drm/i915: don't skip shared DPLL assertion on LPT
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
92b27b08 1097 if (WARN (!pll,
46edb027 1098 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1099 return;
ee7b9f93 1100
5358901f 1101 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1102 WARN(cur_state != state,
5358901f
DV
1103 "%s assertion failure (expected %s, current %s)\n",
1104 pll->name, state_string(state), state_string(cur_state));
040484af 1105}
040484af
JB
1106
1107static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109{
1110 int reg;
1111 u32 val;
1112 bool cur_state;
ad80a810
PZ
1113 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1114 pipe);
040484af 1115
affa9354
PZ
1116 if (HAS_DDI(dev_priv->dev)) {
1117 /* DDI does not have a specific FDI_TX register */
ad80a810 1118 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1119 val = I915_READ(reg);
ad80a810 1120 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1121 } else {
1122 reg = FDI_TX_CTL(pipe);
1123 val = I915_READ(reg);
1124 cur_state = !!(val & FDI_TX_ENABLE);
1125 }
040484af
JB
1126 WARN(cur_state != state,
1127 "FDI TX state assertion failure (expected %s, current %s)\n",
1128 state_string(state), state_string(cur_state));
1129}
1130#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1131#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1132
1133static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1134 enum pipe pipe, bool state)
1135{
1136 int reg;
1137 u32 val;
1138 bool cur_state;
1139
d63fa0dc
PZ
1140 reg = FDI_RX_CTL(pipe);
1141 val = I915_READ(reg);
1142 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1143 WARN(cur_state != state,
1144 "FDI RX state assertion failure (expected %s, current %s)\n",
1145 state_string(state), state_string(cur_state));
1146}
1147#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1148#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1149
1150static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1151 enum pipe pipe)
1152{
1153 int reg;
1154 u32 val;
1155
1156 /* ILK FDI PLL is always enabled */
3d13ef2e 1157 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1158 return;
1159
bf507ef7 1160 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1161 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1162 return;
1163
040484af
JB
1164 reg = FDI_TX_CTL(pipe);
1165 val = I915_READ(reg);
1166 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1167}
1168
55607e8a
DV
1169void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1170 enum pipe pipe, bool state)
040484af
JB
1171{
1172 int reg;
1173 u32 val;
55607e8a 1174 bool cur_state;
040484af
JB
1175
1176 reg = FDI_RX_CTL(pipe);
1177 val = I915_READ(reg);
55607e8a
DV
1178 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1179 WARN(cur_state != state,
1180 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1181 state_string(state), state_string(cur_state));
040484af
JB
1182}
1183
ea0760cf
JB
1184static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186{
1187 int pp_reg, lvds_reg;
1188 u32 val;
1189 enum pipe panel_pipe = PIPE_A;
0de3b485 1190 bool locked = true;
ea0760cf
JB
1191
1192 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1193 pp_reg = PCH_PP_CONTROL;
1194 lvds_reg = PCH_LVDS;
1195 } else {
1196 pp_reg = PP_CONTROL;
1197 lvds_reg = LVDS;
1198 }
1199
1200 val = I915_READ(pp_reg);
1201 if (!(val & PANEL_POWER_ON) ||
1202 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1203 locked = false;
1204
1205 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1206 panel_pipe = PIPE_B;
1207
1208 WARN(panel_pipe == pipe && locked,
1209 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1210 pipe_name(pipe));
ea0760cf
JB
1211}
1212
93ce0ba6
JN
1213static void assert_cursor(struct drm_i915_private *dev_priv,
1214 enum pipe pipe, bool state)
1215{
1216 struct drm_device *dev = dev_priv->dev;
1217 bool cur_state;
1218
d9d82081 1219 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1220 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1221 else
5efb3e28 1222 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1223
1224 WARN(cur_state != state,
1225 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1226 pipe_name(pipe), state_string(state), state_string(cur_state));
1227}
1228#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1229#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1230
b840d907
JB
1231void assert_pipe(struct drm_i915_private *dev_priv,
1232 enum pipe pipe, bool state)
b24e7179
JB
1233{
1234 int reg;
1235 u32 val;
63d7bbe9 1236 bool cur_state;
702e7a56
PZ
1237 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1238 pipe);
b24e7179 1239
8e636784
DV
1240 /* if we need the pipe A quirk it must be always on */
1241 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1242 state = true;
1243
da7e29bd 1244 if (!intel_display_power_enabled(dev_priv,
b97186f0 1245 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1246 cur_state = false;
1247 } else {
1248 reg = PIPECONF(cpu_transcoder);
1249 val = I915_READ(reg);
1250 cur_state = !!(val & PIPECONF_ENABLE);
1251 }
1252
63d7bbe9
JB
1253 WARN(cur_state != state,
1254 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1255 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1256}
1257
931872fc
CW
1258static void assert_plane(struct drm_i915_private *dev_priv,
1259 enum plane plane, bool state)
b24e7179
JB
1260{
1261 int reg;
1262 u32 val;
931872fc 1263 bool cur_state;
b24e7179
JB
1264
1265 reg = DSPCNTR(plane);
1266 val = I915_READ(reg);
931872fc
CW
1267 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1268 WARN(cur_state != state,
1269 "plane %c assertion failure (expected %s, current %s)\n",
1270 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1271}
1272
931872fc
CW
1273#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1274#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1275
b24e7179
JB
1276static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1277 enum pipe pipe)
1278{
653e1026 1279 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1280 int reg, i;
1281 u32 val;
1282 int cur_pipe;
1283
653e1026
VS
1284 /* Primary planes are fixed to pipes on gen4+ */
1285 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1286 reg = DSPCNTR(pipe);
1287 val = I915_READ(reg);
83f26f16 1288 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1289 "plane %c assertion failure, should be disabled but not\n",
1290 plane_name(pipe));
19ec1358 1291 return;
28c05794 1292 }
19ec1358 1293
b24e7179 1294 /* Need to check both planes against the pipe */
08e2a7de 1295 for_each_pipe(i) {
b24e7179
JB
1296 reg = DSPCNTR(i);
1297 val = I915_READ(reg);
1298 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1299 DISPPLANE_SEL_PIPE_SHIFT;
1300 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1301 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1302 plane_name(i), pipe_name(pipe));
b24e7179
JB
1303 }
1304}
1305
19332d7a
JB
1306static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe)
1308{
20674eef 1309 struct drm_device *dev = dev_priv->dev;
1fe47785 1310 int reg, sprite;
19332d7a
JB
1311 u32 val;
1312
20674eef 1313 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1314 for_each_sprite(pipe, sprite) {
1315 reg = SPCNTR(pipe, sprite);
20674eef 1316 val = I915_READ(reg);
83f26f16 1317 WARN(val & SP_ENABLE,
20674eef 1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1319 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1320 }
1321 } else if (INTEL_INFO(dev)->gen >= 7) {
1322 reg = SPRCTL(pipe);
19332d7a 1323 val = I915_READ(reg);
83f26f16 1324 WARN(val & SPRITE_ENABLE,
06da8da2 1325 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1326 plane_name(pipe), pipe_name(pipe));
1327 } else if (INTEL_INFO(dev)->gen >= 5) {
1328 reg = DVSCNTR(pipe);
19332d7a 1329 val = I915_READ(reg);
83f26f16 1330 WARN(val & DVS_ENABLE,
06da8da2 1331 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1332 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1333 }
1334}
1335
89eff4be 1336static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1337{
1338 u32 val;
1339 bool enabled;
1340
89eff4be 1341 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1342
92f2584a
JB
1343 val = I915_READ(PCH_DREF_CONTROL);
1344 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1345 DREF_SUPERSPREAD_SOURCE_MASK));
1346 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1347}
1348
ab9412ba
DV
1349static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe)
92f2584a
JB
1351{
1352 int reg;
1353 u32 val;
1354 bool enabled;
1355
ab9412ba 1356 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1357 val = I915_READ(reg);
1358 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1359 WARN(enabled,
1360 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1361 pipe_name(pipe));
92f2584a
JB
1362}
1363
4e634389
KP
1364static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1365 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1366{
1367 if ((val & DP_PORT_EN) == 0)
1368 return false;
1369
1370 if (HAS_PCH_CPT(dev_priv->dev)) {
1371 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1372 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1373 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1374 return false;
44f37d1f
CML
1375 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1376 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1377 return false;
f0575e92
KP
1378 } else {
1379 if ((val & DP_PIPE_MASK) != (pipe << 30))
1380 return false;
1381 }
1382 return true;
1383}
1384
1519b995
KP
1385static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1386 enum pipe pipe, u32 val)
1387{
dc0fa718 1388 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1389 return false;
1390
1391 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1392 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1393 return false;
44f37d1f
CML
1394 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1395 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1396 return false;
1519b995 1397 } else {
dc0fa718 1398 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1399 return false;
1400 }
1401 return true;
1402}
1403
1404static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe, u32 val)
1406{
1407 if ((val & LVDS_PORT_EN) == 0)
1408 return false;
1409
1410 if (HAS_PCH_CPT(dev_priv->dev)) {
1411 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1412 return false;
1413 } else {
1414 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1415 return false;
1416 }
1417 return true;
1418}
1419
1420static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1421 enum pipe pipe, u32 val)
1422{
1423 if ((val & ADPA_DAC_ENABLE) == 0)
1424 return false;
1425 if (HAS_PCH_CPT(dev_priv->dev)) {
1426 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1427 return false;
1428 } else {
1429 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1430 return false;
1431 }
1432 return true;
1433}
1434
291906f1 1435static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1436 enum pipe pipe, int reg, u32 port_sel)
291906f1 1437{
47a05eca 1438 u32 val = I915_READ(reg);
4e634389 1439 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1440 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1441 reg, pipe_name(pipe));
de9a35ab 1442
75c5da27
DV
1443 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1444 && (val & DP_PIPEB_SELECT),
de9a35ab 1445 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1446}
1447
1448static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1449 enum pipe pipe, int reg)
1450{
47a05eca 1451 u32 val = I915_READ(reg);
b70ad586 1452 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1453 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1454 reg, pipe_name(pipe));
de9a35ab 1455
dc0fa718 1456 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1457 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1458 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1459}
1460
1461static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1462 enum pipe pipe)
1463{
1464 int reg;
1465 u32 val;
291906f1 1466
f0575e92
KP
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1470
1471 reg = PCH_ADPA;
1472 val = I915_READ(reg);
b70ad586 1473 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1474 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1475 pipe_name(pipe));
291906f1
JB
1476
1477 reg = PCH_LVDS;
1478 val = I915_READ(reg);
b70ad586 1479 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1481 pipe_name(pipe));
291906f1 1482
e2debe91
PZ
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1486}
1487
40e9cf64
JB
1488static void intel_init_dpio(struct drm_device *dev)
1489{
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491
1492 if (!IS_VALLEYVIEW(dev))
1493 return;
1494
a09caddd
CML
1495 /*
1496 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1497 * CHV x1 PHY (DP/HDMI D)
1498 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1499 */
1500 if (IS_CHERRYVIEW(dev)) {
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1502 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1503 } else {
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1505 }
5382f5f3
JB
1506}
1507
1508static void intel_reset_dpio(struct drm_device *dev)
1509{
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511
076ed3b2
CML
1512 if (IS_CHERRYVIEW(dev)) {
1513 enum dpio_phy phy;
1514 u32 val;
1515
1516 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1517 /* Poll for phypwrgood signal */
1518 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1519 PHY_POWERGOOD(phy), 1))
1520 DRM_ERROR("Display PHY %d is not power up\n", phy);
1521
1522 /*
1523 * Deassert common lane reset for PHY.
1524 *
1525 * This should only be done on init and resume from S3
1526 * with both PLLs disabled, or we risk losing DPIO and
1527 * PLL synchronization.
1528 */
1529 val = I915_READ(DISPLAY_PHY_CONTROL);
1530 I915_WRITE(DISPLAY_PHY_CONTROL,
1531 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1532 }
076ed3b2 1533 }
40e9cf64
JB
1534}
1535
426115cf 1536static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1537{
426115cf
DV
1538 struct drm_device *dev = crtc->base.dev;
1539 struct drm_i915_private *dev_priv = dev->dev_private;
1540 int reg = DPLL(crtc->pipe);
1541 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1542
426115cf 1543 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1544
1545 /* No really, not for ILK+ */
1546 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1547
1548 /* PLL is protected by panel, make sure we can write it */
1549 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1550 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1551
426115cf
DV
1552 I915_WRITE(reg, dpll);
1553 POSTING_READ(reg);
1554 udelay(150);
1555
1556 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1557 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1558
1559 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1560 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1561
1562 /* We do this three times for luck */
426115cf 1563 I915_WRITE(reg, dpll);
87442f73
DV
1564 POSTING_READ(reg);
1565 udelay(150); /* wait for warmup */
426115cf 1566 I915_WRITE(reg, dpll);
87442f73
DV
1567 POSTING_READ(reg);
1568 udelay(150); /* wait for warmup */
426115cf 1569 I915_WRITE(reg, dpll);
87442f73
DV
1570 POSTING_READ(reg);
1571 udelay(150); /* wait for warmup */
1572}
1573
9d556c99
CML
1574static void chv_enable_pll(struct intel_crtc *crtc)
1575{
1576 struct drm_device *dev = crtc->base.dev;
1577 struct drm_i915_private *dev_priv = dev->dev_private;
1578 int pipe = crtc->pipe;
1579 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1580 u32 tmp;
1581
1582 assert_pipe_disabled(dev_priv, crtc->pipe);
1583
1584 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1585
1586 mutex_lock(&dev_priv->dpio_lock);
1587
1588 /* Enable back the 10bit clock to display controller */
1589 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1590 tmp |= DPIO_DCLKP_EN;
1591 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1592
1593 /*
1594 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1595 */
1596 udelay(1);
1597
1598 /* Enable PLL */
a11b0703 1599 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1600
1601 /* Check PLL is locked */
a11b0703 1602 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1603 DRM_ERROR("PLL %d failed to lock\n", pipe);
1604
a11b0703
VS
1605 /* not sure when this should be written */
1606 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1607 POSTING_READ(DPLL_MD(pipe));
1608
9d556c99
CML
1609 mutex_unlock(&dev_priv->dpio_lock);
1610}
1611
66e3d5c0 1612static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1613{
66e3d5c0
DV
1614 struct drm_device *dev = crtc->base.dev;
1615 struct drm_i915_private *dev_priv = dev->dev_private;
1616 int reg = DPLL(crtc->pipe);
1617 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1618
66e3d5c0 1619 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1620
63d7bbe9 1621 /* No really, not for ILK+ */
3d13ef2e 1622 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1623
1624 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1625 if (IS_MOBILE(dev) && !IS_I830(dev))
1626 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1627
66e3d5c0
DV
1628 I915_WRITE(reg, dpll);
1629
1630 /* Wait for the clocks to stabilize. */
1631 POSTING_READ(reg);
1632 udelay(150);
1633
1634 if (INTEL_INFO(dev)->gen >= 4) {
1635 I915_WRITE(DPLL_MD(crtc->pipe),
1636 crtc->config.dpll_hw_state.dpll_md);
1637 } else {
1638 /* The pixel multiplier can only be updated once the
1639 * DPLL is enabled and the clocks are stable.
1640 *
1641 * So write it again.
1642 */
1643 I915_WRITE(reg, dpll);
1644 }
63d7bbe9
JB
1645
1646 /* We do this three times for luck */
66e3d5c0 1647 I915_WRITE(reg, dpll);
63d7bbe9
JB
1648 POSTING_READ(reg);
1649 udelay(150); /* wait for warmup */
66e3d5c0 1650 I915_WRITE(reg, dpll);
63d7bbe9
JB
1651 POSTING_READ(reg);
1652 udelay(150); /* wait for warmup */
66e3d5c0 1653 I915_WRITE(reg, dpll);
63d7bbe9
JB
1654 POSTING_READ(reg);
1655 udelay(150); /* wait for warmup */
1656}
1657
1658/**
50b44a44 1659 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1660 * @dev_priv: i915 private structure
1661 * @pipe: pipe PLL to disable
1662 *
1663 * Disable the PLL for @pipe, making sure the pipe is off first.
1664 *
1665 * Note! This is for pre-ILK only.
1666 */
50b44a44 1667static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1668{
63d7bbe9
JB
1669 /* Don't disable pipe A or pipe A PLLs if needed */
1670 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1671 return;
1672
1673 /* Make sure the pipe isn't still relying on us */
1674 assert_pipe_disabled(dev_priv, pipe);
1675
50b44a44
DV
1676 I915_WRITE(DPLL(pipe), 0);
1677 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1678}
1679
f6071166
JB
1680static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1681{
1682 u32 val = 0;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
e5cbfbfb
ID
1687 /*
1688 * Leave integrated clock source and reference clock enabled for pipe B.
1689 * The latter is needed for VGA hotplug / manual detection.
1690 */
f6071166 1691 if (pipe == PIPE_B)
e5cbfbfb 1692 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1693 I915_WRITE(DPLL(pipe), val);
1694 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1695
1696}
1697
1698static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1699{
d752048d 1700 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1701 u32 val;
1702
a11b0703
VS
1703 /* Make sure the pipe isn't still relying on us */
1704 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1705
a11b0703
VS
1706 /* Set PLL en = 0 */
1707 val = DPLL_SSC_REF_CLOCK_CHV;
1708 if (pipe != PIPE_A)
1709 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1710 I915_WRITE(DPLL(pipe), val);
1711 POSTING_READ(DPLL(pipe));
d752048d
VS
1712
1713 mutex_lock(&dev_priv->dpio_lock);
1714
1715 /* Disable 10bit clock to display controller */
1716 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1717 val &= ~DPIO_DCLKP_EN;
1718 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1719
61407f6d
VS
1720 /* disable left/right clock distribution */
1721 if (pipe != PIPE_B) {
1722 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1723 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1724 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1725 } else {
1726 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1727 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1728 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1729 }
1730
d752048d 1731 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1732}
1733
e4607fcf
CML
1734void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1735 struct intel_digital_port *dport)
89b667f8
JB
1736{
1737 u32 port_mask;
00fc31b7 1738 int dpll_reg;
89b667f8 1739
e4607fcf
CML
1740 switch (dport->port) {
1741 case PORT_B:
89b667f8 1742 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1743 dpll_reg = DPLL(0);
e4607fcf
CML
1744 break;
1745 case PORT_C:
89b667f8 1746 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1747 dpll_reg = DPLL(0);
1748 break;
1749 case PORT_D:
1750 port_mask = DPLL_PORTD_READY_MASK;
1751 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1752 break;
1753 default:
1754 BUG();
1755 }
89b667f8 1756
00fc31b7 1757 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1758 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1759 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1760}
1761
b14b1055
DV
1762static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1763{
1764 struct drm_device *dev = crtc->base.dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1767
be19f0ff
CW
1768 if (WARN_ON(pll == NULL))
1769 return;
1770
b14b1055
DV
1771 WARN_ON(!pll->refcount);
1772 if (pll->active == 0) {
1773 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1774 WARN_ON(pll->on);
1775 assert_shared_dpll_disabled(dev_priv, pll);
1776
1777 pll->mode_set(dev_priv, pll);
1778 }
1779}
1780
92f2584a 1781/**
85b3894f 1782 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1783 * @dev_priv: i915 private structure
1784 * @pipe: pipe PLL to enable
1785 *
1786 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1787 * drives the transcoder clock.
1788 */
85b3894f 1789static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1790{
3d13ef2e
DL
1791 struct drm_device *dev = crtc->base.dev;
1792 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1793 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1794
87a875bb 1795 if (WARN_ON(pll == NULL))
48da64a8
CW
1796 return;
1797
1798 if (WARN_ON(pll->refcount == 0))
1799 return;
ee7b9f93 1800
46edb027
DV
1801 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1802 pll->name, pll->active, pll->on,
e2b78267 1803 crtc->base.base.id);
92f2584a 1804
cdbd2316
DV
1805 if (pll->active++) {
1806 WARN_ON(!pll->on);
e9d6944e 1807 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1808 return;
1809 }
f4a091c7 1810 WARN_ON(pll->on);
ee7b9f93 1811
bd2bb1b9
PZ
1812 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1813
46edb027 1814 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1815 pll->enable(dev_priv, pll);
ee7b9f93 1816 pll->on = true;
92f2584a
JB
1817}
1818
716c2e55 1819void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1820{
3d13ef2e
DL
1821 struct drm_device *dev = crtc->base.dev;
1822 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1823 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1824
92f2584a 1825 /* PCH only available on ILK+ */
3d13ef2e 1826 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1827 if (WARN_ON(pll == NULL))
ee7b9f93 1828 return;
92f2584a 1829
48da64a8
CW
1830 if (WARN_ON(pll->refcount == 0))
1831 return;
7a419866 1832
46edb027
DV
1833 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1834 pll->name, pll->active, pll->on,
e2b78267 1835 crtc->base.base.id);
7a419866 1836
48da64a8 1837 if (WARN_ON(pll->active == 0)) {
e9d6944e 1838 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1839 return;
1840 }
1841
e9d6944e 1842 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1843 WARN_ON(!pll->on);
cdbd2316 1844 if (--pll->active)
7a419866 1845 return;
ee7b9f93 1846
46edb027 1847 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1848 pll->disable(dev_priv, pll);
ee7b9f93 1849 pll->on = false;
bd2bb1b9
PZ
1850
1851 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1852}
1853
b8a4f404
PZ
1854static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1855 enum pipe pipe)
040484af 1856{
23670b32 1857 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1858 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1860 uint32_t reg, val, pipeconf_val;
040484af
JB
1861
1862 /* PCH only available on ILK+ */
3d13ef2e 1863 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1864
1865 /* Make sure PCH DPLL is enabled */
e72f9fbf 1866 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1867 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1868
1869 /* FDI must be feeding us bits for PCH ports */
1870 assert_fdi_tx_enabled(dev_priv, pipe);
1871 assert_fdi_rx_enabled(dev_priv, pipe);
1872
23670b32
DV
1873 if (HAS_PCH_CPT(dev)) {
1874 /* Workaround: Set the timing override bit before enabling the
1875 * pch transcoder. */
1876 reg = TRANS_CHICKEN2(pipe);
1877 val = I915_READ(reg);
1878 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1879 I915_WRITE(reg, val);
59c859d6 1880 }
23670b32 1881
ab9412ba 1882 reg = PCH_TRANSCONF(pipe);
040484af 1883 val = I915_READ(reg);
5f7f726d 1884 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1885
1886 if (HAS_PCH_IBX(dev_priv->dev)) {
1887 /*
1888 * make the BPC in transcoder be consistent with
1889 * that in pipeconf reg.
1890 */
dfd07d72
DV
1891 val &= ~PIPECONF_BPC_MASK;
1892 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1893 }
5f7f726d
PZ
1894
1895 val &= ~TRANS_INTERLACE_MASK;
1896 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1897 if (HAS_PCH_IBX(dev_priv->dev) &&
1898 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1899 val |= TRANS_LEGACY_INTERLACED_ILK;
1900 else
1901 val |= TRANS_INTERLACED;
5f7f726d
PZ
1902 else
1903 val |= TRANS_PROGRESSIVE;
1904
040484af
JB
1905 I915_WRITE(reg, val | TRANS_ENABLE);
1906 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1907 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1908}
1909
8fb033d7 1910static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1911 enum transcoder cpu_transcoder)
040484af 1912{
8fb033d7 1913 u32 val, pipeconf_val;
8fb033d7
PZ
1914
1915 /* PCH only available on ILK+ */
3d13ef2e 1916 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1917
8fb033d7 1918 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1919 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1920 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1921
223a6fdf
PZ
1922 /* Workaround: set timing override bit. */
1923 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1924 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1925 I915_WRITE(_TRANSA_CHICKEN2, val);
1926
25f3ef11 1927 val = TRANS_ENABLE;
937bb610 1928 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1929
9a76b1c6
PZ
1930 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1931 PIPECONF_INTERLACED_ILK)
a35f2679 1932 val |= TRANS_INTERLACED;
8fb033d7
PZ
1933 else
1934 val |= TRANS_PROGRESSIVE;
1935
ab9412ba
DV
1936 I915_WRITE(LPT_TRANSCONF, val);
1937 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1938 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1939}
1940
b8a4f404
PZ
1941static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1942 enum pipe pipe)
040484af 1943{
23670b32
DV
1944 struct drm_device *dev = dev_priv->dev;
1945 uint32_t reg, val;
040484af
JB
1946
1947 /* FDI relies on the transcoder */
1948 assert_fdi_tx_disabled(dev_priv, pipe);
1949 assert_fdi_rx_disabled(dev_priv, pipe);
1950
291906f1
JB
1951 /* Ports must be off as well */
1952 assert_pch_ports_disabled(dev_priv, pipe);
1953
ab9412ba 1954 reg = PCH_TRANSCONF(pipe);
040484af
JB
1955 val = I915_READ(reg);
1956 val &= ~TRANS_ENABLE;
1957 I915_WRITE(reg, val);
1958 /* wait for PCH transcoder off, transcoder state */
1959 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1960 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1961
1962 if (!HAS_PCH_IBX(dev)) {
1963 /* Workaround: Clear the timing override chicken bit again. */
1964 reg = TRANS_CHICKEN2(pipe);
1965 val = I915_READ(reg);
1966 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1967 I915_WRITE(reg, val);
1968 }
040484af
JB
1969}
1970
ab4d966c 1971static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1972{
8fb033d7
PZ
1973 u32 val;
1974
ab9412ba 1975 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1976 val &= ~TRANS_ENABLE;
ab9412ba 1977 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1978 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1979 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1980 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1981
1982 /* Workaround: clear timing override bit. */
1983 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1984 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1985 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1986}
1987
b24e7179 1988/**
309cfea8 1989 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1990 * @crtc: crtc responsible for the pipe
b24e7179 1991 *
0372264a 1992 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1993 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1994 */
e1fdc473 1995static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1996{
0372264a
PZ
1997 struct drm_device *dev = crtc->base.dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2000 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2001 pipe);
1a240d4d 2002 enum pipe pch_transcoder;
b24e7179
JB
2003 int reg;
2004 u32 val;
2005
58c6eaa2 2006 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2007 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2008 assert_sprites_disabled(dev_priv, pipe);
2009
681e5811 2010 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2011 pch_transcoder = TRANSCODER_A;
2012 else
2013 pch_transcoder = pipe;
2014
b24e7179
JB
2015 /*
2016 * A pipe without a PLL won't actually be able to drive bits from
2017 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2018 * need the check.
2019 */
2020 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2021 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2022 assert_dsi_pll_enabled(dev_priv);
2023 else
2024 assert_pll_enabled(dev_priv, pipe);
040484af 2025 else {
30421c4f 2026 if (crtc->config.has_pch_encoder) {
040484af 2027 /* if driving the PCH, we need FDI enabled */
cc391bbb 2028 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2029 assert_fdi_tx_pll_enabled(dev_priv,
2030 (enum pipe) cpu_transcoder);
040484af
JB
2031 }
2032 /* FIXME: assert CPU port conditions for SNB+ */
2033 }
b24e7179 2034
702e7a56 2035 reg = PIPECONF(cpu_transcoder);
b24e7179 2036 val = I915_READ(reg);
7ad25d48
PZ
2037 if (val & PIPECONF_ENABLE) {
2038 WARN_ON(!(pipe == PIPE_A &&
2039 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2040 return;
7ad25d48 2041 }
00d70b15
CW
2042
2043 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2044 POSTING_READ(reg);
b24e7179
JB
2045}
2046
2047/**
309cfea8 2048 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2049 * @dev_priv: i915 private structure
2050 * @pipe: pipe to disable
2051 *
2052 * Disable @pipe, making sure that various hardware specific requirements
2053 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2054 *
2055 * @pipe should be %PIPE_A or %PIPE_B.
2056 *
2057 * Will wait until the pipe has shut down before returning.
2058 */
2059static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2060 enum pipe pipe)
2061{
702e7a56
PZ
2062 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2063 pipe);
b24e7179
JB
2064 int reg;
2065 u32 val;
2066
2067 /*
2068 * Make sure planes won't keep trying to pump pixels to us,
2069 * or we might hang the display.
2070 */
2071 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2072 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2073 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2074
2075 /* Don't disable pipe A or pipe A PLLs if needed */
2076 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2077 return;
2078
702e7a56 2079 reg = PIPECONF(cpu_transcoder);
b24e7179 2080 val = I915_READ(reg);
00d70b15
CW
2081 if ((val & PIPECONF_ENABLE) == 0)
2082 return;
2083
2084 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2085 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2086}
2087
d74362c9
KP
2088/*
2089 * Plane regs are double buffered, going from enabled->disabled needs a
2090 * trigger in order to latch. The display address reg provides this.
2091 */
1dba99f4
VS
2092void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2093 enum plane plane)
d74362c9 2094{
3d13ef2e
DL
2095 struct drm_device *dev = dev_priv->dev;
2096 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2097
2098 I915_WRITE(reg, I915_READ(reg));
2099 POSTING_READ(reg);
d74362c9
KP
2100}
2101
b24e7179 2102/**
262ca2b0 2103 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2104 * @dev_priv: i915 private structure
2105 * @plane: plane to enable
2106 * @pipe: pipe being fed
2107 *
2108 * Enable @plane on @pipe, making sure that @pipe is running first.
2109 */
262ca2b0
MR
2110static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane, enum pipe pipe)
b24e7179 2112{
33c3b0d1 2113 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2114 struct intel_crtc *intel_crtc =
2115 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2116 int reg;
2117 u32 val;
2118
2119 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2120 assert_pipe_enabled(dev_priv, pipe);
2121
98ec7739
VS
2122 if (intel_crtc->primary_enabled)
2123 return;
0037f71c 2124
4c445e0e 2125 intel_crtc->primary_enabled = true;
939c2fe8 2126
b24e7179
JB
2127 reg = DSPCNTR(plane);
2128 val = I915_READ(reg);
10efa932 2129 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2130
2131 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2132 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2133
2134 /*
2135 * BDW signals flip done immediately if the plane
2136 * is disabled, even if the plane enable is already
2137 * armed to occur at the next vblank :(
2138 */
2139 if (IS_BROADWELL(dev))
2140 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2141}
2142
b24e7179 2143/**
262ca2b0 2144 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2145 * @dev_priv: i915 private structure
2146 * @plane: plane to disable
2147 * @pipe: pipe consuming the data
2148 *
2149 * Disable @plane; should be an independent operation.
2150 */
262ca2b0
MR
2151static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2152 enum plane plane, enum pipe pipe)
b24e7179 2153{
939c2fe8
VS
2154 struct intel_crtc *intel_crtc =
2155 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2156 int reg;
2157 u32 val;
2158
98ec7739
VS
2159 if (!intel_crtc->primary_enabled)
2160 return;
0037f71c 2161
4c445e0e 2162 intel_crtc->primary_enabled = false;
939c2fe8 2163
b24e7179
JB
2164 reg = DSPCNTR(plane);
2165 val = I915_READ(reg);
10efa932 2166 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2167
2168 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2169 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2170}
2171
693db184
CW
2172static bool need_vtd_wa(struct drm_device *dev)
2173{
2174#ifdef CONFIG_INTEL_IOMMU
2175 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2176 return true;
2177#endif
2178 return false;
2179}
2180
a57ce0b2
JB
2181static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2182{
2183 int tile_height;
2184
2185 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2186 return ALIGN(height, tile_height);
2187}
2188
127bd2ac 2189int
48b956c5 2190intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2191 struct drm_i915_gem_object *obj,
a4872ba6 2192 struct intel_engine_cs *pipelined)
6b95a207 2193{
ce453d81 2194 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2195 u32 alignment;
2196 int ret;
2197
ebcdd39e
MR
2198 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2199
05394f39 2200 switch (obj->tiling_mode) {
6b95a207 2201 case I915_TILING_NONE:
534843da
CW
2202 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2203 alignment = 128 * 1024;
a6c45cf0 2204 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2205 alignment = 4 * 1024;
2206 else
2207 alignment = 64 * 1024;
6b95a207
KH
2208 break;
2209 case I915_TILING_X:
2210 /* pin() will align the object as required by fence */
2211 alignment = 0;
2212 break;
2213 case I915_TILING_Y:
80075d49 2214 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2215 return -EINVAL;
2216 default:
2217 BUG();
2218 }
2219
693db184
CW
2220 /* Note that the w/a also requires 64 PTE of padding following the
2221 * bo. We currently fill all unused PTE with the shadow page and so
2222 * we should always have valid PTE following the scanout preventing
2223 * the VT-d warning.
2224 */
2225 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2226 alignment = 256 * 1024;
2227
ce453d81 2228 dev_priv->mm.interruptible = false;
2da3b9b9 2229 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2230 if (ret)
ce453d81 2231 goto err_interruptible;
6b95a207
KH
2232
2233 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2234 * fence, whereas 965+ only requires a fence if using
2235 * framebuffer compression. For simplicity, we always install
2236 * a fence as the cost is not that onerous.
2237 */
06d98131 2238 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2239 if (ret)
2240 goto err_unpin;
1690e1eb 2241
9a5a53b3 2242 i915_gem_object_pin_fence(obj);
6b95a207 2243
ce453d81 2244 dev_priv->mm.interruptible = true;
6b95a207 2245 return 0;
48b956c5
CW
2246
2247err_unpin:
cc98b413 2248 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2249err_interruptible:
2250 dev_priv->mm.interruptible = true;
48b956c5 2251 return ret;
6b95a207
KH
2252}
2253
1690e1eb
CW
2254void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2255{
ebcdd39e
MR
2256 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2257
1690e1eb 2258 i915_gem_object_unpin_fence(obj);
cc98b413 2259 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2260}
2261
c2c75131
DV
2262/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2263 * is assumed to be a power-of-two. */
bc752862
CW
2264unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2265 unsigned int tiling_mode,
2266 unsigned int cpp,
2267 unsigned int pitch)
c2c75131 2268{
bc752862
CW
2269 if (tiling_mode != I915_TILING_NONE) {
2270 unsigned int tile_rows, tiles;
c2c75131 2271
bc752862
CW
2272 tile_rows = *y / 8;
2273 *y %= 8;
c2c75131 2274
bc752862
CW
2275 tiles = *x / (512/cpp);
2276 *x %= 512/cpp;
2277
2278 return tile_rows * pitch * 8 + tiles * 4096;
2279 } else {
2280 unsigned int offset;
2281
2282 offset = *y * pitch + *x * cpp;
2283 *y = 0;
2284 *x = (offset & 4095) / cpp;
2285 return offset & -4096;
2286 }
c2c75131
DV
2287}
2288
46f297fb
JB
2289int intel_format_to_fourcc(int format)
2290{
2291 switch (format) {
2292 case DISPPLANE_8BPP:
2293 return DRM_FORMAT_C8;
2294 case DISPPLANE_BGRX555:
2295 return DRM_FORMAT_XRGB1555;
2296 case DISPPLANE_BGRX565:
2297 return DRM_FORMAT_RGB565;
2298 default:
2299 case DISPPLANE_BGRX888:
2300 return DRM_FORMAT_XRGB8888;
2301 case DISPPLANE_RGBX888:
2302 return DRM_FORMAT_XBGR8888;
2303 case DISPPLANE_BGRX101010:
2304 return DRM_FORMAT_XRGB2101010;
2305 case DISPPLANE_RGBX101010:
2306 return DRM_FORMAT_XBGR2101010;
2307 }
2308}
2309
484b41dd 2310static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2311 struct intel_plane_config *plane_config)
2312{
2313 struct drm_device *dev = crtc->base.dev;
2314 struct drm_i915_gem_object *obj = NULL;
2315 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2316 u32 base = plane_config->base;
2317
ff2652ea
CW
2318 if (plane_config->size == 0)
2319 return false;
2320
46f297fb
JB
2321 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2322 plane_config->size);
2323 if (!obj)
484b41dd 2324 return false;
46f297fb
JB
2325
2326 if (plane_config->tiled) {
2327 obj->tiling_mode = I915_TILING_X;
66e514c1 2328 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2329 }
2330
66e514c1
DA
2331 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2332 mode_cmd.width = crtc->base.primary->fb->width;
2333 mode_cmd.height = crtc->base.primary->fb->height;
2334 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2335
2336 mutex_lock(&dev->struct_mutex);
2337
66e514c1 2338 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2339 &mode_cmd, obj)) {
46f297fb
JB
2340 DRM_DEBUG_KMS("intel fb init failed\n");
2341 goto out_unref_obj;
2342 }
2343
a071fa00 2344 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2345 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2346
2347 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2348 return true;
46f297fb
JB
2349
2350out_unref_obj:
2351 drm_gem_object_unreference(&obj->base);
2352 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2353 return false;
2354}
2355
2356static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2357 struct intel_plane_config *plane_config)
2358{
2359 struct drm_device *dev = intel_crtc->base.dev;
2360 struct drm_crtc *c;
2361 struct intel_crtc *i;
2ff8fde1 2362 struct drm_i915_gem_object *obj;
484b41dd 2363
66e514c1 2364 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2365 return;
2366
2367 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2368 return;
2369
66e514c1
DA
2370 kfree(intel_crtc->base.primary->fb);
2371 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2372
2373 /*
2374 * Failed to alloc the obj, check to see if we should share
2375 * an fb with another CRTC instead
2376 */
70e1e0ec 2377 for_each_crtc(dev, c) {
484b41dd
JB
2378 i = to_intel_crtc(c);
2379
2380 if (c == &intel_crtc->base)
2381 continue;
2382
2ff8fde1
MR
2383 if (!i->active)
2384 continue;
2385
2386 obj = intel_fb_obj(c->primary->fb);
2387 if (obj == NULL)
484b41dd
JB
2388 continue;
2389
2ff8fde1 2390 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2391 drm_framebuffer_reference(c->primary->fb);
2392 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2393 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2394 break;
2395 }
2396 }
46f297fb
JB
2397}
2398
29b9bde6
DV
2399static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2400 struct drm_framebuffer *fb,
2401 int x, int y)
81255565
JB
2402{
2403 struct drm_device *dev = crtc->dev;
2404 struct drm_i915_private *dev_priv = dev->dev_private;
2405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2406 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2407 int plane = intel_crtc->plane;
e506a0c6 2408 unsigned long linear_offset;
81255565 2409 u32 dspcntr;
5eddb70b 2410 u32 reg;
81255565 2411
5eddb70b
CW
2412 reg = DSPCNTR(plane);
2413 dspcntr = I915_READ(reg);
81255565
JB
2414 /* Mask out pixel format bits in case we change it */
2415 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2416 switch (fb->pixel_format) {
2417 case DRM_FORMAT_C8:
81255565
JB
2418 dspcntr |= DISPPLANE_8BPP;
2419 break;
57779d06
VS
2420 case DRM_FORMAT_XRGB1555:
2421 case DRM_FORMAT_ARGB1555:
2422 dspcntr |= DISPPLANE_BGRX555;
81255565 2423 break;
57779d06
VS
2424 case DRM_FORMAT_RGB565:
2425 dspcntr |= DISPPLANE_BGRX565;
2426 break;
2427 case DRM_FORMAT_XRGB8888:
2428 case DRM_FORMAT_ARGB8888:
2429 dspcntr |= DISPPLANE_BGRX888;
2430 break;
2431 case DRM_FORMAT_XBGR8888:
2432 case DRM_FORMAT_ABGR8888:
2433 dspcntr |= DISPPLANE_RGBX888;
2434 break;
2435 case DRM_FORMAT_XRGB2101010:
2436 case DRM_FORMAT_ARGB2101010:
2437 dspcntr |= DISPPLANE_BGRX101010;
2438 break;
2439 case DRM_FORMAT_XBGR2101010:
2440 case DRM_FORMAT_ABGR2101010:
2441 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2442 break;
2443 default:
baba133a 2444 BUG();
81255565 2445 }
57779d06 2446
a6c45cf0 2447 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2448 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2449 dspcntr |= DISPPLANE_TILED;
2450 else
2451 dspcntr &= ~DISPPLANE_TILED;
2452 }
2453
de1aa629
VS
2454 if (IS_G4X(dev))
2455 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2456
5eddb70b 2457 I915_WRITE(reg, dspcntr);
81255565 2458
e506a0c6 2459 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2460
c2c75131
DV
2461 if (INTEL_INFO(dev)->gen >= 4) {
2462 intel_crtc->dspaddr_offset =
bc752862
CW
2463 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2464 fb->bits_per_pixel / 8,
2465 fb->pitches[0]);
c2c75131
DV
2466 linear_offset -= intel_crtc->dspaddr_offset;
2467 } else {
e506a0c6 2468 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2469 }
e506a0c6 2470
f343c5f6
BW
2471 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2472 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2473 fb->pitches[0]);
01f2c773 2474 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2475 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2476 I915_WRITE(DSPSURF(plane),
2477 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2478 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2479 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2480 } else
f343c5f6 2481 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2482 POSTING_READ(reg);
17638cd6
JB
2483}
2484
29b9bde6
DV
2485static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2486 struct drm_framebuffer *fb,
2487 int x, int y)
17638cd6
JB
2488{
2489 struct drm_device *dev = crtc->dev;
2490 struct drm_i915_private *dev_priv = dev->dev_private;
2491 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2492 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2493 int plane = intel_crtc->plane;
e506a0c6 2494 unsigned long linear_offset;
17638cd6
JB
2495 u32 dspcntr;
2496 u32 reg;
2497
17638cd6
JB
2498 reg = DSPCNTR(plane);
2499 dspcntr = I915_READ(reg);
2500 /* Mask out pixel format bits in case we change it */
2501 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2502 switch (fb->pixel_format) {
2503 case DRM_FORMAT_C8:
17638cd6
JB
2504 dspcntr |= DISPPLANE_8BPP;
2505 break;
57779d06
VS
2506 case DRM_FORMAT_RGB565:
2507 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2508 break;
57779d06
VS
2509 case DRM_FORMAT_XRGB8888:
2510 case DRM_FORMAT_ARGB8888:
2511 dspcntr |= DISPPLANE_BGRX888;
2512 break;
2513 case DRM_FORMAT_XBGR8888:
2514 case DRM_FORMAT_ABGR8888:
2515 dspcntr |= DISPPLANE_RGBX888;
2516 break;
2517 case DRM_FORMAT_XRGB2101010:
2518 case DRM_FORMAT_ARGB2101010:
2519 dspcntr |= DISPPLANE_BGRX101010;
2520 break;
2521 case DRM_FORMAT_XBGR2101010:
2522 case DRM_FORMAT_ABGR2101010:
2523 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2524 break;
2525 default:
baba133a 2526 BUG();
17638cd6
JB
2527 }
2528
2529 if (obj->tiling_mode != I915_TILING_NONE)
2530 dspcntr |= DISPPLANE_TILED;
2531 else
2532 dspcntr &= ~DISPPLANE_TILED;
2533
b42c6009 2534 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2535 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2536 else
2537 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2538
2539 I915_WRITE(reg, dspcntr);
2540
e506a0c6 2541 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2542 intel_crtc->dspaddr_offset =
bc752862
CW
2543 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2544 fb->bits_per_pixel / 8,
2545 fb->pitches[0]);
c2c75131 2546 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2547
f343c5f6
BW
2548 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2549 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2550 fb->pitches[0]);
01f2c773 2551 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2552 I915_WRITE(DSPSURF(plane),
2553 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2554 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2555 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2556 } else {
2557 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2558 I915_WRITE(DSPLINOFF(plane), linear_offset);
2559 }
17638cd6 2560 POSTING_READ(reg);
17638cd6
JB
2561}
2562
2563/* Assume fb object is pinned & idle & fenced and just update base pointers */
2564static int
2565intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2566 int x, int y, enum mode_set_atomic state)
2567{
2568 struct drm_device *dev = crtc->dev;
2569 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2570
6b8e6ed0
CW
2571 if (dev_priv->display.disable_fbc)
2572 dev_priv->display.disable_fbc(dev);
cc36513c 2573 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2574
29b9bde6
DV
2575 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2576
2577 return 0;
81255565
JB
2578}
2579
96a02917
VS
2580void intel_display_handle_reset(struct drm_device *dev)
2581{
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 struct drm_crtc *crtc;
2584
2585 /*
2586 * Flips in the rings have been nuked by the reset,
2587 * so complete all pending flips so that user space
2588 * will get its events and not get stuck.
2589 *
2590 * Also update the base address of all primary
2591 * planes to the the last fb to make sure we're
2592 * showing the correct fb after a reset.
2593 *
2594 * Need to make two loops over the crtcs so that we
2595 * don't try to grab a crtc mutex before the
2596 * pending_flip_queue really got woken up.
2597 */
2598
70e1e0ec 2599 for_each_crtc(dev, crtc) {
96a02917
VS
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 enum plane plane = intel_crtc->plane;
2602
2603 intel_prepare_page_flip(dev, plane);
2604 intel_finish_page_flip_plane(dev, plane);
2605 }
2606
70e1e0ec 2607 for_each_crtc(dev, crtc) {
96a02917
VS
2608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2609
51fd371b 2610 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2611 /*
2612 * FIXME: Once we have proper support for primary planes (and
2613 * disabling them without disabling the entire crtc) allow again
66e514c1 2614 * a NULL crtc->primary->fb.
947fdaad 2615 */
f4510a27 2616 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2617 dev_priv->display.update_primary_plane(crtc,
66e514c1 2618 crtc->primary->fb,
262ca2b0
MR
2619 crtc->x,
2620 crtc->y);
51fd371b 2621 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2622 }
2623}
2624
14667a4b
CW
2625static int
2626intel_finish_fb(struct drm_framebuffer *old_fb)
2627{
2ff8fde1 2628 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2629 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2630 bool was_interruptible = dev_priv->mm.interruptible;
2631 int ret;
2632
14667a4b
CW
2633 /* Big Hammer, we also need to ensure that any pending
2634 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2635 * current scanout is retired before unpinning the old
2636 * framebuffer.
2637 *
2638 * This should only fail upon a hung GPU, in which case we
2639 * can safely continue.
2640 */
2641 dev_priv->mm.interruptible = false;
2642 ret = i915_gem_object_finish_gpu(obj);
2643 dev_priv->mm.interruptible = was_interruptible;
2644
2645 return ret;
2646}
2647
7d5e3799
CW
2648static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2649{
2650 struct drm_device *dev = crtc->dev;
2651 struct drm_i915_private *dev_priv = dev->dev_private;
2652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2653 unsigned long flags;
2654 bool pending;
2655
2656 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2657 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2658 return false;
2659
2660 spin_lock_irqsave(&dev->event_lock, flags);
2661 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2662 spin_unlock_irqrestore(&dev->event_lock, flags);
2663
2664 return pending;
2665}
2666
5c3b82e2 2667static int
3c4fdcfb 2668intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2669 struct drm_framebuffer *fb)
79e53945
JB
2670{
2671 struct drm_device *dev = crtc->dev;
6b8e6ed0 2672 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2674 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2675 struct drm_framebuffer *old_fb = crtc->primary->fb;
2676 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2677 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2678 int ret;
79e53945 2679
7d5e3799
CW
2680 if (intel_crtc_has_pending_flip(crtc)) {
2681 DRM_ERROR("pipe is still busy with an old pageflip\n");
2682 return -EBUSY;
2683 }
2684
79e53945 2685 /* no fb bound */
94352cf9 2686 if (!fb) {
a5071c2f 2687 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2688 return 0;
2689 }
2690
7eb552ae 2691 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2692 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2693 plane_name(intel_crtc->plane),
2694 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2695 return -EINVAL;
79e53945
JB
2696 }
2697
5c3b82e2 2698 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2699 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2700 if (ret == 0)
91565c85 2701 i915_gem_track_fb(old_obj, obj,
a071fa00 2702 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2703 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2704 if (ret != 0) {
a5071c2f 2705 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2706 return ret;
2707 }
79e53945 2708
bb2043de
DL
2709 /*
2710 * Update pipe size and adjust fitter if needed: the reason for this is
2711 * that in compute_mode_changes we check the native mode (not the pfit
2712 * mode) to see if we can flip rather than do a full mode set. In the
2713 * fastboot case, we'll flip, but if we don't update the pipesrc and
2714 * pfit state, we'll end up with a big fb scanned out into the wrong
2715 * sized surface.
2716 *
2717 * To fix this properly, we need to hoist the checks up into
2718 * compute_mode_changes (or above), check the actual pfit state and
2719 * whether the platform allows pfit disable with pipe active, and only
2720 * then update the pipesrc and pfit state, even on the flip path.
2721 */
d330a953 2722 if (i915.fastboot) {
d7bf63f2
DL
2723 const struct drm_display_mode *adjusted_mode =
2724 &intel_crtc->config.adjusted_mode;
2725
4d6a3e63 2726 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2727 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2728 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2729 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2730 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2731 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2732 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2733 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2734 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2735 }
0637d60d
JB
2736 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2737 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2738 }
2739
29b9bde6 2740 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2741
f99d7069
DV
2742 if (intel_crtc->active)
2743 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2744
f4510a27 2745 crtc->primary->fb = fb;
6c4c86f5
DV
2746 crtc->x = x;
2747 crtc->y = y;
94352cf9 2748
b7f1de28 2749 if (old_fb) {
d7697eea
DV
2750 if (intel_crtc->active && old_fb != fb)
2751 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2752 mutex_lock(&dev->struct_mutex);
2ff8fde1 2753 intel_unpin_fb_obj(old_obj);
8ac36ec1 2754 mutex_unlock(&dev->struct_mutex);
b7f1de28 2755 }
652c393a 2756
8ac36ec1 2757 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2758 intel_update_fbc(dev);
5c3b82e2 2759 mutex_unlock(&dev->struct_mutex);
79e53945 2760
5c3b82e2 2761 return 0;
79e53945
JB
2762}
2763
5e84e1a4
ZW
2764static void intel_fdi_normal_train(struct drm_crtc *crtc)
2765{
2766 struct drm_device *dev = crtc->dev;
2767 struct drm_i915_private *dev_priv = dev->dev_private;
2768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2769 int pipe = intel_crtc->pipe;
2770 u32 reg, temp;
2771
2772 /* enable normal train */
2773 reg = FDI_TX_CTL(pipe);
2774 temp = I915_READ(reg);
61e499bf 2775 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2776 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2777 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2778 } else {
2779 temp &= ~FDI_LINK_TRAIN_NONE;
2780 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2781 }
5e84e1a4
ZW
2782 I915_WRITE(reg, temp);
2783
2784 reg = FDI_RX_CTL(pipe);
2785 temp = I915_READ(reg);
2786 if (HAS_PCH_CPT(dev)) {
2787 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2788 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2789 } else {
2790 temp &= ~FDI_LINK_TRAIN_NONE;
2791 temp |= FDI_LINK_TRAIN_NONE;
2792 }
2793 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2794
2795 /* wait one idle pattern time */
2796 POSTING_READ(reg);
2797 udelay(1000);
357555c0
JB
2798
2799 /* IVB wants error correction enabled */
2800 if (IS_IVYBRIDGE(dev))
2801 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2802 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2803}
2804
1fbc0d78 2805static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2806{
1fbc0d78
DV
2807 return crtc->base.enabled && crtc->active &&
2808 crtc->config.has_pch_encoder;
1e833f40
DV
2809}
2810
01a415fd
DV
2811static void ivb_modeset_global_resources(struct drm_device *dev)
2812{
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 struct intel_crtc *pipe_B_crtc =
2815 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2816 struct intel_crtc *pipe_C_crtc =
2817 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2818 uint32_t temp;
2819
1e833f40
DV
2820 /*
2821 * When everything is off disable fdi C so that we could enable fdi B
2822 * with all lanes. Note that we don't care about enabled pipes without
2823 * an enabled pch encoder.
2824 */
2825 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2826 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2827 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2828 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2829
2830 temp = I915_READ(SOUTH_CHICKEN1);
2831 temp &= ~FDI_BC_BIFURCATION_SELECT;
2832 DRM_DEBUG_KMS("disabling fdi C rx\n");
2833 I915_WRITE(SOUTH_CHICKEN1, temp);
2834 }
2835}
2836
8db9d77b
ZW
2837/* The FDI link training functions for ILK/Ibexpeak. */
2838static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2839{
2840 struct drm_device *dev = crtc->dev;
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2843 int pipe = intel_crtc->pipe;
5eddb70b 2844 u32 reg, temp, tries;
8db9d77b 2845
1c8562f6 2846 /* FDI needs bits from pipe first */
0fc932b8 2847 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2848
e1a44743
AJ
2849 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2850 for train result */
5eddb70b
CW
2851 reg = FDI_RX_IMR(pipe);
2852 temp = I915_READ(reg);
e1a44743
AJ
2853 temp &= ~FDI_RX_SYMBOL_LOCK;
2854 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2855 I915_WRITE(reg, temp);
2856 I915_READ(reg);
e1a44743
AJ
2857 udelay(150);
2858
8db9d77b 2859 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2860 reg = FDI_TX_CTL(pipe);
2861 temp = I915_READ(reg);
627eb5a3
DV
2862 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2863 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2864 temp &= ~FDI_LINK_TRAIN_NONE;
2865 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2866 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2867
5eddb70b
CW
2868 reg = FDI_RX_CTL(pipe);
2869 temp = I915_READ(reg);
8db9d77b
ZW
2870 temp &= ~FDI_LINK_TRAIN_NONE;
2871 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2872 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2873
2874 POSTING_READ(reg);
8db9d77b
ZW
2875 udelay(150);
2876
5b2adf89 2877 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2878 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2879 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2880 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2881
5eddb70b 2882 reg = FDI_RX_IIR(pipe);
e1a44743 2883 for (tries = 0; tries < 5; tries++) {
5eddb70b 2884 temp = I915_READ(reg);
8db9d77b
ZW
2885 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2886
2887 if ((temp & FDI_RX_BIT_LOCK)) {
2888 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2889 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2890 break;
2891 }
8db9d77b 2892 }
e1a44743 2893 if (tries == 5)
5eddb70b 2894 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2895
2896 /* Train 2 */
5eddb70b
CW
2897 reg = FDI_TX_CTL(pipe);
2898 temp = I915_READ(reg);
8db9d77b
ZW
2899 temp &= ~FDI_LINK_TRAIN_NONE;
2900 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2901 I915_WRITE(reg, temp);
8db9d77b 2902
5eddb70b
CW
2903 reg = FDI_RX_CTL(pipe);
2904 temp = I915_READ(reg);
8db9d77b
ZW
2905 temp &= ~FDI_LINK_TRAIN_NONE;
2906 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2907 I915_WRITE(reg, temp);
8db9d77b 2908
5eddb70b
CW
2909 POSTING_READ(reg);
2910 udelay(150);
8db9d77b 2911
5eddb70b 2912 reg = FDI_RX_IIR(pipe);
e1a44743 2913 for (tries = 0; tries < 5; tries++) {
5eddb70b 2914 temp = I915_READ(reg);
8db9d77b
ZW
2915 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2916
2917 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2918 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2919 DRM_DEBUG_KMS("FDI train 2 done.\n");
2920 break;
2921 }
8db9d77b 2922 }
e1a44743 2923 if (tries == 5)
5eddb70b 2924 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2925
2926 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2927
8db9d77b
ZW
2928}
2929
0206e353 2930static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2931 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2932 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2933 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2934 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2935};
2936
2937/* The FDI link training functions for SNB/Cougarpoint. */
2938static void gen6_fdi_link_train(struct drm_crtc *crtc)
2939{
2940 struct drm_device *dev = crtc->dev;
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943 int pipe = intel_crtc->pipe;
fa37d39e 2944 u32 reg, temp, i, retry;
8db9d77b 2945
e1a44743
AJ
2946 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2947 for train result */
5eddb70b
CW
2948 reg = FDI_RX_IMR(pipe);
2949 temp = I915_READ(reg);
e1a44743
AJ
2950 temp &= ~FDI_RX_SYMBOL_LOCK;
2951 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2952 I915_WRITE(reg, temp);
2953
2954 POSTING_READ(reg);
e1a44743
AJ
2955 udelay(150);
2956
8db9d77b 2957 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2958 reg = FDI_TX_CTL(pipe);
2959 temp = I915_READ(reg);
627eb5a3
DV
2960 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2961 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2962 temp &= ~FDI_LINK_TRAIN_NONE;
2963 temp |= FDI_LINK_TRAIN_PATTERN_1;
2964 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2965 /* SNB-B */
2966 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2967 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2968
d74cf324
DV
2969 I915_WRITE(FDI_RX_MISC(pipe),
2970 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2971
5eddb70b
CW
2972 reg = FDI_RX_CTL(pipe);
2973 temp = I915_READ(reg);
8db9d77b
ZW
2974 if (HAS_PCH_CPT(dev)) {
2975 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2976 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2977 } else {
2978 temp &= ~FDI_LINK_TRAIN_NONE;
2979 temp |= FDI_LINK_TRAIN_PATTERN_1;
2980 }
5eddb70b
CW
2981 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2982
2983 POSTING_READ(reg);
8db9d77b
ZW
2984 udelay(150);
2985
0206e353 2986 for (i = 0; i < 4; i++) {
5eddb70b
CW
2987 reg = FDI_TX_CTL(pipe);
2988 temp = I915_READ(reg);
8db9d77b
ZW
2989 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2990 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2991 I915_WRITE(reg, temp);
2992
2993 POSTING_READ(reg);
8db9d77b
ZW
2994 udelay(500);
2995
fa37d39e
SP
2996 for (retry = 0; retry < 5; retry++) {
2997 reg = FDI_RX_IIR(pipe);
2998 temp = I915_READ(reg);
2999 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3000 if (temp & FDI_RX_BIT_LOCK) {
3001 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3002 DRM_DEBUG_KMS("FDI train 1 done.\n");
3003 break;
3004 }
3005 udelay(50);
8db9d77b 3006 }
fa37d39e
SP
3007 if (retry < 5)
3008 break;
8db9d77b
ZW
3009 }
3010 if (i == 4)
5eddb70b 3011 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3012
3013 /* Train 2 */
5eddb70b
CW
3014 reg = FDI_TX_CTL(pipe);
3015 temp = I915_READ(reg);
8db9d77b
ZW
3016 temp &= ~FDI_LINK_TRAIN_NONE;
3017 temp |= FDI_LINK_TRAIN_PATTERN_2;
3018 if (IS_GEN6(dev)) {
3019 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3020 /* SNB-B */
3021 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3022 }
5eddb70b 3023 I915_WRITE(reg, temp);
8db9d77b 3024
5eddb70b
CW
3025 reg = FDI_RX_CTL(pipe);
3026 temp = I915_READ(reg);
8db9d77b
ZW
3027 if (HAS_PCH_CPT(dev)) {
3028 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3029 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3030 } else {
3031 temp &= ~FDI_LINK_TRAIN_NONE;
3032 temp |= FDI_LINK_TRAIN_PATTERN_2;
3033 }
5eddb70b
CW
3034 I915_WRITE(reg, temp);
3035
3036 POSTING_READ(reg);
8db9d77b
ZW
3037 udelay(150);
3038
0206e353 3039 for (i = 0; i < 4; i++) {
5eddb70b
CW
3040 reg = FDI_TX_CTL(pipe);
3041 temp = I915_READ(reg);
8db9d77b
ZW
3042 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3043 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3044 I915_WRITE(reg, temp);
3045
3046 POSTING_READ(reg);
8db9d77b
ZW
3047 udelay(500);
3048
fa37d39e
SP
3049 for (retry = 0; retry < 5; retry++) {
3050 reg = FDI_RX_IIR(pipe);
3051 temp = I915_READ(reg);
3052 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3053 if (temp & FDI_RX_SYMBOL_LOCK) {
3054 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3055 DRM_DEBUG_KMS("FDI train 2 done.\n");
3056 break;
3057 }
3058 udelay(50);
8db9d77b 3059 }
fa37d39e
SP
3060 if (retry < 5)
3061 break;
8db9d77b
ZW
3062 }
3063 if (i == 4)
5eddb70b 3064 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3065
3066 DRM_DEBUG_KMS("FDI train done.\n");
3067}
3068
357555c0
JB
3069/* Manual link training for Ivy Bridge A0 parts */
3070static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3071{
3072 struct drm_device *dev = crtc->dev;
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3075 int pipe = intel_crtc->pipe;
139ccd3f 3076 u32 reg, temp, i, j;
357555c0
JB
3077
3078 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3079 for train result */
3080 reg = FDI_RX_IMR(pipe);
3081 temp = I915_READ(reg);
3082 temp &= ~FDI_RX_SYMBOL_LOCK;
3083 temp &= ~FDI_RX_BIT_LOCK;
3084 I915_WRITE(reg, temp);
3085
3086 POSTING_READ(reg);
3087 udelay(150);
3088
01a415fd
DV
3089 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3090 I915_READ(FDI_RX_IIR(pipe)));
3091
139ccd3f
JB
3092 /* Try each vswing and preemphasis setting twice before moving on */
3093 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3094 /* disable first in case we need to retry */
3095 reg = FDI_TX_CTL(pipe);
3096 temp = I915_READ(reg);
3097 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3098 temp &= ~FDI_TX_ENABLE;
3099 I915_WRITE(reg, temp);
357555c0 3100
139ccd3f
JB
3101 reg = FDI_RX_CTL(pipe);
3102 temp = I915_READ(reg);
3103 temp &= ~FDI_LINK_TRAIN_AUTO;
3104 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3105 temp &= ~FDI_RX_ENABLE;
3106 I915_WRITE(reg, temp);
357555c0 3107
139ccd3f 3108 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3109 reg = FDI_TX_CTL(pipe);
3110 temp = I915_READ(reg);
139ccd3f
JB
3111 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3112 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3113 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3114 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3115 temp |= snb_b_fdi_train_param[j/2];
3116 temp |= FDI_COMPOSITE_SYNC;
3117 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3118
139ccd3f
JB
3119 I915_WRITE(FDI_RX_MISC(pipe),
3120 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3121
139ccd3f 3122 reg = FDI_RX_CTL(pipe);
357555c0 3123 temp = I915_READ(reg);
139ccd3f
JB
3124 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3125 temp |= FDI_COMPOSITE_SYNC;
3126 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3127
139ccd3f
JB
3128 POSTING_READ(reg);
3129 udelay(1); /* should be 0.5us */
357555c0 3130
139ccd3f
JB
3131 for (i = 0; i < 4; i++) {
3132 reg = FDI_RX_IIR(pipe);
3133 temp = I915_READ(reg);
3134 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3135
139ccd3f
JB
3136 if (temp & FDI_RX_BIT_LOCK ||
3137 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3138 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3139 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3140 i);
3141 break;
3142 }
3143 udelay(1); /* should be 0.5us */
3144 }
3145 if (i == 4) {
3146 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3147 continue;
3148 }
357555c0 3149
139ccd3f 3150 /* Train 2 */
357555c0
JB
3151 reg = FDI_TX_CTL(pipe);
3152 temp = I915_READ(reg);
139ccd3f
JB
3153 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3154 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3155 I915_WRITE(reg, temp);
3156
3157 reg = FDI_RX_CTL(pipe);
3158 temp = I915_READ(reg);
3159 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3160 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3161 I915_WRITE(reg, temp);
3162
3163 POSTING_READ(reg);
139ccd3f 3164 udelay(2); /* should be 1.5us */
357555c0 3165
139ccd3f
JB
3166 for (i = 0; i < 4; i++) {
3167 reg = FDI_RX_IIR(pipe);
3168 temp = I915_READ(reg);
3169 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3170
139ccd3f
JB
3171 if (temp & FDI_RX_SYMBOL_LOCK ||
3172 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3173 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3174 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3175 i);
3176 goto train_done;
3177 }
3178 udelay(2); /* should be 1.5us */
357555c0 3179 }
139ccd3f
JB
3180 if (i == 4)
3181 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3182 }
357555c0 3183
139ccd3f 3184train_done:
357555c0
JB
3185 DRM_DEBUG_KMS("FDI train done.\n");
3186}
3187
88cefb6c 3188static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3189{
88cefb6c 3190 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3191 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3192 int pipe = intel_crtc->pipe;
5eddb70b 3193 u32 reg, temp;
79e53945 3194
c64e311e 3195
c98e9dcf 3196 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3197 reg = FDI_RX_CTL(pipe);
3198 temp = I915_READ(reg);
627eb5a3
DV
3199 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3200 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3201 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3202 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3203
3204 POSTING_READ(reg);
c98e9dcf
JB
3205 udelay(200);
3206
3207 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3208 temp = I915_READ(reg);
3209 I915_WRITE(reg, temp | FDI_PCDCLK);
3210
3211 POSTING_READ(reg);
c98e9dcf
JB
3212 udelay(200);
3213
20749730
PZ
3214 /* Enable CPU FDI TX PLL, always on for Ironlake */
3215 reg = FDI_TX_CTL(pipe);
3216 temp = I915_READ(reg);
3217 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3218 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3219
20749730
PZ
3220 POSTING_READ(reg);
3221 udelay(100);
6be4a607 3222 }
0e23b99d
JB
3223}
3224
88cefb6c
DV
3225static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3226{
3227 struct drm_device *dev = intel_crtc->base.dev;
3228 struct drm_i915_private *dev_priv = dev->dev_private;
3229 int pipe = intel_crtc->pipe;
3230 u32 reg, temp;
3231
3232 /* Switch from PCDclk to Rawclk */
3233 reg = FDI_RX_CTL(pipe);
3234 temp = I915_READ(reg);
3235 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3236
3237 /* Disable CPU FDI TX PLL */
3238 reg = FDI_TX_CTL(pipe);
3239 temp = I915_READ(reg);
3240 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3241
3242 POSTING_READ(reg);
3243 udelay(100);
3244
3245 reg = FDI_RX_CTL(pipe);
3246 temp = I915_READ(reg);
3247 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3248
3249 /* Wait for the clocks to turn off. */
3250 POSTING_READ(reg);
3251 udelay(100);
3252}
3253
0fc932b8
JB
3254static void ironlake_fdi_disable(struct drm_crtc *crtc)
3255{
3256 struct drm_device *dev = crtc->dev;
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3259 int pipe = intel_crtc->pipe;
3260 u32 reg, temp;
3261
3262 /* disable CPU FDI tx and PCH FDI rx */
3263 reg = FDI_TX_CTL(pipe);
3264 temp = I915_READ(reg);
3265 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3266 POSTING_READ(reg);
3267
3268 reg = FDI_RX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 temp &= ~(0x7 << 16);
dfd07d72 3271 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3272 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3273
3274 POSTING_READ(reg);
3275 udelay(100);
3276
3277 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3278 if (HAS_PCH_IBX(dev))
6f06ce18 3279 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3280
3281 /* still set train pattern 1 */
3282 reg = FDI_TX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 temp &= ~FDI_LINK_TRAIN_NONE;
3285 temp |= FDI_LINK_TRAIN_PATTERN_1;
3286 I915_WRITE(reg, temp);
3287
3288 reg = FDI_RX_CTL(pipe);
3289 temp = I915_READ(reg);
3290 if (HAS_PCH_CPT(dev)) {
3291 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3292 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3293 } else {
3294 temp &= ~FDI_LINK_TRAIN_NONE;
3295 temp |= FDI_LINK_TRAIN_PATTERN_1;
3296 }
3297 /* BPC in FDI rx is consistent with that in PIPECONF */
3298 temp &= ~(0x07 << 16);
dfd07d72 3299 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3300 I915_WRITE(reg, temp);
3301
3302 POSTING_READ(reg);
3303 udelay(100);
3304}
3305
5dce5b93
CW
3306bool intel_has_pending_fb_unpin(struct drm_device *dev)
3307{
3308 struct intel_crtc *crtc;
3309
3310 /* Note that we don't need to be called with mode_config.lock here
3311 * as our list of CRTC objects is static for the lifetime of the
3312 * device and so cannot disappear as we iterate. Similarly, we can
3313 * happily treat the predicates as racy, atomic checks as userspace
3314 * cannot claim and pin a new fb without at least acquring the
3315 * struct_mutex and so serialising with us.
3316 */
d3fcc808 3317 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3318 if (atomic_read(&crtc->unpin_work_count) == 0)
3319 continue;
3320
3321 if (crtc->unpin_work)
3322 intel_wait_for_vblank(dev, crtc->pipe);
3323
3324 return true;
3325 }
3326
3327 return false;
3328}
3329
46a55d30 3330void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3331{
0f91128d 3332 struct drm_device *dev = crtc->dev;
5bb61643 3333 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3334
f4510a27 3335 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3336 return;
3337
2c10d571
DV
3338 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3339
eed6d67d
DV
3340 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3341 !intel_crtc_has_pending_flip(crtc),
3342 60*HZ) == 0);
5bb61643 3343
0f91128d 3344 mutex_lock(&dev->struct_mutex);
f4510a27 3345 intel_finish_fb(crtc->primary->fb);
0f91128d 3346 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3347}
3348
e615efe4
ED
3349/* Program iCLKIP clock to the desired frequency */
3350static void lpt_program_iclkip(struct drm_crtc *crtc)
3351{
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3354 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3355 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3356 u32 temp;
3357
09153000
DV
3358 mutex_lock(&dev_priv->dpio_lock);
3359
e615efe4
ED
3360 /* It is necessary to ungate the pixclk gate prior to programming
3361 * the divisors, and gate it back when it is done.
3362 */
3363 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3364
3365 /* Disable SSCCTL */
3366 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3367 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3368 SBI_SSCCTL_DISABLE,
3369 SBI_ICLK);
e615efe4
ED
3370
3371 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3372 if (clock == 20000) {
e615efe4
ED
3373 auxdiv = 1;
3374 divsel = 0x41;
3375 phaseinc = 0x20;
3376 } else {
3377 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3378 * but the adjusted_mode->crtc_clock in in KHz. To get the
3379 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3380 * convert the virtual clock precision to KHz here for higher
3381 * precision.
3382 */
3383 u32 iclk_virtual_root_freq = 172800 * 1000;
3384 u32 iclk_pi_range = 64;
3385 u32 desired_divisor, msb_divisor_value, pi_value;
3386
12d7ceed 3387 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3388 msb_divisor_value = desired_divisor / iclk_pi_range;
3389 pi_value = desired_divisor % iclk_pi_range;
3390
3391 auxdiv = 0;
3392 divsel = msb_divisor_value - 2;
3393 phaseinc = pi_value;
3394 }
3395
3396 /* This should not happen with any sane values */
3397 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3398 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3399 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3400 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3401
3402 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3403 clock,
e615efe4
ED
3404 auxdiv,
3405 divsel,
3406 phasedir,
3407 phaseinc);
3408
3409 /* Program SSCDIVINTPHASE6 */
988d6ee8 3410 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3411 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3412 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3413 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3414 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3415 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3416 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3417 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3418
3419 /* Program SSCAUXDIV */
988d6ee8 3420 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3421 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3422 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3423 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3424
3425 /* Enable modulator and associated divider */
988d6ee8 3426 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3427 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3428 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3429
3430 /* Wait for initialization time */
3431 udelay(24);
3432
3433 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3434
3435 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3436}
3437
275f01b2
DV
3438static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3439 enum pipe pch_transcoder)
3440{
3441 struct drm_device *dev = crtc->base.dev;
3442 struct drm_i915_private *dev_priv = dev->dev_private;
3443 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3444
3445 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3446 I915_READ(HTOTAL(cpu_transcoder)));
3447 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3448 I915_READ(HBLANK(cpu_transcoder)));
3449 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3450 I915_READ(HSYNC(cpu_transcoder)));
3451
3452 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3453 I915_READ(VTOTAL(cpu_transcoder)));
3454 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3455 I915_READ(VBLANK(cpu_transcoder)));
3456 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3457 I915_READ(VSYNC(cpu_transcoder)));
3458 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3459 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3460}
3461
1fbc0d78
DV
3462static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3463{
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465 uint32_t temp;
3466
3467 temp = I915_READ(SOUTH_CHICKEN1);
3468 if (temp & FDI_BC_BIFURCATION_SELECT)
3469 return;
3470
3471 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3472 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3473
3474 temp |= FDI_BC_BIFURCATION_SELECT;
3475 DRM_DEBUG_KMS("enabling fdi C rx\n");
3476 I915_WRITE(SOUTH_CHICKEN1, temp);
3477 POSTING_READ(SOUTH_CHICKEN1);
3478}
3479
3480static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3481{
3482 struct drm_device *dev = intel_crtc->base.dev;
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484
3485 switch (intel_crtc->pipe) {
3486 case PIPE_A:
3487 break;
3488 case PIPE_B:
3489 if (intel_crtc->config.fdi_lanes > 2)
3490 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3491 else
3492 cpt_enable_fdi_bc_bifurcation(dev);
3493
3494 break;
3495 case PIPE_C:
3496 cpt_enable_fdi_bc_bifurcation(dev);
3497
3498 break;
3499 default:
3500 BUG();
3501 }
3502}
3503
f67a559d
JB
3504/*
3505 * Enable PCH resources required for PCH ports:
3506 * - PCH PLLs
3507 * - FDI training & RX/TX
3508 * - update transcoder timings
3509 * - DP transcoding bits
3510 * - transcoder
3511 */
3512static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3513{
3514 struct drm_device *dev = crtc->dev;
3515 struct drm_i915_private *dev_priv = dev->dev_private;
3516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517 int pipe = intel_crtc->pipe;
ee7b9f93 3518 u32 reg, temp;
2c07245f 3519
ab9412ba 3520 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3521
1fbc0d78
DV
3522 if (IS_IVYBRIDGE(dev))
3523 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3524
cd986abb
DV
3525 /* Write the TU size bits before fdi link training, so that error
3526 * detection works. */
3527 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3528 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3529
c98e9dcf 3530 /* For PCH output, training FDI link */
674cf967 3531 dev_priv->display.fdi_link_train(crtc);
2c07245f 3532
3ad8a208
DV
3533 /* We need to program the right clock selection before writing the pixel
3534 * mutliplier into the DPLL. */
303b81e0 3535 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3536 u32 sel;
4b645f14 3537
c98e9dcf 3538 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3539 temp |= TRANS_DPLL_ENABLE(pipe);
3540 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3541 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3542 temp |= sel;
3543 else
3544 temp &= ~sel;
c98e9dcf 3545 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3546 }
5eddb70b 3547
3ad8a208
DV
3548 /* XXX: pch pll's can be enabled any time before we enable the PCH
3549 * transcoder, and we actually should do this to not upset any PCH
3550 * transcoder that already use the clock when we share it.
3551 *
3552 * Note that enable_shared_dpll tries to do the right thing, but
3553 * get_shared_dpll unconditionally resets the pll - we need that to have
3554 * the right LVDS enable sequence. */
85b3894f 3555 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3556
d9b6cb56
JB
3557 /* set transcoder timing, panel must allow it */
3558 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3559 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3560
303b81e0 3561 intel_fdi_normal_train(crtc);
5e84e1a4 3562
c98e9dcf
JB
3563 /* For PCH DP, enable TRANS_DP_CTL */
3564 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3565 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3566 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3567 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3568 reg = TRANS_DP_CTL(pipe);
3569 temp = I915_READ(reg);
3570 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3571 TRANS_DP_SYNC_MASK |
3572 TRANS_DP_BPC_MASK);
5eddb70b
CW
3573 temp |= (TRANS_DP_OUTPUT_ENABLE |
3574 TRANS_DP_ENH_FRAMING);
9325c9f0 3575 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3576
3577 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3578 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3579 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3580 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3581
3582 switch (intel_trans_dp_port_sel(crtc)) {
3583 case PCH_DP_B:
5eddb70b 3584 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3585 break;
3586 case PCH_DP_C:
5eddb70b 3587 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3588 break;
3589 case PCH_DP_D:
5eddb70b 3590 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3591 break;
3592 default:
e95d41e1 3593 BUG();
32f9d658 3594 }
2c07245f 3595
5eddb70b 3596 I915_WRITE(reg, temp);
6be4a607 3597 }
b52eb4dc 3598
b8a4f404 3599 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3600}
3601
1507e5bd
PZ
3602static void lpt_pch_enable(struct drm_crtc *crtc)
3603{
3604 struct drm_device *dev = crtc->dev;
3605 struct drm_i915_private *dev_priv = dev->dev_private;
3606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3607 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3608
ab9412ba 3609 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3610
8c52b5e8 3611 lpt_program_iclkip(crtc);
1507e5bd 3612
0540e488 3613 /* Set transcoder timing. */
275f01b2 3614 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3615
937bb610 3616 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3617}
3618
716c2e55 3619void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3620{
e2b78267 3621 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3622
3623 if (pll == NULL)
3624 return;
3625
3626 if (pll->refcount == 0) {
46edb027 3627 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3628 return;
3629 }
3630
f4a091c7
DV
3631 if (--pll->refcount == 0) {
3632 WARN_ON(pll->on);
3633 WARN_ON(pll->active);
3634 }
3635
a43f6e0f 3636 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3637}
3638
716c2e55 3639struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3640{
e2b78267
DV
3641 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3642 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3643 enum intel_dpll_id i;
ee7b9f93 3644
ee7b9f93 3645 if (pll) {
46edb027
DV
3646 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3647 crtc->base.base.id, pll->name);
e2b78267 3648 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3649 }
3650
98b6bd99
DV
3651 if (HAS_PCH_IBX(dev_priv->dev)) {
3652 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3653 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3654 pll = &dev_priv->shared_dplls[i];
98b6bd99 3655
46edb027
DV
3656 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3657 crtc->base.base.id, pll->name);
98b6bd99 3658
f2a69f44
DV
3659 WARN_ON(pll->refcount);
3660
98b6bd99
DV
3661 goto found;
3662 }
3663
e72f9fbf
DV
3664 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3665 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3666
3667 /* Only want to check enabled timings first */
3668 if (pll->refcount == 0)
3669 continue;
3670
b89a1d39
DV
3671 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3672 sizeof(pll->hw_state)) == 0) {
46edb027 3673 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3674 crtc->base.base.id,
46edb027 3675 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3676
3677 goto found;
3678 }
3679 }
3680
3681 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3682 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3683 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3684 if (pll->refcount == 0) {
46edb027
DV
3685 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3686 crtc->base.base.id, pll->name);
ee7b9f93
JB
3687 goto found;
3688 }
3689 }
3690
3691 return NULL;
3692
3693found:
f2a69f44
DV
3694 if (pll->refcount == 0)
3695 pll->hw_state = crtc->config.dpll_hw_state;
3696
a43f6e0f 3697 crtc->config.shared_dpll = i;
46edb027
DV
3698 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3699 pipe_name(crtc->pipe));
ee7b9f93 3700
cdbd2316 3701 pll->refcount++;
e04c7350 3702
ee7b9f93
JB
3703 return pll;
3704}
3705
a1520318 3706static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3707{
3708 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3709 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3710 u32 temp;
3711
3712 temp = I915_READ(dslreg);
3713 udelay(500);
3714 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3715 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3716 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3717 }
3718}
3719
b074cec8
JB
3720static void ironlake_pfit_enable(struct intel_crtc *crtc)
3721{
3722 struct drm_device *dev = crtc->base.dev;
3723 struct drm_i915_private *dev_priv = dev->dev_private;
3724 int pipe = crtc->pipe;
3725
fd4daa9c 3726 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3727 /* Force use of hard-coded filter coefficients
3728 * as some pre-programmed values are broken,
3729 * e.g. x201.
3730 */
3731 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3732 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3733 PF_PIPE_SEL_IVB(pipe));
3734 else
3735 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3736 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3737 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3738 }
3739}
3740
bb53d4ae
VS
3741static void intel_enable_planes(struct drm_crtc *crtc)
3742{
3743 struct drm_device *dev = crtc->dev;
3744 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3745 struct drm_plane *plane;
bb53d4ae
VS
3746 struct intel_plane *intel_plane;
3747
af2b653b
MR
3748 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3749 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3750 if (intel_plane->pipe == pipe)
3751 intel_plane_restore(&intel_plane->base);
af2b653b 3752 }
bb53d4ae
VS
3753}
3754
3755static void intel_disable_planes(struct drm_crtc *crtc)
3756{
3757 struct drm_device *dev = crtc->dev;
3758 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3759 struct drm_plane *plane;
bb53d4ae
VS
3760 struct intel_plane *intel_plane;
3761
af2b653b
MR
3762 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3763 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3764 if (intel_plane->pipe == pipe)
3765 intel_plane_disable(&intel_plane->base);
af2b653b 3766 }
bb53d4ae
VS
3767}
3768
20bc8673 3769void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3770{
cea165c3
VS
3771 struct drm_device *dev = crtc->base.dev;
3772 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3773
3774 if (!crtc->config.ips_enabled)
3775 return;
3776
cea165c3
VS
3777 /* We can only enable IPS after we enable a plane and wait for a vblank */
3778 intel_wait_for_vblank(dev, crtc->pipe);
3779
d77e4531 3780 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3781 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3782 mutex_lock(&dev_priv->rps.hw_lock);
3783 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3784 mutex_unlock(&dev_priv->rps.hw_lock);
3785 /* Quoting Art Runyan: "its not safe to expect any particular
3786 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3787 * mailbox." Moreover, the mailbox may return a bogus state,
3788 * so we need to just enable it and continue on.
2a114cc1
BW
3789 */
3790 } else {
3791 I915_WRITE(IPS_CTL, IPS_ENABLE);
3792 /* The bit only becomes 1 in the next vblank, so this wait here
3793 * is essentially intel_wait_for_vblank. If we don't have this
3794 * and don't wait for vblanks until the end of crtc_enable, then
3795 * the HW state readout code will complain that the expected
3796 * IPS_CTL value is not the one we read. */
3797 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3798 DRM_ERROR("Timed out waiting for IPS enable\n");
3799 }
d77e4531
PZ
3800}
3801
20bc8673 3802void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3803{
3804 struct drm_device *dev = crtc->base.dev;
3805 struct drm_i915_private *dev_priv = dev->dev_private;
3806
3807 if (!crtc->config.ips_enabled)
3808 return;
3809
3810 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3811 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3812 mutex_lock(&dev_priv->rps.hw_lock);
3813 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3814 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3815 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3816 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3817 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3818 } else {
2a114cc1 3819 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3820 POSTING_READ(IPS_CTL);
3821 }
d77e4531
PZ
3822
3823 /* We need to wait for a vblank before we can disable the plane. */
3824 intel_wait_for_vblank(dev, crtc->pipe);
3825}
3826
3827/** Loads the palette/gamma unit for the CRTC with the prepared values */
3828static void intel_crtc_load_lut(struct drm_crtc *crtc)
3829{
3830 struct drm_device *dev = crtc->dev;
3831 struct drm_i915_private *dev_priv = dev->dev_private;
3832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3833 enum pipe pipe = intel_crtc->pipe;
3834 int palreg = PALETTE(pipe);
3835 int i;
3836 bool reenable_ips = false;
3837
3838 /* The clocks have to be on to load the palette. */
3839 if (!crtc->enabled || !intel_crtc->active)
3840 return;
3841
3842 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3843 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3844 assert_dsi_pll_enabled(dev_priv);
3845 else
3846 assert_pll_enabled(dev_priv, pipe);
3847 }
3848
3849 /* use legacy palette for Ironlake */
3850 if (HAS_PCH_SPLIT(dev))
3851 palreg = LGC_PALETTE(pipe);
3852
3853 /* Workaround : Do not read or write the pipe palette/gamma data while
3854 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3855 */
41e6fc4c 3856 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3857 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3858 GAMMA_MODE_MODE_SPLIT)) {
3859 hsw_disable_ips(intel_crtc);
3860 reenable_ips = true;
3861 }
3862
3863 for (i = 0; i < 256; i++) {
3864 I915_WRITE(palreg + 4 * i,
3865 (intel_crtc->lut_r[i] << 16) |
3866 (intel_crtc->lut_g[i] << 8) |
3867 intel_crtc->lut_b[i]);
3868 }
3869
3870 if (reenable_ips)
3871 hsw_enable_ips(intel_crtc);
3872}
3873
d3eedb1a
VS
3874static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3875{
3876 if (!enable && intel_crtc->overlay) {
3877 struct drm_device *dev = intel_crtc->base.dev;
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879
3880 mutex_lock(&dev->struct_mutex);
3881 dev_priv->mm.interruptible = false;
3882 (void) intel_overlay_switch_off(intel_crtc->overlay);
3883 dev_priv->mm.interruptible = true;
3884 mutex_unlock(&dev->struct_mutex);
3885 }
3886
3887 /* Let userspace switch the overlay on again. In most cases userspace
3888 * has to recompute where to put it anyway.
3889 */
3890}
3891
d3eedb1a 3892static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3893{
3894 struct drm_device *dev = crtc->dev;
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3897 int pipe = intel_crtc->pipe;
3898 int plane = intel_crtc->plane;
3899
f98551ae
VS
3900 drm_vblank_on(dev, pipe);
3901
a5c4d7bc
VS
3902 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3903 intel_enable_planes(crtc);
3904 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3905 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3906
3907 hsw_enable_ips(intel_crtc);
3908
3909 mutex_lock(&dev->struct_mutex);
3910 intel_update_fbc(dev);
3911 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3912
3913 /*
3914 * FIXME: Once we grow proper nuclear flip support out of this we need
3915 * to compute the mask of flip planes precisely. For the time being
3916 * consider this a flip from a NULL plane.
3917 */
3918 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3919}
3920
d3eedb1a 3921static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3922{
3923 struct drm_device *dev = crtc->dev;
3924 struct drm_i915_private *dev_priv = dev->dev_private;
3925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3926 int pipe = intel_crtc->pipe;
3927 int plane = intel_crtc->plane;
3928
3929 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3930
3931 if (dev_priv->fbc.plane == plane)
3932 intel_disable_fbc(dev);
3933
3934 hsw_disable_ips(intel_crtc);
3935
d3eedb1a 3936 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3937 intel_crtc_update_cursor(crtc, false);
3938 intel_disable_planes(crtc);
3939 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3940
f99d7069
DV
3941 /*
3942 * FIXME: Once we grow proper nuclear flip support out of this we need
3943 * to compute the mask of flip planes precisely. For the time being
3944 * consider this a flip to a NULL plane.
3945 */
3946 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3947
f98551ae 3948 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3949}
3950
f67a559d
JB
3951static void ironlake_crtc_enable(struct drm_crtc *crtc)
3952{
3953 struct drm_device *dev = crtc->dev;
3954 struct drm_i915_private *dev_priv = dev->dev_private;
3955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3956 struct intel_encoder *encoder;
f67a559d 3957 int pipe = intel_crtc->pipe;
29407aab 3958 enum plane plane = intel_crtc->plane;
f67a559d 3959
08a48469
DV
3960 WARN_ON(!crtc->enabled);
3961
f67a559d
JB
3962 if (intel_crtc->active)
3963 return;
3964
b14b1055
DV
3965 if (intel_crtc->config.has_pch_encoder)
3966 intel_prepare_shared_dpll(intel_crtc);
3967
29407aab
DV
3968 if (intel_crtc->config.has_dp_encoder)
3969 intel_dp_set_m_n(intel_crtc);
3970
3971 intel_set_pipe_timings(intel_crtc);
3972
3973 if (intel_crtc->config.has_pch_encoder) {
3974 intel_cpu_transcoder_set_m_n(intel_crtc,
3975 &intel_crtc->config.fdi_m_n);
3976 }
3977
3978 ironlake_set_pipeconf(crtc);
3979
3980 /* Set up the display plane register */
3981 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3982 POSTING_READ(DSPCNTR(plane));
3983
3984 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3985 crtc->x, crtc->y);
3986
f67a559d 3987 intel_crtc->active = true;
8664281b
PZ
3988
3989 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3990 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3991
f6736a1a 3992 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3993 if (encoder->pre_enable)
3994 encoder->pre_enable(encoder);
f67a559d 3995
5bfe2ac0 3996 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
3997 /* Note: FDI PLL enabling _must_ be done before we enable the
3998 * cpu pipes, hence this is separate from all the other fdi/pch
3999 * enabling. */
88cefb6c 4000 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4001 } else {
4002 assert_fdi_tx_disabled(dev_priv, pipe);
4003 assert_fdi_rx_disabled(dev_priv, pipe);
4004 }
f67a559d 4005
b074cec8 4006 ironlake_pfit_enable(intel_crtc);
f67a559d 4007
9c54c0dd
JB
4008 /*
4009 * On ILK+ LUT must be loaded before the pipe is running but with
4010 * clocks enabled
4011 */
4012 intel_crtc_load_lut(crtc);
4013
f37fcc2a 4014 intel_update_watermarks(crtc);
e1fdc473 4015 intel_enable_pipe(intel_crtc);
f67a559d 4016
5bfe2ac0 4017 if (intel_crtc->config.has_pch_encoder)
f67a559d 4018 ironlake_pch_enable(crtc);
c98e9dcf 4019
fa5c73b1
DV
4020 for_each_encoder_on_crtc(dev, crtc, encoder)
4021 encoder->enable(encoder);
61b77ddd
DV
4022
4023 if (HAS_PCH_CPT(dev))
a1520318 4024 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4025
d3eedb1a 4026 intel_crtc_enable_planes(crtc);
6be4a607
JB
4027}
4028
42db64ef
PZ
4029/* IPS only exists on ULT machines and is tied to pipe A. */
4030static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4031{
f5adf94e 4032 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4033}
4034
e4916946
PZ
4035/*
4036 * This implements the workaround described in the "notes" section of the mode
4037 * set sequence documentation. When going from no pipes or single pipe to
4038 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4039 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4040 */
4041static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4042{
4043 struct drm_device *dev = crtc->base.dev;
4044 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4045
4046 /* We want to get the other_active_crtc only if there's only 1 other
4047 * active crtc. */
d3fcc808 4048 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4049 if (!crtc_it->active || crtc_it == crtc)
4050 continue;
4051
4052 if (other_active_crtc)
4053 return;
4054
4055 other_active_crtc = crtc_it;
4056 }
4057 if (!other_active_crtc)
4058 return;
4059
4060 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4061 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4062}
4063
4f771f10
PZ
4064static void haswell_crtc_enable(struct drm_crtc *crtc)
4065{
4066 struct drm_device *dev = crtc->dev;
4067 struct drm_i915_private *dev_priv = dev->dev_private;
4068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069 struct intel_encoder *encoder;
4070 int pipe = intel_crtc->pipe;
229fca97 4071 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4072
4073 WARN_ON(!crtc->enabled);
4074
4075 if (intel_crtc->active)
4076 return;
4077
df8ad70c
DV
4078 if (intel_crtc_to_shared_dpll(intel_crtc))
4079 intel_enable_shared_dpll(intel_crtc);
4080
229fca97
DV
4081 if (intel_crtc->config.has_dp_encoder)
4082 intel_dp_set_m_n(intel_crtc);
4083
4084 intel_set_pipe_timings(intel_crtc);
4085
4086 if (intel_crtc->config.has_pch_encoder) {
4087 intel_cpu_transcoder_set_m_n(intel_crtc,
4088 &intel_crtc->config.fdi_m_n);
4089 }
4090
4091 haswell_set_pipeconf(crtc);
4092
4093 intel_set_pipe_csc(crtc);
4094
4095 /* Set up the display plane register */
4096 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4097 POSTING_READ(DSPCNTR(plane));
4098
4099 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4100 crtc->x, crtc->y);
4101
4f771f10 4102 intel_crtc->active = true;
8664281b
PZ
4103
4104 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4105 for_each_encoder_on_crtc(dev, crtc, encoder)
4106 if (encoder->pre_enable)
4107 encoder->pre_enable(encoder);
4108
4fe9467d
ID
4109 if (intel_crtc->config.has_pch_encoder) {
4110 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4111 dev_priv->display.fdi_link_train(crtc);
4112 }
4113
1f544388 4114 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4115
b074cec8 4116 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4117
4118 /*
4119 * On ILK+ LUT must be loaded before the pipe is running but with
4120 * clocks enabled
4121 */
4122 intel_crtc_load_lut(crtc);
4123
1f544388 4124 intel_ddi_set_pipe_settings(crtc);
8228c251 4125 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4126
f37fcc2a 4127 intel_update_watermarks(crtc);
e1fdc473 4128 intel_enable_pipe(intel_crtc);
42db64ef 4129
5bfe2ac0 4130 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4131 lpt_pch_enable(crtc);
4f771f10 4132
8807e55b 4133 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4134 encoder->enable(encoder);
8807e55b
JN
4135 intel_opregion_notify_encoder(encoder, true);
4136 }
4f771f10 4137
e4916946
PZ
4138 /* If we change the relative order between pipe/planes enabling, we need
4139 * to change the workaround. */
4140 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4141 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4142}
4143
3f8dce3a
DV
4144static void ironlake_pfit_disable(struct intel_crtc *crtc)
4145{
4146 struct drm_device *dev = crtc->base.dev;
4147 struct drm_i915_private *dev_priv = dev->dev_private;
4148 int pipe = crtc->pipe;
4149
4150 /* To avoid upsetting the power well on haswell only disable the pfit if
4151 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4152 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4153 I915_WRITE(PF_CTL(pipe), 0);
4154 I915_WRITE(PF_WIN_POS(pipe), 0);
4155 I915_WRITE(PF_WIN_SZ(pipe), 0);
4156 }
4157}
4158
6be4a607
JB
4159static void ironlake_crtc_disable(struct drm_crtc *crtc)
4160{
4161 struct drm_device *dev = crtc->dev;
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4164 struct intel_encoder *encoder;
6be4a607 4165 int pipe = intel_crtc->pipe;
5eddb70b 4166 u32 reg, temp;
b52eb4dc 4167
f7abfe8b
CW
4168 if (!intel_crtc->active)
4169 return;
4170
d3eedb1a 4171 intel_crtc_disable_planes(crtc);
a5c4d7bc 4172
ea9d758d
DV
4173 for_each_encoder_on_crtc(dev, crtc, encoder)
4174 encoder->disable(encoder);
4175
d925c59a
DV
4176 if (intel_crtc->config.has_pch_encoder)
4177 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4178
b24e7179 4179 intel_disable_pipe(dev_priv, pipe);
32f9d658 4180
3f8dce3a 4181 ironlake_pfit_disable(intel_crtc);
2c07245f 4182
bf49ec8c
DV
4183 for_each_encoder_on_crtc(dev, crtc, encoder)
4184 if (encoder->post_disable)
4185 encoder->post_disable(encoder);
2c07245f 4186
d925c59a
DV
4187 if (intel_crtc->config.has_pch_encoder) {
4188 ironlake_fdi_disable(crtc);
913d8d11 4189
d925c59a
DV
4190 ironlake_disable_pch_transcoder(dev_priv, pipe);
4191 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4192
d925c59a
DV
4193 if (HAS_PCH_CPT(dev)) {
4194 /* disable TRANS_DP_CTL */
4195 reg = TRANS_DP_CTL(pipe);
4196 temp = I915_READ(reg);
4197 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4198 TRANS_DP_PORT_SEL_MASK);
4199 temp |= TRANS_DP_PORT_SEL_NONE;
4200 I915_WRITE(reg, temp);
4201
4202 /* disable DPLL_SEL */
4203 temp = I915_READ(PCH_DPLL_SEL);
11887397 4204 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4205 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4206 }
e3421a18 4207
d925c59a 4208 /* disable PCH DPLL */
e72f9fbf 4209 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4210
d925c59a
DV
4211 ironlake_fdi_pll_disable(intel_crtc);
4212 }
6b383a7f 4213
f7abfe8b 4214 intel_crtc->active = false;
46ba614c 4215 intel_update_watermarks(crtc);
d1ebd816
BW
4216
4217 mutex_lock(&dev->struct_mutex);
6b383a7f 4218 intel_update_fbc(dev);
d1ebd816 4219 mutex_unlock(&dev->struct_mutex);
6be4a607 4220}
1b3c7a47 4221
4f771f10 4222static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4223{
4f771f10
PZ
4224 struct drm_device *dev = crtc->dev;
4225 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4227 struct intel_encoder *encoder;
4228 int pipe = intel_crtc->pipe;
3b117c8f 4229 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4230
4f771f10
PZ
4231 if (!intel_crtc->active)
4232 return;
4233
d3eedb1a 4234 intel_crtc_disable_planes(crtc);
dda9a66a 4235
8807e55b
JN
4236 for_each_encoder_on_crtc(dev, crtc, encoder) {
4237 intel_opregion_notify_encoder(encoder, false);
4f771f10 4238 encoder->disable(encoder);
8807e55b 4239 }
4f771f10 4240
8664281b
PZ
4241 if (intel_crtc->config.has_pch_encoder)
4242 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4243 intel_disable_pipe(dev_priv, pipe);
4244
ad80a810 4245 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4246
3f8dce3a 4247 ironlake_pfit_disable(intel_crtc);
4f771f10 4248
1f544388 4249 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4250
88adfff1 4251 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4252 lpt_disable_pch_transcoder(dev_priv);
8664281b 4253 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4254 intel_ddi_fdi_disable(crtc);
83616634 4255 }
4f771f10 4256
97b040aa
ID
4257 for_each_encoder_on_crtc(dev, crtc, encoder)
4258 if (encoder->post_disable)
4259 encoder->post_disable(encoder);
4260
4f771f10 4261 intel_crtc->active = false;
46ba614c 4262 intel_update_watermarks(crtc);
4f771f10
PZ
4263
4264 mutex_lock(&dev->struct_mutex);
4265 intel_update_fbc(dev);
4266 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4267
4268 if (intel_crtc_to_shared_dpll(intel_crtc))
4269 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4270}
4271
ee7b9f93
JB
4272static void ironlake_crtc_off(struct drm_crtc *crtc)
4273{
4274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4275 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4276}
4277
6441ab5f 4278
2dd24552
JB
4279static void i9xx_pfit_enable(struct intel_crtc *crtc)
4280{
4281 struct drm_device *dev = crtc->base.dev;
4282 struct drm_i915_private *dev_priv = dev->dev_private;
4283 struct intel_crtc_config *pipe_config = &crtc->config;
4284
328d8e82 4285 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4286 return;
4287
2dd24552 4288 /*
c0b03411
DV
4289 * The panel fitter should only be adjusted whilst the pipe is disabled,
4290 * according to register description and PRM.
2dd24552 4291 */
c0b03411
DV
4292 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4293 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4294
b074cec8
JB
4295 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4296 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4297
4298 /* Border color in case we don't scale up to the full screen. Black by
4299 * default, change to something else for debugging. */
4300 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4301}
4302
77d22dca
ID
4303#define for_each_power_domain(domain, mask) \
4304 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4305 if ((1 << (domain)) & (mask))
4306
319be8ae
ID
4307enum intel_display_power_domain
4308intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4309{
4310 struct drm_device *dev = intel_encoder->base.dev;
4311 struct intel_digital_port *intel_dig_port;
4312
4313 switch (intel_encoder->type) {
4314 case INTEL_OUTPUT_UNKNOWN:
4315 /* Only DDI platforms should ever use this output type */
4316 WARN_ON_ONCE(!HAS_DDI(dev));
4317 case INTEL_OUTPUT_DISPLAYPORT:
4318 case INTEL_OUTPUT_HDMI:
4319 case INTEL_OUTPUT_EDP:
4320 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4321 switch (intel_dig_port->port) {
4322 case PORT_A:
4323 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4324 case PORT_B:
4325 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4326 case PORT_C:
4327 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4328 case PORT_D:
4329 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4330 default:
4331 WARN_ON_ONCE(1);
4332 return POWER_DOMAIN_PORT_OTHER;
4333 }
4334 case INTEL_OUTPUT_ANALOG:
4335 return POWER_DOMAIN_PORT_CRT;
4336 case INTEL_OUTPUT_DSI:
4337 return POWER_DOMAIN_PORT_DSI;
4338 default:
4339 return POWER_DOMAIN_PORT_OTHER;
4340 }
4341}
4342
4343static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4344{
319be8ae
ID
4345 struct drm_device *dev = crtc->dev;
4346 struct intel_encoder *intel_encoder;
4347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4348 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4349 unsigned long mask;
4350 enum transcoder transcoder;
4351
4352 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4353
4354 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4355 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4356 if (intel_crtc->config.pch_pfit.enabled ||
4357 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4358 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4359
319be8ae
ID
4360 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4361 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4362
77d22dca
ID
4363 return mask;
4364}
4365
4366void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4367 bool enable)
4368{
4369 if (dev_priv->power_domains.init_power_on == enable)
4370 return;
4371
4372 if (enable)
4373 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4374 else
4375 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4376
4377 dev_priv->power_domains.init_power_on = enable;
4378}
4379
4380static void modeset_update_crtc_power_domains(struct drm_device *dev)
4381{
4382 struct drm_i915_private *dev_priv = dev->dev_private;
4383 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4384 struct intel_crtc *crtc;
4385
4386 /*
4387 * First get all needed power domains, then put all unneeded, to avoid
4388 * any unnecessary toggling of the power wells.
4389 */
d3fcc808 4390 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4391 enum intel_display_power_domain domain;
4392
4393 if (!crtc->base.enabled)
4394 continue;
4395
319be8ae 4396 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4397
4398 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4399 intel_display_power_get(dev_priv, domain);
4400 }
4401
d3fcc808 4402 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4403 enum intel_display_power_domain domain;
4404
4405 for_each_power_domain(domain, crtc->enabled_power_domains)
4406 intel_display_power_put(dev_priv, domain);
4407
4408 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4409 }
4410
4411 intel_display_set_init_power(dev_priv, false);
4412}
4413
dfcab17e 4414/* returns HPLL frequency in kHz */
f8bf63fd 4415static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4416{
586f49dc 4417 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4418
586f49dc
JB
4419 /* Obtain SKU information */
4420 mutex_lock(&dev_priv->dpio_lock);
4421 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4422 CCK_FUSE_HPLL_FREQ_MASK;
4423 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4424
dfcab17e 4425 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4426}
4427
f8bf63fd
VS
4428static void vlv_update_cdclk(struct drm_device *dev)
4429{
4430 struct drm_i915_private *dev_priv = dev->dev_private;
4431
4432 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4433 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4434 dev_priv->vlv_cdclk_freq);
4435
4436 /*
4437 * Program the gmbus_freq based on the cdclk frequency.
4438 * BSpec erroneously claims we should aim for 4MHz, but
4439 * in fact 1MHz is the correct frequency.
4440 */
4441 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4442}
4443
30a970c6
JB
4444/* Adjust CDclk dividers to allow high res or save power if possible */
4445static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4446{
4447 struct drm_i915_private *dev_priv = dev->dev_private;
4448 u32 val, cmd;
4449
d197b7d3 4450 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4451
dfcab17e 4452 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4453 cmd = 2;
dfcab17e 4454 else if (cdclk == 266667)
30a970c6
JB
4455 cmd = 1;
4456 else
4457 cmd = 0;
4458
4459 mutex_lock(&dev_priv->rps.hw_lock);
4460 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4461 val &= ~DSPFREQGUAR_MASK;
4462 val |= (cmd << DSPFREQGUAR_SHIFT);
4463 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4464 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4465 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4466 50)) {
4467 DRM_ERROR("timed out waiting for CDclk change\n");
4468 }
4469 mutex_unlock(&dev_priv->rps.hw_lock);
4470
dfcab17e 4471 if (cdclk == 400000) {
30a970c6
JB
4472 u32 divider, vco;
4473
4474 vco = valleyview_get_vco(dev_priv);
dfcab17e 4475 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4476
4477 mutex_lock(&dev_priv->dpio_lock);
4478 /* adjust cdclk divider */
4479 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4480 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4481 val |= divider;
4482 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4483
4484 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4485 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4486 50))
4487 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4488 mutex_unlock(&dev_priv->dpio_lock);
4489 }
4490
4491 mutex_lock(&dev_priv->dpio_lock);
4492 /* adjust self-refresh exit latency value */
4493 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4494 val &= ~0x7f;
4495
4496 /*
4497 * For high bandwidth configs, we set a higher latency in the bunit
4498 * so that the core display fetch happens in time to avoid underruns.
4499 */
dfcab17e 4500 if (cdclk == 400000)
30a970c6
JB
4501 val |= 4500 / 250; /* 4.5 usec */
4502 else
4503 val |= 3000 / 250; /* 3.0 usec */
4504 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4505 mutex_unlock(&dev_priv->dpio_lock);
4506
f8bf63fd 4507 vlv_update_cdclk(dev);
30a970c6
JB
4508}
4509
30a970c6
JB
4510static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4511 int max_pixclk)
4512{
29dc7ef3
VS
4513 int vco = valleyview_get_vco(dev_priv);
4514 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4515
30a970c6
JB
4516 /*
4517 * Really only a few cases to deal with, as only 4 CDclks are supported:
4518 * 200MHz
4519 * 267MHz
29dc7ef3 4520 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4521 * 400MHz
4522 * So we check to see whether we're above 90% of the lower bin and
4523 * adjust if needed.
e37c67a1
VS
4524 *
4525 * We seem to get an unstable or solid color picture at 200MHz.
4526 * Not sure what's wrong. For now use 200MHz only when all pipes
4527 * are off.
30a970c6 4528 */
29dc7ef3 4529 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4530 return 400000;
4531 else if (max_pixclk > 266667*9/10)
29dc7ef3 4532 return freq_320;
e37c67a1 4533 else if (max_pixclk > 0)
dfcab17e 4534 return 266667;
e37c67a1
VS
4535 else
4536 return 200000;
30a970c6
JB
4537}
4538
2f2d7aa1
VS
4539/* compute the max pixel clock for new configuration */
4540static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4541{
4542 struct drm_device *dev = dev_priv->dev;
4543 struct intel_crtc *intel_crtc;
4544 int max_pixclk = 0;
4545
d3fcc808 4546 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4547 if (intel_crtc->new_enabled)
30a970c6 4548 max_pixclk = max(max_pixclk,
2f2d7aa1 4549 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4550 }
4551
4552 return max_pixclk;
4553}
4554
4555static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4556 unsigned *prepare_pipes)
30a970c6
JB
4557{
4558 struct drm_i915_private *dev_priv = dev->dev_private;
4559 struct intel_crtc *intel_crtc;
2f2d7aa1 4560 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4561
d60c4473
ID
4562 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4563 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4564 return;
4565
2f2d7aa1 4566 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4567 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4568 if (intel_crtc->base.enabled)
4569 *prepare_pipes |= (1 << intel_crtc->pipe);
4570}
4571
4572static void valleyview_modeset_global_resources(struct drm_device *dev)
4573{
4574 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4575 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4576 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4577
d60c4473 4578 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4579 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4580 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4581}
4582
89b667f8
JB
4583static void valleyview_crtc_enable(struct drm_crtc *crtc)
4584{
4585 struct drm_device *dev = crtc->dev;
5b18e57c 4586 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4588 struct intel_encoder *encoder;
4589 int pipe = intel_crtc->pipe;
5b18e57c 4590 int plane = intel_crtc->plane;
23538ef1 4591 bool is_dsi;
5b18e57c 4592 u32 dspcntr;
89b667f8
JB
4593
4594 WARN_ON(!crtc->enabled);
4595
4596 if (intel_crtc->active)
4597 return;
4598
8525a235
SK
4599 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4600
4601 if (!is_dsi && !IS_CHERRYVIEW(dev))
4602 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4603
5b18e57c
DV
4604 /* Set up the display plane register */
4605 dspcntr = DISPPLANE_GAMMA_ENABLE;
4606
4607 if (intel_crtc->config.has_dp_encoder)
4608 intel_dp_set_m_n(intel_crtc);
4609
4610 intel_set_pipe_timings(intel_crtc);
4611
4612 /* pipesrc and dspsize control the size that is scaled from,
4613 * which should always be the user's requested size.
4614 */
4615 I915_WRITE(DSPSIZE(plane),
4616 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4617 (intel_crtc->config.pipe_src_w - 1));
4618 I915_WRITE(DSPPOS(plane), 0);
4619
4620 i9xx_set_pipeconf(intel_crtc);
4621
4622 I915_WRITE(DSPCNTR(plane), dspcntr);
4623 POSTING_READ(DSPCNTR(plane));
4624
4625 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4626 crtc->x, crtc->y);
4627
89b667f8 4628 intel_crtc->active = true;
89b667f8 4629
4a3436e8
VS
4630 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4631
89b667f8
JB
4632 for_each_encoder_on_crtc(dev, crtc, encoder)
4633 if (encoder->pre_pll_enable)
4634 encoder->pre_pll_enable(encoder);
4635
9d556c99
CML
4636 if (!is_dsi) {
4637 if (IS_CHERRYVIEW(dev))
4638 chv_enable_pll(intel_crtc);
4639 else
4640 vlv_enable_pll(intel_crtc);
4641 }
89b667f8
JB
4642
4643 for_each_encoder_on_crtc(dev, crtc, encoder)
4644 if (encoder->pre_enable)
4645 encoder->pre_enable(encoder);
4646
2dd24552
JB
4647 i9xx_pfit_enable(intel_crtc);
4648
63cbb074
VS
4649 intel_crtc_load_lut(crtc);
4650
f37fcc2a 4651 intel_update_watermarks(crtc);
e1fdc473 4652 intel_enable_pipe(intel_crtc);
be6a6f8e 4653
5004945f
JN
4654 for_each_encoder_on_crtc(dev, crtc, encoder)
4655 encoder->enable(encoder);
9ab0460b
VS
4656
4657 intel_crtc_enable_planes(crtc);
d40d9187 4658
56b80e1f
VS
4659 /* Underruns don't raise interrupts, so check manually. */
4660 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4661}
4662
f13c2ef3
DV
4663static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4664{
4665 struct drm_device *dev = crtc->base.dev;
4666 struct drm_i915_private *dev_priv = dev->dev_private;
4667
4668 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4669 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4670}
4671
0b8765c6 4672static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4673{
4674 struct drm_device *dev = crtc->dev;
5b18e57c 4675 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4677 struct intel_encoder *encoder;
79e53945 4678 int pipe = intel_crtc->pipe;
5b18e57c
DV
4679 int plane = intel_crtc->plane;
4680 u32 dspcntr;
79e53945 4681
08a48469
DV
4682 WARN_ON(!crtc->enabled);
4683
f7abfe8b
CW
4684 if (intel_crtc->active)
4685 return;
4686
f13c2ef3
DV
4687 i9xx_set_pll_dividers(intel_crtc);
4688
5b18e57c
DV
4689 /* Set up the display plane register */
4690 dspcntr = DISPPLANE_GAMMA_ENABLE;
4691
4692 if (pipe == 0)
4693 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4694 else
4695 dspcntr |= DISPPLANE_SEL_PIPE_B;
4696
4697 if (intel_crtc->config.has_dp_encoder)
4698 intel_dp_set_m_n(intel_crtc);
4699
4700 intel_set_pipe_timings(intel_crtc);
4701
4702 /* pipesrc and dspsize control the size that is scaled from,
4703 * which should always be the user's requested size.
4704 */
4705 I915_WRITE(DSPSIZE(plane),
4706 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4707 (intel_crtc->config.pipe_src_w - 1));
4708 I915_WRITE(DSPPOS(plane), 0);
4709
4710 i9xx_set_pipeconf(intel_crtc);
4711
4712 I915_WRITE(DSPCNTR(plane), dspcntr);
4713 POSTING_READ(DSPCNTR(plane));
4714
4715 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4716 crtc->x, crtc->y);
4717
f7abfe8b 4718 intel_crtc->active = true;
6b383a7f 4719
4a3436e8
VS
4720 if (!IS_GEN2(dev))
4721 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4722
9d6d9f19
MK
4723 for_each_encoder_on_crtc(dev, crtc, encoder)
4724 if (encoder->pre_enable)
4725 encoder->pre_enable(encoder);
4726
f6736a1a
DV
4727 i9xx_enable_pll(intel_crtc);
4728
2dd24552
JB
4729 i9xx_pfit_enable(intel_crtc);
4730
63cbb074
VS
4731 intel_crtc_load_lut(crtc);
4732
f37fcc2a 4733 intel_update_watermarks(crtc);
e1fdc473 4734 intel_enable_pipe(intel_crtc);
be6a6f8e 4735
fa5c73b1
DV
4736 for_each_encoder_on_crtc(dev, crtc, encoder)
4737 encoder->enable(encoder);
9ab0460b
VS
4738
4739 intel_crtc_enable_planes(crtc);
d40d9187 4740
4a3436e8
VS
4741 /*
4742 * Gen2 reports pipe underruns whenever all planes are disabled.
4743 * So don't enable underrun reporting before at least some planes
4744 * are enabled.
4745 * FIXME: Need to fix the logic to work when we turn off all planes
4746 * but leave the pipe running.
4747 */
4748 if (IS_GEN2(dev))
4749 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4750
56b80e1f
VS
4751 /* Underruns don't raise interrupts, so check manually. */
4752 i9xx_check_fifo_underruns(dev);
0b8765c6 4753}
79e53945 4754
87476d63
DV
4755static void i9xx_pfit_disable(struct intel_crtc *crtc)
4756{
4757 struct drm_device *dev = crtc->base.dev;
4758 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4759
328d8e82
DV
4760 if (!crtc->config.gmch_pfit.control)
4761 return;
87476d63 4762
328d8e82 4763 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4764
328d8e82
DV
4765 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4766 I915_READ(PFIT_CONTROL));
4767 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4768}
4769
0b8765c6
JB
4770static void i9xx_crtc_disable(struct drm_crtc *crtc)
4771{
4772 struct drm_device *dev = crtc->dev;
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4775 struct intel_encoder *encoder;
0b8765c6 4776 int pipe = intel_crtc->pipe;
ef9c3aee 4777
f7abfe8b
CW
4778 if (!intel_crtc->active)
4779 return;
4780
4a3436e8
VS
4781 /*
4782 * Gen2 reports pipe underruns whenever all planes are disabled.
4783 * So diasble underrun reporting before all the planes get disabled.
4784 * FIXME: Need to fix the logic to work when we turn off all planes
4785 * but leave the pipe running.
4786 */
4787 if (IS_GEN2(dev))
4788 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4789
564ed191
ID
4790 /*
4791 * Vblank time updates from the shadow to live plane control register
4792 * are blocked if the memory self-refresh mode is active at that
4793 * moment. So to make sure the plane gets truly disabled, disable
4794 * first the self-refresh mode. The self-refresh enable bit in turn
4795 * will be checked/applied by the HW only at the next frame start
4796 * event which is after the vblank start event, so we need to have a
4797 * wait-for-vblank between disabling the plane and the pipe.
4798 */
4799 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4800 intel_crtc_disable_planes(crtc);
4801
ea9d758d
DV
4802 for_each_encoder_on_crtc(dev, crtc, encoder)
4803 encoder->disable(encoder);
4804
6304cd91
VS
4805 /*
4806 * On gen2 planes are double buffered but the pipe isn't, so we must
4807 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4808 * We also need to wait on all gmch platforms because of the
4809 * self-refresh mode constraint explained above.
6304cd91 4810 */
564ed191 4811 intel_wait_for_vblank(dev, pipe);
6304cd91 4812
b24e7179 4813 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4814
87476d63 4815 i9xx_pfit_disable(intel_crtc);
24a1f16d 4816
89b667f8
JB
4817 for_each_encoder_on_crtc(dev, crtc, encoder)
4818 if (encoder->post_disable)
4819 encoder->post_disable(encoder);
4820
076ed3b2
CML
4821 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4822 if (IS_CHERRYVIEW(dev))
4823 chv_disable_pll(dev_priv, pipe);
4824 else if (IS_VALLEYVIEW(dev))
4825 vlv_disable_pll(dev_priv, pipe);
4826 else
4827 i9xx_disable_pll(dev_priv, pipe);
4828 }
0b8765c6 4829
4a3436e8
VS
4830 if (!IS_GEN2(dev))
4831 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4832
f7abfe8b 4833 intel_crtc->active = false;
46ba614c 4834 intel_update_watermarks(crtc);
f37fcc2a 4835
efa9624e 4836 mutex_lock(&dev->struct_mutex);
6b383a7f 4837 intel_update_fbc(dev);
efa9624e 4838 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4839}
4840
ee7b9f93
JB
4841static void i9xx_crtc_off(struct drm_crtc *crtc)
4842{
4843}
4844
976f8a20
DV
4845static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4846 bool enabled)
2c07245f
ZW
4847{
4848 struct drm_device *dev = crtc->dev;
4849 struct drm_i915_master_private *master_priv;
4850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4851 int pipe = intel_crtc->pipe;
79e53945
JB
4852
4853 if (!dev->primary->master)
4854 return;
4855
4856 master_priv = dev->primary->master->driver_priv;
4857 if (!master_priv->sarea_priv)
4858 return;
4859
79e53945
JB
4860 switch (pipe) {
4861 case 0:
4862 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4863 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4864 break;
4865 case 1:
4866 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4867 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4868 break;
4869 default:
9db4a9c7 4870 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4871 break;
4872 }
79e53945
JB
4873}
4874
976f8a20
DV
4875/**
4876 * Sets the power management mode of the pipe and plane.
4877 */
4878void intel_crtc_update_dpms(struct drm_crtc *crtc)
4879{
4880 struct drm_device *dev = crtc->dev;
4881 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4883 struct intel_encoder *intel_encoder;
0e572fe7
DV
4884 enum intel_display_power_domain domain;
4885 unsigned long domains;
976f8a20
DV
4886 bool enable = false;
4887
4888 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4889 enable |= intel_encoder->connectors_active;
4890
0e572fe7
DV
4891 if (enable) {
4892 if (!intel_crtc->active) {
4893 /*
4894 * FIXME: DDI plls and relevant code isn't converted
4895 * yet, so do runtime PM for DPMS only for all other
4896 * platforms for now.
4897 */
4898 if (!HAS_DDI(dev)) {
4899 domains = get_crtc_power_domains(crtc);
4900 for_each_power_domain(domain, domains)
4901 intel_display_power_get(dev_priv, domain);
4902 intel_crtc->enabled_power_domains = domains;
4903 }
4904
4905 dev_priv->display.crtc_enable(crtc);
4906 }
4907 } else {
4908 if (intel_crtc->active) {
4909 dev_priv->display.crtc_disable(crtc);
4910
4911 if (!HAS_DDI(dev)) {
4912 domains = intel_crtc->enabled_power_domains;
4913 for_each_power_domain(domain, domains)
4914 intel_display_power_put(dev_priv, domain);
4915 intel_crtc->enabled_power_domains = 0;
4916 }
4917 }
4918 }
976f8a20
DV
4919
4920 intel_crtc_update_sarea(crtc, enable);
4921}
4922
cdd59983
CW
4923static void intel_crtc_disable(struct drm_crtc *crtc)
4924{
cdd59983 4925 struct drm_device *dev = crtc->dev;
976f8a20 4926 struct drm_connector *connector;
ee7b9f93 4927 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4928 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4929 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4930
976f8a20
DV
4931 /* crtc should still be enabled when we disable it. */
4932 WARN_ON(!crtc->enabled);
4933
4934 dev_priv->display.crtc_disable(crtc);
4935 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4936 dev_priv->display.off(crtc);
4937
931872fc 4938 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4939 assert_cursor_disabled(dev_priv, pipe);
4940 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4941
f4510a27 4942 if (crtc->primary->fb) {
cdd59983 4943 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4944 intel_unpin_fb_obj(old_obj);
4945 i915_gem_track_fb(old_obj, NULL,
4946 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4947 mutex_unlock(&dev->struct_mutex);
f4510a27 4948 crtc->primary->fb = NULL;
976f8a20
DV
4949 }
4950
4951 /* Update computed state. */
4952 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4953 if (!connector->encoder || !connector->encoder->crtc)
4954 continue;
4955
4956 if (connector->encoder->crtc != crtc)
4957 continue;
4958
4959 connector->dpms = DRM_MODE_DPMS_OFF;
4960 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4961 }
4962}
4963
ea5b213a 4964void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4965{
4ef69c7a 4966 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4967
ea5b213a
CW
4968 drm_encoder_cleanup(encoder);
4969 kfree(intel_encoder);
7e7d76c3
JB
4970}
4971
9237329d 4972/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4973 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4974 * state of the entire output pipe. */
9237329d 4975static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4976{
5ab432ef
DV
4977 if (mode == DRM_MODE_DPMS_ON) {
4978 encoder->connectors_active = true;
4979
b2cabb0e 4980 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
4981 } else {
4982 encoder->connectors_active = false;
4983
b2cabb0e 4984 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 4985 }
79e53945
JB
4986}
4987
0a91ca29
DV
4988/* Cross check the actual hw state with our own modeset state tracking (and it's
4989 * internal consistency). */
b980514c 4990static void intel_connector_check_state(struct intel_connector *connector)
79e53945 4991{
0a91ca29
DV
4992 if (connector->get_hw_state(connector)) {
4993 struct intel_encoder *encoder = connector->encoder;
4994 struct drm_crtc *crtc;
4995 bool encoder_enabled;
4996 enum pipe pipe;
4997
4998 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4999 connector->base.base.id,
c23cc417 5000 connector->base.name);
0a91ca29
DV
5001
5002 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5003 "wrong connector dpms state\n");
5004 WARN(connector->base.encoder != &encoder->base,
5005 "active connector not linked to encoder\n");
5006 WARN(!encoder->connectors_active,
5007 "encoder->connectors_active not set\n");
5008
5009 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5010 WARN(!encoder_enabled, "encoder not enabled\n");
5011 if (WARN_ON(!encoder->base.crtc))
5012 return;
5013
5014 crtc = encoder->base.crtc;
5015
5016 WARN(!crtc->enabled, "crtc not enabled\n");
5017 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5018 WARN(pipe != to_intel_crtc(crtc)->pipe,
5019 "encoder active on the wrong pipe\n");
5020 }
79e53945
JB
5021}
5022
5ab432ef
DV
5023/* Even simpler default implementation, if there's really no special case to
5024 * consider. */
5025void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5026{
5ab432ef
DV
5027 /* All the simple cases only support two dpms states. */
5028 if (mode != DRM_MODE_DPMS_ON)
5029 mode = DRM_MODE_DPMS_OFF;
d4270e57 5030
5ab432ef
DV
5031 if (mode == connector->dpms)
5032 return;
5033
5034 connector->dpms = mode;
5035
5036 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5037 if (connector->encoder)
5038 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5039
b980514c 5040 intel_modeset_check_state(connector->dev);
79e53945
JB
5041}
5042
f0947c37
DV
5043/* Simple connector->get_hw_state implementation for encoders that support only
5044 * one connector and no cloning and hence the encoder state determines the state
5045 * of the connector. */
5046bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5047{
24929352 5048 enum pipe pipe = 0;
f0947c37 5049 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5050
f0947c37 5051 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5052}
5053
1857e1da
DV
5054static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5055 struct intel_crtc_config *pipe_config)
5056{
5057 struct drm_i915_private *dev_priv = dev->dev_private;
5058 struct intel_crtc *pipe_B_crtc =
5059 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5060
5061 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5062 pipe_name(pipe), pipe_config->fdi_lanes);
5063 if (pipe_config->fdi_lanes > 4) {
5064 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5065 pipe_name(pipe), pipe_config->fdi_lanes);
5066 return false;
5067 }
5068
bafb6553 5069 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5070 if (pipe_config->fdi_lanes > 2) {
5071 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5072 pipe_config->fdi_lanes);
5073 return false;
5074 } else {
5075 return true;
5076 }
5077 }
5078
5079 if (INTEL_INFO(dev)->num_pipes == 2)
5080 return true;
5081
5082 /* Ivybridge 3 pipe is really complicated */
5083 switch (pipe) {
5084 case PIPE_A:
5085 return true;
5086 case PIPE_B:
5087 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5088 pipe_config->fdi_lanes > 2) {
5089 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5090 pipe_name(pipe), pipe_config->fdi_lanes);
5091 return false;
5092 }
5093 return true;
5094 case PIPE_C:
1e833f40 5095 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5096 pipe_B_crtc->config.fdi_lanes <= 2) {
5097 if (pipe_config->fdi_lanes > 2) {
5098 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5099 pipe_name(pipe), pipe_config->fdi_lanes);
5100 return false;
5101 }
5102 } else {
5103 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5104 return false;
5105 }
5106 return true;
5107 default:
5108 BUG();
5109 }
5110}
5111
e29c22c0
DV
5112#define RETRY 1
5113static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5114 struct intel_crtc_config *pipe_config)
877d48d5 5115{
1857e1da 5116 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5117 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5118 int lane, link_bw, fdi_dotclock;
e29c22c0 5119 bool setup_ok, needs_recompute = false;
877d48d5 5120
e29c22c0 5121retry:
877d48d5
DV
5122 /* FDI is a binary signal running at ~2.7GHz, encoding
5123 * each output octet as 10 bits. The actual frequency
5124 * is stored as a divider into a 100MHz clock, and the
5125 * mode pixel clock is stored in units of 1KHz.
5126 * Hence the bw of each lane in terms of the mode signal
5127 * is:
5128 */
5129 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5130
241bfc38 5131 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5132
2bd89a07 5133 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5134 pipe_config->pipe_bpp);
5135
5136 pipe_config->fdi_lanes = lane;
5137
2bd89a07 5138 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5139 link_bw, &pipe_config->fdi_m_n);
1857e1da 5140
e29c22c0
DV
5141 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5142 intel_crtc->pipe, pipe_config);
5143 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5144 pipe_config->pipe_bpp -= 2*3;
5145 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5146 pipe_config->pipe_bpp);
5147 needs_recompute = true;
5148 pipe_config->bw_constrained = true;
5149
5150 goto retry;
5151 }
5152
5153 if (needs_recompute)
5154 return RETRY;
5155
5156 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5157}
5158
42db64ef
PZ
5159static void hsw_compute_ips_config(struct intel_crtc *crtc,
5160 struct intel_crtc_config *pipe_config)
5161{
d330a953 5162 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5163 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5164 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5165}
5166
a43f6e0f 5167static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5168 struct intel_crtc_config *pipe_config)
79e53945 5169{
a43f6e0f 5170 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5171 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5172
ad3a4479 5173 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5174 if (INTEL_INFO(dev)->gen < 4) {
5175 struct drm_i915_private *dev_priv = dev->dev_private;
5176 int clock_limit =
5177 dev_priv->display.get_display_clock_speed(dev);
5178
5179 /*
5180 * Enable pixel doubling when the dot clock
5181 * is > 90% of the (display) core speed.
5182 *
b397c96b
VS
5183 * GDG double wide on either pipe,
5184 * otherwise pipe A only.
cf532bb2 5185 */
b397c96b 5186 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5187 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5188 clock_limit *= 2;
cf532bb2 5189 pipe_config->double_wide = true;
ad3a4479
VS
5190 }
5191
241bfc38 5192 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5193 return -EINVAL;
2c07245f 5194 }
89749350 5195
1d1d0e27
VS
5196 /*
5197 * Pipe horizontal size must be even in:
5198 * - DVO ganged mode
5199 * - LVDS dual channel mode
5200 * - Double wide pipe
5201 */
5202 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5203 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5204 pipe_config->pipe_src_w &= ~1;
5205
8693a824
DL
5206 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5207 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5208 */
5209 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5210 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5211 return -EINVAL;
44f46b42 5212
bd080ee5 5213 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5214 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5215 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5216 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5217 * for lvds. */
5218 pipe_config->pipe_bpp = 8*3;
5219 }
5220
f5adf94e 5221 if (HAS_IPS(dev))
a43f6e0f
DV
5222 hsw_compute_ips_config(crtc, pipe_config);
5223
12030431
DV
5224 /*
5225 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5226 * old clock survives for now.
5227 */
5228 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5229 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5230
877d48d5 5231 if (pipe_config->has_pch_encoder)
a43f6e0f 5232 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5233
e29c22c0 5234 return 0;
79e53945
JB
5235}
5236
25eb05fc
JB
5237static int valleyview_get_display_clock_speed(struct drm_device *dev)
5238{
d197b7d3
VS
5239 struct drm_i915_private *dev_priv = dev->dev_private;
5240 int vco = valleyview_get_vco(dev_priv);
5241 u32 val;
5242 int divider;
5243
5244 mutex_lock(&dev_priv->dpio_lock);
5245 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5246 mutex_unlock(&dev_priv->dpio_lock);
5247
5248 divider = val & DISPLAY_FREQUENCY_VALUES;
5249
7d007f40
VS
5250 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5251 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5252 "cdclk change in progress\n");
5253
d197b7d3 5254 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5255}
5256
e70236a8
JB
5257static int i945_get_display_clock_speed(struct drm_device *dev)
5258{
5259 return 400000;
5260}
79e53945 5261
e70236a8 5262static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5263{
e70236a8
JB
5264 return 333000;
5265}
79e53945 5266
e70236a8
JB
5267static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5268{
5269 return 200000;
5270}
79e53945 5271
257a7ffc
DV
5272static int pnv_get_display_clock_speed(struct drm_device *dev)
5273{
5274 u16 gcfgc = 0;
5275
5276 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5277
5278 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5279 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5280 return 267000;
5281 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5282 return 333000;
5283 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5284 return 444000;
5285 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5286 return 200000;
5287 default:
5288 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5289 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5290 return 133000;
5291 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5292 return 167000;
5293 }
5294}
5295
e70236a8
JB
5296static int i915gm_get_display_clock_speed(struct drm_device *dev)
5297{
5298 u16 gcfgc = 0;
79e53945 5299
e70236a8
JB
5300 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5301
5302 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5303 return 133000;
5304 else {
5305 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5306 case GC_DISPLAY_CLOCK_333_MHZ:
5307 return 333000;
5308 default:
5309 case GC_DISPLAY_CLOCK_190_200_MHZ:
5310 return 190000;
79e53945 5311 }
e70236a8
JB
5312 }
5313}
5314
5315static int i865_get_display_clock_speed(struct drm_device *dev)
5316{
5317 return 266000;
5318}
5319
5320static int i855_get_display_clock_speed(struct drm_device *dev)
5321{
5322 u16 hpllcc = 0;
5323 /* Assume that the hardware is in the high speed state. This
5324 * should be the default.
5325 */
5326 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5327 case GC_CLOCK_133_200:
5328 case GC_CLOCK_100_200:
5329 return 200000;
5330 case GC_CLOCK_166_250:
5331 return 250000;
5332 case GC_CLOCK_100_133:
79e53945 5333 return 133000;
e70236a8 5334 }
79e53945 5335
e70236a8
JB
5336 /* Shouldn't happen */
5337 return 0;
5338}
79e53945 5339
e70236a8
JB
5340static int i830_get_display_clock_speed(struct drm_device *dev)
5341{
5342 return 133000;
79e53945
JB
5343}
5344
2c07245f 5345static void
a65851af 5346intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5347{
a65851af
VS
5348 while (*num > DATA_LINK_M_N_MASK ||
5349 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5350 *num >>= 1;
5351 *den >>= 1;
5352 }
5353}
5354
a65851af
VS
5355static void compute_m_n(unsigned int m, unsigned int n,
5356 uint32_t *ret_m, uint32_t *ret_n)
5357{
5358 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5359 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5360 intel_reduce_m_n_ratio(ret_m, ret_n);
5361}
5362
e69d0bc1
DV
5363void
5364intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5365 int pixel_clock, int link_clock,
5366 struct intel_link_m_n *m_n)
2c07245f 5367{
e69d0bc1 5368 m_n->tu = 64;
a65851af
VS
5369
5370 compute_m_n(bits_per_pixel * pixel_clock,
5371 link_clock * nlanes * 8,
5372 &m_n->gmch_m, &m_n->gmch_n);
5373
5374 compute_m_n(pixel_clock, link_clock,
5375 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5376}
5377
a7615030
CW
5378static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5379{
d330a953
JN
5380 if (i915.panel_use_ssc >= 0)
5381 return i915.panel_use_ssc != 0;
41aa3448 5382 return dev_priv->vbt.lvds_use_ssc
435793df 5383 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5384}
5385
c65d77d8
JB
5386static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5387{
5388 struct drm_device *dev = crtc->dev;
5389 struct drm_i915_private *dev_priv = dev->dev_private;
5390 int refclk;
5391
a0c4da24 5392 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5393 refclk = 100000;
a0c4da24 5394 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5395 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5396 refclk = dev_priv->vbt.lvds_ssc_freq;
5397 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5398 } else if (!IS_GEN2(dev)) {
5399 refclk = 96000;
5400 } else {
5401 refclk = 48000;
5402 }
5403
5404 return refclk;
5405}
5406
7429e9d4 5407static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5408{
7df00d7a 5409 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5410}
f47709a9 5411
7429e9d4
DV
5412static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5413{
5414 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5415}
5416
f47709a9 5417static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5418 intel_clock_t *reduced_clock)
5419{
f47709a9 5420 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5421 u32 fp, fp2 = 0;
5422
5423 if (IS_PINEVIEW(dev)) {
7429e9d4 5424 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5425 if (reduced_clock)
7429e9d4 5426 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5427 } else {
7429e9d4 5428 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5429 if (reduced_clock)
7429e9d4 5430 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5431 }
5432
8bcc2795 5433 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5434
f47709a9
DV
5435 crtc->lowfreq_avail = false;
5436 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5437 reduced_clock && i915.powersave) {
8bcc2795 5438 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5439 crtc->lowfreq_avail = true;
a7516a05 5440 } else {
8bcc2795 5441 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5442 }
5443}
5444
5e69f97f
CML
5445static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5446 pipe)
89b667f8
JB
5447{
5448 u32 reg_val;
5449
5450 /*
5451 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5452 * and set it to a reasonable value instead.
5453 */
ab3c759a 5454 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5455 reg_val &= 0xffffff00;
5456 reg_val |= 0x00000030;
ab3c759a 5457 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5458
ab3c759a 5459 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5460 reg_val &= 0x8cffffff;
5461 reg_val = 0x8c000000;
ab3c759a 5462 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5463
ab3c759a 5464 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5465 reg_val &= 0xffffff00;
ab3c759a 5466 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5467
ab3c759a 5468 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5469 reg_val &= 0x00ffffff;
5470 reg_val |= 0xb0000000;
ab3c759a 5471 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5472}
5473
b551842d
DV
5474static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5475 struct intel_link_m_n *m_n)
5476{
5477 struct drm_device *dev = crtc->base.dev;
5478 struct drm_i915_private *dev_priv = dev->dev_private;
5479 int pipe = crtc->pipe;
5480
e3b95f1e
DV
5481 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5482 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5483 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5484 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5485}
5486
5487static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5488 struct intel_link_m_n *m_n)
5489{
5490 struct drm_device *dev = crtc->base.dev;
5491 struct drm_i915_private *dev_priv = dev->dev_private;
5492 int pipe = crtc->pipe;
5493 enum transcoder transcoder = crtc->config.cpu_transcoder;
5494
5495 if (INTEL_INFO(dev)->gen >= 5) {
5496 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5497 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5498 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5499 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5500 } else {
e3b95f1e
DV
5501 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5502 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5503 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5504 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5505 }
5506}
5507
03afc4a2
DV
5508static void intel_dp_set_m_n(struct intel_crtc *crtc)
5509{
5510 if (crtc->config.has_pch_encoder)
5511 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5512 else
5513 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5514}
5515
f47709a9 5516static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5517{
5518 u32 dpll, dpll_md;
5519
5520 /*
5521 * Enable DPIO clock input. We should never disable the reference
5522 * clock for pipe B, since VGA hotplug / manual detection depends
5523 * on it.
5524 */
5525 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5526 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5527 /* We should never disable this, set it here for state tracking */
5528 if (crtc->pipe == PIPE_B)
5529 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5530 dpll |= DPLL_VCO_ENABLE;
5531 crtc->config.dpll_hw_state.dpll = dpll;
5532
5533 dpll_md = (crtc->config.pixel_multiplier - 1)
5534 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5535 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5536}
5537
5538static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5539{
f47709a9 5540 struct drm_device *dev = crtc->base.dev;
a0c4da24 5541 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5542 int pipe = crtc->pipe;
bdd4b6a6 5543 u32 mdiv;
a0c4da24 5544 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5545 u32 coreclk, reg_val;
a0c4da24 5546
09153000
DV
5547 mutex_lock(&dev_priv->dpio_lock);
5548
f47709a9
DV
5549 bestn = crtc->config.dpll.n;
5550 bestm1 = crtc->config.dpll.m1;
5551 bestm2 = crtc->config.dpll.m2;
5552 bestp1 = crtc->config.dpll.p1;
5553 bestp2 = crtc->config.dpll.p2;
a0c4da24 5554
89b667f8
JB
5555 /* See eDP HDMI DPIO driver vbios notes doc */
5556
5557 /* PLL B needs special handling */
bdd4b6a6 5558 if (pipe == PIPE_B)
5e69f97f 5559 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5560
5561 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5562 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5563
5564 /* Disable target IRef on PLL */
ab3c759a 5565 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5566 reg_val &= 0x00ffffff;
ab3c759a 5567 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5568
5569 /* Disable fast lock */
ab3c759a 5570 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5571
5572 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5573 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5574 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5575 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5576 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5577
5578 /*
5579 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5580 * but we don't support that).
5581 * Note: don't use the DAC post divider as it seems unstable.
5582 */
5583 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5584 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5585
a0c4da24 5586 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5587 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5588
89b667f8 5589 /* Set HBR and RBR LPF coefficients */
ff9a6750 5590 if (crtc->config.port_clock == 162000 ||
99750bd4 5591 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5592 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5593 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5594 0x009f0003);
89b667f8 5595 else
ab3c759a 5596 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5597 0x00d0000f);
5598
5599 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5600 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5601 /* Use SSC source */
bdd4b6a6 5602 if (pipe == PIPE_A)
ab3c759a 5603 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5604 0x0df40000);
5605 else
ab3c759a 5606 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5607 0x0df70000);
5608 } else { /* HDMI or VGA */
5609 /* Use bend source */
bdd4b6a6 5610 if (pipe == PIPE_A)
ab3c759a 5611 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5612 0x0df70000);
5613 else
ab3c759a 5614 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5615 0x0df40000);
5616 }
a0c4da24 5617
ab3c759a 5618 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5619 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5620 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5621 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5622 coreclk |= 0x01000000;
ab3c759a 5623 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5624
ab3c759a 5625 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5626 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5627}
5628
9d556c99
CML
5629static void chv_update_pll(struct intel_crtc *crtc)
5630{
5631 struct drm_device *dev = crtc->base.dev;
5632 struct drm_i915_private *dev_priv = dev->dev_private;
5633 int pipe = crtc->pipe;
5634 int dpll_reg = DPLL(crtc->pipe);
5635 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5636 u32 loopfilter, intcoeff;
9d556c99
CML
5637 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5638 int refclk;
5639
a11b0703
VS
5640 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5641 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5642 DPLL_VCO_ENABLE;
5643 if (pipe != PIPE_A)
5644 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5645
5646 crtc->config.dpll_hw_state.dpll_md =
5647 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5648
5649 bestn = crtc->config.dpll.n;
5650 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5651 bestm1 = crtc->config.dpll.m1;
5652 bestm2 = crtc->config.dpll.m2 >> 22;
5653 bestp1 = crtc->config.dpll.p1;
5654 bestp2 = crtc->config.dpll.p2;
5655
5656 /*
5657 * Enable Refclk and SSC
5658 */
a11b0703
VS
5659 I915_WRITE(dpll_reg,
5660 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5661
5662 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5663
9d556c99
CML
5664 /* p1 and p2 divider */
5665 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5666 5 << DPIO_CHV_S1_DIV_SHIFT |
5667 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5668 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5669 1 << DPIO_CHV_K_DIV_SHIFT);
5670
5671 /* Feedback post-divider - m2 */
5672 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5673
5674 /* Feedback refclk divider - n and m1 */
5675 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5676 DPIO_CHV_M1_DIV_BY_2 |
5677 1 << DPIO_CHV_N_DIV_SHIFT);
5678
5679 /* M2 fraction division */
5680 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5681
5682 /* M2 fraction division enable */
5683 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5684 DPIO_CHV_FRAC_DIV_EN |
5685 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5686
5687 /* Loop filter */
5688 refclk = i9xx_get_refclk(&crtc->base, 0);
5689 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5690 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5691 if (refclk == 100000)
5692 intcoeff = 11;
5693 else if (refclk == 38400)
5694 intcoeff = 10;
5695 else
5696 intcoeff = 9;
5697 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5698 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5699
5700 /* AFC Recal */
5701 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5702 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5703 DPIO_AFC_RECAL);
5704
5705 mutex_unlock(&dev_priv->dpio_lock);
5706}
5707
f47709a9
DV
5708static void i9xx_update_pll(struct intel_crtc *crtc,
5709 intel_clock_t *reduced_clock,
eb1cbe48
DV
5710 int num_connectors)
5711{
f47709a9 5712 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5713 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5714 u32 dpll;
5715 bool is_sdvo;
f47709a9 5716 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5717
f47709a9 5718 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5719
f47709a9
DV
5720 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5721 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5722
5723 dpll = DPLL_VGA_MODE_DIS;
5724
f47709a9 5725 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5726 dpll |= DPLLB_MODE_LVDS;
5727 else
5728 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5729
ef1b460d 5730 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5731 dpll |= (crtc->config.pixel_multiplier - 1)
5732 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5733 }
198a037f
DV
5734
5735 if (is_sdvo)
4a33e48d 5736 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5737
f47709a9 5738 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5739 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5740
5741 /* compute bitmask from p1 value */
5742 if (IS_PINEVIEW(dev))
5743 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5744 else {
5745 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5746 if (IS_G4X(dev) && reduced_clock)
5747 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5748 }
5749 switch (clock->p2) {
5750 case 5:
5751 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5752 break;
5753 case 7:
5754 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5755 break;
5756 case 10:
5757 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5758 break;
5759 case 14:
5760 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5761 break;
5762 }
5763 if (INTEL_INFO(dev)->gen >= 4)
5764 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5765
09ede541 5766 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5767 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5768 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5769 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5770 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5771 else
5772 dpll |= PLL_REF_INPUT_DREFCLK;
5773
5774 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5775 crtc->config.dpll_hw_state.dpll = dpll;
5776
eb1cbe48 5777 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5778 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5779 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5780 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5781 }
5782}
5783
f47709a9 5784static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5785 intel_clock_t *reduced_clock,
eb1cbe48
DV
5786 int num_connectors)
5787{
f47709a9 5788 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5789 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5790 u32 dpll;
f47709a9 5791 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5792
f47709a9 5793 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5794
eb1cbe48
DV
5795 dpll = DPLL_VGA_MODE_DIS;
5796
f47709a9 5797 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5798 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5799 } else {
5800 if (clock->p1 == 2)
5801 dpll |= PLL_P1_DIVIDE_BY_TWO;
5802 else
5803 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5804 if (clock->p2 == 4)
5805 dpll |= PLL_P2_DIVIDE_BY_4;
5806 }
5807
4a33e48d
DV
5808 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5809 dpll |= DPLL_DVO_2X_MODE;
5810
f47709a9 5811 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5812 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5813 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5814 else
5815 dpll |= PLL_REF_INPUT_DREFCLK;
5816
5817 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5818 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5819}
5820
8a654f3b 5821static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5822{
5823 struct drm_device *dev = intel_crtc->base.dev;
5824 struct drm_i915_private *dev_priv = dev->dev_private;
5825 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5826 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5827 struct drm_display_mode *adjusted_mode =
5828 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5829 uint32_t crtc_vtotal, crtc_vblank_end;
5830 int vsyncshift = 0;
4d8a62ea
DV
5831
5832 /* We need to be careful not to changed the adjusted mode, for otherwise
5833 * the hw state checker will get angry at the mismatch. */
5834 crtc_vtotal = adjusted_mode->crtc_vtotal;
5835 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5836
609aeaca 5837 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5838 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5839 crtc_vtotal -= 1;
5840 crtc_vblank_end -= 1;
609aeaca
VS
5841
5842 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5843 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5844 else
5845 vsyncshift = adjusted_mode->crtc_hsync_start -
5846 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5847 if (vsyncshift < 0)
5848 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5849 }
5850
5851 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5852 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5853
fe2b8f9d 5854 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5855 (adjusted_mode->crtc_hdisplay - 1) |
5856 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5857 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5858 (adjusted_mode->crtc_hblank_start - 1) |
5859 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5860 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5861 (adjusted_mode->crtc_hsync_start - 1) |
5862 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5863
fe2b8f9d 5864 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5865 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5866 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5867 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5868 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5869 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5870 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5871 (adjusted_mode->crtc_vsync_start - 1) |
5872 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5873
b5e508d4
PZ
5874 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5875 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5876 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5877 * bits. */
5878 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5879 (pipe == PIPE_B || pipe == PIPE_C))
5880 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5881
b0e77b9c
PZ
5882 /* pipesrc controls the size that is scaled from, which should
5883 * always be the user's requested size.
5884 */
5885 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5886 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5887 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5888}
5889
1bd1bd80
DV
5890static void intel_get_pipe_timings(struct intel_crtc *crtc,
5891 struct intel_crtc_config *pipe_config)
5892{
5893 struct drm_device *dev = crtc->base.dev;
5894 struct drm_i915_private *dev_priv = dev->dev_private;
5895 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5896 uint32_t tmp;
5897
5898 tmp = I915_READ(HTOTAL(cpu_transcoder));
5899 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5900 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5901 tmp = I915_READ(HBLANK(cpu_transcoder));
5902 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5903 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5904 tmp = I915_READ(HSYNC(cpu_transcoder));
5905 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5906 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5907
5908 tmp = I915_READ(VTOTAL(cpu_transcoder));
5909 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5910 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5911 tmp = I915_READ(VBLANK(cpu_transcoder));
5912 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5913 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5914 tmp = I915_READ(VSYNC(cpu_transcoder));
5915 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5916 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5917
5918 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5919 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5920 pipe_config->adjusted_mode.crtc_vtotal += 1;
5921 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5922 }
5923
5924 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5925 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5926 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5927
5928 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5929 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5930}
5931
f6a83288
DV
5932void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5933 struct intel_crtc_config *pipe_config)
babea61d 5934{
f6a83288
DV
5935 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5936 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5937 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5938 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5939
f6a83288
DV
5940 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5941 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5942 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5943 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5944
f6a83288 5945 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5946
f6a83288
DV
5947 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5948 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5949}
5950
84b046f3
DV
5951static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5952{
5953 struct drm_device *dev = intel_crtc->base.dev;
5954 struct drm_i915_private *dev_priv = dev->dev_private;
5955 uint32_t pipeconf;
5956
9f11a9e4 5957 pipeconf = 0;
84b046f3 5958
67c72a12
DV
5959 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5960 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5961 pipeconf |= PIPECONF_ENABLE;
5962
cf532bb2
VS
5963 if (intel_crtc->config.double_wide)
5964 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5965
ff9ce46e
DV
5966 /* only g4x and later have fancy bpc/dither controls */
5967 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5968 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5969 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5970 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5971 PIPECONF_DITHER_TYPE_SP;
84b046f3 5972
ff9ce46e
DV
5973 switch (intel_crtc->config.pipe_bpp) {
5974 case 18:
5975 pipeconf |= PIPECONF_6BPC;
5976 break;
5977 case 24:
5978 pipeconf |= PIPECONF_8BPC;
5979 break;
5980 case 30:
5981 pipeconf |= PIPECONF_10BPC;
5982 break;
5983 default:
5984 /* Case prevented by intel_choose_pipe_bpp_dither. */
5985 BUG();
84b046f3
DV
5986 }
5987 }
5988
5989 if (HAS_PIPE_CXSR(dev)) {
5990 if (intel_crtc->lowfreq_avail) {
5991 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5992 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5993 } else {
5994 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
5995 }
5996 }
5997
efc2cfff
VS
5998 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5999 if (INTEL_INFO(dev)->gen < 4 ||
6000 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6001 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6002 else
6003 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6004 } else
84b046f3
DV
6005 pipeconf |= PIPECONF_PROGRESSIVE;
6006
9f11a9e4
DV
6007 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6008 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6009
84b046f3
DV
6010 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6011 POSTING_READ(PIPECONF(intel_crtc->pipe));
6012}
6013
f564048e 6014static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6015 int x, int y,
94352cf9 6016 struct drm_framebuffer *fb)
79e53945
JB
6017{
6018 struct drm_device *dev = crtc->dev;
6019 struct drm_i915_private *dev_priv = dev->dev_private;
6020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6021 int refclk, num_connectors = 0;
652c393a 6022 intel_clock_t clock, reduced_clock;
a16af721 6023 bool ok, has_reduced_clock = false;
e9fd1c02 6024 bool is_lvds = false, is_dsi = false;
5eddb70b 6025 struct intel_encoder *encoder;
d4906093 6026 const intel_limit_t *limit;
79e53945 6027
6c2b7c12 6028 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6029 switch (encoder->type) {
79e53945
JB
6030 case INTEL_OUTPUT_LVDS:
6031 is_lvds = true;
6032 break;
e9fd1c02
JN
6033 case INTEL_OUTPUT_DSI:
6034 is_dsi = true;
6035 break;
79e53945 6036 }
43565a06 6037
c751ce4f 6038 num_connectors++;
79e53945
JB
6039 }
6040
f2335330 6041 if (is_dsi)
5b18e57c 6042 return 0;
f2335330
JN
6043
6044 if (!intel_crtc->config.clock_set) {
6045 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6046
e9fd1c02
JN
6047 /*
6048 * Returns a set of divisors for the desired target clock with
6049 * the given refclk, or FALSE. The returned values represent
6050 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6051 * 2) / p1 / p2.
6052 */
6053 limit = intel_limit(crtc, refclk);
6054 ok = dev_priv->display.find_dpll(limit, crtc,
6055 intel_crtc->config.port_clock,
6056 refclk, NULL, &clock);
f2335330 6057 if (!ok) {
e9fd1c02
JN
6058 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6059 return -EINVAL;
6060 }
79e53945 6061
f2335330
JN
6062 if (is_lvds && dev_priv->lvds_downclock_avail) {
6063 /*
6064 * Ensure we match the reduced clock's P to the target
6065 * clock. If the clocks don't match, we can't switch
6066 * the display clock by using the FP0/FP1. In such case
6067 * we will disable the LVDS downclock feature.
6068 */
6069 has_reduced_clock =
6070 dev_priv->display.find_dpll(limit, crtc,
6071 dev_priv->lvds_downclock,
6072 refclk, &clock,
6073 &reduced_clock);
6074 }
6075 /* Compat-code for transition, will disappear. */
f47709a9
DV
6076 intel_crtc->config.dpll.n = clock.n;
6077 intel_crtc->config.dpll.m1 = clock.m1;
6078 intel_crtc->config.dpll.m2 = clock.m2;
6079 intel_crtc->config.dpll.p1 = clock.p1;
6080 intel_crtc->config.dpll.p2 = clock.p2;
6081 }
7026d4ac 6082
e9fd1c02 6083 if (IS_GEN2(dev)) {
8a654f3b 6084 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6085 has_reduced_clock ? &reduced_clock : NULL,
6086 num_connectors);
9d556c99
CML
6087 } else if (IS_CHERRYVIEW(dev)) {
6088 chv_update_pll(intel_crtc);
e9fd1c02 6089 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6090 vlv_update_pll(intel_crtc);
e9fd1c02 6091 } else {
f47709a9 6092 i9xx_update_pll(intel_crtc,
eb1cbe48 6093 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6094 num_connectors);
e9fd1c02 6095 }
79e53945 6096
c8f7a0db 6097 return 0;
f564048e
EA
6098}
6099
2fa2fe9a
DV
6100static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6101 struct intel_crtc_config *pipe_config)
6102{
6103 struct drm_device *dev = crtc->base.dev;
6104 struct drm_i915_private *dev_priv = dev->dev_private;
6105 uint32_t tmp;
6106
dc9e7dec
VS
6107 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6108 return;
6109
2fa2fe9a 6110 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6111 if (!(tmp & PFIT_ENABLE))
6112 return;
2fa2fe9a 6113
06922821 6114 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6115 if (INTEL_INFO(dev)->gen < 4) {
6116 if (crtc->pipe != PIPE_B)
6117 return;
2fa2fe9a
DV
6118 } else {
6119 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6120 return;
6121 }
6122
06922821 6123 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6124 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6125 if (INTEL_INFO(dev)->gen < 5)
6126 pipe_config->gmch_pfit.lvds_border_bits =
6127 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6128}
6129
acbec814
JB
6130static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6131 struct intel_crtc_config *pipe_config)
6132{
6133 struct drm_device *dev = crtc->base.dev;
6134 struct drm_i915_private *dev_priv = dev->dev_private;
6135 int pipe = pipe_config->cpu_transcoder;
6136 intel_clock_t clock;
6137 u32 mdiv;
662c6ecb 6138 int refclk = 100000;
acbec814
JB
6139
6140 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6141 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6142 mutex_unlock(&dev_priv->dpio_lock);
6143
6144 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6145 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6146 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6147 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6148 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6149
f646628b 6150 vlv_clock(refclk, &clock);
acbec814 6151
f646628b
VS
6152 /* clock.dot is the fast clock */
6153 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6154}
6155
1ad292b5
JB
6156static void i9xx_get_plane_config(struct intel_crtc *crtc,
6157 struct intel_plane_config *plane_config)
6158{
6159 struct drm_device *dev = crtc->base.dev;
6160 struct drm_i915_private *dev_priv = dev->dev_private;
6161 u32 val, base, offset;
6162 int pipe = crtc->pipe, plane = crtc->plane;
6163 int fourcc, pixel_format;
6164 int aligned_height;
6165
66e514c1
DA
6166 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6167 if (!crtc->base.primary->fb) {
1ad292b5
JB
6168 DRM_DEBUG_KMS("failed to alloc fb\n");
6169 return;
6170 }
6171
6172 val = I915_READ(DSPCNTR(plane));
6173
6174 if (INTEL_INFO(dev)->gen >= 4)
6175 if (val & DISPPLANE_TILED)
6176 plane_config->tiled = true;
6177
6178 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6179 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6180 crtc->base.primary->fb->pixel_format = fourcc;
6181 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6182 drm_format_plane_cpp(fourcc, 0) * 8;
6183
6184 if (INTEL_INFO(dev)->gen >= 4) {
6185 if (plane_config->tiled)
6186 offset = I915_READ(DSPTILEOFF(plane));
6187 else
6188 offset = I915_READ(DSPLINOFF(plane));
6189 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6190 } else {
6191 base = I915_READ(DSPADDR(plane));
6192 }
6193 plane_config->base = base;
6194
6195 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6196 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6197 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6198
6199 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6200 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6201
66e514c1 6202 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6203 plane_config->tiled);
6204
1267a26b
FF
6205 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6206 aligned_height);
1ad292b5
JB
6207
6208 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6209 pipe, plane, crtc->base.primary->fb->width,
6210 crtc->base.primary->fb->height,
6211 crtc->base.primary->fb->bits_per_pixel, base,
6212 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6213 plane_config->size);
6214
6215}
6216
70b23a98
VS
6217static void chv_crtc_clock_get(struct intel_crtc *crtc,
6218 struct intel_crtc_config *pipe_config)
6219{
6220 struct drm_device *dev = crtc->base.dev;
6221 struct drm_i915_private *dev_priv = dev->dev_private;
6222 int pipe = pipe_config->cpu_transcoder;
6223 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6224 intel_clock_t clock;
6225 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6226 int refclk = 100000;
6227
6228 mutex_lock(&dev_priv->dpio_lock);
6229 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6230 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6231 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6232 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6233 mutex_unlock(&dev_priv->dpio_lock);
6234
6235 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6236 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6237 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6238 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6239 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6240
6241 chv_clock(refclk, &clock);
6242
6243 /* clock.dot is the fast clock */
6244 pipe_config->port_clock = clock.dot / 5;
6245}
6246
0e8ffe1b
DV
6247static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6248 struct intel_crtc_config *pipe_config)
6249{
6250 struct drm_device *dev = crtc->base.dev;
6251 struct drm_i915_private *dev_priv = dev->dev_private;
6252 uint32_t tmp;
6253
b5482bd0
ID
6254 if (!intel_display_power_enabled(dev_priv,
6255 POWER_DOMAIN_PIPE(crtc->pipe)))
6256 return false;
6257
e143a21c 6258 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6259 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6260
0e8ffe1b
DV
6261 tmp = I915_READ(PIPECONF(crtc->pipe));
6262 if (!(tmp & PIPECONF_ENABLE))
6263 return false;
6264
42571aef
VS
6265 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6266 switch (tmp & PIPECONF_BPC_MASK) {
6267 case PIPECONF_6BPC:
6268 pipe_config->pipe_bpp = 18;
6269 break;
6270 case PIPECONF_8BPC:
6271 pipe_config->pipe_bpp = 24;
6272 break;
6273 case PIPECONF_10BPC:
6274 pipe_config->pipe_bpp = 30;
6275 break;
6276 default:
6277 break;
6278 }
6279 }
6280
b5a9fa09
DV
6281 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6282 pipe_config->limited_color_range = true;
6283
282740f7
VS
6284 if (INTEL_INFO(dev)->gen < 4)
6285 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6286
1bd1bd80
DV
6287 intel_get_pipe_timings(crtc, pipe_config);
6288
2fa2fe9a
DV
6289 i9xx_get_pfit_config(crtc, pipe_config);
6290
6c49f241
DV
6291 if (INTEL_INFO(dev)->gen >= 4) {
6292 tmp = I915_READ(DPLL_MD(crtc->pipe));
6293 pipe_config->pixel_multiplier =
6294 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6295 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6296 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6297 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6298 tmp = I915_READ(DPLL(crtc->pipe));
6299 pipe_config->pixel_multiplier =
6300 ((tmp & SDVO_MULTIPLIER_MASK)
6301 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6302 } else {
6303 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6304 * port and will be fixed up in the encoder->get_config
6305 * function. */
6306 pipe_config->pixel_multiplier = 1;
6307 }
8bcc2795
DV
6308 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6309 if (!IS_VALLEYVIEW(dev)) {
6310 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6311 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6312 } else {
6313 /* Mask out read-only status bits. */
6314 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6315 DPLL_PORTC_READY_MASK |
6316 DPLL_PORTB_READY_MASK);
8bcc2795 6317 }
6c49f241 6318
70b23a98
VS
6319 if (IS_CHERRYVIEW(dev))
6320 chv_crtc_clock_get(crtc, pipe_config);
6321 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6322 vlv_crtc_clock_get(crtc, pipe_config);
6323 else
6324 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6325
0e8ffe1b
DV
6326 return true;
6327}
6328
dde86e2d 6329static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6330{
6331 struct drm_i915_private *dev_priv = dev->dev_private;
6332 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6333 struct intel_encoder *encoder;
74cfd7ac 6334 u32 val, final;
13d83a67 6335 bool has_lvds = false;
199e5d79 6336 bool has_cpu_edp = false;
199e5d79 6337 bool has_panel = false;
99eb6a01
KP
6338 bool has_ck505 = false;
6339 bool can_ssc = false;
13d83a67
JB
6340
6341 /* We need to take the global config into account */
199e5d79
KP
6342 list_for_each_entry(encoder, &mode_config->encoder_list,
6343 base.head) {
6344 switch (encoder->type) {
6345 case INTEL_OUTPUT_LVDS:
6346 has_panel = true;
6347 has_lvds = true;
6348 break;
6349 case INTEL_OUTPUT_EDP:
6350 has_panel = true;
2de6905f 6351 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6352 has_cpu_edp = true;
6353 break;
13d83a67
JB
6354 }
6355 }
6356
99eb6a01 6357 if (HAS_PCH_IBX(dev)) {
41aa3448 6358 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6359 can_ssc = has_ck505;
6360 } else {
6361 has_ck505 = false;
6362 can_ssc = true;
6363 }
6364
2de6905f
ID
6365 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6366 has_panel, has_lvds, has_ck505);
13d83a67
JB
6367
6368 /* Ironlake: try to setup display ref clock before DPLL
6369 * enabling. This is only under driver's control after
6370 * PCH B stepping, previous chipset stepping should be
6371 * ignoring this setting.
6372 */
74cfd7ac
CW
6373 val = I915_READ(PCH_DREF_CONTROL);
6374
6375 /* As we must carefully and slowly disable/enable each source in turn,
6376 * compute the final state we want first and check if we need to
6377 * make any changes at all.
6378 */
6379 final = val;
6380 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6381 if (has_ck505)
6382 final |= DREF_NONSPREAD_CK505_ENABLE;
6383 else
6384 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6385
6386 final &= ~DREF_SSC_SOURCE_MASK;
6387 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6388 final &= ~DREF_SSC1_ENABLE;
6389
6390 if (has_panel) {
6391 final |= DREF_SSC_SOURCE_ENABLE;
6392
6393 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6394 final |= DREF_SSC1_ENABLE;
6395
6396 if (has_cpu_edp) {
6397 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6398 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6399 else
6400 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6401 } else
6402 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6403 } else {
6404 final |= DREF_SSC_SOURCE_DISABLE;
6405 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6406 }
6407
6408 if (final == val)
6409 return;
6410
13d83a67 6411 /* Always enable nonspread source */
74cfd7ac 6412 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6413
99eb6a01 6414 if (has_ck505)
74cfd7ac 6415 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6416 else
74cfd7ac 6417 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6418
199e5d79 6419 if (has_panel) {
74cfd7ac
CW
6420 val &= ~DREF_SSC_SOURCE_MASK;
6421 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6422
199e5d79 6423 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6424 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6425 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6426 val |= DREF_SSC1_ENABLE;
e77166b5 6427 } else
74cfd7ac 6428 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6429
6430 /* Get SSC going before enabling the outputs */
74cfd7ac 6431 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6432 POSTING_READ(PCH_DREF_CONTROL);
6433 udelay(200);
6434
74cfd7ac 6435 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6436
6437 /* Enable CPU source on CPU attached eDP */
199e5d79 6438 if (has_cpu_edp) {
99eb6a01 6439 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6440 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6441 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6442 } else
74cfd7ac 6443 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6444 } else
74cfd7ac 6445 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6446
74cfd7ac 6447 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6448 POSTING_READ(PCH_DREF_CONTROL);
6449 udelay(200);
6450 } else {
6451 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6452
74cfd7ac 6453 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6454
6455 /* Turn off CPU output */
74cfd7ac 6456 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6457
74cfd7ac 6458 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6459 POSTING_READ(PCH_DREF_CONTROL);
6460 udelay(200);
6461
6462 /* Turn off the SSC source */
74cfd7ac
CW
6463 val &= ~DREF_SSC_SOURCE_MASK;
6464 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6465
6466 /* Turn off SSC1 */
74cfd7ac 6467 val &= ~DREF_SSC1_ENABLE;
199e5d79 6468
74cfd7ac 6469 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6470 POSTING_READ(PCH_DREF_CONTROL);
6471 udelay(200);
6472 }
74cfd7ac
CW
6473
6474 BUG_ON(val != final);
13d83a67
JB
6475}
6476
f31f2d55 6477static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6478{
f31f2d55 6479 uint32_t tmp;
dde86e2d 6480
0ff066a9
PZ
6481 tmp = I915_READ(SOUTH_CHICKEN2);
6482 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6483 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6484
0ff066a9
PZ
6485 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6486 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6487 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6488
0ff066a9
PZ
6489 tmp = I915_READ(SOUTH_CHICKEN2);
6490 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6491 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6492
0ff066a9
PZ
6493 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6494 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6495 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6496}
6497
6498/* WaMPhyProgramming:hsw */
6499static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6500{
6501 uint32_t tmp;
dde86e2d
PZ
6502
6503 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6504 tmp &= ~(0xFF << 24);
6505 tmp |= (0x12 << 24);
6506 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6507
dde86e2d
PZ
6508 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6509 tmp |= (1 << 11);
6510 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6511
6512 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6513 tmp |= (1 << 11);
6514 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6515
dde86e2d
PZ
6516 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6517 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6518 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6519
6520 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6521 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6522 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6523
0ff066a9
PZ
6524 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6525 tmp &= ~(7 << 13);
6526 tmp |= (5 << 13);
6527 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6528
0ff066a9
PZ
6529 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6530 tmp &= ~(7 << 13);
6531 tmp |= (5 << 13);
6532 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6533
6534 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6535 tmp &= ~0xFF;
6536 tmp |= 0x1C;
6537 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6538
6539 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6540 tmp &= ~0xFF;
6541 tmp |= 0x1C;
6542 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6543
6544 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6545 tmp &= ~(0xFF << 16);
6546 tmp |= (0x1C << 16);
6547 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6548
6549 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6550 tmp &= ~(0xFF << 16);
6551 tmp |= (0x1C << 16);
6552 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6553
0ff066a9
PZ
6554 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6555 tmp |= (1 << 27);
6556 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6557
0ff066a9
PZ
6558 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6559 tmp |= (1 << 27);
6560 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6561
0ff066a9
PZ
6562 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6563 tmp &= ~(0xF << 28);
6564 tmp |= (4 << 28);
6565 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6566
0ff066a9
PZ
6567 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6568 tmp &= ~(0xF << 28);
6569 tmp |= (4 << 28);
6570 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6571}
6572
2fa86a1f
PZ
6573/* Implements 3 different sequences from BSpec chapter "Display iCLK
6574 * Programming" based on the parameters passed:
6575 * - Sequence to enable CLKOUT_DP
6576 * - Sequence to enable CLKOUT_DP without spread
6577 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6578 */
6579static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6580 bool with_fdi)
f31f2d55
PZ
6581{
6582 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6583 uint32_t reg, tmp;
6584
6585 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6586 with_spread = true;
6587 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6588 with_fdi, "LP PCH doesn't have FDI\n"))
6589 with_fdi = false;
f31f2d55
PZ
6590
6591 mutex_lock(&dev_priv->dpio_lock);
6592
6593 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6594 tmp &= ~SBI_SSCCTL_DISABLE;
6595 tmp |= SBI_SSCCTL_PATHALT;
6596 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6597
6598 udelay(24);
6599
2fa86a1f
PZ
6600 if (with_spread) {
6601 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6602 tmp &= ~SBI_SSCCTL_PATHALT;
6603 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6604
2fa86a1f
PZ
6605 if (with_fdi) {
6606 lpt_reset_fdi_mphy(dev_priv);
6607 lpt_program_fdi_mphy(dev_priv);
6608 }
6609 }
dde86e2d 6610
2fa86a1f
PZ
6611 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6612 SBI_GEN0 : SBI_DBUFF0;
6613 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6614 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6615 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6616
6617 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6618}
6619
47701c3b
PZ
6620/* Sequence to disable CLKOUT_DP */
6621static void lpt_disable_clkout_dp(struct drm_device *dev)
6622{
6623 struct drm_i915_private *dev_priv = dev->dev_private;
6624 uint32_t reg, tmp;
6625
6626 mutex_lock(&dev_priv->dpio_lock);
6627
6628 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6629 SBI_GEN0 : SBI_DBUFF0;
6630 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6631 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6632 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6633
6634 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6635 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6636 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6637 tmp |= SBI_SSCCTL_PATHALT;
6638 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6639 udelay(32);
6640 }
6641 tmp |= SBI_SSCCTL_DISABLE;
6642 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6643 }
6644
6645 mutex_unlock(&dev_priv->dpio_lock);
6646}
6647
bf8fa3d3
PZ
6648static void lpt_init_pch_refclk(struct drm_device *dev)
6649{
6650 struct drm_mode_config *mode_config = &dev->mode_config;
6651 struct intel_encoder *encoder;
6652 bool has_vga = false;
6653
6654 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6655 switch (encoder->type) {
6656 case INTEL_OUTPUT_ANALOG:
6657 has_vga = true;
6658 break;
6659 }
6660 }
6661
47701c3b
PZ
6662 if (has_vga)
6663 lpt_enable_clkout_dp(dev, true, true);
6664 else
6665 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6666}
6667
dde86e2d
PZ
6668/*
6669 * Initialize reference clocks when the driver loads
6670 */
6671void intel_init_pch_refclk(struct drm_device *dev)
6672{
6673 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6674 ironlake_init_pch_refclk(dev);
6675 else if (HAS_PCH_LPT(dev))
6676 lpt_init_pch_refclk(dev);
6677}
6678
d9d444cb
JB
6679static int ironlake_get_refclk(struct drm_crtc *crtc)
6680{
6681 struct drm_device *dev = crtc->dev;
6682 struct drm_i915_private *dev_priv = dev->dev_private;
6683 struct intel_encoder *encoder;
d9d444cb
JB
6684 int num_connectors = 0;
6685 bool is_lvds = false;
6686
6c2b7c12 6687 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6688 switch (encoder->type) {
6689 case INTEL_OUTPUT_LVDS:
6690 is_lvds = true;
6691 break;
d9d444cb
JB
6692 }
6693 num_connectors++;
6694 }
6695
6696 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6697 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6698 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6699 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6700 }
6701
6702 return 120000;
6703}
6704
6ff93609 6705static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6706{
c8203565 6707 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6709 int pipe = intel_crtc->pipe;
c8203565
PZ
6710 uint32_t val;
6711
78114071 6712 val = 0;
c8203565 6713
965e0c48 6714 switch (intel_crtc->config.pipe_bpp) {
c8203565 6715 case 18:
dfd07d72 6716 val |= PIPECONF_6BPC;
c8203565
PZ
6717 break;
6718 case 24:
dfd07d72 6719 val |= PIPECONF_8BPC;
c8203565
PZ
6720 break;
6721 case 30:
dfd07d72 6722 val |= PIPECONF_10BPC;
c8203565
PZ
6723 break;
6724 case 36:
dfd07d72 6725 val |= PIPECONF_12BPC;
c8203565
PZ
6726 break;
6727 default:
cc769b62
PZ
6728 /* Case prevented by intel_choose_pipe_bpp_dither. */
6729 BUG();
c8203565
PZ
6730 }
6731
d8b32247 6732 if (intel_crtc->config.dither)
c8203565
PZ
6733 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6734
6ff93609 6735 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6736 val |= PIPECONF_INTERLACED_ILK;
6737 else
6738 val |= PIPECONF_PROGRESSIVE;
6739
50f3b016 6740 if (intel_crtc->config.limited_color_range)
3685a8f3 6741 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6742
c8203565
PZ
6743 I915_WRITE(PIPECONF(pipe), val);
6744 POSTING_READ(PIPECONF(pipe));
6745}
6746
86d3efce
VS
6747/*
6748 * Set up the pipe CSC unit.
6749 *
6750 * Currently only full range RGB to limited range RGB conversion
6751 * is supported, but eventually this should handle various
6752 * RGB<->YCbCr scenarios as well.
6753 */
50f3b016 6754static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6755{
6756 struct drm_device *dev = crtc->dev;
6757 struct drm_i915_private *dev_priv = dev->dev_private;
6758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6759 int pipe = intel_crtc->pipe;
6760 uint16_t coeff = 0x7800; /* 1.0 */
6761
6762 /*
6763 * TODO: Check what kind of values actually come out of the pipe
6764 * with these coeff/postoff values and adjust to get the best
6765 * accuracy. Perhaps we even need to take the bpc value into
6766 * consideration.
6767 */
6768
50f3b016 6769 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6770 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6771
6772 /*
6773 * GY/GU and RY/RU should be the other way around according
6774 * to BSpec, but reality doesn't agree. Just set them up in
6775 * a way that results in the correct picture.
6776 */
6777 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6778 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6779
6780 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6781 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6782
6783 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6784 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6785
6786 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6787 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6788 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6789
6790 if (INTEL_INFO(dev)->gen > 6) {
6791 uint16_t postoff = 0;
6792
50f3b016 6793 if (intel_crtc->config.limited_color_range)
32cf0cb0 6794 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6795
6796 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6797 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6798 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6799
6800 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6801 } else {
6802 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6803
50f3b016 6804 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6805 mode |= CSC_BLACK_SCREEN_OFFSET;
6806
6807 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6808 }
6809}
6810
6ff93609 6811static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6812{
756f85cf
PZ
6813 struct drm_device *dev = crtc->dev;
6814 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6815 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6816 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6817 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6818 uint32_t val;
6819
3eff4faa 6820 val = 0;
ee2b0b38 6821
756f85cf 6822 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6823 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6824
6ff93609 6825 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6826 val |= PIPECONF_INTERLACED_ILK;
6827 else
6828 val |= PIPECONF_PROGRESSIVE;
6829
702e7a56
PZ
6830 I915_WRITE(PIPECONF(cpu_transcoder), val);
6831 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6832
6833 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6834 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6835
6836 if (IS_BROADWELL(dev)) {
6837 val = 0;
6838
6839 switch (intel_crtc->config.pipe_bpp) {
6840 case 18:
6841 val |= PIPEMISC_DITHER_6_BPC;
6842 break;
6843 case 24:
6844 val |= PIPEMISC_DITHER_8_BPC;
6845 break;
6846 case 30:
6847 val |= PIPEMISC_DITHER_10_BPC;
6848 break;
6849 case 36:
6850 val |= PIPEMISC_DITHER_12_BPC;
6851 break;
6852 default:
6853 /* Case prevented by pipe_config_set_bpp. */
6854 BUG();
6855 }
6856
6857 if (intel_crtc->config.dither)
6858 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6859
6860 I915_WRITE(PIPEMISC(pipe), val);
6861 }
ee2b0b38
PZ
6862}
6863
6591c6e4 6864static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6865 intel_clock_t *clock,
6866 bool *has_reduced_clock,
6867 intel_clock_t *reduced_clock)
6868{
6869 struct drm_device *dev = crtc->dev;
6870 struct drm_i915_private *dev_priv = dev->dev_private;
6871 struct intel_encoder *intel_encoder;
6872 int refclk;
d4906093 6873 const intel_limit_t *limit;
a16af721 6874 bool ret, is_lvds = false;
79e53945 6875
6591c6e4
PZ
6876 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6877 switch (intel_encoder->type) {
79e53945
JB
6878 case INTEL_OUTPUT_LVDS:
6879 is_lvds = true;
6880 break;
79e53945
JB
6881 }
6882 }
6883
d9d444cb 6884 refclk = ironlake_get_refclk(crtc);
79e53945 6885
d4906093
ML
6886 /*
6887 * Returns a set of divisors for the desired target clock with the given
6888 * refclk, or FALSE. The returned values represent the clock equation:
6889 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6890 */
1b894b59 6891 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6892 ret = dev_priv->display.find_dpll(limit, crtc,
6893 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6894 refclk, NULL, clock);
6591c6e4
PZ
6895 if (!ret)
6896 return false;
cda4b7d3 6897
ddc9003c 6898 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6899 /*
6900 * Ensure we match the reduced clock's P to the target clock.
6901 * If the clocks don't match, we can't switch the display clock
6902 * by using the FP0/FP1. In such case we will disable the LVDS
6903 * downclock feature.
6904 */
ee9300bb
DV
6905 *has_reduced_clock =
6906 dev_priv->display.find_dpll(limit, crtc,
6907 dev_priv->lvds_downclock,
6908 refclk, clock,
6909 reduced_clock);
652c393a 6910 }
61e9653f 6911
6591c6e4
PZ
6912 return true;
6913}
6914
d4b1931c
PZ
6915int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6916{
6917 /*
6918 * Account for spread spectrum to avoid
6919 * oversubscribing the link. Max center spread
6920 * is 2.5%; use 5% for safety's sake.
6921 */
6922 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6923 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6924}
6925
7429e9d4 6926static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6927{
7429e9d4 6928 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6929}
6930
de13a2e3 6931static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6932 u32 *fp,
9a7c7890 6933 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6934{
de13a2e3 6935 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6936 struct drm_device *dev = crtc->dev;
6937 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6938 struct intel_encoder *intel_encoder;
6939 uint32_t dpll;
6cc5f341 6940 int factor, num_connectors = 0;
09ede541 6941 bool is_lvds = false, is_sdvo = false;
79e53945 6942
de13a2e3
PZ
6943 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6944 switch (intel_encoder->type) {
79e53945
JB
6945 case INTEL_OUTPUT_LVDS:
6946 is_lvds = true;
6947 break;
6948 case INTEL_OUTPUT_SDVO:
7d57382e 6949 case INTEL_OUTPUT_HDMI:
79e53945 6950 is_sdvo = true;
79e53945 6951 break;
79e53945 6952 }
43565a06 6953
c751ce4f 6954 num_connectors++;
79e53945 6955 }
79e53945 6956
c1858123 6957 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6958 factor = 21;
6959 if (is_lvds) {
6960 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6961 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6962 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6963 factor = 25;
09ede541 6964 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6965 factor = 20;
c1858123 6966
7429e9d4 6967 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6968 *fp |= FP_CB_TUNE;
2c07245f 6969
9a7c7890
DV
6970 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6971 *fp2 |= FP_CB_TUNE;
6972
5eddb70b 6973 dpll = 0;
2c07245f 6974
a07d6787
EA
6975 if (is_lvds)
6976 dpll |= DPLLB_MODE_LVDS;
6977 else
6978 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6979
ef1b460d
DV
6980 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6981 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6982
6983 if (is_sdvo)
4a33e48d 6984 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6985 if (intel_crtc->config.has_dp_encoder)
4a33e48d 6986 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 6987
a07d6787 6988 /* compute bitmask from p1 value */
7429e9d4 6989 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 6990 /* also FPA1 */
7429e9d4 6991 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 6992
7429e9d4 6993 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
6994 case 5:
6995 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6996 break;
6997 case 7:
6998 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6999 break;
7000 case 10:
7001 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7002 break;
7003 case 14:
7004 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7005 break;
79e53945
JB
7006 }
7007
b4c09f3b 7008 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7009 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7010 else
7011 dpll |= PLL_REF_INPUT_DREFCLK;
7012
959e16d6 7013 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7014}
7015
7016static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7017 int x, int y,
7018 struct drm_framebuffer *fb)
7019{
7020 struct drm_device *dev = crtc->dev;
de13a2e3 7021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7022 int num_connectors = 0;
7023 intel_clock_t clock, reduced_clock;
cbbab5bd 7024 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7025 bool ok, has_reduced_clock = false;
8b47047b 7026 bool is_lvds = false;
de13a2e3 7027 struct intel_encoder *encoder;
e2b78267 7028 struct intel_shared_dpll *pll;
de13a2e3
PZ
7029
7030 for_each_encoder_on_crtc(dev, crtc, encoder) {
7031 switch (encoder->type) {
7032 case INTEL_OUTPUT_LVDS:
7033 is_lvds = true;
7034 break;
de13a2e3
PZ
7035 }
7036
7037 num_connectors++;
a07d6787 7038 }
79e53945 7039
5dc5298b
PZ
7040 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7041 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7042
ff9a6750 7043 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7044 &has_reduced_clock, &reduced_clock);
ee9300bb 7045 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7046 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7047 return -EINVAL;
79e53945 7048 }
f47709a9
DV
7049 /* Compat-code for transition, will disappear. */
7050 if (!intel_crtc->config.clock_set) {
7051 intel_crtc->config.dpll.n = clock.n;
7052 intel_crtc->config.dpll.m1 = clock.m1;
7053 intel_crtc->config.dpll.m2 = clock.m2;
7054 intel_crtc->config.dpll.p1 = clock.p1;
7055 intel_crtc->config.dpll.p2 = clock.p2;
7056 }
79e53945 7057
5dc5298b 7058 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7059 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7060 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7061 if (has_reduced_clock)
7429e9d4 7062 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7063
7429e9d4 7064 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7065 &fp, &reduced_clock,
7066 has_reduced_clock ? &fp2 : NULL);
7067
959e16d6 7068 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7069 intel_crtc->config.dpll_hw_state.fp0 = fp;
7070 if (has_reduced_clock)
7071 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7072 else
7073 intel_crtc->config.dpll_hw_state.fp1 = fp;
7074
b89a1d39 7075 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7076 if (pll == NULL) {
84f44ce7 7077 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7078 pipe_name(intel_crtc->pipe));
4b645f14
JB
7079 return -EINVAL;
7080 }
ee7b9f93 7081 } else
e72f9fbf 7082 intel_put_shared_dpll(intel_crtc);
79e53945 7083
d330a953 7084 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7085 intel_crtc->lowfreq_avail = true;
7086 else
7087 intel_crtc->lowfreq_avail = false;
e2b78267 7088
c8f7a0db 7089 return 0;
79e53945
JB
7090}
7091
eb14cb74
VS
7092static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7093 struct intel_link_m_n *m_n)
7094{
7095 struct drm_device *dev = crtc->base.dev;
7096 struct drm_i915_private *dev_priv = dev->dev_private;
7097 enum pipe pipe = crtc->pipe;
7098
7099 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7100 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7101 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7102 & ~TU_SIZE_MASK;
7103 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7104 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7105 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7106}
7107
7108static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7109 enum transcoder transcoder,
7110 struct intel_link_m_n *m_n)
72419203
DV
7111{
7112 struct drm_device *dev = crtc->base.dev;
7113 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7114 enum pipe pipe = crtc->pipe;
72419203 7115
eb14cb74
VS
7116 if (INTEL_INFO(dev)->gen >= 5) {
7117 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7118 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7119 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7120 & ~TU_SIZE_MASK;
7121 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7122 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7123 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7124 } else {
7125 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7126 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7127 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7128 & ~TU_SIZE_MASK;
7129 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7130 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7131 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7132 }
7133}
7134
7135void intel_dp_get_m_n(struct intel_crtc *crtc,
7136 struct intel_crtc_config *pipe_config)
7137{
7138 if (crtc->config.has_pch_encoder)
7139 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7140 else
7141 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7142 &pipe_config->dp_m_n);
7143}
72419203 7144
eb14cb74
VS
7145static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7146 struct intel_crtc_config *pipe_config)
7147{
7148 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7149 &pipe_config->fdi_m_n);
72419203
DV
7150}
7151
2fa2fe9a
DV
7152static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7153 struct intel_crtc_config *pipe_config)
7154{
7155 struct drm_device *dev = crtc->base.dev;
7156 struct drm_i915_private *dev_priv = dev->dev_private;
7157 uint32_t tmp;
7158
7159 tmp = I915_READ(PF_CTL(crtc->pipe));
7160
7161 if (tmp & PF_ENABLE) {
fd4daa9c 7162 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7163 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7164 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7165
7166 /* We currently do not free assignements of panel fitters on
7167 * ivb/hsw (since we don't use the higher upscaling modes which
7168 * differentiates them) so just WARN about this case for now. */
7169 if (IS_GEN7(dev)) {
7170 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7171 PF_PIPE_SEL_IVB(crtc->pipe));
7172 }
2fa2fe9a 7173 }
79e53945
JB
7174}
7175
4c6baa59
JB
7176static void ironlake_get_plane_config(struct intel_crtc *crtc,
7177 struct intel_plane_config *plane_config)
7178{
7179 struct drm_device *dev = crtc->base.dev;
7180 struct drm_i915_private *dev_priv = dev->dev_private;
7181 u32 val, base, offset;
7182 int pipe = crtc->pipe, plane = crtc->plane;
7183 int fourcc, pixel_format;
7184 int aligned_height;
7185
66e514c1
DA
7186 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7187 if (!crtc->base.primary->fb) {
4c6baa59
JB
7188 DRM_DEBUG_KMS("failed to alloc fb\n");
7189 return;
7190 }
7191
7192 val = I915_READ(DSPCNTR(plane));
7193
7194 if (INTEL_INFO(dev)->gen >= 4)
7195 if (val & DISPPLANE_TILED)
7196 plane_config->tiled = true;
7197
7198 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7199 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7200 crtc->base.primary->fb->pixel_format = fourcc;
7201 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7202 drm_format_plane_cpp(fourcc, 0) * 8;
7203
7204 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7205 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7206 offset = I915_READ(DSPOFFSET(plane));
7207 } else {
7208 if (plane_config->tiled)
7209 offset = I915_READ(DSPTILEOFF(plane));
7210 else
7211 offset = I915_READ(DSPLINOFF(plane));
7212 }
7213 plane_config->base = base;
7214
7215 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7216 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7217 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7218
7219 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7220 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7221
66e514c1 7222 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7223 plane_config->tiled);
7224
1267a26b
FF
7225 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7226 aligned_height);
4c6baa59
JB
7227
7228 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7229 pipe, plane, crtc->base.primary->fb->width,
7230 crtc->base.primary->fb->height,
7231 crtc->base.primary->fb->bits_per_pixel, base,
7232 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7233 plane_config->size);
7234}
7235
0e8ffe1b
DV
7236static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7237 struct intel_crtc_config *pipe_config)
7238{
7239 struct drm_device *dev = crtc->base.dev;
7240 struct drm_i915_private *dev_priv = dev->dev_private;
7241 uint32_t tmp;
7242
e143a21c 7243 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7244 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7245
0e8ffe1b
DV
7246 tmp = I915_READ(PIPECONF(crtc->pipe));
7247 if (!(tmp & PIPECONF_ENABLE))
7248 return false;
7249
42571aef
VS
7250 switch (tmp & PIPECONF_BPC_MASK) {
7251 case PIPECONF_6BPC:
7252 pipe_config->pipe_bpp = 18;
7253 break;
7254 case PIPECONF_8BPC:
7255 pipe_config->pipe_bpp = 24;
7256 break;
7257 case PIPECONF_10BPC:
7258 pipe_config->pipe_bpp = 30;
7259 break;
7260 case PIPECONF_12BPC:
7261 pipe_config->pipe_bpp = 36;
7262 break;
7263 default:
7264 break;
7265 }
7266
b5a9fa09
DV
7267 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7268 pipe_config->limited_color_range = true;
7269
ab9412ba 7270 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7271 struct intel_shared_dpll *pll;
7272
88adfff1
DV
7273 pipe_config->has_pch_encoder = true;
7274
627eb5a3
DV
7275 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7276 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7277 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7278
7279 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7280
c0d43d62 7281 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7282 pipe_config->shared_dpll =
7283 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7284 } else {
7285 tmp = I915_READ(PCH_DPLL_SEL);
7286 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7287 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7288 else
7289 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7290 }
66e985c0
DV
7291
7292 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7293
7294 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7295 &pipe_config->dpll_hw_state));
c93f54cf
DV
7296
7297 tmp = pipe_config->dpll_hw_state.dpll;
7298 pipe_config->pixel_multiplier =
7299 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7300 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7301
7302 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7303 } else {
7304 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7305 }
7306
1bd1bd80
DV
7307 intel_get_pipe_timings(crtc, pipe_config);
7308
2fa2fe9a
DV
7309 ironlake_get_pfit_config(crtc, pipe_config);
7310
0e8ffe1b
DV
7311 return true;
7312}
7313
be256dc7
PZ
7314static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7315{
7316 struct drm_device *dev = dev_priv->dev;
be256dc7 7317 struct intel_crtc *crtc;
be256dc7 7318
d3fcc808 7319 for_each_intel_crtc(dev, crtc)
798183c5 7320 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7321 pipe_name(crtc->pipe));
7322
7323 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7324 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7325 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7326 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7327 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7328 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7329 "CPU PWM1 enabled\n");
7330 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7331 "CPU PWM2 enabled\n");
7332 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7333 "PCH PWM1 enabled\n");
7334 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7335 "Utility pin enabled\n");
7336 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7337
9926ada1
PZ
7338 /*
7339 * In theory we can still leave IRQs enabled, as long as only the HPD
7340 * interrupts remain enabled. We used to check for that, but since it's
7341 * gen-specific and since we only disable LCPLL after we fully disable
7342 * the interrupts, the check below should be enough.
7343 */
7344 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7345}
7346
9ccd5aeb
PZ
7347static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7348{
7349 struct drm_device *dev = dev_priv->dev;
7350
7351 if (IS_HASWELL(dev))
7352 return I915_READ(D_COMP_HSW);
7353 else
7354 return I915_READ(D_COMP_BDW);
7355}
7356
3c4c9b81
PZ
7357static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7358{
7359 struct drm_device *dev = dev_priv->dev;
7360
7361 if (IS_HASWELL(dev)) {
7362 mutex_lock(&dev_priv->rps.hw_lock);
7363 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7364 val))
f475dadf 7365 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7366 mutex_unlock(&dev_priv->rps.hw_lock);
7367 } else {
9ccd5aeb
PZ
7368 I915_WRITE(D_COMP_BDW, val);
7369 POSTING_READ(D_COMP_BDW);
3c4c9b81 7370 }
be256dc7
PZ
7371}
7372
7373/*
7374 * This function implements pieces of two sequences from BSpec:
7375 * - Sequence for display software to disable LCPLL
7376 * - Sequence for display software to allow package C8+
7377 * The steps implemented here are just the steps that actually touch the LCPLL
7378 * register. Callers should take care of disabling all the display engine
7379 * functions, doing the mode unset, fixing interrupts, etc.
7380 */
6ff58d53
PZ
7381static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7382 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7383{
7384 uint32_t val;
7385
7386 assert_can_disable_lcpll(dev_priv);
7387
7388 val = I915_READ(LCPLL_CTL);
7389
7390 if (switch_to_fclk) {
7391 val |= LCPLL_CD_SOURCE_FCLK;
7392 I915_WRITE(LCPLL_CTL, val);
7393
7394 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7395 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7396 DRM_ERROR("Switching to FCLK failed\n");
7397
7398 val = I915_READ(LCPLL_CTL);
7399 }
7400
7401 val |= LCPLL_PLL_DISABLE;
7402 I915_WRITE(LCPLL_CTL, val);
7403 POSTING_READ(LCPLL_CTL);
7404
7405 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7406 DRM_ERROR("LCPLL still locked\n");
7407
9ccd5aeb 7408 val = hsw_read_dcomp(dev_priv);
be256dc7 7409 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7410 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7411 ndelay(100);
7412
9ccd5aeb
PZ
7413 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7414 1))
be256dc7
PZ
7415 DRM_ERROR("D_COMP RCOMP still in progress\n");
7416
7417 if (allow_power_down) {
7418 val = I915_READ(LCPLL_CTL);
7419 val |= LCPLL_POWER_DOWN_ALLOW;
7420 I915_WRITE(LCPLL_CTL, val);
7421 POSTING_READ(LCPLL_CTL);
7422 }
7423}
7424
7425/*
7426 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7427 * source.
7428 */
6ff58d53 7429static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7430{
7431 uint32_t val;
a8a8bd54 7432 unsigned long irqflags;
be256dc7
PZ
7433
7434 val = I915_READ(LCPLL_CTL);
7435
7436 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7437 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7438 return;
7439
a8a8bd54
PZ
7440 /*
7441 * Make sure we're not on PC8 state before disabling PC8, otherwise
7442 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7443 *
7444 * The other problem is that hsw_restore_lcpll() is called as part of
7445 * the runtime PM resume sequence, so we can't just call
7446 * gen6_gt_force_wake_get() because that function calls
7447 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7448 * while we are on the resume sequence. So to solve this problem we have
7449 * to call special forcewake code that doesn't touch runtime PM and
7450 * doesn't enable the forcewake delayed work.
7451 */
7452 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7453 if (dev_priv->uncore.forcewake_count++ == 0)
7454 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7455 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7456
be256dc7
PZ
7457 if (val & LCPLL_POWER_DOWN_ALLOW) {
7458 val &= ~LCPLL_POWER_DOWN_ALLOW;
7459 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7460 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7461 }
7462
9ccd5aeb 7463 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7464 val |= D_COMP_COMP_FORCE;
7465 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7466 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7467
7468 val = I915_READ(LCPLL_CTL);
7469 val &= ~LCPLL_PLL_DISABLE;
7470 I915_WRITE(LCPLL_CTL, val);
7471
7472 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7473 DRM_ERROR("LCPLL not locked yet\n");
7474
7475 if (val & LCPLL_CD_SOURCE_FCLK) {
7476 val = I915_READ(LCPLL_CTL);
7477 val &= ~LCPLL_CD_SOURCE_FCLK;
7478 I915_WRITE(LCPLL_CTL, val);
7479
7480 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7481 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7482 DRM_ERROR("Switching back to LCPLL failed\n");
7483 }
215733fa 7484
a8a8bd54
PZ
7485 /* See the big comment above. */
7486 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7487 if (--dev_priv->uncore.forcewake_count == 0)
7488 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7489 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7490}
7491
765dab67
PZ
7492/*
7493 * Package states C8 and deeper are really deep PC states that can only be
7494 * reached when all the devices on the system allow it, so even if the graphics
7495 * device allows PC8+, it doesn't mean the system will actually get to these
7496 * states. Our driver only allows PC8+ when going into runtime PM.
7497 *
7498 * The requirements for PC8+ are that all the outputs are disabled, the power
7499 * well is disabled and most interrupts are disabled, and these are also
7500 * requirements for runtime PM. When these conditions are met, we manually do
7501 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7502 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7503 * hang the machine.
7504 *
7505 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7506 * the state of some registers, so when we come back from PC8+ we need to
7507 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7508 * need to take care of the registers kept by RC6. Notice that this happens even
7509 * if we don't put the device in PCI D3 state (which is what currently happens
7510 * because of the runtime PM support).
7511 *
7512 * For more, read "Display Sequences for Package C8" on the hardware
7513 * documentation.
7514 */
a14cb6fc 7515void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7516{
c67a470b
PZ
7517 struct drm_device *dev = dev_priv->dev;
7518 uint32_t val;
7519
c67a470b
PZ
7520 DRM_DEBUG_KMS("Enabling package C8+\n");
7521
c67a470b
PZ
7522 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7523 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7524 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7525 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7526 }
7527
7528 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7529 hsw_disable_lcpll(dev_priv, true, true);
7530}
7531
a14cb6fc 7532void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7533{
7534 struct drm_device *dev = dev_priv->dev;
7535 uint32_t val;
7536
c67a470b
PZ
7537 DRM_DEBUG_KMS("Disabling package C8+\n");
7538
7539 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7540 lpt_init_pch_refclk(dev);
7541
7542 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7543 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7544 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7545 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7546 }
7547
7548 intel_prepare_ddi(dev);
c67a470b
PZ
7549}
7550
9a952a0d
PZ
7551static void snb_modeset_global_resources(struct drm_device *dev)
7552{
7553 modeset_update_crtc_power_domains(dev);
7554}
7555
4f074129
ID
7556static void haswell_modeset_global_resources(struct drm_device *dev)
7557{
da723569 7558 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7559}
7560
09b4ddf9 7561static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7562 int x, int y,
7563 struct drm_framebuffer *fb)
7564{
09b4ddf9 7565 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7566
566b734a 7567 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7568 return -EINVAL;
716c2e55 7569
644cef34
DV
7570 intel_crtc->lowfreq_avail = false;
7571
c8f7a0db 7572 return 0;
79e53945
JB
7573}
7574
26804afd
DV
7575static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7576 struct intel_crtc_config *pipe_config)
7577{
7578 struct drm_device *dev = crtc->base.dev;
7579 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7580 struct intel_shared_dpll *pll;
26804afd
DV
7581 enum port port;
7582 uint32_t tmp;
7583
7584 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7585
7586 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7587
7588 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9cd86933
DV
7589
7590 switch (pipe_config->ddi_pll_sel) {
7591 case PORT_CLK_SEL_WRPLL1:
7592 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7593 break;
7594 case PORT_CLK_SEL_WRPLL2:
7595 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7596 break;
7597 }
7598
d452c5b6
DV
7599 if (pipe_config->shared_dpll >= 0) {
7600 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7601
7602 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7603 &pipe_config->dpll_hw_state));
7604 }
7605
26804afd
DV
7606 /*
7607 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7608 * DDI E. So just check whether this pipe is wired to DDI E and whether
7609 * the PCH transcoder is on.
7610 */
7611 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7612 pipe_config->has_pch_encoder = true;
7613
7614 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7615 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7616 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7617
7618 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7619 }
7620}
7621
0e8ffe1b
DV
7622static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7623 struct intel_crtc_config *pipe_config)
7624{
7625 struct drm_device *dev = crtc->base.dev;
7626 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7627 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7628 uint32_t tmp;
7629
b5482bd0
ID
7630 if (!intel_display_power_enabled(dev_priv,
7631 POWER_DOMAIN_PIPE(crtc->pipe)))
7632 return false;
7633
e143a21c 7634 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7635 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7636
eccb140b
DV
7637 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7638 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7639 enum pipe trans_edp_pipe;
7640 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7641 default:
7642 WARN(1, "unknown pipe linked to edp transcoder\n");
7643 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7644 case TRANS_DDI_EDP_INPUT_A_ON:
7645 trans_edp_pipe = PIPE_A;
7646 break;
7647 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7648 trans_edp_pipe = PIPE_B;
7649 break;
7650 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7651 trans_edp_pipe = PIPE_C;
7652 break;
7653 }
7654
7655 if (trans_edp_pipe == crtc->pipe)
7656 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7657 }
7658
da7e29bd 7659 if (!intel_display_power_enabled(dev_priv,
eccb140b 7660 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7661 return false;
7662
eccb140b 7663 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7664 if (!(tmp & PIPECONF_ENABLE))
7665 return false;
7666
26804afd 7667 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7668
1bd1bd80
DV
7669 intel_get_pipe_timings(crtc, pipe_config);
7670
2fa2fe9a 7671 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7672 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7673 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7674
e59150dc
JB
7675 if (IS_HASWELL(dev))
7676 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7677 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7678
6c49f241
DV
7679 pipe_config->pixel_multiplier = 1;
7680
0e8ffe1b
DV
7681 return true;
7682}
7683
1a91510d
JN
7684static struct {
7685 int clock;
7686 u32 config;
7687} hdmi_audio_clock[] = {
7688 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7689 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7690 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7691 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7692 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7693 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7694 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7695 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7696 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7697 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7698};
7699
7700/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7701static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7702{
7703 int i;
7704
7705 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7706 if (mode->clock == hdmi_audio_clock[i].clock)
7707 break;
7708 }
7709
7710 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7711 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7712 i = 1;
7713 }
7714
7715 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7716 hdmi_audio_clock[i].clock,
7717 hdmi_audio_clock[i].config);
7718
7719 return hdmi_audio_clock[i].config;
7720}
7721
3a9627f4
WF
7722static bool intel_eld_uptodate(struct drm_connector *connector,
7723 int reg_eldv, uint32_t bits_eldv,
7724 int reg_elda, uint32_t bits_elda,
7725 int reg_edid)
7726{
7727 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7728 uint8_t *eld = connector->eld;
7729 uint32_t i;
7730
7731 i = I915_READ(reg_eldv);
7732 i &= bits_eldv;
7733
7734 if (!eld[0])
7735 return !i;
7736
7737 if (!i)
7738 return false;
7739
7740 i = I915_READ(reg_elda);
7741 i &= ~bits_elda;
7742 I915_WRITE(reg_elda, i);
7743
7744 for (i = 0; i < eld[2]; i++)
7745 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7746 return false;
7747
7748 return true;
7749}
7750
e0dac65e 7751static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7752 struct drm_crtc *crtc,
7753 struct drm_display_mode *mode)
e0dac65e
WF
7754{
7755 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7756 uint8_t *eld = connector->eld;
7757 uint32_t eldv;
7758 uint32_t len;
7759 uint32_t i;
7760
7761 i = I915_READ(G4X_AUD_VID_DID);
7762
7763 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7764 eldv = G4X_ELDV_DEVCL_DEVBLC;
7765 else
7766 eldv = G4X_ELDV_DEVCTG;
7767
3a9627f4
WF
7768 if (intel_eld_uptodate(connector,
7769 G4X_AUD_CNTL_ST, eldv,
7770 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7771 G4X_HDMIW_HDMIEDID))
7772 return;
7773
e0dac65e
WF
7774 i = I915_READ(G4X_AUD_CNTL_ST);
7775 i &= ~(eldv | G4X_ELD_ADDR);
7776 len = (i >> 9) & 0x1f; /* ELD buffer size */
7777 I915_WRITE(G4X_AUD_CNTL_ST, i);
7778
7779 if (!eld[0])
7780 return;
7781
7782 len = min_t(uint8_t, eld[2], len);
7783 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7784 for (i = 0; i < len; i++)
7785 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7786
7787 i = I915_READ(G4X_AUD_CNTL_ST);
7788 i |= eldv;
7789 I915_WRITE(G4X_AUD_CNTL_ST, i);
7790}
7791
83358c85 7792static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7793 struct drm_crtc *crtc,
7794 struct drm_display_mode *mode)
83358c85
WX
7795{
7796 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7797 uint8_t *eld = connector->eld;
83358c85
WX
7798 uint32_t eldv;
7799 uint32_t i;
7800 int len;
7801 int pipe = to_intel_crtc(crtc)->pipe;
7802 int tmp;
7803
7804 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7805 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7806 int aud_config = HSW_AUD_CFG(pipe);
7807 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7808
83358c85
WX
7809 /* Audio output enable */
7810 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7811 tmp = I915_READ(aud_cntrl_st2);
7812 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7813 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7814 POSTING_READ(aud_cntrl_st2);
83358c85 7815
c7905792 7816 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7817
7818 /* Set ELD valid state */
7819 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7820 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7821 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7822 I915_WRITE(aud_cntrl_st2, tmp);
7823 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7824 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7825
7826 /* Enable HDMI mode */
7827 tmp = I915_READ(aud_config);
7e7cb34f 7828 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7829 /* clear N_programing_enable and N_value_index */
7830 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7831 I915_WRITE(aud_config, tmp);
7832
7833 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7834
7835 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7836
7837 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7838 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7839 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7840 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7841 } else {
7842 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7843 }
83358c85
WX
7844
7845 if (intel_eld_uptodate(connector,
7846 aud_cntrl_st2, eldv,
7847 aud_cntl_st, IBX_ELD_ADDRESS,
7848 hdmiw_hdmiedid))
7849 return;
7850
7851 i = I915_READ(aud_cntrl_st2);
7852 i &= ~eldv;
7853 I915_WRITE(aud_cntrl_st2, i);
7854
7855 if (!eld[0])
7856 return;
7857
7858 i = I915_READ(aud_cntl_st);
7859 i &= ~IBX_ELD_ADDRESS;
7860 I915_WRITE(aud_cntl_st, i);
7861 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7862 DRM_DEBUG_DRIVER("port num:%d\n", i);
7863
7864 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7865 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7866 for (i = 0; i < len; i++)
7867 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7868
7869 i = I915_READ(aud_cntrl_st2);
7870 i |= eldv;
7871 I915_WRITE(aud_cntrl_st2, i);
7872
7873}
7874
e0dac65e 7875static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7876 struct drm_crtc *crtc,
7877 struct drm_display_mode *mode)
e0dac65e
WF
7878{
7879 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7880 uint8_t *eld = connector->eld;
7881 uint32_t eldv;
7882 uint32_t i;
7883 int len;
7884 int hdmiw_hdmiedid;
b6daa025 7885 int aud_config;
e0dac65e
WF
7886 int aud_cntl_st;
7887 int aud_cntrl_st2;
9b138a83 7888 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7889
b3f33cbf 7890 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7891 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7892 aud_config = IBX_AUD_CFG(pipe);
7893 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7894 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7895 } else if (IS_VALLEYVIEW(connector->dev)) {
7896 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7897 aud_config = VLV_AUD_CFG(pipe);
7898 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7899 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7900 } else {
9b138a83
WX
7901 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7902 aud_config = CPT_AUD_CFG(pipe);
7903 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7904 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7905 }
7906
9b138a83 7907 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7908
9ca2fe73
ML
7909 if (IS_VALLEYVIEW(connector->dev)) {
7910 struct intel_encoder *intel_encoder;
7911 struct intel_digital_port *intel_dig_port;
7912
7913 intel_encoder = intel_attached_encoder(connector);
7914 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7915 i = intel_dig_port->port;
7916 } else {
7917 i = I915_READ(aud_cntl_st);
7918 i = (i >> 29) & DIP_PORT_SEL_MASK;
7919 /* DIP_Port_Select, 0x1 = PortB */
7920 }
7921
e0dac65e
WF
7922 if (!i) {
7923 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7924 /* operate blindly on all ports */
1202b4c6
WF
7925 eldv = IBX_ELD_VALIDB;
7926 eldv |= IBX_ELD_VALIDB << 4;
7927 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7928 } else {
2582a850 7929 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7930 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7931 }
7932
3a9627f4
WF
7933 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7934 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7935 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7936 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7937 } else {
7938 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7939 }
e0dac65e 7940
3a9627f4
WF
7941 if (intel_eld_uptodate(connector,
7942 aud_cntrl_st2, eldv,
7943 aud_cntl_st, IBX_ELD_ADDRESS,
7944 hdmiw_hdmiedid))
7945 return;
7946
e0dac65e
WF
7947 i = I915_READ(aud_cntrl_st2);
7948 i &= ~eldv;
7949 I915_WRITE(aud_cntrl_st2, i);
7950
7951 if (!eld[0])
7952 return;
7953
e0dac65e 7954 i = I915_READ(aud_cntl_st);
1202b4c6 7955 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7956 I915_WRITE(aud_cntl_st, i);
7957
7958 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7959 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7960 for (i = 0; i < len; i++)
7961 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7962
7963 i = I915_READ(aud_cntrl_st2);
7964 i |= eldv;
7965 I915_WRITE(aud_cntrl_st2, i);
7966}
7967
7968void intel_write_eld(struct drm_encoder *encoder,
7969 struct drm_display_mode *mode)
7970{
7971 struct drm_crtc *crtc = encoder->crtc;
7972 struct drm_connector *connector;
7973 struct drm_device *dev = encoder->dev;
7974 struct drm_i915_private *dev_priv = dev->dev_private;
7975
7976 connector = drm_select_eld(encoder, mode);
7977 if (!connector)
7978 return;
7979
7980 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7981 connector->base.id,
c23cc417 7982 connector->name,
e0dac65e 7983 connector->encoder->base.id,
8e329a03 7984 connector->encoder->name);
e0dac65e
WF
7985
7986 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7987
7988 if (dev_priv->display.write_eld)
34427052 7989 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7990}
7991
560b85bb
CW
7992static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7993{
7994 struct drm_device *dev = crtc->dev;
7995 struct drm_i915_private *dev_priv = dev->dev_private;
7996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7997 uint32_t cntl;
560b85bb 7998
4b0e333e 7999 if (base != intel_crtc->cursor_base) {
560b85bb
CW
8000 /* On these chipsets we can only modify the base whilst
8001 * the cursor is disabled.
8002 */
4b0e333e
CW
8003 if (intel_crtc->cursor_cntl) {
8004 I915_WRITE(_CURACNTR, 0);
8005 POSTING_READ(_CURACNTR);
8006 intel_crtc->cursor_cntl = 0;
8007 }
8008
9db4a9c7 8009 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8010 POSTING_READ(_CURABASE);
8011 }
560b85bb 8012
4b0e333e
CW
8013 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8014 cntl = 0;
8015 if (base)
8016 cntl = (CURSOR_ENABLE |
560b85bb 8017 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8018 CURSOR_FORMAT_ARGB);
8019 if (intel_crtc->cursor_cntl != cntl) {
8020 I915_WRITE(_CURACNTR, cntl);
8021 POSTING_READ(_CURACNTR);
8022 intel_crtc->cursor_cntl = cntl;
8023 }
560b85bb
CW
8024}
8025
8026static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8027{
8028 struct drm_device *dev = crtc->dev;
8029 struct drm_i915_private *dev_priv = dev->dev_private;
8030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8031 int pipe = intel_crtc->pipe;
4b0e333e 8032 uint32_t cntl;
4726e0b0 8033
4b0e333e
CW
8034 cntl = 0;
8035 if (base) {
8036 cntl = MCURSOR_GAMMA_ENABLE;
8037 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8038 case 64:
8039 cntl |= CURSOR_MODE_64_ARGB_AX;
8040 break;
8041 case 128:
8042 cntl |= CURSOR_MODE_128_ARGB_AX;
8043 break;
8044 case 256:
8045 cntl |= CURSOR_MODE_256_ARGB_AX;
8046 break;
8047 default:
8048 WARN_ON(1);
8049 return;
560b85bb 8050 }
4b0e333e
CW
8051 cntl |= pipe << 28; /* Connect to correct pipe */
8052 }
8053 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8054 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8055 POSTING_READ(CURCNTR(pipe));
8056 intel_crtc->cursor_cntl = cntl;
560b85bb 8057 }
4b0e333e 8058
560b85bb 8059 /* and commit changes on next vblank */
9db4a9c7 8060 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8061 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8062}
8063
65a21cd6
JB
8064static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8065{
8066 struct drm_device *dev = crtc->dev;
8067 struct drm_i915_private *dev_priv = dev->dev_private;
8068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8069 int pipe = intel_crtc->pipe;
4b0e333e
CW
8070 uint32_t cntl;
8071
8072 cntl = 0;
8073 if (base) {
8074 cntl = MCURSOR_GAMMA_ENABLE;
8075 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8076 case 64:
8077 cntl |= CURSOR_MODE_64_ARGB_AX;
8078 break;
8079 case 128:
8080 cntl |= CURSOR_MODE_128_ARGB_AX;
8081 break;
8082 case 256:
8083 cntl |= CURSOR_MODE_256_ARGB_AX;
8084 break;
8085 default:
8086 WARN_ON(1);
8087 return;
65a21cd6 8088 }
4b0e333e
CW
8089 }
8090 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8091 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8092
4b0e333e
CW
8093 if (intel_crtc->cursor_cntl != cntl) {
8094 I915_WRITE(CURCNTR(pipe), cntl);
8095 POSTING_READ(CURCNTR(pipe));
8096 intel_crtc->cursor_cntl = cntl;
65a21cd6 8097 }
4b0e333e 8098
65a21cd6 8099 /* and commit changes on next vblank */
5efb3e28
VS
8100 I915_WRITE(CURBASE(pipe), base);
8101 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8102}
8103
cda4b7d3 8104/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8105static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8106 bool on)
cda4b7d3
CW
8107{
8108 struct drm_device *dev = crtc->dev;
8109 struct drm_i915_private *dev_priv = dev->dev_private;
8110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8111 int pipe = intel_crtc->pipe;
3d7d6510
MR
8112 int x = crtc->cursor_x;
8113 int y = crtc->cursor_y;
d6e4db15 8114 u32 base = 0, pos = 0;
cda4b7d3 8115
d6e4db15 8116 if (on)
cda4b7d3 8117 base = intel_crtc->cursor_addr;
cda4b7d3 8118
d6e4db15
VS
8119 if (x >= intel_crtc->config.pipe_src_w)
8120 base = 0;
8121
8122 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8123 base = 0;
8124
8125 if (x < 0) {
efc9064e 8126 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8127 base = 0;
8128
8129 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8130 x = -x;
8131 }
8132 pos |= x << CURSOR_X_SHIFT;
8133
8134 if (y < 0) {
efc9064e 8135 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8136 base = 0;
8137
8138 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8139 y = -y;
8140 }
8141 pos |= y << CURSOR_Y_SHIFT;
8142
4b0e333e 8143 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8144 return;
8145
5efb3e28
VS
8146 I915_WRITE(CURPOS(pipe), pos);
8147
8148 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8149 ivb_update_cursor(crtc, base);
5efb3e28
VS
8150 else if (IS_845G(dev) || IS_I865G(dev))
8151 i845_update_cursor(crtc, base);
8152 else
8153 i9xx_update_cursor(crtc, base);
4b0e333e 8154 intel_crtc->cursor_base = base;
cda4b7d3
CW
8155}
8156
e3287951
MR
8157/*
8158 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8159 *
8160 * Note that the object's reference will be consumed if the update fails. If
8161 * the update succeeds, the reference of the old object (if any) will be
8162 * consumed.
8163 */
8164static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8165 struct drm_i915_gem_object *obj,
8166 uint32_t width, uint32_t height)
79e53945
JB
8167{
8168 struct drm_device *dev = crtc->dev;
8169 struct drm_i915_private *dev_priv = dev->dev_private;
8170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8171 enum pipe pipe = intel_crtc->pipe;
64f962e3 8172 unsigned old_width;
cda4b7d3 8173 uint32_t addr;
3f8bc370 8174 int ret;
79e53945 8175
79e53945 8176 /* if we want to turn off the cursor ignore width and height */
e3287951 8177 if (!obj) {
28c97730 8178 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8179 addr = 0;
05394f39 8180 obj = NULL;
5004417d 8181 mutex_lock(&dev->struct_mutex);
3f8bc370 8182 goto finish;
79e53945
JB
8183 }
8184
4726e0b0
SK
8185 /* Check for which cursor types we support */
8186 if (!((width == 64 && height == 64) ||
8187 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8188 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8189 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8190 return -EINVAL;
8191 }
8192
05394f39 8193 if (obj->base.size < width * height * 4) {
e3287951 8194 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8195 ret = -ENOMEM;
8196 goto fail;
79e53945
JB
8197 }
8198
71acb5eb 8199 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8200 mutex_lock(&dev->struct_mutex);
3d13ef2e 8201 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8202 unsigned alignment;
8203
d9e86c0e 8204 if (obj->tiling_mode) {
3b25b31f 8205 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8206 ret = -EINVAL;
8207 goto fail_locked;
8208 }
8209
693db184
CW
8210 /* Note that the w/a also requires 2 PTE of padding following
8211 * the bo. We currently fill all unused PTE with the shadow
8212 * page and so we should always have valid PTE following the
8213 * cursor preventing the VT-d warning.
8214 */
8215 alignment = 0;
8216 if (need_vtd_wa(dev))
8217 alignment = 64*1024;
8218
8219 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8220 if (ret) {
3b25b31f 8221 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8222 goto fail_locked;
e7b526bb
CW
8223 }
8224
d9e86c0e
CW
8225 ret = i915_gem_object_put_fence(obj);
8226 if (ret) {
3b25b31f 8227 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8228 goto fail_unpin;
8229 }
8230
f343c5f6 8231 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8232 } else {
6eeefaf3 8233 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8234 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8235 if (ret) {
3b25b31f 8236 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8237 goto fail_locked;
71acb5eb 8238 }
00731155 8239 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8240 }
8241
a6c45cf0 8242 if (IS_GEN2(dev))
14b60391
JB
8243 I915_WRITE(CURSIZE, (height << 12) | width);
8244
3f8bc370 8245 finish:
3f8bc370 8246 if (intel_crtc->cursor_bo) {
00731155 8247 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8248 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8249 }
80824003 8250
a071fa00
DV
8251 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8252 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8253 mutex_unlock(&dev->struct_mutex);
3f8bc370 8254
64f962e3
CW
8255 old_width = intel_crtc->cursor_width;
8256
3f8bc370 8257 intel_crtc->cursor_addr = addr;
05394f39 8258 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8259 intel_crtc->cursor_width = width;
8260 intel_crtc->cursor_height = height;
8261
64f962e3
CW
8262 if (intel_crtc->active) {
8263 if (old_width != width)
8264 intel_update_watermarks(crtc);
f2f5f771 8265 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8266 }
3f8bc370 8267
f99d7069
DV
8268 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8269
79e53945 8270 return 0;
e7b526bb 8271fail_unpin:
cc98b413 8272 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8273fail_locked:
34b8686e 8274 mutex_unlock(&dev->struct_mutex);
bc9025bd 8275fail:
05394f39 8276 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8277 return ret;
79e53945
JB
8278}
8279
79e53945 8280static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8281 u16 *blue, uint32_t start, uint32_t size)
79e53945 8282{
7203425a 8283 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8285
7203425a 8286 for (i = start; i < end; i++) {
79e53945
JB
8287 intel_crtc->lut_r[i] = red[i] >> 8;
8288 intel_crtc->lut_g[i] = green[i] >> 8;
8289 intel_crtc->lut_b[i] = blue[i] >> 8;
8290 }
8291
8292 intel_crtc_load_lut(crtc);
8293}
8294
79e53945
JB
8295/* VESA 640x480x72Hz mode to set on the pipe */
8296static struct drm_display_mode load_detect_mode = {
8297 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8298 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8299};
8300
a8bb6818
DV
8301struct drm_framebuffer *
8302__intel_framebuffer_create(struct drm_device *dev,
8303 struct drm_mode_fb_cmd2 *mode_cmd,
8304 struct drm_i915_gem_object *obj)
d2dff872
CW
8305{
8306 struct intel_framebuffer *intel_fb;
8307 int ret;
8308
8309 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8310 if (!intel_fb) {
8311 drm_gem_object_unreference_unlocked(&obj->base);
8312 return ERR_PTR(-ENOMEM);
8313 }
8314
8315 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8316 if (ret)
8317 goto err;
d2dff872
CW
8318
8319 return &intel_fb->base;
dd4916c5
DV
8320err:
8321 drm_gem_object_unreference_unlocked(&obj->base);
8322 kfree(intel_fb);
8323
8324 return ERR_PTR(ret);
d2dff872
CW
8325}
8326
b5ea642a 8327static struct drm_framebuffer *
a8bb6818
DV
8328intel_framebuffer_create(struct drm_device *dev,
8329 struct drm_mode_fb_cmd2 *mode_cmd,
8330 struct drm_i915_gem_object *obj)
8331{
8332 struct drm_framebuffer *fb;
8333 int ret;
8334
8335 ret = i915_mutex_lock_interruptible(dev);
8336 if (ret)
8337 return ERR_PTR(ret);
8338 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8339 mutex_unlock(&dev->struct_mutex);
8340
8341 return fb;
8342}
8343
d2dff872
CW
8344static u32
8345intel_framebuffer_pitch_for_width(int width, int bpp)
8346{
8347 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8348 return ALIGN(pitch, 64);
8349}
8350
8351static u32
8352intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8353{
8354 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8355 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8356}
8357
8358static struct drm_framebuffer *
8359intel_framebuffer_create_for_mode(struct drm_device *dev,
8360 struct drm_display_mode *mode,
8361 int depth, int bpp)
8362{
8363 struct drm_i915_gem_object *obj;
0fed39bd 8364 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8365
8366 obj = i915_gem_alloc_object(dev,
8367 intel_framebuffer_size_for_mode(mode, bpp));
8368 if (obj == NULL)
8369 return ERR_PTR(-ENOMEM);
8370
8371 mode_cmd.width = mode->hdisplay;
8372 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8373 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8374 bpp);
5ca0c34a 8375 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8376
8377 return intel_framebuffer_create(dev, &mode_cmd, obj);
8378}
8379
8380static struct drm_framebuffer *
8381mode_fits_in_fbdev(struct drm_device *dev,
8382 struct drm_display_mode *mode)
8383{
4520f53a 8384#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8385 struct drm_i915_private *dev_priv = dev->dev_private;
8386 struct drm_i915_gem_object *obj;
8387 struct drm_framebuffer *fb;
8388
4c0e5528 8389 if (!dev_priv->fbdev)
d2dff872
CW
8390 return NULL;
8391
4c0e5528 8392 if (!dev_priv->fbdev->fb)
d2dff872
CW
8393 return NULL;
8394
4c0e5528
DV
8395 obj = dev_priv->fbdev->fb->obj;
8396 BUG_ON(!obj);
8397
8bcd4553 8398 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8399 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8400 fb->bits_per_pixel))
d2dff872
CW
8401 return NULL;
8402
01f2c773 8403 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8404 return NULL;
8405
8406 return fb;
4520f53a
DV
8407#else
8408 return NULL;
8409#endif
d2dff872
CW
8410}
8411
d2434ab7 8412bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8413 struct drm_display_mode *mode,
51fd371b
RC
8414 struct intel_load_detect_pipe *old,
8415 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8416{
8417 struct intel_crtc *intel_crtc;
d2434ab7
DV
8418 struct intel_encoder *intel_encoder =
8419 intel_attached_encoder(connector);
79e53945 8420 struct drm_crtc *possible_crtc;
4ef69c7a 8421 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8422 struct drm_crtc *crtc = NULL;
8423 struct drm_device *dev = encoder->dev;
94352cf9 8424 struct drm_framebuffer *fb;
51fd371b
RC
8425 struct drm_mode_config *config = &dev->mode_config;
8426 int ret, i = -1;
79e53945 8427
d2dff872 8428 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8429 connector->base.id, connector->name,
8e329a03 8430 encoder->base.id, encoder->name);
d2dff872 8431
51fd371b
RC
8432 drm_modeset_acquire_init(ctx, 0);
8433
8434retry:
8435 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8436 if (ret)
8437 goto fail_unlock;
6e9f798d 8438
79e53945
JB
8439 /*
8440 * Algorithm gets a little messy:
7a5e4805 8441 *
79e53945
JB
8442 * - if the connector already has an assigned crtc, use it (but make
8443 * sure it's on first)
7a5e4805 8444 *
79e53945
JB
8445 * - try to find the first unused crtc that can drive this connector,
8446 * and use that if we find one
79e53945
JB
8447 */
8448
8449 /* See if we already have a CRTC for this connector */
8450 if (encoder->crtc) {
8451 crtc = encoder->crtc;
8261b191 8452
51fd371b
RC
8453 ret = drm_modeset_lock(&crtc->mutex, ctx);
8454 if (ret)
8455 goto fail_unlock;
7b24056b 8456
24218aac 8457 old->dpms_mode = connector->dpms;
8261b191
CW
8458 old->load_detect_temp = false;
8459
8460 /* Make sure the crtc and connector are running */
24218aac
DV
8461 if (connector->dpms != DRM_MODE_DPMS_ON)
8462 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8463
7173188d 8464 return true;
79e53945
JB
8465 }
8466
8467 /* Find an unused one (if possible) */
70e1e0ec 8468 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8469 i++;
8470 if (!(encoder->possible_crtcs & (1 << i)))
8471 continue;
8472 if (!possible_crtc->enabled) {
8473 crtc = possible_crtc;
8474 break;
8475 }
79e53945
JB
8476 }
8477
8478 /*
8479 * If we didn't find an unused CRTC, don't use any.
8480 */
8481 if (!crtc) {
7173188d 8482 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8483 goto fail_unlock;
79e53945
JB
8484 }
8485
51fd371b
RC
8486 ret = drm_modeset_lock(&crtc->mutex, ctx);
8487 if (ret)
8488 goto fail_unlock;
fc303101
DV
8489 intel_encoder->new_crtc = to_intel_crtc(crtc);
8490 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8491
8492 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8493 intel_crtc->new_enabled = true;
8494 intel_crtc->new_config = &intel_crtc->config;
24218aac 8495 old->dpms_mode = connector->dpms;
8261b191 8496 old->load_detect_temp = true;
d2dff872 8497 old->release_fb = NULL;
79e53945 8498
6492711d
CW
8499 if (!mode)
8500 mode = &load_detect_mode;
79e53945 8501
d2dff872
CW
8502 /* We need a framebuffer large enough to accommodate all accesses
8503 * that the plane may generate whilst we perform load detection.
8504 * We can not rely on the fbcon either being present (we get called
8505 * during its initialisation to detect all boot displays, or it may
8506 * not even exist) or that it is large enough to satisfy the
8507 * requested mode.
8508 */
94352cf9
DV
8509 fb = mode_fits_in_fbdev(dev, mode);
8510 if (fb == NULL) {
d2dff872 8511 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8512 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8513 old->release_fb = fb;
d2dff872
CW
8514 } else
8515 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8516 if (IS_ERR(fb)) {
d2dff872 8517 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8518 goto fail;
79e53945 8519 }
79e53945 8520
c0c36b94 8521 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8522 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8523 if (old->release_fb)
8524 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8525 goto fail;
79e53945 8526 }
7173188d 8527
79e53945 8528 /* let the connector get through one full cycle before testing */
9d0498a2 8529 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8530 return true;
412b61d8
VS
8531
8532 fail:
8533 intel_crtc->new_enabled = crtc->enabled;
8534 if (intel_crtc->new_enabled)
8535 intel_crtc->new_config = &intel_crtc->config;
8536 else
8537 intel_crtc->new_config = NULL;
51fd371b
RC
8538fail_unlock:
8539 if (ret == -EDEADLK) {
8540 drm_modeset_backoff(ctx);
8541 goto retry;
8542 }
8543
8544 drm_modeset_drop_locks(ctx);
8545 drm_modeset_acquire_fini(ctx);
6e9f798d 8546
412b61d8 8547 return false;
79e53945
JB
8548}
8549
d2434ab7 8550void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8551 struct intel_load_detect_pipe *old,
8552 struct drm_modeset_acquire_ctx *ctx)
79e53945 8553{
d2434ab7
DV
8554 struct intel_encoder *intel_encoder =
8555 intel_attached_encoder(connector);
4ef69c7a 8556 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8557 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8559
d2dff872 8560 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8561 connector->base.id, connector->name,
8e329a03 8562 encoder->base.id, encoder->name);
d2dff872 8563
8261b191 8564 if (old->load_detect_temp) {
fc303101
DV
8565 to_intel_connector(connector)->new_encoder = NULL;
8566 intel_encoder->new_crtc = NULL;
412b61d8
VS
8567 intel_crtc->new_enabled = false;
8568 intel_crtc->new_config = NULL;
fc303101 8569 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8570
36206361
DV
8571 if (old->release_fb) {
8572 drm_framebuffer_unregister_private(old->release_fb);
8573 drm_framebuffer_unreference(old->release_fb);
8574 }
d2dff872 8575
51fd371b 8576 goto unlock;
0622a53c 8577 return;
79e53945
JB
8578 }
8579
c751ce4f 8580 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8581 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8582 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8583
51fd371b
RC
8584unlock:
8585 drm_modeset_drop_locks(ctx);
8586 drm_modeset_acquire_fini(ctx);
79e53945
JB
8587}
8588
da4a1efa
VS
8589static int i9xx_pll_refclk(struct drm_device *dev,
8590 const struct intel_crtc_config *pipe_config)
8591{
8592 struct drm_i915_private *dev_priv = dev->dev_private;
8593 u32 dpll = pipe_config->dpll_hw_state.dpll;
8594
8595 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8596 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8597 else if (HAS_PCH_SPLIT(dev))
8598 return 120000;
8599 else if (!IS_GEN2(dev))
8600 return 96000;
8601 else
8602 return 48000;
8603}
8604
79e53945 8605/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8606static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8607 struct intel_crtc_config *pipe_config)
79e53945 8608{
f1f644dc 8609 struct drm_device *dev = crtc->base.dev;
79e53945 8610 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8611 int pipe = pipe_config->cpu_transcoder;
293623f7 8612 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8613 u32 fp;
8614 intel_clock_t clock;
da4a1efa 8615 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8616
8617 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8618 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8619 else
293623f7 8620 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8621
8622 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8623 if (IS_PINEVIEW(dev)) {
8624 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8625 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8626 } else {
8627 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8628 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8629 }
8630
a6c45cf0 8631 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8632 if (IS_PINEVIEW(dev))
8633 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8634 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8635 else
8636 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8637 DPLL_FPA01_P1_POST_DIV_SHIFT);
8638
8639 switch (dpll & DPLL_MODE_MASK) {
8640 case DPLLB_MODE_DAC_SERIAL:
8641 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8642 5 : 10;
8643 break;
8644 case DPLLB_MODE_LVDS:
8645 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8646 7 : 14;
8647 break;
8648 default:
28c97730 8649 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8650 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8651 return;
79e53945
JB
8652 }
8653
ac58c3f0 8654 if (IS_PINEVIEW(dev))
da4a1efa 8655 pineview_clock(refclk, &clock);
ac58c3f0 8656 else
da4a1efa 8657 i9xx_clock(refclk, &clock);
79e53945 8658 } else {
0fb58223 8659 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8660 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8661
8662 if (is_lvds) {
8663 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8664 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8665
8666 if (lvds & LVDS_CLKB_POWER_UP)
8667 clock.p2 = 7;
8668 else
8669 clock.p2 = 14;
79e53945
JB
8670 } else {
8671 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8672 clock.p1 = 2;
8673 else {
8674 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8675 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8676 }
8677 if (dpll & PLL_P2_DIVIDE_BY_4)
8678 clock.p2 = 4;
8679 else
8680 clock.p2 = 2;
79e53945 8681 }
da4a1efa
VS
8682
8683 i9xx_clock(refclk, &clock);
79e53945
JB
8684 }
8685
18442d08
VS
8686 /*
8687 * This value includes pixel_multiplier. We will use
241bfc38 8688 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8689 * encoder's get_config() function.
8690 */
8691 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8692}
8693
6878da05
VS
8694int intel_dotclock_calculate(int link_freq,
8695 const struct intel_link_m_n *m_n)
f1f644dc 8696{
f1f644dc
JB
8697 /*
8698 * The calculation for the data clock is:
1041a02f 8699 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8700 * But we want to avoid losing precison if possible, so:
1041a02f 8701 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8702 *
8703 * and the link clock is simpler:
1041a02f 8704 * link_clock = (m * link_clock) / n
f1f644dc
JB
8705 */
8706
6878da05
VS
8707 if (!m_n->link_n)
8708 return 0;
f1f644dc 8709
6878da05
VS
8710 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8711}
f1f644dc 8712
18442d08
VS
8713static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8714 struct intel_crtc_config *pipe_config)
6878da05
VS
8715{
8716 struct drm_device *dev = crtc->base.dev;
79e53945 8717
18442d08
VS
8718 /* read out port_clock from the DPLL */
8719 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8720
f1f644dc 8721 /*
18442d08 8722 * This value does not include pixel_multiplier.
241bfc38 8723 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8724 * agree once we know their relationship in the encoder's
8725 * get_config() function.
79e53945 8726 */
241bfc38 8727 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8728 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8729 &pipe_config->fdi_m_n);
79e53945
JB
8730}
8731
8732/** Returns the currently programmed mode of the given pipe. */
8733struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8734 struct drm_crtc *crtc)
8735{
548f245b 8736 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8737 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8738 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8739 struct drm_display_mode *mode;
f1f644dc 8740 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8741 int htot = I915_READ(HTOTAL(cpu_transcoder));
8742 int hsync = I915_READ(HSYNC(cpu_transcoder));
8743 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8744 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8745 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8746
8747 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8748 if (!mode)
8749 return NULL;
8750
f1f644dc
JB
8751 /*
8752 * Construct a pipe_config sufficient for getting the clock info
8753 * back out of crtc_clock_get.
8754 *
8755 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8756 * to use a real value here instead.
8757 */
293623f7 8758 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8759 pipe_config.pixel_multiplier = 1;
293623f7
VS
8760 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8761 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8762 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8763 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8764
773ae034 8765 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8766 mode->hdisplay = (htot & 0xffff) + 1;
8767 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8768 mode->hsync_start = (hsync & 0xffff) + 1;
8769 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8770 mode->vdisplay = (vtot & 0xffff) + 1;
8771 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8772 mode->vsync_start = (vsync & 0xffff) + 1;
8773 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8774
8775 drm_mode_set_name(mode);
79e53945
JB
8776
8777 return mode;
8778}
8779
cc36513c
DV
8780static void intel_increase_pllclock(struct drm_device *dev,
8781 enum pipe pipe)
652c393a 8782{
fbee40df 8783 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8784 int dpll_reg = DPLL(pipe);
8785 int dpll;
652c393a 8786
bad720ff 8787 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8788 return;
8789
8790 if (!dev_priv->lvds_downclock_avail)
8791 return;
8792
dbdc6479 8793 dpll = I915_READ(dpll_reg);
652c393a 8794 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8795 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8796
8ac5a6d5 8797 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8798
8799 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8800 I915_WRITE(dpll_reg, dpll);
9d0498a2 8801 intel_wait_for_vblank(dev, pipe);
dbdc6479 8802
652c393a
JB
8803 dpll = I915_READ(dpll_reg);
8804 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8805 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8806 }
652c393a
JB
8807}
8808
8809static void intel_decrease_pllclock(struct drm_crtc *crtc)
8810{
8811 struct drm_device *dev = crtc->dev;
fbee40df 8812 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8814
bad720ff 8815 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8816 return;
8817
8818 if (!dev_priv->lvds_downclock_avail)
8819 return;
8820
8821 /*
8822 * Since this is called by a timer, we should never get here in
8823 * the manual case.
8824 */
8825 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8826 int pipe = intel_crtc->pipe;
8827 int dpll_reg = DPLL(pipe);
8828 int dpll;
f6e5b160 8829
44d98a61 8830 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8831
8ac5a6d5 8832 assert_panel_unlocked(dev_priv, pipe);
652c393a 8833
dc257cf1 8834 dpll = I915_READ(dpll_reg);
652c393a
JB
8835 dpll |= DISPLAY_RATE_SELECT_FPA1;
8836 I915_WRITE(dpll_reg, dpll);
9d0498a2 8837 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8838 dpll = I915_READ(dpll_reg);
8839 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8840 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8841 }
8842
8843}
8844
f047e395
CW
8845void intel_mark_busy(struct drm_device *dev)
8846{
c67a470b
PZ
8847 struct drm_i915_private *dev_priv = dev->dev_private;
8848
f62a0076
CW
8849 if (dev_priv->mm.busy)
8850 return;
8851
43694d69 8852 intel_runtime_pm_get(dev_priv);
c67a470b 8853 i915_update_gfx_val(dev_priv);
f62a0076 8854 dev_priv->mm.busy = true;
f047e395
CW
8855}
8856
8857void intel_mark_idle(struct drm_device *dev)
652c393a 8858{
c67a470b 8859 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8860 struct drm_crtc *crtc;
652c393a 8861
f62a0076
CW
8862 if (!dev_priv->mm.busy)
8863 return;
8864
8865 dev_priv->mm.busy = false;
8866
d330a953 8867 if (!i915.powersave)
bb4cdd53 8868 goto out;
652c393a 8869
70e1e0ec 8870 for_each_crtc(dev, crtc) {
f4510a27 8871 if (!crtc->primary->fb)
652c393a
JB
8872 continue;
8873
725a5b54 8874 intel_decrease_pllclock(crtc);
652c393a 8875 }
b29c19b6 8876
3d13ef2e 8877 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8878 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8879
8880out:
43694d69 8881 intel_runtime_pm_put(dev_priv);
652c393a
JB
8882}
8883
7c8f8a70 8884
f99d7069
DV
8885/**
8886 * intel_mark_fb_busy - mark given planes as busy
8887 * @dev: DRM device
8888 * @frontbuffer_bits: bits for the affected planes
8889 * @ring: optional ring for asynchronous commands
8890 *
8891 * This function gets called every time the screen contents change. It can be
8892 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8893 */
8894static void intel_mark_fb_busy(struct drm_device *dev,
8895 unsigned frontbuffer_bits,
8896 struct intel_engine_cs *ring)
652c393a 8897{
cc36513c 8898 enum pipe pipe;
652c393a 8899
d330a953 8900 if (!i915.powersave)
acb87dfb
CW
8901 return;
8902
cc36513c 8903 for_each_pipe(pipe) {
f99d7069 8904 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8905 continue;
8906
cc36513c 8907 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8908 if (ring && intel_fbc_enabled(dev))
8909 ring->fbc_dirty = true;
652c393a
JB
8910 }
8911}
8912
f99d7069
DV
8913/**
8914 * intel_fb_obj_invalidate - invalidate frontbuffer object
8915 * @obj: GEM object to invalidate
8916 * @ring: set for asynchronous rendering
8917 *
8918 * This function gets called every time rendering on the given object starts and
8919 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8920 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8921 * until the rendering completes or a flip on this frontbuffer plane is
8922 * scheduled.
8923 */
8924void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8925 struct intel_engine_cs *ring)
8926{
8927 struct drm_device *dev = obj->base.dev;
8928 struct drm_i915_private *dev_priv = dev->dev_private;
8929
8930 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8931
8932 if (!obj->frontbuffer_bits)
8933 return;
8934
8935 if (ring) {
8936 mutex_lock(&dev_priv->fb_tracking.lock);
8937 dev_priv->fb_tracking.busy_bits
8938 |= obj->frontbuffer_bits;
8939 dev_priv->fb_tracking.flip_bits
8940 &= ~obj->frontbuffer_bits;
8941 mutex_unlock(&dev_priv->fb_tracking.lock);
8942 }
8943
8944 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8945
8946 intel_edp_psr_exit(dev);
8947}
8948
8949/**
8950 * intel_frontbuffer_flush - flush frontbuffer
8951 * @dev: DRM device
8952 * @frontbuffer_bits: frontbuffer plane tracking bits
8953 *
8954 * This function gets called every time rendering on the given planes has
8955 * completed and frontbuffer caching can be started again. Flushes will get
8956 * delayed if they're blocked by some oustanding asynchronous rendering.
8957 *
8958 * Can be called without any locks held.
8959 */
8960void intel_frontbuffer_flush(struct drm_device *dev,
8961 unsigned frontbuffer_bits)
8962{
8963 struct drm_i915_private *dev_priv = dev->dev_private;
8964
8965 /* Delay flushing when rings are still busy.*/
8966 mutex_lock(&dev_priv->fb_tracking.lock);
8967 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8968 mutex_unlock(&dev_priv->fb_tracking.lock);
8969
8970 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8971
8972 intel_edp_psr_exit(dev);
8973}
8974
8975/**
8976 * intel_fb_obj_flush - flush frontbuffer object
8977 * @obj: GEM object to flush
8978 * @retire: set when retiring asynchronous rendering
8979 *
8980 * This function gets called every time rendering on the given object has
8981 * completed and frontbuffer caching can be started again. If @retire is true
8982 * then any delayed flushes will be unblocked.
8983 */
8984void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8985 bool retire)
8986{
8987 struct drm_device *dev = obj->base.dev;
8988 struct drm_i915_private *dev_priv = dev->dev_private;
8989 unsigned frontbuffer_bits;
8990
8991 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8992
8993 if (!obj->frontbuffer_bits)
8994 return;
8995
8996 frontbuffer_bits = obj->frontbuffer_bits;
8997
8998 if (retire) {
8999 mutex_lock(&dev_priv->fb_tracking.lock);
9000 /* Filter out new bits since rendering started. */
9001 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9002
9003 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9004 mutex_unlock(&dev_priv->fb_tracking.lock);
9005 }
9006
9007 intel_frontbuffer_flush(dev, frontbuffer_bits);
9008}
9009
9010/**
9011 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9012 * @dev: DRM device
9013 * @frontbuffer_bits: frontbuffer plane tracking bits
9014 *
9015 * This function gets called after scheduling a flip on @obj. The actual
9016 * frontbuffer flushing will be delayed until completion is signalled with
9017 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9018 * flush will be cancelled.
9019 *
9020 * Can be called without any locks held.
9021 */
9022void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9023 unsigned frontbuffer_bits)
9024{
9025 struct drm_i915_private *dev_priv = dev->dev_private;
9026
9027 mutex_lock(&dev_priv->fb_tracking.lock);
9028 dev_priv->fb_tracking.flip_bits
9029 |= frontbuffer_bits;
9030 mutex_unlock(&dev_priv->fb_tracking.lock);
9031}
9032
9033/**
9034 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9035 * @dev: DRM device
9036 * @frontbuffer_bits: frontbuffer plane tracking bits
9037 *
9038 * This function gets called after the flip has been latched and will complete
9039 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9040 *
9041 * Can be called without any locks held.
9042 */
9043void intel_frontbuffer_flip_complete(struct drm_device *dev,
9044 unsigned frontbuffer_bits)
9045{
9046 struct drm_i915_private *dev_priv = dev->dev_private;
9047
9048 mutex_lock(&dev_priv->fb_tracking.lock);
9049 /* Mask any cancelled flips. */
9050 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9051 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9052 mutex_unlock(&dev_priv->fb_tracking.lock);
9053
9054 intel_frontbuffer_flush(dev, frontbuffer_bits);
9055}
9056
79e53945
JB
9057static void intel_crtc_destroy(struct drm_crtc *crtc)
9058{
9059 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9060 struct drm_device *dev = crtc->dev;
9061 struct intel_unpin_work *work;
9062 unsigned long flags;
9063
9064 spin_lock_irqsave(&dev->event_lock, flags);
9065 work = intel_crtc->unpin_work;
9066 intel_crtc->unpin_work = NULL;
9067 spin_unlock_irqrestore(&dev->event_lock, flags);
9068
9069 if (work) {
9070 cancel_work_sync(&work->work);
9071 kfree(work);
9072 }
79e53945
JB
9073
9074 drm_crtc_cleanup(crtc);
67e77c5a 9075
79e53945
JB
9076 kfree(intel_crtc);
9077}
9078
6b95a207
KH
9079static void intel_unpin_work_fn(struct work_struct *__work)
9080{
9081 struct intel_unpin_work *work =
9082 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9083 struct drm_device *dev = work->crtc->dev;
f99d7069 9084 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9085
b4a98e57 9086 mutex_lock(&dev->struct_mutex);
1690e1eb 9087 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9088 drm_gem_object_unreference(&work->pending_flip_obj->base);
9089 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9090
b4a98e57
CW
9091 intel_update_fbc(dev);
9092 mutex_unlock(&dev->struct_mutex);
9093
f99d7069
DV
9094 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9095
b4a98e57
CW
9096 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9097 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9098
6b95a207
KH
9099 kfree(work);
9100}
9101
1afe3e9d 9102static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9103 struct drm_crtc *crtc)
6b95a207 9104{
fbee40df 9105 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9106 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9107 struct intel_unpin_work *work;
6b95a207
KH
9108 unsigned long flags;
9109
9110 /* Ignore early vblank irqs */
9111 if (intel_crtc == NULL)
9112 return;
9113
9114 spin_lock_irqsave(&dev->event_lock, flags);
9115 work = intel_crtc->unpin_work;
e7d841ca
CW
9116
9117 /* Ensure we don't miss a work->pending update ... */
9118 smp_rmb();
9119
9120 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9121 spin_unlock_irqrestore(&dev->event_lock, flags);
9122 return;
9123 }
9124
e7d841ca
CW
9125 /* and that the unpin work is consistent wrt ->pending. */
9126 smp_rmb();
9127
6b95a207 9128 intel_crtc->unpin_work = NULL;
6b95a207 9129
45a066eb
RC
9130 if (work->event)
9131 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9132
87b6b101 9133 drm_crtc_vblank_put(crtc);
0af7e4df 9134
6b95a207
KH
9135 spin_unlock_irqrestore(&dev->event_lock, flags);
9136
2c10d571 9137 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9138
9139 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9140
9141 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9142}
9143
1afe3e9d
JB
9144void intel_finish_page_flip(struct drm_device *dev, int pipe)
9145{
fbee40df 9146 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9147 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9148
49b14a5c 9149 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9150}
9151
9152void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9153{
fbee40df 9154 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9155 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9156
49b14a5c 9157 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9158}
9159
75f7f3ec
VS
9160/* Is 'a' after or equal to 'b'? */
9161static bool g4x_flip_count_after_eq(u32 a, u32 b)
9162{
9163 return !((a - b) & 0x80000000);
9164}
9165
9166static bool page_flip_finished(struct intel_crtc *crtc)
9167{
9168 struct drm_device *dev = crtc->base.dev;
9169 struct drm_i915_private *dev_priv = dev->dev_private;
9170
9171 /*
9172 * The relevant registers doen't exist on pre-ctg.
9173 * As the flip done interrupt doesn't trigger for mmio
9174 * flips on gmch platforms, a flip count check isn't
9175 * really needed there. But since ctg has the registers,
9176 * include it in the check anyway.
9177 */
9178 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9179 return true;
9180
9181 /*
9182 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9183 * used the same base address. In that case the mmio flip might
9184 * have completed, but the CS hasn't even executed the flip yet.
9185 *
9186 * A flip count check isn't enough as the CS might have updated
9187 * the base address just after start of vblank, but before we
9188 * managed to process the interrupt. This means we'd complete the
9189 * CS flip too soon.
9190 *
9191 * Combining both checks should get us a good enough result. It may
9192 * still happen that the CS flip has been executed, but has not
9193 * yet actually completed. But in case the base address is the same
9194 * anyway, we don't really care.
9195 */
9196 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9197 crtc->unpin_work->gtt_offset &&
9198 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9199 crtc->unpin_work->flip_count);
9200}
9201
6b95a207
KH
9202void intel_prepare_page_flip(struct drm_device *dev, int plane)
9203{
fbee40df 9204 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9205 struct intel_crtc *intel_crtc =
9206 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9207 unsigned long flags;
9208
e7d841ca
CW
9209 /* NB: An MMIO update of the plane base pointer will also
9210 * generate a page-flip completion irq, i.e. every modeset
9211 * is also accompanied by a spurious intel_prepare_page_flip().
9212 */
6b95a207 9213 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9214 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9215 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9216 spin_unlock_irqrestore(&dev->event_lock, flags);
9217}
9218
eba905b2 9219static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9220{
9221 /* Ensure that the work item is consistent when activating it ... */
9222 smp_wmb();
9223 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9224 /* and that it is marked active as soon as the irq could fire. */
9225 smp_wmb();
9226}
9227
8c9f3aaf
JB
9228static int intel_gen2_queue_flip(struct drm_device *dev,
9229 struct drm_crtc *crtc,
9230 struct drm_framebuffer *fb,
ed8d1975 9231 struct drm_i915_gem_object *obj,
a4872ba6 9232 struct intel_engine_cs *ring,
ed8d1975 9233 uint32_t flags)
8c9f3aaf 9234{
8c9f3aaf 9235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9236 u32 flip_mask;
9237 int ret;
9238
6d90c952 9239 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9240 if (ret)
4fa62c89 9241 return ret;
8c9f3aaf
JB
9242
9243 /* Can't queue multiple flips, so wait for the previous
9244 * one to finish before executing the next.
9245 */
9246 if (intel_crtc->plane)
9247 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9248 else
9249 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9250 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9251 intel_ring_emit(ring, MI_NOOP);
9252 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9253 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9254 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9255 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9256 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9257
9258 intel_mark_page_flip_active(intel_crtc);
09246732 9259 __intel_ring_advance(ring);
83d4092b 9260 return 0;
8c9f3aaf
JB
9261}
9262
9263static int intel_gen3_queue_flip(struct drm_device *dev,
9264 struct drm_crtc *crtc,
9265 struct drm_framebuffer *fb,
ed8d1975 9266 struct drm_i915_gem_object *obj,
a4872ba6 9267 struct intel_engine_cs *ring,
ed8d1975 9268 uint32_t flags)
8c9f3aaf 9269{
8c9f3aaf 9270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9271 u32 flip_mask;
9272 int ret;
9273
6d90c952 9274 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9275 if (ret)
4fa62c89 9276 return ret;
8c9f3aaf
JB
9277
9278 if (intel_crtc->plane)
9279 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9280 else
9281 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9282 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9283 intel_ring_emit(ring, MI_NOOP);
9284 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9285 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9286 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9287 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9288 intel_ring_emit(ring, MI_NOOP);
9289
e7d841ca 9290 intel_mark_page_flip_active(intel_crtc);
09246732 9291 __intel_ring_advance(ring);
83d4092b 9292 return 0;
8c9f3aaf
JB
9293}
9294
9295static int intel_gen4_queue_flip(struct drm_device *dev,
9296 struct drm_crtc *crtc,
9297 struct drm_framebuffer *fb,
ed8d1975 9298 struct drm_i915_gem_object *obj,
a4872ba6 9299 struct intel_engine_cs *ring,
ed8d1975 9300 uint32_t flags)
8c9f3aaf
JB
9301{
9302 struct drm_i915_private *dev_priv = dev->dev_private;
9303 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9304 uint32_t pf, pipesrc;
9305 int ret;
9306
6d90c952 9307 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9308 if (ret)
4fa62c89 9309 return ret;
8c9f3aaf
JB
9310
9311 /* i965+ uses the linear or tiled offsets from the
9312 * Display Registers (which do not change across a page-flip)
9313 * so we need only reprogram the base address.
9314 */
6d90c952
DV
9315 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9316 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9317 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9318 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9319 obj->tiling_mode);
8c9f3aaf
JB
9320
9321 /* XXX Enabling the panel-fitter across page-flip is so far
9322 * untested on non-native modes, so ignore it for now.
9323 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9324 */
9325 pf = 0;
9326 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9327 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9328
9329 intel_mark_page_flip_active(intel_crtc);
09246732 9330 __intel_ring_advance(ring);
83d4092b 9331 return 0;
8c9f3aaf
JB
9332}
9333
9334static int intel_gen6_queue_flip(struct drm_device *dev,
9335 struct drm_crtc *crtc,
9336 struct drm_framebuffer *fb,
ed8d1975 9337 struct drm_i915_gem_object *obj,
a4872ba6 9338 struct intel_engine_cs *ring,
ed8d1975 9339 uint32_t flags)
8c9f3aaf
JB
9340{
9341 struct drm_i915_private *dev_priv = dev->dev_private;
9342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9343 uint32_t pf, pipesrc;
9344 int ret;
9345
6d90c952 9346 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9347 if (ret)
4fa62c89 9348 return ret;
8c9f3aaf 9349
6d90c952
DV
9350 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9351 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9352 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9353 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9354
dc257cf1
DV
9355 /* Contrary to the suggestions in the documentation,
9356 * "Enable Panel Fitter" does not seem to be required when page
9357 * flipping with a non-native mode, and worse causes a normal
9358 * modeset to fail.
9359 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9360 */
9361 pf = 0;
8c9f3aaf 9362 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9363 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9364
9365 intel_mark_page_flip_active(intel_crtc);
09246732 9366 __intel_ring_advance(ring);
83d4092b 9367 return 0;
8c9f3aaf
JB
9368}
9369
7c9017e5
JB
9370static int intel_gen7_queue_flip(struct drm_device *dev,
9371 struct drm_crtc *crtc,
9372 struct drm_framebuffer *fb,
ed8d1975 9373 struct drm_i915_gem_object *obj,
a4872ba6 9374 struct intel_engine_cs *ring,
ed8d1975 9375 uint32_t flags)
7c9017e5 9376{
7c9017e5 9377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9378 uint32_t plane_bit = 0;
ffe74d75
CW
9379 int len, ret;
9380
eba905b2 9381 switch (intel_crtc->plane) {
cb05d8de
DV
9382 case PLANE_A:
9383 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9384 break;
9385 case PLANE_B:
9386 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9387 break;
9388 case PLANE_C:
9389 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9390 break;
9391 default:
9392 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9393 return -ENODEV;
cb05d8de
DV
9394 }
9395
ffe74d75 9396 len = 4;
f476828a 9397 if (ring->id == RCS) {
ffe74d75 9398 len += 6;
f476828a
DL
9399 /*
9400 * On Gen 8, SRM is now taking an extra dword to accommodate
9401 * 48bits addresses, and we need a NOOP for the batch size to
9402 * stay even.
9403 */
9404 if (IS_GEN8(dev))
9405 len += 2;
9406 }
ffe74d75 9407
f66fab8e
VS
9408 /*
9409 * BSpec MI_DISPLAY_FLIP for IVB:
9410 * "The full packet must be contained within the same cache line."
9411 *
9412 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9413 * cacheline, if we ever start emitting more commands before
9414 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9415 * then do the cacheline alignment, and finally emit the
9416 * MI_DISPLAY_FLIP.
9417 */
9418 ret = intel_ring_cacheline_align(ring);
9419 if (ret)
4fa62c89 9420 return ret;
f66fab8e 9421
ffe74d75 9422 ret = intel_ring_begin(ring, len);
7c9017e5 9423 if (ret)
4fa62c89 9424 return ret;
7c9017e5 9425
ffe74d75
CW
9426 /* Unmask the flip-done completion message. Note that the bspec says that
9427 * we should do this for both the BCS and RCS, and that we must not unmask
9428 * more than one flip event at any time (or ensure that one flip message
9429 * can be sent by waiting for flip-done prior to queueing new flips).
9430 * Experimentation says that BCS works despite DERRMR masking all
9431 * flip-done completion events and that unmasking all planes at once
9432 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9433 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9434 */
9435 if (ring->id == RCS) {
9436 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9437 intel_ring_emit(ring, DERRMR);
9438 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9439 DERRMR_PIPEB_PRI_FLIP_DONE |
9440 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9441 if (IS_GEN8(dev))
9442 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9443 MI_SRM_LRM_GLOBAL_GTT);
9444 else
9445 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9446 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9447 intel_ring_emit(ring, DERRMR);
9448 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9449 if (IS_GEN8(dev)) {
9450 intel_ring_emit(ring, 0);
9451 intel_ring_emit(ring, MI_NOOP);
9452 }
ffe74d75
CW
9453 }
9454
cb05d8de 9455 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9456 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9457 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9458 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9459
9460 intel_mark_page_flip_active(intel_crtc);
09246732 9461 __intel_ring_advance(ring);
83d4092b 9462 return 0;
7c9017e5
JB
9463}
9464
84c33a64
SG
9465static bool use_mmio_flip(struct intel_engine_cs *ring,
9466 struct drm_i915_gem_object *obj)
9467{
9468 /*
9469 * This is not being used for older platforms, because
9470 * non-availability of flip done interrupt forces us to use
9471 * CS flips. Older platforms derive flip done using some clever
9472 * tricks involving the flip_pending status bits and vblank irqs.
9473 * So using MMIO flips there would disrupt this mechanism.
9474 */
9475
8e09bf83
CW
9476 if (ring == NULL)
9477 return true;
9478
84c33a64
SG
9479 if (INTEL_INFO(ring->dev)->gen < 5)
9480 return false;
9481
9482 if (i915.use_mmio_flip < 0)
9483 return false;
9484 else if (i915.use_mmio_flip > 0)
9485 return true;
9486 else
9487 return ring != obj->ring;
9488}
9489
9490static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9491{
9492 struct drm_device *dev = intel_crtc->base.dev;
9493 struct drm_i915_private *dev_priv = dev->dev_private;
9494 struct intel_framebuffer *intel_fb =
9495 to_intel_framebuffer(intel_crtc->base.primary->fb);
9496 struct drm_i915_gem_object *obj = intel_fb->obj;
9497 u32 dspcntr;
9498 u32 reg;
9499
9500 intel_mark_page_flip_active(intel_crtc);
9501
9502 reg = DSPCNTR(intel_crtc->plane);
9503 dspcntr = I915_READ(reg);
9504
9505 if (INTEL_INFO(dev)->gen >= 4) {
9506 if (obj->tiling_mode != I915_TILING_NONE)
9507 dspcntr |= DISPPLANE_TILED;
9508 else
9509 dspcntr &= ~DISPPLANE_TILED;
9510 }
9511 I915_WRITE(reg, dspcntr);
9512
9513 I915_WRITE(DSPSURF(intel_crtc->plane),
9514 intel_crtc->unpin_work->gtt_offset);
9515 POSTING_READ(DSPSURF(intel_crtc->plane));
9516}
9517
9518static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9519{
9520 struct intel_engine_cs *ring;
9521 int ret;
9522
9523 lockdep_assert_held(&obj->base.dev->struct_mutex);
9524
9525 if (!obj->last_write_seqno)
9526 return 0;
9527
9528 ring = obj->ring;
9529
9530 if (i915_seqno_passed(ring->get_seqno(ring, true),
9531 obj->last_write_seqno))
9532 return 0;
9533
9534 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9535 if (ret)
9536 return ret;
9537
9538 if (WARN_ON(!ring->irq_get(ring)))
9539 return 0;
9540
9541 return 1;
9542}
9543
9544void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9545{
9546 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9547 struct intel_crtc *intel_crtc;
9548 unsigned long irq_flags;
9549 u32 seqno;
9550
9551 seqno = ring->get_seqno(ring, false);
9552
9553 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9554 for_each_intel_crtc(ring->dev, intel_crtc) {
9555 struct intel_mmio_flip *mmio_flip;
9556
9557 mmio_flip = &intel_crtc->mmio_flip;
9558 if (mmio_flip->seqno == 0)
9559 continue;
9560
9561 if (ring->id != mmio_flip->ring_id)
9562 continue;
9563
9564 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9565 intel_do_mmio_flip(intel_crtc);
9566 mmio_flip->seqno = 0;
9567 ring->irq_put(ring);
9568 }
9569 }
9570 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9571}
9572
9573static int intel_queue_mmio_flip(struct drm_device *dev,
9574 struct drm_crtc *crtc,
9575 struct drm_framebuffer *fb,
9576 struct drm_i915_gem_object *obj,
9577 struct intel_engine_cs *ring,
9578 uint32_t flags)
9579{
9580 struct drm_i915_private *dev_priv = dev->dev_private;
9581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9582 unsigned long irq_flags;
9583 int ret;
9584
9585 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9586 return -EBUSY;
9587
9588 ret = intel_postpone_flip(obj);
9589 if (ret < 0)
9590 return ret;
9591 if (ret == 0) {
9592 intel_do_mmio_flip(intel_crtc);
9593 return 0;
9594 }
9595
9596 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9597 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9598 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9599 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9600
9601 /*
9602 * Double check to catch cases where irq fired before
9603 * mmio flip data was ready
9604 */
9605 intel_notify_mmio_flip(obj->ring);
9606 return 0;
9607}
9608
8c9f3aaf
JB
9609static int intel_default_queue_flip(struct drm_device *dev,
9610 struct drm_crtc *crtc,
9611 struct drm_framebuffer *fb,
ed8d1975 9612 struct drm_i915_gem_object *obj,
a4872ba6 9613 struct intel_engine_cs *ring,
ed8d1975 9614 uint32_t flags)
8c9f3aaf
JB
9615{
9616 return -ENODEV;
9617}
9618
6b95a207
KH
9619static int intel_crtc_page_flip(struct drm_crtc *crtc,
9620 struct drm_framebuffer *fb,
ed8d1975
KP
9621 struct drm_pending_vblank_event *event,
9622 uint32_t page_flip_flags)
6b95a207
KH
9623{
9624 struct drm_device *dev = crtc->dev;
9625 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9626 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9627 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9629 enum pipe pipe = intel_crtc->pipe;
6b95a207 9630 struct intel_unpin_work *work;
a4872ba6 9631 struct intel_engine_cs *ring;
8c9f3aaf 9632 unsigned long flags;
52e68630 9633 int ret;
6b95a207 9634
2ff8fde1
MR
9635 /*
9636 * drm_mode_page_flip_ioctl() should already catch this, but double
9637 * check to be safe. In the future we may enable pageflipping from
9638 * a disabled primary plane.
9639 */
9640 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9641 return -EBUSY;
9642
e6a595d2 9643 /* Can't change pixel format via MI display flips. */
f4510a27 9644 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9645 return -EINVAL;
9646
9647 /*
9648 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9649 * Note that pitch changes could also affect these register.
9650 */
9651 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9652 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9653 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9654 return -EINVAL;
9655
f900db47
CW
9656 if (i915_terminally_wedged(&dev_priv->gpu_error))
9657 goto out_hang;
9658
b14c5679 9659 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9660 if (work == NULL)
9661 return -ENOMEM;
9662
6b95a207 9663 work->event = event;
b4a98e57 9664 work->crtc = crtc;
2ff8fde1 9665 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9666 INIT_WORK(&work->work, intel_unpin_work_fn);
9667
87b6b101 9668 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9669 if (ret)
9670 goto free_work;
9671
6b95a207
KH
9672 /* We borrow the event spin lock for protecting unpin_work */
9673 spin_lock_irqsave(&dev->event_lock, flags);
9674 if (intel_crtc->unpin_work) {
9675 spin_unlock_irqrestore(&dev->event_lock, flags);
9676 kfree(work);
87b6b101 9677 drm_crtc_vblank_put(crtc);
468f0b44
CW
9678
9679 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9680 return -EBUSY;
9681 }
9682 intel_crtc->unpin_work = work;
9683 spin_unlock_irqrestore(&dev->event_lock, flags);
9684
b4a98e57
CW
9685 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9686 flush_workqueue(dev_priv->wq);
9687
79158103
CW
9688 ret = i915_mutex_lock_interruptible(dev);
9689 if (ret)
9690 goto cleanup;
6b95a207 9691
75dfca80 9692 /* Reference the objects for the scheduled work. */
05394f39
CW
9693 drm_gem_object_reference(&work->old_fb_obj->base);
9694 drm_gem_object_reference(&obj->base);
6b95a207 9695
f4510a27 9696 crtc->primary->fb = fb;
96b099fd 9697
e1f99ce6 9698 work->pending_flip_obj = obj;
e1f99ce6 9699
4e5359cd
SF
9700 work->enable_stall_check = true;
9701
b4a98e57 9702 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9703 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9704
75f7f3ec 9705 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9706 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9707
4fa62c89
VS
9708 if (IS_VALLEYVIEW(dev)) {
9709 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9710 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9711 /* vlv: DISPLAY_FLIP fails to change tiling */
9712 ring = NULL;
2a92d5bc
CW
9713 } else if (IS_IVYBRIDGE(dev)) {
9714 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9715 } else if (INTEL_INFO(dev)->gen >= 7) {
9716 ring = obj->ring;
9717 if (ring == NULL || ring->id != RCS)
9718 ring = &dev_priv->ring[BCS];
9719 } else {
9720 ring = &dev_priv->ring[RCS];
9721 }
9722
9723 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9724 if (ret)
9725 goto cleanup_pending;
6b95a207 9726
4fa62c89
VS
9727 work->gtt_offset =
9728 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9729
84c33a64
SG
9730 if (use_mmio_flip(ring, obj))
9731 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9732 page_flip_flags);
9733 else
9734 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9735 page_flip_flags);
4fa62c89
VS
9736 if (ret)
9737 goto cleanup_unpin;
9738
a071fa00
DV
9739 i915_gem_track_fb(work->old_fb_obj, obj,
9740 INTEL_FRONTBUFFER_PRIMARY(pipe));
9741
7782de3b 9742 intel_disable_fbc(dev);
f99d7069 9743 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9744 mutex_unlock(&dev->struct_mutex);
9745
e5510fac
JB
9746 trace_i915_flip_request(intel_crtc->plane, obj);
9747
6b95a207 9748 return 0;
96b099fd 9749
4fa62c89
VS
9750cleanup_unpin:
9751 intel_unpin_fb_obj(obj);
8c9f3aaf 9752cleanup_pending:
b4a98e57 9753 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9754 crtc->primary->fb = old_fb;
05394f39
CW
9755 drm_gem_object_unreference(&work->old_fb_obj->base);
9756 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9757 mutex_unlock(&dev->struct_mutex);
9758
79158103 9759cleanup:
96b099fd
CW
9760 spin_lock_irqsave(&dev->event_lock, flags);
9761 intel_crtc->unpin_work = NULL;
9762 spin_unlock_irqrestore(&dev->event_lock, flags);
9763
87b6b101 9764 drm_crtc_vblank_put(crtc);
7317c75e 9765free_work:
96b099fd
CW
9766 kfree(work);
9767
f900db47
CW
9768 if (ret == -EIO) {
9769out_hang:
9770 intel_crtc_wait_for_pending_flips(crtc);
9771 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9772 if (ret == 0 && event)
a071fa00 9773 drm_send_vblank_event(dev, pipe, event);
f900db47 9774 }
96b099fd 9775 return ret;
6b95a207
KH
9776}
9777
f6e5b160 9778static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9779 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9780 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9781};
9782
9a935856
DV
9783/**
9784 * intel_modeset_update_staged_output_state
9785 *
9786 * Updates the staged output configuration state, e.g. after we've read out the
9787 * current hw state.
9788 */
9789static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9790{
7668851f 9791 struct intel_crtc *crtc;
9a935856
DV
9792 struct intel_encoder *encoder;
9793 struct intel_connector *connector;
f6e5b160 9794
9a935856
DV
9795 list_for_each_entry(connector, &dev->mode_config.connector_list,
9796 base.head) {
9797 connector->new_encoder =
9798 to_intel_encoder(connector->base.encoder);
9799 }
f6e5b160 9800
9a935856
DV
9801 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9802 base.head) {
9803 encoder->new_crtc =
9804 to_intel_crtc(encoder->base.crtc);
9805 }
7668851f 9806
d3fcc808 9807 for_each_intel_crtc(dev, crtc) {
7668851f 9808 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9809
9810 if (crtc->new_enabled)
9811 crtc->new_config = &crtc->config;
9812 else
9813 crtc->new_config = NULL;
7668851f 9814 }
f6e5b160
CW
9815}
9816
9a935856
DV
9817/**
9818 * intel_modeset_commit_output_state
9819 *
9820 * This function copies the stage display pipe configuration to the real one.
9821 */
9822static void intel_modeset_commit_output_state(struct drm_device *dev)
9823{
7668851f 9824 struct intel_crtc *crtc;
9a935856
DV
9825 struct intel_encoder *encoder;
9826 struct intel_connector *connector;
f6e5b160 9827
9a935856
DV
9828 list_for_each_entry(connector, &dev->mode_config.connector_list,
9829 base.head) {
9830 connector->base.encoder = &connector->new_encoder->base;
9831 }
f6e5b160 9832
9a935856
DV
9833 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9834 base.head) {
9835 encoder->base.crtc = &encoder->new_crtc->base;
9836 }
7668851f 9837
d3fcc808 9838 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9839 crtc->base.enabled = crtc->new_enabled;
9840 }
9a935856
DV
9841}
9842
050f7aeb 9843static void
eba905b2 9844connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9845 struct intel_crtc_config *pipe_config)
9846{
9847 int bpp = pipe_config->pipe_bpp;
9848
9849 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9850 connector->base.base.id,
c23cc417 9851 connector->base.name);
050f7aeb
DV
9852
9853 /* Don't use an invalid EDID bpc value */
9854 if (connector->base.display_info.bpc &&
9855 connector->base.display_info.bpc * 3 < bpp) {
9856 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9857 bpp, connector->base.display_info.bpc*3);
9858 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9859 }
9860
9861 /* Clamp bpp to 8 on screens without EDID 1.4 */
9862 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9863 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9864 bpp);
9865 pipe_config->pipe_bpp = 24;
9866 }
9867}
9868
4e53c2e0 9869static int
050f7aeb
DV
9870compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9871 struct drm_framebuffer *fb,
9872 struct intel_crtc_config *pipe_config)
4e53c2e0 9873{
050f7aeb
DV
9874 struct drm_device *dev = crtc->base.dev;
9875 struct intel_connector *connector;
4e53c2e0
DV
9876 int bpp;
9877
d42264b1
DV
9878 switch (fb->pixel_format) {
9879 case DRM_FORMAT_C8:
4e53c2e0
DV
9880 bpp = 8*3; /* since we go through a colormap */
9881 break;
d42264b1
DV
9882 case DRM_FORMAT_XRGB1555:
9883 case DRM_FORMAT_ARGB1555:
9884 /* checked in intel_framebuffer_init already */
9885 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9886 return -EINVAL;
9887 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9888 bpp = 6*3; /* min is 18bpp */
9889 break;
d42264b1
DV
9890 case DRM_FORMAT_XBGR8888:
9891 case DRM_FORMAT_ABGR8888:
9892 /* checked in intel_framebuffer_init already */
9893 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9894 return -EINVAL;
9895 case DRM_FORMAT_XRGB8888:
9896 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9897 bpp = 8*3;
9898 break;
d42264b1
DV
9899 case DRM_FORMAT_XRGB2101010:
9900 case DRM_FORMAT_ARGB2101010:
9901 case DRM_FORMAT_XBGR2101010:
9902 case DRM_FORMAT_ABGR2101010:
9903 /* checked in intel_framebuffer_init already */
9904 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9905 return -EINVAL;
4e53c2e0
DV
9906 bpp = 10*3;
9907 break;
baba133a 9908 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9909 default:
9910 DRM_DEBUG_KMS("unsupported depth\n");
9911 return -EINVAL;
9912 }
9913
4e53c2e0
DV
9914 pipe_config->pipe_bpp = bpp;
9915
9916 /* Clamp display bpp to EDID value */
9917 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9918 base.head) {
1b829e05
DV
9919 if (!connector->new_encoder ||
9920 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9921 continue;
9922
050f7aeb 9923 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9924 }
9925
9926 return bpp;
9927}
9928
644db711
DV
9929static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9930{
9931 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9932 "type: 0x%x flags: 0x%x\n",
1342830c 9933 mode->crtc_clock,
644db711
DV
9934 mode->crtc_hdisplay, mode->crtc_hsync_start,
9935 mode->crtc_hsync_end, mode->crtc_htotal,
9936 mode->crtc_vdisplay, mode->crtc_vsync_start,
9937 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9938}
9939
c0b03411
DV
9940static void intel_dump_pipe_config(struct intel_crtc *crtc,
9941 struct intel_crtc_config *pipe_config,
9942 const char *context)
9943{
9944 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9945 context, pipe_name(crtc->pipe));
9946
9947 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9948 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9949 pipe_config->pipe_bpp, pipe_config->dither);
9950 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9951 pipe_config->has_pch_encoder,
9952 pipe_config->fdi_lanes,
9953 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9954 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9955 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9956 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9957 pipe_config->has_dp_encoder,
9958 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9959 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9960 pipe_config->dp_m_n.tu);
c0b03411
DV
9961 DRM_DEBUG_KMS("requested mode:\n");
9962 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9963 DRM_DEBUG_KMS("adjusted mode:\n");
9964 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9965 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9966 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9967 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9968 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9969 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9970 pipe_config->gmch_pfit.control,
9971 pipe_config->gmch_pfit.pgm_ratios,
9972 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9973 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9974 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9975 pipe_config->pch_pfit.size,
9976 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9977 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9978 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9979}
9980
bc079e8b
VS
9981static bool encoders_cloneable(const struct intel_encoder *a,
9982 const struct intel_encoder *b)
accfc0c5 9983{
bc079e8b
VS
9984 /* masks could be asymmetric, so check both ways */
9985 return a == b || (a->cloneable & (1 << b->type) &&
9986 b->cloneable & (1 << a->type));
9987}
9988
9989static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9990 struct intel_encoder *encoder)
9991{
9992 struct drm_device *dev = crtc->base.dev;
9993 struct intel_encoder *source_encoder;
9994
9995 list_for_each_entry(source_encoder,
9996 &dev->mode_config.encoder_list, base.head) {
9997 if (source_encoder->new_crtc != crtc)
9998 continue;
9999
10000 if (!encoders_cloneable(encoder, source_encoder))
10001 return false;
10002 }
10003
10004 return true;
10005}
10006
10007static bool check_encoder_cloning(struct intel_crtc *crtc)
10008{
10009 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10010 struct intel_encoder *encoder;
10011
bc079e8b
VS
10012 list_for_each_entry(encoder,
10013 &dev->mode_config.encoder_list, base.head) {
10014 if (encoder->new_crtc != crtc)
accfc0c5
DV
10015 continue;
10016
bc079e8b
VS
10017 if (!check_single_encoder_cloning(crtc, encoder))
10018 return false;
accfc0c5
DV
10019 }
10020
bc079e8b 10021 return true;
accfc0c5
DV
10022}
10023
b8cecdf5
DV
10024static struct intel_crtc_config *
10025intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10026 struct drm_framebuffer *fb,
b8cecdf5 10027 struct drm_display_mode *mode)
ee7b9f93 10028{
7758a113 10029 struct drm_device *dev = crtc->dev;
7758a113 10030 struct intel_encoder *encoder;
b8cecdf5 10031 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10032 int plane_bpp, ret = -EINVAL;
10033 bool retry = true;
ee7b9f93 10034
bc079e8b 10035 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10036 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10037 return ERR_PTR(-EINVAL);
10038 }
10039
b8cecdf5
DV
10040 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10041 if (!pipe_config)
7758a113
DV
10042 return ERR_PTR(-ENOMEM);
10043
b8cecdf5
DV
10044 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10045 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10046
e143a21c
DV
10047 pipe_config->cpu_transcoder =
10048 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10049 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10050
2960bc9c
ID
10051 /*
10052 * Sanitize sync polarity flags based on requested ones. If neither
10053 * positive or negative polarity is requested, treat this as meaning
10054 * negative polarity.
10055 */
10056 if (!(pipe_config->adjusted_mode.flags &
10057 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10058 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10059
10060 if (!(pipe_config->adjusted_mode.flags &
10061 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10062 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10063
050f7aeb
DV
10064 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10065 * plane pixel format and any sink constraints into account. Returns the
10066 * source plane bpp so that dithering can be selected on mismatches
10067 * after encoders and crtc also have had their say. */
10068 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10069 fb, pipe_config);
4e53c2e0
DV
10070 if (plane_bpp < 0)
10071 goto fail;
10072
e41a56be
VS
10073 /*
10074 * Determine the real pipe dimensions. Note that stereo modes can
10075 * increase the actual pipe size due to the frame doubling and
10076 * insertion of additional space for blanks between the frame. This
10077 * is stored in the crtc timings. We use the requested mode to do this
10078 * computation to clearly distinguish it from the adjusted mode, which
10079 * can be changed by the connectors in the below retry loop.
10080 */
10081 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10082 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10083 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10084
e29c22c0 10085encoder_retry:
ef1b460d 10086 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10087 pipe_config->port_clock = 0;
ef1b460d 10088 pipe_config->pixel_multiplier = 1;
ff9a6750 10089
135c81b8 10090 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10091 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10092
7758a113
DV
10093 /* Pass our mode to the connectors and the CRTC to give them a chance to
10094 * adjust it according to limitations or connector properties, and also
10095 * a chance to reject the mode entirely.
47f1c6c9 10096 */
7758a113
DV
10097 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10098 base.head) {
47f1c6c9 10099
7758a113
DV
10100 if (&encoder->new_crtc->base != crtc)
10101 continue;
7ae89233 10102
efea6e8e
DV
10103 if (!(encoder->compute_config(encoder, pipe_config))) {
10104 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10105 goto fail;
10106 }
ee7b9f93 10107 }
47f1c6c9 10108
ff9a6750
DV
10109 /* Set default port clock if not overwritten by the encoder. Needs to be
10110 * done afterwards in case the encoder adjusts the mode. */
10111 if (!pipe_config->port_clock)
241bfc38
DL
10112 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10113 * pipe_config->pixel_multiplier;
ff9a6750 10114
a43f6e0f 10115 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10116 if (ret < 0) {
7758a113
DV
10117 DRM_DEBUG_KMS("CRTC fixup failed\n");
10118 goto fail;
ee7b9f93 10119 }
e29c22c0
DV
10120
10121 if (ret == RETRY) {
10122 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10123 ret = -EINVAL;
10124 goto fail;
10125 }
10126
10127 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10128 retry = false;
10129 goto encoder_retry;
10130 }
10131
4e53c2e0
DV
10132 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10133 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10134 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10135
b8cecdf5 10136 return pipe_config;
7758a113 10137fail:
b8cecdf5 10138 kfree(pipe_config);
e29c22c0 10139 return ERR_PTR(ret);
ee7b9f93 10140}
47f1c6c9 10141
e2e1ed41
DV
10142/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10143 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10144static void
10145intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10146 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10147{
10148 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10149 struct drm_device *dev = crtc->dev;
10150 struct intel_encoder *encoder;
10151 struct intel_connector *connector;
10152 struct drm_crtc *tmp_crtc;
79e53945 10153
e2e1ed41 10154 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10155
e2e1ed41
DV
10156 /* Check which crtcs have changed outputs connected to them, these need
10157 * to be part of the prepare_pipes mask. We don't (yet) support global
10158 * modeset across multiple crtcs, so modeset_pipes will only have one
10159 * bit set at most. */
10160 list_for_each_entry(connector, &dev->mode_config.connector_list,
10161 base.head) {
10162 if (connector->base.encoder == &connector->new_encoder->base)
10163 continue;
79e53945 10164
e2e1ed41
DV
10165 if (connector->base.encoder) {
10166 tmp_crtc = connector->base.encoder->crtc;
10167
10168 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10169 }
10170
10171 if (connector->new_encoder)
10172 *prepare_pipes |=
10173 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10174 }
10175
e2e1ed41
DV
10176 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10177 base.head) {
10178 if (encoder->base.crtc == &encoder->new_crtc->base)
10179 continue;
10180
10181 if (encoder->base.crtc) {
10182 tmp_crtc = encoder->base.crtc;
10183
10184 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10185 }
10186
10187 if (encoder->new_crtc)
10188 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10189 }
10190
7668851f 10191 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10192 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10193 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10194 continue;
7e7d76c3 10195
7668851f 10196 if (!intel_crtc->new_enabled)
e2e1ed41 10197 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10198 else
10199 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10200 }
10201
e2e1ed41
DV
10202
10203 /* set_mode is also used to update properties on life display pipes. */
10204 intel_crtc = to_intel_crtc(crtc);
7668851f 10205 if (intel_crtc->new_enabled)
e2e1ed41
DV
10206 *prepare_pipes |= 1 << intel_crtc->pipe;
10207
b6c5164d
DV
10208 /*
10209 * For simplicity do a full modeset on any pipe where the output routing
10210 * changed. We could be more clever, but that would require us to be
10211 * more careful with calling the relevant encoder->mode_set functions.
10212 */
e2e1ed41
DV
10213 if (*prepare_pipes)
10214 *modeset_pipes = *prepare_pipes;
10215
10216 /* ... and mask these out. */
10217 *modeset_pipes &= ~(*disable_pipes);
10218 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10219
10220 /*
10221 * HACK: We don't (yet) fully support global modesets. intel_set_config
10222 * obies this rule, but the modeset restore mode of
10223 * intel_modeset_setup_hw_state does not.
10224 */
10225 *modeset_pipes &= 1 << intel_crtc->pipe;
10226 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10227
10228 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10229 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10230}
79e53945 10231
ea9d758d 10232static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10233{
ea9d758d 10234 struct drm_encoder *encoder;
f6e5b160 10235 struct drm_device *dev = crtc->dev;
f6e5b160 10236
ea9d758d
DV
10237 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10238 if (encoder->crtc == crtc)
10239 return true;
10240
10241 return false;
10242}
10243
10244static void
10245intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10246{
10247 struct intel_encoder *intel_encoder;
10248 struct intel_crtc *intel_crtc;
10249 struct drm_connector *connector;
10250
10251 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10252 base.head) {
10253 if (!intel_encoder->base.crtc)
10254 continue;
10255
10256 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10257
10258 if (prepare_pipes & (1 << intel_crtc->pipe))
10259 intel_encoder->connectors_active = false;
10260 }
10261
10262 intel_modeset_commit_output_state(dev);
10263
7668851f 10264 /* Double check state. */
d3fcc808 10265 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10266 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10267 WARN_ON(intel_crtc->new_config &&
10268 intel_crtc->new_config != &intel_crtc->config);
10269 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10270 }
10271
10272 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10273 if (!connector->encoder || !connector->encoder->crtc)
10274 continue;
10275
10276 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10277
10278 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10279 struct drm_property *dpms_property =
10280 dev->mode_config.dpms_property;
10281
ea9d758d 10282 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10283 drm_object_property_set_value(&connector->base,
68d34720
DV
10284 dpms_property,
10285 DRM_MODE_DPMS_ON);
ea9d758d
DV
10286
10287 intel_encoder = to_intel_encoder(connector->encoder);
10288 intel_encoder->connectors_active = true;
10289 }
10290 }
10291
10292}
10293
3bd26263 10294static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10295{
3bd26263 10296 int diff;
f1f644dc
JB
10297
10298 if (clock1 == clock2)
10299 return true;
10300
10301 if (!clock1 || !clock2)
10302 return false;
10303
10304 diff = abs(clock1 - clock2);
10305
10306 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10307 return true;
10308
10309 return false;
10310}
10311
25c5b266
DV
10312#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10313 list_for_each_entry((intel_crtc), \
10314 &(dev)->mode_config.crtc_list, \
10315 base.head) \
0973f18f 10316 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10317
0e8ffe1b 10318static bool
2fa2fe9a
DV
10319intel_pipe_config_compare(struct drm_device *dev,
10320 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10321 struct intel_crtc_config *pipe_config)
10322{
66e985c0
DV
10323#define PIPE_CONF_CHECK_X(name) \
10324 if (current_config->name != pipe_config->name) { \
10325 DRM_ERROR("mismatch in " #name " " \
10326 "(expected 0x%08x, found 0x%08x)\n", \
10327 current_config->name, \
10328 pipe_config->name); \
10329 return false; \
10330 }
10331
08a24034
DV
10332#define PIPE_CONF_CHECK_I(name) \
10333 if (current_config->name != pipe_config->name) { \
10334 DRM_ERROR("mismatch in " #name " " \
10335 "(expected %i, found %i)\n", \
10336 current_config->name, \
10337 pipe_config->name); \
10338 return false; \
88adfff1
DV
10339 }
10340
1bd1bd80
DV
10341#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10342 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10343 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10344 "(expected %i, found %i)\n", \
10345 current_config->name & (mask), \
10346 pipe_config->name & (mask)); \
10347 return false; \
10348 }
10349
5e550656
VS
10350#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10351 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10352 DRM_ERROR("mismatch in " #name " " \
10353 "(expected %i, found %i)\n", \
10354 current_config->name, \
10355 pipe_config->name); \
10356 return false; \
10357 }
10358
bb760063
DV
10359#define PIPE_CONF_QUIRK(quirk) \
10360 ((current_config->quirks | pipe_config->quirks) & (quirk))
10361
eccb140b
DV
10362 PIPE_CONF_CHECK_I(cpu_transcoder);
10363
08a24034
DV
10364 PIPE_CONF_CHECK_I(has_pch_encoder);
10365 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10366 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10367 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10368 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10369 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10370 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10371
eb14cb74
VS
10372 PIPE_CONF_CHECK_I(has_dp_encoder);
10373 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10374 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10375 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10376 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10377 PIPE_CONF_CHECK_I(dp_m_n.tu);
10378
1bd1bd80
DV
10379 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10380 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10381 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10382 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10383 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10384 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10385
10386 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10387 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10388 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10389 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10390 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10391 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10392
c93f54cf 10393 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10394 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10395 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10396 IS_VALLEYVIEW(dev))
10397 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10398
9ed109a7
DV
10399 PIPE_CONF_CHECK_I(has_audio);
10400
1bd1bd80
DV
10401 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10402 DRM_MODE_FLAG_INTERLACE);
10403
bb760063
DV
10404 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10405 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10406 DRM_MODE_FLAG_PHSYNC);
10407 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10408 DRM_MODE_FLAG_NHSYNC);
10409 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10410 DRM_MODE_FLAG_PVSYNC);
10411 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10412 DRM_MODE_FLAG_NVSYNC);
10413 }
045ac3b5 10414
37327abd
VS
10415 PIPE_CONF_CHECK_I(pipe_src_w);
10416 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10417
9953599b
DV
10418 /*
10419 * FIXME: BIOS likes to set up a cloned config with lvds+external
10420 * screen. Since we don't yet re-compute the pipe config when moving
10421 * just the lvds port away to another pipe the sw tracking won't match.
10422 *
10423 * Proper atomic modesets with recomputed global state will fix this.
10424 * Until then just don't check gmch state for inherited modes.
10425 */
10426 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10427 PIPE_CONF_CHECK_I(gmch_pfit.control);
10428 /* pfit ratios are autocomputed by the hw on gen4+ */
10429 if (INTEL_INFO(dev)->gen < 4)
10430 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10431 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10432 }
10433
fd4daa9c
CW
10434 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10435 if (current_config->pch_pfit.enabled) {
10436 PIPE_CONF_CHECK_I(pch_pfit.pos);
10437 PIPE_CONF_CHECK_I(pch_pfit.size);
10438 }
2fa2fe9a 10439
e59150dc
JB
10440 /* BDW+ don't expose a synchronous way to read the state */
10441 if (IS_HASWELL(dev))
10442 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10443
282740f7
VS
10444 PIPE_CONF_CHECK_I(double_wide);
10445
26804afd
DV
10446 PIPE_CONF_CHECK_X(ddi_pll_sel);
10447
c0d43d62 10448 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10449 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10450 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10451 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10452 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10453 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10454
42571aef
VS
10455 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10456 PIPE_CONF_CHECK_I(pipe_bpp);
10457
a9a7e98a
JB
10458 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10459 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10460
66e985c0 10461#undef PIPE_CONF_CHECK_X
08a24034 10462#undef PIPE_CONF_CHECK_I
1bd1bd80 10463#undef PIPE_CONF_CHECK_FLAGS
5e550656 10464#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10465#undef PIPE_CONF_QUIRK
88adfff1 10466
0e8ffe1b
DV
10467 return true;
10468}
10469
91d1b4bd
DV
10470static void
10471check_connector_state(struct drm_device *dev)
8af6cf88 10472{
8af6cf88
DV
10473 struct intel_connector *connector;
10474
10475 list_for_each_entry(connector, &dev->mode_config.connector_list,
10476 base.head) {
10477 /* This also checks the encoder/connector hw state with the
10478 * ->get_hw_state callbacks. */
10479 intel_connector_check_state(connector);
10480
10481 WARN(&connector->new_encoder->base != connector->base.encoder,
10482 "connector's staged encoder doesn't match current encoder\n");
10483 }
91d1b4bd
DV
10484}
10485
10486static void
10487check_encoder_state(struct drm_device *dev)
10488{
10489 struct intel_encoder *encoder;
10490 struct intel_connector *connector;
8af6cf88
DV
10491
10492 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10493 base.head) {
10494 bool enabled = false;
10495 bool active = false;
10496 enum pipe pipe, tracked_pipe;
10497
10498 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10499 encoder->base.base.id,
8e329a03 10500 encoder->base.name);
8af6cf88
DV
10501
10502 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10503 "encoder's stage crtc doesn't match current crtc\n");
10504 WARN(encoder->connectors_active && !encoder->base.crtc,
10505 "encoder's active_connectors set, but no crtc\n");
10506
10507 list_for_each_entry(connector, &dev->mode_config.connector_list,
10508 base.head) {
10509 if (connector->base.encoder != &encoder->base)
10510 continue;
10511 enabled = true;
10512 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10513 active = true;
10514 }
10515 WARN(!!encoder->base.crtc != enabled,
10516 "encoder's enabled state mismatch "
10517 "(expected %i, found %i)\n",
10518 !!encoder->base.crtc, enabled);
10519 WARN(active && !encoder->base.crtc,
10520 "active encoder with no crtc\n");
10521
10522 WARN(encoder->connectors_active != active,
10523 "encoder's computed active state doesn't match tracked active state "
10524 "(expected %i, found %i)\n", active, encoder->connectors_active);
10525
10526 active = encoder->get_hw_state(encoder, &pipe);
10527 WARN(active != encoder->connectors_active,
10528 "encoder's hw state doesn't match sw tracking "
10529 "(expected %i, found %i)\n",
10530 encoder->connectors_active, active);
10531
10532 if (!encoder->base.crtc)
10533 continue;
10534
10535 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10536 WARN(active && pipe != tracked_pipe,
10537 "active encoder's pipe doesn't match"
10538 "(expected %i, found %i)\n",
10539 tracked_pipe, pipe);
10540
10541 }
91d1b4bd
DV
10542}
10543
10544static void
10545check_crtc_state(struct drm_device *dev)
10546{
fbee40df 10547 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10548 struct intel_crtc *crtc;
10549 struct intel_encoder *encoder;
10550 struct intel_crtc_config pipe_config;
8af6cf88 10551
d3fcc808 10552 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10553 bool enabled = false;
10554 bool active = false;
10555
045ac3b5
JB
10556 memset(&pipe_config, 0, sizeof(pipe_config));
10557
8af6cf88
DV
10558 DRM_DEBUG_KMS("[CRTC:%d]\n",
10559 crtc->base.base.id);
10560
10561 WARN(crtc->active && !crtc->base.enabled,
10562 "active crtc, but not enabled in sw tracking\n");
10563
10564 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10565 base.head) {
10566 if (encoder->base.crtc != &crtc->base)
10567 continue;
10568 enabled = true;
10569 if (encoder->connectors_active)
10570 active = true;
10571 }
6c49f241 10572
8af6cf88
DV
10573 WARN(active != crtc->active,
10574 "crtc's computed active state doesn't match tracked active state "
10575 "(expected %i, found %i)\n", active, crtc->active);
10576 WARN(enabled != crtc->base.enabled,
10577 "crtc's computed enabled state doesn't match tracked enabled state "
10578 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10579
0e8ffe1b
DV
10580 active = dev_priv->display.get_pipe_config(crtc,
10581 &pipe_config);
d62cf62a
DV
10582
10583 /* hw state is inconsistent with the pipe A quirk */
10584 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10585 active = crtc->active;
10586
6c49f241
DV
10587 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10588 base.head) {
3eaba51c 10589 enum pipe pipe;
6c49f241
DV
10590 if (encoder->base.crtc != &crtc->base)
10591 continue;
1d37b689 10592 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10593 encoder->get_config(encoder, &pipe_config);
10594 }
10595
0e8ffe1b
DV
10596 WARN(crtc->active != active,
10597 "crtc active state doesn't match with hw state "
10598 "(expected %i, found %i)\n", crtc->active, active);
10599
c0b03411
DV
10600 if (active &&
10601 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10602 WARN(1, "pipe state doesn't match!\n");
10603 intel_dump_pipe_config(crtc, &pipe_config,
10604 "[hw state]");
10605 intel_dump_pipe_config(crtc, &crtc->config,
10606 "[sw state]");
10607 }
8af6cf88
DV
10608 }
10609}
10610
91d1b4bd
DV
10611static void
10612check_shared_dpll_state(struct drm_device *dev)
10613{
fbee40df 10614 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10615 struct intel_crtc *crtc;
10616 struct intel_dpll_hw_state dpll_hw_state;
10617 int i;
5358901f
DV
10618
10619 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10620 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10621 int enabled_crtcs = 0, active_crtcs = 0;
10622 bool active;
10623
10624 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10625
10626 DRM_DEBUG_KMS("%s\n", pll->name);
10627
10628 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10629
10630 WARN(pll->active > pll->refcount,
10631 "more active pll users than references: %i vs %i\n",
10632 pll->active, pll->refcount);
10633 WARN(pll->active && !pll->on,
10634 "pll in active use but not on in sw tracking\n");
35c95375
DV
10635 WARN(pll->on && !pll->active,
10636 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10637 WARN(pll->on != active,
10638 "pll on state mismatch (expected %i, found %i)\n",
10639 pll->on, active);
10640
d3fcc808 10641 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10642 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10643 enabled_crtcs++;
10644 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10645 active_crtcs++;
10646 }
10647 WARN(pll->active != active_crtcs,
10648 "pll active crtcs mismatch (expected %i, found %i)\n",
10649 pll->active, active_crtcs);
10650 WARN(pll->refcount != enabled_crtcs,
10651 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10652 pll->refcount, enabled_crtcs);
66e985c0
DV
10653
10654 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10655 sizeof(dpll_hw_state)),
10656 "pll hw state mismatch\n");
5358901f 10657 }
8af6cf88
DV
10658}
10659
91d1b4bd
DV
10660void
10661intel_modeset_check_state(struct drm_device *dev)
10662{
10663 check_connector_state(dev);
10664 check_encoder_state(dev);
10665 check_crtc_state(dev);
10666 check_shared_dpll_state(dev);
10667}
10668
18442d08
VS
10669void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10670 int dotclock)
10671{
10672 /*
10673 * FDI already provided one idea for the dotclock.
10674 * Yell if the encoder disagrees.
10675 */
241bfc38 10676 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10677 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10678 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10679}
10680
80715b2f
VS
10681static void update_scanline_offset(struct intel_crtc *crtc)
10682{
10683 struct drm_device *dev = crtc->base.dev;
10684
10685 /*
10686 * The scanline counter increments at the leading edge of hsync.
10687 *
10688 * On most platforms it starts counting from vtotal-1 on the
10689 * first active line. That means the scanline counter value is
10690 * always one less than what we would expect. Ie. just after
10691 * start of vblank, which also occurs at start of hsync (on the
10692 * last active line), the scanline counter will read vblank_start-1.
10693 *
10694 * On gen2 the scanline counter starts counting from 1 instead
10695 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10696 * to keep the value positive), instead of adding one.
10697 *
10698 * On HSW+ the behaviour of the scanline counter depends on the output
10699 * type. For DP ports it behaves like most other platforms, but on HDMI
10700 * there's an extra 1 line difference. So we need to add two instead of
10701 * one to the value.
10702 */
10703 if (IS_GEN2(dev)) {
10704 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10705 int vtotal;
10706
10707 vtotal = mode->crtc_vtotal;
10708 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10709 vtotal /= 2;
10710
10711 crtc->scanline_offset = vtotal - 1;
10712 } else if (HAS_DDI(dev) &&
10713 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10714 crtc->scanline_offset = 2;
10715 } else
10716 crtc->scanline_offset = 1;
10717}
10718
f30da187
DV
10719static int __intel_set_mode(struct drm_crtc *crtc,
10720 struct drm_display_mode *mode,
10721 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10722{
10723 struct drm_device *dev = crtc->dev;
fbee40df 10724 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10725 struct drm_display_mode *saved_mode;
b8cecdf5 10726 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10727 struct intel_crtc *intel_crtc;
10728 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10729 int ret = 0;
a6778b3c 10730
4b4b9238 10731 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10732 if (!saved_mode)
10733 return -ENOMEM;
a6778b3c 10734
e2e1ed41 10735 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10736 &prepare_pipes, &disable_pipes);
10737
3ac18232 10738 *saved_mode = crtc->mode;
a6778b3c 10739
25c5b266
DV
10740 /* Hack: Because we don't (yet) support global modeset on multiple
10741 * crtcs, we don't keep track of the new mode for more than one crtc.
10742 * Hence simply check whether any bit is set in modeset_pipes in all the
10743 * pieces of code that are not yet converted to deal with mutliple crtcs
10744 * changing their mode at the same time. */
25c5b266 10745 if (modeset_pipes) {
4e53c2e0 10746 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10747 if (IS_ERR(pipe_config)) {
10748 ret = PTR_ERR(pipe_config);
10749 pipe_config = NULL;
10750
3ac18232 10751 goto out;
25c5b266 10752 }
c0b03411
DV
10753 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10754 "[modeset]");
50741abc 10755 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10756 }
a6778b3c 10757
30a970c6
JB
10758 /*
10759 * See if the config requires any additional preparation, e.g.
10760 * to adjust global state with pipes off. We need to do this
10761 * here so we can get the modeset_pipe updated config for the new
10762 * mode set on this crtc. For other crtcs we need to use the
10763 * adjusted_mode bits in the crtc directly.
10764 */
c164f833 10765 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10766 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10767
c164f833
VS
10768 /* may have added more to prepare_pipes than we should */
10769 prepare_pipes &= ~disable_pipes;
10770 }
10771
460da916
DV
10772 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10773 intel_crtc_disable(&intel_crtc->base);
10774
ea9d758d
DV
10775 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10776 if (intel_crtc->base.enabled)
10777 dev_priv->display.crtc_disable(&intel_crtc->base);
10778 }
a6778b3c 10779
6c4c86f5
DV
10780 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10781 * to set it here already despite that we pass it down the callchain.
f6e5b160 10782 */
b8cecdf5 10783 if (modeset_pipes) {
25c5b266 10784 crtc->mode = *mode;
b8cecdf5
DV
10785 /* mode_set/enable/disable functions rely on a correct pipe
10786 * config. */
10787 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10788 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10789
10790 /*
10791 * Calculate and store various constants which
10792 * are later needed by vblank and swap-completion
10793 * timestamping. They are derived from true hwmode.
10794 */
10795 drm_calc_timestamping_constants(crtc,
10796 &pipe_config->adjusted_mode);
b8cecdf5 10797 }
7758a113 10798
ea9d758d
DV
10799 /* Only after disabling all output pipelines that will be changed can we
10800 * update the the output configuration. */
10801 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10802
47fab737
DV
10803 if (dev_priv->display.modeset_global_resources)
10804 dev_priv->display.modeset_global_resources(dev);
10805
a6778b3c
DV
10806 /* Set up the DPLL and any encoders state that needs to adjust or depend
10807 * on the DPLL.
f6e5b160 10808 */
25c5b266 10809 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10810 struct drm_framebuffer *old_fb = crtc->primary->fb;
10811 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10812 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10813
10814 mutex_lock(&dev->struct_mutex);
10815 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10816 obj,
4c10794f
DV
10817 NULL);
10818 if (ret != 0) {
10819 DRM_ERROR("pin & fence failed\n");
10820 mutex_unlock(&dev->struct_mutex);
10821 goto done;
10822 }
2ff8fde1 10823 if (old_fb)
a071fa00 10824 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10825 i915_gem_track_fb(old_obj, obj,
10826 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10827 mutex_unlock(&dev->struct_mutex);
10828
10829 crtc->primary->fb = fb;
10830 crtc->x = x;
10831 crtc->y = y;
10832
4271b753
DV
10833 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10834 x, y, fb);
c0c36b94
CW
10835 if (ret)
10836 goto done;
a6778b3c
DV
10837 }
10838
10839 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10840 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10841 update_scanline_offset(intel_crtc);
10842
25c5b266 10843 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10844 }
a6778b3c 10845
a6778b3c
DV
10846 /* FIXME: add subpixel order */
10847done:
4b4b9238 10848 if (ret && crtc->enabled)
3ac18232 10849 crtc->mode = *saved_mode;
a6778b3c 10850
3ac18232 10851out:
b8cecdf5 10852 kfree(pipe_config);
3ac18232 10853 kfree(saved_mode);
a6778b3c 10854 return ret;
f6e5b160
CW
10855}
10856
e7457a9a
DL
10857static int intel_set_mode(struct drm_crtc *crtc,
10858 struct drm_display_mode *mode,
10859 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10860{
10861 int ret;
10862
10863 ret = __intel_set_mode(crtc, mode, x, y, fb);
10864
10865 if (ret == 0)
10866 intel_modeset_check_state(crtc->dev);
10867
10868 return ret;
10869}
10870
c0c36b94
CW
10871void intel_crtc_restore_mode(struct drm_crtc *crtc)
10872{
f4510a27 10873 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10874}
10875
25c5b266
DV
10876#undef for_each_intel_crtc_masked
10877
d9e55608
DV
10878static void intel_set_config_free(struct intel_set_config *config)
10879{
10880 if (!config)
10881 return;
10882
1aa4b628
DV
10883 kfree(config->save_connector_encoders);
10884 kfree(config->save_encoder_crtcs);
7668851f 10885 kfree(config->save_crtc_enabled);
d9e55608
DV
10886 kfree(config);
10887}
10888
85f9eb71
DV
10889static int intel_set_config_save_state(struct drm_device *dev,
10890 struct intel_set_config *config)
10891{
7668851f 10892 struct drm_crtc *crtc;
85f9eb71
DV
10893 struct drm_encoder *encoder;
10894 struct drm_connector *connector;
10895 int count;
10896
7668851f
VS
10897 config->save_crtc_enabled =
10898 kcalloc(dev->mode_config.num_crtc,
10899 sizeof(bool), GFP_KERNEL);
10900 if (!config->save_crtc_enabled)
10901 return -ENOMEM;
10902
1aa4b628
DV
10903 config->save_encoder_crtcs =
10904 kcalloc(dev->mode_config.num_encoder,
10905 sizeof(struct drm_crtc *), GFP_KERNEL);
10906 if (!config->save_encoder_crtcs)
85f9eb71
DV
10907 return -ENOMEM;
10908
1aa4b628
DV
10909 config->save_connector_encoders =
10910 kcalloc(dev->mode_config.num_connector,
10911 sizeof(struct drm_encoder *), GFP_KERNEL);
10912 if (!config->save_connector_encoders)
85f9eb71
DV
10913 return -ENOMEM;
10914
10915 /* Copy data. Note that driver private data is not affected.
10916 * Should anything bad happen only the expected state is
10917 * restored, not the drivers personal bookkeeping.
10918 */
7668851f 10919 count = 0;
70e1e0ec 10920 for_each_crtc(dev, crtc) {
7668851f
VS
10921 config->save_crtc_enabled[count++] = crtc->enabled;
10922 }
10923
85f9eb71
DV
10924 count = 0;
10925 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10926 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10927 }
10928
10929 count = 0;
10930 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10931 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10932 }
10933
10934 return 0;
10935}
10936
10937static void intel_set_config_restore_state(struct drm_device *dev,
10938 struct intel_set_config *config)
10939{
7668851f 10940 struct intel_crtc *crtc;
9a935856
DV
10941 struct intel_encoder *encoder;
10942 struct intel_connector *connector;
85f9eb71
DV
10943 int count;
10944
7668851f 10945 count = 0;
d3fcc808 10946 for_each_intel_crtc(dev, crtc) {
7668851f 10947 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10948
10949 if (crtc->new_enabled)
10950 crtc->new_config = &crtc->config;
10951 else
10952 crtc->new_config = NULL;
7668851f
VS
10953 }
10954
85f9eb71 10955 count = 0;
9a935856
DV
10956 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10957 encoder->new_crtc =
10958 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10959 }
10960
10961 count = 0;
9a935856
DV
10962 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10963 connector->new_encoder =
10964 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10965 }
10966}
10967
e3de42b6 10968static bool
2e57f47d 10969is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10970{
10971 int i;
10972
2e57f47d
CW
10973 if (set->num_connectors == 0)
10974 return false;
10975
10976 if (WARN_ON(set->connectors == NULL))
10977 return false;
10978
10979 for (i = 0; i < set->num_connectors; i++)
10980 if (set->connectors[i]->encoder &&
10981 set->connectors[i]->encoder->crtc == set->crtc &&
10982 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10983 return true;
10984
10985 return false;
10986}
10987
5e2b584e
DV
10988static void
10989intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10990 struct intel_set_config *config)
10991{
10992
10993 /* We should be able to check here if the fb has the same properties
10994 * and then just flip_or_move it */
2e57f47d
CW
10995 if (is_crtc_connector_off(set)) {
10996 config->mode_changed = true;
f4510a27 10997 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10998 /*
10999 * If we have no fb, we can only flip as long as the crtc is
11000 * active, otherwise we need a full mode set. The crtc may
11001 * be active if we've only disabled the primary plane, or
11002 * in fastboot situations.
11003 */
f4510a27 11004 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11005 struct intel_crtc *intel_crtc =
11006 to_intel_crtc(set->crtc);
11007
3b150f08 11008 if (intel_crtc->active) {
319d9827
JB
11009 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11010 config->fb_changed = true;
11011 } else {
11012 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11013 config->mode_changed = true;
11014 }
5e2b584e
DV
11015 } else if (set->fb == NULL) {
11016 config->mode_changed = true;
72f4901e 11017 } else if (set->fb->pixel_format !=
f4510a27 11018 set->crtc->primary->fb->pixel_format) {
5e2b584e 11019 config->mode_changed = true;
e3de42b6 11020 } else {
5e2b584e 11021 config->fb_changed = true;
e3de42b6 11022 }
5e2b584e
DV
11023 }
11024
835c5873 11025 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11026 config->fb_changed = true;
11027
11028 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11029 DRM_DEBUG_KMS("modes are different, full mode set\n");
11030 drm_mode_debug_printmodeline(&set->crtc->mode);
11031 drm_mode_debug_printmodeline(set->mode);
11032 config->mode_changed = true;
11033 }
a1d95703
CW
11034
11035 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11036 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11037}
11038
2e431051 11039static int
9a935856
DV
11040intel_modeset_stage_output_state(struct drm_device *dev,
11041 struct drm_mode_set *set,
11042 struct intel_set_config *config)
50f56119 11043{
9a935856
DV
11044 struct intel_connector *connector;
11045 struct intel_encoder *encoder;
7668851f 11046 struct intel_crtc *crtc;
f3f08572 11047 int ro;
50f56119 11048
9abdda74 11049 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11050 * of connectors. For paranoia, double-check this. */
11051 WARN_ON(!set->fb && (set->num_connectors != 0));
11052 WARN_ON(set->fb && (set->num_connectors == 0));
11053
9a935856
DV
11054 list_for_each_entry(connector, &dev->mode_config.connector_list,
11055 base.head) {
11056 /* Otherwise traverse passed in connector list and get encoders
11057 * for them. */
50f56119 11058 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11059 if (set->connectors[ro] == &connector->base) {
11060 connector->new_encoder = connector->encoder;
50f56119
DV
11061 break;
11062 }
11063 }
11064
9a935856
DV
11065 /* If we disable the crtc, disable all its connectors. Also, if
11066 * the connector is on the changing crtc but not on the new
11067 * connector list, disable it. */
11068 if ((!set->fb || ro == set->num_connectors) &&
11069 connector->base.encoder &&
11070 connector->base.encoder->crtc == set->crtc) {
11071 connector->new_encoder = NULL;
11072
11073 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11074 connector->base.base.id,
c23cc417 11075 connector->base.name);
9a935856
DV
11076 }
11077
11078
11079 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11080 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11081 config->mode_changed = true;
50f56119
DV
11082 }
11083 }
9a935856 11084 /* connector->new_encoder is now updated for all connectors. */
50f56119 11085
9a935856 11086 /* Update crtc of enabled connectors. */
9a935856
DV
11087 list_for_each_entry(connector, &dev->mode_config.connector_list,
11088 base.head) {
7668851f
VS
11089 struct drm_crtc *new_crtc;
11090
9a935856 11091 if (!connector->new_encoder)
50f56119
DV
11092 continue;
11093
9a935856 11094 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11095
11096 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11097 if (set->connectors[ro] == &connector->base)
50f56119
DV
11098 new_crtc = set->crtc;
11099 }
11100
11101 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11102 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11103 new_crtc)) {
5e2b584e 11104 return -EINVAL;
50f56119 11105 }
9a935856
DV
11106 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11107
11108 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11109 connector->base.base.id,
c23cc417 11110 connector->base.name,
9a935856
DV
11111 new_crtc->base.id);
11112 }
11113
11114 /* Check for any encoders that needs to be disabled. */
11115 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11116 base.head) {
5a65f358 11117 int num_connectors = 0;
9a935856
DV
11118 list_for_each_entry(connector,
11119 &dev->mode_config.connector_list,
11120 base.head) {
11121 if (connector->new_encoder == encoder) {
11122 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11123 num_connectors++;
9a935856
DV
11124 }
11125 }
5a65f358
PZ
11126
11127 if (num_connectors == 0)
11128 encoder->new_crtc = NULL;
11129 else if (num_connectors > 1)
11130 return -EINVAL;
11131
9a935856
DV
11132 /* Only now check for crtc changes so we don't miss encoders
11133 * that will be disabled. */
11134 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11135 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11136 config->mode_changed = true;
50f56119
DV
11137 }
11138 }
9a935856 11139 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11140
d3fcc808 11141 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11142 crtc->new_enabled = false;
11143
11144 list_for_each_entry(encoder,
11145 &dev->mode_config.encoder_list,
11146 base.head) {
11147 if (encoder->new_crtc == crtc) {
11148 crtc->new_enabled = true;
11149 break;
11150 }
11151 }
11152
11153 if (crtc->new_enabled != crtc->base.enabled) {
11154 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11155 crtc->new_enabled ? "en" : "dis");
11156 config->mode_changed = true;
11157 }
7bd0a8e7
VS
11158
11159 if (crtc->new_enabled)
11160 crtc->new_config = &crtc->config;
11161 else
11162 crtc->new_config = NULL;
7668851f
VS
11163 }
11164
2e431051
DV
11165 return 0;
11166}
11167
7d00a1f5
VS
11168static void disable_crtc_nofb(struct intel_crtc *crtc)
11169{
11170 struct drm_device *dev = crtc->base.dev;
11171 struct intel_encoder *encoder;
11172 struct intel_connector *connector;
11173
11174 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11175 pipe_name(crtc->pipe));
11176
11177 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11178 if (connector->new_encoder &&
11179 connector->new_encoder->new_crtc == crtc)
11180 connector->new_encoder = NULL;
11181 }
11182
11183 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11184 if (encoder->new_crtc == crtc)
11185 encoder->new_crtc = NULL;
11186 }
11187
11188 crtc->new_enabled = false;
7bd0a8e7 11189 crtc->new_config = NULL;
7d00a1f5
VS
11190}
11191
2e431051
DV
11192static int intel_crtc_set_config(struct drm_mode_set *set)
11193{
11194 struct drm_device *dev;
2e431051
DV
11195 struct drm_mode_set save_set;
11196 struct intel_set_config *config;
11197 int ret;
2e431051 11198
8d3e375e
DV
11199 BUG_ON(!set);
11200 BUG_ON(!set->crtc);
11201 BUG_ON(!set->crtc->helper_private);
2e431051 11202
7e53f3a4
DV
11203 /* Enforce sane interface api - has been abused by the fb helper. */
11204 BUG_ON(!set->mode && set->fb);
11205 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11206
2e431051
DV
11207 if (set->fb) {
11208 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11209 set->crtc->base.id, set->fb->base.id,
11210 (int)set->num_connectors, set->x, set->y);
11211 } else {
11212 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11213 }
11214
11215 dev = set->crtc->dev;
11216
11217 ret = -ENOMEM;
11218 config = kzalloc(sizeof(*config), GFP_KERNEL);
11219 if (!config)
11220 goto out_config;
11221
11222 ret = intel_set_config_save_state(dev, config);
11223 if (ret)
11224 goto out_config;
11225
11226 save_set.crtc = set->crtc;
11227 save_set.mode = &set->crtc->mode;
11228 save_set.x = set->crtc->x;
11229 save_set.y = set->crtc->y;
f4510a27 11230 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11231
11232 /* Compute whether we need a full modeset, only an fb base update or no
11233 * change at all. In the future we might also check whether only the
11234 * mode changed, e.g. for LVDS where we only change the panel fitter in
11235 * such cases. */
11236 intel_set_config_compute_mode_changes(set, config);
11237
9a935856 11238 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11239 if (ret)
11240 goto fail;
11241
5e2b584e 11242 if (config->mode_changed) {
c0c36b94
CW
11243 ret = intel_set_mode(set->crtc, set->mode,
11244 set->x, set->y, set->fb);
5e2b584e 11245 } else if (config->fb_changed) {
3b150f08
MR
11246 struct drm_i915_private *dev_priv = dev->dev_private;
11247 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11248
4878cae2
VS
11249 intel_crtc_wait_for_pending_flips(set->crtc);
11250
4f660f49 11251 ret = intel_pipe_set_base(set->crtc,
94352cf9 11252 set->x, set->y, set->fb);
3b150f08
MR
11253
11254 /*
11255 * We need to make sure the primary plane is re-enabled if it
11256 * has previously been turned off.
11257 */
11258 if (!intel_crtc->primary_enabled && ret == 0) {
11259 WARN_ON(!intel_crtc->active);
11260 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11261 intel_crtc->pipe);
11262 }
11263
7ca51a3a
JB
11264 /*
11265 * In the fastboot case this may be our only check of the
11266 * state after boot. It would be better to only do it on
11267 * the first update, but we don't have a nice way of doing that
11268 * (and really, set_config isn't used much for high freq page
11269 * flipping, so increasing its cost here shouldn't be a big
11270 * deal).
11271 */
d330a953 11272 if (i915.fastboot && ret == 0)
7ca51a3a 11273 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11274 }
11275
2d05eae1 11276 if (ret) {
bf67dfeb
DV
11277 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11278 set->crtc->base.id, ret);
50f56119 11279fail:
2d05eae1 11280 intel_set_config_restore_state(dev, config);
50f56119 11281
7d00a1f5
VS
11282 /*
11283 * HACK: if the pipe was on, but we didn't have a framebuffer,
11284 * force the pipe off to avoid oopsing in the modeset code
11285 * due to fb==NULL. This should only happen during boot since
11286 * we don't yet reconstruct the FB from the hardware state.
11287 */
11288 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11289 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11290
2d05eae1
CW
11291 /* Try to restore the config */
11292 if (config->mode_changed &&
11293 intel_set_mode(save_set.crtc, save_set.mode,
11294 save_set.x, save_set.y, save_set.fb))
11295 DRM_ERROR("failed to restore config after modeset failure\n");
11296 }
50f56119 11297
d9e55608
DV
11298out_config:
11299 intel_set_config_free(config);
50f56119
DV
11300 return ret;
11301}
f6e5b160
CW
11302
11303static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11304 .gamma_set = intel_crtc_gamma_set,
50f56119 11305 .set_config = intel_crtc_set_config,
f6e5b160
CW
11306 .destroy = intel_crtc_destroy,
11307 .page_flip = intel_crtc_page_flip,
11308};
11309
5358901f
DV
11310static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11311 struct intel_shared_dpll *pll,
11312 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11313{
5358901f 11314 uint32_t val;
ee7b9f93 11315
bd2bb1b9
PZ
11316 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11317 return false;
11318
5358901f 11319 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11320 hw_state->dpll = val;
11321 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11322 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11323
11324 return val & DPLL_VCO_ENABLE;
11325}
11326
15bdd4cf
DV
11327static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11328 struct intel_shared_dpll *pll)
11329{
11330 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11331 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11332}
11333
e7b903d2
DV
11334static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11335 struct intel_shared_dpll *pll)
11336{
e7b903d2 11337 /* PCH refclock must be enabled first */
89eff4be 11338 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11339
15bdd4cf
DV
11340 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11341
11342 /* Wait for the clocks to stabilize. */
11343 POSTING_READ(PCH_DPLL(pll->id));
11344 udelay(150);
11345
11346 /* The pixel multiplier can only be updated once the
11347 * DPLL is enabled and the clocks are stable.
11348 *
11349 * So write it again.
11350 */
11351 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11352 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11353 udelay(200);
11354}
11355
11356static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11357 struct intel_shared_dpll *pll)
11358{
11359 struct drm_device *dev = dev_priv->dev;
11360 struct intel_crtc *crtc;
e7b903d2
DV
11361
11362 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11363 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11364 if (intel_crtc_to_shared_dpll(crtc) == pll)
11365 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11366 }
11367
15bdd4cf
DV
11368 I915_WRITE(PCH_DPLL(pll->id), 0);
11369 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11370 udelay(200);
11371}
11372
46edb027
DV
11373static char *ibx_pch_dpll_names[] = {
11374 "PCH DPLL A",
11375 "PCH DPLL B",
11376};
11377
7c74ade1 11378static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11379{
e7b903d2 11380 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11381 int i;
11382
7c74ade1 11383 dev_priv->num_shared_dpll = 2;
ee7b9f93 11384
e72f9fbf 11385 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11386 dev_priv->shared_dplls[i].id = i;
11387 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11388 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11389 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11390 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11391 dev_priv->shared_dplls[i].get_hw_state =
11392 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11393 }
11394}
11395
7c74ade1
DV
11396static void intel_shared_dpll_init(struct drm_device *dev)
11397{
e7b903d2 11398 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11399
9cd86933
DV
11400 if (HAS_DDI(dev))
11401 intel_ddi_pll_init(dev);
11402 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11403 ibx_pch_dpll_init(dev);
11404 else
11405 dev_priv->num_shared_dpll = 0;
11406
11407 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11408}
11409
465c120c
MR
11410static int
11411intel_primary_plane_disable(struct drm_plane *plane)
11412{
11413 struct drm_device *dev = plane->dev;
11414 struct drm_i915_private *dev_priv = dev->dev_private;
11415 struct intel_plane *intel_plane = to_intel_plane(plane);
11416 struct intel_crtc *intel_crtc;
11417
11418 if (!plane->fb)
11419 return 0;
11420
11421 BUG_ON(!plane->crtc);
11422
11423 intel_crtc = to_intel_crtc(plane->crtc);
11424
11425 /*
11426 * Even though we checked plane->fb above, it's still possible that
11427 * the primary plane has been implicitly disabled because the crtc
11428 * coordinates given weren't visible, or because we detected
11429 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11430 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11431 * In either case, we need to unpin the FB and let the fb pointer get
11432 * updated, but otherwise we don't need to touch the hardware.
11433 */
11434 if (!intel_crtc->primary_enabled)
11435 goto disable_unpin;
11436
11437 intel_crtc_wait_for_pending_flips(plane->crtc);
11438 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11439 intel_plane->pipe);
465c120c 11440disable_unpin:
4c34574f 11441 mutex_lock(&dev->struct_mutex);
2ff8fde1 11442 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11443 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11444 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11445 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11446 plane->fb = NULL;
11447
11448 return 0;
11449}
11450
11451static int
11452intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11453 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11454 unsigned int crtc_w, unsigned int crtc_h,
11455 uint32_t src_x, uint32_t src_y,
11456 uint32_t src_w, uint32_t src_h)
11457{
11458 struct drm_device *dev = crtc->dev;
11459 struct drm_i915_private *dev_priv = dev->dev_private;
11460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11461 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11462 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11463 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11464 struct drm_rect dest = {
11465 /* integer pixels */
11466 .x1 = crtc_x,
11467 .y1 = crtc_y,
11468 .x2 = crtc_x + crtc_w,
11469 .y2 = crtc_y + crtc_h,
11470 };
11471 struct drm_rect src = {
11472 /* 16.16 fixed point */
11473 .x1 = src_x,
11474 .y1 = src_y,
11475 .x2 = src_x + src_w,
11476 .y2 = src_y + src_h,
11477 };
11478 const struct drm_rect clip = {
11479 /* integer pixels */
11480 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11481 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11482 };
11483 bool visible;
11484 int ret;
11485
11486 ret = drm_plane_helper_check_update(plane, crtc, fb,
11487 &src, &dest, &clip,
11488 DRM_PLANE_HELPER_NO_SCALING,
11489 DRM_PLANE_HELPER_NO_SCALING,
11490 false, true, &visible);
11491
11492 if (ret)
11493 return ret;
11494
11495 /*
11496 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11497 * updating the fb pointer, and returning without touching the
11498 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11499 * turn on the display with all planes setup as desired.
11500 */
11501 if (!crtc->enabled) {
4c34574f
MR
11502 mutex_lock(&dev->struct_mutex);
11503
465c120c
MR
11504 /*
11505 * If we already called setplane while the crtc was disabled,
11506 * we may have an fb pinned; unpin it.
11507 */
11508 if (plane->fb)
a071fa00
DV
11509 intel_unpin_fb_obj(old_obj);
11510
11511 i915_gem_track_fb(old_obj, obj,
11512 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11513
11514 /* Pin and return without programming hardware */
4c34574f
MR
11515 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11516 mutex_unlock(&dev->struct_mutex);
11517
11518 return ret;
465c120c
MR
11519 }
11520
11521 intel_crtc_wait_for_pending_flips(crtc);
11522
11523 /*
11524 * If clipping results in a non-visible primary plane, we'll disable
11525 * the primary plane. Note that this is a bit different than what
11526 * happens if userspace explicitly disables the plane by passing fb=0
11527 * because plane->fb still gets set and pinned.
11528 */
11529 if (!visible) {
4c34574f
MR
11530 mutex_lock(&dev->struct_mutex);
11531
465c120c
MR
11532 /*
11533 * Try to pin the new fb first so that we can bail out if we
11534 * fail.
11535 */
11536 if (plane->fb != fb) {
a071fa00 11537 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11538 if (ret) {
11539 mutex_unlock(&dev->struct_mutex);
465c120c 11540 return ret;
4c34574f 11541 }
465c120c
MR
11542 }
11543
a071fa00
DV
11544 i915_gem_track_fb(old_obj, obj,
11545 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11546
465c120c
MR
11547 if (intel_crtc->primary_enabled)
11548 intel_disable_primary_hw_plane(dev_priv,
11549 intel_plane->plane,
11550 intel_plane->pipe);
11551
11552
11553 if (plane->fb != fb)
11554 if (plane->fb)
a071fa00 11555 intel_unpin_fb_obj(old_obj);
465c120c 11556
4c34574f
MR
11557 mutex_unlock(&dev->struct_mutex);
11558
465c120c
MR
11559 return 0;
11560 }
11561
11562 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11563 if (ret)
11564 return ret;
11565
11566 if (!intel_crtc->primary_enabled)
11567 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11568 intel_crtc->pipe);
11569
11570 return 0;
11571}
11572
3d7d6510
MR
11573/* Common destruction function for both primary and cursor planes */
11574static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11575{
11576 struct intel_plane *intel_plane = to_intel_plane(plane);
11577 drm_plane_cleanup(plane);
11578 kfree(intel_plane);
11579}
11580
11581static const struct drm_plane_funcs intel_primary_plane_funcs = {
11582 .update_plane = intel_primary_plane_setplane,
11583 .disable_plane = intel_primary_plane_disable,
3d7d6510 11584 .destroy = intel_plane_destroy,
465c120c
MR
11585};
11586
11587static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11588 int pipe)
11589{
11590 struct intel_plane *primary;
11591 const uint32_t *intel_primary_formats;
11592 int num_formats;
11593
11594 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11595 if (primary == NULL)
11596 return NULL;
11597
11598 primary->can_scale = false;
11599 primary->max_downscale = 1;
11600 primary->pipe = pipe;
11601 primary->plane = pipe;
11602 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11603 primary->plane = !pipe;
11604
11605 if (INTEL_INFO(dev)->gen <= 3) {
11606 intel_primary_formats = intel_primary_formats_gen2;
11607 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11608 } else {
11609 intel_primary_formats = intel_primary_formats_gen4;
11610 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11611 }
11612
11613 drm_universal_plane_init(dev, &primary->base, 0,
11614 &intel_primary_plane_funcs,
11615 intel_primary_formats, num_formats,
11616 DRM_PLANE_TYPE_PRIMARY);
11617 return &primary->base;
11618}
11619
3d7d6510
MR
11620static int
11621intel_cursor_plane_disable(struct drm_plane *plane)
11622{
11623 if (!plane->fb)
11624 return 0;
11625
11626 BUG_ON(!plane->crtc);
11627
11628 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11629}
11630
11631static int
11632intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11633 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11634 unsigned int crtc_w, unsigned int crtc_h,
11635 uint32_t src_x, uint32_t src_y,
11636 uint32_t src_w, uint32_t src_h)
11637{
11638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11639 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11640 struct drm_i915_gem_object *obj = intel_fb->obj;
11641 struct drm_rect dest = {
11642 /* integer pixels */
11643 .x1 = crtc_x,
11644 .y1 = crtc_y,
11645 .x2 = crtc_x + crtc_w,
11646 .y2 = crtc_y + crtc_h,
11647 };
11648 struct drm_rect src = {
11649 /* 16.16 fixed point */
11650 .x1 = src_x,
11651 .y1 = src_y,
11652 .x2 = src_x + src_w,
11653 .y2 = src_y + src_h,
11654 };
11655 const struct drm_rect clip = {
11656 /* integer pixels */
11657 .x2 = intel_crtc->config.pipe_src_w,
11658 .y2 = intel_crtc->config.pipe_src_h,
11659 };
11660 bool visible;
11661 int ret;
11662
11663 ret = drm_plane_helper_check_update(plane, crtc, fb,
11664 &src, &dest, &clip,
11665 DRM_PLANE_HELPER_NO_SCALING,
11666 DRM_PLANE_HELPER_NO_SCALING,
11667 true, true, &visible);
11668 if (ret)
11669 return ret;
11670
11671 crtc->cursor_x = crtc_x;
11672 crtc->cursor_y = crtc_y;
11673 if (fb != crtc->cursor->fb) {
11674 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11675 } else {
11676 intel_crtc_update_cursor(crtc, visible);
11677 return 0;
11678 }
11679}
11680static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11681 .update_plane = intel_cursor_plane_update,
11682 .disable_plane = intel_cursor_plane_disable,
11683 .destroy = intel_plane_destroy,
11684};
11685
11686static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11687 int pipe)
11688{
11689 struct intel_plane *cursor;
11690
11691 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11692 if (cursor == NULL)
11693 return NULL;
11694
11695 cursor->can_scale = false;
11696 cursor->max_downscale = 1;
11697 cursor->pipe = pipe;
11698 cursor->plane = pipe;
11699
11700 drm_universal_plane_init(dev, &cursor->base, 0,
11701 &intel_cursor_plane_funcs,
11702 intel_cursor_formats,
11703 ARRAY_SIZE(intel_cursor_formats),
11704 DRM_PLANE_TYPE_CURSOR);
11705 return &cursor->base;
11706}
11707
b358d0a6 11708static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11709{
fbee40df 11710 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11711 struct intel_crtc *intel_crtc;
3d7d6510
MR
11712 struct drm_plane *primary = NULL;
11713 struct drm_plane *cursor = NULL;
465c120c 11714 int i, ret;
79e53945 11715
955382f3 11716 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11717 if (intel_crtc == NULL)
11718 return;
11719
465c120c 11720 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11721 if (!primary)
11722 goto fail;
11723
11724 cursor = intel_cursor_plane_create(dev, pipe);
11725 if (!cursor)
11726 goto fail;
11727
465c120c 11728 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11729 cursor, &intel_crtc_funcs);
11730 if (ret)
11731 goto fail;
79e53945
JB
11732
11733 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11734 for (i = 0; i < 256; i++) {
11735 intel_crtc->lut_r[i] = i;
11736 intel_crtc->lut_g[i] = i;
11737 intel_crtc->lut_b[i] = i;
11738 }
11739
1f1c2e24
VS
11740 /*
11741 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11742 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11743 */
80824003
JB
11744 intel_crtc->pipe = pipe;
11745 intel_crtc->plane = pipe;
3a77c4c4 11746 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11747 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11748 intel_crtc->plane = !pipe;
80824003
JB
11749 }
11750
4b0e333e
CW
11751 intel_crtc->cursor_base = ~0;
11752 intel_crtc->cursor_cntl = ~0;
11753
8d7849db
VS
11754 init_waitqueue_head(&intel_crtc->vbl_wait);
11755
22fd0fab
JB
11756 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11757 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11758 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11759 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11760
79e53945 11761 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11762
11763 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11764 return;
11765
11766fail:
11767 if (primary)
11768 drm_plane_cleanup(primary);
11769 if (cursor)
11770 drm_plane_cleanup(cursor);
11771 kfree(intel_crtc);
79e53945
JB
11772}
11773
752aa88a
JB
11774enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11775{
11776 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11777 struct drm_device *dev = connector->base.dev;
752aa88a 11778
51fd371b 11779 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11780
11781 if (!encoder)
11782 return INVALID_PIPE;
11783
11784 return to_intel_crtc(encoder->crtc)->pipe;
11785}
11786
08d7b3d1 11787int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11788 struct drm_file *file)
08d7b3d1 11789{
08d7b3d1 11790 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11791 struct drm_mode_object *drmmode_obj;
11792 struct intel_crtc *crtc;
08d7b3d1 11793
1cff8f6b
DV
11794 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11795 return -ENODEV;
08d7b3d1 11796
c05422d5
DV
11797 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11798 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11799
c05422d5 11800 if (!drmmode_obj) {
08d7b3d1 11801 DRM_ERROR("no such CRTC id\n");
3f2c2057 11802 return -ENOENT;
08d7b3d1
CW
11803 }
11804
c05422d5
DV
11805 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11806 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11807
c05422d5 11808 return 0;
08d7b3d1
CW
11809}
11810
66a9278e 11811static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11812{
66a9278e
DV
11813 struct drm_device *dev = encoder->base.dev;
11814 struct intel_encoder *source_encoder;
79e53945 11815 int index_mask = 0;
79e53945
JB
11816 int entry = 0;
11817
66a9278e
DV
11818 list_for_each_entry(source_encoder,
11819 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11820 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11821 index_mask |= (1 << entry);
11822
79e53945
JB
11823 entry++;
11824 }
4ef69c7a 11825
79e53945
JB
11826 return index_mask;
11827}
11828
4d302442
CW
11829static bool has_edp_a(struct drm_device *dev)
11830{
11831 struct drm_i915_private *dev_priv = dev->dev_private;
11832
11833 if (!IS_MOBILE(dev))
11834 return false;
11835
11836 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11837 return false;
11838
e3589908 11839 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11840 return false;
11841
11842 return true;
11843}
11844
ba0fbca4
DL
11845const char *intel_output_name(int output)
11846{
11847 static const char *names[] = {
11848 [INTEL_OUTPUT_UNUSED] = "Unused",
11849 [INTEL_OUTPUT_ANALOG] = "Analog",
11850 [INTEL_OUTPUT_DVO] = "DVO",
11851 [INTEL_OUTPUT_SDVO] = "SDVO",
11852 [INTEL_OUTPUT_LVDS] = "LVDS",
11853 [INTEL_OUTPUT_TVOUT] = "TV",
11854 [INTEL_OUTPUT_HDMI] = "HDMI",
11855 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11856 [INTEL_OUTPUT_EDP] = "eDP",
11857 [INTEL_OUTPUT_DSI] = "DSI",
11858 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11859 };
11860
11861 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11862 return "Invalid";
11863
11864 return names[output];
11865}
11866
84b4e042
JB
11867static bool intel_crt_present(struct drm_device *dev)
11868{
11869 struct drm_i915_private *dev_priv = dev->dev_private;
11870
11871 if (IS_ULT(dev))
11872 return false;
11873
11874 if (IS_CHERRYVIEW(dev))
11875 return false;
11876
11877 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11878 return false;
11879
11880 return true;
11881}
11882
79e53945
JB
11883static void intel_setup_outputs(struct drm_device *dev)
11884{
725e30ad 11885 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11886 struct intel_encoder *encoder;
cb0953d7 11887 bool dpd_is_edp = false;
79e53945 11888
c9093354 11889 intel_lvds_init(dev);
79e53945 11890
84b4e042 11891 if (intel_crt_present(dev))
79935fca 11892 intel_crt_init(dev);
cb0953d7 11893
affa9354 11894 if (HAS_DDI(dev)) {
0e72a5b5
ED
11895 int found;
11896
11897 /* Haswell uses DDI functions to detect digital outputs */
11898 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11899 /* DDI A only supports eDP */
11900 if (found)
11901 intel_ddi_init(dev, PORT_A);
11902
11903 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11904 * register */
11905 found = I915_READ(SFUSE_STRAP);
11906
11907 if (found & SFUSE_STRAP_DDIB_DETECTED)
11908 intel_ddi_init(dev, PORT_B);
11909 if (found & SFUSE_STRAP_DDIC_DETECTED)
11910 intel_ddi_init(dev, PORT_C);
11911 if (found & SFUSE_STRAP_DDID_DETECTED)
11912 intel_ddi_init(dev, PORT_D);
11913 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11914 int found;
5d8a7752 11915 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11916
11917 if (has_edp_a(dev))
11918 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11919
dc0fa718 11920 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11921 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11922 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11923 if (!found)
e2debe91 11924 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11925 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11926 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11927 }
11928
dc0fa718 11929 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11930 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11931
dc0fa718 11932 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11933 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11934
5eb08b69 11935 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11936 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11937
270b3042 11938 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11939 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11940 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11941 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11942 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11943 PORT_B);
11944 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11945 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11946 }
11947
6f6005a5
JB
11948 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11949 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11950 PORT_C);
11951 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11952 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11953 }
19c03924 11954
9418c1f1
VS
11955 if (IS_CHERRYVIEW(dev)) {
11956 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11957 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11958 PORT_D);
11959 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11960 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11961 }
11962 }
11963
3cfca973 11964 intel_dsi_init(dev);
103a196f 11965 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11966 bool found = false;
7d57382e 11967
e2debe91 11968 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11969 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11970 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11971 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11972 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11973 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11974 }
27185ae1 11975
e7281eab 11976 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11977 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11978 }
13520b05
KH
11979
11980 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11981
e2debe91 11982 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11983 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11984 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11985 }
27185ae1 11986
e2debe91 11987 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11988
b01f2c3a
JB
11989 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11990 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11991 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11992 }
e7281eab 11993 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11994 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11995 }
27185ae1 11996
b01f2c3a 11997 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11998 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11999 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12000 } else if (IS_GEN2(dev))
79e53945
JB
12001 intel_dvo_init(dev);
12002
103a196f 12003 if (SUPPORTS_TV(dev))
79e53945
JB
12004 intel_tv_init(dev);
12005
7c8f8a70
RV
12006 intel_edp_psr_init(dev);
12007
4ef69c7a
CW
12008 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12009 encoder->base.possible_crtcs = encoder->crtc_mask;
12010 encoder->base.possible_clones =
66a9278e 12011 intel_encoder_clones(encoder);
79e53945 12012 }
47356eb6 12013
dde86e2d 12014 intel_init_pch_refclk(dev);
270b3042
DV
12015
12016 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12017}
12018
12019static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12020{
60a5ca01 12021 struct drm_device *dev = fb->dev;
79e53945 12022 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12023
ef2d633e 12024 drm_framebuffer_cleanup(fb);
60a5ca01 12025 mutex_lock(&dev->struct_mutex);
ef2d633e 12026 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12027 drm_gem_object_unreference(&intel_fb->obj->base);
12028 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12029 kfree(intel_fb);
12030}
12031
12032static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12033 struct drm_file *file,
79e53945
JB
12034 unsigned int *handle)
12035{
12036 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12037 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12038
05394f39 12039 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12040}
12041
12042static const struct drm_framebuffer_funcs intel_fb_funcs = {
12043 .destroy = intel_user_framebuffer_destroy,
12044 .create_handle = intel_user_framebuffer_create_handle,
12045};
12046
b5ea642a
DV
12047static int intel_framebuffer_init(struct drm_device *dev,
12048 struct intel_framebuffer *intel_fb,
12049 struct drm_mode_fb_cmd2 *mode_cmd,
12050 struct drm_i915_gem_object *obj)
79e53945 12051{
a57ce0b2 12052 int aligned_height;
a35cdaa0 12053 int pitch_limit;
79e53945
JB
12054 int ret;
12055
dd4916c5
DV
12056 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12057
c16ed4be
CW
12058 if (obj->tiling_mode == I915_TILING_Y) {
12059 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12060 return -EINVAL;
c16ed4be 12061 }
57cd6508 12062
c16ed4be
CW
12063 if (mode_cmd->pitches[0] & 63) {
12064 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12065 mode_cmd->pitches[0]);
57cd6508 12066 return -EINVAL;
c16ed4be 12067 }
57cd6508 12068
a35cdaa0
CW
12069 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12070 pitch_limit = 32*1024;
12071 } else if (INTEL_INFO(dev)->gen >= 4) {
12072 if (obj->tiling_mode)
12073 pitch_limit = 16*1024;
12074 else
12075 pitch_limit = 32*1024;
12076 } else if (INTEL_INFO(dev)->gen >= 3) {
12077 if (obj->tiling_mode)
12078 pitch_limit = 8*1024;
12079 else
12080 pitch_limit = 16*1024;
12081 } else
12082 /* XXX DSPC is limited to 4k tiled */
12083 pitch_limit = 8*1024;
12084
12085 if (mode_cmd->pitches[0] > pitch_limit) {
12086 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12087 obj->tiling_mode ? "tiled" : "linear",
12088 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12089 return -EINVAL;
c16ed4be 12090 }
5d7bd705
VS
12091
12092 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12093 mode_cmd->pitches[0] != obj->stride) {
12094 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12095 mode_cmd->pitches[0], obj->stride);
5d7bd705 12096 return -EINVAL;
c16ed4be 12097 }
5d7bd705 12098
57779d06 12099 /* Reject formats not supported by any plane early. */
308e5bcb 12100 switch (mode_cmd->pixel_format) {
57779d06 12101 case DRM_FORMAT_C8:
04b3924d
VS
12102 case DRM_FORMAT_RGB565:
12103 case DRM_FORMAT_XRGB8888:
12104 case DRM_FORMAT_ARGB8888:
57779d06
VS
12105 break;
12106 case DRM_FORMAT_XRGB1555:
12107 case DRM_FORMAT_ARGB1555:
c16ed4be 12108 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12109 DRM_DEBUG("unsupported pixel format: %s\n",
12110 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12111 return -EINVAL;
c16ed4be 12112 }
57779d06
VS
12113 break;
12114 case DRM_FORMAT_XBGR8888:
12115 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12116 case DRM_FORMAT_XRGB2101010:
12117 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12118 case DRM_FORMAT_XBGR2101010:
12119 case DRM_FORMAT_ABGR2101010:
c16ed4be 12120 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12121 DRM_DEBUG("unsupported pixel format: %s\n",
12122 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12123 return -EINVAL;
c16ed4be 12124 }
b5626747 12125 break;
04b3924d
VS
12126 case DRM_FORMAT_YUYV:
12127 case DRM_FORMAT_UYVY:
12128 case DRM_FORMAT_YVYU:
12129 case DRM_FORMAT_VYUY:
c16ed4be 12130 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12131 DRM_DEBUG("unsupported pixel format: %s\n",
12132 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12133 return -EINVAL;
c16ed4be 12134 }
57cd6508
CW
12135 break;
12136 default:
4ee62c76
VS
12137 DRM_DEBUG("unsupported pixel format: %s\n",
12138 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12139 return -EINVAL;
12140 }
12141
90f9a336
VS
12142 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12143 if (mode_cmd->offsets[0] != 0)
12144 return -EINVAL;
12145
a57ce0b2
JB
12146 aligned_height = intel_align_height(dev, mode_cmd->height,
12147 obj->tiling_mode);
53155c0a
DV
12148 /* FIXME drm helper for size checks (especially planar formats)? */
12149 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12150 return -EINVAL;
12151
c7d73f6a
DV
12152 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12153 intel_fb->obj = obj;
80075d49 12154 intel_fb->obj->framebuffer_references++;
c7d73f6a 12155
79e53945
JB
12156 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12157 if (ret) {
12158 DRM_ERROR("framebuffer init failed %d\n", ret);
12159 return ret;
12160 }
12161
79e53945
JB
12162 return 0;
12163}
12164
79e53945
JB
12165static struct drm_framebuffer *
12166intel_user_framebuffer_create(struct drm_device *dev,
12167 struct drm_file *filp,
308e5bcb 12168 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12169{
05394f39 12170 struct drm_i915_gem_object *obj;
79e53945 12171
308e5bcb
JB
12172 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12173 mode_cmd->handles[0]));
c8725226 12174 if (&obj->base == NULL)
cce13ff7 12175 return ERR_PTR(-ENOENT);
79e53945 12176
d2dff872 12177 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12178}
12179
4520f53a 12180#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12181static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12182{
12183}
12184#endif
12185
79e53945 12186static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12187 .fb_create = intel_user_framebuffer_create,
0632fef6 12188 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12189};
12190
e70236a8
JB
12191/* Set up chip specific display functions */
12192static void intel_init_display(struct drm_device *dev)
12193{
12194 struct drm_i915_private *dev_priv = dev->dev_private;
12195
ee9300bb
DV
12196 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12197 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12198 else if (IS_CHERRYVIEW(dev))
12199 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12200 else if (IS_VALLEYVIEW(dev))
12201 dev_priv->display.find_dpll = vlv_find_best_dpll;
12202 else if (IS_PINEVIEW(dev))
12203 dev_priv->display.find_dpll = pnv_find_best_dpll;
12204 else
12205 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12206
affa9354 12207 if (HAS_DDI(dev)) {
0e8ffe1b 12208 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12209 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12210 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12211 dev_priv->display.crtc_enable = haswell_crtc_enable;
12212 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12213 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12214 dev_priv->display.update_primary_plane =
12215 ironlake_update_primary_plane;
09b4ddf9 12216 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12217 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12218 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12219 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12220 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12221 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12222 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12223 dev_priv->display.update_primary_plane =
12224 ironlake_update_primary_plane;
89b667f8
JB
12225 } else if (IS_VALLEYVIEW(dev)) {
12226 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12227 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12228 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12229 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12230 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12231 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12232 dev_priv->display.update_primary_plane =
12233 i9xx_update_primary_plane;
f564048e 12234 } else {
0e8ffe1b 12235 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12236 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12237 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12238 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12239 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12240 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12241 dev_priv->display.update_primary_plane =
12242 i9xx_update_primary_plane;
f564048e 12243 }
e70236a8 12244
e70236a8 12245 /* Returns the core display clock speed */
25eb05fc
JB
12246 if (IS_VALLEYVIEW(dev))
12247 dev_priv->display.get_display_clock_speed =
12248 valleyview_get_display_clock_speed;
12249 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12250 dev_priv->display.get_display_clock_speed =
12251 i945_get_display_clock_speed;
12252 else if (IS_I915G(dev))
12253 dev_priv->display.get_display_clock_speed =
12254 i915_get_display_clock_speed;
257a7ffc 12255 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12256 dev_priv->display.get_display_clock_speed =
12257 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12258 else if (IS_PINEVIEW(dev))
12259 dev_priv->display.get_display_clock_speed =
12260 pnv_get_display_clock_speed;
e70236a8
JB
12261 else if (IS_I915GM(dev))
12262 dev_priv->display.get_display_clock_speed =
12263 i915gm_get_display_clock_speed;
12264 else if (IS_I865G(dev))
12265 dev_priv->display.get_display_clock_speed =
12266 i865_get_display_clock_speed;
f0f8a9ce 12267 else if (IS_I85X(dev))
e70236a8
JB
12268 dev_priv->display.get_display_clock_speed =
12269 i855_get_display_clock_speed;
12270 else /* 852, 830 */
12271 dev_priv->display.get_display_clock_speed =
12272 i830_get_display_clock_speed;
12273
7f8a8569 12274 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12275 if (IS_GEN5(dev)) {
674cf967 12276 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12277 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12278 } else if (IS_GEN6(dev)) {
674cf967 12279 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12280 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12281 dev_priv->display.modeset_global_resources =
12282 snb_modeset_global_resources;
357555c0
JB
12283 } else if (IS_IVYBRIDGE(dev)) {
12284 /* FIXME: detect B0+ stepping and use auto training */
12285 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12286 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12287 dev_priv->display.modeset_global_resources =
12288 ivb_modeset_global_resources;
4e0bbc31 12289 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12290 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12291 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12292 dev_priv->display.modeset_global_resources =
12293 haswell_modeset_global_resources;
a0e63c22 12294 }
6067aaea 12295 } else if (IS_G4X(dev)) {
e0dac65e 12296 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12297 } else if (IS_VALLEYVIEW(dev)) {
12298 dev_priv->display.modeset_global_resources =
12299 valleyview_modeset_global_resources;
9ca2fe73 12300 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12301 }
8c9f3aaf
JB
12302
12303 /* Default just returns -ENODEV to indicate unsupported */
12304 dev_priv->display.queue_flip = intel_default_queue_flip;
12305
12306 switch (INTEL_INFO(dev)->gen) {
12307 case 2:
12308 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12309 break;
12310
12311 case 3:
12312 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12313 break;
12314
12315 case 4:
12316 case 5:
12317 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12318 break;
12319
12320 case 6:
12321 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12322 break;
7c9017e5 12323 case 7:
4e0bbc31 12324 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12325 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12326 break;
8c9f3aaf 12327 }
7bd688cd
JN
12328
12329 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12330}
12331
b690e96c
JB
12332/*
12333 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12334 * resume, or other times. This quirk makes sure that's the case for
12335 * affected systems.
12336 */
0206e353 12337static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12338{
12339 struct drm_i915_private *dev_priv = dev->dev_private;
12340
12341 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12342 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12343}
12344
435793df
KP
12345/*
12346 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12347 */
12348static void quirk_ssc_force_disable(struct drm_device *dev)
12349{
12350 struct drm_i915_private *dev_priv = dev->dev_private;
12351 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12352 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12353}
12354
4dca20ef 12355/*
5a15ab5b
CE
12356 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12357 * brightness value
4dca20ef
CE
12358 */
12359static void quirk_invert_brightness(struct drm_device *dev)
12360{
12361 struct drm_i915_private *dev_priv = dev->dev_private;
12362 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12363 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12364}
12365
b690e96c
JB
12366struct intel_quirk {
12367 int device;
12368 int subsystem_vendor;
12369 int subsystem_device;
12370 void (*hook)(struct drm_device *dev);
12371};
12372
5f85f176
EE
12373/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12374struct intel_dmi_quirk {
12375 void (*hook)(struct drm_device *dev);
12376 const struct dmi_system_id (*dmi_id_list)[];
12377};
12378
12379static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12380{
12381 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12382 return 1;
12383}
12384
12385static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12386 {
12387 .dmi_id_list = &(const struct dmi_system_id[]) {
12388 {
12389 .callback = intel_dmi_reverse_brightness,
12390 .ident = "NCR Corporation",
12391 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12392 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12393 },
12394 },
12395 { } /* terminating entry */
12396 },
12397 .hook = quirk_invert_brightness,
12398 },
12399};
12400
c43b5634 12401static struct intel_quirk intel_quirks[] = {
b690e96c 12402 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12403 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12404
b690e96c
JB
12405 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12406 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12407
b690e96c
JB
12408 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12409 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12410
435793df
KP
12411 /* Lenovo U160 cannot use SSC on LVDS */
12412 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12413
12414 /* Sony Vaio Y cannot use SSC on LVDS */
12415 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12416
be505f64
AH
12417 /* Acer Aspire 5734Z must invert backlight brightness */
12418 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12419
12420 /* Acer/eMachines G725 */
12421 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12422
12423 /* Acer/eMachines e725 */
12424 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12425
12426 /* Acer/Packard Bell NCL20 */
12427 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12428
12429 /* Acer Aspire 4736Z */
12430 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12431
12432 /* Acer Aspire 5336 */
12433 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12434};
12435
12436static void intel_init_quirks(struct drm_device *dev)
12437{
12438 struct pci_dev *d = dev->pdev;
12439 int i;
12440
12441 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12442 struct intel_quirk *q = &intel_quirks[i];
12443
12444 if (d->device == q->device &&
12445 (d->subsystem_vendor == q->subsystem_vendor ||
12446 q->subsystem_vendor == PCI_ANY_ID) &&
12447 (d->subsystem_device == q->subsystem_device ||
12448 q->subsystem_device == PCI_ANY_ID))
12449 q->hook(dev);
12450 }
5f85f176
EE
12451 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12452 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12453 intel_dmi_quirks[i].hook(dev);
12454 }
b690e96c
JB
12455}
12456
9cce37f4
JB
12457/* Disable the VGA plane that we never use */
12458static void i915_disable_vga(struct drm_device *dev)
12459{
12460 struct drm_i915_private *dev_priv = dev->dev_private;
12461 u8 sr1;
766aa1c4 12462 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12463
2b37c616 12464 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12465 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12466 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12467 sr1 = inb(VGA_SR_DATA);
12468 outb(sr1 | 1<<5, VGA_SR_DATA);
12469 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12470 udelay(300);
12471
12472 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12473 POSTING_READ(vga_reg);
12474}
12475
f817586c
DV
12476void intel_modeset_init_hw(struct drm_device *dev)
12477{
a8f78b58
ED
12478 intel_prepare_ddi(dev);
12479
f8bf63fd
VS
12480 if (IS_VALLEYVIEW(dev))
12481 vlv_update_cdclk(dev);
12482
f817586c
DV
12483 intel_init_clock_gating(dev);
12484
5382f5f3 12485 intel_reset_dpio(dev);
40e9cf64 12486
8090c6b9 12487 intel_enable_gt_powersave(dev);
f817586c
DV
12488}
12489
7d708ee4
ID
12490void intel_modeset_suspend_hw(struct drm_device *dev)
12491{
12492 intel_suspend_hw(dev);
12493}
12494
79e53945
JB
12495void intel_modeset_init(struct drm_device *dev)
12496{
652c393a 12497 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12498 int sprite, ret;
8cc87b75 12499 enum pipe pipe;
46f297fb 12500 struct intel_crtc *crtc;
79e53945
JB
12501
12502 drm_mode_config_init(dev);
12503
12504 dev->mode_config.min_width = 0;
12505 dev->mode_config.min_height = 0;
12506
019d96cb
DA
12507 dev->mode_config.preferred_depth = 24;
12508 dev->mode_config.prefer_shadow = 1;
12509
e6ecefaa 12510 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12511
b690e96c
JB
12512 intel_init_quirks(dev);
12513
1fa61106
ED
12514 intel_init_pm(dev);
12515
e3c74757
BW
12516 if (INTEL_INFO(dev)->num_pipes == 0)
12517 return;
12518
e70236a8
JB
12519 intel_init_display(dev);
12520
a6c45cf0
CW
12521 if (IS_GEN2(dev)) {
12522 dev->mode_config.max_width = 2048;
12523 dev->mode_config.max_height = 2048;
12524 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12525 dev->mode_config.max_width = 4096;
12526 dev->mode_config.max_height = 4096;
79e53945 12527 } else {
a6c45cf0
CW
12528 dev->mode_config.max_width = 8192;
12529 dev->mode_config.max_height = 8192;
79e53945 12530 }
068be561
DL
12531
12532 if (IS_GEN2(dev)) {
12533 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12534 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12535 } else {
12536 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12537 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12538 }
12539
5d4545ae 12540 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12541
28c97730 12542 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12543 INTEL_INFO(dev)->num_pipes,
12544 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12545
8cc87b75
DL
12546 for_each_pipe(pipe) {
12547 intel_crtc_init(dev, pipe);
1fe47785
DL
12548 for_each_sprite(pipe, sprite) {
12549 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12550 if (ret)
06da8da2 12551 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12552 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12553 }
79e53945
JB
12554 }
12555
f42bb70d 12556 intel_init_dpio(dev);
5382f5f3 12557 intel_reset_dpio(dev);
f42bb70d 12558
e72f9fbf 12559 intel_shared_dpll_init(dev);
ee7b9f93 12560
9cce37f4
JB
12561 /* Just disable it once at startup */
12562 i915_disable_vga(dev);
79e53945 12563 intel_setup_outputs(dev);
11be49eb
CW
12564
12565 /* Just in case the BIOS is doing something questionable. */
12566 intel_disable_fbc(dev);
fa9fa083 12567
6e9f798d 12568 drm_modeset_lock_all(dev);
fa9fa083 12569 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12570 drm_modeset_unlock_all(dev);
46f297fb 12571
d3fcc808 12572 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12573 if (!crtc->active)
12574 continue;
12575
46f297fb 12576 /*
46f297fb
JB
12577 * Note that reserving the BIOS fb up front prevents us
12578 * from stuffing other stolen allocations like the ring
12579 * on top. This prevents some ugliness at boot time, and
12580 * can even allow for smooth boot transitions if the BIOS
12581 * fb is large enough for the active pipe configuration.
12582 */
12583 if (dev_priv->display.get_plane_config) {
12584 dev_priv->display.get_plane_config(crtc,
12585 &crtc->plane_config);
12586 /*
12587 * If the fb is shared between multiple heads, we'll
12588 * just get the first one.
12589 */
484b41dd 12590 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12591 }
46f297fb 12592 }
2c7111db
CW
12593}
12594
7fad798e
DV
12595static void intel_enable_pipe_a(struct drm_device *dev)
12596{
12597 struct intel_connector *connector;
12598 struct drm_connector *crt = NULL;
12599 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12600 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12601
12602 /* We can't just switch on the pipe A, we need to set things up with a
12603 * proper mode and output configuration. As a gross hack, enable pipe A
12604 * by enabling the load detect pipe once. */
12605 list_for_each_entry(connector,
12606 &dev->mode_config.connector_list,
12607 base.head) {
12608 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12609 crt = &connector->base;
12610 break;
12611 }
12612 }
12613
12614 if (!crt)
12615 return;
12616
51fd371b
RC
12617 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12618 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12619
652c393a 12620
7fad798e
DV
12621}
12622
fa555837
DV
12623static bool
12624intel_check_plane_mapping(struct intel_crtc *crtc)
12625{
7eb552ae
BW
12626 struct drm_device *dev = crtc->base.dev;
12627 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12628 u32 reg, val;
12629
7eb552ae 12630 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12631 return true;
12632
12633 reg = DSPCNTR(!crtc->plane);
12634 val = I915_READ(reg);
12635
12636 if ((val & DISPLAY_PLANE_ENABLE) &&
12637 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12638 return false;
12639
12640 return true;
12641}
12642
24929352
DV
12643static void intel_sanitize_crtc(struct intel_crtc *crtc)
12644{
12645 struct drm_device *dev = crtc->base.dev;
12646 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12647 u32 reg;
24929352 12648
24929352 12649 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12650 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12651 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12652
d3eaf884
VS
12653 /* restore vblank interrupts to correct state */
12654 if (crtc->active)
12655 drm_vblank_on(dev, crtc->pipe);
12656 else
12657 drm_vblank_off(dev, crtc->pipe);
12658
24929352 12659 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12660 * disable the crtc (and hence change the state) if it is wrong. Note
12661 * that gen4+ has a fixed plane -> pipe mapping. */
12662 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12663 struct intel_connector *connector;
12664 bool plane;
12665
24929352
DV
12666 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12667 crtc->base.base.id);
12668
12669 /* Pipe has the wrong plane attached and the plane is active.
12670 * Temporarily change the plane mapping and disable everything
12671 * ... */
12672 plane = crtc->plane;
12673 crtc->plane = !plane;
12674 dev_priv->display.crtc_disable(&crtc->base);
12675 crtc->plane = plane;
12676
12677 /* ... and break all links. */
12678 list_for_each_entry(connector, &dev->mode_config.connector_list,
12679 base.head) {
12680 if (connector->encoder->base.crtc != &crtc->base)
12681 continue;
12682
7f1950fb
EE
12683 connector->base.dpms = DRM_MODE_DPMS_OFF;
12684 connector->base.encoder = NULL;
24929352 12685 }
7f1950fb
EE
12686 /* multiple connectors may have the same encoder:
12687 * handle them and break crtc link separately */
12688 list_for_each_entry(connector, &dev->mode_config.connector_list,
12689 base.head)
12690 if (connector->encoder->base.crtc == &crtc->base) {
12691 connector->encoder->base.crtc = NULL;
12692 connector->encoder->connectors_active = false;
12693 }
24929352
DV
12694
12695 WARN_ON(crtc->active);
12696 crtc->base.enabled = false;
12697 }
24929352 12698
7fad798e
DV
12699 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12700 crtc->pipe == PIPE_A && !crtc->active) {
12701 /* BIOS forgot to enable pipe A, this mostly happens after
12702 * resume. Force-enable the pipe to fix this, the update_dpms
12703 * call below we restore the pipe to the right state, but leave
12704 * the required bits on. */
12705 intel_enable_pipe_a(dev);
12706 }
12707
24929352
DV
12708 /* Adjust the state of the output pipe according to whether we
12709 * have active connectors/encoders. */
12710 intel_crtc_update_dpms(&crtc->base);
12711
12712 if (crtc->active != crtc->base.enabled) {
12713 struct intel_encoder *encoder;
12714
12715 /* This can happen either due to bugs in the get_hw_state
12716 * functions or because the pipe is force-enabled due to the
12717 * pipe A quirk. */
12718 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12719 crtc->base.base.id,
12720 crtc->base.enabled ? "enabled" : "disabled",
12721 crtc->active ? "enabled" : "disabled");
12722
12723 crtc->base.enabled = crtc->active;
12724
12725 /* Because we only establish the connector -> encoder ->
12726 * crtc links if something is active, this means the
12727 * crtc is now deactivated. Break the links. connector
12728 * -> encoder links are only establish when things are
12729 * actually up, hence no need to break them. */
12730 WARN_ON(crtc->active);
12731
12732 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12733 WARN_ON(encoder->connectors_active);
12734 encoder->base.crtc = NULL;
12735 }
12736 }
c5ab3bc0
DV
12737
12738 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12739 /*
12740 * We start out with underrun reporting disabled to avoid races.
12741 * For correct bookkeeping mark this on active crtcs.
12742 *
c5ab3bc0
DV
12743 * Also on gmch platforms we dont have any hardware bits to
12744 * disable the underrun reporting. Which means we need to start
12745 * out with underrun reporting disabled also on inactive pipes,
12746 * since otherwise we'll complain about the garbage we read when
12747 * e.g. coming up after runtime pm.
12748 *
4cc31489
DV
12749 * No protection against concurrent access is required - at
12750 * worst a fifo underrun happens which also sets this to false.
12751 */
12752 crtc->cpu_fifo_underrun_disabled = true;
12753 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12754
12755 update_scanline_offset(crtc);
4cc31489 12756 }
24929352
DV
12757}
12758
12759static void intel_sanitize_encoder(struct intel_encoder *encoder)
12760{
12761 struct intel_connector *connector;
12762 struct drm_device *dev = encoder->base.dev;
12763
12764 /* We need to check both for a crtc link (meaning that the
12765 * encoder is active and trying to read from a pipe) and the
12766 * pipe itself being active. */
12767 bool has_active_crtc = encoder->base.crtc &&
12768 to_intel_crtc(encoder->base.crtc)->active;
12769
12770 if (encoder->connectors_active && !has_active_crtc) {
12771 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12772 encoder->base.base.id,
8e329a03 12773 encoder->base.name);
24929352
DV
12774
12775 /* Connector is active, but has no active pipe. This is
12776 * fallout from our resume register restoring. Disable
12777 * the encoder manually again. */
12778 if (encoder->base.crtc) {
12779 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12780 encoder->base.base.id,
8e329a03 12781 encoder->base.name);
24929352
DV
12782 encoder->disable(encoder);
12783 }
7f1950fb
EE
12784 encoder->base.crtc = NULL;
12785 encoder->connectors_active = false;
24929352
DV
12786
12787 /* Inconsistent output/port/pipe state happens presumably due to
12788 * a bug in one of the get_hw_state functions. Or someplace else
12789 * in our code, like the register restore mess on resume. Clamp
12790 * things to off as a safer default. */
12791 list_for_each_entry(connector,
12792 &dev->mode_config.connector_list,
12793 base.head) {
12794 if (connector->encoder != encoder)
12795 continue;
7f1950fb
EE
12796 connector->base.dpms = DRM_MODE_DPMS_OFF;
12797 connector->base.encoder = NULL;
24929352
DV
12798 }
12799 }
12800 /* Enabled encoders without active connectors will be fixed in
12801 * the crtc fixup. */
12802}
12803
04098753 12804void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12805{
12806 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12807 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12808
04098753
ID
12809 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12810 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12811 i915_disable_vga(dev);
12812 }
12813}
12814
12815void i915_redisable_vga(struct drm_device *dev)
12816{
12817 struct drm_i915_private *dev_priv = dev->dev_private;
12818
8dc8a27c
PZ
12819 /* This function can be called both from intel_modeset_setup_hw_state or
12820 * at a very early point in our resume sequence, where the power well
12821 * structures are not yet restored. Since this function is at a very
12822 * paranoid "someone might have enabled VGA while we were not looking"
12823 * level, just check if the power well is enabled instead of trying to
12824 * follow the "don't touch the power well if we don't need it" policy
12825 * the rest of the driver uses. */
04098753 12826 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12827 return;
12828
04098753 12829 i915_redisable_vga_power_on(dev);
0fde901f
KM
12830}
12831
98ec7739
VS
12832static bool primary_get_hw_state(struct intel_crtc *crtc)
12833{
12834 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12835
12836 if (!crtc->active)
12837 return false;
12838
12839 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12840}
12841
30e984df 12842static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12843{
12844 struct drm_i915_private *dev_priv = dev->dev_private;
12845 enum pipe pipe;
24929352
DV
12846 struct intel_crtc *crtc;
12847 struct intel_encoder *encoder;
12848 struct intel_connector *connector;
5358901f 12849 int i;
24929352 12850
d3fcc808 12851 for_each_intel_crtc(dev, crtc) {
88adfff1 12852 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12853
9953599b
DV
12854 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12855
0e8ffe1b
DV
12856 crtc->active = dev_priv->display.get_pipe_config(crtc,
12857 &crtc->config);
24929352
DV
12858
12859 crtc->base.enabled = crtc->active;
98ec7739 12860 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12861
12862 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12863 crtc->base.base.id,
12864 crtc->active ? "enabled" : "disabled");
12865 }
12866
5358901f
DV
12867 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12868 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12869
12870 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12871 pll->active = 0;
d3fcc808 12872 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12873 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12874 pll->active++;
12875 }
12876 pll->refcount = pll->active;
12877
35c95375
DV
12878 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12879 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
12880
12881 if (pll->refcount)
12882 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
12883 }
12884
24929352
DV
12885 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12886 base.head) {
12887 pipe = 0;
12888
12889 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12890 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12891 encoder->base.crtc = &crtc->base;
1d37b689 12892 encoder->get_config(encoder, &crtc->config);
24929352
DV
12893 } else {
12894 encoder->base.crtc = NULL;
12895 }
12896
12897 encoder->connectors_active = false;
6f2bcceb 12898 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12899 encoder->base.base.id,
8e329a03 12900 encoder->base.name,
24929352 12901 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12902 pipe_name(pipe));
24929352
DV
12903 }
12904
12905 list_for_each_entry(connector, &dev->mode_config.connector_list,
12906 base.head) {
12907 if (connector->get_hw_state(connector)) {
12908 connector->base.dpms = DRM_MODE_DPMS_ON;
12909 connector->encoder->connectors_active = true;
12910 connector->base.encoder = &connector->encoder->base;
12911 } else {
12912 connector->base.dpms = DRM_MODE_DPMS_OFF;
12913 connector->base.encoder = NULL;
12914 }
12915 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12916 connector->base.base.id,
c23cc417 12917 connector->base.name,
24929352
DV
12918 connector->base.encoder ? "enabled" : "disabled");
12919 }
30e984df
DV
12920}
12921
12922/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12923 * and i915 state tracking structures. */
12924void intel_modeset_setup_hw_state(struct drm_device *dev,
12925 bool force_restore)
12926{
12927 struct drm_i915_private *dev_priv = dev->dev_private;
12928 enum pipe pipe;
30e984df
DV
12929 struct intel_crtc *crtc;
12930 struct intel_encoder *encoder;
35c95375 12931 int i;
30e984df
DV
12932
12933 intel_modeset_readout_hw_state(dev);
24929352 12934
babea61d
JB
12935 /*
12936 * Now that we have the config, copy it to each CRTC struct
12937 * Note that this could go away if we move to using crtc_config
12938 * checking everywhere.
12939 */
d3fcc808 12940 for_each_intel_crtc(dev, crtc) {
d330a953 12941 if (crtc->active && i915.fastboot) {
f6a83288 12942 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12943 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12944 crtc->base.base.id);
12945 drm_mode_debug_printmodeline(&crtc->base.mode);
12946 }
12947 }
12948
24929352
DV
12949 /* HW state is read out, now we need to sanitize this mess. */
12950 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12951 base.head) {
12952 intel_sanitize_encoder(encoder);
12953 }
12954
12955 for_each_pipe(pipe) {
12956 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12957 intel_sanitize_crtc(crtc);
c0b03411 12958 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12959 }
9a935856 12960
35c95375
DV
12961 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12962 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12963
12964 if (!pll->on || pll->active)
12965 continue;
12966
12967 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12968
12969 pll->disable(dev_priv, pll);
12970 pll->on = false;
12971 }
12972
96f90c54 12973 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12974 ilk_wm_get_hw_state(dev);
12975
45e2b5f6 12976 if (force_restore) {
7d0bc1ea
VS
12977 i915_redisable_vga(dev);
12978
f30da187
DV
12979 /*
12980 * We need to use raw interfaces for restoring state to avoid
12981 * checking (bogus) intermediate states.
12982 */
45e2b5f6 12983 for_each_pipe(pipe) {
b5644d05
JB
12984 struct drm_crtc *crtc =
12985 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12986
12987 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12988 crtc->primary->fb);
45e2b5f6
DV
12989 }
12990 } else {
12991 intel_modeset_update_staged_output_state(dev);
12992 }
8af6cf88
DV
12993
12994 intel_modeset_check_state(dev);
2c7111db
CW
12995}
12996
12997void intel_modeset_gem_init(struct drm_device *dev)
12998{
484b41dd 12999 struct drm_crtc *c;
2ff8fde1 13000 struct drm_i915_gem_object *obj;
484b41dd 13001
ae48434c
ID
13002 mutex_lock(&dev->struct_mutex);
13003 intel_init_gt_powersave(dev);
13004 mutex_unlock(&dev->struct_mutex);
13005
1833b134 13006 intel_modeset_init_hw(dev);
02e792fb
DV
13007
13008 intel_setup_overlay(dev);
484b41dd
JB
13009
13010 /*
13011 * Make sure any fbs we allocated at startup are properly
13012 * pinned & fenced. When we do the allocation it's too early
13013 * for this.
13014 */
13015 mutex_lock(&dev->struct_mutex);
70e1e0ec 13016 for_each_crtc(dev, c) {
2ff8fde1
MR
13017 obj = intel_fb_obj(c->primary->fb);
13018 if (obj == NULL)
484b41dd
JB
13019 continue;
13020
2ff8fde1 13021 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13022 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13023 to_intel_crtc(c)->pipe);
66e514c1
DA
13024 drm_framebuffer_unreference(c->primary->fb);
13025 c->primary->fb = NULL;
484b41dd
JB
13026 }
13027 }
13028 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13029}
13030
4932e2c3
ID
13031void intel_connector_unregister(struct intel_connector *intel_connector)
13032{
13033 struct drm_connector *connector = &intel_connector->base;
13034
13035 intel_panel_destroy_backlight(connector);
13036 drm_sysfs_connector_remove(connector);
13037}
13038
79e53945
JB
13039void intel_modeset_cleanup(struct drm_device *dev)
13040{
652c393a 13041 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13042 struct drm_connector *connector;
652c393a 13043
fd0c0642
DV
13044 /*
13045 * Interrupts and polling as the first thing to avoid creating havoc.
13046 * Too much stuff here (turning of rps, connectors, ...) would
13047 * experience fancy races otherwise.
13048 */
13049 drm_irq_uninstall(dev);
13050 cancel_work_sync(&dev_priv->hotplug_work);
13051 /*
13052 * Due to the hpd irq storm handling the hotplug work can re-arm the
13053 * poll handlers. Hence disable polling after hpd handling is shut down.
13054 */
f87ea761 13055 drm_kms_helper_poll_fini(dev);
fd0c0642 13056
652c393a
JB
13057 mutex_lock(&dev->struct_mutex);
13058
723bfd70
JB
13059 intel_unregister_dsm_handler();
13060
973d04f9 13061 intel_disable_fbc(dev);
e70236a8 13062
8090c6b9 13063 intel_disable_gt_powersave(dev);
0cdab21f 13064
930ebb46
DV
13065 ironlake_teardown_rc6(dev);
13066
69341a5e
KH
13067 mutex_unlock(&dev->struct_mutex);
13068
1630fe75
CW
13069 /* flush any delayed tasks or pending work */
13070 flush_scheduled_work();
13071
db31af1d
JN
13072 /* destroy the backlight and sysfs files before encoders/connectors */
13073 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13074 struct intel_connector *intel_connector;
13075
13076 intel_connector = to_intel_connector(connector);
13077 intel_connector->unregister(intel_connector);
db31af1d 13078 }
d9255d57 13079
79e53945 13080 drm_mode_config_cleanup(dev);
4d7bb011
DV
13081
13082 intel_cleanup_overlay(dev);
ae48434c
ID
13083
13084 mutex_lock(&dev->struct_mutex);
13085 intel_cleanup_gt_powersave(dev);
13086 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13087}
13088
f1c79df3
ZW
13089/*
13090 * Return which encoder is currently attached for connector.
13091 */
df0e9248 13092struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13093{
df0e9248
CW
13094 return &intel_attached_encoder(connector)->base;
13095}
f1c79df3 13096
df0e9248
CW
13097void intel_connector_attach_encoder(struct intel_connector *connector,
13098 struct intel_encoder *encoder)
13099{
13100 connector->encoder = encoder;
13101 drm_mode_connector_attach_encoder(&connector->base,
13102 &encoder->base);
79e53945 13103}
28d52043
DA
13104
13105/*
13106 * set vga decode state - true == enable VGA decode
13107 */
13108int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13109{
13110 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13111 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13112 u16 gmch_ctrl;
13113
75fa041d
CW
13114 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13115 DRM_ERROR("failed to read control word\n");
13116 return -EIO;
13117 }
13118
c0cc8a55
CW
13119 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13120 return 0;
13121
28d52043
DA
13122 if (state)
13123 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13124 else
13125 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13126
13127 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13128 DRM_ERROR("failed to write control word\n");
13129 return -EIO;
13130 }
13131
28d52043
DA
13132 return 0;
13133}
c4a1d9e4 13134
c4a1d9e4 13135struct intel_display_error_state {
ff57f1b0
PZ
13136
13137 u32 power_well_driver;
13138
63b66e5b
CW
13139 int num_transcoders;
13140
c4a1d9e4
CW
13141 struct intel_cursor_error_state {
13142 u32 control;
13143 u32 position;
13144 u32 base;
13145 u32 size;
52331309 13146 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13147
13148 struct intel_pipe_error_state {
ddf9c536 13149 bool power_domain_on;
c4a1d9e4 13150 u32 source;
f301b1e1 13151 u32 stat;
52331309 13152 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13153
13154 struct intel_plane_error_state {
13155 u32 control;
13156 u32 stride;
13157 u32 size;
13158 u32 pos;
13159 u32 addr;
13160 u32 surface;
13161 u32 tile_offset;
52331309 13162 } plane[I915_MAX_PIPES];
63b66e5b
CW
13163
13164 struct intel_transcoder_error_state {
ddf9c536 13165 bool power_domain_on;
63b66e5b
CW
13166 enum transcoder cpu_transcoder;
13167
13168 u32 conf;
13169
13170 u32 htotal;
13171 u32 hblank;
13172 u32 hsync;
13173 u32 vtotal;
13174 u32 vblank;
13175 u32 vsync;
13176 } transcoder[4];
c4a1d9e4
CW
13177};
13178
13179struct intel_display_error_state *
13180intel_display_capture_error_state(struct drm_device *dev)
13181{
fbee40df 13182 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13183 struct intel_display_error_state *error;
63b66e5b
CW
13184 int transcoders[] = {
13185 TRANSCODER_A,
13186 TRANSCODER_B,
13187 TRANSCODER_C,
13188 TRANSCODER_EDP,
13189 };
c4a1d9e4
CW
13190 int i;
13191
63b66e5b
CW
13192 if (INTEL_INFO(dev)->num_pipes == 0)
13193 return NULL;
13194
9d1cb914 13195 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13196 if (error == NULL)
13197 return NULL;
13198
190be112 13199 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13200 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13201
52331309 13202 for_each_pipe(i) {
ddf9c536 13203 error->pipe[i].power_domain_on =
bfafe93a
ID
13204 intel_display_power_enabled_unlocked(dev_priv,
13205 POWER_DOMAIN_PIPE(i));
ddf9c536 13206 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13207 continue;
13208
5efb3e28
VS
13209 error->cursor[i].control = I915_READ(CURCNTR(i));
13210 error->cursor[i].position = I915_READ(CURPOS(i));
13211 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13212
13213 error->plane[i].control = I915_READ(DSPCNTR(i));
13214 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13215 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13216 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13217 error->plane[i].pos = I915_READ(DSPPOS(i));
13218 }
ca291363
PZ
13219 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13220 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13221 if (INTEL_INFO(dev)->gen >= 4) {
13222 error->plane[i].surface = I915_READ(DSPSURF(i));
13223 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13224 }
13225
c4a1d9e4 13226 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13227
13228 if (!HAS_PCH_SPLIT(dev))
13229 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13230 }
13231
13232 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13233 if (HAS_DDI(dev_priv->dev))
13234 error->num_transcoders++; /* Account for eDP. */
13235
13236 for (i = 0; i < error->num_transcoders; i++) {
13237 enum transcoder cpu_transcoder = transcoders[i];
13238
ddf9c536 13239 error->transcoder[i].power_domain_on =
bfafe93a 13240 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13241 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13242 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13243 continue;
13244
63b66e5b
CW
13245 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13246
13247 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13248 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13249 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13250 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13251 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13252 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13253 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13254 }
13255
13256 return error;
13257}
13258
edc3d884
MK
13259#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13260
c4a1d9e4 13261void
edc3d884 13262intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13263 struct drm_device *dev,
13264 struct intel_display_error_state *error)
13265{
13266 int i;
13267
63b66e5b
CW
13268 if (!error)
13269 return;
13270
edc3d884 13271 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13272 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13273 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13274 error->power_well_driver);
52331309 13275 for_each_pipe(i) {
edc3d884 13276 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13277 err_printf(m, " Power: %s\n",
13278 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13279 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13280 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13281
13282 err_printf(m, "Plane [%d]:\n", i);
13283 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13284 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13285 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13286 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13287 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13288 }
4b71a570 13289 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13290 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13291 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13292 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13293 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13294 }
13295
edc3d884
MK
13296 err_printf(m, "Cursor [%d]:\n", i);
13297 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13298 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13299 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13300 }
63b66e5b
CW
13301
13302 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13303 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13304 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13305 err_printf(m, " Power: %s\n",
13306 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13307 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13308 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13309 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13310 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13311 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13312 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13313 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13314 }
c4a1d9e4 13315}
This page took 2.728132 seconds and 5 git commands to generate.