mask;
4661}
4662
77d22dca
ID
4663static void modeset_update_crtc_power_domains(struct drm_device *dev)
4664{
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4667 struct intel_crtc *crtc;
4668
4669 /*
4670 * First get all needed power domains, then put all unneeded, to avoid
4671 * any unnecessary toggling of the power wells.
4672 */
d3fcc808 4673 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4674 enum intel_display_power_domain domain;
4675
4676 if (!crtc->base.enabled)
4677 continue;
4678
319be8ae 4679 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4680
4681 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4682 intel_display_power_get(dev_priv, domain);
4683 }
4684
d3fcc808 4685 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4686 enum intel_display_power_domain domain;
4687
4688 for_each_power_domain(domain, crtc->enabled_power_domains)
4689 intel_display_power_put(dev_priv, domain);
4690
4691 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4692 }
4693
4694 intel_display_set_init_power(dev_priv, false);
4695}
4696
dfcab17e 4697/* returns HPLL frequency in kHz */
f8bf63fd 4698static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4699{
586f49dc 4700 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4701
586f49dc
JB
4702 /* Obtain SKU information */
4703 mutex_lock(&dev_priv->dpio_lock);
4704 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4705 CCK_FUSE_HPLL_FREQ_MASK;
4706 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4707
dfcab17e 4708 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4709}
4710
f8bf63fd
VS
4711static void vlv_update_cdclk(struct drm_device *dev)
4712{
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4716 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4717 dev_priv->vlv_cdclk_freq);
4718
4719 /*
4720 * Program the gmbus_freq based on the cdclk frequency.
4721 * BSpec erroneously claims we should aim for 4MHz, but
4722 * in fact 1MHz is the correct frequency.
4723 */
4724 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4725}
4726
30a970c6
JB
4727/* Adjust CDclk dividers to allow high res or save power if possible */
4728static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4729{
4730 struct drm_i915_private *dev_priv = dev->dev_private;
4731 u32 val, cmd;
4732
d197b7d3 4733 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4734
dfcab17e 4735 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4736 cmd = 2;
dfcab17e 4737 else if (cdclk == 266667)
30a970c6
JB
4738 cmd = 1;
4739 else
4740 cmd = 0;
4741
4742 mutex_lock(&dev_priv->rps.hw_lock);
4743 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4744 val &= ~DSPFREQGUAR_MASK;
4745 val |= (cmd << DSPFREQGUAR_SHIFT);
4746 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4747 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4748 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4749 50)) {
4750 DRM_ERROR("timed out waiting for CDclk change\n");
4751 }
4752 mutex_unlock(&dev_priv->rps.hw_lock);
4753
dfcab17e 4754 if (cdclk == 400000) {
30a970c6
JB
4755 u32 divider, vco;
4756
4757 vco = valleyview_get_vco(dev_priv);
dfcab17e 4758 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4759
4760 mutex_lock(&dev_priv->dpio_lock);
4761 /* adjust cdclk divider */
4762 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4763 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4764 val |= divider;
4765 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4766
4767 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4768 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4769 50))
4770 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4771 mutex_unlock(&dev_priv->dpio_lock);
4772 }
4773
4774 mutex_lock(&dev_priv->dpio_lock);
4775 /* adjust self-refresh exit latency value */
4776 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4777 val &= ~0x7f;
4778
4779 /*
4780 * For high bandwidth configs, we set a higher latency in the bunit
4781 * so that the core display fetch happens in time to avoid underruns.
4782 */
dfcab17e 4783 if (cdclk == 400000)
30a970c6
JB
4784 val |= 4500 / 250; /* 4.5 usec */
4785 else
4786 val |= 3000 / 250; /* 3.0 usec */
4787 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4788 mutex_unlock(&dev_priv->dpio_lock);
4789
f8bf63fd 4790 vlv_update_cdclk(dev);
30a970c6
JB
4791}
4792
383c5a6a
VS
4793static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4794{
4795 struct drm_i915_private *dev_priv = dev->dev_private;
4796 u32 val, cmd;
4797
4798 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4799
4800 switch (cdclk) {
4801 case 400000:
4802 cmd = 3;
4803 break;
4804 case 333333:
4805 case 320000:
4806 cmd = 2;
4807 break;
4808 case 266667:
4809 cmd = 1;
4810 break;
4811 case 200000:
4812 cmd = 0;
4813 break;
4814 default:
4815 WARN_ON(1);
4816 return;
4817 }
4818
4819 mutex_lock(&dev_priv->rps.hw_lock);
4820 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4821 val &= ~DSPFREQGUAR_MASK_CHV;
4822 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4823 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4824 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4825 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4826 50)) {
4827 DRM_ERROR("timed out waiting for CDclk change\n");
4828 }
4829 mutex_unlock(&dev_priv->rps.hw_lock);
4830
4831 vlv_update_cdclk(dev);
4832}
4833
30a970c6
JB
4834static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4835 int max_pixclk)
4836{
29dc7ef3
VS
4837 int vco = valleyview_get_vco(dev_priv);
4838 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4839
d49a340d
VS
4840 /* FIXME: Punit isn't quite ready yet */
4841 if (IS_CHERRYVIEW(dev_priv->dev))
4842 return 400000;
4843
30a970c6
JB
4844 /*
4845 * Really only a few cases to deal with, as only 4 CDclks are supported:
4846 * 200MHz
4847 * 267MHz
29dc7ef3 4848 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4849 * 400MHz
4850 * So we check to see whether we're above 90% of the lower bin and
4851 * adjust if needed.
e37c67a1
VS
4852 *
4853 * We seem to get an unstable or solid color picture at 200MHz.
4854 * Not sure what's wrong. For now use 200MHz only when all pipes
4855 * are off.
30a970c6 4856 */
29dc7ef3 4857 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4858 return 400000;
4859 else if (max_pixclk > 266667*9/10)
29dc7ef3 4860 return freq_320;
e37c67a1 4861 else if (max_pixclk > 0)
dfcab17e 4862 return 266667;
e37c67a1
VS
4863 else
4864 return 200000;
30a970c6
JB
4865}
4866
2f2d7aa1
VS
4867/* compute the max pixel clock for new configuration */
4868static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4869{
4870 struct drm_device *dev = dev_priv->dev;
4871 struct intel_crtc *intel_crtc;
4872 int max_pixclk = 0;
4873
d3fcc808 4874 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4875 if (intel_crtc->new_enabled)
30a970c6 4876 max_pixclk = max(max_pixclk,
2f2d7aa1 4877 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4878 }
4879
4880 return max_pixclk;
4881}
4882
4883static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4884 unsigned *prepare_pipes)
30a970c6
JB
4885{
4886 struct drm_i915_private *dev_priv = dev->dev_private;
4887 struct intel_crtc *intel_crtc;
2f2d7aa1 4888 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4889
d60c4473
ID
4890 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4891 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4892 return;
4893
2f2d7aa1 4894 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4895 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4896 if (intel_crtc->base.enabled)
4897 *prepare_pipes |= (1 << intel_crtc->pipe);
4898}
4899
4900static void valleyview_modeset_global_resources(struct drm_device *dev)
4901{
4902 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4903 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4904 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4905
383c5a6a
VS
4906 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4907 if (IS_CHERRYVIEW(dev))
4908 cherryview_set_cdclk(dev, req_cdclk);
4909 else
4910 valleyview_set_cdclk(dev, req_cdclk);
4911 }
4912
77961eb9 4913 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4914}
4915
89b667f8
JB
4916static void valleyview_crtc_enable(struct drm_crtc *crtc)
4917{
4918 struct drm_device *dev = crtc->dev;
a72e4c9f 4919 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
4920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4921 struct intel_encoder *encoder;
4922 int pipe = intel_crtc->pipe;
23538ef1 4923 bool is_dsi;
89b667f8
JB
4924
4925 WARN_ON(!crtc->enabled);
4926
4927 if (intel_crtc->active)
4928 return;
4929
409ee761 4930 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 4931
1ae0d137
VS
4932 if (!is_dsi) {
4933 if (IS_CHERRYVIEW(dev))
d288f65f 4934 chv_prepare_pll(intel_crtc, &intel_crtc->config);
1ae0d137 4935 else
d288f65f 4936 vlv_prepare_pll(intel_crtc, &intel_crtc->config);
1ae0d137 4937 }
5b18e57c
DV
4938
4939 if (intel_crtc->config.has_dp_encoder)
4940 intel_dp_set_m_n(intel_crtc);
4941
4942 intel_set_pipe_timings(intel_crtc);
4943
c14b0485
VS
4944 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946
4947 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4948 I915_WRITE(CHV_CANVAS(pipe), 0);
4949 }
4950
5b18e57c
DV
4951 i9xx_set_pipeconf(intel_crtc);
4952
89b667f8 4953 intel_crtc->active = true;
89b667f8 4954
a72e4c9f 4955 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 4956
89b667f8
JB
4957 for_each_encoder_on_crtc(dev, crtc, encoder)
4958 if (encoder->pre_pll_enable)
4959 encoder->pre_pll_enable(encoder);
4960
9d556c99
CML
4961 if (!is_dsi) {
4962 if (IS_CHERRYVIEW(dev))
d288f65f 4963 chv_enable_pll(intel_crtc, &intel_crtc->config);
9d556c99 4964 else
d288f65f 4965 vlv_enable_pll(intel_crtc, &intel_crtc->config);
9d556c99 4966 }
89b667f8
JB
4967
4968 for_each_encoder_on_crtc(dev, crtc, encoder)
4969 if (encoder->pre_enable)
4970 encoder->pre_enable(encoder);
4971
2dd24552
JB
4972 i9xx_pfit_enable(intel_crtc);
4973
63cbb074
VS
4974 intel_crtc_load_lut(crtc);
4975
f37fcc2a 4976 intel_update_watermarks(crtc);
e1fdc473 4977 intel_enable_pipe(intel_crtc);
be6a6f8e 4978
5004945f
JN
4979 for_each_encoder_on_crtc(dev, crtc, encoder)
4980 encoder->enable(encoder);
9ab0460b 4981
4b3a9526
VS
4982 assert_vblank_disabled(crtc);
4983 drm_crtc_vblank_on(crtc);
4984
9ab0460b 4985 intel_crtc_enable_planes(crtc);
d40d9187 4986
56b80e1f 4987 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 4988 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
4989}
4990
f13c2ef3
DV
4991static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4992{
4993 struct drm_device *dev = crtc->base.dev;
4994 struct drm_i915_private *dev_priv = dev->dev_private;
4995
4996 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4997 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4998}
4999
0b8765c6 5000static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5001{
5002 struct drm_device *dev = crtc->dev;
a72e4c9f 5003 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5005 struct intel_encoder *encoder;
79e53945 5006 int pipe = intel_crtc->pipe;
79e53945 5007
08a48469
DV
5008 WARN_ON(!crtc->enabled);
5009
f7abfe8b
CW
5010 if (intel_crtc->active)
5011 return;
5012
f13c2ef3
DV
5013 i9xx_set_pll_dividers(intel_crtc);
5014
5b18e57c
DV
5015 if (intel_crtc->config.has_dp_encoder)
5016 intel_dp_set_m_n(intel_crtc);
5017
5018 intel_set_pipe_timings(intel_crtc);
5019
5b18e57c
DV
5020 i9xx_set_pipeconf(intel_crtc);
5021
f7abfe8b 5022 intel_crtc->active = true;
6b383a7f 5023
4a3436e8 5024 if (!IS_GEN2(dev))
a72e4c9f 5025 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5026
9d6d9f19
MK
5027 for_each_encoder_on_crtc(dev, crtc, encoder)
5028 if (encoder->pre_enable)
5029 encoder->pre_enable(encoder);
5030
f6736a1a
DV
5031 i9xx_enable_pll(intel_crtc);
5032
2dd24552
JB
5033 i9xx_pfit_enable(intel_crtc);
5034
63cbb074
VS
5035 intel_crtc_load_lut(crtc);
5036
f37fcc2a 5037 intel_update_watermarks(crtc);
e1fdc473 5038 intel_enable_pipe(intel_crtc);
be6a6f8e 5039
fa5c73b1
DV
5040 for_each_encoder_on_crtc(dev, crtc, encoder)
5041 encoder->enable(encoder);
9ab0460b 5042
4b3a9526
VS
5043 assert_vblank_disabled(crtc);
5044 drm_crtc_vblank_on(crtc);
5045
9ab0460b 5046 intel_crtc_enable_planes(crtc);
d40d9187 5047
4a3436e8
VS
5048 /*
5049 * Gen2 reports pipe underruns whenever all planes are disabled.
5050 * So don't enable underrun reporting before at least some planes
5051 * are enabled.
5052 * FIXME: Need to fix the logic to work when we turn off all planes
5053 * but leave the pipe running.
5054 */
5055 if (IS_GEN2(dev))
a72e4c9f 5056 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5057
56b80e1f 5058 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5059 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5060}
79e53945 5061
87476d63
DV
5062static void i9xx_pfit_disable(struct intel_crtc *crtc)
5063{
5064 struct drm_device *dev = crtc->base.dev;
5065 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5066
328d8e82
DV
5067 if (!crtc->config.gmch_pfit.control)
5068 return;
87476d63 5069
328d8e82 5070 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5071
328d8e82
DV
5072 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5073 I915_READ(PFIT_CONTROL));
5074 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5075}
5076
0b8765c6
JB
5077static void i9xx_crtc_disable(struct drm_crtc *crtc)
5078{
5079 struct drm_device *dev = crtc->dev;
5080 struct drm_i915_private *dev_priv = dev->dev_private;
5081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5082 struct intel_encoder *encoder;
0b8765c6 5083 int pipe = intel_crtc->pipe;
ef9c3aee 5084
f7abfe8b
CW
5085 if (!intel_crtc->active)
5086 return;
5087
4a3436e8
VS
5088 /*
5089 * Gen2 reports pipe underruns whenever all planes are disabled.
5090 * So diasble underrun reporting before all the planes get disabled.
5091 * FIXME: Need to fix the logic to work when we turn off all planes
5092 * but leave the pipe running.
5093 */
5094 if (IS_GEN2(dev))
a72e4c9f 5095 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5096
564ed191
ID
5097 /*
5098 * Vblank time updates from the shadow to live plane control register
5099 * are blocked if the memory self-refresh mode is active at that
5100 * moment. So to make sure the plane gets truly disabled, disable
5101 * first the self-refresh mode. The self-refresh enable bit in turn
5102 * will be checked/applied by the HW only at the next frame start
5103 * event which is after the vblank start event, so we need to have a
5104 * wait-for-vblank between disabling the plane and the pipe.
5105 */
5106 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5107 intel_crtc_disable_planes(crtc);
5108
6304cd91
VS
5109 /*
5110 * On gen2 planes are double buffered but the pipe isn't, so we must
5111 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5112 * We also need to wait on all gmch platforms because of the
5113 * self-refresh mode constraint explained above.
6304cd91 5114 */
564ed191 5115 intel_wait_for_vblank(dev, pipe);
6304cd91 5116
4b3a9526
VS
5117 drm_crtc_vblank_off(crtc);
5118 assert_vblank_disabled(crtc);
5119
5120 for_each_encoder_on_crtc(dev, crtc, encoder)
5121 encoder->disable(encoder);
5122
575f7ab7 5123 intel_disable_pipe(intel_crtc);
24a1f16d 5124
87476d63 5125 i9xx_pfit_disable(intel_crtc);
24a1f16d 5126
89b667f8
JB
5127 for_each_encoder_on_crtc(dev, crtc, encoder)
5128 if (encoder->post_disable)
5129 encoder->post_disable(encoder);
5130
409ee761 5131 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5132 if (IS_CHERRYVIEW(dev))
5133 chv_disable_pll(dev_priv, pipe);
5134 else if (IS_VALLEYVIEW(dev))
5135 vlv_disable_pll(dev_priv, pipe);
5136 else
1c4e0274 5137 i9xx_disable_pll(intel_crtc);
076ed3b2 5138 }
0b8765c6 5139
4a3436e8 5140 if (!IS_GEN2(dev))
a72e4c9f 5141 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5142
f7abfe8b 5143 intel_crtc->active = false;
46ba614c 5144 intel_update_watermarks(crtc);
f37fcc2a 5145
efa9624e 5146 mutex_lock(&dev->struct_mutex);
6b383a7f 5147 intel_update_fbc(dev);
efa9624e 5148 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5149}
5150
ee7b9f93
JB
5151static void i9xx_crtc_off(struct drm_crtc *crtc)
5152{
5153}
5154
976f8a20
DV
5155static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5156 bool enabled)
2c07245f
ZW
5157{
5158 struct drm_device *dev = crtc->dev;
5159 struct drm_i915_master_private *master_priv;
5160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5161 int pipe = intel_crtc->pipe;
79e53945
JB
5162
5163 if (!dev->primary->master)
5164 return;
5165
5166 master_priv = dev->primary->master->driver_priv;
5167 if (!master_priv->sarea_priv)
5168 return;
5169
79e53945
JB
5170 switch (pipe) {
5171 case 0:
5172 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5173 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5174 break;
5175 case 1:
5176 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5177 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5178 break;
5179 default:
9db4a9c7 5180 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
5181 break;
5182 }
79e53945
JB
5183}
5184
b04c5bd6
BF
5185/* Master function to enable/disable CRTC and corresponding power wells */
5186void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5187{
5188 struct drm_device *dev = crtc->dev;
5189 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5191 enum intel_display_power_domain domain;
5192 unsigned long domains;
976f8a20 5193
0e572fe7
DV
5194 if (enable) {
5195 if (!intel_crtc->active) {
e1e9fb84
DV
5196 domains = get_crtc_power_domains(crtc);
5197 for_each_power_domain(domain, domains)
5198 intel_display_power_get(dev_priv, domain);
5199 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5200
5201 dev_priv->display.crtc_enable(crtc);
5202 }
5203 } else {
5204 if (intel_crtc->active) {
5205 dev_priv->display.crtc_disable(crtc);
5206
e1e9fb84
DV
5207 domains = intel_crtc->enabled_power_domains;
5208 for_each_power_domain(domain, domains)
5209 intel_display_power_put(dev_priv, domain);
5210 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5211 }
5212 }
b04c5bd6
BF
5213}
5214
5215/**
5216 * Sets the power management mode of the pipe and plane.
5217 */
5218void intel_crtc_update_dpms(struct drm_crtc *crtc)
5219{
5220 struct drm_device *dev = crtc->dev;
5221 struct intel_encoder *intel_encoder;
5222 bool enable = false;
5223
5224 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5225 enable |= intel_encoder->connectors_active;
5226
5227 intel_crtc_control(crtc, enable);
976f8a20
DV
5228
5229 intel_crtc_update_sarea(crtc, enable);
5230}
5231
cdd59983
CW
5232static void intel_crtc_disable(struct drm_crtc *crtc)
5233{
cdd59983 5234 struct drm_device *dev = crtc->dev;
976f8a20 5235 struct drm_connector *connector;
ee7b9f93 5236 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5237 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5238 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5239
976f8a20
DV
5240 /* crtc should still be enabled when we disable it. */
5241 WARN_ON(!crtc->enabled);
5242
5243 dev_priv->display.crtc_disable(crtc);
5244 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5245 dev_priv->display.off(crtc);
5246
f4510a27 5247 if (crtc->primary->fb) {
cdd59983 5248 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5249 intel_unpin_fb_obj(old_obj);
5250 i915_gem_track_fb(old_obj, NULL,
5251 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5252 mutex_unlock(&dev->struct_mutex);
f4510a27 5253 crtc->primary->fb = NULL;
976f8a20
DV
5254 }
5255
5256 /* Update computed state. */
5257 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5258 if (!connector->encoder || !connector->encoder->crtc)
5259 continue;
5260
5261 if (connector->encoder->crtc != crtc)
5262 continue;
5263
5264 connector->dpms = DRM_MODE_DPMS_OFF;
5265 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5266 }
5267}
5268
ea5b213a 5269void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5270{
4ef69c7a 5271 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5272
ea5b213a
CW
5273 drm_encoder_cleanup(encoder);
5274 kfree(intel_encoder);
7e7d76c3
JB
5275}
5276
9237329d 5277/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5278 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5279 * state of the entire output pipe. */
9237329d 5280static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5281{
5ab432ef
DV
5282 if (mode == DRM_MODE_DPMS_ON) {
5283 encoder->connectors_active = true;
5284
b2cabb0e 5285 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5286 } else {
5287 encoder->connectors_active = false;
5288
b2cabb0e 5289 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5290 }
79e53945
JB
5291}
5292
0a91ca29
DV
5293/* Cross check the actual hw state with our own modeset state tracking (and it's
5294 * internal consistency). */
b980514c 5295static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5296{
0a91ca29
DV
5297 if (connector->get_hw_state(connector)) {
5298 struct intel_encoder *encoder = connector->encoder;
5299 struct drm_crtc *crtc;
5300 bool encoder_enabled;
5301 enum pipe pipe;
5302
5303 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5304 connector->base.base.id,
c23cc417 5305 connector->base.name);
0a91ca29 5306
0e32b39c
DA
5307 /* there is no real hw state for MST connectors */
5308 if (connector->mst_port)
5309 return;
5310
0a91ca29
DV
5311 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5312 "wrong connector dpms state\n");
5313 WARN(connector->base.encoder != &encoder->base,
5314 "active connector not linked to encoder\n");
0a91ca29 5315
36cd7444
DA
5316 if (encoder) {
5317 WARN(!encoder->connectors_active,
5318 "encoder->connectors_active not set\n");
5319
5320 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5321 WARN(!encoder_enabled, "encoder not enabled\n");
5322 if (WARN_ON(!encoder->base.crtc))
5323 return;
0a91ca29 5324
36cd7444 5325 crtc = encoder->base.crtc;
0a91ca29 5326
36cd7444
DA
5327 WARN(!crtc->enabled, "crtc not enabled\n");
5328 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5329 WARN(pipe != to_intel_crtc(crtc)->pipe,
5330 "encoder active on the wrong pipe\n");
5331 }
0a91ca29 5332 }
79e53945
JB
5333}
5334
5ab432ef
DV
5335/* Even simpler default implementation, if there's really no special case to
5336 * consider. */
5337void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5338{
5ab432ef
DV
5339 /* All the simple cases only support two dpms states. */
5340 if (mode != DRM_MODE_DPMS_ON)
5341 mode = DRM_MODE_DPMS_OFF;
d4270e57 5342
5ab432ef
DV
5343 if (mode == connector->dpms)
5344 return;
5345
5346 connector->dpms = mode;
5347
5348 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5349 if (connector->encoder)
5350 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5351
b980514c 5352 intel_modeset_check_state(connector->dev);
79e53945
JB
5353}
5354
f0947c37
DV
5355/* Simple connector->get_hw_state implementation for encoders that support only
5356 * one connector and no cloning and hence the encoder state determines the state
5357 * of the connector. */
5358bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5359{
24929352 5360 enum pipe pipe = 0;
f0947c37 5361 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5362
f0947c37 5363 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5364}
5365
1857e1da
DV
5366static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5367 struct intel_crtc_config *pipe_config)
5368{
5369 struct drm_i915_private *dev_priv = dev->dev_private;
5370 struct intel_crtc *pipe_B_crtc =
5371 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5372
5373 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5374 pipe_name(pipe), pipe_config->fdi_lanes);
5375 if (pipe_config->fdi_lanes > 4) {
5376 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5377 pipe_name(pipe), pipe_config->fdi_lanes);
5378 return false;
5379 }
5380
bafb6553 5381 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5382 if (pipe_config->fdi_lanes > 2) {
5383 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5384 pipe_config->fdi_lanes);
5385 return false;
5386 } else {
5387 return true;
5388 }
5389 }
5390
5391 if (INTEL_INFO(dev)->num_pipes == 2)
5392 return true;
5393
5394 /* Ivybridge 3 pipe is really complicated */
5395 switch (pipe) {
5396 case PIPE_A:
5397 return true;
5398 case PIPE_B:
5399 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5400 pipe_config->fdi_lanes > 2) {
5401 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5402 pipe_name(pipe), pipe_config->fdi_lanes);
5403 return false;
5404 }
5405 return true;
5406 case PIPE_C:
1e833f40 5407 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5408 pipe_B_crtc->config.fdi_lanes <= 2) {
5409 if (pipe_config->fdi_lanes > 2) {
5410 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5411 pipe_name(pipe), pipe_config->fdi_lanes);
5412 return false;
5413 }
5414 } else {
5415 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5416 return false;
5417 }
5418 return true;
5419 default:
5420 BUG();
5421 }
5422}
5423
e29c22c0
DV
5424#define RETRY 1
5425static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5426 struct intel_crtc_config *pipe_config)
877d48d5 5427{
1857e1da 5428 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5429 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5430 int lane, link_bw, fdi_dotclock;
e29c22c0 5431 bool setup_ok, needs_recompute = false;
877d48d5 5432
e29c22c0 5433retry:
877d48d5
DV
5434 /* FDI is a binary signal running at ~2.7GHz, encoding
5435 * each output octet as 10 bits. The actual frequency
5436 * is stored as a divider into a 100MHz clock, and the
5437 * mode pixel clock is stored in units of 1KHz.
5438 * Hence the bw of each lane in terms of the mode signal
5439 * is:
5440 */
5441 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5442
241bfc38 5443 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5444
2bd89a07 5445 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5446 pipe_config->pipe_bpp);
5447
5448 pipe_config->fdi_lanes = lane;
5449
2bd89a07 5450 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5451 link_bw, &pipe_config->fdi_m_n);
1857e1da 5452
e29c22c0
DV
5453 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5454 intel_crtc->pipe, pipe_config);
5455 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5456 pipe_config->pipe_bpp -= 2*3;
5457 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5458 pipe_config->pipe_bpp);
5459 needs_recompute = true;
5460 pipe_config->bw_constrained = true;
5461
5462 goto retry;
5463 }
5464
5465 if (needs_recompute)
5466 return RETRY;
5467
5468 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5469}
5470
42db64ef
PZ
5471static void hsw_compute_ips_config(struct intel_crtc *crtc,
5472 struct intel_crtc_config *pipe_config)
5473{
d330a953 5474 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5475 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5476 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5477}
5478
a43f6e0f 5479static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5480 struct intel_crtc_config *pipe_config)
79e53945 5481{
a43f6e0f 5482 struct drm_device *dev = crtc->base.dev;
8bd31e67 5483 struct drm_i915_private *dev_priv = dev->dev_private;
b8cecdf5 5484 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5485
ad3a4479 5486 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5487 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5488 int clock_limit =
5489 dev_priv->display.get_display_clock_speed(dev);
5490
5491 /*
5492 * Enable pixel doubling when the dot clock
5493 * is > 90% of the (display) core speed.
5494 *
b397c96b
VS
5495 * GDG double wide on either pipe,
5496 * otherwise pipe A only.
cf532bb2 5497 */
b397c96b 5498 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5499 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5500 clock_limit *= 2;
cf532bb2 5501 pipe_config->double_wide = true;
ad3a4479
VS
5502 }
5503
241bfc38 5504 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5505 return -EINVAL;
2c07245f 5506 }
89749350 5507
1d1d0e27
VS
5508 /*
5509 * Pipe horizontal size must be even in:
5510 * - DVO ganged mode
5511 * - LVDS dual channel mode
5512 * - Double wide pipe
5513 */
409ee761 5514 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5515 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5516 pipe_config->pipe_src_w &= ~1;
5517
8693a824
DL
5518 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5519 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5520 */
5521 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5522 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5523 return -EINVAL;
44f46b42 5524
bd080ee5 5525 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5526 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5527 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5528 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5529 * for lvds. */
5530 pipe_config->pipe_bpp = 8*3;
5531 }
5532
f5adf94e 5533 if (HAS_IPS(dev))
a43f6e0f
DV
5534 hsw_compute_ips_config(crtc, pipe_config);
5535
12030431 5536 /*
8bd31e67
ACO
5537 * XXX: PCH/WRPLL clock sharing is done in ->mode_set if ->compute_clock is not
5538 * set, so make sure the old clock survives for now.
12030431 5539 */
8bd31e67
ACO
5540 if (dev_priv->display.crtc_compute_clock == NULL &&
5541 (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev)))
a43f6e0f 5542 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5543
877d48d5 5544 if (pipe_config->has_pch_encoder)
a43f6e0f 5545 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5546
e29c22c0 5547 return 0;
79e53945
JB
5548}
5549
25eb05fc
JB
5550static int valleyview_get_display_clock_speed(struct drm_device *dev)
5551{
d197b7d3
VS
5552 struct drm_i915_private *dev_priv = dev->dev_private;
5553 int vco = valleyview_get_vco(dev_priv);
5554 u32 val;
5555 int divider;
5556
d49a340d
VS
5557 /* FIXME: Punit isn't quite ready yet */
5558 if (IS_CHERRYVIEW(dev))
5559 return 400000;
5560
d197b7d3
VS
5561 mutex_lock(&dev_priv->dpio_lock);
5562 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5563 mutex_unlock(&dev_priv->dpio_lock);
5564
5565 divider = val & DISPLAY_FREQUENCY_VALUES;
5566
7d007f40
VS
5567 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5568 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5569 "cdclk change in progress\n");
5570
d197b7d3 5571 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5572}
5573
e70236a8
JB
5574static int i945_get_display_clock_speed(struct drm_device *dev)
5575{
5576 return 400000;
5577}
79e53945 5578
e70236a8 5579static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5580{
e70236a8
JB
5581 return 333000;
5582}
79e53945 5583
e70236a8
JB
5584static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5585{
5586 return 200000;
5587}
79e53945 5588
257a7ffc
DV
5589static int pnv_get_display_clock_speed(struct drm_device *dev)
5590{
5591 u16 gcfgc = 0;
5592
5593 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5594
5595 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5596 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5597 return 267000;
5598 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5599 return 333000;
5600 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5601 return 444000;
5602 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5603 return 200000;
5604 default:
5605 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5606 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5607 return 133000;
5608 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5609 return 167000;
5610 }
5611}
5612
e70236a8
JB
5613static int i915gm_get_display_clock_speed(struct drm_device *dev)
5614{
5615 u16 gcfgc = 0;
79e53945 5616
e70236a8
JB
5617 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5618
5619 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5620 return 133000;
5621 else {
5622 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623 case GC_DISPLAY_CLOCK_333_MHZ:
5624 return 333000;
5625 default:
5626 case GC_DISPLAY_CLOCK_190_200_MHZ:
5627 return 190000;
79e53945 5628 }
e70236a8
JB
5629 }
5630}
5631
5632static int i865_get_display_clock_speed(struct drm_device *dev)
5633{
5634 return 266000;
5635}
5636
5637static int i855_get_display_clock_speed(struct drm_device *dev)
5638{
5639 u16 hpllcc = 0;
5640 /* Assume that the hardware is in the high speed state. This
5641 * should be the default.
5642 */
5643 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5644 case GC_CLOCK_133_200:
5645 case GC_CLOCK_100_200:
5646 return 200000;
5647 case GC_CLOCK_166_250:
5648 return 250000;
5649 case GC_CLOCK_100_133:
79e53945 5650 return 133000;
e70236a8 5651 }
79e53945 5652
e70236a8
JB
5653 /* Shouldn't happen */
5654 return 0;
5655}
79e53945 5656
e70236a8
JB
5657static int i830_get_display_clock_speed(struct drm_device *dev)
5658{
5659 return 133000;
79e53945
JB
5660}
5661
2c07245f 5662static void
a65851af 5663intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5664{
a65851af
VS
5665 while (*num > DATA_LINK_M_N_MASK ||
5666 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5667 *num >>= 1;
5668 *den >>= 1;
5669 }
5670}
5671
a65851af
VS
5672static void compute_m_n(unsigned int m, unsigned int n,
5673 uint32_t *ret_m, uint32_t *ret_n)
5674{
5675 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5676 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5677 intel_reduce_m_n_ratio(ret_m, ret_n);
5678}
5679
e69d0bc1
DV
5680void
5681intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5682 int pixel_clock, int link_clock,
5683 struct intel_link_m_n *m_n)
2c07245f 5684{
e69d0bc1 5685 m_n->tu = 64;
a65851af
VS
5686
5687 compute_m_n(bits_per_pixel * pixel_clock,
5688 link_clock * nlanes * 8,
5689 &m_n->gmch_m, &m_n->gmch_n);
5690
5691 compute_m_n(pixel_clock, link_clock,
5692 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5693}
5694
a7615030
CW
5695static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5696{
d330a953
JN
5697 if (i915.panel_use_ssc >= 0)
5698 return i915.panel_use_ssc != 0;
41aa3448 5699 return dev_priv->vbt.lvds_use_ssc
435793df 5700 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5701}
5702
409ee761 5703static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5704{
409ee761 5705 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5706 struct drm_i915_private *dev_priv = dev->dev_private;
5707 int refclk;
5708
a0c4da24 5709 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5710 refclk = 100000;
d0737e1d 5711 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5712 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5713 refclk = dev_priv->vbt.lvds_ssc_freq;
5714 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5715 } else if (!IS_GEN2(dev)) {
5716 refclk = 96000;
5717 } else {
5718 refclk = 48000;
5719 }
5720
5721 return refclk;
5722}
5723
7429e9d4 5724static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5725{
7df00d7a 5726 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5727}
f47709a9 5728
7429e9d4
DV
5729static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5730{
5731 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5732}
5733
f47709a9 5734static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5735 intel_clock_t *reduced_clock)
5736{
f47709a9 5737 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5738 u32 fp, fp2 = 0;
5739
5740 if (IS_PINEVIEW(dev)) {
7429e9d4 5741 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5742 if (reduced_clock)
7429e9d4 5743 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5744 } else {
7429e9d4 5745 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5746 if (reduced_clock)
7429e9d4 5747 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5748 }
5749
8bcc2795 5750 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5751
f47709a9 5752 crtc->lowfreq_avail = false;
409ee761 5753 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5754 reduced_clock && i915.powersave) {
8bcc2795 5755 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5756 crtc->lowfreq_avail = true;
a7516a05 5757 } else {
8bcc2795 5758 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5759 }
5760}
5761
5e69f97f
CML
5762static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5763 pipe)
89b667f8
JB
5764{
5765 u32 reg_val;
5766
5767 /*
5768 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5769 * and set it to a reasonable value instead.
5770 */
ab3c759a 5771 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5772 reg_val &= 0xffffff00;
5773 reg_val |= 0x00000030;
ab3c759a 5774 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5775
ab3c759a 5776 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5777 reg_val &= 0x8cffffff;
5778 reg_val = 0x8c000000;
ab3c759a 5779 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5780
ab3c759a 5781 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5782 reg_val &= 0xffffff00;
ab3c759a 5783 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5784
ab3c759a 5785 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5786 reg_val &= 0x00ffffff;
5787 reg_val |= 0xb0000000;
ab3c759a 5788 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5789}
5790
b551842d
DV
5791static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5792 struct intel_link_m_n *m_n)
5793{
5794 struct drm_device *dev = crtc->base.dev;
5795 struct drm_i915_private *dev_priv = dev->dev_private;
5796 int pipe = crtc->pipe;
5797
e3b95f1e
DV
5798 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5799 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5800 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5801 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5802}
5803
5804static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5805 struct intel_link_m_n *m_n,
5806 struct intel_link_m_n *m2_n2)
b551842d
DV
5807{
5808 struct drm_device *dev = crtc->base.dev;
5809 struct drm_i915_private *dev_priv = dev->dev_private;
5810 int pipe = crtc->pipe;
5811 enum transcoder transcoder = crtc->config.cpu_transcoder;
5812
5813 if (INTEL_INFO(dev)->gen >= 5) {
5814 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5815 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5816 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5817 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5818 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5819 * for gen < 8) and if DRRS is supported (to make sure the
5820 * registers are not unnecessarily accessed).
5821 */
5822 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5823 crtc->config.has_drrs) {
5824 I915_WRITE(PIPE_DATA_M2(transcoder),
5825 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5826 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5827 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5828 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5829 }
b551842d 5830 } else {
e3b95f1e
DV
5831 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5832 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5833 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5834 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5835 }
5836}
5837
f769cd24 5838void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5839{
5840 if (crtc->config.has_pch_encoder)
5841 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5842 else
f769cd24
VK
5843 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5844 &crtc->config.dp_m2_n2);
03afc4a2
DV
5845}
5846
d288f65f
VS
5847static void vlv_update_pll(struct intel_crtc *crtc,
5848 struct intel_crtc_config *pipe_config)
bdd4b6a6
DV
5849{
5850 u32 dpll, dpll_md;
5851
5852 /*
5853 * Enable DPIO clock input. We should never disable the reference
5854 * clock for pipe B, since VGA hotplug / manual detection depends
5855 * on it.
5856 */
5857 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5858 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5859 /* We should never disable this, set it here for state tracking */
5860 if (crtc->pipe == PIPE_B)
5861 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5862 dpll |= DPLL_VCO_ENABLE;
d288f65f 5863 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5864
d288f65f 5865 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5866 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5867 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5868}
5869
d288f65f
VS
5870static void vlv_prepare_pll(struct intel_crtc *crtc,
5871 const struct intel_crtc_config *pipe_config)
a0c4da24 5872{
f47709a9 5873 struct drm_device *dev = crtc->base.dev;
a0c4da24 5874 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5875 int pipe = crtc->pipe;
bdd4b6a6 5876 u32 mdiv;
a0c4da24 5877 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5878 u32 coreclk, reg_val;
a0c4da24 5879
09153000
DV
5880 mutex_lock(&dev_priv->dpio_lock);
5881
d288f65f
VS
5882 bestn = pipe_config->dpll.n;
5883 bestm1 = pipe_config->dpll.m1;
5884 bestm2 = pipe_config->dpll.m2;
5885 bestp1 = pipe_config->dpll.p1;
5886 bestp2 = pipe_config->dpll.p2;
a0c4da24 5887
89b667f8
JB
5888 /* See eDP HDMI DPIO driver vbios notes doc */
5889
5890 /* PLL B needs special handling */
bdd4b6a6 5891 if (pipe == PIPE_B)
5e69f97f 5892 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5893
5894 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5895 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5896
5897 /* Disable target IRef on PLL */
ab3c759a 5898 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5899 reg_val &= 0x00ffffff;
ab3c759a 5900 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5901
5902 /* Disable fast lock */
ab3c759a 5903 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5904
5905 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5906 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5907 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5908 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5909 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5910
5911 /*
5912 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5913 * but we don't support that).
5914 * Note: don't use the DAC post divider as it seems unstable.
5915 */
5916 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5917 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5918
a0c4da24 5919 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5920 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5921
89b667f8 5922 /* Set HBR and RBR LPF coefficients */
d288f65f 5923 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5924 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5925 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5926 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5927 0x009f0003);
89b667f8 5928 else
ab3c759a 5929 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5930 0x00d0000f);
5931
0a88818d 5932 if (crtc->config.has_dp_encoder) {
89b667f8 5933 /* Use SSC source */
bdd4b6a6 5934 if (pipe == PIPE_A)
ab3c759a 5935 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5936 0x0df40000);
5937 else
ab3c759a 5938 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5939 0x0df70000);
5940 } else { /* HDMI or VGA */
5941 /* Use bend source */
bdd4b6a6 5942 if (pipe == PIPE_A)
ab3c759a 5943 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5944 0x0df70000);
5945 else
ab3c759a 5946 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5947 0x0df40000);
5948 }
a0c4da24 5949
ab3c759a 5950 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 5951 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
5952 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5953 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 5954 coreclk |= 0x01000000;
ab3c759a 5955 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5956
ab3c759a 5957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5958 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5959}
5960
d288f65f
VS
5961static void chv_update_pll(struct intel_crtc *crtc,
5962 struct intel_crtc_config *pipe_config)
1ae0d137 5963{
d288f65f 5964 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
5965 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5966 DPLL_VCO_ENABLE;
5967 if (crtc->pipe != PIPE_A)
d288f65f 5968 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 5969
d288f65f
VS
5970 pipe_config->dpll_hw_state.dpll_md =
5971 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
5972}
5973
d288f65f
VS
5974static void chv_prepare_pll(struct intel_crtc *crtc,
5975 const struct intel_crtc_config *pipe_config)
9d556c99
CML
5976{
5977 struct drm_device *dev = crtc->base.dev;
5978 struct drm_i915_private *dev_priv = dev->dev_private;
5979 int pipe = crtc->pipe;
5980 int dpll_reg = DPLL(crtc->pipe);
5981 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5982 u32 loopfilter, intcoeff;
9d556c99
CML
5983 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5984 int refclk;
5985
d288f65f
VS
5986 bestn = pipe_config->dpll.n;
5987 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5988 bestm1 = pipe_config->dpll.m1;
5989 bestm2 = pipe_config->dpll.m2 >> 22;
5990 bestp1 = pipe_config->dpll.p1;
5991 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
5992
5993 /*
5994 * Enable Refclk and SSC
5995 */
a11b0703 5996 I915_WRITE(dpll_reg,
d288f65f 5997 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
5998
5999 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6000
9d556c99
CML
6001 /* p1 and p2 divider */
6002 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6003 5 << DPIO_CHV_S1_DIV_SHIFT |
6004 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6005 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6006 1 << DPIO_CHV_K_DIV_SHIFT);
6007
6008 /* Feedback post-divider - m2 */
6009 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6010
6011 /* Feedback refclk divider - n and m1 */
6012 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6013 DPIO_CHV_M1_DIV_BY_2 |
6014 1 << DPIO_CHV_N_DIV_SHIFT);
6015
6016 /* M2 fraction division */
6017 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6018
6019 /* M2 fraction division enable */
6020 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6021 DPIO_CHV_FRAC_DIV_EN |
6022 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6023
6024 /* Loop filter */
409ee761 6025 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6026 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6027 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6028 if (refclk == 100000)
6029 intcoeff = 11;
6030 else if (refclk == 38400)
6031 intcoeff = 10;
6032 else
6033 intcoeff = 9;
6034 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6035 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6036
6037 /* AFC Recal */
6038 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6039 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6040 DPIO_AFC_RECAL);
6041
6042 mutex_unlock(&dev_priv->dpio_lock);
6043}
6044
d288f65f
VS
6045/**
6046 * vlv_force_pll_on - forcibly enable just the PLL
6047 * @dev_priv: i915 private structure
6048 * @pipe: pipe PLL to enable
6049 * @dpll: PLL configuration
6050 *
6051 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6052 * in cases where we need the PLL enabled even when @pipe is not going to
6053 * be enabled.
6054 */
6055void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6056 const struct dpll *dpll)
6057{
6058 struct intel_crtc *crtc =
6059 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6060 struct intel_crtc_config pipe_config = {
6061 .pixel_multiplier = 1,
6062 .dpll = *dpll,
6063 };
6064
6065 if (IS_CHERRYVIEW(dev)) {
6066 chv_update_pll(crtc, &pipe_config);
6067 chv_prepare_pll(crtc, &pipe_config);
6068 chv_enable_pll(crtc, &pipe_config);
6069 } else {
6070 vlv_update_pll(crtc, &pipe_config);
6071 vlv_prepare_pll(crtc, &pipe_config);
6072 vlv_enable_pll(crtc, &pipe_config);
6073 }
6074}
6075
6076/**
6077 * vlv_force_pll_off - forcibly disable just the PLL
6078 * @dev_priv: i915 private structure
6079 * @pipe: pipe PLL to disable
6080 *
6081 * Disable the PLL for @pipe. To be used in cases where we need
6082 * the PLL enabled even when @pipe is not going to be enabled.
6083 */
6084void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6085{
6086 if (IS_CHERRYVIEW(dev))
6087 chv_disable_pll(to_i915(dev), pipe);
6088 else
6089 vlv_disable_pll(to_i915(dev), pipe);
6090}
6091
f47709a9
DV
6092static void i9xx_update_pll(struct intel_crtc *crtc,
6093 intel_clock_t *reduced_clock,
eb1cbe48
DV
6094 int num_connectors)
6095{
f47709a9 6096 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6097 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6098 u32 dpll;
6099 bool is_sdvo;
d0737e1d 6100 struct dpll *clock = &crtc->new_config->dpll;
eb1cbe48 6101
f47709a9 6102 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6103
d0737e1d
ACO
6104 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6105 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6106
6107 dpll = DPLL_VGA_MODE_DIS;
6108
d0737e1d 6109 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6110 dpll |= DPLLB_MODE_LVDS;
6111 else
6112 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6113
ef1b460d 6114 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
d0737e1d 6115 dpll |= (crtc->new_config->pixel_multiplier - 1)
198a037f 6116 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6117 }
198a037f
DV
6118
6119 if (is_sdvo)
4a33e48d 6120 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6121
0a88818d 6122 if (crtc->new_config->has_dp_encoder)
4a33e48d 6123 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6124
6125 /* compute bitmask from p1 value */
6126 if (IS_PINEVIEW(dev))
6127 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6128 else {
6129 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6130 if (IS_G4X(dev) && reduced_clock)
6131 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6132 }
6133 switch (clock->p2) {
6134 case 5:
6135 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6136 break;
6137 case 7:
6138 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6139 break;
6140 case 10:
6141 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6142 break;
6143 case 14:
6144 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6145 break;
6146 }
6147 if (INTEL_INFO(dev)->gen >= 4)
6148 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6149
d0737e1d 6150 if (crtc->new_config->sdvo_tv_clock)
eb1cbe48 6151 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6152 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6153 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6154 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6155 else
6156 dpll |= PLL_REF_INPUT_DREFCLK;
6157
6158 dpll |= DPLL_VCO_ENABLE;
d0737e1d 6159 crtc->new_config->dpll_hw_state.dpll = dpll;
8bcc2795 6160
eb1cbe48 6161 if (INTEL_INFO(dev)->gen >= 4) {
d0737e1d 6162 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
ef1b460d 6163 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d0737e1d 6164 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6165 }
6166}
6167
f47709a9 6168static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 6169 intel_clock_t *reduced_clock,
eb1cbe48
DV
6170 int num_connectors)
6171{
f47709a9 6172 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6173 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6174 u32 dpll;
d0737e1d 6175 struct dpll *clock = &crtc->new_config->dpll;
eb1cbe48 6176
f47709a9 6177 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6178
eb1cbe48
DV
6179 dpll = DPLL_VGA_MODE_DIS;
6180
d0737e1d 6181 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6182 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6183 } else {
6184 if (clock->p1 == 2)
6185 dpll |= PLL_P1_DIVIDE_BY_TWO;
6186 else
6187 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6188 if (clock->p2 == 4)
6189 dpll |= PLL_P2_DIVIDE_BY_4;
6190 }
6191
d0737e1d 6192 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6193 dpll |= DPLL_DVO_2X_MODE;
6194
d0737e1d 6195 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6196 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6197 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6198 else
6199 dpll |= PLL_REF_INPUT_DREFCLK;
6200
6201 dpll |= DPLL_VCO_ENABLE;
d0737e1d 6202 crtc->new_config->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6203}
6204
8a654f3b 6205static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6206{
6207 struct drm_device *dev = intel_crtc->base.dev;
6208 struct drm_i915_private *dev_priv = dev->dev_private;
6209 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6210 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6211 struct drm_display_mode *adjusted_mode =
6212 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6213 uint32_t crtc_vtotal, crtc_vblank_end;
6214 int vsyncshift = 0;
4d8a62ea
DV
6215
6216 /* We need to be careful not to changed the adjusted mode, for otherwise
6217 * the hw state checker will get angry at the mismatch. */
6218 crtc_vtotal = adjusted_mode->crtc_vtotal;
6219 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6220
609aeaca 6221 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6222 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6223 crtc_vtotal -= 1;
6224 crtc_vblank_end -= 1;
609aeaca 6225
409ee761 6226 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6227 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6228 else
6229 vsyncshift = adjusted_mode->crtc_hsync_start -
6230 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6231 if (vsyncshift < 0)
6232 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6233 }
6234
6235 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6236 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6237
fe2b8f9d 6238 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6239 (adjusted_mode->crtc_hdisplay - 1) |
6240 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6241 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6242 (adjusted_mode->crtc_hblank_start - 1) |
6243 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6244 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6245 (adjusted_mode->crtc_hsync_start - 1) |
6246 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6247
fe2b8f9d 6248 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6249 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6250 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6251 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6252 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6253 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6254 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6255 (adjusted_mode->crtc_vsync_start - 1) |
6256 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6257
b5e508d4
PZ
6258 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6259 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6260 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6261 * bits. */
6262 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6263 (pipe == PIPE_B || pipe == PIPE_C))
6264 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6265
b0e77b9c
PZ
6266 /* pipesrc controls the size that is scaled from, which should
6267 * always be the user's requested size.
6268 */
6269 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6270 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6271 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6272}
6273
1bd1bd80
DV
6274static void intel_get_pipe_timings(struct intel_crtc *crtc,
6275 struct intel_crtc_config *pipe_config)
6276{
6277 struct drm_device *dev = crtc->base.dev;
6278 struct drm_i915_private *dev_priv = dev->dev_private;
6279 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6280 uint32_t tmp;
6281
6282 tmp = I915_READ(HTOTAL(cpu_transcoder));
6283 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6284 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6285 tmp = I915_READ(HBLANK(cpu_transcoder));
6286 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6287 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6288 tmp = I915_READ(HSYNC(cpu_transcoder));
6289 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6290 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6291
6292 tmp = I915_READ(VTOTAL(cpu_transcoder));
6293 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6294 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6295 tmp = I915_READ(VBLANK(cpu_transcoder));
6296 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6297 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6298 tmp = I915_READ(VSYNC(cpu_transcoder));
6299 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6300 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6301
6302 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6303 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6304 pipe_config->adjusted_mode.crtc_vtotal += 1;
6305 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6306 }
6307
6308 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6309 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6310 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6311
6312 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6313 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6314}
6315
f6a83288
DV
6316void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6317 struct intel_crtc_config *pipe_config)
babea61d 6318{
f6a83288
DV
6319 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6320 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6321 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6322 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6323
f6a83288
DV
6324 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6325 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6326 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6327 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6328
f6a83288 6329 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6330
f6a83288
DV
6331 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6332 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6333}
6334
84b046f3
DV
6335static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6336{
6337 struct drm_device *dev = intel_crtc->base.dev;
6338 struct drm_i915_private *dev_priv = dev->dev_private;
6339 uint32_t pipeconf;
6340
9f11a9e4 6341 pipeconf = 0;
84b046f3 6342
b6b5d049
VS
6343 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6344 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6345 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6346
cf532bb2
VS
6347 if (intel_crtc->config.double_wide)
6348 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6349
ff9ce46e
DV
6350 /* only g4x and later have fancy bpc/dither controls */
6351 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6352 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6353 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6354 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6355 PIPECONF_DITHER_TYPE_SP;
84b046f3 6356
ff9ce46e
DV
6357 switch (intel_crtc->config.pipe_bpp) {
6358 case 18:
6359 pipeconf |= PIPECONF_6BPC;
6360 break;
6361 case 24:
6362 pipeconf |= PIPECONF_8BPC;
6363 break;
6364 case 30:
6365 pipeconf |= PIPECONF_10BPC;
6366 break;
6367 default:
6368 /* Case prevented by intel_choose_pipe_bpp_dither. */
6369 BUG();
84b046f3
DV
6370 }
6371 }
6372
6373 if (HAS_PIPE_CXSR(dev)) {
6374 if (intel_crtc->lowfreq_avail) {
6375 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6376 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6377 } else {
6378 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6379 }
6380 }
6381
efc2cfff
VS
6382 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6383 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6384 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6385 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6386 else
6387 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6388 } else
84b046f3
DV
6389 pipeconf |= PIPECONF_PROGRESSIVE;
6390
9f11a9e4
DV
6391 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6392 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6393
84b046f3
DV
6394 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6395 POSTING_READ(PIPECONF(intel_crtc->pipe));
6396}
6397
c7653199 6398static int i9xx_crtc_mode_set(struct intel_crtc *crtc,
f564048e 6399 int x, int y,
94352cf9 6400 struct drm_framebuffer *fb)
79e53945 6401{
c7653199 6402 struct drm_device *dev = crtc->base.dev;
79e53945 6403 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6404 int refclk, num_connectors = 0;
652c393a 6405 intel_clock_t clock, reduced_clock;
a16af721 6406 bool ok, has_reduced_clock = false;
e9fd1c02 6407 bool is_lvds = false, is_dsi = false;
5eddb70b 6408 struct intel_encoder *encoder;
d4906093 6409 const intel_limit_t *limit;
79e53945 6410
d0737e1d
ACO
6411 for_each_intel_encoder(dev, encoder) {
6412 if (encoder->new_crtc != crtc)
6413 continue;
6414
5eddb70b 6415 switch (encoder->type) {
79e53945
JB
6416 case INTEL_OUTPUT_LVDS:
6417 is_lvds = true;
6418 break;
e9fd1c02
JN
6419 case INTEL_OUTPUT_DSI:
6420 is_dsi = true;
6421 break;
6847d71b
PZ
6422 default:
6423 break;
79e53945 6424 }
43565a06 6425
c751ce4f 6426 num_connectors++;
79e53945
JB
6427 }
6428
f2335330 6429 if (is_dsi)
5b18e57c 6430 return 0;
f2335330 6431
d0737e1d 6432 if (!crtc->new_config->clock_set) {
409ee761 6433 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6434
e9fd1c02
JN
6435 /*
6436 * Returns a set of divisors for the desired target clock with
6437 * the given refclk, or FALSE. The returned values represent
6438 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6439 * 2) / p1 / p2.
6440 */
409ee761 6441 limit = intel_limit(crtc, refclk);
c7653199 6442 ok = dev_priv->display.find_dpll(limit, crtc,
d0737e1d 6443 crtc->new_config->port_clock,
e9fd1c02 6444 refclk, NULL, &clock);
f2335330 6445 if (!ok) {
e9fd1c02
JN
6446 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6447 return -EINVAL;
6448 }
79e53945 6449
f2335330
JN
6450 if (is_lvds && dev_priv->lvds_downclock_avail) {
6451 /*
6452 * Ensure we match the reduced clock's P to the target
6453 * clock. If the clocks don't match, we can't switch
6454 * the display clock by using the FP0/FP1. In such case
6455 * we will disable the LVDS downclock feature.
6456 */
6457 has_reduced_clock =
c7653199 6458 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6459 dev_priv->lvds_downclock,
6460 refclk, &clock,
6461 &reduced_clock);
6462 }
6463 /* Compat-code for transition, will disappear. */
d0737e1d
ACO
6464 crtc->new_config->dpll.n = clock.n;
6465 crtc->new_config->dpll.m1 = clock.m1;
6466 crtc->new_config->dpll.m2 = clock.m2;
6467 crtc->new_config->dpll.p1 = clock.p1;
6468 crtc->new_config->dpll.p2 = clock.p2;
f47709a9 6469 }
7026d4ac 6470
e9fd1c02 6471 if (IS_GEN2(dev)) {
c7653199 6472 i8xx_update_pll(crtc,
2a8f64ca
VP
6473 has_reduced_clock ? &reduced_clock : NULL,
6474 num_connectors);
9d556c99 6475 } else if (IS_CHERRYVIEW(dev)) {
d0737e1d 6476 chv_update_pll(crtc, crtc->new_config);
e9fd1c02 6477 } else if (IS_VALLEYVIEW(dev)) {
d0737e1d 6478 vlv_update_pll(crtc, crtc->new_config);
e9fd1c02 6479 } else {
c7653199 6480 i9xx_update_pll(crtc,
eb1cbe48 6481 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6482 num_connectors);
e9fd1c02 6483 }
79e53945 6484
c8f7a0db 6485 return 0;
f564048e
EA
6486}
6487
2fa2fe9a
DV
6488static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6489 struct intel_crtc_config *pipe_config)
6490{
6491 struct drm_device *dev = crtc->base.dev;
6492 struct drm_i915_private *dev_priv = dev->dev_private;
6493 uint32_t tmp;
6494
dc9e7dec
VS
6495 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6496 return;
6497
2fa2fe9a 6498 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6499 if (!(tmp & PFIT_ENABLE))
6500 return;
2fa2fe9a 6501
06922821 6502 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6503 if (INTEL_INFO(dev)->gen < 4) {
6504 if (crtc->pipe != PIPE_B)
6505 return;
2fa2fe9a
DV
6506 } else {
6507 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6508 return;
6509 }
6510
06922821 6511 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6512 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6513 if (INTEL_INFO(dev)->gen < 5)
6514 pipe_config->gmch_pfit.lvds_border_bits =
6515 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6516}
6517
acbec814
JB
6518static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6519 struct intel_crtc_config *pipe_config)
6520{
6521 struct drm_device *dev = crtc->base.dev;
6522 struct drm_i915_private *dev_priv = dev->dev_private;
6523 int pipe = pipe_config->cpu_transcoder;
6524 intel_clock_t clock;
6525 u32 mdiv;
662c6ecb 6526 int refclk = 100000;
acbec814 6527
f573de5a
SK
6528 /* In case of MIPI DPLL will not even be used */
6529 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6530 return;
6531
acbec814 6532 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6533 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6534 mutex_unlock(&dev_priv->dpio_lock);
6535
6536 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6537 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6538 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6539 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6540 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6541
f646628b 6542 vlv_clock(refclk, &clock);
acbec814 6543
f646628b
VS
6544 /* clock.dot is the fast clock */
6545 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6546}
6547
1ad292b5
JB
6548static void i9xx_get_plane_config(struct intel_crtc *crtc,
6549 struct intel_plane_config *plane_config)
6550{
6551 struct drm_device *dev = crtc->base.dev;
6552 struct drm_i915_private *dev_priv = dev->dev_private;
6553 u32 val, base, offset;
6554 int pipe = crtc->pipe, plane = crtc->plane;
6555 int fourcc, pixel_format;
6556 int aligned_height;
6557
66e514c1
DA
6558 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6559 if (!crtc->base.primary->fb) {
1ad292b5
JB
6560 DRM_DEBUG_KMS("failed to alloc fb\n");
6561 return;
6562 }
6563
6564 val = I915_READ(DSPCNTR(plane));
6565
6566 if (INTEL_INFO(dev)->gen >= 4)
6567 if (val & DISPPLANE_TILED)
6568 plane_config->tiled = true;
6569
6570 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6571 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6572 crtc->base.primary->fb->pixel_format = fourcc;
6573 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6574 drm_format_plane_cpp(fourcc, 0) * 8;
6575
6576 if (INTEL_INFO(dev)->gen >= 4) {
6577 if (plane_config->tiled)
6578 offset = I915_READ(DSPTILEOFF(plane));
6579 else
6580 offset = I915_READ(DSPLINOFF(plane));
6581 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6582 } else {
6583 base = I915_READ(DSPADDR(plane));
6584 }
6585 plane_config->base = base;
6586
6587 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6588 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6589 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6590
6591 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6592 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6593
66e514c1 6594 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6595 plane_config->tiled);
6596
1267a26b
FF
6597 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6598 aligned_height);
1ad292b5
JB
6599
6600 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6601 pipe, plane, crtc->base.primary->fb->width,
6602 crtc->base.primary->fb->height,
6603 crtc->base.primary->fb->bits_per_pixel, base,
6604 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6605 plane_config->size);
6606
6607}
6608
70b23a98
VS
6609static void chv_crtc_clock_get(struct intel_crtc *crtc,
6610 struct intel_crtc_config *pipe_config)
6611{
6612 struct drm_device *dev = crtc->base.dev;
6613 struct drm_i915_private *dev_priv = dev->dev_private;
6614 int pipe = pipe_config->cpu_transcoder;
6615 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6616 intel_clock_t clock;
6617 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6618 int refclk = 100000;
6619
6620 mutex_lock(&dev_priv->dpio_lock);
6621 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6622 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6623 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6624 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6625 mutex_unlock(&dev_priv->dpio_lock);
6626
6627 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6628 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6629 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6630 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6631 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6632
6633 chv_clock(refclk, &clock);
6634
6635 /* clock.dot is the fast clock */
6636 pipe_config->port_clock = clock.dot / 5;
6637}
6638
0e8ffe1b
DV
6639static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6640 struct intel_crtc_config *pipe_config)
6641{
6642 struct drm_device *dev = crtc->base.dev;
6643 struct drm_i915_private *dev_priv = dev->dev_private;
6644 uint32_t tmp;
6645
f458ebbc
DV
6646 if (!intel_display_power_is_enabled(dev_priv,
6647 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6648 return false;
6649
e143a21c 6650 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6651 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6652
0e8ffe1b
DV
6653 tmp = I915_READ(PIPECONF(crtc->pipe));
6654 if (!(tmp & PIPECONF_ENABLE))
6655 return false;
6656
42571aef
VS
6657 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6658 switch (tmp & PIPECONF_BPC_MASK) {
6659 case PIPECONF_6BPC:
6660 pipe_config->pipe_bpp = 18;
6661 break;
6662 case PIPECONF_8BPC:
6663 pipe_config->pipe_bpp = 24;
6664 break;
6665 case PIPECONF_10BPC:
6666 pipe_config->pipe_bpp = 30;
6667 break;
6668 default:
6669 break;
6670 }
6671 }
6672
b5a9fa09
DV
6673 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6674 pipe_config->limited_color_range = true;
6675
282740f7
VS
6676 if (INTEL_INFO(dev)->gen < 4)
6677 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6678
1bd1bd80
DV
6679 intel_get_pipe_timings(crtc, pipe_config);
6680
2fa2fe9a
DV
6681 i9xx_get_pfit_config(crtc, pipe_config);
6682
6c49f241
DV
6683 if (INTEL_INFO(dev)->gen >= 4) {
6684 tmp = I915_READ(DPLL_MD(crtc->pipe));
6685 pipe_config->pixel_multiplier =
6686 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6687 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6688 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6689 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6690 tmp = I915_READ(DPLL(crtc->pipe));
6691 pipe_config->pixel_multiplier =
6692 ((tmp & SDVO_MULTIPLIER_MASK)
6693 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6694 } else {
6695 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6696 * port and will be fixed up in the encoder->get_config
6697 * function. */
6698 pipe_config->pixel_multiplier = 1;
6699 }
8bcc2795
DV
6700 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6701 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6702 /*
6703 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6704 * on 830. Filter it out here so that we don't
6705 * report errors due to that.
6706 */
6707 if (IS_I830(dev))
6708 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6709
8bcc2795
DV
6710 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6711 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6712 } else {
6713 /* Mask out read-only status bits. */
6714 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6715 DPLL_PORTC_READY_MASK |
6716 DPLL_PORTB_READY_MASK);
8bcc2795 6717 }
6c49f241 6718
70b23a98
VS
6719 if (IS_CHERRYVIEW(dev))
6720 chv_crtc_clock_get(crtc, pipe_config);
6721 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6722 vlv_crtc_clock_get(crtc, pipe_config);
6723 else
6724 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6725
0e8ffe1b
DV
6726 return true;
6727}
6728
dde86e2d 6729static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6730{
6731 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6732 struct intel_encoder *encoder;
74cfd7ac 6733 u32 val, final;
13d83a67 6734 bool has_lvds = false;
199e5d79 6735 bool has_cpu_edp = false;
199e5d79 6736 bool has_panel = false;
99eb6a01
KP
6737 bool has_ck505 = false;
6738 bool can_ssc = false;
13d83a67
JB
6739
6740 /* We need to take the global config into account */
b2784e15 6741 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6742 switch (encoder->type) {
6743 case INTEL_OUTPUT_LVDS:
6744 has_panel = true;
6745 has_lvds = true;
6746 break;
6747 case INTEL_OUTPUT_EDP:
6748 has_panel = true;
2de6905f 6749 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6750 has_cpu_edp = true;
6751 break;
6847d71b
PZ
6752 default:
6753 break;
13d83a67
JB
6754 }
6755 }
6756
99eb6a01 6757 if (HAS_PCH_IBX(dev)) {
41aa3448 6758 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6759 can_ssc = has_ck505;
6760 } else {
6761 has_ck505 = false;
6762 can_ssc = true;
6763 }
6764
2de6905f
ID
6765 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6766 has_panel, has_lvds, has_ck505);
13d83a67
JB
6767
6768 /* Ironlake: try to setup display ref clock before DPLL
6769 * enabling. This is only under driver's control after
6770 * PCH B stepping, previous chipset stepping should be
6771 * ignoring this setting.
6772 */
74cfd7ac
CW
6773 val = I915_READ(PCH_DREF_CONTROL);
6774
6775 /* As we must carefully and slowly disable/enable each source in turn,
6776 * compute the final state we want first and check if we need to
6777 * make any changes at all.
6778 */
6779 final = val;
6780 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6781 if (has_ck505)
6782 final |= DREF_NONSPREAD_CK505_ENABLE;
6783 else
6784 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6785
6786 final &= ~DREF_SSC_SOURCE_MASK;
6787 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6788 final &= ~DREF_SSC1_ENABLE;
6789
6790 if (has_panel) {
6791 final |= DREF_SSC_SOURCE_ENABLE;
6792
6793 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6794 final |= DREF_SSC1_ENABLE;
6795
6796 if (has_cpu_edp) {
6797 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6798 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6799 else
6800 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6801 } else
6802 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6803 } else {
6804 final |= DREF_SSC_SOURCE_DISABLE;
6805 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6806 }
6807
6808 if (final == val)
6809 return;
6810
13d83a67 6811 /* Always enable nonspread source */
74cfd7ac 6812 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6813
99eb6a01 6814 if (has_ck505)
74cfd7ac 6815 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6816 else
74cfd7ac 6817 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6818
199e5d79 6819 if (has_panel) {
74cfd7ac
CW
6820 val &= ~DREF_SSC_SOURCE_MASK;
6821 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6822
199e5d79 6823 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6824 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6825 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6826 val |= DREF_SSC1_ENABLE;
e77166b5 6827 } else
74cfd7ac 6828 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6829
6830 /* Get SSC going before enabling the outputs */
74cfd7ac 6831 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6832 POSTING_READ(PCH_DREF_CONTROL);
6833 udelay(200);
6834
74cfd7ac 6835 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6836
6837 /* Enable CPU source on CPU attached eDP */
199e5d79 6838 if (has_cpu_edp) {
99eb6a01 6839 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6840 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6841 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6842 } else
74cfd7ac 6843 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6844 } else
74cfd7ac 6845 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6846
74cfd7ac 6847 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6848 POSTING_READ(PCH_DREF_CONTROL);
6849 udelay(200);
6850 } else {
6851 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6852
74cfd7ac 6853 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6854
6855 /* Turn off CPU output */
74cfd7ac 6856 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6857
74cfd7ac 6858 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6859 POSTING_READ(PCH_DREF_CONTROL);
6860 udelay(200);
6861
6862 /* Turn off the SSC source */
74cfd7ac
CW
6863 val &= ~DREF_SSC_SOURCE_MASK;
6864 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6865
6866 /* Turn off SSC1 */
74cfd7ac 6867 val &= ~DREF_SSC1_ENABLE;
199e5d79 6868
74cfd7ac 6869 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6870 POSTING_READ(PCH_DREF_CONTROL);
6871 udelay(200);
6872 }
74cfd7ac
CW
6873
6874 BUG_ON(val != final);
13d83a67
JB
6875}
6876
f31f2d55 6877static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6878{
f31f2d55 6879 uint32_t tmp;
dde86e2d 6880
0ff066a9
PZ
6881 tmp = I915_READ(SOUTH_CHICKEN2);
6882 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6883 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6884
0ff066a9
PZ
6885 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6886 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6887 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6888
0ff066a9
PZ
6889 tmp = I915_READ(SOUTH_CHICKEN2);
6890 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6891 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6892
0ff066a9
PZ
6893 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6894 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6895 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6896}
6897
6898/* WaMPhyProgramming:hsw */
6899static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6900{
6901 uint32_t tmp;
dde86e2d
PZ
6902
6903 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6904 tmp &= ~(0xFF << 24);
6905 tmp |= (0x12 << 24);
6906 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6907
dde86e2d
PZ
6908 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6909 tmp |= (1 << 11);
6910 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6911
6912 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6913 tmp |= (1 << 11);
6914 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6915
dde86e2d
PZ
6916 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6917 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6918 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6919
6920 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6921 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6922 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6923
0ff066a9
PZ
6924 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6925 tmp &= ~(7 << 13);
6926 tmp |= (5 << 13);
6927 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6928
0ff066a9
PZ
6929 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6930 tmp &= ~(7 << 13);
6931 tmp |= (5 << 13);
6932 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6933
6934 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6935 tmp &= ~0xFF;
6936 tmp |= 0x1C;
6937 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6938
6939 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6940 tmp &= ~0xFF;
6941 tmp |= 0x1C;
6942 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6943
6944 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6945 tmp &= ~(0xFF << 16);
6946 tmp |= (0x1C << 16);
6947 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6948
6949 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6950 tmp &= ~(0xFF << 16);
6951 tmp |= (0x1C << 16);
6952 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6953
0ff066a9
PZ
6954 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6955 tmp |= (1 << 27);
6956 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6957
0ff066a9
PZ
6958 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6959 tmp |= (1 << 27);
6960 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6961
0ff066a9
PZ
6962 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6963 tmp &= ~(0xF << 28);
6964 tmp |= (4 << 28);
6965 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6966
0ff066a9
PZ
6967 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6968 tmp &= ~(0xF << 28);
6969 tmp |= (4 << 28);
6970 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6971}
6972
2fa86a1f
PZ
6973/* Implements 3 different sequences from BSpec chapter "Display iCLK
6974 * Programming" based on the parameters passed:
6975 * - Sequence to enable CLKOUT_DP
6976 * - Sequence to enable CLKOUT_DP without spread
6977 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6978 */
6979static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6980 bool with_fdi)
f31f2d55
PZ
6981{
6982 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6983 uint32_t reg, tmp;
6984
6985 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6986 with_spread = true;
6987 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6988 with_fdi, "LP PCH doesn't have FDI\n"))
6989 with_fdi = false;
f31f2d55
PZ
6990
6991 mutex_lock(&dev_priv->dpio_lock);
6992
6993 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6994 tmp &= ~SBI_SSCCTL_DISABLE;
6995 tmp |= SBI_SSCCTL_PATHALT;
6996 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6997
6998 udelay(24);
6999
2fa86a1f
PZ
7000 if (with_spread) {
7001 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7002 tmp &= ~SBI_SSCCTL_PATHALT;
7003 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7004
2fa86a1f
PZ
7005 if (with_fdi) {
7006 lpt_reset_fdi_mphy(dev_priv);
7007 lpt_program_fdi_mphy(dev_priv);
7008 }
7009 }
dde86e2d 7010
2fa86a1f
PZ
7011 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7012 SBI_GEN0 : SBI_DBUFF0;
7013 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7014 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7015 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7016
7017 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7018}
7019
47701c3b
PZ
7020/* Sequence to disable CLKOUT_DP */
7021static void lpt_disable_clkout_dp(struct drm_device *dev)
7022{
7023 struct drm_i915_private *dev_priv = dev->dev_private;
7024 uint32_t reg, tmp;
7025
7026 mutex_lock(&dev_priv->dpio_lock);
7027
7028 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7029 SBI_GEN0 : SBI_DBUFF0;
7030 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7031 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7032 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7033
7034 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7035 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7036 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7037 tmp |= SBI_SSCCTL_PATHALT;
7038 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7039 udelay(32);
7040 }
7041 tmp |= SBI_SSCCTL_DISABLE;
7042 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7043 }
7044
7045 mutex_unlock(&dev_priv->dpio_lock);
7046}
7047
bf8fa3d3
PZ
7048static void lpt_init_pch_refclk(struct drm_device *dev)
7049{
bf8fa3d3
PZ
7050 struct intel_encoder *encoder;
7051 bool has_vga = false;
7052
b2784e15 7053 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7054 switch (encoder->type) {
7055 case INTEL_OUTPUT_ANALOG:
7056 has_vga = true;
7057 break;
6847d71b
PZ
7058 default:
7059 break;
bf8fa3d3
PZ
7060 }
7061 }
7062
47701c3b
PZ
7063 if (has_vga)
7064 lpt_enable_clkout_dp(dev, true, true);
7065 else
7066 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7067}
7068
dde86e2d
PZ
7069/*
7070 * Initialize reference clocks when the driver loads
7071 */
7072void intel_init_pch_refclk(struct drm_device *dev)
7073{
7074 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7075 ironlake_init_pch_refclk(dev);
7076 else if (HAS_PCH_LPT(dev))
7077 lpt_init_pch_refclk(dev);
7078}
7079
d9d444cb
JB
7080static int ironlake_get_refclk(struct drm_crtc *crtc)
7081{
7082 struct drm_device *dev = crtc->dev;
7083 struct drm_i915_private *dev_priv = dev->dev_private;
7084 struct intel_encoder *encoder;
d9d444cb
JB
7085 int num_connectors = 0;
7086 bool is_lvds = false;
7087
d0737e1d
ACO
7088 for_each_intel_encoder(dev, encoder) {
7089 if (encoder->new_crtc != to_intel_crtc(crtc))
7090 continue;
7091
d9d444cb
JB
7092 switch (encoder->type) {
7093 case INTEL_OUTPUT_LVDS:
7094 is_lvds = true;
7095 break;
6847d71b
PZ
7096 default:
7097 break;
d9d444cb
JB
7098 }
7099 num_connectors++;
7100 }
7101
7102 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7103 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7104 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7105 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7106 }
7107
7108 return 120000;
7109}
7110
6ff93609 7111static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7112{
c8203565 7113 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7115 int pipe = intel_crtc->pipe;
c8203565
PZ
7116 uint32_t val;
7117
78114071 7118 val = 0;
c8203565 7119
965e0c48 7120 switch (intel_crtc->config.pipe_bpp) {
c8203565 7121 case 18:
dfd07d72 7122 val |= PIPECONF_6BPC;
c8203565
PZ
7123 break;
7124 case 24:
dfd07d72 7125 val |= PIPECONF_8BPC;
c8203565
PZ
7126 break;
7127 case 30:
dfd07d72 7128 val |= PIPECONF_10BPC;
c8203565
PZ
7129 break;
7130 case 36:
dfd07d72 7131 val |= PIPECONF_12BPC;
c8203565
PZ
7132 break;
7133 default:
cc769b62
PZ
7134 /* Case prevented by intel_choose_pipe_bpp_dither. */
7135 BUG();
c8203565
PZ
7136 }
7137
d8b32247 7138 if (intel_crtc->config.dither)
c8203565
PZ
7139 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7140
6ff93609 7141 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7142 val |= PIPECONF_INTERLACED_ILK;
7143 else
7144 val |= PIPECONF_PROGRESSIVE;
7145
50f3b016 7146 if (intel_crtc->config.limited_color_range)
3685a8f3 7147 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7148
c8203565
PZ
7149 I915_WRITE(PIPECONF(pipe), val);
7150 POSTING_READ(PIPECONF(pipe));
7151}
7152
86d3efce
VS
7153/*
7154 * Set up the pipe CSC unit.
7155 *
7156 * Currently only full range RGB to limited range RGB conversion
7157 * is supported, but eventually this should handle various
7158 * RGB<->YCbCr scenarios as well.
7159 */
50f3b016 7160static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7161{
7162 struct drm_device *dev = crtc->dev;
7163 struct drm_i915_private *dev_priv = dev->dev_private;
7164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7165 int pipe = intel_crtc->pipe;
7166 uint16_t coeff = 0x7800; /* 1.0 */
7167
7168 /*
7169 * TODO: Check what kind of values actually come out of the pipe
7170 * with these coeff/postoff values and adjust to get the best
7171 * accuracy. Perhaps we even need to take the bpc value into
7172 * consideration.
7173 */
7174
50f3b016 7175 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7176 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7177
7178 /*
7179 * GY/GU and RY/RU should be the other way around according
7180 * to BSpec, but reality doesn't agree. Just set them up in
7181 * a way that results in the correct picture.
7182 */
7183 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7184 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7185
7186 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7187 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7188
7189 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7190 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7191
7192 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7193 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7194 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7195
7196 if (INTEL_INFO(dev)->gen > 6) {
7197 uint16_t postoff = 0;
7198
50f3b016 7199 if (intel_crtc->config.limited_color_range)
32cf0cb0 7200 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7201
7202 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7203 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7204 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7205
7206 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7207 } else {
7208 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7209
50f3b016 7210 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7211 mode |= CSC_BLACK_SCREEN_OFFSET;
7212
7213 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7214 }
7215}
7216
6ff93609 7217static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7218{
756f85cf
PZ
7219 struct drm_device *dev = crtc->dev;
7220 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7222 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7223 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7224 uint32_t val;
7225
3eff4faa 7226 val = 0;
ee2b0b38 7227
756f85cf 7228 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7229 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7230
6ff93609 7231 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7232 val |= PIPECONF_INTERLACED_ILK;
7233 else
7234 val |= PIPECONF_PROGRESSIVE;
7235
702e7a56
PZ
7236 I915_WRITE(PIPECONF(cpu_transcoder), val);
7237 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7238
7239 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7240 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7241
3cdf122c 7242 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7243 val = 0;
7244
7245 switch (intel_crtc->config.pipe_bpp) {
7246 case 18:
7247 val |= PIPEMISC_DITHER_6_BPC;
7248 break;
7249 case 24:
7250 val |= PIPEMISC_DITHER_8_BPC;
7251 break;
7252 case 30:
7253 val |= PIPEMISC_DITHER_10_BPC;
7254 break;
7255 case 36:
7256 val |= PIPEMISC_DITHER_12_BPC;
7257 break;
7258 default:
7259 /* Case prevented by pipe_config_set_bpp. */
7260 BUG();
7261 }
7262
7263 if (intel_crtc->config.dither)
7264 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7265
7266 I915_WRITE(PIPEMISC(pipe), val);
7267 }
ee2b0b38
PZ
7268}
7269
6591c6e4 7270static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7271 intel_clock_t *clock,
7272 bool *has_reduced_clock,
7273 intel_clock_t *reduced_clock)
7274{
7275 struct drm_device *dev = crtc->dev;
7276 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7277 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7278 int refclk;
d4906093 7279 const intel_limit_t *limit;
a16af721 7280 bool ret, is_lvds = false;
79e53945 7281
d0737e1d 7282 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7283
d9d444cb 7284 refclk = ironlake_get_refclk(crtc);
79e53945 7285
d4906093
ML
7286 /*
7287 * Returns a set of divisors for the desired target clock with the given
7288 * refclk, or FALSE. The returned values represent the clock equation:
7289 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7290 */
409ee761 7291 limit = intel_limit(intel_crtc, refclk);
a919ff14 7292 ret = dev_priv->display.find_dpll(limit, intel_crtc,
d0737e1d 7293 intel_crtc->new_config->port_clock,
ee9300bb 7294 refclk, NULL, clock);
6591c6e4
PZ
7295 if (!ret)
7296 return false;
cda4b7d3 7297
ddc9003c 7298 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7299 /*
7300 * Ensure we match the reduced clock's P to the target clock.
7301 * If the clocks don't match, we can't switch the display clock
7302 * by using the FP0/FP1. In such case we will disable the LVDS
7303 * downclock feature.
7304 */
ee9300bb 7305 *has_reduced_clock =
a919ff14 7306 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7307 dev_priv->lvds_downclock,
7308 refclk, clock,
7309 reduced_clock);
652c393a 7310 }
61e9653f 7311
6591c6e4
PZ
7312 return true;
7313}
7314
d4b1931c
PZ
7315int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7316{
7317 /*
7318 * Account for spread spectrum to avoid
7319 * oversubscribing the link. Max center spread
7320 * is 2.5%; use 5% for safety's sake.
7321 */
7322 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7323 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7324}
7325
7429e9d4 7326static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7327{
7429e9d4 7328 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7329}
7330
de13a2e3 7331static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7332 u32 *fp,
9a7c7890 7333 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7334{
de13a2e3 7335 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7336 struct drm_device *dev = crtc->dev;
7337 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7338 struct intel_encoder *intel_encoder;
7339 uint32_t dpll;
6cc5f341 7340 int factor, num_connectors = 0;
09ede541 7341 bool is_lvds = false, is_sdvo = false;
79e53945 7342
d0737e1d
ACO
7343 for_each_intel_encoder(dev, intel_encoder) {
7344 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7345 continue;
7346
de13a2e3 7347 switch (intel_encoder->type) {
79e53945
JB
7348 case INTEL_OUTPUT_LVDS:
7349 is_lvds = true;
7350 break;
7351 case INTEL_OUTPUT_SDVO:
7d57382e 7352 case INTEL_OUTPUT_HDMI:
79e53945 7353 is_sdvo = true;
79e53945 7354 break;
6847d71b
PZ
7355 default:
7356 break;
79e53945 7357 }
43565a06 7358
c751ce4f 7359 num_connectors++;
79e53945 7360 }
79e53945 7361
c1858123 7362 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7363 factor = 21;
7364 if (is_lvds) {
7365 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7366 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7367 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7368 factor = 25;
d0737e1d 7369 } else if (intel_crtc->new_config->sdvo_tv_clock)
8febb297 7370 factor = 20;
c1858123 7371
d0737e1d 7372 if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7d0ac5b7 7373 *fp |= FP_CB_TUNE;
2c07245f 7374
9a7c7890
DV
7375 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7376 *fp2 |= FP_CB_TUNE;
7377
5eddb70b 7378 dpll = 0;
2c07245f 7379
a07d6787
EA
7380 if (is_lvds)
7381 dpll |= DPLLB_MODE_LVDS;
7382 else
7383 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7384
d0737e1d 7385 dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
ef1b460d 7386 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7387
7388 if (is_sdvo)
4a33e48d 7389 dpll |= DPLL_SDVO_HIGH_SPEED;
d0737e1d 7390 if (intel_crtc->new_config->has_dp_encoder)
4a33e48d 7391 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7392
a07d6787 7393 /* compute bitmask from p1 value */
d0737e1d 7394 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7395 /* also FPA1 */
d0737e1d 7396 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7397
d0737e1d 7398 switch (intel_crtc->new_config->dpll.p2) {
a07d6787
EA
7399 case 5:
7400 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7401 break;
7402 case 7:
7403 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7404 break;
7405 case 10:
7406 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7407 break;
7408 case 14:
7409 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7410 break;
79e53945
JB
7411 }
7412
b4c09f3b 7413 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7414 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7415 else
7416 dpll |= PLL_REF_INPUT_DREFCLK;
7417
959e16d6 7418 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7419}
7420
3fb37703 7421static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
de13a2e3 7422{
c7653199 7423 struct drm_device *dev = crtc->base.dev;
de13a2e3 7424 intel_clock_t clock, reduced_clock;
cbbab5bd 7425 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7426 bool ok, has_reduced_clock = false;
8b47047b 7427 bool is_lvds = false;
e2b78267 7428 struct intel_shared_dpll *pll;
de13a2e3 7429
409ee761 7430 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7431
5dc5298b
PZ
7432 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7433 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7434
c7653199 7435 ok = ironlake_compute_clocks(&crtc->base, &clock,
de13a2e3 7436 &has_reduced_clock, &reduced_clock);
d0737e1d 7437 if (!ok && !crtc->new_config->clock_set) {
de13a2e3
PZ
7438 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7439 return -EINVAL;
79e53945 7440 }
f47709a9 7441 /* Compat-code for transition, will disappear. */
d0737e1d
ACO
7442 if (!crtc->new_config->clock_set) {
7443 crtc->new_config->dpll.n = clock.n;
7444 crtc->new_config->dpll.m1 = clock.m1;
7445 crtc->new_config->dpll.m2 = clock.m2;
7446 crtc->new_config->dpll.p1 = clock.p1;
7447 crtc->new_config->dpll.p2 = clock.p2;
f47709a9 7448 }
79e53945 7449
5dc5298b 7450 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
d0737e1d
ACO
7451 if (crtc->new_config->has_pch_encoder) {
7452 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
cbbab5bd 7453 if (has_reduced_clock)
7429e9d4 7454 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7455
c7653199 7456 dpll = ironlake_compute_dpll(crtc,
cbbab5bd
DV
7457 &fp, &reduced_clock,
7458 has_reduced_clock ? &fp2 : NULL);
7459
d0737e1d
ACO
7460 crtc->new_config->dpll_hw_state.dpll = dpll;
7461 crtc->new_config->dpll_hw_state.fp0 = fp;
66e985c0 7462 if (has_reduced_clock)
d0737e1d 7463 crtc->new_config->dpll_hw_state.fp1 = fp2;
66e985c0 7464 else
d0737e1d 7465 crtc->new_config->dpll_hw_state.fp1 = fp;
66e985c0 7466
c7653199 7467 pll = intel_get_shared_dpll(crtc);
ee7b9f93 7468 if (pll == NULL) {
84f44ce7 7469 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7470 pipe_name(crtc->pipe));
4b645f14
JB
7471 return -EINVAL;
7472 }
3fb37703 7473 }
79e53945 7474
d330a953 7475 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7476 crtc->lowfreq_avail = true;
bcd644e0 7477 else
c7653199 7478 crtc->lowfreq_avail = false;
e2b78267 7479
c8f7a0db 7480 return 0;
79e53945
JB
7481}
7482
eb14cb74
VS
7483static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7484 struct intel_link_m_n *m_n)
7485{
7486 struct drm_device *dev = crtc->base.dev;
7487 struct drm_i915_private *dev_priv = dev->dev_private;
7488 enum pipe pipe = crtc->pipe;
7489
7490 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7491 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7492 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7493 & ~TU_SIZE_MASK;
7494 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7495 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7496 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7497}
7498
7499static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7500 enum transcoder transcoder,
b95af8be
VK
7501 struct intel_link_m_n *m_n,
7502 struct intel_link_m_n *m2_n2)
72419203
DV
7503{
7504 struct drm_device *dev = crtc->base.dev;
7505 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7506 enum pipe pipe = crtc->pipe;
72419203 7507
eb14cb74
VS
7508 if (INTEL_INFO(dev)->gen >= 5) {
7509 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7510 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7511 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7512 & ~TU_SIZE_MASK;
7513 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7514 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7515 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7516 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7517 * gen < 8) and if DRRS is supported (to make sure the
7518 * registers are not unnecessarily read).
7519 */
7520 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7521 crtc->config.has_drrs) {
7522 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7523 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7524 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7525 & ~TU_SIZE_MASK;
7526 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7527 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7528 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7529 }
eb14cb74
VS
7530 } else {
7531 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7532 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7533 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7534 & ~TU_SIZE_MASK;
7535 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7536 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7537 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7538 }
7539}
7540
7541void intel_dp_get_m_n(struct intel_crtc *crtc,
7542 struct intel_crtc_config *pipe_config)
7543{
7544 if (crtc->config.has_pch_encoder)
7545 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7546 else
7547 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7548 &pipe_config->dp_m_n,
7549 &pipe_config->dp_m2_n2);
eb14cb74 7550}
72419203 7551
eb14cb74
VS
7552static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7553 struct intel_crtc_config *pipe_config)
7554{
7555 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7556 &pipe_config->fdi_m_n, NULL);
72419203
DV
7557}
7558
2fa2fe9a
DV
7559static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7560 struct intel_crtc_config *pipe_config)
7561{
7562 struct drm_device *dev = crtc->base.dev;
7563 struct drm_i915_private *dev_priv = dev->dev_private;
7564 uint32_t tmp;
7565
7566 tmp = I915_READ(PF_CTL(crtc->pipe));
7567
7568 if (tmp & PF_ENABLE) {
fd4daa9c 7569 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7570 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7571 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7572
7573 /* We currently do not free assignements of panel fitters on
7574 * ivb/hsw (since we don't use the higher upscaling modes which
7575 * differentiates them) so just WARN about this case for now. */
7576 if (IS_GEN7(dev)) {
7577 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7578 PF_PIPE_SEL_IVB(crtc->pipe));
7579 }
2fa2fe9a 7580 }
79e53945
JB
7581}
7582
4c6baa59
JB
7583static void ironlake_get_plane_config(struct intel_crtc *crtc,
7584 struct intel_plane_config *plane_config)
7585{
7586 struct drm_device *dev = crtc->base.dev;
7587 struct drm_i915_private *dev_priv = dev->dev_private;
7588 u32 val, base, offset;
7589 int pipe = crtc->pipe, plane = crtc->plane;
7590 int fourcc, pixel_format;
7591 int aligned_height;
7592
66e514c1
DA
7593 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7594 if (!crtc->base.primary->fb) {
4c6baa59
JB
7595 DRM_DEBUG_KMS("failed to alloc fb\n");
7596 return;
7597 }
7598
7599 val = I915_READ(DSPCNTR(plane));
7600
7601 if (INTEL_INFO(dev)->gen >= 4)
7602 if (val & DISPPLANE_TILED)
7603 plane_config->tiled = true;
7604
7605 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7606 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7607 crtc->base.primary->fb->pixel_format = fourcc;
7608 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7609 drm_format_plane_cpp(fourcc, 0) * 8;
7610
7611 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7612 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7613 offset = I915_READ(DSPOFFSET(plane));
7614 } else {
7615 if (plane_config->tiled)
7616 offset = I915_READ(DSPTILEOFF(plane));
7617 else
7618 offset = I915_READ(DSPLINOFF(plane));
7619 }
7620 plane_config->base = base;
7621
7622 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7623 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7624 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7625
7626 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7627 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7628
66e514c1 7629 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7630 plane_config->tiled);
7631
1267a26b
FF
7632 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7633 aligned_height);
4c6baa59
JB
7634
7635 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7636 pipe, plane, crtc->base.primary->fb->width,
7637 crtc->base.primary->fb->height,
7638 crtc->base.primary->fb->bits_per_pixel, base,
7639 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7640 plane_config->size);
7641}
7642
0e8ffe1b
DV
7643static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7644 struct intel_crtc_config *pipe_config)
7645{
7646 struct drm_device *dev = crtc->base.dev;
7647 struct drm_i915_private *dev_priv = dev->dev_private;
7648 uint32_t tmp;
7649
f458ebbc
DV
7650 if (!intel_display_power_is_enabled(dev_priv,
7651 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7652 return false;
7653
e143a21c 7654 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7655 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7656
0e8ffe1b
DV
7657 tmp = I915_READ(PIPECONF(crtc->pipe));
7658 if (!(tmp & PIPECONF_ENABLE))
7659 return false;
7660
42571aef
VS
7661 switch (tmp & PIPECONF_BPC_MASK) {
7662 case PIPECONF_6BPC:
7663 pipe_config->pipe_bpp = 18;
7664 break;
7665 case PIPECONF_8BPC:
7666 pipe_config->pipe_bpp = 24;
7667 break;
7668 case PIPECONF_10BPC:
7669 pipe_config->pipe_bpp = 30;
7670 break;
7671 case PIPECONF_12BPC:
7672 pipe_config->pipe_bpp = 36;
7673 break;
7674 default:
7675 break;
7676 }
7677
b5a9fa09
DV
7678 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7679 pipe_config->limited_color_range = true;
7680
ab9412ba 7681 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7682 struct intel_shared_dpll *pll;
7683
88adfff1
DV
7684 pipe_config->has_pch_encoder = true;
7685
627eb5a3
DV
7686 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7687 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7688 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7689
7690 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7691
c0d43d62 7692 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7693 pipe_config->shared_dpll =
7694 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7695 } else {
7696 tmp = I915_READ(PCH_DPLL_SEL);
7697 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7698 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7699 else
7700 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7701 }
66e985c0
DV
7702
7703 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7704
7705 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7706 &pipe_config->dpll_hw_state));
c93f54cf
DV
7707
7708 tmp = pipe_config->dpll_hw_state.dpll;
7709 pipe_config->pixel_multiplier =
7710 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7711 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7712
7713 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7714 } else {
7715 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7716 }
7717
1bd1bd80
DV
7718 intel_get_pipe_timings(crtc, pipe_config);
7719
2fa2fe9a
DV
7720 ironlake_get_pfit_config(crtc, pipe_config);
7721
0e8ffe1b
DV
7722 return true;
7723}
7724
be256dc7
PZ
7725static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7726{
7727 struct drm_device *dev = dev_priv->dev;
be256dc7 7728 struct intel_crtc *crtc;
be256dc7 7729
d3fcc808 7730 for_each_intel_crtc(dev, crtc)
798183c5 7731 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7732 pipe_name(crtc->pipe));
7733
7734 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7735 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7736 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7737 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7738 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7739 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7740 "CPU PWM1 enabled\n");
c5107b87
PZ
7741 if (IS_HASWELL(dev))
7742 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7743 "CPU PWM2 enabled\n");
be256dc7
PZ
7744 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7745 "PCH PWM1 enabled\n");
7746 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7747 "Utility pin enabled\n");
7748 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7749
9926ada1
PZ
7750 /*
7751 * In theory we can still leave IRQs enabled, as long as only the HPD
7752 * interrupts remain enabled. We used to check for that, but since it's
7753 * gen-specific and since we only disable LCPLL after we fully disable
7754 * the interrupts, the check below should be enough.
7755 */
9df7575f 7756 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7757}
7758
9ccd5aeb
PZ
7759static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7760{
7761 struct drm_device *dev = dev_priv->dev;
7762
7763 if (IS_HASWELL(dev))
7764 return I915_READ(D_COMP_HSW);
7765 else
7766 return I915_READ(D_COMP_BDW);
7767}
7768
3c4c9b81
PZ
7769static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7770{
7771 struct drm_device *dev = dev_priv->dev;
7772
7773 if (IS_HASWELL(dev)) {
7774 mutex_lock(&dev_priv->rps.hw_lock);
7775 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7776 val))
f475dadf 7777 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7778 mutex_unlock(&dev_priv->rps.hw_lock);
7779 } else {
9ccd5aeb
PZ
7780 I915_WRITE(D_COMP_BDW, val);
7781 POSTING_READ(D_COMP_BDW);
3c4c9b81 7782 }
be256dc7
PZ
7783}
7784
7785/*
7786 * This function implements pieces of two sequences from BSpec:
7787 * - Sequence for display software to disable LCPLL
7788 * - Sequence for display software to allow package C8+
7789 * The steps implemented here are just the steps that actually touch the LCPLL
7790 * register. Callers should take care of disabling all the display engine
7791 * functions, doing the mode unset, fixing interrupts, etc.
7792 */
6ff58d53
PZ
7793static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7794 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7795{
7796 uint32_t val;
7797
7798 assert_can_disable_lcpll(dev_priv);
7799
7800 val = I915_READ(LCPLL_CTL);
7801
7802 if (switch_to_fclk) {
7803 val |= LCPLL_CD_SOURCE_FCLK;
7804 I915_WRITE(LCPLL_CTL, val);
7805
7806 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7807 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7808 DRM_ERROR("Switching to FCLK failed\n");
7809
7810 val = I915_READ(LCPLL_CTL);
7811 }
7812
7813 val |= LCPLL_PLL_DISABLE;
7814 I915_WRITE(LCPLL_CTL, val);
7815 POSTING_READ(LCPLL_CTL);
7816
7817 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7818 DRM_ERROR("LCPLL still locked\n");
7819
9ccd5aeb 7820 val = hsw_read_dcomp(dev_priv);
be256dc7 7821 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7822 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7823 ndelay(100);
7824
9ccd5aeb
PZ
7825 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7826 1))
be256dc7
PZ
7827 DRM_ERROR("D_COMP RCOMP still in progress\n");
7828
7829 if (allow_power_down) {
7830 val = I915_READ(LCPLL_CTL);
7831 val |= LCPLL_POWER_DOWN_ALLOW;
7832 I915_WRITE(LCPLL_CTL, val);
7833 POSTING_READ(LCPLL_CTL);
7834 }
7835}
7836
7837/*
7838 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7839 * source.
7840 */
6ff58d53 7841static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7842{
7843 uint32_t val;
7844
7845 val = I915_READ(LCPLL_CTL);
7846
7847 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7848 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7849 return;
7850
a8a8bd54
PZ
7851 /*
7852 * Make sure we're not on PC8 state before disabling PC8, otherwise
7853 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7854 *
7855 * The other problem is that hsw_restore_lcpll() is called as part of
7856 * the runtime PM resume sequence, so we can't just call
7857 * gen6_gt_force_wake_get() because that function calls
7858 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7859 * while we are on the resume sequence. So to solve this problem we have
7860 * to call special forcewake code that doesn't touch runtime PM and
7861 * doesn't enable the forcewake delayed work.
7862 */
d2e40e27 7863 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7864 if (dev_priv->uncore.forcewake_count++ == 0)
7865 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
d2e40e27 7866 spin_unlock_irq(&dev_priv->uncore.lock);
215733fa 7867
be256dc7
PZ
7868 if (val & LCPLL_POWER_DOWN_ALLOW) {
7869 val &= ~LCPLL_POWER_DOWN_ALLOW;
7870 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7871 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7872 }
7873
9ccd5aeb 7874 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7875 val |= D_COMP_COMP_FORCE;
7876 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7877 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7878
7879 val = I915_READ(LCPLL_CTL);
7880 val &= ~LCPLL_PLL_DISABLE;
7881 I915_WRITE(LCPLL_CTL, val);
7882
7883 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7884 DRM_ERROR("LCPLL not locked yet\n");
7885
7886 if (val & LCPLL_CD_SOURCE_FCLK) {
7887 val = I915_READ(LCPLL_CTL);
7888 val &= ~LCPLL_CD_SOURCE_FCLK;
7889 I915_WRITE(LCPLL_CTL, val);
7890
7891 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7892 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7893 DRM_ERROR("Switching back to LCPLL failed\n");
7894 }
215733fa 7895
a8a8bd54 7896 /* See the big comment above. */
d2e40e27 7897 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7898 if (--dev_priv->uncore.forcewake_count == 0)
7899 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
d2e40e27 7900 spin_unlock_irq(&dev_priv->uncore.lock);
be256dc7
PZ
7901}
7902
765dab67
PZ
7903/*
7904 * Package states C8 and deeper are really deep PC states that can only be
7905 * reached when all the devices on the system allow it, so even if the graphics
7906 * device allows PC8+, it doesn't mean the system will actually get to these
7907 * states. Our driver only allows PC8+ when going into runtime PM.
7908 *
7909 * The requirements for PC8+ are that all the outputs are disabled, the power
7910 * well is disabled and most interrupts are disabled, and these are also
7911 * requirements for runtime PM. When these conditions are met, we manually do
7912 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7913 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7914 * hang the machine.
7915 *
7916 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7917 * the state of some registers, so when we come back from PC8+ we need to
7918 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7919 * need to take care of the registers kept by RC6. Notice that this happens even
7920 * if we don't put the device in PCI D3 state (which is what currently happens
7921 * because of the runtime PM support).
7922 *
7923 * For more, read "Display Sequences for Package C8" on the hardware
7924 * documentation.
7925 */
a14cb6fc 7926void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7927{
c67a470b
PZ
7928 struct drm_device *dev = dev_priv->dev;
7929 uint32_t val;
7930
c67a470b
PZ
7931 DRM_DEBUG_KMS("Enabling package C8+\n");
7932
c67a470b
PZ
7933 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7934 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7935 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7936 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7937 }
7938
7939 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7940 hsw_disable_lcpll(dev_priv, true, true);
7941}
7942
a14cb6fc 7943void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7944{
7945 struct drm_device *dev = dev_priv->dev;
7946 uint32_t val;
7947
c67a470b
PZ
7948 DRM_DEBUG_KMS("Disabling package C8+\n");
7949
7950 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7951 lpt_init_pch_refclk(dev);
7952
7953 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7954 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7955 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7956 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7957 }
7958
7959 intel_prepare_ddi(dev);
c67a470b
PZ
7960}
7961
9a952a0d
PZ
7962static void snb_modeset_global_resources(struct drm_device *dev)
7963{
7964 modeset_update_crtc_power_domains(dev);
7965}
7966
4f074129
ID
7967static void haswell_modeset_global_resources(struct drm_device *dev)
7968{
da723569 7969 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7970}
7971
797d0259 7972static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
09b4ddf9 7973{
c7653199 7974 if (!intel_ddi_pll_select(crtc))
6441ab5f 7975 return -EINVAL;
716c2e55 7976
c7653199 7977 crtc->lowfreq_avail = false;
644cef34 7978
c8f7a0db 7979 return 0;
79e53945
JB
7980}
7981
7d2c8175
DL
7982static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7983 enum port port,
7984 struct intel_crtc_config *pipe_config)
7985{
7986 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7987
7988 switch (pipe_config->ddi_pll_sel) {
7989 case PORT_CLK_SEL_WRPLL1:
7990 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7991 break;
7992 case PORT_CLK_SEL_WRPLL2:
7993 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7994 break;
7995 }
7996}
7997
26804afd
DV
7998static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7999 struct intel_crtc_config *pipe_config)
8000{
8001 struct drm_device *dev = crtc->base.dev;
8002 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8003 struct intel_shared_dpll *pll;
26804afd
DV
8004 enum port port;
8005 uint32_t tmp;
8006
8007 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8008
8009 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8010
7d2c8175 8011 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8012
d452c5b6
DV
8013 if (pipe_config->shared_dpll >= 0) {
8014 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8015
8016 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8017 &pipe_config->dpll_hw_state));
8018 }
8019
26804afd
DV
8020 /*
8021 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8022 * DDI E. So just check whether this pipe is wired to DDI E and whether
8023 * the PCH transcoder is on.
8024 */
ca370455
DL
8025 if (INTEL_INFO(dev)->gen < 9 &&
8026 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8027 pipe_config->has_pch_encoder = true;
8028
8029 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8030 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8031 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8032
8033 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8034 }
8035}
8036
0e8ffe1b
DV
8037static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8038 struct intel_crtc_config *pipe_config)
8039{
8040 struct drm_device *dev = crtc->base.dev;
8041 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8042 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8043 uint32_t tmp;
8044
f458ebbc 8045 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8046 POWER_DOMAIN_PIPE(crtc->pipe)))
8047 return false;
8048
e143a21c 8049 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8050 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8051
eccb140b
DV
8052 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8053 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8054 enum pipe trans_edp_pipe;
8055 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8056 default:
8057 WARN(1, "unknown pipe linked to edp transcoder\n");
8058 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8059 case TRANS_DDI_EDP_INPUT_A_ON:
8060 trans_edp_pipe = PIPE_A;
8061 break;
8062 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8063 trans_edp_pipe = PIPE_B;
8064 break;
8065 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8066 trans_edp_pipe = PIPE_C;
8067 break;
8068 }
8069
8070 if (trans_edp_pipe == crtc->pipe)
8071 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8072 }
8073
f458ebbc 8074 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8075 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8076 return false;
8077
eccb140b 8078 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8079 if (!(tmp & PIPECONF_ENABLE))
8080 return false;
8081
26804afd 8082 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8083
1bd1bd80
DV
8084 intel_get_pipe_timings(crtc, pipe_config);
8085
2fa2fe9a 8086 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
f458ebbc 8087 if (intel_display_power_is_enabled(dev_priv, pfit_domain))
2fa2fe9a 8088 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 8089
e59150dc
JB
8090 if (IS_HASWELL(dev))
8091 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8092 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8093
ebb69c95
CT
8094 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8095 pipe_config->pixel_multiplier =
8096 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8097 } else {
8098 pipe_config->pixel_multiplier = 1;
8099 }
6c49f241 8100
0e8ffe1b
DV
8101 return true;
8102}
8103
560b85bb
CW
8104static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8105{
8106 struct drm_device *dev = crtc->dev;
8107 struct drm_i915_private *dev_priv = dev->dev_private;
8108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8109 uint32_t cntl = 0, size = 0;
560b85bb 8110
dc41c154
VS
8111 if (base) {
8112 unsigned int width = intel_crtc->cursor_width;
8113 unsigned int height = intel_crtc->cursor_height;
8114 unsigned int stride = roundup_pow_of_two(width) * 4;
8115
8116 switch (stride) {
8117 default:
8118 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8119 width, stride);
8120 stride = 256;
8121 /* fallthrough */
8122 case 256:
8123 case 512:
8124 case 1024:
8125 case 2048:
8126 break;
4b0e333e
CW
8127 }
8128
dc41c154
VS
8129 cntl |= CURSOR_ENABLE |
8130 CURSOR_GAMMA_ENABLE |
8131 CURSOR_FORMAT_ARGB |
8132 CURSOR_STRIDE(stride);
8133
8134 size = (height << 12) | width;
4b0e333e 8135 }
560b85bb 8136
dc41c154
VS
8137 if (intel_crtc->cursor_cntl != 0 &&
8138 (intel_crtc->cursor_base != base ||
8139 intel_crtc->cursor_size != size ||
8140 intel_crtc->cursor_cntl != cntl)) {
8141 /* On these chipsets we can only modify the base/size/stride
8142 * whilst the cursor is disabled.
8143 */
8144 I915_WRITE(_CURACNTR, 0);
4b0e333e 8145 POSTING_READ(_CURACNTR);
dc41c154 8146 intel_crtc->cursor_cntl = 0;
4b0e333e 8147 }
560b85bb 8148
99d1f387 8149 if (intel_crtc->cursor_base != base) {
9db4a9c7 8150 I915_WRITE(_CURABASE, base);
99d1f387
VS
8151 intel_crtc->cursor_base = base;
8152 }
4726e0b0 8153
dc41c154
VS
8154 if (intel_crtc->cursor_size != size) {
8155 I915_WRITE(CURSIZE, size);
8156 intel_crtc->cursor_size = size;
4b0e333e 8157 }
560b85bb 8158
4b0e333e 8159 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8160 I915_WRITE(_CURACNTR, cntl);
8161 POSTING_READ(_CURACNTR);
4b0e333e 8162 intel_crtc->cursor_cntl = cntl;
560b85bb 8163 }
560b85bb
CW
8164}
8165
560b85bb 8166static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8167{
8168 struct drm_device *dev = crtc->dev;
8169 struct drm_i915_private *dev_priv = dev->dev_private;
8170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8171 int pipe = intel_crtc->pipe;
4b0e333e
CW
8172 uint32_t cntl;
8173
8174 cntl = 0;
8175 if (base) {
8176 cntl = MCURSOR_GAMMA_ENABLE;
8177 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8178 case 64:
8179 cntl |= CURSOR_MODE_64_ARGB_AX;
8180 break;
8181 case 128:
8182 cntl |= CURSOR_MODE_128_ARGB_AX;
8183 break;
8184 case 256:
8185 cntl |= CURSOR_MODE_256_ARGB_AX;
8186 break;
8187 default:
8188 WARN_ON(1);
8189 return;
65a21cd6 8190 }
4b0e333e 8191 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8192
8193 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8194 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8195 }
65a21cd6 8196
4398ad45
VS
8197 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8198 cntl |= CURSOR_ROTATE_180;
8199
4b0e333e
CW
8200 if (intel_crtc->cursor_cntl != cntl) {
8201 I915_WRITE(CURCNTR(pipe), cntl);
8202 POSTING_READ(CURCNTR(pipe));
8203 intel_crtc->cursor_cntl = cntl;
65a21cd6 8204 }
4b0e333e 8205
65a21cd6 8206 /* and commit changes on next vblank */
5efb3e28
VS
8207 I915_WRITE(CURBASE(pipe), base);
8208 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8209
8210 intel_crtc->cursor_base = base;
65a21cd6
JB
8211}
8212
cda4b7d3 8213/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8214static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8215 bool on)
cda4b7d3
CW
8216{
8217 struct drm_device *dev = crtc->dev;
8218 struct drm_i915_private *dev_priv = dev->dev_private;
8219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8220 int pipe = intel_crtc->pipe;
3d7d6510
MR
8221 int x = crtc->cursor_x;
8222 int y = crtc->cursor_y;
d6e4db15 8223 u32 base = 0, pos = 0;
cda4b7d3 8224
d6e4db15 8225 if (on)
cda4b7d3 8226 base = intel_crtc->cursor_addr;
cda4b7d3 8227
d6e4db15
VS
8228 if (x >= intel_crtc->config.pipe_src_w)
8229 base = 0;
8230
8231 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8232 base = 0;
8233
8234 if (x < 0) {
efc9064e 8235 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8236 base = 0;
8237
8238 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8239 x = -x;
8240 }
8241 pos |= x << CURSOR_X_SHIFT;
8242
8243 if (y < 0) {
efc9064e 8244 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8245 base = 0;
8246
8247 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8248 y = -y;
8249 }
8250 pos |= y << CURSOR_Y_SHIFT;
8251
4b0e333e 8252 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8253 return;
8254
5efb3e28
VS
8255 I915_WRITE(CURPOS(pipe), pos);
8256
4398ad45
VS
8257 /* ILK+ do this automagically */
8258 if (HAS_GMCH_DISPLAY(dev) &&
8259 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8260 base += (intel_crtc->cursor_height *
8261 intel_crtc->cursor_width - 1) * 4;
8262 }
8263
8ac54669 8264 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8265 i845_update_cursor(crtc, base);
8266 else
8267 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8268}
8269
dc41c154
VS
8270static bool cursor_size_ok(struct drm_device *dev,
8271 uint32_t width, uint32_t height)
8272{
8273 if (width == 0 || height == 0)
8274 return false;
8275
8276 /*
8277 * 845g/865g are special in that they are only limited by
8278 * the width of their cursors, the height is arbitrary up to
8279 * the precision of the register. Everything else requires
8280 * square cursors, limited to a few power-of-two sizes.
8281 */
8282 if (IS_845G(dev) || IS_I865G(dev)) {
8283 if ((width & 63) != 0)
8284 return false;
8285
8286 if (width > (IS_845G(dev) ? 64 : 512))
8287 return false;
8288
8289 if (height > 1023)
8290 return false;
8291 } else {
8292 switch (width | height) {
8293 case 256:
8294 case 128:
8295 if (IS_GEN2(dev))
8296 return false;
8297 case 64:
8298 break;
8299 default:
8300 return false;
8301 }
8302 }
8303
8304 return true;
8305}
8306
e3287951
MR
8307static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8308 struct drm_i915_gem_object *obj,
8309 uint32_t width, uint32_t height)
79e53945
JB
8310{
8311 struct drm_device *dev = crtc->dev;
8312 struct drm_i915_private *dev_priv = dev->dev_private;
8313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8314 enum pipe pipe = intel_crtc->pipe;
757f9a3e 8315 unsigned old_width;
cda4b7d3 8316 uint32_t addr;
3f8bc370 8317 int ret;
79e53945 8318
79e53945 8319 /* if we want to turn off the cursor ignore width and height */
e3287951 8320 if (!obj) {
28c97730 8321 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8322 addr = 0;
5004417d 8323 mutex_lock(&dev->struct_mutex);
3f8bc370 8324 goto finish;
79e53945
JB
8325 }
8326
71acb5eb 8327 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8328 mutex_lock(&dev->struct_mutex);
3d13ef2e 8329 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8330 unsigned alignment;
8331
d6dd6843
PZ
8332 /*
8333 * Global gtt pte registers are special registers which actually
8334 * forward writes to a chunk of system memory. Which means that
8335 * there is no risk that the register values disappear as soon
8336 * as we call intel_runtime_pm_put(), so it is correct to wrap
8337 * only the pin/unpin/fence and not more.
8338 */
8339 intel_runtime_pm_get(dev_priv);
8340
693db184
CW
8341 /* Note that the w/a also requires 2 PTE of padding following
8342 * the bo. We currently fill all unused PTE with the shadow
8343 * page and so we should always have valid PTE following the
8344 * cursor preventing the VT-d warning.
8345 */
8346 alignment = 0;
8347 if (need_vtd_wa(dev))
8348 alignment = 64*1024;
8349
8350 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8351 if (ret) {
3b25b31f 8352 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8353 intel_runtime_pm_put(dev_priv);
2da3b9b9 8354 goto fail_locked;
e7b526bb
CW
8355 }
8356
d9e86c0e
CW
8357 ret = i915_gem_object_put_fence(obj);
8358 if (ret) {
3b25b31f 8359 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8360 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8361 goto fail_unpin;
8362 }
8363
f343c5f6 8364 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8365
8366 intel_runtime_pm_put(dev_priv);
71acb5eb 8367 } else {
6eeefaf3 8368 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8369 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8370 if (ret) {
3b25b31f 8371 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8372 goto fail_locked;
71acb5eb 8373 }
00731155 8374 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8375 }
8376
3f8bc370 8377 finish:
3f8bc370 8378 if (intel_crtc->cursor_bo) {
00731155 8379 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8380 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8381 }
80824003 8382
a071fa00
DV
8383 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8384 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8385 mutex_unlock(&dev->struct_mutex);
3f8bc370 8386
64f962e3
CW
8387 old_width = intel_crtc->cursor_width;
8388
3f8bc370 8389 intel_crtc->cursor_addr = addr;
05394f39 8390 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8391 intel_crtc->cursor_width = width;
8392 intel_crtc->cursor_height = height;
8393
64f962e3
CW
8394 if (intel_crtc->active) {
8395 if (old_width != width)
8396 intel_update_watermarks(crtc);
f2f5f771 8397 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
3f8bc370 8398
3f20df98
GP
8399 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8400 }
f99d7069 8401
79e53945 8402 return 0;
e7b526bb 8403fail_unpin:
cc98b413 8404 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8405fail_locked:
34b8686e
DA
8406 mutex_unlock(&dev->struct_mutex);
8407 return ret;
79e53945
JB
8408}
8409
79e53945 8410static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8411 u16 *blue, uint32_t start, uint32_t size)
79e53945 8412{
7203425a 8413 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8415
7203425a 8416 for (i = start; i < end; i++) {
79e53945
JB
8417 intel_crtc->lut_r[i] = red[i] >> 8;
8418 intel_crtc->lut_g[i] = green[i] >> 8;
8419 intel_crtc->lut_b[i] = blue[i] >> 8;
8420 }
8421
8422 intel_crtc_load_lut(crtc);
8423}
8424
79e53945
JB
8425/* VESA 640x480x72Hz mode to set on the pipe */
8426static struct drm_display_mode load_detect_mode = {
8427 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8428 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8429};
8430
a8bb6818
DV
8431struct drm_framebuffer *
8432__intel_framebuffer_create(struct drm_device *dev,
8433 struct drm_mode_fb_cmd2 *mode_cmd,
8434 struct drm_i915_gem_object *obj)
d2dff872
CW
8435{
8436 struct intel_framebuffer *intel_fb;
8437 int ret;
8438
8439 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8440 if (!intel_fb) {
8441 drm_gem_object_unreference_unlocked(&obj->base);
8442 return ERR_PTR(-ENOMEM);
8443 }
8444
8445 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8446 if (ret)
8447 goto err;
d2dff872
CW
8448
8449 return &intel_fb->base;
dd4916c5
DV
8450err:
8451 drm_gem_object_unreference_unlocked(&obj->base);
8452 kfree(intel_fb);
8453
8454 return ERR_PTR(ret);
d2dff872
CW
8455}
8456
b5ea642a 8457static struct drm_framebuffer *
a8bb6818
DV
8458intel_framebuffer_create(struct drm_device *dev,
8459 struct drm_mode_fb_cmd2 *mode_cmd,
8460 struct drm_i915_gem_object *obj)
8461{
8462 struct drm_framebuffer *fb;
8463 int ret;
8464
8465 ret = i915_mutex_lock_interruptible(dev);
8466 if (ret)
8467 return ERR_PTR(ret);
8468 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8469 mutex_unlock(&dev->struct_mutex);
8470
8471 return fb;
8472}
8473
d2dff872
CW
8474static u32
8475intel_framebuffer_pitch_for_width(int width, int bpp)
8476{
8477 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8478 return ALIGN(pitch, 64);
8479}
8480
8481static u32
8482intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8483{
8484 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8485 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8486}
8487
8488static struct drm_framebuffer *
8489intel_framebuffer_create_for_mode(struct drm_device *dev,
8490 struct drm_display_mode *mode,
8491 int depth, int bpp)
8492{
8493 struct drm_i915_gem_object *obj;
0fed39bd 8494 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8495
8496 obj = i915_gem_alloc_object(dev,
8497 intel_framebuffer_size_for_mode(mode, bpp));
8498 if (obj == NULL)
8499 return ERR_PTR(-ENOMEM);
8500
8501 mode_cmd.width = mode->hdisplay;
8502 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8503 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8504 bpp);
5ca0c34a 8505 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8506
8507 return intel_framebuffer_create(dev, &mode_cmd, obj);
8508}
8509
8510static struct drm_framebuffer *
8511mode_fits_in_fbdev(struct drm_device *dev,
8512 struct drm_display_mode *mode)
8513{
4520f53a 8514#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8515 struct drm_i915_private *dev_priv = dev->dev_private;
8516 struct drm_i915_gem_object *obj;
8517 struct drm_framebuffer *fb;
8518
4c0e5528 8519 if (!dev_priv->fbdev)
d2dff872
CW
8520 return NULL;
8521
4c0e5528 8522 if (!dev_priv->fbdev->fb)
d2dff872
CW
8523 return NULL;
8524
4c0e5528
DV
8525 obj = dev_priv->fbdev->fb->obj;
8526 BUG_ON(!obj);
8527
8bcd4553 8528 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8529 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8530 fb->bits_per_pixel))
d2dff872
CW
8531 return NULL;
8532
01f2c773 8533 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8534 return NULL;
8535
8536 return fb;
4520f53a
DV
8537#else
8538 return NULL;
8539#endif
d2dff872
CW
8540}
8541
d2434ab7 8542bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8543 struct drm_display_mode *mode,
51fd371b
RC
8544 struct intel_load_detect_pipe *old,
8545 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8546{
8547 struct intel_crtc *intel_crtc;
d2434ab7
DV
8548 struct intel_encoder *intel_encoder =
8549 intel_attached_encoder(connector);
79e53945 8550 struct drm_crtc *possible_crtc;
4ef69c7a 8551 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8552 struct drm_crtc *crtc = NULL;
8553 struct drm_device *dev = encoder->dev;
94352cf9 8554 struct drm_framebuffer *fb;
51fd371b
RC
8555 struct drm_mode_config *config = &dev->mode_config;
8556 int ret, i = -1;
79e53945 8557
d2dff872 8558 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8559 connector->base.id, connector->name,
8e329a03 8560 encoder->base.id, encoder->name);
d2dff872 8561
51fd371b
RC
8562retry:
8563 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8564 if (ret)
8565 goto fail_unlock;
6e9f798d 8566
79e53945
JB
8567 /*
8568 * Algorithm gets a little messy:
7a5e4805 8569 *
79e53945
JB
8570 * - if the connector already has an assigned crtc, use it (but make
8571 * sure it's on first)
7a5e4805 8572 *
79e53945
JB
8573 * - try to find the first unused crtc that can drive this connector,
8574 * and use that if we find one
79e53945
JB
8575 */
8576
8577 /* See if we already have a CRTC for this connector */
8578 if (encoder->crtc) {
8579 crtc = encoder->crtc;
8261b191 8580
51fd371b
RC
8581 ret = drm_modeset_lock(&crtc->mutex, ctx);
8582 if (ret)
8583 goto fail_unlock;
7b24056b 8584
24218aac 8585 old->dpms_mode = connector->dpms;
8261b191
CW
8586 old->load_detect_temp = false;
8587
8588 /* Make sure the crtc and connector are running */
24218aac
DV
8589 if (connector->dpms != DRM_MODE_DPMS_ON)
8590 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8591
7173188d 8592 return true;
79e53945
JB
8593 }
8594
8595 /* Find an unused one (if possible) */
70e1e0ec 8596 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8597 i++;
8598 if (!(encoder->possible_crtcs & (1 << i)))
8599 continue;
a459249c
VS
8600 if (possible_crtc->enabled)
8601 continue;
8602 /* This can occur when applying the pipe A quirk on resume. */
8603 if (to_intel_crtc(possible_crtc)->new_enabled)
8604 continue;
8605
8606 crtc = possible_crtc;
8607 break;
79e53945
JB
8608 }
8609
8610 /*
8611 * If we didn't find an unused CRTC, don't use any.
8612 */
8613 if (!crtc) {
7173188d 8614 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8615 goto fail_unlock;
79e53945
JB
8616 }
8617
51fd371b
RC
8618 ret = drm_modeset_lock(&crtc->mutex, ctx);
8619 if (ret)
8620 goto fail_unlock;
fc303101
DV
8621 intel_encoder->new_crtc = to_intel_crtc(crtc);
8622 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8623
8624 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8625 intel_crtc->new_enabled = true;
8626 intel_crtc->new_config = &intel_crtc->config;
24218aac 8627 old->dpms_mode = connector->dpms;
8261b191 8628 old->load_detect_temp = true;
d2dff872 8629 old->release_fb = NULL;
79e53945 8630
6492711d
CW
8631 if (!mode)
8632 mode = &load_detect_mode;
79e53945 8633
d2dff872
CW
8634 /* We need a framebuffer large enough to accommodate all accesses
8635 * that the plane may generate whilst we perform load detection.
8636 * We can not rely on the fbcon either being present (we get called
8637 * during its initialisation to detect all boot displays, or it may
8638 * not even exist) or that it is large enough to satisfy the
8639 * requested mode.
8640 */
94352cf9
DV
8641 fb = mode_fits_in_fbdev(dev, mode);
8642 if (fb == NULL) {
d2dff872 8643 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8644 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8645 old->release_fb = fb;
d2dff872
CW
8646 } else
8647 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8648 if (IS_ERR(fb)) {
d2dff872 8649 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8650 goto fail;
79e53945 8651 }
79e53945 8652
c0c36b94 8653 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8654 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8655 if (old->release_fb)
8656 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8657 goto fail;
79e53945 8658 }
7173188d 8659
79e53945 8660 /* let the connector get through one full cycle before testing */
9d0498a2 8661 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8662 return true;
412b61d8
VS
8663
8664 fail:
8665 intel_crtc->new_enabled = crtc->enabled;
8666 if (intel_crtc->new_enabled)
8667 intel_crtc->new_config = &intel_crtc->config;
8668 else
8669 intel_crtc->new_config = NULL;
51fd371b
RC
8670fail_unlock:
8671 if (ret == -EDEADLK) {
8672 drm_modeset_backoff(ctx);
8673 goto retry;
8674 }
8675
412b61d8 8676 return false;
79e53945
JB
8677}
8678
d2434ab7 8679void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8680 struct intel_load_detect_pipe *old)
79e53945 8681{
d2434ab7
DV
8682 struct intel_encoder *intel_encoder =
8683 intel_attached_encoder(connector);
4ef69c7a 8684 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8685 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8687
d2dff872 8688 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8689 connector->base.id, connector->name,
8e329a03 8690 encoder->base.id, encoder->name);
d2dff872 8691
8261b191 8692 if (old->load_detect_temp) {
fc303101
DV
8693 to_intel_connector(connector)->new_encoder = NULL;
8694 intel_encoder->new_crtc = NULL;
412b61d8
VS
8695 intel_crtc->new_enabled = false;
8696 intel_crtc->new_config = NULL;
fc303101 8697 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8698
36206361
DV
8699 if (old->release_fb) {
8700 drm_framebuffer_unregister_private(old->release_fb);
8701 drm_framebuffer_unreference(old->release_fb);
8702 }
d2dff872 8703
0622a53c 8704 return;
79e53945
JB
8705 }
8706
c751ce4f 8707 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8708 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8709 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8710}
8711
da4a1efa
VS
8712static int i9xx_pll_refclk(struct drm_device *dev,
8713 const struct intel_crtc_config *pipe_config)
8714{
8715 struct drm_i915_private *dev_priv = dev->dev_private;
8716 u32 dpll = pipe_config->dpll_hw_state.dpll;
8717
8718 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8719 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8720 else if (HAS_PCH_SPLIT(dev))
8721 return 120000;
8722 else if (!IS_GEN2(dev))
8723 return 96000;
8724 else
8725 return 48000;
8726}
8727
79e53945 8728/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8729static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8730 struct intel_crtc_config *pipe_config)
79e53945 8731{
f1f644dc 8732 struct drm_device *dev = crtc->base.dev;
79e53945 8733 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8734 int pipe = pipe_config->cpu_transcoder;
293623f7 8735 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8736 u32 fp;
8737 intel_clock_t clock;
da4a1efa 8738 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8739
8740 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8741 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8742 else
293623f7 8743 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8744
8745 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8746 if (IS_PINEVIEW(dev)) {
8747 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8748 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8749 } else {
8750 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8751 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8752 }
8753
a6c45cf0 8754 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8755 if (IS_PINEVIEW(dev))
8756 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8757 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8758 else
8759 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8760 DPLL_FPA01_P1_POST_DIV_SHIFT);
8761
8762 switch (dpll & DPLL_MODE_MASK) {
8763 case DPLLB_MODE_DAC_SERIAL:
8764 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8765 5 : 10;
8766 break;
8767 case DPLLB_MODE_LVDS:
8768 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8769 7 : 14;
8770 break;
8771 default:
28c97730 8772 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8773 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8774 return;
79e53945
JB
8775 }
8776
ac58c3f0 8777 if (IS_PINEVIEW(dev))
da4a1efa 8778 pineview_clock(refclk, &clock);
ac58c3f0 8779 else
da4a1efa 8780 i9xx_clock(refclk, &clock);
79e53945 8781 } else {
0fb58223 8782 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8783 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8784
8785 if (is_lvds) {
8786 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8787 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8788
8789 if (lvds & LVDS_CLKB_POWER_UP)
8790 clock.p2 = 7;
8791 else
8792 clock.p2 = 14;
79e53945
JB
8793 } else {
8794 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8795 clock.p1 = 2;
8796 else {
8797 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8798 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8799 }
8800 if (dpll & PLL_P2_DIVIDE_BY_4)
8801 clock.p2 = 4;
8802 else
8803 clock.p2 = 2;
79e53945 8804 }
da4a1efa
VS
8805
8806 i9xx_clock(refclk, &clock);
79e53945
JB
8807 }
8808
18442d08
VS
8809 /*
8810 * This value includes pixel_multiplier. We will use
241bfc38 8811 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8812 * encoder's get_config() function.
8813 */
8814 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8815}
8816
6878da05
VS
8817int intel_dotclock_calculate(int link_freq,
8818 const struct intel_link_m_n *m_n)
f1f644dc 8819{
f1f644dc
JB
8820 /*
8821 * The calculation for the data clock is:
1041a02f 8822 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8823 * But we want to avoid losing precison if possible, so:
1041a02f 8824 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8825 *
8826 * and the link clock is simpler:
1041a02f 8827 * link_clock = (m * link_clock) / n
f1f644dc
JB
8828 */
8829
6878da05
VS
8830 if (!m_n->link_n)
8831 return 0;
f1f644dc 8832
6878da05
VS
8833 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8834}
f1f644dc 8835
18442d08
VS
8836static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8837 struct intel_crtc_config *pipe_config)
6878da05
VS
8838{
8839 struct drm_device *dev = crtc->base.dev;
79e53945 8840
18442d08
VS
8841 /* read out port_clock from the DPLL */
8842 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8843
f1f644dc 8844 /*
18442d08 8845 * This value does not include pixel_multiplier.
241bfc38 8846 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8847 * agree once we know their relationship in the encoder's
8848 * get_config() function.
79e53945 8849 */
241bfc38 8850 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8851 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8852 &pipe_config->fdi_m_n);
79e53945
JB
8853}
8854
8855/** Returns the currently programmed mode of the given pipe. */
8856struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8857 struct drm_crtc *crtc)
8858{
548f245b 8859 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8861 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8862 struct drm_display_mode *mode;
f1f644dc 8863 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8864 int htot = I915_READ(HTOTAL(cpu_transcoder));
8865 int hsync = I915_READ(HSYNC(cpu_transcoder));
8866 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8867 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8868 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8869
8870 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8871 if (!mode)
8872 return NULL;
8873
f1f644dc
JB
8874 /*
8875 * Construct a pipe_config sufficient for getting the clock info
8876 * back out of crtc_clock_get.
8877 *
8878 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8879 * to use a real value here instead.
8880 */
293623f7 8881 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8882 pipe_config.pixel_multiplier = 1;
293623f7
VS
8883 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8884 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8885 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8886 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8887
773ae034 8888 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8889 mode->hdisplay = (htot & 0xffff) + 1;
8890 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8891 mode->hsync_start = (hsync & 0xffff) + 1;
8892 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8893 mode->vdisplay = (vtot & 0xffff) + 1;
8894 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8895 mode->vsync_start = (vsync & 0xffff) + 1;
8896 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8897
8898 drm_mode_set_name(mode);
79e53945
JB
8899
8900 return mode;
8901}
8902
652c393a
JB
8903static void intel_decrease_pllclock(struct drm_crtc *crtc)
8904{
8905 struct drm_device *dev = crtc->dev;
fbee40df 8906 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8908
baff296c 8909 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8910 return;
8911
8912 if (!dev_priv->lvds_downclock_avail)
8913 return;
8914
8915 /*
8916 * Since this is called by a timer, we should never get here in
8917 * the manual case.
8918 */
8919 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8920 int pipe = intel_crtc->pipe;
8921 int dpll_reg = DPLL(pipe);
8922 int dpll;
f6e5b160 8923
44d98a61 8924 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8925
8ac5a6d5 8926 assert_panel_unlocked(dev_priv, pipe);
652c393a 8927
dc257cf1 8928 dpll = I915_READ(dpll_reg);
652c393a
JB
8929 dpll |= DISPLAY_RATE_SELECT_FPA1;
8930 I915_WRITE(dpll_reg, dpll);
9d0498a2 8931 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8932 dpll = I915_READ(dpll_reg);
8933 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8934 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8935 }
8936
8937}
8938
f047e395
CW
8939void intel_mark_busy(struct drm_device *dev)
8940{
c67a470b
PZ
8941 struct drm_i915_private *dev_priv = dev->dev_private;
8942
f62a0076
CW
8943 if (dev_priv->mm.busy)
8944 return;
8945
43694d69 8946 intel_runtime_pm_get(dev_priv);
c67a470b 8947 i915_update_gfx_val(dev_priv);
f62a0076 8948 dev_priv->mm.busy = true;
f047e395
CW
8949}
8950
8951void intel_mark_idle(struct drm_device *dev)
652c393a 8952{
c67a470b 8953 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8954 struct drm_crtc *crtc;
652c393a 8955
f62a0076
CW
8956 if (!dev_priv->mm.busy)
8957 return;
8958
8959 dev_priv->mm.busy = false;
8960
d330a953 8961 if (!i915.powersave)
bb4cdd53 8962 goto out;
652c393a 8963
70e1e0ec 8964 for_each_crtc(dev, crtc) {
f4510a27 8965 if (!crtc->primary->fb)
652c393a
JB
8966 continue;
8967
725a5b54 8968 intel_decrease_pllclock(crtc);
652c393a 8969 }
b29c19b6 8970
3d13ef2e 8971 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8972 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8973
8974out:
43694d69 8975 intel_runtime_pm_put(dev_priv);
652c393a
JB
8976}
8977
79e53945
JB
8978static void intel_crtc_destroy(struct drm_crtc *crtc)
8979{
8980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
8981 struct drm_device *dev = crtc->dev;
8982 struct intel_unpin_work *work;
67e77c5a 8983
5e2d7afc 8984 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
8985 work = intel_crtc->unpin_work;
8986 intel_crtc->unpin_work = NULL;
5e2d7afc 8987 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
8988
8989 if (work) {
8990 cancel_work_sync(&work->work);
8991 kfree(work);
8992 }
79e53945
JB
8993
8994 drm_crtc_cleanup(crtc);
67e77c5a 8995
79e53945
JB
8996 kfree(intel_crtc);
8997}
8998
6b95a207
KH
8999static void intel_unpin_work_fn(struct work_struct *__work)
9000{
9001 struct intel_unpin_work *work =
9002 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9003 struct drm_device *dev = work->crtc->dev;
f99d7069 9004 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9005
b4a98e57 9006 mutex_lock(&dev->struct_mutex);
1690e1eb 9007 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9008 drm_gem_object_unreference(&work->pending_flip_obj->base);
9009 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9010
b4a98e57
CW
9011 intel_update_fbc(dev);
9012 mutex_unlock(&dev->struct_mutex);
9013
f99d7069
DV
9014 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9015
b4a98e57
CW
9016 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9017 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9018
6b95a207
KH
9019 kfree(work);
9020}
9021
1afe3e9d 9022static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9023 struct drm_crtc *crtc)
6b95a207 9024{
6b95a207
KH
9025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9026 struct intel_unpin_work *work;
6b95a207
KH
9027 unsigned long flags;
9028
9029 /* Ignore early vblank irqs */
9030 if (intel_crtc == NULL)
9031 return;
9032
f326038a
DV
9033 /*
9034 * This is called both by irq handlers and the reset code (to complete
9035 * lost pageflips) so needs the full irqsave spinlocks.
9036 */
6b95a207
KH
9037 spin_lock_irqsave(&dev->event_lock, flags);
9038 work = intel_crtc->unpin_work;
e7d841ca
CW
9039
9040 /* Ensure we don't miss a work->pending update ... */
9041 smp_rmb();
9042
9043 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9044 spin_unlock_irqrestore(&dev->event_lock, flags);
9045 return;
9046 }
9047
d6bbafa1 9048 page_flip_completed(intel_crtc);
0af7e4df 9049
6b95a207 9050 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9051}
9052
1afe3e9d
JB
9053void intel_finish_page_flip(struct drm_device *dev, int pipe)
9054{
fbee40df 9055 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9056 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9057
49b14a5c 9058 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9059}
9060
9061void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9062{
fbee40df 9063 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9064 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9065
49b14a5c 9066 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9067}
9068
75f7f3ec
VS
9069/* Is 'a' after or equal to 'b'? */
9070static bool g4x_flip_count_after_eq(u32 a, u32 b)
9071{
9072 return !((a - b) & 0x80000000);
9073}
9074
9075static bool page_flip_finished(struct intel_crtc *crtc)
9076{
9077 struct drm_device *dev = crtc->base.dev;
9078 struct drm_i915_private *dev_priv = dev->dev_private;
9079
9080 /*
9081 * The relevant registers doen't exist on pre-ctg.
9082 * As the flip done interrupt doesn't trigger for mmio
9083 * flips on gmch platforms, a flip count check isn't
9084 * really needed there. But since ctg has the registers,
9085 * include it in the check anyway.
9086 */
9087 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9088 return true;
9089
9090 /*
9091 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9092 * used the same base address. In that case the mmio flip might
9093 * have completed, but the CS hasn't even executed the flip yet.
9094 *
9095 * A flip count check isn't enough as the CS might have updated
9096 * the base address just after start of vblank, but before we
9097 * managed to process the interrupt. This means we'd complete the
9098 * CS flip too soon.
9099 *
9100 * Combining both checks should get us a good enough result. It may
9101 * still happen that the CS flip has been executed, but has not
9102 * yet actually completed. But in case the base address is the same
9103 * anyway, we don't really care.
9104 */
9105 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9106 crtc->unpin_work->gtt_offset &&
9107 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9108 crtc->unpin_work->flip_count);
9109}
9110
6b95a207
KH
9111void intel_prepare_page_flip(struct drm_device *dev, int plane)
9112{
fbee40df 9113 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9114 struct intel_crtc *intel_crtc =
9115 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9116 unsigned long flags;
9117
f326038a
DV
9118
9119 /*
9120 * This is called both by irq handlers and the reset code (to complete
9121 * lost pageflips) so needs the full irqsave spinlocks.
9122 *
9123 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9124 * generate a page-flip completion irq, i.e. every modeset
9125 * is also accompanied by a spurious intel_prepare_page_flip().
9126 */
6b95a207 9127 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9128 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9129 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9130 spin_unlock_irqrestore(&dev->event_lock, flags);
9131}
9132
eba905b2 9133static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9134{
9135 /* Ensure that the work item is consistent when activating it ... */
9136 smp_wmb();
9137 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9138 /* and that it is marked active as soon as the irq could fire. */
9139 smp_wmb();
9140}
9141
8c9f3aaf
JB
9142static int intel_gen2_queue_flip(struct drm_device *dev,
9143 struct drm_crtc *crtc,
9144 struct drm_framebuffer *fb,
ed8d1975 9145 struct drm_i915_gem_object *obj,
a4872ba6 9146 struct intel_engine_cs *ring,
ed8d1975 9147 uint32_t flags)
8c9f3aaf 9148{
8c9f3aaf 9149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9150 u32 flip_mask;
9151 int ret;
9152
6d90c952 9153 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9154 if (ret)
4fa62c89 9155 return ret;
8c9f3aaf
JB
9156
9157 /* Can't queue multiple flips, so wait for the previous
9158 * one to finish before executing the next.
9159 */
9160 if (intel_crtc->plane)
9161 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9162 else
9163 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9164 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9165 intel_ring_emit(ring, MI_NOOP);
9166 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9167 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9168 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9169 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9170 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9171
9172 intel_mark_page_flip_active(intel_crtc);
09246732 9173 __intel_ring_advance(ring);
83d4092b 9174 return 0;
8c9f3aaf
JB
9175}
9176
9177static int intel_gen3_queue_flip(struct drm_device *dev,
9178 struct drm_crtc *crtc,
9179 struct drm_framebuffer *fb,
ed8d1975 9180 struct drm_i915_gem_object *obj,
a4872ba6 9181 struct intel_engine_cs *ring,
ed8d1975 9182 uint32_t flags)
8c9f3aaf 9183{
8c9f3aaf 9184 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9185 u32 flip_mask;
9186 int ret;
9187
6d90c952 9188 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9189 if (ret)
4fa62c89 9190 return ret;
8c9f3aaf
JB
9191
9192 if (intel_crtc->plane)
9193 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9194 else
9195 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9196 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9197 intel_ring_emit(ring, MI_NOOP);
9198 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9199 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9200 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9201 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9202 intel_ring_emit(ring, MI_NOOP);
9203
e7d841ca 9204 intel_mark_page_flip_active(intel_crtc);
09246732 9205 __intel_ring_advance(ring);
83d4092b 9206 return 0;
8c9f3aaf
JB
9207}
9208
9209static int intel_gen4_queue_flip(struct drm_device *dev,
9210 struct drm_crtc *crtc,
9211 struct drm_framebuffer *fb,
ed8d1975 9212 struct drm_i915_gem_object *obj,
a4872ba6 9213 struct intel_engine_cs *ring,
ed8d1975 9214 uint32_t flags)
8c9f3aaf
JB
9215{
9216 struct drm_i915_private *dev_priv = dev->dev_private;
9217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9218 uint32_t pf, pipesrc;
9219 int ret;
9220
6d90c952 9221 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9222 if (ret)
4fa62c89 9223 return ret;
8c9f3aaf
JB
9224
9225 /* i965+ uses the linear or tiled offsets from the
9226 * Display Registers (which do not change across a page-flip)
9227 * so we need only reprogram the base address.
9228 */
6d90c952
DV
9229 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9230 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9231 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9232 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9233 obj->tiling_mode);
8c9f3aaf
JB
9234
9235 /* XXX Enabling the panel-fitter across page-flip is so far
9236 * untested on non-native modes, so ignore it for now.
9237 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9238 */
9239 pf = 0;
9240 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9241 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9242
9243 intel_mark_page_flip_active(intel_crtc);
09246732 9244 __intel_ring_advance(ring);
83d4092b 9245 return 0;
8c9f3aaf
JB
9246}
9247
9248static int intel_gen6_queue_flip(struct drm_device *dev,
9249 struct drm_crtc *crtc,
9250 struct drm_framebuffer *fb,
ed8d1975 9251 struct drm_i915_gem_object *obj,
a4872ba6 9252 struct intel_engine_cs *ring,
ed8d1975 9253 uint32_t flags)
8c9f3aaf
JB
9254{
9255 struct drm_i915_private *dev_priv = dev->dev_private;
9256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9257 uint32_t pf, pipesrc;
9258 int ret;
9259
6d90c952 9260 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9261 if (ret)
4fa62c89 9262 return ret;
8c9f3aaf 9263
6d90c952
DV
9264 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9265 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9266 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9267 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9268
dc257cf1
DV
9269 /* Contrary to the suggestions in the documentation,
9270 * "Enable Panel Fitter" does not seem to be required when page
9271 * flipping with a non-native mode, and worse causes a normal
9272 * modeset to fail.
9273 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9274 */
9275 pf = 0;
8c9f3aaf 9276 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9277 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9278
9279 intel_mark_page_flip_active(intel_crtc);
09246732 9280 __intel_ring_advance(ring);
83d4092b 9281 return 0;
8c9f3aaf
JB
9282}
9283
7c9017e5
JB
9284static int intel_gen7_queue_flip(struct drm_device *dev,
9285 struct drm_crtc *crtc,
9286 struct drm_framebuffer *fb,
ed8d1975 9287 struct drm_i915_gem_object *obj,
a4872ba6 9288 struct intel_engine_cs *ring,
ed8d1975 9289 uint32_t flags)
7c9017e5 9290{
7c9017e5 9291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9292 uint32_t plane_bit = 0;
ffe74d75
CW
9293 int len, ret;
9294
eba905b2 9295 switch (intel_crtc->plane) {
cb05d8de
DV
9296 case PLANE_A:
9297 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9298 break;
9299 case PLANE_B:
9300 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9301 break;
9302 case PLANE_C:
9303 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9304 break;
9305 default:
9306 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9307 return -ENODEV;
cb05d8de
DV
9308 }
9309
ffe74d75 9310 len = 4;
f476828a 9311 if (ring->id == RCS) {
ffe74d75 9312 len += 6;
f476828a
DL
9313 /*
9314 * On Gen 8, SRM is now taking an extra dword to accommodate
9315 * 48bits addresses, and we need a NOOP for the batch size to
9316 * stay even.
9317 */
9318 if (IS_GEN8(dev))
9319 len += 2;
9320 }
ffe74d75 9321
f66fab8e
VS
9322 /*
9323 * BSpec MI_DISPLAY_FLIP for IVB:
9324 * "The full packet must be contained within the same cache line."
9325 *
9326 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9327 * cacheline, if we ever start emitting more commands before
9328 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9329 * then do the cacheline alignment, and finally emit the
9330 * MI_DISPLAY_FLIP.
9331 */
9332 ret = intel_ring_cacheline_align(ring);
9333 if (ret)
4fa62c89 9334 return ret;
f66fab8e 9335
ffe74d75 9336 ret = intel_ring_begin(ring, len);
7c9017e5 9337 if (ret)
4fa62c89 9338 return ret;
7c9017e5 9339
ffe74d75
CW
9340 /* Unmask the flip-done completion message. Note that the bspec says that
9341 * we should do this for both the BCS and RCS, and that we must not unmask
9342 * more than one flip event at any time (or ensure that one flip message
9343 * can be sent by waiting for flip-done prior to queueing new flips).
9344 * Experimentation says that BCS works despite DERRMR masking all
9345 * flip-done completion events and that unmasking all planes at once
9346 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9347 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9348 */
9349 if (ring->id == RCS) {
9350 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9351 intel_ring_emit(ring, DERRMR);
9352 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9353 DERRMR_PIPEB_PRI_FLIP_DONE |
9354 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9355 if (IS_GEN8(dev))
9356 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9357 MI_SRM_LRM_GLOBAL_GTT);
9358 else
9359 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9360 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9361 intel_ring_emit(ring, DERRMR);
9362 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9363 if (IS_GEN8(dev)) {
9364 intel_ring_emit(ring, 0);
9365 intel_ring_emit(ring, MI_NOOP);
9366 }
ffe74d75
CW
9367 }
9368
cb05d8de 9369 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9370 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9371 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9372 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9373
9374 intel_mark_page_flip_active(intel_crtc);
09246732 9375 __intel_ring_advance(ring);
83d4092b 9376 return 0;
7c9017e5
JB
9377}
9378
84c33a64
SG
9379static bool use_mmio_flip(struct intel_engine_cs *ring,
9380 struct drm_i915_gem_object *obj)
9381{
9382 /*
9383 * This is not being used for older platforms, because
9384 * non-availability of flip done interrupt forces us to use
9385 * CS flips. Older platforms derive flip done using some clever
9386 * tricks involving the flip_pending status bits and vblank irqs.
9387 * So using MMIO flips there would disrupt this mechanism.
9388 */
9389
8e09bf83
CW
9390 if (ring == NULL)
9391 return true;
9392
84c33a64
SG
9393 if (INTEL_INFO(ring->dev)->gen < 5)
9394 return false;
9395
9396 if (i915.use_mmio_flip < 0)
9397 return false;
9398 else if (i915.use_mmio_flip > 0)
9399 return true;
14bf993e
OM
9400 else if (i915.enable_execlists)
9401 return true;
84c33a64
SG
9402 else
9403 return ring != obj->ring;
9404}
9405
9406static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9407{
9408 struct drm_device *dev = intel_crtc->base.dev;
9409 struct drm_i915_private *dev_priv = dev->dev_private;
9410 struct intel_framebuffer *intel_fb =
9411 to_intel_framebuffer(intel_crtc->base.primary->fb);
9412 struct drm_i915_gem_object *obj = intel_fb->obj;
9413 u32 dspcntr;
9414 u32 reg;
9415
9416 intel_mark_page_flip_active(intel_crtc);
9417
9418 reg = DSPCNTR(intel_crtc->plane);
9419 dspcntr = I915_READ(reg);
9420
c5d97472
DL
9421 if (obj->tiling_mode != I915_TILING_NONE)
9422 dspcntr |= DISPPLANE_TILED;
9423 else
9424 dspcntr &= ~DISPPLANE_TILED;
9425
84c33a64
SG
9426 I915_WRITE(reg, dspcntr);
9427
9428 I915_WRITE(DSPSURF(intel_crtc->plane),
9429 intel_crtc->unpin_work->gtt_offset);
9430 POSTING_READ(DSPSURF(intel_crtc->plane));
9431}
9432
9433static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9434{
9435 struct intel_engine_cs *ring;
9436 int ret;
9437
9438 lockdep_assert_held(&obj->base.dev->struct_mutex);
9439
9440 if (!obj->last_write_seqno)
9441 return 0;
9442
9443 ring = obj->ring;
9444
9445 if (i915_seqno_passed(ring->get_seqno(ring, true),
9446 obj->last_write_seqno))
9447 return 0;
9448
9449 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9450 if (ret)
9451 return ret;
9452
9453 if (WARN_ON(!ring->irq_get(ring)))
9454 return 0;
9455
9456 return 1;
9457}
9458
9459void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9460{
9461 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9462 struct intel_crtc *intel_crtc;
9463 unsigned long irq_flags;
9464 u32 seqno;
9465
9466 seqno = ring->get_seqno(ring, false);
9467
9468 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9469 for_each_intel_crtc(ring->dev, intel_crtc) {
9470 struct intel_mmio_flip *mmio_flip;
9471
9472 mmio_flip = &intel_crtc->mmio_flip;
9473 if (mmio_flip->seqno == 0)
9474 continue;
9475
9476 if (ring->id != mmio_flip->ring_id)
9477 continue;
9478
9479 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9480 intel_do_mmio_flip(intel_crtc);
9481 mmio_flip->seqno = 0;
9482 ring->irq_put(ring);
9483 }
9484 }
9485 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9486}
9487
9488static int intel_queue_mmio_flip(struct drm_device *dev,
9489 struct drm_crtc *crtc,
9490 struct drm_framebuffer *fb,
9491 struct drm_i915_gem_object *obj,
9492 struct intel_engine_cs *ring,
9493 uint32_t flags)
9494{
9495 struct drm_i915_private *dev_priv = dev->dev_private;
9496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64
SG
9497 int ret;
9498
9499 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9500 return -EBUSY;
9501
9502 ret = intel_postpone_flip(obj);
9503 if (ret < 0)
9504 return ret;
9505 if (ret == 0) {
9506 intel_do_mmio_flip(intel_crtc);
9507 return 0;
9508 }
9509
24955f24 9510 spin_lock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9511 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9512 intel_crtc->mmio_flip.ring_id = obj->ring->id;
24955f24 9513 spin_unlock_irq(&dev_priv->mmio_flip_lock);
84c33a64
SG
9514
9515 /*
9516 * Double check to catch cases where irq fired before
9517 * mmio flip data was ready
9518 */
9519 intel_notify_mmio_flip(obj->ring);
9520 return 0;
9521}
9522
8c9f3aaf
JB
9523static int intel_default_queue_flip(struct drm_device *dev,
9524 struct drm_crtc *crtc,
9525 struct drm_framebuffer *fb,
ed8d1975 9526 struct drm_i915_gem_object *obj,
a4872ba6 9527 struct intel_engine_cs *ring,
ed8d1975 9528 uint32_t flags)
8c9f3aaf
JB
9529{
9530 return -ENODEV;
9531}
9532
d6bbafa1
CW
9533static bool __intel_pageflip_stall_check(struct drm_device *dev,
9534 struct drm_crtc *crtc)
9535{
9536 struct drm_i915_private *dev_priv = dev->dev_private;
9537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9538 struct intel_unpin_work *work = intel_crtc->unpin_work;
9539 u32 addr;
9540
9541 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9542 return true;
9543
9544 if (!work->enable_stall_check)
9545 return false;
9546
9547 if (work->flip_ready_vblank == 0) {
9548 if (work->flip_queued_ring &&
9549 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9550 work->flip_queued_seqno))
9551 return false;
9552
9553 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9554 }
9555
9556 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9557 return false;
9558
9559 /* Potential stall - if we see that the flip has happened,
9560 * assume a missed interrupt. */
9561 if (INTEL_INFO(dev)->gen >= 4)
9562 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9563 else
9564 addr = I915_READ(DSPADDR(intel_crtc->plane));
9565
9566 /* There is a potential issue here with a false positive after a flip
9567 * to the same address. We could address this by checking for a
9568 * non-incrementing frame counter.
9569 */
9570 return addr == work->gtt_offset;
9571}
9572
9573void intel_check_page_flip(struct drm_device *dev, int pipe)
9574{
9575 struct drm_i915_private *dev_priv = dev->dev_private;
9576 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9578
9579 WARN_ON(!in_irq());
d6bbafa1
CW
9580
9581 if (crtc == NULL)
9582 return;
9583
f326038a 9584 spin_lock(&dev->event_lock);
d6bbafa1
CW
9585 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9586 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9587 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9588 page_flip_completed(intel_crtc);
9589 }
f326038a 9590 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9591}
9592
6b95a207
KH
9593static int intel_crtc_page_flip(struct drm_crtc *crtc,
9594 struct drm_framebuffer *fb,
ed8d1975
KP
9595 struct drm_pending_vblank_event *event,
9596 uint32_t page_flip_flags)
6b95a207
KH
9597{
9598 struct drm_device *dev = crtc->dev;
9599 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9600 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9601 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9603 enum pipe pipe = intel_crtc->pipe;
6b95a207 9604 struct intel_unpin_work *work;
a4872ba6 9605 struct intel_engine_cs *ring;
52e68630 9606 int ret;
6b95a207 9607
2ff8fde1
MR
9608 /*
9609 * drm_mode_page_flip_ioctl() should already catch this, but double
9610 * check to be safe. In the future we may enable pageflipping from
9611 * a disabled primary plane.
9612 */
9613 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9614 return -EBUSY;
9615
e6a595d2 9616 /* Can't change pixel format via MI display flips. */
f4510a27 9617 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9618 return -EINVAL;
9619
9620 /*
9621 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9622 * Note that pitch changes could also affect these register.
9623 */
9624 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9625 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9626 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9627 return -EINVAL;
9628
f900db47
CW
9629 if (i915_terminally_wedged(&dev_priv->gpu_error))
9630 goto out_hang;
9631
b14c5679 9632 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9633 if (work == NULL)
9634 return -ENOMEM;
9635
6b95a207 9636 work->event = event;
b4a98e57 9637 work->crtc = crtc;
2ff8fde1 9638 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9639 INIT_WORK(&work->work, intel_unpin_work_fn);
9640
87b6b101 9641 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9642 if (ret)
9643 goto free_work;
9644
6b95a207 9645 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9646 spin_lock_irq(&dev->event_lock);
6b95a207 9647 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9648 /* Before declaring the flip queue wedged, check if
9649 * the hardware completed the operation behind our backs.
9650 */
9651 if (__intel_pageflip_stall_check(dev, crtc)) {
9652 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9653 page_flip_completed(intel_crtc);
9654 } else {
9655 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9656 spin_unlock_irq(&dev->event_lock);
468f0b44 9657
d6bbafa1
CW
9658 drm_crtc_vblank_put(crtc);
9659 kfree(work);
9660 return -EBUSY;
9661 }
6b95a207
KH
9662 }
9663 intel_crtc->unpin_work = work;
5e2d7afc 9664 spin_unlock_irq(&dev->event_lock);
6b95a207 9665
b4a98e57
CW
9666 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9667 flush_workqueue(dev_priv->wq);
9668
79158103
CW
9669 ret = i915_mutex_lock_interruptible(dev);
9670 if (ret)
9671 goto cleanup;
6b95a207 9672
75dfca80 9673 /* Reference the objects for the scheduled work. */
05394f39
CW
9674 drm_gem_object_reference(&work->old_fb_obj->base);
9675 drm_gem_object_reference(&obj->base);
6b95a207 9676
f4510a27 9677 crtc->primary->fb = fb;
96b099fd 9678
e1f99ce6 9679 work->pending_flip_obj = obj;
e1f99ce6 9680
b4a98e57 9681 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9682 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9683
75f7f3ec 9684 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9685 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9686
4fa62c89
VS
9687 if (IS_VALLEYVIEW(dev)) {
9688 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9689 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9690 /* vlv: DISPLAY_FLIP fails to change tiling */
9691 ring = NULL;
2a92d5bc
CW
9692 } else if (IS_IVYBRIDGE(dev)) {
9693 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9694 } else if (INTEL_INFO(dev)->gen >= 7) {
9695 ring = obj->ring;
9696 if (ring == NULL || ring->id != RCS)
9697 ring = &dev_priv->ring[BCS];
9698 } else {
9699 ring = &dev_priv->ring[RCS];
9700 }
9701
9702 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9703 if (ret)
9704 goto cleanup_pending;
6b95a207 9705
4fa62c89
VS
9706 work->gtt_offset =
9707 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9708
d6bbafa1 9709 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9710 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9711 page_flip_flags);
d6bbafa1
CW
9712 if (ret)
9713 goto cleanup_unpin;
9714
9715 work->flip_queued_seqno = obj->last_write_seqno;
9716 work->flip_queued_ring = obj->ring;
9717 } else {
84c33a64 9718 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9719 page_flip_flags);
9720 if (ret)
9721 goto cleanup_unpin;
9722
9723 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9724 work->flip_queued_ring = ring;
9725 }
9726
9727 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9728 work->enable_stall_check = true;
4fa62c89 9729
a071fa00
DV
9730 i915_gem_track_fb(work->old_fb_obj, obj,
9731 INTEL_FRONTBUFFER_PRIMARY(pipe));
9732
7782de3b 9733 intel_disable_fbc(dev);
f99d7069 9734 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9735 mutex_unlock(&dev->struct_mutex);
9736
e5510fac
JB
9737 trace_i915_flip_request(intel_crtc->plane, obj);
9738
6b95a207 9739 return 0;
96b099fd 9740
4fa62c89
VS
9741cleanup_unpin:
9742 intel_unpin_fb_obj(obj);
8c9f3aaf 9743cleanup_pending:
b4a98e57 9744 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9745 crtc->primary->fb = old_fb;
05394f39
CW
9746 drm_gem_object_unreference(&work->old_fb_obj->base);
9747 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9748 mutex_unlock(&dev->struct_mutex);
9749
79158103 9750cleanup:
5e2d7afc 9751 spin_lock_irq(&dev->event_lock);
96b099fd 9752 intel_crtc->unpin_work = NULL;
5e2d7afc 9753 spin_unlock_irq(&dev->event_lock);
96b099fd 9754
87b6b101 9755 drm_crtc_vblank_put(crtc);
7317c75e 9756free_work:
96b099fd
CW
9757 kfree(work);
9758
f900db47
CW
9759 if (ret == -EIO) {
9760out_hang:
9761 intel_crtc_wait_for_pending_flips(crtc);
9762 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
f0d3dad3 9763 if (ret == 0 && event) {
5e2d7afc 9764 spin_lock_irq(&dev->event_lock);
a071fa00 9765 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9766 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9767 }
f900db47 9768 }
96b099fd 9769 return ret;
6b95a207
KH
9770}
9771
f6e5b160 9772static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9773 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9774 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9775};
9776
9a935856
DV
9777/**
9778 * intel_modeset_update_staged_output_state
9779 *
9780 * Updates the staged output configuration state, e.g. after we've read out the
9781 * current hw state.
9782 */
9783static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9784{
7668851f 9785 struct intel_crtc *crtc;
9a935856
DV
9786 struct intel_encoder *encoder;
9787 struct intel_connector *connector;
f6e5b160 9788
9a935856
DV
9789 list_for_each_entry(connector, &dev->mode_config.connector_list,
9790 base.head) {
9791 connector->new_encoder =
9792 to_intel_encoder(connector->base.encoder);
9793 }
f6e5b160 9794
b2784e15 9795 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9796 encoder->new_crtc =
9797 to_intel_crtc(encoder->base.crtc);
9798 }
7668851f 9799
d3fcc808 9800 for_each_intel_crtc(dev, crtc) {
7668851f 9801 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9802
9803 if (crtc->new_enabled)
9804 crtc->new_config = &crtc->config;
9805 else
9806 crtc->new_config = NULL;
7668851f 9807 }
f6e5b160
CW
9808}
9809
9a935856
DV
9810/**
9811 * intel_modeset_commit_output_state
9812 *
9813 * This function copies the stage display pipe configuration to the real one.
9814 */
9815static void intel_modeset_commit_output_state(struct drm_device *dev)
9816{
7668851f 9817 struct intel_crtc *crtc;
9a935856
DV
9818 struct intel_encoder *encoder;
9819 struct intel_connector *connector;
f6e5b160 9820
9a935856
DV
9821 list_for_each_entry(connector, &dev->mode_config.connector_list,
9822 base.head) {
9823 connector->base.encoder = &connector->new_encoder->base;
9824 }
f6e5b160 9825
b2784e15 9826 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9827 encoder->base.crtc = &encoder->new_crtc->base;
9828 }
7668851f 9829
d3fcc808 9830 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9831 crtc->base.enabled = crtc->new_enabled;
9832 }
9a935856
DV
9833}
9834
050f7aeb 9835static void
eba905b2 9836connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9837 struct intel_crtc_config *pipe_config)
9838{
9839 int bpp = pipe_config->pipe_bpp;
9840
9841 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9842 connector->base.base.id,
c23cc417 9843 connector->base.name);
050f7aeb
DV
9844
9845 /* Don't use an invalid EDID bpc value */
9846 if (connector->base.display_info.bpc &&
9847 connector->base.display_info.bpc * 3 < bpp) {
9848 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9849 bpp, connector->base.display_info.bpc*3);
9850 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9851 }
9852
9853 /* Clamp bpp to 8 on screens without EDID 1.4 */
9854 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9855 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9856 bpp);
9857 pipe_config->pipe_bpp = 24;
9858 }
9859}
9860
4e53c2e0 9861static int
050f7aeb
DV
9862compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9863 struct drm_framebuffer *fb,
9864 struct intel_crtc_config *pipe_config)
4e53c2e0 9865{
050f7aeb
DV
9866 struct drm_device *dev = crtc->base.dev;
9867 struct intel_connector *connector;
4e53c2e0
DV
9868 int bpp;
9869
d42264b1
DV
9870 switch (fb->pixel_format) {
9871 case DRM_FORMAT_C8:
4e53c2e0
DV
9872 bpp = 8*3; /* since we go through a colormap */
9873 break;
d42264b1
DV
9874 case DRM_FORMAT_XRGB1555:
9875 case DRM_FORMAT_ARGB1555:
9876 /* checked in intel_framebuffer_init already */
9877 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9878 return -EINVAL;
9879 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9880 bpp = 6*3; /* min is 18bpp */
9881 break;
d42264b1
DV
9882 case DRM_FORMAT_XBGR8888:
9883 case DRM_FORMAT_ABGR8888:
9884 /* checked in intel_framebuffer_init already */
9885 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9886 return -EINVAL;
9887 case DRM_FORMAT_XRGB8888:
9888 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9889 bpp = 8*3;
9890 break;
d42264b1
DV
9891 case DRM_FORMAT_XRGB2101010:
9892 case DRM_FORMAT_ARGB2101010:
9893 case DRM_FORMAT_XBGR2101010:
9894 case DRM_FORMAT_ABGR2101010:
9895 /* checked in intel_framebuffer_init already */
9896 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9897 return -EINVAL;
4e53c2e0
DV
9898 bpp = 10*3;
9899 break;
baba133a 9900 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9901 default:
9902 DRM_DEBUG_KMS("unsupported depth\n");
9903 return -EINVAL;
9904 }
9905
4e53c2e0
DV
9906 pipe_config->pipe_bpp = bpp;
9907
9908 /* Clamp display bpp to EDID value */
9909 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9910 base.head) {
1b829e05
DV
9911 if (!connector->new_encoder ||
9912 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9913 continue;
9914
050f7aeb 9915 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9916 }
9917
9918 return bpp;
9919}
9920
644db711
DV
9921static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9922{
9923 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9924 "type: 0x%x flags: 0x%x\n",
1342830c 9925 mode->crtc_clock,
644db711
DV
9926 mode->crtc_hdisplay, mode->crtc_hsync_start,
9927 mode->crtc_hsync_end, mode->crtc_htotal,
9928 mode->crtc_vdisplay, mode->crtc_vsync_start,
9929 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9930}
9931
c0b03411
DV
9932static void intel_dump_pipe_config(struct intel_crtc *crtc,
9933 struct intel_crtc_config *pipe_config,
9934 const char *context)
9935{
9936 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9937 context, pipe_name(crtc->pipe));
9938
9939 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9940 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9941 pipe_config->pipe_bpp, pipe_config->dither);
9942 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9943 pipe_config->has_pch_encoder,
9944 pipe_config->fdi_lanes,
9945 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9946 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9947 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9948 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9949 pipe_config->has_dp_encoder,
9950 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9951 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9952 pipe_config->dp_m_n.tu);
b95af8be
VK
9953
9954 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9955 pipe_config->has_dp_encoder,
9956 pipe_config->dp_m2_n2.gmch_m,
9957 pipe_config->dp_m2_n2.gmch_n,
9958 pipe_config->dp_m2_n2.link_m,
9959 pipe_config->dp_m2_n2.link_n,
9960 pipe_config->dp_m2_n2.tu);
9961
c0b03411
DV
9962 DRM_DEBUG_KMS("requested mode:\n");
9963 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9964 DRM_DEBUG_KMS("adjusted mode:\n");
9965 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9966 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9967 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9968 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9969 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9970 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9971 pipe_config->gmch_pfit.control,
9972 pipe_config->gmch_pfit.pgm_ratios,
9973 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9974 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9975 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9976 pipe_config->pch_pfit.size,
9977 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9978 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9979 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9980}
9981
bc079e8b
VS
9982static bool encoders_cloneable(const struct intel_encoder *a,
9983 const struct intel_encoder *b)
accfc0c5 9984{
bc079e8b
VS
9985 /* masks could be asymmetric, so check both ways */
9986 return a == b || (a->cloneable & (1 << b->type) &&
9987 b->cloneable & (1 << a->type));
9988}
9989
9990static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9991 struct intel_encoder *encoder)
9992{
9993 struct drm_device *dev = crtc->base.dev;
9994 struct intel_encoder *source_encoder;
9995
b2784e15 9996 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
9997 if (source_encoder->new_crtc != crtc)
9998 continue;
9999
10000 if (!encoders_cloneable(encoder, source_encoder))
10001 return false;
10002 }
10003
10004 return true;
10005}
10006
10007static bool check_encoder_cloning(struct intel_crtc *crtc)
10008{
10009 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10010 struct intel_encoder *encoder;
10011
b2784e15 10012 for_each_intel_encoder(dev, encoder) {
bc079e8b 10013 if (encoder->new_crtc != crtc)
accfc0c5
DV
10014 continue;
10015
bc079e8b
VS
10016 if (!check_single_encoder_cloning(crtc, encoder))
10017 return false;
accfc0c5
DV
10018 }
10019
bc079e8b 10020 return true;
accfc0c5
DV
10021}
10022
b8cecdf5
DV
10023static struct intel_crtc_config *
10024intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10025 struct drm_framebuffer *fb,
b8cecdf5 10026 struct drm_display_mode *mode)
ee7b9f93 10027{
7758a113 10028 struct drm_device *dev = crtc->dev;
7758a113 10029 struct intel_encoder *encoder;
b8cecdf5 10030 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10031 int plane_bpp, ret = -EINVAL;
10032 bool retry = true;
ee7b9f93 10033
bc079e8b 10034 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10035 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10036 return ERR_PTR(-EINVAL);
10037 }
10038
b8cecdf5
DV
10039 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10040 if (!pipe_config)
7758a113
DV
10041 return ERR_PTR(-ENOMEM);
10042
b8cecdf5
DV
10043 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10044 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10045
e143a21c
DV
10046 pipe_config->cpu_transcoder =
10047 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10048 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10049
2960bc9c
ID
10050 /*
10051 * Sanitize sync polarity flags based on requested ones. If neither
10052 * positive or negative polarity is requested, treat this as meaning
10053 * negative polarity.
10054 */
10055 if (!(pipe_config->adjusted_mode.flags &
10056 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10057 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10058
10059 if (!(pipe_config->adjusted_mode.flags &
10060 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10061 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10062
050f7aeb
DV
10063 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10064 * plane pixel format and any sink constraints into account. Returns the
10065 * source plane bpp so that dithering can be selected on mismatches
10066 * after encoders and crtc also have had their say. */
10067 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10068 fb, pipe_config);
4e53c2e0
DV
10069 if (plane_bpp < 0)
10070 goto fail;
10071
e41a56be
VS
10072 /*
10073 * Determine the real pipe dimensions. Note that stereo modes can
10074 * increase the actual pipe size due to the frame doubling and
10075 * insertion of additional space for blanks between the frame. This
10076 * is stored in the crtc timings. We use the requested mode to do this
10077 * computation to clearly distinguish it from the adjusted mode, which
10078 * can be changed by the connectors in the below retry loop.
10079 */
10080 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10081 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10082 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10083
e29c22c0 10084encoder_retry:
ef1b460d 10085 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10086 pipe_config->port_clock = 0;
ef1b460d 10087 pipe_config->pixel_multiplier = 1;
ff9a6750 10088
135c81b8 10089 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10090 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10091
7758a113
DV
10092 /* Pass our mode to the connectors and the CRTC to give them a chance to
10093 * adjust it according to limitations or connector properties, and also
10094 * a chance to reject the mode entirely.
47f1c6c9 10095 */
b2784e15 10096 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10097
7758a113
DV
10098 if (&encoder->new_crtc->base != crtc)
10099 continue;
7ae89233 10100
efea6e8e
DV
10101 if (!(encoder->compute_config(encoder, pipe_config))) {
10102 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10103 goto fail;
10104 }
ee7b9f93 10105 }
47f1c6c9 10106
ff9a6750
DV
10107 /* Set default port clock if not overwritten by the encoder. Needs to be
10108 * done afterwards in case the encoder adjusts the mode. */
10109 if (!pipe_config->port_clock)
241bfc38
DL
10110 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10111 * pipe_config->pixel_multiplier;
ff9a6750 10112
a43f6e0f 10113 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10114 if (ret < 0) {
7758a113
DV
10115 DRM_DEBUG_KMS("CRTC fixup failed\n");
10116 goto fail;
ee7b9f93 10117 }
e29c22c0
DV
10118
10119 if (ret == RETRY) {
10120 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10121 ret = -EINVAL;
10122 goto fail;
10123 }
10124
10125 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10126 retry = false;
10127 goto encoder_retry;
10128 }
10129
4e53c2e0
DV
10130 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10131 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10132 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10133
b8cecdf5 10134 return pipe_config;
7758a113 10135fail:
b8cecdf5 10136 kfree(pipe_config);
e29c22c0 10137 return ERR_PTR(ret);
ee7b9f93 10138}
47f1c6c9 10139
e2e1ed41
DV
10140/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10141 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10142static void
10143intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10144 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10145{
10146 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10147 struct drm_device *dev = crtc->dev;
10148 struct intel_encoder *encoder;
10149 struct intel_connector *connector;
10150 struct drm_crtc *tmp_crtc;
79e53945 10151
e2e1ed41 10152 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10153
e2e1ed41
DV
10154 /* Check which crtcs have changed outputs connected to them, these need
10155 * to be part of the prepare_pipes mask. We don't (yet) support global
10156 * modeset across multiple crtcs, so modeset_pipes will only have one
10157 * bit set at most. */
10158 list_for_each_entry(connector, &dev->mode_config.connector_list,
10159 base.head) {
10160 if (connector->base.encoder == &connector->new_encoder->base)
10161 continue;
79e53945 10162
e2e1ed41
DV
10163 if (connector->base.encoder) {
10164 tmp_crtc = connector->base.encoder->crtc;
10165
10166 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10167 }
10168
10169 if (connector->new_encoder)
10170 *prepare_pipes |=
10171 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10172 }
10173
b2784e15 10174 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10175 if (encoder->base.crtc == &encoder->new_crtc->base)
10176 continue;
10177
10178 if (encoder->base.crtc) {
10179 tmp_crtc = encoder->base.crtc;
10180
10181 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10182 }
10183
10184 if (encoder->new_crtc)
10185 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10186 }
10187
7668851f 10188 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10189 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10190 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10191 continue;
7e7d76c3 10192
7668851f 10193 if (!intel_crtc->new_enabled)
e2e1ed41 10194 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10195 else
10196 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10197 }
10198
e2e1ed41
DV
10199
10200 /* set_mode is also used to update properties on life display pipes. */
10201 intel_crtc = to_intel_crtc(crtc);
7668851f 10202 if (intel_crtc->new_enabled)
e2e1ed41
DV
10203 *prepare_pipes |= 1 << intel_crtc->pipe;
10204
b6c5164d
DV
10205 /*
10206 * For simplicity do a full modeset on any pipe where the output routing
10207 * changed. We could be more clever, but that would require us to be
10208 * more careful with calling the relevant encoder->mode_set functions.
10209 */
e2e1ed41
DV
10210 if (*prepare_pipes)
10211 *modeset_pipes = *prepare_pipes;
10212
10213 /* ... and mask these out. */
10214 *modeset_pipes &= ~(*disable_pipes);
10215 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10216
10217 /*
10218 * HACK: We don't (yet) fully support global modesets. intel_set_config
10219 * obies this rule, but the modeset restore mode of
10220 * intel_modeset_setup_hw_state does not.
10221 */
10222 *modeset_pipes &= 1 << intel_crtc->pipe;
10223 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10224
10225 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10226 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10227}
79e53945 10228
ea9d758d 10229static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10230{
ea9d758d 10231 struct drm_encoder *encoder;
f6e5b160 10232 struct drm_device *dev = crtc->dev;
f6e5b160 10233
ea9d758d
DV
10234 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10235 if (encoder->crtc == crtc)
10236 return true;
10237
10238 return false;
10239}
10240
10241static void
10242intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10243{
10244 struct intel_encoder *intel_encoder;
10245 struct intel_crtc *intel_crtc;
10246 struct drm_connector *connector;
10247
b2784e15 10248 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10249 if (!intel_encoder->base.crtc)
10250 continue;
10251
10252 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10253
10254 if (prepare_pipes & (1 << intel_crtc->pipe))
10255 intel_encoder->connectors_active = false;
10256 }
10257
10258 intel_modeset_commit_output_state(dev);
10259
7668851f 10260 /* Double check state. */
d3fcc808 10261 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10262 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10263 WARN_ON(intel_crtc->new_config &&
10264 intel_crtc->new_config != &intel_crtc->config);
10265 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10266 }
10267
10268 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10269 if (!connector->encoder || !connector->encoder->crtc)
10270 continue;
10271
10272 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10273
10274 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10275 struct drm_property *dpms_property =
10276 dev->mode_config.dpms_property;
10277
ea9d758d 10278 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10279 drm_object_property_set_value(&connector->base,
68d34720
DV
10280 dpms_property,
10281 DRM_MODE_DPMS_ON);
ea9d758d
DV
10282
10283 intel_encoder = to_intel_encoder(connector->encoder);
10284 intel_encoder->connectors_active = true;
10285 }
10286 }
10287
10288}
10289
3bd26263 10290static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10291{
3bd26263 10292 int diff;
f1f644dc
JB
10293
10294 if (clock1 == clock2)
10295 return true;
10296
10297 if (!clock1 || !clock2)
10298 return false;
10299
10300 diff = abs(clock1 - clock2);
10301
10302 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10303 return true;
10304
10305 return false;
10306}
10307
25c5b266
DV
10308#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10309 list_for_each_entry((intel_crtc), \
10310 &(dev)->mode_config.crtc_list, \
10311 base.head) \
0973f18f 10312 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10313
0e8ffe1b 10314static bool
2fa2fe9a
DV
10315intel_pipe_config_compare(struct drm_device *dev,
10316 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10317 struct intel_crtc_config *pipe_config)
10318{
66e985c0
DV
10319#define PIPE_CONF_CHECK_X(name) \
10320 if (current_config->name != pipe_config->name) { \
10321 DRM_ERROR("mismatch in " #name " " \
10322 "(expected 0x%08x, found 0x%08x)\n", \
10323 current_config->name, \
10324 pipe_config->name); \
10325 return false; \
10326 }
10327
08a24034
DV
10328#define PIPE_CONF_CHECK_I(name) \
10329 if (current_config->name != pipe_config->name) { \
10330 DRM_ERROR("mismatch in " #name " " \
10331 "(expected %i, found %i)\n", \
10332 current_config->name, \
10333 pipe_config->name); \
10334 return false; \
88adfff1
DV
10335 }
10336
b95af8be
VK
10337/* This is required for BDW+ where there is only one set of registers for
10338 * switching between high and low RR.
10339 * This macro can be used whenever a comparison has to be made between one
10340 * hw state and multiple sw state variables.
10341 */
10342#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10343 if ((current_config->name != pipe_config->name) && \
10344 (current_config->alt_name != pipe_config->name)) { \
10345 DRM_ERROR("mismatch in " #name " " \
10346 "(expected %i or %i, found %i)\n", \
10347 current_config->name, \
10348 current_config->alt_name, \
10349 pipe_config->name); \
10350 return false; \
10351 }
10352
1bd1bd80
DV
10353#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10354 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10355 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10356 "(expected %i, found %i)\n", \
10357 current_config->name & (mask), \
10358 pipe_config->name & (mask)); \
10359 return false; \
10360 }
10361
5e550656
VS
10362#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10363 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10364 DRM_ERROR("mismatch in " #name " " \
10365 "(expected %i, found %i)\n", \
10366 current_config->name, \
10367 pipe_config->name); \
10368 return false; \
10369 }
10370
bb760063
DV
10371#define PIPE_CONF_QUIRK(quirk) \
10372 ((current_config->quirks | pipe_config->quirks) & (quirk))
10373
eccb140b
DV
10374 PIPE_CONF_CHECK_I(cpu_transcoder);
10375
08a24034
DV
10376 PIPE_CONF_CHECK_I(has_pch_encoder);
10377 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10378 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10379 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10380 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10381 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10382 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10383
eb14cb74 10384 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10385
10386 if (INTEL_INFO(dev)->gen < 8) {
10387 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10388 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10389 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10390 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10391 PIPE_CONF_CHECK_I(dp_m_n.tu);
10392
10393 if (current_config->has_drrs) {
10394 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10395 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10396 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10397 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10398 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10399 }
10400 } else {
10401 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10402 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10403 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10404 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10405 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10406 }
eb14cb74 10407
1bd1bd80
DV
10408 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10409 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10410 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10411 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10412 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10413 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10414
10415 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10416 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10417 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10418 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10419 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10420 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10421
c93f54cf 10422 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10423 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10424 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10425 IS_VALLEYVIEW(dev))
10426 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10427
9ed109a7
DV
10428 PIPE_CONF_CHECK_I(has_audio);
10429
1bd1bd80
DV
10430 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10431 DRM_MODE_FLAG_INTERLACE);
10432
bb760063
DV
10433 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10434 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10435 DRM_MODE_FLAG_PHSYNC);
10436 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10437 DRM_MODE_FLAG_NHSYNC);
10438 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10439 DRM_MODE_FLAG_PVSYNC);
10440 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10441 DRM_MODE_FLAG_NVSYNC);
10442 }
045ac3b5 10443
37327abd
VS
10444 PIPE_CONF_CHECK_I(pipe_src_w);
10445 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10446
9953599b
DV
10447 /*
10448 * FIXME: BIOS likes to set up a cloned config with lvds+external
10449 * screen. Since we don't yet re-compute the pipe config when moving
10450 * just the lvds port away to another pipe the sw tracking won't match.
10451 *
10452 * Proper atomic modesets with recomputed global state will fix this.
10453 * Until then just don't check gmch state for inherited modes.
10454 */
10455 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10456 PIPE_CONF_CHECK_I(gmch_pfit.control);
10457 /* pfit ratios are autocomputed by the hw on gen4+ */
10458 if (INTEL_INFO(dev)->gen < 4)
10459 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10460 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10461 }
10462
fd4daa9c
CW
10463 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10464 if (current_config->pch_pfit.enabled) {
10465 PIPE_CONF_CHECK_I(pch_pfit.pos);
10466 PIPE_CONF_CHECK_I(pch_pfit.size);
10467 }
2fa2fe9a 10468
e59150dc
JB
10469 /* BDW+ don't expose a synchronous way to read the state */
10470 if (IS_HASWELL(dev))
10471 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10472
282740f7
VS
10473 PIPE_CONF_CHECK_I(double_wide);
10474
26804afd
DV
10475 PIPE_CONF_CHECK_X(ddi_pll_sel);
10476
c0d43d62 10477 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10478 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10479 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10480 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10481 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10482 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10483
42571aef
VS
10484 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10485 PIPE_CONF_CHECK_I(pipe_bpp);
10486
a9a7e98a
JB
10487 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10488 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10489
66e985c0 10490#undef PIPE_CONF_CHECK_X
08a24034 10491#undef PIPE_CONF_CHECK_I
b95af8be 10492#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10493#undef PIPE_CONF_CHECK_FLAGS
5e550656 10494#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10495#undef PIPE_CONF_QUIRK
88adfff1 10496
0e8ffe1b
DV
10497 return true;
10498}
10499
91d1b4bd
DV
10500static void
10501check_connector_state(struct drm_device *dev)
8af6cf88 10502{
8af6cf88
DV
10503 struct intel_connector *connector;
10504
10505 list_for_each_entry(connector, &dev->mode_config.connector_list,
10506 base.head) {
10507 /* This also checks the encoder/connector hw state with the
10508 * ->get_hw_state callbacks. */
10509 intel_connector_check_state(connector);
10510
10511 WARN(&connector->new_encoder->base != connector->base.encoder,
10512 "connector's staged encoder doesn't match current encoder\n");
10513 }
91d1b4bd
DV
10514}
10515
10516static void
10517check_encoder_state(struct drm_device *dev)
10518{
10519 struct intel_encoder *encoder;
10520 struct intel_connector *connector;
8af6cf88 10521
b2784e15 10522 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10523 bool enabled = false;
10524 bool active = false;
10525 enum pipe pipe, tracked_pipe;
10526
10527 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10528 encoder->base.base.id,
8e329a03 10529 encoder->base.name);
8af6cf88
DV
10530
10531 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10532 "encoder's stage crtc doesn't match current crtc\n");
10533 WARN(encoder->connectors_active && !encoder->base.crtc,
10534 "encoder's active_connectors set, but no crtc\n");
10535
10536 list_for_each_entry(connector, &dev->mode_config.connector_list,
10537 base.head) {
10538 if (connector->base.encoder != &encoder->base)
10539 continue;
10540 enabled = true;
10541 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10542 active = true;
10543 }
0e32b39c
DA
10544 /*
10545 * for MST connectors if we unplug the connector is gone
10546 * away but the encoder is still connected to a crtc
10547 * until a modeset happens in response to the hotplug.
10548 */
10549 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10550 continue;
10551
8af6cf88
DV
10552 WARN(!!encoder->base.crtc != enabled,
10553 "encoder's enabled state mismatch "
10554 "(expected %i, found %i)\n",
10555 !!encoder->base.crtc, enabled);
10556 WARN(active && !encoder->base.crtc,
10557 "active encoder with no crtc\n");
10558
10559 WARN(encoder->connectors_active != active,
10560 "encoder's computed active state doesn't match tracked active state "
10561 "(expected %i, found %i)\n", active, encoder->connectors_active);
10562
10563 active = encoder->get_hw_state(encoder, &pipe);
10564 WARN(active != encoder->connectors_active,
10565 "encoder's hw state doesn't match sw tracking "
10566 "(expected %i, found %i)\n",
10567 encoder->connectors_active, active);
10568
10569 if (!encoder->base.crtc)
10570 continue;
10571
10572 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10573 WARN(active && pipe != tracked_pipe,
10574 "active encoder's pipe doesn't match"
10575 "(expected %i, found %i)\n",
10576 tracked_pipe, pipe);
10577
10578 }
91d1b4bd
DV
10579}
10580
10581static void
10582check_crtc_state(struct drm_device *dev)
10583{
fbee40df 10584 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10585 struct intel_crtc *crtc;
10586 struct intel_encoder *encoder;
10587 struct intel_crtc_config pipe_config;
8af6cf88 10588
d3fcc808 10589 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10590 bool enabled = false;
10591 bool active = false;
10592
045ac3b5
JB
10593 memset(&pipe_config, 0, sizeof(pipe_config));
10594
8af6cf88
DV
10595 DRM_DEBUG_KMS("[CRTC:%d]\n",
10596 crtc->base.base.id);
10597
10598 WARN(crtc->active && !crtc->base.enabled,
10599 "active crtc, but not enabled in sw tracking\n");
10600
b2784e15 10601 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10602 if (encoder->base.crtc != &crtc->base)
10603 continue;
10604 enabled = true;
10605 if (encoder->connectors_active)
10606 active = true;
10607 }
6c49f241 10608
8af6cf88
DV
10609 WARN(active != crtc->active,
10610 "crtc's computed active state doesn't match tracked active state "
10611 "(expected %i, found %i)\n", active, crtc->active);
10612 WARN(enabled != crtc->base.enabled,
10613 "crtc's computed enabled state doesn't match tracked enabled state "
10614 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10615
0e8ffe1b
DV
10616 active = dev_priv->display.get_pipe_config(crtc,
10617 &pipe_config);
d62cf62a 10618
b6b5d049
VS
10619 /* hw state is inconsistent with the pipe quirk */
10620 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10621 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10622 active = crtc->active;
10623
b2784e15 10624 for_each_intel_encoder(dev, encoder) {
3eaba51c 10625 enum pipe pipe;
6c49f241
DV
10626 if (encoder->base.crtc != &crtc->base)
10627 continue;
1d37b689 10628 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10629 encoder->get_config(encoder, &pipe_config);
10630 }
10631
0e8ffe1b
DV
10632 WARN(crtc->active != active,
10633 "crtc active state doesn't match with hw state "
10634 "(expected %i, found %i)\n", crtc->active, active);
10635
c0b03411
DV
10636 if (active &&
10637 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10638 WARN(1, "pipe state doesn't match!\n");
10639 intel_dump_pipe_config(crtc, &pipe_config,
10640 "[hw state]");
10641 intel_dump_pipe_config(crtc, &crtc->config,
10642 "[sw state]");
10643 }
8af6cf88
DV
10644 }
10645}
10646
91d1b4bd
DV
10647static void
10648check_shared_dpll_state(struct drm_device *dev)
10649{
fbee40df 10650 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10651 struct intel_crtc *crtc;
10652 struct intel_dpll_hw_state dpll_hw_state;
10653 int i;
5358901f
DV
10654
10655 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10656 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10657 int enabled_crtcs = 0, active_crtcs = 0;
10658 bool active;
10659
10660 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10661
10662 DRM_DEBUG_KMS("%s\n", pll->name);
10663
10664 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10665
3e369b76 10666 WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10667 "more active pll users than references: %i vs %i\n",
3e369b76 10668 pll->active, hweight32(pll->config.crtc_mask));
5358901f
DV
10669 WARN(pll->active && !pll->on,
10670 "pll in active use but not on in sw tracking\n");
35c95375
DV
10671 WARN(pll->on && !pll->active,
10672 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10673 WARN(pll->on != active,
10674 "pll on state mismatch (expected %i, found %i)\n",
10675 pll->on, active);
10676
d3fcc808 10677 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10678 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10679 enabled_crtcs++;
10680 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10681 active_crtcs++;
10682 }
10683 WARN(pll->active != active_crtcs,
10684 "pll active crtcs mismatch (expected %i, found %i)\n",
10685 pll->active, active_crtcs);
3e369b76 10686 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10687 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10688 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10689
3e369b76 10690 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10691 sizeof(dpll_hw_state)),
10692 "pll hw state mismatch\n");
5358901f 10693 }
8af6cf88
DV
10694}
10695
91d1b4bd
DV
10696void
10697intel_modeset_check_state(struct drm_device *dev)
10698{
10699 check_connector_state(dev);
10700 check_encoder_state(dev);
10701 check_crtc_state(dev);
10702 check_shared_dpll_state(dev);
10703}
10704
18442d08
VS
10705void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10706 int dotclock)
10707{
10708 /*
10709 * FDI already provided one idea for the dotclock.
10710 * Yell if the encoder disagrees.
10711 */
241bfc38 10712 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10713 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10714 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10715}
10716
80715b2f
VS
10717static void update_scanline_offset(struct intel_crtc *crtc)
10718{
10719 struct drm_device *dev = crtc->base.dev;
10720
10721 /*
10722 * The scanline counter increments at the leading edge of hsync.
10723 *
10724 * On most platforms it starts counting from vtotal-1 on the
10725 * first active line. That means the scanline counter value is
10726 * always one less than what we would expect. Ie. just after
10727 * start of vblank, which also occurs at start of hsync (on the
10728 * last active line), the scanline counter will read vblank_start-1.
10729 *
10730 * On gen2 the scanline counter starts counting from 1 instead
10731 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10732 * to keep the value positive), instead of adding one.
10733 *
10734 * On HSW+ the behaviour of the scanline counter depends on the output
10735 * type. For DP ports it behaves like most other platforms, but on HDMI
10736 * there's an extra 1 line difference. So we need to add two instead of
10737 * one to the value.
10738 */
10739 if (IS_GEN2(dev)) {
10740 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10741 int vtotal;
10742
10743 vtotal = mode->crtc_vtotal;
10744 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10745 vtotal /= 2;
10746
10747 crtc->scanline_offset = vtotal - 1;
10748 } else if (HAS_DDI(dev) &&
409ee761 10749 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10750 crtc->scanline_offset = 2;
10751 } else
10752 crtc->scanline_offset = 1;
10753}
10754
f30da187
DV
10755static int __intel_set_mode(struct drm_crtc *crtc,
10756 struct drm_display_mode *mode,
10757 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10758{
10759 struct drm_device *dev = crtc->dev;
fbee40df 10760 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10761 struct drm_display_mode *saved_mode;
b8cecdf5 10762 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10763 struct intel_crtc *intel_crtc;
10764 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10765 int ret = 0;
a6778b3c 10766
4b4b9238 10767 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10768 if (!saved_mode)
10769 return -ENOMEM;
a6778b3c 10770
e2e1ed41 10771 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10772 &prepare_pipes, &disable_pipes);
10773
3ac18232 10774 *saved_mode = crtc->mode;
a6778b3c 10775
25c5b266
DV
10776 /* Hack: Because we don't (yet) support global modeset on multiple
10777 * crtcs, we don't keep track of the new mode for more than one crtc.
10778 * Hence simply check whether any bit is set in modeset_pipes in all the
10779 * pieces of code that are not yet converted to deal with mutliple crtcs
10780 * changing their mode at the same time. */
25c5b266 10781 if (modeset_pipes) {
4e53c2e0 10782 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10783 if (IS_ERR(pipe_config)) {
10784 ret = PTR_ERR(pipe_config);
10785 pipe_config = NULL;
10786
3ac18232 10787 goto out;
25c5b266 10788 }
c0b03411
DV
10789 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10790 "[modeset]");
50741abc 10791 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10792 }
a6778b3c 10793
30a970c6
JB
10794 /*
10795 * See if the config requires any additional preparation, e.g.
10796 * to adjust global state with pipes off. We need to do this
10797 * here so we can get the modeset_pipe updated config for the new
10798 * mode set on this crtc. For other crtcs we need to use the
10799 * adjusted_mode bits in the crtc directly.
10800 */
c164f833 10801 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10802 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10803
c164f833
VS
10804 /* may have added more to prepare_pipes than we should */
10805 prepare_pipes &= ~disable_pipes;
10806 }
10807
8bd31e67
ACO
10808 if (dev_priv->display.crtc_compute_clock) {
10809 unsigned clear_pipes = modeset_pipes | disable_pipes;
10810
10811 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10812 if (ret)
10813 goto done;
10814
10815 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10816 ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10817 if (ret) {
10818 intel_shared_dpll_abort_config(dev_priv);
10819 goto done;
10820 }
10821 }
10822 }
10823
460da916
DV
10824 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10825 intel_crtc_disable(&intel_crtc->base);
10826
ea9d758d
DV
10827 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10828 if (intel_crtc->base.enabled)
10829 dev_priv->display.crtc_disable(&intel_crtc->base);
10830 }
a6778b3c 10831
6c4c86f5
DV
10832 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10833 * to set it here already despite that we pass it down the callchain.
f6e5b160 10834 */
b8cecdf5 10835 if (modeset_pipes) {
25c5b266 10836 crtc->mode = *mode;
b8cecdf5
DV
10837 /* mode_set/enable/disable functions rely on a correct pipe
10838 * config. */
10839 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10840 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10841
10842 /*
10843 * Calculate and store various constants which
10844 * are later needed by vblank and swap-completion
10845 * timestamping. They are derived from true hwmode.
10846 */
10847 drm_calc_timestamping_constants(crtc,
10848 &pipe_config->adjusted_mode);
b8cecdf5 10849 }
7758a113 10850
8bd31e67
ACO
10851 if (dev_priv->display.crtc_compute_clock)
10852 intel_shared_dpll_commit(dev_priv);
10853
ea9d758d
DV
10854 /* Only after disabling all output pipelines that will be changed can we
10855 * update the the output configuration. */
10856 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10857
47fab737
DV
10858 if (dev_priv->display.modeset_global_resources)
10859 dev_priv->display.modeset_global_resources(dev);
10860
a6778b3c
DV
10861 /* Set up the DPLL and any encoders state that needs to adjust or depend
10862 * on the DPLL.
f6e5b160 10863 */
25c5b266 10864 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10865 struct drm_framebuffer *old_fb = crtc->primary->fb;
10866 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10867 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10868
10869 mutex_lock(&dev->struct_mutex);
10870 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10871 obj,
4c10794f
DV
10872 NULL);
10873 if (ret != 0) {
10874 DRM_ERROR("pin & fence failed\n");
10875 mutex_unlock(&dev->struct_mutex);
10876 goto done;
10877 }
2ff8fde1 10878 if (old_fb)
a071fa00 10879 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10880 i915_gem_track_fb(old_obj, obj,
10881 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10882 mutex_unlock(&dev->struct_mutex);
10883
10884 crtc->primary->fb = fb;
10885 crtc->x = x;
10886 crtc->y = y;
10887
8bd31e67
ACO
10888 if (dev_priv->display.crtc_mode_set) {
10889 ret = dev_priv->display.crtc_mode_set(intel_crtc,
10890 x, y, fb);
10891 if (ret)
10892 goto done;
10893 }
a6778b3c
DV
10894 }
10895
10896 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10897 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10898 update_scanline_offset(intel_crtc);
10899
25c5b266 10900 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10901 }
a6778b3c 10902
a6778b3c
DV
10903 /* FIXME: add subpixel order */
10904done:
4b4b9238 10905 if (ret && crtc->enabled)
3ac18232 10906 crtc->mode = *saved_mode;
a6778b3c 10907
3ac18232 10908out:
b8cecdf5 10909 kfree(pipe_config);
3ac18232 10910 kfree(saved_mode);
a6778b3c 10911 return ret;
f6e5b160
CW
10912}
10913
e7457a9a
DL
10914static int intel_set_mode(struct drm_crtc *crtc,
10915 struct drm_display_mode *mode,
10916 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10917{
10918 int ret;
10919
10920 ret = __intel_set_mode(crtc, mode, x, y, fb);
10921
10922 if (ret == 0)
10923 intel_modeset_check_state(crtc->dev);
10924
10925 return ret;
10926}
10927
c0c36b94
CW
10928void intel_crtc_restore_mode(struct drm_crtc *crtc)
10929{
f4510a27 10930 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10931}
10932
25c5b266
DV
10933#undef for_each_intel_crtc_masked
10934
d9e55608
DV
10935static void intel_set_config_free(struct intel_set_config *config)
10936{
10937 if (!config)
10938 return;
10939
1aa4b628
DV
10940 kfree(config->save_connector_encoders);
10941 kfree(config->save_encoder_crtcs);
7668851f 10942 kfree(config->save_crtc_enabled);
d9e55608
DV
10943 kfree(config);
10944}
10945
85f9eb71
DV
10946static int intel_set_config_save_state(struct drm_device *dev,
10947 struct intel_set_config *config)
10948{
7668851f 10949 struct drm_crtc *crtc;
85f9eb71
DV
10950 struct drm_encoder *encoder;
10951 struct drm_connector *connector;
10952 int count;
10953
7668851f
VS
10954 config->save_crtc_enabled =
10955 kcalloc(dev->mode_config.num_crtc,
10956 sizeof(bool), GFP_KERNEL);
10957 if (!config->save_crtc_enabled)
10958 return -ENOMEM;
10959
1aa4b628
DV
10960 config->save_encoder_crtcs =
10961 kcalloc(dev->mode_config.num_encoder,
10962 sizeof(struct drm_crtc *), GFP_KERNEL);
10963 if (!config->save_encoder_crtcs)
85f9eb71
DV
10964 return -ENOMEM;
10965
1aa4b628
DV
10966 config->save_connector_encoders =
10967 kcalloc(dev->mode_config.num_connector,
10968 sizeof(struct drm_encoder *), GFP_KERNEL);
10969 if (!config->save_connector_encoders)
85f9eb71
DV
10970 return -ENOMEM;
10971
10972 /* Copy data. Note that driver private data is not affected.
10973 * Should anything bad happen only the expected state is
10974 * restored, not the drivers personal bookkeeping.
10975 */
7668851f 10976 count = 0;
70e1e0ec 10977 for_each_crtc(dev, crtc) {
7668851f
VS
10978 config->save_crtc_enabled[count++] = crtc->enabled;
10979 }
10980
85f9eb71
DV
10981 count = 0;
10982 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10983 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10984 }
10985
10986 count = 0;
10987 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10988 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10989 }
10990
10991 return 0;
10992}
10993
10994static void intel_set_config_restore_state(struct drm_device *dev,
10995 struct intel_set_config *config)
10996{
7668851f 10997 struct intel_crtc *crtc;
9a935856
DV
10998 struct intel_encoder *encoder;
10999 struct intel_connector *connector;
85f9eb71
DV
11000 int count;
11001
7668851f 11002 count = 0;
d3fcc808 11003 for_each_intel_crtc(dev, crtc) {
7668851f 11004 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11005
11006 if (crtc->new_enabled)
11007 crtc->new_config = &crtc->config;
11008 else
11009 crtc->new_config = NULL;
7668851f
VS
11010 }
11011
85f9eb71 11012 count = 0;
b2784e15 11013 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11014 encoder->new_crtc =
11015 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11016 }
11017
11018 count = 0;
9a935856
DV
11019 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11020 connector->new_encoder =
11021 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11022 }
11023}
11024
e3de42b6 11025static bool
2e57f47d 11026is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11027{
11028 int i;
11029
2e57f47d
CW
11030 if (set->num_connectors == 0)
11031 return false;
11032
11033 if (WARN_ON(set->connectors == NULL))
11034 return false;
11035
11036 for (i = 0; i < set->num_connectors; i++)
11037 if (set->connectors[i]->encoder &&
11038 set->connectors[i]->encoder->crtc == set->crtc &&
11039 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11040 return true;
11041
11042 return false;
11043}
11044
5e2b584e
DV
11045static void
11046intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11047 struct intel_set_config *config)
11048{
11049
11050 /* We should be able to check here if the fb has the same properties
11051 * and then just flip_or_move it */
2e57f47d
CW
11052 if (is_crtc_connector_off(set)) {
11053 config->mode_changed = true;
f4510a27 11054 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11055 /*
11056 * If we have no fb, we can only flip as long as the crtc is
11057 * active, otherwise we need a full mode set. The crtc may
11058 * be active if we've only disabled the primary plane, or
11059 * in fastboot situations.
11060 */
f4510a27 11061 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11062 struct intel_crtc *intel_crtc =
11063 to_intel_crtc(set->crtc);
11064
3b150f08 11065 if (intel_crtc->active) {
319d9827
JB
11066 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11067 config->fb_changed = true;
11068 } else {
11069 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11070 config->mode_changed = true;
11071 }
5e2b584e
DV
11072 } else if (set->fb == NULL) {
11073 config->mode_changed = true;
72f4901e 11074 } else if (set->fb->pixel_format !=
f4510a27 11075 set->crtc->primary->fb->pixel_format) {
5e2b584e 11076 config->mode_changed = true;
e3de42b6 11077 } else {
5e2b584e 11078 config->fb_changed = true;
e3de42b6 11079 }
5e2b584e
DV
11080 }
11081
835c5873 11082 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11083 config->fb_changed = true;
11084
11085 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11086 DRM_DEBUG_KMS("modes are different, full mode set\n");
11087 drm_mode_debug_printmodeline(&set->crtc->mode);
11088 drm_mode_debug_printmodeline(set->mode);
11089 config->mode_changed = true;
11090 }
a1d95703
CW
11091
11092 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11093 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11094}
11095
2e431051 11096static int
9a935856
DV
11097intel_modeset_stage_output_state(struct drm_device *dev,
11098 struct drm_mode_set *set,
11099 struct intel_set_config *config)
50f56119 11100{
9a935856
DV
11101 struct intel_connector *connector;
11102 struct intel_encoder *encoder;
7668851f 11103 struct intel_crtc *crtc;
f3f08572 11104 int ro;
50f56119 11105
9abdda74 11106 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11107 * of connectors. For paranoia, double-check this. */
11108 WARN_ON(!set->fb && (set->num_connectors != 0));
11109 WARN_ON(set->fb && (set->num_connectors == 0));
11110
9a935856
DV
11111 list_for_each_entry(connector, &dev->mode_config.connector_list,
11112 base.head) {
11113 /* Otherwise traverse passed in connector list and get encoders
11114 * for them. */
50f56119 11115 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11116 if (set->connectors[ro] == &connector->base) {
0e32b39c 11117 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11118 break;
11119 }
11120 }
11121
9a935856
DV
11122 /* If we disable the crtc, disable all its connectors. Also, if
11123 * the connector is on the changing crtc but not on the new
11124 * connector list, disable it. */
11125 if ((!set->fb || ro == set->num_connectors) &&
11126 connector->base.encoder &&
11127 connector->base.encoder->crtc == set->crtc) {
11128 connector->new_encoder = NULL;
11129
11130 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11131 connector->base.base.id,
c23cc417 11132 connector->base.name);
9a935856
DV
11133 }
11134
11135
11136 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11137 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11138 config->mode_changed = true;
50f56119
DV
11139 }
11140 }
9a935856 11141 /* connector->new_encoder is now updated for all connectors. */
50f56119 11142
9a935856 11143 /* Update crtc of enabled connectors. */
9a935856
DV
11144 list_for_each_entry(connector, &dev->mode_config.connector_list,
11145 base.head) {
7668851f
VS
11146 struct drm_crtc *new_crtc;
11147
9a935856 11148 if (!connector->new_encoder)
50f56119
DV
11149 continue;
11150
9a935856 11151 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11152
11153 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11154 if (set->connectors[ro] == &connector->base)
50f56119
DV
11155 new_crtc = set->crtc;
11156 }
11157
11158 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11159 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11160 new_crtc)) {
5e2b584e 11161 return -EINVAL;
50f56119 11162 }
0e32b39c 11163 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11164
11165 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11166 connector->base.base.id,
c23cc417 11167 connector->base.name,
9a935856
DV
11168 new_crtc->base.id);
11169 }
11170
11171 /* Check for any encoders that needs to be disabled. */
b2784e15 11172 for_each_intel_encoder(dev, encoder) {
5a65f358 11173 int num_connectors = 0;
9a935856
DV
11174 list_for_each_entry(connector,
11175 &dev->mode_config.connector_list,
11176 base.head) {
11177 if (connector->new_encoder == encoder) {
11178 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11179 num_connectors++;
9a935856
DV
11180 }
11181 }
5a65f358
PZ
11182
11183 if (num_connectors == 0)
11184 encoder->new_crtc = NULL;
11185 else if (num_connectors > 1)
11186 return -EINVAL;
11187
9a935856
DV
11188 /* Only now check for crtc changes so we don't miss encoders
11189 * that will be disabled. */
11190 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11191 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11192 config->mode_changed = true;
50f56119
DV
11193 }
11194 }
9a935856 11195 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11196 list_for_each_entry(connector, &dev->mode_config.connector_list,
11197 base.head) {
11198 if (connector->new_encoder)
11199 if (connector->new_encoder != connector->encoder)
11200 connector->encoder = connector->new_encoder;
11201 }
d3fcc808 11202 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11203 crtc->new_enabled = false;
11204
b2784e15 11205 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11206 if (encoder->new_crtc == crtc) {
11207 crtc->new_enabled = true;
11208 break;
11209 }
11210 }
11211
11212 if (crtc->new_enabled != crtc->base.enabled) {
11213 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11214 crtc->new_enabled ? "en" : "dis");
11215 config->mode_changed = true;
11216 }
7bd0a8e7
VS
11217
11218 if (crtc->new_enabled)
11219 crtc->new_config = &crtc->config;
11220 else
11221 crtc->new_config = NULL;
7668851f
VS
11222 }
11223
2e431051
DV
11224 return 0;
11225}
11226
7d00a1f5
VS
11227static void disable_crtc_nofb(struct intel_crtc *crtc)
11228{
11229 struct drm_device *dev = crtc->base.dev;
11230 struct intel_encoder *encoder;
11231 struct intel_connector *connector;
11232
11233 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11234 pipe_name(crtc->pipe));
11235
11236 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11237 if (connector->new_encoder &&
11238 connector->new_encoder->new_crtc == crtc)
11239 connector->new_encoder = NULL;
11240 }
11241
b2784e15 11242 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11243 if (encoder->new_crtc == crtc)
11244 encoder->new_crtc = NULL;
11245 }
11246
11247 crtc->new_enabled = false;
7bd0a8e7 11248 crtc->new_config = NULL;
7d00a1f5
VS
11249}
11250
2e431051
DV
11251static int intel_crtc_set_config(struct drm_mode_set *set)
11252{
11253 struct drm_device *dev;
2e431051
DV
11254 struct drm_mode_set save_set;
11255 struct intel_set_config *config;
11256 int ret;
2e431051 11257
8d3e375e
DV
11258 BUG_ON(!set);
11259 BUG_ON(!set->crtc);
11260 BUG_ON(!set->crtc->helper_private);
2e431051 11261
7e53f3a4
DV
11262 /* Enforce sane interface api - has been abused by the fb helper. */
11263 BUG_ON(!set->mode && set->fb);
11264 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11265
2e431051
DV
11266 if (set->fb) {
11267 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11268 set->crtc->base.id, set->fb->base.id,
11269 (int)set->num_connectors, set->x, set->y);
11270 } else {
11271 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11272 }
11273
11274 dev = set->crtc->dev;
11275
11276 ret = -ENOMEM;
11277 config = kzalloc(sizeof(*config), GFP_KERNEL);
11278 if (!config)
11279 goto out_config;
11280
11281 ret = intel_set_config_save_state(dev, config);
11282 if (ret)
11283 goto out_config;
11284
11285 save_set.crtc = set->crtc;
11286 save_set.mode = &set->crtc->mode;
11287 save_set.x = set->crtc->x;
11288 save_set.y = set->crtc->y;
f4510a27 11289 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11290
11291 /* Compute whether we need a full modeset, only an fb base update or no
11292 * change at all. In the future we might also check whether only the
11293 * mode changed, e.g. for LVDS where we only change the panel fitter in
11294 * such cases. */
11295 intel_set_config_compute_mode_changes(set, config);
11296
9a935856 11297 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11298 if (ret)
11299 goto fail;
11300
5e2b584e 11301 if (config->mode_changed) {
c0c36b94
CW
11302 ret = intel_set_mode(set->crtc, set->mode,
11303 set->x, set->y, set->fb);
5e2b584e 11304 } else if (config->fb_changed) {
3b150f08
MR
11305 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11306
4878cae2
VS
11307 intel_crtc_wait_for_pending_flips(set->crtc);
11308
4f660f49 11309 ret = intel_pipe_set_base(set->crtc,
94352cf9 11310 set->x, set->y, set->fb);
3b150f08
MR
11311
11312 /*
11313 * We need to make sure the primary plane is re-enabled if it
11314 * has previously been turned off.
11315 */
11316 if (!intel_crtc->primary_enabled && ret == 0) {
11317 WARN_ON(!intel_crtc->active);
fdd508a6 11318 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11319 }
11320
7ca51a3a
JB
11321 /*
11322 * In the fastboot case this may be our only check of the
11323 * state after boot. It would be better to only do it on
11324 * the first update, but we don't have a nice way of doing that
11325 * (and really, set_config isn't used much for high freq page
11326 * flipping, so increasing its cost here shouldn't be a big
11327 * deal).
11328 */
d330a953 11329 if (i915.fastboot && ret == 0)
7ca51a3a 11330 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11331 }
11332
2d05eae1 11333 if (ret) {
bf67dfeb
DV
11334 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11335 set->crtc->base.id, ret);
50f56119 11336fail:
2d05eae1 11337 intel_set_config_restore_state(dev, config);
50f56119 11338
7d00a1f5
VS
11339 /*
11340 * HACK: if the pipe was on, but we didn't have a framebuffer,
11341 * force the pipe off to avoid oopsing in the modeset code
11342 * due to fb==NULL. This should only happen during boot since
11343 * we don't yet reconstruct the FB from the hardware state.
11344 */
11345 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11346 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11347
2d05eae1
CW
11348 /* Try to restore the config */
11349 if (config->mode_changed &&
11350 intel_set_mode(save_set.crtc, save_set.mode,
11351 save_set.x, save_set.y, save_set.fb))
11352 DRM_ERROR("failed to restore config after modeset failure\n");
11353 }
50f56119 11354
d9e55608
DV
11355out_config:
11356 intel_set_config_free(config);
50f56119
DV
11357 return ret;
11358}
f6e5b160
CW
11359
11360static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11361 .gamma_set = intel_crtc_gamma_set,
50f56119 11362 .set_config = intel_crtc_set_config,
f6e5b160
CW
11363 .destroy = intel_crtc_destroy,
11364 .page_flip = intel_crtc_page_flip,
11365};
11366
5358901f
DV
11367static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11368 struct intel_shared_dpll *pll,
11369 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11370{
5358901f 11371 uint32_t val;
ee7b9f93 11372
f458ebbc 11373 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11374 return false;
11375
5358901f 11376 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11377 hw_state->dpll = val;
11378 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11379 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11380
11381 return val & DPLL_VCO_ENABLE;
11382}
11383
15bdd4cf
DV
11384static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11385 struct intel_shared_dpll *pll)
11386{
3e369b76
ACO
11387 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11388 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11389}
11390
e7b903d2
DV
11391static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11392 struct intel_shared_dpll *pll)
11393{
e7b903d2 11394 /* PCH refclock must be enabled first */
89eff4be 11395 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11396
3e369b76 11397 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11398
11399 /* Wait for the clocks to stabilize. */
11400 POSTING_READ(PCH_DPLL(pll->id));
11401 udelay(150);
11402
11403 /* The pixel multiplier can only be updated once the
11404 * DPLL is enabled and the clocks are stable.
11405 *
11406 * So write it again.
11407 */
3e369b76 11408 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11409 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11410 udelay(200);
11411}
11412
11413static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11414 struct intel_shared_dpll *pll)
11415{
11416 struct drm_device *dev = dev_priv->dev;
11417 struct intel_crtc *crtc;
e7b903d2
DV
11418
11419 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11420 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11421 if (intel_crtc_to_shared_dpll(crtc) == pll)
11422 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11423 }
11424
15bdd4cf
DV
11425 I915_WRITE(PCH_DPLL(pll->id), 0);
11426 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11427 udelay(200);
11428}
11429
46edb027
DV
11430static char *ibx_pch_dpll_names[] = {
11431 "PCH DPLL A",
11432 "PCH DPLL B",
11433};
11434
7c74ade1 11435static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11436{
e7b903d2 11437 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11438 int i;
11439
7c74ade1 11440 dev_priv->num_shared_dpll = 2;
ee7b9f93 11441
e72f9fbf 11442 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11443 dev_priv->shared_dplls[i].id = i;
11444 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11445 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11446 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11447 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11448 dev_priv->shared_dplls[i].get_hw_state =
11449 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11450 }
11451}
11452
7c74ade1
DV
11453static void intel_shared_dpll_init(struct drm_device *dev)
11454{
e7b903d2 11455 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11456
9cd86933
DV
11457 if (HAS_DDI(dev))
11458 intel_ddi_pll_init(dev);
11459 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11460 ibx_pch_dpll_init(dev);
11461 else
11462 dev_priv->num_shared_dpll = 0;
11463
11464 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11465}
11466
465c120c
MR
11467static int
11468intel_primary_plane_disable(struct drm_plane *plane)
11469{
11470 struct drm_device *dev = plane->dev;
465c120c
MR
11471 struct intel_crtc *intel_crtc;
11472
11473 if (!plane->fb)
11474 return 0;
11475
11476 BUG_ON(!plane->crtc);
11477
11478 intel_crtc = to_intel_crtc(plane->crtc);
11479
11480 /*
11481 * Even though we checked plane->fb above, it's still possible that
11482 * the primary plane has been implicitly disabled because the crtc
11483 * coordinates given weren't visible, or because we detected
11484 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11485 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11486 * In either case, we need to unpin the FB and let the fb pointer get
11487 * updated, but otherwise we don't need to touch the hardware.
11488 */
11489 if (!intel_crtc->primary_enabled)
11490 goto disable_unpin;
11491
11492 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11493 intel_disable_primary_hw_plane(plane, plane->crtc);
11494
465c120c 11495disable_unpin:
4c34574f 11496 mutex_lock(&dev->struct_mutex);
2ff8fde1 11497 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11498 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11499 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11500 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11501 plane->fb = NULL;
11502
11503 return 0;
11504}
11505
11506static int
3c692a41
GP
11507intel_check_primary_plane(struct drm_plane *plane,
11508 struct intel_plane_state *state)
11509{
11510 struct drm_crtc *crtc = state->crtc;
11511 struct drm_framebuffer *fb = state->fb;
11512 struct drm_rect *dest = &state->dst;
11513 struct drm_rect *src = &state->src;
11514 const struct drm_rect *clip = &state->clip;
ccc759dc 11515
3ead8bb2
GP
11516 return drm_plane_helper_check_update(plane, crtc, fb,
11517 src, dest, clip,
11518 DRM_PLANE_HELPER_NO_SCALING,
11519 DRM_PLANE_HELPER_NO_SCALING,
11520 false, true, &state->visible);
3c692a41
GP
11521}
11522
11523static int
14af293f
GP
11524intel_prepare_primary_plane(struct drm_plane *plane,
11525 struct intel_plane_state *state)
465c120c 11526{
3c692a41
GP
11527 struct drm_crtc *crtc = state->crtc;
11528 struct drm_framebuffer *fb = state->fb;
465c120c 11529 struct drm_device *dev = crtc->dev;
465c120c 11530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ccc759dc 11531 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
11532 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11533 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11534 int ret;
11535
465c120c
MR
11536 intel_crtc_wait_for_pending_flips(crtc);
11537
ccc759dc
GP
11538 if (intel_crtc_has_pending_flip(crtc)) {
11539 DRM_ERROR("pipe is still busy with an old pageflip\n");
11540 return -EBUSY;
11541 }
11542
14af293f 11543 if (old_obj != obj) {
4c34574f 11544 mutex_lock(&dev->struct_mutex);
ccc759dc
GP
11545 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11546 if (ret == 0)
11547 i915_gem_track_fb(old_obj, obj,
11548 INTEL_FRONTBUFFER_PRIMARY(pipe));
11549 mutex_unlock(&dev->struct_mutex);
11550 if (ret != 0) {
11551 DRM_DEBUG_KMS("pin & fence failed\n");
11552 return ret;
11553 }
11554 }
11555
14af293f
GP
11556 return 0;
11557}
11558
11559static void
11560intel_commit_primary_plane(struct drm_plane *plane,
11561 struct intel_plane_state *state)
11562{
11563 struct drm_crtc *crtc = state->crtc;
11564 struct drm_framebuffer *fb = state->fb;
11565 struct drm_device *dev = crtc->dev;
11566 struct drm_i915_private *dev_priv = dev->dev_private;
11567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11568 enum pipe pipe = intel_crtc->pipe;
11569 struct drm_framebuffer *old_fb = plane->fb;
11570 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11571 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11572 struct intel_plane *intel_plane = to_intel_plane(plane);
11573 struct drm_rect *src = &state->src;
11574
ccc759dc
GP
11575 crtc->primary->fb = fb;
11576 crtc->x = src->x1;
11577 crtc->y = src->y1;
11578
11579 intel_plane->crtc_x = state->orig_dst.x1;
11580 intel_plane->crtc_y = state->orig_dst.y1;
11581 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11582 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11583 intel_plane->src_x = state->orig_src.x1;
11584 intel_plane->src_y = state->orig_src.y1;
11585 intel_plane->src_w = drm_rect_width(&state->orig_src);
11586 intel_plane->src_h = drm_rect_height(&state->orig_src);
11587 intel_plane->obj = obj;
4c34574f 11588
ccc759dc 11589 if (intel_crtc->active) {
465c120c 11590 /*
ccc759dc
GP
11591 * FBC does not work on some platforms for rotated
11592 * planes, so disable it when rotation is not 0 and
11593 * update it when rotation is set back to 0.
11594 *
11595 * FIXME: This is redundant with the fbc update done in
11596 * the primary plane enable function except that that
11597 * one is done too late. We eventually need to unify
11598 * this.
465c120c 11599 */
ccc759dc
GP
11600 if (intel_crtc->primary_enabled &&
11601 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11602 dev_priv->fbc.plane == intel_crtc->plane &&
11603 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11604 intel_disable_fbc(dev);
465c120c
MR
11605 }
11606
ccc759dc
GP
11607 if (state->visible) {
11608 bool was_enabled = intel_crtc->primary_enabled;
465c120c 11609
ccc759dc
GP
11610 /* FIXME: kill this fastboot hack */
11611 intel_update_pipe_size(intel_crtc);
465c120c 11612
ccc759dc 11613 intel_crtc->primary_enabled = true;
465c120c 11614
ccc759dc
GP
11615 dev_priv->display.update_primary_plane(crtc, plane->fb,
11616 crtc->x, crtc->y);
4c34574f 11617
48404c1e 11618 /*
ccc759dc
GP
11619 * BDW signals flip done immediately if the plane
11620 * is disabled, even if the plane enable is already
11621 * armed to occur at the next vblank :(
48404c1e 11622 */
ccc759dc
GP
11623 if (IS_BROADWELL(dev) && !was_enabled)
11624 intel_wait_for_vblank(dev, intel_crtc->pipe);
11625 } else {
11626 /*
11627 * If clipping results in a non-visible primary plane,
11628 * we'll disable the primary plane. Note that this is
11629 * a bit different than what happens if userspace
11630 * explicitly disables the plane by passing fb=0
11631 * because plane->fb still gets set and pinned.
11632 */
11633 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11634 }
465c120c 11635
ccc759dc
GP
11636 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11637
11638 mutex_lock(&dev->struct_mutex);
11639 intel_update_fbc(dev);
11640 mutex_unlock(&dev->struct_mutex);
ce54d85a 11641 }
465c120c 11642
ccc759dc
GP
11643 if (old_fb && old_fb != fb) {
11644 if (intel_crtc->active)
11645 intel_wait_for_vblank(dev, intel_crtc->pipe);
11646
11647 mutex_lock(&dev->struct_mutex);
11648 intel_unpin_fb_obj(old_obj);
11649 mutex_unlock(&dev->struct_mutex);
11650 }
465c120c
MR
11651}
11652
3c692a41
GP
11653static int
11654intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11655 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11656 unsigned int crtc_w, unsigned int crtc_h,
11657 uint32_t src_x, uint32_t src_y,
11658 uint32_t src_w, uint32_t src_h)
11659{
11660 struct intel_plane_state state;
11661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11662 int ret;
11663
11664 state.crtc = crtc;
11665 state.fb = fb;
11666
11667 /* sample coordinates in 16.16 fixed point */
11668 state.src.x1 = src_x;
11669 state.src.x2 = src_x + src_w;
11670 state.src.y1 = src_y;
11671 state.src.y2 = src_y + src_h;
11672
11673 /* integer pixels */
11674 state.dst.x1 = crtc_x;
11675 state.dst.x2 = crtc_x + crtc_w;
11676 state.dst.y1 = crtc_y;
11677 state.dst.y2 = crtc_y + crtc_h;
11678
11679 state.clip.x1 = 0;
11680 state.clip.y1 = 0;
11681 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11682 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11683
11684 state.orig_src = state.src;
11685 state.orig_dst = state.dst;
11686
11687 ret = intel_check_primary_plane(plane, &state);
11688 if (ret)
14af293f
GP
11689 return ret;
11690
11691 ret = intel_prepare_primary_plane(plane, &state);
11692 if (ret)
3c692a41
GP
11693 return ret;
11694
11695 intel_commit_primary_plane(plane, &state);
11696
11697 return 0;
11698}
11699
3d7d6510
MR
11700/* Common destruction function for both primary and cursor planes */
11701static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11702{
11703 struct intel_plane *intel_plane = to_intel_plane(plane);
11704 drm_plane_cleanup(plane);
11705 kfree(intel_plane);
11706}
11707
11708static const struct drm_plane_funcs intel_primary_plane_funcs = {
11709 .update_plane = intel_primary_plane_setplane,
11710 .disable_plane = intel_primary_plane_disable,
3d7d6510 11711 .destroy = intel_plane_destroy,
48404c1e 11712 .set_property = intel_plane_set_property
465c120c
MR
11713};
11714
11715static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11716 int pipe)
11717{
11718 struct intel_plane *primary;
11719 const uint32_t *intel_primary_formats;
11720 int num_formats;
11721
11722 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11723 if (primary == NULL)
11724 return NULL;
11725
11726 primary->can_scale = false;
11727 primary->max_downscale = 1;
11728 primary->pipe = pipe;
11729 primary->plane = pipe;
48404c1e 11730 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11731 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11732 primary->plane = !pipe;
11733
11734 if (INTEL_INFO(dev)->gen <= 3) {
11735 intel_primary_formats = intel_primary_formats_gen2;
11736 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11737 } else {
11738 intel_primary_formats = intel_primary_formats_gen4;
11739 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11740 }
11741
11742 drm_universal_plane_init(dev, &primary->base, 0,
11743 &intel_primary_plane_funcs,
11744 intel_primary_formats, num_formats,
11745 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11746
11747 if (INTEL_INFO(dev)->gen >= 4) {
11748 if (!dev->mode_config.rotation_property)
11749 dev->mode_config.rotation_property =
11750 drm_mode_create_rotation_property(dev,
11751 BIT(DRM_ROTATE_0) |
11752 BIT(DRM_ROTATE_180));
11753 if (dev->mode_config.rotation_property)
11754 drm_object_attach_property(&primary->base.base,
11755 dev->mode_config.rotation_property,
11756 primary->rotation);
11757 }
11758
465c120c
MR
11759 return &primary->base;
11760}
11761
3d7d6510
MR
11762static int
11763intel_cursor_plane_disable(struct drm_plane *plane)
11764{
11765 if (!plane->fb)
11766 return 0;
11767
11768 BUG_ON(!plane->crtc);
11769
11770 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11771}
11772
11773static int
852e787c
GP
11774intel_check_cursor_plane(struct drm_plane *plane,
11775 struct intel_plane_state *state)
3d7d6510 11776{
852e787c 11777 struct drm_crtc *crtc = state->crtc;
757f9a3e 11778 struct drm_device *dev = crtc->dev;
852e787c
GP
11779 struct drm_framebuffer *fb = state->fb;
11780 struct drm_rect *dest = &state->dst;
11781 struct drm_rect *src = &state->src;
11782 const struct drm_rect *clip = &state->clip;
757f9a3e
GP
11783 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11784 int crtc_w, crtc_h;
11785 unsigned stride;
11786 int ret;
3d7d6510 11787
757f9a3e 11788 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 11789 src, dest, clip,
3d7d6510
MR
11790 DRM_PLANE_HELPER_NO_SCALING,
11791 DRM_PLANE_HELPER_NO_SCALING,
852e787c 11792 true, true, &state->visible);
757f9a3e
GP
11793 if (ret)
11794 return ret;
11795
11796
11797 /* if we want to turn off the cursor ignore width and height */
11798 if (!obj)
11799 return 0;
11800
757f9a3e
GP
11801 /* Check for which cursor types we support */
11802 crtc_w = drm_rect_width(&state->orig_dst);
11803 crtc_h = drm_rect_height(&state->orig_dst);
11804 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11805 DRM_DEBUG("Cursor dimension not supported\n");
11806 return -EINVAL;
11807 }
11808
11809 stride = roundup_pow_of_two(crtc_w) * 4;
11810 if (obj->base.size < stride * crtc_h) {
11811 DRM_DEBUG_KMS("buffer is too small\n");
11812 return -ENOMEM;
11813 }
11814
e391ea88
GP
11815 if (fb == crtc->cursor->fb)
11816 return 0;
11817
757f9a3e
GP
11818 /* we only need to pin inside GTT if cursor is non-phy */
11819 mutex_lock(&dev->struct_mutex);
11820 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11821 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11822 ret = -EINVAL;
11823 }
11824 mutex_unlock(&dev->struct_mutex);
11825
11826 return ret;
852e787c 11827}
3d7d6510 11828
852e787c
GP
11829static int
11830intel_commit_cursor_plane(struct drm_plane *plane,
11831 struct intel_plane_state *state)
11832{
11833 struct drm_crtc *crtc = state->crtc;
11834 struct drm_framebuffer *fb = state->fb;
11835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a919db90 11836 struct intel_plane *intel_plane = to_intel_plane(plane);
852e787c
GP
11837 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11838 struct drm_i915_gem_object *obj = intel_fb->obj;
11839 int crtc_w, crtc_h;
11840
11841 crtc->cursor_x = state->orig_dst.x1;
11842 crtc->cursor_y = state->orig_dst.y1;
a919db90
SJ
11843
11844 intel_plane->crtc_x = state->orig_dst.x1;
11845 intel_plane->crtc_y = state->orig_dst.y1;
11846 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11847 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11848 intel_plane->src_x = state->orig_src.x1;
11849 intel_plane->src_y = state->orig_src.y1;
11850 intel_plane->src_w = drm_rect_width(&state->orig_src);
11851 intel_plane->src_h = drm_rect_height(&state->orig_src);
11852 intel_plane->obj = obj;
11853
3d7d6510 11854 if (fb != crtc->cursor->fb) {
852e787c
GP
11855 crtc_w = drm_rect_width(&state->orig_dst);
11856 crtc_h = drm_rect_height(&state->orig_dst);
3d7d6510
MR
11857 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11858 } else {
852e787c 11859 intel_crtc_update_cursor(crtc, state->visible);
4ed91096
DV
11860
11861 intel_frontbuffer_flip(crtc->dev,
11862 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11863
3d7d6510
MR
11864 return 0;
11865 }
11866}
852e787c
GP
11867
11868static int
11869intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11870 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11871 unsigned int crtc_w, unsigned int crtc_h,
11872 uint32_t src_x, uint32_t src_y,
11873 uint32_t src_w, uint32_t src_h)
11874{
11875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11876 struct intel_plane_state state;
11877 int ret;
11878
11879 state.crtc = crtc;
11880 state.fb = fb;
11881
11882 /* sample coordinates in 16.16 fixed point */
11883 state.src.x1 = src_x;
11884 state.src.x2 = src_x + src_w;
11885 state.src.y1 = src_y;
11886 state.src.y2 = src_y + src_h;
11887
11888 /* integer pixels */
11889 state.dst.x1 = crtc_x;
11890 state.dst.x2 = crtc_x + crtc_w;
11891 state.dst.y1 = crtc_y;
11892 state.dst.y2 = crtc_y + crtc_h;
11893
11894 state.clip.x1 = 0;
11895 state.clip.y1 = 0;
11896 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11897 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11898
11899 state.orig_src = state.src;
11900 state.orig_dst = state.dst;
11901
11902 ret = intel_check_cursor_plane(plane, &state);
11903 if (ret)
11904 return ret;
11905
11906 return intel_commit_cursor_plane(plane, &state);
11907}
11908
3d7d6510
MR
11909static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11910 .update_plane = intel_cursor_plane_update,
11911 .disable_plane = intel_cursor_plane_disable,
11912 .destroy = intel_plane_destroy,
4398ad45 11913 .set_property = intel_plane_set_property,
3d7d6510
MR
11914};
11915
11916static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11917 int pipe)
11918{
11919 struct intel_plane *cursor;
11920
11921 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11922 if (cursor == NULL)
11923 return NULL;
11924
11925 cursor->can_scale = false;
11926 cursor->max_downscale = 1;
11927 cursor->pipe = pipe;
11928 cursor->plane = pipe;
4398ad45 11929 cursor->rotation = BIT(DRM_ROTATE_0);
3d7d6510
MR
11930
11931 drm_universal_plane_init(dev, &cursor->base, 0,
11932 &intel_cursor_plane_funcs,
11933 intel_cursor_formats,
11934 ARRAY_SIZE(intel_cursor_formats),
11935 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
11936
11937 if (INTEL_INFO(dev)->gen >= 4) {
11938 if (!dev->mode_config.rotation_property)
11939 dev->mode_config.rotation_property =
11940 drm_mode_create_rotation_property(dev,
11941 BIT(DRM_ROTATE_0) |
11942 BIT(DRM_ROTATE_180));
11943 if (dev->mode_config.rotation_property)
11944 drm_object_attach_property(&cursor->base.base,
11945 dev->mode_config.rotation_property,
11946 cursor->rotation);
11947 }
11948
3d7d6510
MR
11949 return &cursor->base;
11950}
11951
b358d0a6 11952static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11953{
fbee40df 11954 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11955 struct intel_crtc *intel_crtc;
3d7d6510
MR
11956 struct drm_plane *primary = NULL;
11957 struct drm_plane *cursor = NULL;
465c120c 11958 int i, ret;
79e53945 11959
955382f3 11960 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11961 if (intel_crtc == NULL)
11962 return;
11963
465c120c 11964 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11965 if (!primary)
11966 goto fail;
11967
11968 cursor = intel_cursor_plane_create(dev, pipe);
11969 if (!cursor)
11970 goto fail;
11971
465c120c 11972 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11973 cursor, &intel_crtc_funcs);
11974 if (ret)
11975 goto fail;
79e53945
JB
11976
11977 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11978 for (i = 0; i < 256; i++) {
11979 intel_crtc->lut_r[i] = i;
11980 intel_crtc->lut_g[i] = i;
11981 intel_crtc->lut_b[i] = i;
11982 }
11983
1f1c2e24
VS
11984 /*
11985 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11986 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11987 */
80824003
JB
11988 intel_crtc->pipe = pipe;
11989 intel_crtc->plane = pipe;
3a77c4c4 11990 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11991 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11992 intel_crtc->plane = !pipe;
80824003
JB
11993 }
11994
4b0e333e
CW
11995 intel_crtc->cursor_base = ~0;
11996 intel_crtc->cursor_cntl = ~0;
dc41c154 11997 intel_crtc->cursor_size = ~0;
8d7849db 11998
22fd0fab
JB
11999 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12000 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12001 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12002 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12003
79e53945 12004 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12005
12006 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12007 return;
12008
12009fail:
12010 if (primary)
12011 drm_plane_cleanup(primary);
12012 if (cursor)
12013 drm_plane_cleanup(cursor);
12014 kfree(intel_crtc);
79e53945
JB
12015}
12016
752aa88a
JB
12017enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12018{
12019 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12020 struct drm_device *dev = connector->base.dev;
752aa88a 12021
51fd371b 12022 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
12023
12024 if (!encoder)
12025 return INVALID_PIPE;
12026
12027 return to_intel_crtc(encoder->crtc)->pipe;
12028}
12029
08d7b3d1 12030int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12031 struct drm_file *file)
08d7b3d1 12032{
08d7b3d1 12033 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12034 struct drm_crtc *drmmode_crtc;
c05422d5 12035 struct intel_crtc *crtc;
08d7b3d1 12036
1cff8f6b
DV
12037 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12038 return -ENODEV;
08d7b3d1 12039
7707e653 12040 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12041
7707e653 12042 if (!drmmode_crtc) {
08d7b3d1 12043 DRM_ERROR("no such CRTC id\n");
3f2c2057 12044 return -ENOENT;
08d7b3d1
CW
12045 }
12046
7707e653 12047 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12048 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12049
c05422d5 12050 return 0;
08d7b3d1
CW
12051}
12052
66a9278e 12053static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12054{
66a9278e
DV
12055 struct drm_device *dev = encoder->base.dev;
12056 struct intel_encoder *source_encoder;
79e53945 12057 int index_mask = 0;
79e53945
JB
12058 int entry = 0;
12059
b2784e15 12060 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12061 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12062 index_mask |= (1 << entry);
12063
79e53945
JB
12064 entry++;
12065 }
4ef69c7a 12066
79e53945
JB
12067 return index_mask;
12068}
12069
4d302442
CW
12070static bool has_edp_a(struct drm_device *dev)
12071{
12072 struct drm_i915_private *dev_priv = dev->dev_private;
12073
12074 if (!IS_MOBILE(dev))
12075 return false;
12076
12077 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12078 return false;
12079
e3589908 12080 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12081 return false;
12082
12083 return true;
12084}
12085
ba0fbca4
DL
12086const char *intel_output_name(int output)
12087{
12088 static const char *names[] = {
12089 [INTEL_OUTPUT_UNUSED] = "Unused",
12090 [INTEL_OUTPUT_ANALOG] = "Analog",
12091 [INTEL_OUTPUT_DVO] = "DVO",
12092 [INTEL_OUTPUT_SDVO] = "SDVO",
12093 [INTEL_OUTPUT_LVDS] = "LVDS",
12094 [INTEL_OUTPUT_TVOUT] = "TV",
12095 [INTEL_OUTPUT_HDMI] = "HDMI",
12096 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12097 [INTEL_OUTPUT_EDP] = "eDP",
12098 [INTEL_OUTPUT_DSI] = "DSI",
12099 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12100 };
12101
12102 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12103 return "Invalid";
12104
12105 return names[output];
12106}
12107
84b4e042
JB
12108static bool intel_crt_present(struct drm_device *dev)
12109{
12110 struct drm_i915_private *dev_priv = dev->dev_private;
12111
884497ed
DL
12112 if (INTEL_INFO(dev)->gen >= 9)
12113 return false;
12114
cf404ce4 12115 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12116 return false;
12117
12118 if (IS_CHERRYVIEW(dev))
12119 return false;
12120
12121 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12122 return false;
12123
12124 return true;
12125}
12126
79e53945
JB
12127static void intel_setup_outputs(struct drm_device *dev)
12128{
725e30ad 12129 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12130 struct intel_encoder *encoder;
cb0953d7 12131 bool dpd_is_edp = false;
79e53945 12132
c9093354 12133 intel_lvds_init(dev);
79e53945 12134
84b4e042 12135 if (intel_crt_present(dev))
79935fca 12136 intel_crt_init(dev);
cb0953d7 12137
affa9354 12138 if (HAS_DDI(dev)) {
0e72a5b5
ED
12139 int found;
12140
12141 /* Haswell uses DDI functions to detect digital outputs */
12142 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12143 /* DDI A only supports eDP */
12144 if (found)
12145 intel_ddi_init(dev, PORT_A);
12146
12147 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12148 * register */
12149 found = I915_READ(SFUSE_STRAP);
12150
12151 if (found & SFUSE_STRAP_DDIB_DETECTED)
12152 intel_ddi_init(dev, PORT_B);
12153 if (found & SFUSE_STRAP_DDIC_DETECTED)
12154 intel_ddi_init(dev, PORT_C);
12155 if (found & SFUSE_STRAP_DDID_DETECTED)
12156 intel_ddi_init(dev, PORT_D);
12157 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12158 int found;
5d8a7752 12159 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12160
12161 if (has_edp_a(dev))
12162 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12163
dc0fa718 12164 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12165 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12166 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12167 if (!found)
e2debe91 12168 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12169 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12170 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12171 }
12172
dc0fa718 12173 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12174 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12175
dc0fa718 12176 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12177 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12178
5eb08b69 12179 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12180 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12181
270b3042 12182 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12183 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12184 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12185 /*
12186 * The DP_DETECTED bit is the latched state of the DDC
12187 * SDA pin at boot. However since eDP doesn't require DDC
12188 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12189 * eDP ports may have been muxed to an alternate function.
12190 * Thus we can't rely on the DP_DETECTED bit alone to detect
12191 * eDP ports. Consult the VBT as well as DP_DETECTED to
12192 * detect eDP ports.
12193 */
12194 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
585a94b8
AB
12195 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12196 PORT_B);
e17ac6db
VS
12197 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12198 intel_dp_is_edp(dev, PORT_B))
12199 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12200
e17ac6db 12201 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
6f6005a5
JB
12202 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12203 PORT_C);
e17ac6db
VS
12204 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12205 intel_dp_is_edp(dev, PORT_C))
12206 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12207
9418c1f1 12208 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12209 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12210 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12211 PORT_D);
e17ac6db
VS
12212 /* eDP not supported on port D, so don't check VBT */
12213 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12214 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12215 }
12216
3cfca973 12217 intel_dsi_init(dev);
103a196f 12218 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12219 bool found = false;
7d57382e 12220
e2debe91 12221 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12222 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12223 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12224 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12225 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12226 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12227 }
27185ae1 12228
e7281eab 12229 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12230 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12231 }
13520b05
KH
12232
12233 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12234
e2debe91 12235 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12236 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12237 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12238 }
27185ae1 12239
e2debe91 12240 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12241
b01f2c3a
JB
12242 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12243 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12244 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12245 }
e7281eab 12246 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12247 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12248 }
27185ae1 12249
b01f2c3a 12250 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12251 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12252 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12253 } else if (IS_GEN2(dev))
79e53945
JB
12254 intel_dvo_init(dev);
12255
103a196f 12256 if (SUPPORTS_TV(dev))
79e53945
JB
12257 intel_tv_init(dev);
12258
7c8f8a70
RV
12259 intel_edp_psr_init(dev);
12260
b2784e15 12261 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12262 encoder->base.possible_crtcs = encoder->crtc_mask;
12263 encoder->base.possible_clones =
66a9278e 12264 intel_encoder_clones(encoder);
79e53945 12265 }
47356eb6 12266
dde86e2d 12267 intel_init_pch_refclk(dev);
270b3042
DV
12268
12269 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12270}
12271
12272static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12273{
60a5ca01 12274 struct drm_device *dev = fb->dev;
79e53945 12275 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12276
ef2d633e 12277 drm_framebuffer_cleanup(fb);
60a5ca01 12278 mutex_lock(&dev->struct_mutex);
ef2d633e 12279 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12280 drm_gem_object_unreference(&intel_fb->obj->base);
12281 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12282 kfree(intel_fb);
12283}
12284
12285static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12286 struct drm_file *file,
79e53945
JB
12287 unsigned int *handle)
12288{
12289 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12290 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12291
05394f39 12292 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12293}
12294
12295static const struct drm_framebuffer_funcs intel_fb_funcs = {
12296 .destroy = intel_user_framebuffer_destroy,
12297 .create_handle = intel_user_framebuffer_create_handle,
12298};
12299
b5ea642a
DV
12300static int intel_framebuffer_init(struct drm_device *dev,
12301 struct intel_framebuffer *intel_fb,
12302 struct drm_mode_fb_cmd2 *mode_cmd,
12303 struct drm_i915_gem_object *obj)
79e53945 12304{
a57ce0b2 12305 int aligned_height;
a35cdaa0 12306 int pitch_limit;
79e53945
JB
12307 int ret;
12308
dd4916c5
DV
12309 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12310
c16ed4be
CW
12311 if (obj->tiling_mode == I915_TILING_Y) {
12312 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12313 return -EINVAL;
c16ed4be 12314 }
57cd6508 12315
c16ed4be
CW
12316 if (mode_cmd->pitches[0] & 63) {
12317 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12318 mode_cmd->pitches[0]);
57cd6508 12319 return -EINVAL;
c16ed4be 12320 }
57cd6508 12321
a35cdaa0
CW
12322 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12323 pitch_limit = 32*1024;
12324 } else if (INTEL_INFO(dev)->gen >= 4) {
12325 if (obj->tiling_mode)
12326 pitch_limit = 16*1024;
12327 else
12328 pitch_limit = 32*1024;
12329 } else if (INTEL_INFO(dev)->gen >= 3) {
12330 if (obj->tiling_mode)
12331 pitch_limit = 8*1024;
12332 else
12333 pitch_limit = 16*1024;
12334 } else
12335 /* XXX DSPC is limited to 4k tiled */
12336 pitch_limit = 8*1024;
12337
12338 if (mode_cmd->pitches[0] > pitch_limit) {
12339 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12340 obj->tiling_mode ? "tiled" : "linear",
12341 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12342 return -EINVAL;
c16ed4be 12343 }
5d7bd705
VS
12344
12345 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12346 mode_cmd->pitches[0] != obj->stride) {
12347 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12348 mode_cmd->pitches[0], obj->stride);
5d7bd705 12349 return -EINVAL;
c16ed4be 12350 }
5d7bd705 12351
57779d06 12352 /* Reject formats not supported by any plane early. */
308e5bcb 12353 switch (mode_cmd->pixel_format) {
57779d06 12354 case DRM_FORMAT_C8:
04b3924d
VS
12355 case DRM_FORMAT_RGB565:
12356 case DRM_FORMAT_XRGB8888:
12357 case DRM_FORMAT_ARGB8888:
57779d06
VS
12358 break;
12359 case DRM_FORMAT_XRGB1555:
12360 case DRM_FORMAT_ARGB1555:
c16ed4be 12361 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12362 DRM_DEBUG("unsupported pixel format: %s\n",
12363 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12364 return -EINVAL;
c16ed4be 12365 }
57779d06
VS
12366 break;
12367 case DRM_FORMAT_XBGR8888:
12368 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12369 case DRM_FORMAT_XRGB2101010:
12370 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12371 case DRM_FORMAT_XBGR2101010:
12372 case DRM_FORMAT_ABGR2101010:
c16ed4be 12373 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12374 DRM_DEBUG("unsupported pixel format: %s\n",
12375 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12376 return -EINVAL;
c16ed4be 12377 }
b5626747 12378 break;
04b3924d
VS
12379 case DRM_FORMAT_YUYV:
12380 case DRM_FORMAT_UYVY:
12381 case DRM_FORMAT_YVYU:
12382 case DRM_FORMAT_VYUY:
c16ed4be 12383 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12384 DRM_DEBUG("unsupported pixel format: %s\n",
12385 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12386 return -EINVAL;
c16ed4be 12387 }
57cd6508
CW
12388 break;
12389 default:
4ee62c76
VS
12390 DRM_DEBUG("unsupported pixel format: %s\n",
12391 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12392 return -EINVAL;
12393 }
12394
90f9a336
VS
12395 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12396 if (mode_cmd->offsets[0] != 0)
12397 return -EINVAL;
12398
a57ce0b2
JB
12399 aligned_height = intel_align_height(dev, mode_cmd->height,
12400 obj->tiling_mode);
53155c0a
DV
12401 /* FIXME drm helper for size checks (especially planar formats)? */
12402 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12403 return -EINVAL;
12404
c7d73f6a
DV
12405 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12406 intel_fb->obj = obj;
80075d49 12407 intel_fb->obj->framebuffer_references++;
c7d73f6a 12408
79e53945
JB
12409 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12410 if (ret) {
12411 DRM_ERROR("framebuffer init failed %d\n", ret);
12412 return ret;
12413 }
12414
79e53945
JB
12415 return 0;
12416}
12417
79e53945
JB
12418static struct drm_framebuffer *
12419intel_user_framebuffer_create(struct drm_device *dev,
12420 struct drm_file *filp,
308e5bcb 12421 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12422{
05394f39 12423 struct drm_i915_gem_object *obj;
79e53945 12424
308e5bcb
JB
12425 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12426 mode_cmd->handles[0]));
c8725226 12427 if (&obj->base == NULL)
cce13ff7 12428 return ERR_PTR(-ENOENT);
79e53945 12429
d2dff872 12430 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12431}
12432
4520f53a 12433#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12434static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12435{
12436}
12437#endif
12438
79e53945 12439static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12440 .fb_create = intel_user_framebuffer_create,
0632fef6 12441 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12442};
12443
e70236a8
JB
12444/* Set up chip specific display functions */
12445static void intel_init_display(struct drm_device *dev)
12446{
12447 struct drm_i915_private *dev_priv = dev->dev_private;
12448
ee9300bb
DV
12449 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12450 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12451 else if (IS_CHERRYVIEW(dev))
12452 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12453 else if (IS_VALLEYVIEW(dev))
12454 dev_priv->display.find_dpll = vlv_find_best_dpll;
12455 else if (IS_PINEVIEW(dev))
12456 dev_priv->display.find_dpll = pnv_find_best_dpll;
12457 else
12458 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12459
affa9354 12460 if (HAS_DDI(dev)) {
0e8ffe1b 12461 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12462 dev_priv->display.get_plane_config = ironlake_get_plane_config;
797d0259
ACO
12463 dev_priv->display.crtc_compute_clock =
12464 haswell_crtc_compute_clock;
4f771f10
PZ
12465 dev_priv->display.crtc_enable = haswell_crtc_enable;
12466 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12467 dev_priv->display.off = ironlake_crtc_off;
70d21f0e
DL
12468 if (INTEL_INFO(dev)->gen >= 9)
12469 dev_priv->display.update_primary_plane =
12470 skylake_update_primary_plane;
12471 else
12472 dev_priv->display.update_primary_plane =
12473 ironlake_update_primary_plane;
09b4ddf9 12474 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12475 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12476 dev_priv->display.get_plane_config = ironlake_get_plane_config;
3fb37703
ACO
12477 dev_priv->display.crtc_compute_clock =
12478 ironlake_crtc_compute_clock;
76e5a89c
DV
12479 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12480 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12481 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12482 dev_priv->display.update_primary_plane =
12483 ironlake_update_primary_plane;
89b667f8
JB
12484 } else if (IS_VALLEYVIEW(dev)) {
12485 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12486 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12487 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12488 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12489 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12490 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12491 dev_priv->display.update_primary_plane =
12492 i9xx_update_primary_plane;
f564048e 12493 } else {
0e8ffe1b 12494 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12495 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12496 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12497 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12498 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12499 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12500 dev_priv->display.update_primary_plane =
12501 i9xx_update_primary_plane;
f564048e 12502 }
e70236a8 12503
e70236a8 12504 /* Returns the core display clock speed */
25eb05fc
JB
12505 if (IS_VALLEYVIEW(dev))
12506 dev_priv->display.get_display_clock_speed =
12507 valleyview_get_display_clock_speed;
12508 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12509 dev_priv->display.get_display_clock_speed =
12510 i945_get_display_clock_speed;
12511 else if (IS_I915G(dev))
12512 dev_priv->display.get_display_clock_speed =
12513 i915_get_display_clock_speed;
257a7ffc 12514 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12515 dev_priv->display.get_display_clock_speed =
12516 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12517 else if (IS_PINEVIEW(dev))
12518 dev_priv->display.get_display_clock_speed =
12519 pnv_get_display_clock_speed;
e70236a8
JB
12520 else if (IS_I915GM(dev))
12521 dev_priv->display.get_display_clock_speed =
12522 i915gm_get_display_clock_speed;
12523 else if (IS_I865G(dev))
12524 dev_priv->display.get_display_clock_speed =
12525 i865_get_display_clock_speed;
f0f8a9ce 12526 else if (IS_I85X(dev))
e70236a8
JB
12527 dev_priv->display.get_display_clock_speed =
12528 i855_get_display_clock_speed;
12529 else /* 852, 830 */
12530 dev_priv->display.get_display_clock_speed =
12531 i830_get_display_clock_speed;
12532
7c10a2b5 12533 if (IS_GEN5(dev)) {
3bb11b53 12534 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12535 } else if (IS_GEN6(dev)) {
12536 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12537 dev_priv->display.modeset_global_resources =
12538 snb_modeset_global_resources;
12539 } else if (IS_IVYBRIDGE(dev)) {
12540 /* FIXME: detect B0+ stepping and use auto training */
12541 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12542 dev_priv->display.modeset_global_resources =
12543 ivb_modeset_global_resources;
059b2fe9 12544 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12545 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
3bb11b53
SJ
12546 dev_priv->display.modeset_global_resources =
12547 haswell_modeset_global_resources;
30a970c6
JB
12548 } else if (IS_VALLEYVIEW(dev)) {
12549 dev_priv->display.modeset_global_resources =
12550 valleyview_modeset_global_resources;
02c29259 12551 } else if (INTEL_INFO(dev)->gen >= 9) {
02c29259
S
12552 dev_priv->display.modeset_global_resources =
12553 haswell_modeset_global_resources;
e70236a8 12554 }
8c9f3aaf
JB
12555
12556 /* Default just returns -ENODEV to indicate unsupported */
12557 dev_priv->display.queue_flip = intel_default_queue_flip;
12558
12559 switch (INTEL_INFO(dev)->gen) {
12560 case 2:
12561 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12562 break;
12563
12564 case 3:
12565 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12566 break;
12567
12568 case 4:
12569 case 5:
12570 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12571 break;
12572
12573 case 6:
12574 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12575 break;
7c9017e5 12576 case 7:
4e0bbc31 12577 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12578 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12579 break;
8c9f3aaf 12580 }
7bd688cd
JN
12581
12582 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12583
12584 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12585}
12586
b690e96c
JB
12587/*
12588 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12589 * resume, or other times. This quirk makes sure that's the case for
12590 * affected systems.
12591 */
0206e353 12592static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12593{
12594 struct drm_i915_private *dev_priv = dev->dev_private;
12595
12596 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12597 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12598}
12599
b6b5d049
VS
12600static void quirk_pipeb_force(struct drm_device *dev)
12601{
12602 struct drm_i915_private *dev_priv = dev->dev_private;
12603
12604 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12605 DRM_INFO("applying pipe b force quirk\n");
12606}
12607
435793df
KP
12608/*
12609 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12610 */
12611static void quirk_ssc_force_disable(struct drm_device *dev)
12612{
12613 struct drm_i915_private *dev_priv = dev->dev_private;
12614 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12615 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12616}
12617
4dca20ef 12618/*
5a15ab5b
CE
12619 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12620 * brightness value
4dca20ef
CE
12621 */
12622static void quirk_invert_brightness(struct drm_device *dev)
12623{
12624 struct drm_i915_private *dev_priv = dev->dev_private;
12625 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12626 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12627}
12628
9c72cc6f
SD
12629/* Some VBT's incorrectly indicate no backlight is present */
12630static void quirk_backlight_present(struct drm_device *dev)
12631{
12632 struct drm_i915_private *dev_priv = dev->dev_private;
12633 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12634 DRM_INFO("applying backlight present quirk\n");
12635}
12636
b690e96c
JB
12637struct intel_quirk {
12638 int device;
12639 int subsystem_vendor;
12640 int subsystem_device;
12641 void (*hook)(struct drm_device *dev);
12642};
12643
5f85f176
EE
12644/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12645struct intel_dmi_quirk {
12646 void (*hook)(struct drm_device *dev);
12647 const struct dmi_system_id (*dmi_id_list)[];
12648};
12649
12650static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12651{
12652 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12653 return 1;
12654}
12655
12656static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12657 {
12658 .dmi_id_list = &(const struct dmi_system_id[]) {
12659 {
12660 .callback = intel_dmi_reverse_brightness,
12661 .ident = "NCR Corporation",
12662 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12663 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12664 },
12665 },
12666 { } /* terminating entry */
12667 },
12668 .hook = quirk_invert_brightness,
12669 },
12670};
12671
c43b5634 12672static struct intel_quirk intel_quirks[] = {
b690e96c 12673 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12674 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12675
b690e96c
JB
12676 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12677 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12678
b690e96c
JB
12679 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12680 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12681
5f080c0f
VS
12682 /* 830 needs to leave pipe A & dpll A up */
12683 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12684
b6b5d049
VS
12685 /* 830 needs to leave pipe B & dpll B up */
12686 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12687
435793df
KP
12688 /* Lenovo U160 cannot use SSC on LVDS */
12689 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12690
12691 /* Sony Vaio Y cannot use SSC on LVDS */
12692 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12693
be505f64
AH
12694 /* Acer Aspire 5734Z must invert backlight brightness */
12695 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12696
12697 /* Acer/eMachines G725 */
12698 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12699
12700 /* Acer/eMachines e725 */
12701 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12702
12703 /* Acer/Packard Bell NCL20 */
12704 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12705
12706 /* Acer Aspire 4736Z */
12707 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12708
12709 /* Acer Aspire 5336 */
12710 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12711
12712 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12713 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12714
dfb3d47b
SD
12715 /* Acer C720 Chromebook (Core i3 4005U) */
12716 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12717
d4967d8c
SD
12718 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12719 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12720
12721 /* HP Chromebook 14 (Celeron 2955U) */
12722 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12723};
12724
12725static void intel_init_quirks(struct drm_device *dev)
12726{
12727 struct pci_dev *d = dev->pdev;
12728 int i;
12729
12730 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12731 struct intel_quirk *q = &intel_quirks[i];
12732
12733 if (d->device == q->device &&
12734 (d->subsystem_vendor == q->subsystem_vendor ||
12735 q->subsystem_vendor == PCI_ANY_ID) &&
12736 (d->subsystem_device == q->subsystem_device ||
12737 q->subsystem_device == PCI_ANY_ID))
12738 q->hook(dev);
12739 }
5f85f176
EE
12740 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12741 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12742 intel_dmi_quirks[i].hook(dev);
12743 }
b690e96c
JB
12744}
12745
9cce37f4
JB
12746/* Disable the VGA plane that we never use */
12747static void i915_disable_vga(struct drm_device *dev)
12748{
12749 struct drm_i915_private *dev_priv = dev->dev_private;
12750 u8 sr1;
766aa1c4 12751 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12752
2b37c616 12753 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12754 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12755 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12756 sr1 = inb(VGA_SR_DATA);
12757 outb(sr1 | 1<<5, VGA_SR_DATA);
12758 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12759 udelay(300);
12760
69769f9a
VS
12761 /*
12762 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12763 * from S3 without preserving (some of?) the other bits.
12764 */
12765 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12766 POSTING_READ(vga_reg);
12767}
12768
f817586c
DV
12769void intel_modeset_init_hw(struct drm_device *dev)
12770{
a8f78b58
ED
12771 intel_prepare_ddi(dev);
12772
f8bf63fd
VS
12773 if (IS_VALLEYVIEW(dev))
12774 vlv_update_cdclk(dev);
12775
f817586c
DV
12776 intel_init_clock_gating(dev);
12777
8090c6b9 12778 intel_enable_gt_powersave(dev);
f817586c
DV
12779}
12780
79e53945
JB
12781void intel_modeset_init(struct drm_device *dev)
12782{
652c393a 12783 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12784 int sprite, ret;
8cc87b75 12785 enum pipe pipe;
46f297fb 12786 struct intel_crtc *crtc;
79e53945
JB
12787
12788 drm_mode_config_init(dev);
12789
12790 dev->mode_config.min_width = 0;
12791 dev->mode_config.min_height = 0;
12792
019d96cb
DA
12793 dev->mode_config.preferred_depth = 24;
12794 dev->mode_config.prefer_shadow = 1;
12795
e6ecefaa 12796 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12797
b690e96c
JB
12798 intel_init_quirks(dev);
12799
1fa61106
ED
12800 intel_init_pm(dev);
12801
e3c74757
BW
12802 if (INTEL_INFO(dev)->num_pipes == 0)
12803 return;
12804
e70236a8 12805 intel_init_display(dev);
7c10a2b5 12806 intel_init_audio(dev);
e70236a8 12807
a6c45cf0
CW
12808 if (IS_GEN2(dev)) {
12809 dev->mode_config.max_width = 2048;
12810 dev->mode_config.max_height = 2048;
12811 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12812 dev->mode_config.max_width = 4096;
12813 dev->mode_config.max_height = 4096;
79e53945 12814 } else {
a6c45cf0
CW
12815 dev->mode_config.max_width = 8192;
12816 dev->mode_config.max_height = 8192;
79e53945 12817 }
068be561 12818
dc41c154
VS
12819 if (IS_845G(dev) || IS_I865G(dev)) {
12820 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12821 dev->mode_config.cursor_height = 1023;
12822 } else if (IS_GEN2(dev)) {
068be561
DL
12823 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12824 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12825 } else {
12826 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12827 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12828 }
12829
5d4545ae 12830 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12831
28c97730 12832 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12833 INTEL_INFO(dev)->num_pipes,
12834 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12835
055e393f 12836 for_each_pipe(dev_priv, pipe) {
8cc87b75 12837 intel_crtc_init(dev, pipe);
1fe47785
DL
12838 for_each_sprite(pipe, sprite) {
12839 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12840 if (ret)
06da8da2 12841 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12842 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12843 }
79e53945
JB
12844 }
12845
f42bb70d
JB
12846 intel_init_dpio(dev);
12847
e72f9fbf 12848 intel_shared_dpll_init(dev);
ee7b9f93 12849
69769f9a
VS
12850 /* save the BIOS value before clobbering it */
12851 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
12852 /* Just disable it once at startup */
12853 i915_disable_vga(dev);
79e53945 12854 intel_setup_outputs(dev);
11be49eb
CW
12855
12856 /* Just in case the BIOS is doing something questionable. */
12857 intel_disable_fbc(dev);
fa9fa083 12858
6e9f798d 12859 drm_modeset_lock_all(dev);
fa9fa083 12860 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12861 drm_modeset_unlock_all(dev);
46f297fb 12862
d3fcc808 12863 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12864 if (!crtc->active)
12865 continue;
12866
46f297fb 12867 /*
46f297fb
JB
12868 * Note that reserving the BIOS fb up front prevents us
12869 * from stuffing other stolen allocations like the ring
12870 * on top. This prevents some ugliness at boot time, and
12871 * can even allow for smooth boot transitions if the BIOS
12872 * fb is large enough for the active pipe configuration.
12873 */
12874 if (dev_priv->display.get_plane_config) {
12875 dev_priv->display.get_plane_config(crtc,
12876 &crtc->plane_config);
12877 /*
12878 * If the fb is shared between multiple heads, we'll
12879 * just get the first one.
12880 */
484b41dd 12881 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12882 }
46f297fb 12883 }
2c7111db
CW
12884}
12885
7fad798e
DV
12886static void intel_enable_pipe_a(struct drm_device *dev)
12887{
12888 struct intel_connector *connector;
12889 struct drm_connector *crt = NULL;
12890 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 12891 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
12892
12893 /* We can't just switch on the pipe A, we need to set things up with a
12894 * proper mode and output configuration. As a gross hack, enable pipe A
12895 * by enabling the load detect pipe once. */
12896 list_for_each_entry(connector,
12897 &dev->mode_config.connector_list,
12898 base.head) {
12899 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12900 crt = &connector->base;
12901 break;
12902 }
12903 }
12904
12905 if (!crt)
12906 return;
12907
208bf9fd
VS
12908 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12909 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
12910}
12911
fa555837
DV
12912static bool
12913intel_check_plane_mapping(struct intel_crtc *crtc)
12914{
7eb552ae
BW
12915 struct drm_device *dev = crtc->base.dev;
12916 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12917 u32 reg, val;
12918
7eb552ae 12919 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12920 return true;
12921
12922 reg = DSPCNTR(!crtc->plane);
12923 val = I915_READ(reg);
12924
12925 if ((val & DISPLAY_PLANE_ENABLE) &&
12926 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12927 return false;
12928
12929 return true;
12930}
12931
24929352
DV
12932static void intel_sanitize_crtc(struct intel_crtc *crtc)
12933{
12934 struct drm_device *dev = crtc->base.dev;
12935 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12936 u32 reg;
24929352 12937
24929352 12938 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12939 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12940 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12941
d3eaf884 12942 /* restore vblank interrupts to correct state */
d297e103
VS
12943 if (crtc->active) {
12944 update_scanline_offset(crtc);
d3eaf884 12945 drm_vblank_on(dev, crtc->pipe);
d297e103 12946 } else
d3eaf884
VS
12947 drm_vblank_off(dev, crtc->pipe);
12948
24929352 12949 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12950 * disable the crtc (and hence change the state) if it is wrong. Note
12951 * that gen4+ has a fixed plane -> pipe mapping. */
12952 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12953 struct intel_connector *connector;
12954 bool plane;
12955
24929352
DV
12956 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12957 crtc->base.base.id);
12958
12959 /* Pipe has the wrong plane attached and the plane is active.
12960 * Temporarily change the plane mapping and disable everything
12961 * ... */
12962 plane = crtc->plane;
12963 crtc->plane = !plane;
9c8958bc 12964 crtc->primary_enabled = true;
24929352
DV
12965 dev_priv->display.crtc_disable(&crtc->base);
12966 crtc->plane = plane;
12967
12968 /* ... and break all links. */
12969 list_for_each_entry(connector, &dev->mode_config.connector_list,
12970 base.head) {
12971 if (connector->encoder->base.crtc != &crtc->base)
12972 continue;
12973
7f1950fb
EE
12974 connector->base.dpms = DRM_MODE_DPMS_OFF;
12975 connector->base.encoder = NULL;
24929352 12976 }
7f1950fb
EE
12977 /* multiple connectors may have the same encoder:
12978 * handle them and break crtc link separately */
12979 list_for_each_entry(connector, &dev->mode_config.connector_list,
12980 base.head)
12981 if (connector->encoder->base.crtc == &crtc->base) {
12982 connector->encoder->base.crtc = NULL;
12983 connector->encoder->connectors_active = false;
12984 }
24929352
DV
12985
12986 WARN_ON(crtc->active);
12987 crtc->base.enabled = false;
12988 }
24929352 12989
7fad798e
DV
12990 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12991 crtc->pipe == PIPE_A && !crtc->active) {
12992 /* BIOS forgot to enable pipe A, this mostly happens after
12993 * resume. Force-enable the pipe to fix this, the update_dpms
12994 * call below we restore the pipe to the right state, but leave
12995 * the required bits on. */
12996 intel_enable_pipe_a(dev);
12997 }
12998
24929352
DV
12999 /* Adjust the state of the output pipe according to whether we
13000 * have active connectors/encoders. */
13001 intel_crtc_update_dpms(&crtc->base);
13002
13003 if (crtc->active != crtc->base.enabled) {
13004 struct intel_encoder *encoder;
13005
13006 /* This can happen either due to bugs in the get_hw_state
13007 * functions or because the pipe is force-enabled due to the
13008 * pipe A quirk. */
13009 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13010 crtc->base.base.id,
13011 crtc->base.enabled ? "enabled" : "disabled",
13012 crtc->active ? "enabled" : "disabled");
13013
13014 crtc->base.enabled = crtc->active;
13015
13016 /* Because we only establish the connector -> encoder ->
13017 * crtc links if something is active, this means the
13018 * crtc is now deactivated. Break the links. connector
13019 * -> encoder links are only establish when things are
13020 * actually up, hence no need to break them. */
13021 WARN_ON(crtc->active);
13022
13023 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13024 WARN_ON(encoder->connectors_active);
13025 encoder->base.crtc = NULL;
13026 }
13027 }
c5ab3bc0 13028
a3ed6aad 13029 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13030 /*
13031 * We start out with underrun reporting disabled to avoid races.
13032 * For correct bookkeeping mark this on active crtcs.
13033 *
c5ab3bc0
DV
13034 * Also on gmch platforms we dont have any hardware bits to
13035 * disable the underrun reporting. Which means we need to start
13036 * out with underrun reporting disabled also on inactive pipes,
13037 * since otherwise we'll complain about the garbage we read when
13038 * e.g. coming up after runtime pm.
13039 *
4cc31489
DV
13040 * No protection against concurrent access is required - at
13041 * worst a fifo underrun happens which also sets this to false.
13042 */
13043 crtc->cpu_fifo_underrun_disabled = true;
13044 crtc->pch_fifo_underrun_disabled = true;
13045 }
24929352
DV
13046}
13047
13048static void intel_sanitize_encoder(struct intel_encoder *encoder)
13049{
13050 struct intel_connector *connector;
13051 struct drm_device *dev = encoder->base.dev;
13052
13053 /* We need to check both for a crtc link (meaning that the
13054 * encoder is active and trying to read from a pipe) and the
13055 * pipe itself being active. */
13056 bool has_active_crtc = encoder->base.crtc &&
13057 to_intel_crtc(encoder->base.crtc)->active;
13058
13059 if (encoder->connectors_active && !has_active_crtc) {
13060 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13061 encoder->base.base.id,
8e329a03 13062 encoder->base.name);
24929352
DV
13063
13064 /* Connector is active, but has no active pipe. This is
13065 * fallout from our resume register restoring. Disable
13066 * the encoder manually again. */
13067 if (encoder->base.crtc) {
13068 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13069 encoder->base.base.id,
8e329a03 13070 encoder->base.name);
24929352 13071 encoder->disable(encoder);
a62d1497
VS
13072 if (encoder->post_disable)
13073 encoder->post_disable(encoder);
24929352 13074 }
7f1950fb
EE
13075 encoder->base.crtc = NULL;
13076 encoder->connectors_active = false;
24929352
DV
13077
13078 /* Inconsistent output/port/pipe state happens presumably due to
13079 * a bug in one of the get_hw_state functions. Or someplace else
13080 * in our code, like the register restore mess on resume. Clamp
13081 * things to off as a safer default. */
13082 list_for_each_entry(connector,
13083 &dev->mode_config.connector_list,
13084 base.head) {
13085 if (connector->encoder != encoder)
13086 continue;
7f1950fb
EE
13087 connector->base.dpms = DRM_MODE_DPMS_OFF;
13088 connector->base.encoder = NULL;
24929352
DV
13089 }
13090 }
13091 /* Enabled encoders without active connectors will be fixed in
13092 * the crtc fixup. */
13093}
13094
04098753 13095void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13096{
13097 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13098 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13099
04098753
ID
13100 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13101 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13102 i915_disable_vga(dev);
13103 }
13104}
13105
13106void i915_redisable_vga(struct drm_device *dev)
13107{
13108 struct drm_i915_private *dev_priv = dev->dev_private;
13109
8dc8a27c
PZ
13110 /* This function can be called both from intel_modeset_setup_hw_state or
13111 * at a very early point in our resume sequence, where the power well
13112 * structures are not yet restored. Since this function is at a very
13113 * paranoid "someone might have enabled VGA while we were not looking"
13114 * level, just check if the power well is enabled instead of trying to
13115 * follow the "don't touch the power well if we don't need it" policy
13116 * the rest of the driver uses. */
f458ebbc 13117 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13118 return;
13119
04098753 13120 i915_redisable_vga_power_on(dev);
0fde901f
KM
13121}
13122
98ec7739
VS
13123static bool primary_get_hw_state(struct intel_crtc *crtc)
13124{
13125 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13126
13127 if (!crtc->active)
13128 return false;
13129
13130 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13131}
13132
30e984df 13133static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13134{
13135 struct drm_i915_private *dev_priv = dev->dev_private;
13136 enum pipe pipe;
24929352
DV
13137 struct intel_crtc *crtc;
13138 struct intel_encoder *encoder;
13139 struct intel_connector *connector;
5358901f 13140 int i;
24929352 13141
d3fcc808 13142 for_each_intel_crtc(dev, crtc) {
88adfff1 13143 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13144
9953599b
DV
13145 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13146
0e8ffe1b
DV
13147 crtc->active = dev_priv->display.get_pipe_config(crtc,
13148 &crtc->config);
24929352
DV
13149
13150 crtc->base.enabled = crtc->active;
98ec7739 13151 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13152
13153 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13154 crtc->base.base.id,
13155 crtc->active ? "enabled" : "disabled");
13156 }
13157
5358901f
DV
13158 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13159 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13160
3e369b76
ACO
13161 pll->on = pll->get_hw_state(dev_priv, pll,
13162 &pll->config.hw_state);
5358901f 13163 pll->active = 0;
3e369b76 13164 pll->config.crtc_mask = 0;
d3fcc808 13165 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13166 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13167 pll->active++;
3e369b76 13168 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13169 }
5358901f 13170 }
5358901f 13171
1e6f2ddc 13172 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13173 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13174
3e369b76 13175 if (pll->config.crtc_mask)
bd2bb1b9 13176 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13177 }
13178
b2784e15 13179 for_each_intel_encoder(dev, encoder) {
24929352
DV
13180 pipe = 0;
13181
13182 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13183 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13184 encoder->base.crtc = &crtc->base;
1d37b689 13185 encoder->get_config(encoder, &crtc->config);
24929352
DV
13186 } else {
13187 encoder->base.crtc = NULL;
13188 }
13189
13190 encoder->connectors_active = false;
6f2bcceb 13191 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13192 encoder->base.base.id,
8e329a03 13193 encoder->base.name,
24929352 13194 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13195 pipe_name(pipe));
24929352
DV
13196 }
13197
13198 list_for_each_entry(connector, &dev->mode_config.connector_list,
13199 base.head) {
13200 if (connector->get_hw_state(connector)) {
13201 connector->base.dpms = DRM_MODE_DPMS_ON;
13202 connector->encoder->connectors_active = true;
13203 connector->base.encoder = &connector->encoder->base;
13204 } else {
13205 connector->base.dpms = DRM_MODE_DPMS_OFF;
13206 connector->base.encoder = NULL;
13207 }
13208 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13209 connector->base.base.id,
c23cc417 13210 connector->base.name,
24929352
DV
13211 connector->base.encoder ? "enabled" : "disabled");
13212 }
30e984df
DV
13213}
13214
13215/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13216 * and i915 state tracking structures. */
13217void intel_modeset_setup_hw_state(struct drm_device *dev,
13218 bool force_restore)
13219{
13220 struct drm_i915_private *dev_priv = dev->dev_private;
13221 enum pipe pipe;
30e984df
DV
13222 struct intel_crtc *crtc;
13223 struct intel_encoder *encoder;
35c95375 13224 int i;
30e984df
DV
13225
13226 intel_modeset_readout_hw_state(dev);
24929352 13227
babea61d
JB
13228 /*
13229 * Now that we have the config, copy it to each CRTC struct
13230 * Note that this could go away if we move to using crtc_config
13231 * checking everywhere.
13232 */
d3fcc808 13233 for_each_intel_crtc(dev, crtc) {
d330a953 13234 if (crtc->active && i915.fastboot) {
f6a83288 13235 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13236 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13237 crtc->base.base.id);
13238 drm_mode_debug_printmodeline(&crtc->base.mode);
13239 }
13240 }
13241
24929352 13242 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13243 for_each_intel_encoder(dev, encoder) {
24929352
DV
13244 intel_sanitize_encoder(encoder);
13245 }
13246
055e393f 13247 for_each_pipe(dev_priv, pipe) {
24929352
DV
13248 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13249 intel_sanitize_crtc(crtc);
c0b03411 13250 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13251 }
9a935856 13252
35c95375
DV
13253 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13254 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13255
13256 if (!pll->on || pll->active)
13257 continue;
13258
13259 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13260
13261 pll->disable(dev_priv, pll);
13262 pll->on = false;
13263 }
13264
96f90c54 13265 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13266 ilk_wm_get_hw_state(dev);
13267
45e2b5f6 13268 if (force_restore) {
7d0bc1ea
VS
13269 i915_redisable_vga(dev);
13270
f30da187
DV
13271 /*
13272 * We need to use raw interfaces for restoring state to avoid
13273 * checking (bogus) intermediate states.
13274 */
055e393f 13275 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13276 struct drm_crtc *crtc =
13277 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13278
13279 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13280 crtc->primary->fb);
45e2b5f6
DV
13281 }
13282 } else {
13283 intel_modeset_update_staged_output_state(dev);
13284 }
8af6cf88
DV
13285
13286 intel_modeset_check_state(dev);
2c7111db
CW
13287}
13288
13289void intel_modeset_gem_init(struct drm_device *dev)
13290{
484b41dd 13291 struct drm_crtc *c;
2ff8fde1 13292 struct drm_i915_gem_object *obj;
484b41dd 13293
ae48434c
ID
13294 mutex_lock(&dev->struct_mutex);
13295 intel_init_gt_powersave(dev);
13296 mutex_unlock(&dev->struct_mutex);
13297
1833b134 13298 intel_modeset_init_hw(dev);
02e792fb
DV
13299
13300 intel_setup_overlay(dev);
484b41dd
JB
13301
13302 /*
13303 * Make sure any fbs we allocated at startup are properly
13304 * pinned & fenced. When we do the allocation it's too early
13305 * for this.
13306 */
13307 mutex_lock(&dev->struct_mutex);
70e1e0ec 13308 for_each_crtc(dev, c) {
2ff8fde1
MR
13309 obj = intel_fb_obj(c->primary->fb);
13310 if (obj == NULL)
484b41dd
JB
13311 continue;
13312
2ff8fde1 13313 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13314 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13315 to_intel_crtc(c)->pipe);
66e514c1
DA
13316 drm_framebuffer_unreference(c->primary->fb);
13317 c->primary->fb = NULL;
484b41dd
JB
13318 }
13319 }
13320 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13321}
13322
4932e2c3
ID
13323void intel_connector_unregister(struct intel_connector *intel_connector)
13324{
13325 struct drm_connector *connector = &intel_connector->base;
13326
13327 intel_panel_destroy_backlight(connector);
34ea3d38 13328 drm_connector_unregister(connector);
4932e2c3
ID
13329}
13330
79e53945
JB
13331void intel_modeset_cleanup(struct drm_device *dev)
13332{
652c393a 13333 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13334 struct drm_connector *connector;
652c393a 13335
fd0c0642
DV
13336 /*
13337 * Interrupts and polling as the first thing to avoid creating havoc.
13338 * Too much stuff here (turning of rps, connectors, ...) would
13339 * experience fancy races otherwise.
13340 */
2aeb7d3a 13341 intel_irq_uninstall(dev_priv);
eb21b92b 13342
fd0c0642
DV
13343 /*
13344 * Due to the hpd irq storm handling the hotplug work can re-arm the
13345 * poll handlers. Hence disable polling after hpd handling is shut down.
13346 */
f87ea761 13347 drm_kms_helper_poll_fini(dev);
fd0c0642 13348
652c393a
JB
13349 mutex_lock(&dev->struct_mutex);
13350
723bfd70
JB
13351 intel_unregister_dsm_handler();
13352
973d04f9 13353 intel_disable_fbc(dev);
e70236a8 13354
8090c6b9 13355 intel_disable_gt_powersave(dev);
0cdab21f 13356
930ebb46
DV
13357 ironlake_teardown_rc6(dev);
13358
69341a5e
KH
13359 mutex_unlock(&dev->struct_mutex);
13360
1630fe75
CW
13361 /* flush any delayed tasks or pending work */
13362 flush_scheduled_work();
13363
db31af1d
JN
13364 /* destroy the backlight and sysfs files before encoders/connectors */
13365 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13366 struct intel_connector *intel_connector;
13367
13368 intel_connector = to_intel_connector(connector);
13369 intel_connector->unregister(intel_connector);
db31af1d 13370 }
d9255d57 13371
79e53945 13372 drm_mode_config_cleanup(dev);
4d7bb011
DV
13373
13374 intel_cleanup_overlay(dev);
ae48434c
ID
13375
13376 mutex_lock(&dev->struct_mutex);
13377 intel_cleanup_gt_powersave(dev);
13378 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13379}
13380
f1c79df3
ZW
13381/*
13382 * Return which encoder is currently attached for connector.
13383 */
df0e9248 13384struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13385{
df0e9248
CW
13386 return &intel_attached_encoder(connector)->base;
13387}
f1c79df3 13388
df0e9248
CW
13389void intel_connector_attach_encoder(struct intel_connector *connector,
13390 struct intel_encoder *encoder)
13391{
13392 connector->encoder = encoder;
13393 drm_mode_connector_attach_encoder(&connector->base,
13394 &encoder->base);
79e53945 13395}
28d52043
DA
13396
13397/*
13398 * set vga decode state - true == enable VGA decode
13399 */
13400int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13401{
13402 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13403 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13404 u16 gmch_ctrl;
13405
75fa041d
CW
13406 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13407 DRM_ERROR("failed to read control word\n");
13408 return -EIO;
13409 }
13410
c0cc8a55
CW
13411 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13412 return 0;
13413
28d52043
DA
13414 if (state)
13415 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13416 else
13417 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13418
13419 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13420 DRM_ERROR("failed to write control word\n");
13421 return -EIO;
13422 }
13423
28d52043
DA
13424 return 0;
13425}
c4a1d9e4 13426
c4a1d9e4 13427struct intel_display_error_state {
ff57f1b0
PZ
13428
13429 u32 power_well_driver;
13430
63b66e5b
CW
13431 int num_transcoders;
13432
c4a1d9e4
CW
13433 struct intel_cursor_error_state {
13434 u32 control;
13435 u32 position;
13436 u32 base;
13437 u32 size;
52331309 13438 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13439
13440 struct intel_pipe_error_state {
ddf9c536 13441 bool power_domain_on;
c4a1d9e4 13442 u32 source;
f301b1e1 13443 u32 stat;
52331309 13444 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13445
13446 struct intel_plane_error_state {
13447 u32 control;
13448 u32 stride;
13449 u32 size;
13450 u32 pos;
13451 u32 addr;
13452 u32 surface;
13453 u32 tile_offset;
52331309 13454 } plane[I915_MAX_PIPES];
63b66e5b
CW
13455
13456 struct intel_transcoder_error_state {
ddf9c536 13457 bool power_domain_on;
63b66e5b
CW
13458 enum transcoder cpu_transcoder;
13459
13460 u32 conf;
13461
13462 u32 htotal;
13463 u32 hblank;
13464 u32 hsync;
13465 u32 vtotal;
13466 u32 vblank;
13467 u32 vsync;
13468 } transcoder[4];
c4a1d9e4
CW
13469};
13470
13471struct intel_display_error_state *
13472intel_display_capture_error_state(struct drm_device *dev)
13473{
fbee40df 13474 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13475 struct intel_display_error_state *error;
63b66e5b
CW
13476 int transcoders[] = {
13477 TRANSCODER_A,
13478 TRANSCODER_B,
13479 TRANSCODER_C,
13480 TRANSCODER_EDP,
13481 };
c4a1d9e4
CW
13482 int i;
13483
63b66e5b
CW
13484 if (INTEL_INFO(dev)->num_pipes == 0)
13485 return NULL;
13486
9d1cb914 13487 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13488 if (error == NULL)
13489 return NULL;
13490
190be112 13491 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13492 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13493
055e393f 13494 for_each_pipe(dev_priv, i) {
ddf9c536 13495 error->pipe[i].power_domain_on =
f458ebbc
DV
13496 __intel_display_power_is_enabled(dev_priv,
13497 POWER_DOMAIN_PIPE(i));
ddf9c536 13498 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13499 continue;
13500
5efb3e28
VS
13501 error->cursor[i].control = I915_READ(CURCNTR(i));
13502 error->cursor[i].position = I915_READ(CURPOS(i));
13503 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13504
13505 error->plane[i].control = I915_READ(DSPCNTR(i));
13506 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13507 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13508 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13509 error->plane[i].pos = I915_READ(DSPPOS(i));
13510 }
ca291363
PZ
13511 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13512 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13513 if (INTEL_INFO(dev)->gen >= 4) {
13514 error->plane[i].surface = I915_READ(DSPSURF(i));
13515 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13516 }
13517
c4a1d9e4 13518 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13519
3abfce77 13520 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13521 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13522 }
13523
13524 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13525 if (HAS_DDI(dev_priv->dev))
13526 error->num_transcoders++; /* Account for eDP. */
13527
13528 for (i = 0; i < error->num_transcoders; i++) {
13529 enum transcoder cpu_transcoder = transcoders[i];
13530
ddf9c536 13531 error->transcoder[i].power_domain_on =
f458ebbc 13532 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13533 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13534 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13535 continue;
13536
63b66e5b
CW
13537 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13538
13539 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13540 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13541 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13542 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13543 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13544 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13545 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13546 }
13547
13548 return error;
13549}
13550
edc3d884
MK
13551#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13552
c4a1d9e4 13553void
edc3d884 13554intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13555 struct drm_device *dev,
13556 struct intel_display_error_state *error)
13557{
055e393f 13558 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13559 int i;
13560
63b66e5b
CW
13561 if (!error)
13562 return;
13563
edc3d884 13564 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13565 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13566 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13567 error->power_well_driver);
055e393f 13568 for_each_pipe(dev_priv, i) {
edc3d884 13569 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13570 err_printf(m, " Power: %s\n",
13571 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13572 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13573 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13574
13575 err_printf(m, "Plane [%d]:\n", i);
13576 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13577 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13578 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13579 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13580 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13581 }
4b71a570 13582 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13583 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13584 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13585 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13586 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13587 }
13588
edc3d884
MK
13589 err_printf(m, "Cursor [%d]:\n", i);
13590 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13591 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13592 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13593 }
63b66e5b
CW
13594
13595 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13596 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13597 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13598 err_printf(m, " Power: %s\n",
13599 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13600 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13601 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13602 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13603 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13604 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13605 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13606 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13607 }
c4a1d9e4 13608}
e2fcdaa9
VS
13609
13610void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13611{
13612 struct intel_crtc *crtc;
13613
13614 for_each_intel_crtc(dev, crtc) {
13615 struct intel_unpin_work *work;
e2fcdaa9 13616
5e2d7afc 13617 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
13618
13619 work = crtc->unpin_work;
13620
13621 if (work && work->event &&
13622 work->event->base.file_priv == file) {
13623 kfree(work->event);
13624 work->event = NULL;
13625 }
13626
5e2d7afc 13627 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
13628 }
13629}
This page took 2.472688 seconds and 5 git commands to generate.