drm/i915: remove intel_crtc_cursor_set_obj() (v5)
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
6b383a7f 76static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 77
f1f644dc
JB
78static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
18442d08
VS
80static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
f1f644dc 82
e7457a9a
DL
83static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
85static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
5b18e57c
DV
89static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 91static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
29407aab 94static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
95static void haswell_set_pipeconf(struct drm_crtc *crtc);
96static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f
VS
97static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_config *pipe_config);
99static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_config *pipe_config);
e7457a9a 101
0e32b39c
DA
102static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103{
104 if (!connector->mst_port)
105 return connector->encoder;
106 else
107 return &connector->mst_port->mst_encoders[pipe]->base;
108}
109
79e53945 110typedef struct {
0206e353 111 int min, max;
79e53945
JB
112} intel_range_t;
113
114typedef struct {
0206e353
AJ
115 int dot_limit;
116 int p2_slow, p2_fast;
79e53945
JB
117} intel_p2_t;
118
d4906093
ML
119typedef struct intel_limit intel_limit_t;
120struct intel_limit {
0206e353
AJ
121 intel_range_t dot, vco, n, m, m1, m2, p, p1;
122 intel_p2_t p2;
d4906093 123};
79e53945 124
d2acd215
DV
125int
126intel_pch_rawclk(struct drm_device *dev)
127{
128 struct drm_i915_private *dev_priv = dev->dev_private;
129
130 WARN_ON(!HAS_PCH_SPLIT(dev));
131
132 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133}
134
021357ac
CW
135static inline u32 /* units of 100MHz */
136intel_fdi_link_freq(struct drm_device *dev)
137{
8b99e68c
CW
138 if (IS_GEN5(dev)) {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141 } else
142 return 27;
021357ac
CW
143}
144
5d536e28 145static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 146 .dot = { .min = 25000, .max = 350000 },
9c333719 147 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 148 .n = { .min = 2, .max = 16 },
0206e353
AJ
149 .m = { .min = 96, .max = 140 },
150 .m1 = { .min = 18, .max = 26 },
151 .m2 = { .min = 6, .max = 16 },
152 .p = { .min = 4, .max = 128 },
153 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
154 .p2 = { .dot_limit = 165000,
155 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
156};
157
5d536e28
DV
158static const intel_limit_t intel_limits_i8xx_dvo = {
159 .dot = { .min = 25000, .max = 350000 },
9c333719 160 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 161 .n = { .min = 2, .max = 16 },
5d536e28
DV
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 4 },
169};
170
e4b36699 171static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 172 .dot = { .min = 25000, .max = 350000 },
9c333719 173 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 174 .n = { .min = 2, .max = 16 },
0206e353
AJ
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 14, .p2_fast = 7 },
e4b36699 182};
273e27ca 183
e4b36699 184static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
185 .dot = { .min = 20000, .max = 400000 },
186 .vco = { .min = 1400000, .max = 2800000 },
187 .n = { .min = 1, .max = 6 },
188 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
189 .m1 = { .min = 8, .max = 18 },
190 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
193 .p2 = { .dot_limit = 200000,
194 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
195};
196
197static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
204 .p = { .min = 7, .max = 98 },
205 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
206 .p2 = { .dot_limit = 112000,
207 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
208};
209
273e27ca 210
e4b36699 211static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
212 .dot = { .min = 25000, .max = 270000 },
213 .vco = { .min = 1750000, .max = 3500000},
214 .n = { .min = 1, .max = 4 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 10, .max = 30 },
219 .p1 = { .min = 1, .max = 3},
220 .p2 = { .dot_limit = 270000,
221 .p2_slow = 10,
222 .p2_fast = 10
044c7c41 223 },
e4b36699
KP
224};
225
226static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
227 .dot = { .min = 22000, .max = 400000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 16, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 5, .max = 80 },
234 .p1 = { .min = 1, .max = 8},
235 .p2 = { .dot_limit = 165000,
236 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
237};
238
239static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
240 .dot = { .min = 20000, .max = 115000 },
241 .vco = { .min = 1750000, .max = 3500000 },
242 .n = { .min = 1, .max = 3 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 17, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 28, .max = 112 },
247 .p1 = { .min = 2, .max = 8 },
248 .p2 = { .dot_limit = 0,
249 .p2_slow = 14, .p2_fast = 14
044c7c41 250 },
e4b36699
KP
251};
252
253static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
254 .dot = { .min = 80000, .max = 224000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 14, .max = 42 },
261 .p1 = { .min = 2, .max = 6 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 7, .p2_fast = 7
044c7c41 264 },
e4b36699
KP
265};
266
f2b115e6 267static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
268 .dot = { .min = 20000, .max = 400000},
269 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 270 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
271 .n = { .min = 3, .max = 6 },
272 .m = { .min = 2, .max = 256 },
273e27ca 273 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
274 .m1 = { .min = 0, .max = 0 },
275 .m2 = { .min = 0, .max = 254 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
278 .p2 = { .dot_limit = 200000,
279 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
280};
281
f2b115e6 282static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
283 .dot = { .min = 20000, .max = 400000 },
284 .vco = { .min = 1700000, .max = 3500000 },
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 7, .max = 112 },
290 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
291 .p2 = { .dot_limit = 112000,
292 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
293};
294
273e27ca
EA
295/* Ironlake / Sandybridge
296 *
297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
298 * the range value for them is (actual_value - 2).
299 */
b91ad0ec 300static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 5 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 5, .max = 80 },
308 .p1 = { .min = 1, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
311};
312
b91ad0ec 313static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 3 },
317 .m = { .min = 79, .max = 118 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 28, .max = 112 },
321 .p1 = { .min = 2, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
324};
325
326static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 127 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 14, .max = 56 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
337};
338
273e27ca 339/* LVDS 100mhz refclk limits. */
b91ad0ec 340static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 2 },
344 .m = { .min = 79, .max = 126 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 28, .max = 112 },
0206e353 348 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
351};
352
353static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 3 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 14, .max = 42 },
0206e353 361 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
364};
365
dc730512 366static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
367 /*
368 * These are the data rate limits (measured in fast clocks)
369 * since those are the strictest limits we have. The fast
370 * clock and actual rate limits are more relaxed, so checking
371 * them would make no difference.
372 */
373 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 374 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 375 .n = { .min = 1, .max = 7 },
a0c4da24
JB
376 .m1 = { .min = 2, .max = 3 },
377 .m2 = { .min = 11, .max = 156 },
b99ab663 378 .p1 = { .min = 2, .max = 3 },
5fdc9c49 379 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
380};
381
ef9348c8
CML
382static const intel_limit_t intel_limits_chv = {
383 /*
384 * These are the data rate limits (measured in fast clocks)
385 * since those are the strictest limits we have. The fast
386 * clock and actual rate limits are more relaxed, so checking
387 * them would make no difference.
388 */
389 .dot = { .min = 25000 * 5, .max = 540000 * 5},
390 .vco = { .min = 4860000, .max = 6700000 },
391 .n = { .min = 1, .max = 1 },
392 .m1 = { .min = 2, .max = 2 },
393 .m2 = { .min = 24 << 22, .max = 175 << 22 },
394 .p1 = { .min = 2, .max = 4 },
395 .p2 = { .p2_slow = 1, .p2_fast = 14 },
396};
397
6b4bf1c4
VS
398static void vlv_clock(int refclk, intel_clock_t *clock)
399{
400 clock->m = clock->m1 * clock->m2;
401 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
402 if (WARN_ON(clock->n == 0 || clock->p == 0))
403 return;
fb03ac01
VS
404 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
406}
407
e0638cdf
PZ
408/**
409 * Returns whether any output on the specified pipe is of the specified type
410 */
4093561b 411bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 412{
409ee761 413 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
414 struct intel_encoder *encoder;
415
409ee761 416 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
417 if (encoder->type == type)
418 return true;
419
420 return false;
421}
422
d0737e1d
ACO
423/**
424 * Returns whether any output on the specified pipe will have the specified
425 * type after a staged modeset is complete, i.e., the same as
426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427 * encoder->crtc.
428 */
429static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430{
431 struct drm_device *dev = crtc->base.dev;
432 struct intel_encoder *encoder;
433
434 for_each_intel_encoder(dev, encoder)
435 if (encoder->new_crtc == crtc && encoder->type == type)
436 return true;
437
438 return false;
439}
440
409ee761 441static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 442 int refclk)
2c07245f 443{
409ee761 444 struct drm_device *dev = crtc->base.dev;
2c07245f 445 const intel_limit_t *limit;
b91ad0ec 446
d0737e1d 447 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 448 if (intel_is_dual_link_lvds(dev)) {
1b894b59 449 if (refclk == 100000)
b91ad0ec
ZW
450 limit = &intel_limits_ironlake_dual_lvds_100m;
451 else
452 limit = &intel_limits_ironlake_dual_lvds;
453 } else {
1b894b59 454 if (refclk == 100000)
b91ad0ec
ZW
455 limit = &intel_limits_ironlake_single_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_single_lvds;
458 }
c6bb3538 459 } else
b91ad0ec 460 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
461
462 return limit;
463}
464
409ee761 465static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 466{
409ee761 467 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
468 const intel_limit_t *limit;
469
d0737e1d 470 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 471 if (intel_is_dual_link_lvds(dev))
e4b36699 472 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 473 else
e4b36699 474 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
475 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 477 limit = &intel_limits_g4x_hdmi;
d0737e1d 478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 479 limit = &intel_limits_g4x_sdvo;
044c7c41 480 } else /* The option is for other outputs */
e4b36699 481 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
482
483 return limit;
484}
485
409ee761 486static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 487{
409ee761 488 struct drm_device *dev = crtc->base.dev;
79e53945
JB
489 const intel_limit_t *limit;
490
bad720ff 491 if (HAS_PCH_SPLIT(dev))
1b894b59 492 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 493 else if (IS_G4X(dev)) {
044c7c41 494 limit = intel_g4x_limit(crtc);
f2b115e6 495 } else if (IS_PINEVIEW(dev)) {
d0737e1d 496 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 497 limit = &intel_limits_pineview_lvds;
2177832f 498 else
f2b115e6 499 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
500 } else if (IS_CHERRYVIEW(dev)) {
501 limit = &intel_limits_chv;
a0c4da24 502 } else if (IS_VALLEYVIEW(dev)) {
dc730512 503 limit = &intel_limits_vlv;
a6c45cf0 504 } else if (!IS_GEN2(dev)) {
d0737e1d 505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
506 limit = &intel_limits_i9xx_lvds;
507 else
508 limit = &intel_limits_i9xx_sdvo;
79e53945 509 } else {
d0737e1d 510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 511 limit = &intel_limits_i8xx_lvds;
d0737e1d 512 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 513 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
514 else
515 limit = &intel_limits_i8xx_dac;
79e53945
JB
516 }
517 return limit;
518}
519
f2b115e6
AJ
520/* m1 is reserved as 0 in Pineview, n is a ring counter */
521static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 522{
2177832f
SL
523 clock->m = clock->m2 + 2;
524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
529}
530
7429e9d4
DV
531static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532{
533 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534}
535
ac58c3f0 536static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 537{
7429e9d4 538 clock->m = i9xx_dpll_compute_m(clock);
79e53945 539 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
540 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541 return;
fb03ac01
VS
542 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
544}
545
ef9348c8
CML
546static void chv_clock(int refclk, intel_clock_t *clock)
547{
548 clock->m = clock->m1 * clock->m2;
549 clock->p = clock->p1 * clock->p2;
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
552 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553 clock->n << 22);
554 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555}
556
7c04d1d9 557#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
558/**
559 * Returns whether the given set of divisors are valid for a given refclk with
560 * the given connectors.
561 */
562
1b894b59
CW
563static bool intel_PLL_is_valid(struct drm_device *dev,
564 const intel_limit_t *limit,
565 const intel_clock_t *clock)
79e53945 566{
f01b7962
VS
567 if (clock->n < limit->n.min || limit->n.max < clock->n)
568 INTELPllInvalid("n out of range\n");
79e53945 569 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 570 INTELPllInvalid("p1 out of range\n");
79e53945 571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 572 INTELPllInvalid("m2 out of range\n");
79e53945 573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 574 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
575
576 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577 if (clock->m1 <= clock->m2)
578 INTELPllInvalid("m1 <= m2\n");
579
580 if (!IS_VALLEYVIEW(dev)) {
581 if (clock->p < limit->p.min || limit->p.max < clock->p)
582 INTELPllInvalid("p out of range\n");
583 if (clock->m < limit->m.min || limit->m.max < clock->m)
584 INTELPllInvalid("m out of range\n");
585 }
586
79e53945 587 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 588 INTELPllInvalid("vco out of range\n");
79e53945
JB
589 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590 * connector, etc., rather than just a single range.
591 */
592 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 593 INTELPllInvalid("dot out of range\n");
79e53945
JB
594
595 return true;
596}
597
d4906093 598static bool
a919ff14 599i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
600 int target, int refclk, intel_clock_t *match_clock,
601 intel_clock_t *best_clock)
79e53945 602{
a919ff14 603 struct drm_device *dev = crtc->base.dev;
79e53945 604 intel_clock_t clock;
79e53945
JB
605 int err = target;
606
d0737e1d 607 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 608 /*
a210b028
DV
609 * For LVDS just rely on its current settings for dual-channel.
610 * We haven't figured out how to reliably set up different
611 * single/dual channel state, if we even can.
79e53945 612 */
1974cad0 613 if (intel_is_dual_link_lvds(dev))
79e53945
JB
614 clock.p2 = limit->p2.p2_fast;
615 else
616 clock.p2 = limit->p2.p2_slow;
617 } else {
618 if (target < limit->p2.dot_limit)
619 clock.p2 = limit->p2.p2_slow;
620 else
621 clock.p2 = limit->p2.p2_fast;
622 }
623
0206e353 624 memset(best_clock, 0, sizeof(*best_clock));
79e53945 625
42158660
ZY
626 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627 clock.m1++) {
628 for (clock.m2 = limit->m2.min;
629 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 630 if (clock.m2 >= clock.m1)
42158660
ZY
631 break;
632 for (clock.n = limit->n.min;
633 clock.n <= limit->n.max; clock.n++) {
634 for (clock.p1 = limit->p1.min;
635 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
636 int this_err;
637
ac58c3f0
DV
638 i9xx_clock(refclk, &clock);
639 if (!intel_PLL_is_valid(dev, limit,
640 &clock))
641 continue;
642 if (match_clock &&
643 clock.p != match_clock->p)
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err) {
648 *best_clock = clock;
649 err = this_err;
650 }
651 }
652 }
653 }
654 }
655
656 return (err != target);
657}
658
659static bool
a919ff14 660pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
661 int target, int refclk, intel_clock_t *match_clock,
662 intel_clock_t *best_clock)
79e53945 663{
a919ff14 664 struct drm_device *dev = crtc->base.dev;
79e53945 665 intel_clock_t clock;
79e53945
JB
666 int err = target;
667
d0737e1d 668 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 669 /*
a210b028
DV
670 * For LVDS just rely on its current settings for dual-channel.
671 * We haven't figured out how to reliably set up different
672 * single/dual channel state, if we even can.
79e53945 673 */
1974cad0 674 if (intel_is_dual_link_lvds(dev))
79e53945
JB
675 clock.p2 = limit->p2.p2_fast;
676 else
677 clock.p2 = limit->p2.p2_slow;
678 } else {
679 if (target < limit->p2.dot_limit)
680 clock.p2 = limit->p2.p2_slow;
681 else
682 clock.p2 = limit->p2.p2_fast;
683 }
684
0206e353 685 memset(best_clock, 0, sizeof(*best_clock));
79e53945 686
42158660
ZY
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
695 int this_err;
696
ac58c3f0 697 pineview_clock(refclk, &clock);
1b894b59
CW
698 if (!intel_PLL_is_valid(dev, limit,
699 &clock))
79e53945 700 continue;
cec2f356
SP
701 if (match_clock &&
702 clock.p != match_clock->p)
703 continue;
79e53945
JB
704
705 this_err = abs(clock.dot - target);
706 if (this_err < err) {
707 *best_clock = clock;
708 err = this_err;
709 }
710 }
711 }
712 }
713 }
714
715 return (err != target);
716}
717
d4906093 718static bool
a919ff14 719g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
d4906093 722{
a919ff14 723 struct drm_device *dev = crtc->base.dev;
d4906093
ML
724 intel_clock_t clock;
725 int max_n;
726 bool found;
6ba770dc
AJ
727 /* approximately equals target * 0.00585 */
728 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
729 found = false;
730
d0737e1d 731 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 732 if (intel_is_dual_link_lvds(dev))
d4906093
ML
733 clock.p2 = limit->p2.p2_fast;
734 else
735 clock.p2 = limit->p2.p2_slow;
736 } else {
737 if (target < limit->p2.dot_limit)
738 clock.p2 = limit->p2.p2_slow;
739 else
740 clock.p2 = limit->p2.p2_fast;
741 }
742
743 memset(best_clock, 0, sizeof(*best_clock));
744 max_n = limit->n.max;
f77f13e2 745 /* based on hardware requirement, prefer smaller n to precision */
d4906093 746 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 747 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
748 for (clock.m1 = limit->m1.max;
749 clock.m1 >= limit->m1.min; clock.m1--) {
750 for (clock.m2 = limit->m2.max;
751 clock.m2 >= limit->m2.min; clock.m2--) {
752 for (clock.p1 = limit->p1.max;
753 clock.p1 >= limit->p1.min; clock.p1--) {
754 int this_err;
755
ac58c3f0 756 i9xx_clock(refclk, &clock);
1b894b59
CW
757 if (!intel_PLL_is_valid(dev, limit,
758 &clock))
d4906093 759 continue;
1b894b59
CW
760
761 this_err = abs(clock.dot - target);
d4906093
ML
762 if (this_err < err_most) {
763 *best_clock = clock;
764 err_most = this_err;
765 max_n = clock.n;
766 found = true;
767 }
768 }
769 }
770 }
771 }
2c07245f
ZW
772 return found;
773}
774
a0c4da24 775static bool
a919ff14 776vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
a0c4da24 779{
a919ff14 780 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 781 intel_clock_t clock;
69e4f900 782 unsigned int bestppm = 1000000;
27e639bf
VS
783 /* min update 19.2 MHz */
784 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 785 bool found = false;
a0c4da24 786
6b4bf1c4
VS
787 target *= 5; /* fast clock */
788
789 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
790
791 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 793 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 794 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 795 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 796 clock.p = clock.p1 * clock.p2;
a0c4da24 797 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 798 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
799 unsigned int ppm, diff;
800
6b4bf1c4
VS
801 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802 refclk * clock.m1);
803
804 vlv_clock(refclk, &clock);
43b0ac53 805
f01b7962
VS
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
43b0ac53
VS
808 continue;
809
6b4bf1c4
VS
810 diff = abs(clock.dot - target);
811 ppm = div_u64(1000000ULL * diff, target);
812
813 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 814 bestppm = 0;
6b4bf1c4 815 *best_clock = clock;
49e497ef 816 found = true;
43b0ac53 817 }
6b4bf1c4 818
c686122c 819 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 820 bestppm = ppm;
6b4bf1c4 821 *best_clock = clock;
49e497ef 822 found = true;
a0c4da24
JB
823 }
824 }
825 }
826 }
827 }
a0c4da24 828
49e497ef 829 return found;
a0c4da24 830}
a4fc5ed6 831
ef9348c8 832static bool
a919ff14 833chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
834 int target, int refclk, intel_clock_t *match_clock,
835 intel_clock_t *best_clock)
836{
a919ff14 837 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
838 intel_clock_t clock;
839 uint64_t m2;
840 int found = false;
841
842 memset(best_clock, 0, sizeof(*best_clock));
843
844 /*
845 * Based on hardware doc, the n always set to 1, and m1 always
846 * set to 2. If requires to support 200Mhz refclk, we need to
847 * revisit this because n may not 1 anymore.
848 */
849 clock.n = 1, clock.m1 = 2;
850 target *= 5; /* fast clock */
851
852 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853 for (clock.p2 = limit->p2.p2_fast;
854 clock.p2 >= limit->p2.p2_slow;
855 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857 clock.p = clock.p1 * clock.p2;
858
859 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860 clock.n) << 22, refclk * clock.m1);
861
862 if (m2 > INT_MAX/clock.m1)
863 continue;
864
865 clock.m2 = m2;
866
867 chv_clock(refclk, &clock);
868
869 if (!intel_PLL_is_valid(dev, limit, &clock))
870 continue;
871
872 /* based on hardware requirement, prefer bigger p
873 */
874 if (clock.p > best_clock->p) {
875 *best_clock = clock;
876 found = true;
877 }
878 }
879 }
880
881 return found;
882}
883
20ddf665
VS
884bool intel_crtc_active(struct drm_crtc *crtc)
885{
886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888 /* Be paranoid as we can arrive here with only partial
889 * state retrieved from the hardware during setup.
890 *
241bfc38 891 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
892 * as Haswell has gained clock readout/fastboot support.
893 *
66e514c1 894 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
895 * properly reconstruct framebuffers.
896 */
f4510a27 897 return intel_crtc->active && crtc->primary->fb &&
241bfc38 898 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
899}
900
a5c961d1
PZ
901enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902 enum pipe pipe)
903{
904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
3b117c8f 907 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
908}
909
fbf49ea2
VS
910static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911{
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 u32 reg = PIPEDSL(pipe);
914 u32 line1, line2;
915 u32 line_mask;
916
917 if (IS_GEN2(dev))
918 line_mask = DSL_LINEMASK_GEN2;
919 else
920 line_mask = DSL_LINEMASK_GEN3;
921
922 line1 = I915_READ(reg) & line_mask;
923 mdelay(5);
924 line2 = I915_READ(reg) & line_mask;
925
926 return line1 == line2;
927}
928
ab7ad7f6
KP
929/*
930 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 931 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
932 *
933 * After disabling a pipe, we can't wait for vblank in the usual way,
934 * spinning on the vblank interrupt status bit, since we won't actually
935 * see an interrupt when the pipe is disabled.
936 *
ab7ad7f6
KP
937 * On Gen4 and above:
938 * wait for the pipe register state bit to turn off
939 *
940 * Otherwise:
941 * wait for the display line value to settle (it usually
942 * ends up stopping at the start of the next frame).
58e10eb9 943 *
9d0498a2 944 */
575f7ab7 945static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 946{
575f7ab7 947 struct drm_device *dev = crtc->base.dev;
9d0498a2 948 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
949 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
951
952 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 953 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
954
955 /* Wait for the Pipe State to go off */
58e10eb9
CW
956 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957 100))
284637d9 958 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 959 } else {
ab7ad7f6 960 /* Wait for the display line to settle */
fbf49ea2 961 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 962 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 963 }
79e53945
JB
964}
965
b0ea7d37
DL
966/*
967 * ibx_digital_port_connected - is the specified port connected?
968 * @dev_priv: i915 private structure
969 * @port: the port to test
970 *
971 * Returns true if @port is connected, false otherwise.
972 */
973bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974 struct intel_digital_port *port)
975{
976 u32 bit;
977
c36346e3 978 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 979 switch (port->port) {
c36346e3
DL
980 case PORT_B:
981 bit = SDE_PORTB_HOTPLUG;
982 break;
983 case PORT_C:
984 bit = SDE_PORTC_HOTPLUG;
985 break;
986 case PORT_D:
987 bit = SDE_PORTD_HOTPLUG;
988 break;
989 default:
990 return true;
991 }
992 } else {
eba905b2 993 switch (port->port) {
c36346e3
DL
994 case PORT_B:
995 bit = SDE_PORTB_HOTPLUG_CPT;
996 break;
997 case PORT_C:
998 bit = SDE_PORTC_HOTPLUG_CPT;
999 break;
1000 case PORT_D:
1001 bit = SDE_PORTD_HOTPLUG_CPT;
1002 break;
1003 default:
1004 return true;
1005 }
b0ea7d37
DL
1006 }
1007
1008 return I915_READ(SDEISR) & bit;
1009}
1010
b24e7179
JB
1011static const char *state_string(bool enabled)
1012{
1013 return enabled ? "on" : "off";
1014}
1015
1016/* Only for pre-ILK configs */
55607e8a
DV
1017void assert_pll(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, bool state)
b24e7179
JB
1019{
1020 int reg;
1021 u32 val;
1022 bool cur_state;
1023
1024 reg = DPLL(pipe);
1025 val = I915_READ(reg);
1026 cur_state = !!(val & DPLL_VCO_ENABLE);
1027 WARN(cur_state != state,
1028 "PLL state assertion failure (expected %s, current %s)\n",
1029 state_string(state), state_string(cur_state));
1030}
b24e7179 1031
23538ef1
JN
1032/* XXX: the dsi pll is shared between MIPI DSI ports */
1033static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034{
1035 u32 val;
1036 bool cur_state;
1037
1038 mutex_lock(&dev_priv->dpio_lock);
1039 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040 mutex_unlock(&dev_priv->dpio_lock);
1041
1042 cur_state = val & DSI_PLL_VCO_EN;
1043 WARN(cur_state != state,
1044 "DSI PLL state assertion failure (expected %s, current %s)\n",
1045 state_string(state), state_string(cur_state));
1046}
1047#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
55607e8a 1050struct intel_shared_dpll *
e2b78267
DV
1051intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052{
1053 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
a43f6e0f 1055 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1056 return NULL;
1057
a43f6e0f 1058 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1059}
1060
040484af 1061/* For ILK+ */
55607e8a
DV
1062void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063 struct intel_shared_dpll *pll,
1064 bool state)
040484af 1065{
040484af 1066 bool cur_state;
5358901f 1067 struct intel_dpll_hw_state hw_state;
040484af 1068
92b27b08 1069 if (WARN (!pll,
46edb027 1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1071 return;
ee7b9f93 1072
5358901f 1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1074 WARN(cur_state != state,
5358901f
DV
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
040484af 1077}
040484af
JB
1078
1079static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081{
1082 int reg;
1083 u32 val;
1084 bool cur_state;
ad80a810
PZ
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
040484af 1087
affa9354
PZ
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
ad80a810 1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1091 val = I915_READ(reg);
ad80a810 1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
040484af
JB
1098 WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101}
1102#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107{
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
d63fa0dc
PZ
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1115 WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118}
1119#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124{
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
3d13ef2e 1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1130 return;
1131
bf507ef7 1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1133 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1134 return;
1135
040484af
JB
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139}
1140
55607e8a
DV
1141void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
040484af
JB
1143{
1144 int reg;
1145 u32 val;
55607e8a 1146 bool cur_state;
040484af
JB
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
55607e8a
DV
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
040484af
JB
1154}
1155
b680c37a
DV
1156void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
ea0760cf 1158{
bedd4dba
JN
1159 struct drm_device *dev = dev_priv->dev;
1160 int pp_reg;
ea0760cf
JB
1161 u32 val;
1162 enum pipe panel_pipe = PIPE_A;
0de3b485 1163 bool locked = true;
ea0760cf 1164
bedd4dba
JN
1165 if (WARN_ON(HAS_DDI(dev)))
1166 return;
1167
1168 if (HAS_PCH_SPLIT(dev)) {
1169 u32 port_sel;
1170
ea0760cf 1171 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1172 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176 panel_pipe = PIPE_B;
1177 /* XXX: else fix for eDP */
1178 } else if (IS_VALLEYVIEW(dev)) {
1179 /* presumably write lock depends on pipe, not port select */
1180 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181 panel_pipe = pipe;
ea0760cf
JB
1182 } else {
1183 pp_reg = PP_CONTROL;
bedd4dba
JN
1184 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185 panel_pipe = PIPE_B;
ea0760cf
JB
1186 }
1187
1188 val = I915_READ(pp_reg);
1189 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1190 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1191 locked = false;
1192
ea0760cf
JB
1193 WARN(panel_pipe == pipe && locked,
1194 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1195 pipe_name(pipe));
ea0760cf
JB
1196}
1197
93ce0ba6
JN
1198static void assert_cursor(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200{
1201 struct drm_device *dev = dev_priv->dev;
1202 bool cur_state;
1203
d9d82081 1204 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1205 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1206 else
5efb3e28 1207 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1208
1209 WARN(cur_state != state,
1210 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211 pipe_name(pipe), state_string(state), state_string(cur_state));
1212}
1213#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
b840d907
JB
1216void assert_pipe(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
b24e7179
JB
1218{
1219 int reg;
1220 u32 val;
63d7bbe9 1221 bool cur_state;
702e7a56
PZ
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
b24e7179 1224
b6b5d049
VS
1225 /* if we need the pipe quirk it must be always on */
1226 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1228 state = true;
1229
f458ebbc 1230 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1231 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
63d7bbe9
JB
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1241 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1242}
1243
931872fc
CW
1244static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
b24e7179
JB
1246{
1247 int reg;
1248 u32 val;
931872fc 1249 bool cur_state;
b24e7179
JB
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
931872fc
CW
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1257}
1258
931872fc
CW
1259#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
b24e7179
JB
1262static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264{
653e1026 1265 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1266 int reg, i;
1267 u32 val;
1268 int cur_pipe;
1269
653e1026
VS
1270 /* Primary planes are fixed to pipes on gen4+ */
1271 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1272 reg = DSPCNTR(pipe);
1273 val = I915_READ(reg);
83f26f16 1274 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1275 "plane %c assertion failure, should be disabled but not\n",
1276 plane_name(pipe));
19ec1358 1277 return;
28c05794 1278 }
19ec1358 1279
b24e7179 1280 /* Need to check both planes against the pipe */
055e393f 1281 for_each_pipe(dev_priv, i) {
b24e7179
JB
1282 reg = DSPCNTR(i);
1283 val = I915_READ(reg);
1284 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285 DISPPLANE_SEL_PIPE_SHIFT;
1286 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1287 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288 plane_name(i), pipe_name(pipe));
b24e7179
JB
1289 }
1290}
1291
19332d7a
JB
1292static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294{
20674eef 1295 struct drm_device *dev = dev_priv->dev;
1fe47785 1296 int reg, sprite;
19332d7a
JB
1297 u32 val;
1298
7feb8b88
DL
1299 if (INTEL_INFO(dev)->gen >= 9) {
1300 for_each_sprite(pipe, sprite) {
1301 val = I915_READ(PLANE_CTL(pipe, sprite));
1302 WARN(val & PLANE_CTL_ENABLE,
1303 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304 sprite, pipe_name(pipe));
1305 }
1306 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1307 for_each_sprite(pipe, sprite) {
1308 reg = SPCNTR(pipe, sprite);
20674eef 1309 val = I915_READ(reg);
83f26f16 1310 WARN(val & SP_ENABLE,
20674eef 1311 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1312 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1313 }
1314 } else if (INTEL_INFO(dev)->gen >= 7) {
1315 reg = SPRCTL(pipe);
19332d7a 1316 val = I915_READ(reg);
83f26f16 1317 WARN(val & SPRITE_ENABLE,
06da8da2 1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1319 plane_name(pipe), pipe_name(pipe));
1320 } else if (INTEL_INFO(dev)->gen >= 5) {
1321 reg = DVSCNTR(pipe);
19332d7a 1322 val = I915_READ(reg);
83f26f16 1323 WARN(val & DVS_ENABLE,
06da8da2 1324 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1325 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1326 }
1327}
1328
08c71e5e
VS
1329static void assert_vblank_disabled(struct drm_crtc *crtc)
1330{
1331 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332 drm_crtc_vblank_put(crtc);
1333}
1334
89eff4be 1335static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1336{
1337 u32 val;
1338 bool enabled;
1339
89eff4be 1340 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1341
92f2584a
JB
1342 val = I915_READ(PCH_DREF_CONTROL);
1343 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344 DREF_SUPERSPREAD_SOURCE_MASK));
1345 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346}
1347
ab9412ba
DV
1348static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349 enum pipe pipe)
92f2584a
JB
1350{
1351 int reg;
1352 u32 val;
1353 bool enabled;
1354
ab9412ba 1355 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1356 val = I915_READ(reg);
1357 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1358 WARN(enabled,
1359 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360 pipe_name(pipe));
92f2584a
JB
1361}
1362
4e634389
KP
1363static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1365{
1366 if ((val & DP_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373 return false;
44f37d1f
CML
1374 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376 return false;
f0575e92
KP
1377 } else {
1378 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379 return false;
1380 }
1381 return true;
1382}
1383
1519b995
KP
1384static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, u32 val)
1386{
dc0fa718 1387 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1388 return false;
1389
1390 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1391 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1392 return false;
44f37d1f
CML
1393 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395 return false;
1519b995 1396 } else {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1398 return false;
1399 }
1400 return true;
1401}
1402
1403static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, u32 val)
1405{
1406 if ((val & LVDS_PORT_EN) == 0)
1407 return false;
1408
1409 if (HAS_PCH_CPT(dev_priv->dev)) {
1410 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411 return false;
1412 } else {
1413 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414 return false;
1415 }
1416 return true;
1417}
1418
1419static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, u32 val)
1421{
1422 if ((val & ADPA_DAC_ENABLE) == 0)
1423 return false;
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429 return false;
1430 }
1431 return true;
1432}
1433
291906f1 1434static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1435 enum pipe pipe, int reg, u32 port_sel)
291906f1 1436{
47a05eca 1437 u32 val = I915_READ(reg);
4e634389 1438 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1439 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1440 reg, pipe_name(pipe));
de9a35ab 1441
75c5da27
DV
1442 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443 && (val & DP_PIPEB_SELECT),
de9a35ab 1444 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1445}
1446
1447static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448 enum pipe pipe, int reg)
1449{
47a05eca 1450 u32 val = I915_READ(reg);
b70ad586 1451 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1452 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1453 reg, pipe_name(pipe));
de9a35ab 1454
dc0fa718 1455 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1456 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1457 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1458}
1459
1460static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe)
1462{
1463 int reg;
1464 u32 val;
291906f1 1465
f0575e92
KP
1466 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1469
1470 reg = PCH_ADPA;
1471 val = I915_READ(reg);
b70ad586 1472 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1473 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1474 pipe_name(pipe));
291906f1
JB
1475
1476 reg = PCH_LVDS;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1 1481
e2debe91
PZ
1482 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1485}
1486
40e9cf64
JB
1487static void intel_init_dpio(struct drm_device *dev)
1488{
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491 if (!IS_VALLEYVIEW(dev))
1492 return;
1493
a09caddd
CML
1494 /*
1495 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496 * CHV x1 PHY (DP/HDMI D)
1497 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498 */
1499 if (IS_CHERRYVIEW(dev)) {
1500 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502 } else {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504 }
5382f5f3
JB
1505}
1506
d288f65f
VS
1507static void vlv_enable_pll(struct intel_crtc *crtc,
1508 const struct intel_crtc_config *pipe_config)
87442f73 1509{
426115cf
DV
1510 struct drm_device *dev = crtc->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 int reg = DPLL(crtc->pipe);
d288f65f 1513 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1514
426115cf 1515 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1516
1517 /* No really, not for ILK+ */
1518 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1521 if (IS_MOBILE(dev_priv->dev))
426115cf 1522 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1523
426115cf
DV
1524 I915_WRITE(reg, dpll);
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
d288f65f 1531 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1532 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1533
1534 /* We do this three times for luck */
426115cf 1535 I915_WRITE(reg, dpll);
87442f73
DV
1536 POSTING_READ(reg);
1537 udelay(150); /* wait for warmup */
426115cf 1538 I915_WRITE(reg, dpll);
87442f73
DV
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
426115cf 1541 I915_WRITE(reg, dpll);
87442f73
DV
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544}
1545
d288f65f
VS
1546static void chv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_config *pipe_config)
9d556c99
CML
1548{
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int pipe = crtc->pipe;
1552 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1553 u32 tmp;
1554
1555 assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559 mutex_lock(&dev_priv->dpio_lock);
1560
1561 /* Enable back the 10bit clock to display controller */
1562 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563 tmp |= DPIO_DCLKP_EN;
1564 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566 /*
1567 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568 */
1569 udelay(1);
1570
1571 /* Enable PLL */
d288f65f 1572 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1573
1574 /* Check PLL is locked */
a11b0703 1575 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1576 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
a11b0703 1578 /* not sure when this should be written */
d288f65f 1579 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1580 POSTING_READ(DPLL_MD(pipe));
1581
9d556c99
CML
1582 mutex_unlock(&dev_priv->dpio_lock);
1583}
1584
1c4e0274
VS
1585static int intel_num_dvo_pipes(struct drm_device *dev)
1586{
1587 struct intel_crtc *crtc;
1588 int count = 0;
1589
1590 for_each_intel_crtc(dev, crtc)
1591 count += crtc->active &&
409ee761 1592 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1593
1594 return count;
1595}
1596
66e3d5c0 1597static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1598{
66e3d5c0
DV
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int reg = DPLL(crtc->pipe);
1602 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1603
66e3d5c0 1604 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1605
63d7bbe9 1606 /* No really, not for ILK+ */
3d13ef2e 1607 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1608
1609 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1610 if (IS_MOBILE(dev) && !IS_I830(dev))
1611 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1612
1c4e0274
VS
1613 /* Enable DVO 2x clock on both PLLs if necessary */
1614 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615 /*
1616 * It appears to be important that we don't enable this
1617 * for the current pipe before otherwise configuring the
1618 * PLL. No idea how this should be handled if multiple
1619 * DVO outputs are enabled simultaneosly.
1620 */
1621 dpll |= DPLL_DVO_2X_MODE;
1622 I915_WRITE(DPLL(!crtc->pipe),
1623 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624 }
66e3d5c0
DV
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
63d7bbe9
JB
1641
1642 /* We do this three times for luck */
66e3d5c0 1643 I915_WRITE(reg, dpll);
63d7bbe9
JB
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652}
1653
1654/**
50b44a44 1655 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1c4e0274 1663static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1664{
1c4e0274
VS
1665 struct drm_device *dev = crtc->base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 enum pipe pipe = crtc->pipe;
1668
1669 /* Disable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) &&
409ee761 1671 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1672 intel_num_dvo_pipes(dev) == 1) {
1673 I915_WRITE(DPLL(PIPE_B),
1674 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675 I915_WRITE(DPLL(PIPE_A),
1676 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677 }
1678
b6b5d049
VS
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
50b44a44
DV
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1689}
1690
f6071166
JB
1691static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692{
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
e5cbfbfb
ID
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
f6071166 1702 if (pipe == PIPE_B)
e5cbfbfb 1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1706
1707}
1708
1709static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710{
d752048d 1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1712 u32 val;
1713
a11b0703
VS
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1716
a11b0703 1717 /* Set PLL en = 0 */
d17ec4ce 1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
d752048d
VS
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
61407f6d
VS
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
d752048d 1742 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1743}
1744
e4607fcf
CML
1745void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
89b667f8
JB
1747{
1748 u32 port_mask;
00fc31b7 1749 int dpll_reg;
89b667f8 1750
e4607fcf
CML
1751 switch (dport->port) {
1752 case PORT_B:
89b667f8 1753 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1754 dpll_reg = DPLL(0);
e4607fcf
CML
1755 break;
1756 case PORT_C:
89b667f8 1757 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1763 break;
1764 default:
1765 BUG();
1766 }
89b667f8 1767
00fc31b7 1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1770 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1771}
1772
b14b1055
DV
1773static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774{
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
be19f0ff
CW
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
3e369b76 1782 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790}
1791
92f2584a 1792/**
85b3894f 1793 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
85b3894f 1800static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1801{
3d13ef2e
DL
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1805
87a875bb 1806 if (WARN_ON(pll == NULL))
48da64a8
CW
1807 return;
1808
3e369b76 1809 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1810 return;
ee7b9f93 1811
74dd6928 1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1813 pll->name, pll->active, pll->on,
e2b78267 1814 crtc->base.base.id);
92f2584a 1815
cdbd2316
DV
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
e9d6944e 1818 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1819 return;
1820 }
f4a091c7 1821 WARN_ON(pll->on);
ee7b9f93 1822
bd2bb1b9
PZ
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
46edb027 1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1826 pll->enable(dev_priv, pll);
ee7b9f93 1827 pll->on = true;
92f2584a
JB
1828}
1829
f6daaec2 1830static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1831{
3d13ef2e
DL
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1835
92f2584a 1836 /* PCH only available on ILK+ */
3d13ef2e 1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1838 if (WARN_ON(pll == NULL))
ee7b9f93 1839 return;
92f2584a 1840
3e369b76 1841 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1842 return;
7a419866 1843
46edb027
DV
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
e2b78267 1846 crtc->base.base.id);
7a419866 1847
48da64a8 1848 if (WARN_ON(pll->active == 0)) {
e9d6944e 1849 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1850 return;
1851 }
1852
e9d6944e 1853 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1854 WARN_ON(!pll->on);
cdbd2316 1855 if (--pll->active)
7a419866 1856 return;
ee7b9f93 1857
46edb027 1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1859 pll->disable(dev_priv, pll);
ee7b9f93 1860 pll->on = false;
bd2bb1b9
PZ
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1863}
1864
b8a4f404
PZ
1865static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
040484af 1867{
23670b32 1868 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1871 uint32_t reg, val, pipeconf_val;
040484af
JB
1872
1873 /* PCH only available on ILK+ */
55522f37 1874 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1875
1876 /* Make sure PCH DPLL is enabled */
e72f9fbf 1877 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1878 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
23670b32
DV
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
59c859d6 1891 }
23670b32 1892
ab9412ba 1893 reg = PCH_TRANSCONF(pipe);
040484af 1894 val = I915_READ(reg);
5f7f726d 1895 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
dfd07d72
DV
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1904 }
5f7f726d
PZ
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1908 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1909 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
5f7f726d
PZ
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
040484af
JB
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1919}
1920
8fb033d7 1921static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1922 enum transcoder cpu_transcoder)
040484af 1923{
8fb033d7 1924 u32 val, pipeconf_val;
8fb033d7
PZ
1925
1926 /* PCH only available on ILK+ */
55522f37 1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1928
8fb033d7 1929 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1932
223a6fdf
PZ
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
25f3ef11 1938 val = TRANS_ENABLE;
937bb610 1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1940
9a76b1c6
PZ
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
a35f2679 1943 val |= TRANS_INTERLACED;
8fb033d7
PZ
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
ab9412ba
DV
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1949 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1950}
1951
b8a4f404
PZ
1952static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
040484af 1954{
23670b32
DV
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
040484af
JB
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
291906f1
JB
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
ab9412ba 1965 reg = PCH_TRANSCONF(pipe);
040484af
JB
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
040484af
JB
1980}
1981
ab4d966c 1982static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1983{
8fb033d7
PZ
1984 u32 val;
1985
ab9412ba 1986 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1987 val &= ~TRANS_ENABLE;
ab9412ba 1988 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1989 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1991 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1996 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1997}
1998
b24e7179 1999/**
309cfea8 2000 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2001 * @crtc: crtc responsible for the pipe
b24e7179 2002 *
0372264a 2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2005 */
e1fdc473 2006static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2007{
0372264a
PZ
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
1a240d4d 2013 enum pipe pch_transcoder;
b24e7179
JB
2014 int reg;
2015 u32 val;
2016
58c6eaa2 2017 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2018 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2019 assert_sprites_disabled(dev_priv, pipe);
2020
681e5811 2021 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
b24e7179
JB
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
040484af 2036 else {
30421c4f 2037 if (crtc->config.has_pch_encoder) {
040484af 2038 /* if driving the PCH, we need FDI enabled */
cc391bbb 2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
040484af
JB
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
b24e7179 2045
702e7a56 2046 reg = PIPECONF(cpu_transcoder);
b24e7179 2047 val = I915_READ(reg);
7ad25d48 2048 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2051 return;
7ad25d48 2052 }
00d70b15
CW
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2055 POSTING_READ(reg);
b24e7179
JB
2056}
2057
2058/**
309cfea8 2059 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2060 * @crtc: crtc whose pipes is to be disabled
b24e7179 2061 *
575f7ab7
VS
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
b24e7179
JB
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
575f7ab7 2068static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2069{
575f7ab7
VS
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
b24e7179
JB
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2081 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2082 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2083
702e7a56 2084 reg = PIPECONF(cpu_transcoder);
b24e7179 2085 val = I915_READ(reg);
00d70b15
CW
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
67adc644
VS
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2104}
2105
d74362c9
KP
2106/*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
1dba99f4
VS
2110void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
d74362c9 2112{
3d13ef2e
DL
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
d74362c9
KP
2118}
2119
b24e7179 2120/**
262ca2b0 2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
b24e7179 2124 *
fdd508a6 2125 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2126 */
fdd508a6
VS
2127static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
b24e7179 2129{
fdd508a6
VS
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2136
98ec7739
VS
2137 if (intel_crtc->primary_enabled)
2138 return;
0037f71c 2139
4c445e0e 2140 intel_crtc->primary_enabled = true;
939c2fe8 2141
fdd508a6
VS
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
33c3b0d1
VS
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2152}
2153
b24e7179 2154/**
262ca2b0 2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
b24e7179 2158 *
fdd508a6 2159 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2160 */
fdd508a6
VS
2161static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
b24e7179 2163{
fdd508a6
VS
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2169
98ec7739
VS
2170 if (!intel_crtc->primary_enabled)
2171 return;
0037f71c 2172
4c445e0e 2173 intel_crtc->primary_enabled = false;
939c2fe8 2174
fdd508a6
VS
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
b24e7179
JB
2177}
2178
693db184
CW
2179static bool need_vtd_wa(struct drm_device *dev)
2180{
2181#ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184#endif
2185 return false;
2186}
2187
a57ce0b2
JB
2188static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189{
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194}
2195
127bd2ac 2196int
850c4cdc
TU
2197intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198 struct drm_framebuffer *fb,
a4872ba6 2199 struct intel_engine_cs *pipelined)
6b95a207 2200{
850c4cdc 2201 struct drm_device *dev = fb->dev;
ce453d81 2202 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2203 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207
KH
2204 u32 alignment;
2205 int ret;
2206
ebcdd39e
MR
2207 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
05394f39 2209 switch (obj->tiling_mode) {
6b95a207 2210 case I915_TILING_NONE:
1fada4cc
DL
2211 if (INTEL_INFO(dev)->gen >= 9)
2212 alignment = 256 * 1024;
2213 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2214 alignment = 128 * 1024;
a6c45cf0 2215 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2216 alignment = 4 * 1024;
2217 else
2218 alignment = 64 * 1024;
6b95a207
KH
2219 break;
2220 case I915_TILING_X:
1fada4cc
DL
2221 if (INTEL_INFO(dev)->gen >= 9)
2222 alignment = 256 * 1024;
2223 else {
2224 /* pin() will align the object as required by fence */
2225 alignment = 0;
2226 }
6b95a207
KH
2227 break;
2228 case I915_TILING_Y:
80075d49 2229 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2230 return -EINVAL;
2231 default:
2232 BUG();
2233 }
2234
693db184
CW
2235 /* Note that the w/a also requires 64 PTE of padding following the
2236 * bo. We currently fill all unused PTE with the shadow page and so
2237 * we should always have valid PTE following the scanout preventing
2238 * the VT-d warning.
2239 */
2240 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241 alignment = 256 * 1024;
2242
d6dd6843
PZ
2243 /*
2244 * Global gtt pte registers are special registers which actually forward
2245 * writes to a chunk of system memory. Which means that there is no risk
2246 * that the register values disappear as soon as we call
2247 * intel_runtime_pm_put(), so it is correct to wrap only the
2248 * pin/unpin/fence and not more.
2249 */
2250 intel_runtime_pm_get(dev_priv);
2251
ce453d81 2252 dev_priv->mm.interruptible = false;
2da3b9b9 2253 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2254 if (ret)
ce453d81 2255 goto err_interruptible;
6b95a207
KH
2256
2257 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258 * fence, whereas 965+ only requires a fence if using
2259 * framebuffer compression. For simplicity, we always install
2260 * a fence as the cost is not that onerous.
2261 */
06d98131 2262 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2263 if (ret)
2264 goto err_unpin;
1690e1eb 2265
9a5a53b3 2266 i915_gem_object_pin_fence(obj);
6b95a207 2267
ce453d81 2268 dev_priv->mm.interruptible = true;
d6dd6843 2269 intel_runtime_pm_put(dev_priv);
6b95a207 2270 return 0;
48b956c5
CW
2271
2272err_unpin:
cc98b413 2273 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2274err_interruptible:
2275 dev_priv->mm.interruptible = true;
d6dd6843 2276 intel_runtime_pm_put(dev_priv);
48b956c5 2277 return ret;
6b95a207
KH
2278}
2279
1690e1eb
CW
2280void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281{
ebcdd39e
MR
2282 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
1690e1eb 2284 i915_gem_object_unpin_fence(obj);
cc98b413 2285 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2286}
2287
c2c75131
DV
2288/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289 * is assumed to be a power-of-two. */
bc752862
CW
2290unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291 unsigned int tiling_mode,
2292 unsigned int cpp,
2293 unsigned int pitch)
c2c75131 2294{
bc752862
CW
2295 if (tiling_mode != I915_TILING_NONE) {
2296 unsigned int tile_rows, tiles;
c2c75131 2297
bc752862
CW
2298 tile_rows = *y / 8;
2299 *y %= 8;
c2c75131 2300
bc752862
CW
2301 tiles = *x / (512/cpp);
2302 *x %= 512/cpp;
2303
2304 return tile_rows * pitch * 8 + tiles * 4096;
2305 } else {
2306 unsigned int offset;
2307
2308 offset = *y * pitch + *x * cpp;
2309 *y = 0;
2310 *x = (offset & 4095) / cpp;
2311 return offset & -4096;
2312 }
c2c75131
DV
2313}
2314
46f297fb
JB
2315int intel_format_to_fourcc(int format)
2316{
2317 switch (format) {
2318 case DISPPLANE_8BPP:
2319 return DRM_FORMAT_C8;
2320 case DISPPLANE_BGRX555:
2321 return DRM_FORMAT_XRGB1555;
2322 case DISPPLANE_BGRX565:
2323 return DRM_FORMAT_RGB565;
2324 default:
2325 case DISPPLANE_BGRX888:
2326 return DRM_FORMAT_XRGB8888;
2327 case DISPPLANE_RGBX888:
2328 return DRM_FORMAT_XBGR8888;
2329 case DISPPLANE_BGRX101010:
2330 return DRM_FORMAT_XRGB2101010;
2331 case DISPPLANE_RGBX101010:
2332 return DRM_FORMAT_XBGR2101010;
2333 }
2334}
2335
484b41dd 2336static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2337 struct intel_plane_config *plane_config)
2338{
2339 struct drm_device *dev = crtc->base.dev;
2340 struct drm_i915_gem_object *obj = NULL;
2341 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342 u32 base = plane_config->base;
2343
ff2652ea
CW
2344 if (plane_config->size == 0)
2345 return false;
2346
46f297fb
JB
2347 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348 plane_config->size);
2349 if (!obj)
484b41dd 2350 return false;
46f297fb
JB
2351
2352 if (plane_config->tiled) {
2353 obj->tiling_mode = I915_TILING_X;
66e514c1 2354 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2355 }
2356
66e514c1
DA
2357 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358 mode_cmd.width = crtc->base.primary->fb->width;
2359 mode_cmd.height = crtc->base.primary->fb->height;
2360 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2361
2362 mutex_lock(&dev->struct_mutex);
2363
66e514c1 2364 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2365 &mode_cmd, obj)) {
46f297fb
JB
2366 DRM_DEBUG_KMS("intel fb init failed\n");
2367 goto out_unref_obj;
2368 }
2369
a071fa00 2370 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2371 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2372
2373 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374 return true;
46f297fb
JB
2375
2376out_unref_obj:
2377 drm_gem_object_unreference(&obj->base);
2378 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2379 return false;
2380}
2381
2382static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383 struct intel_plane_config *plane_config)
2384{
2385 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2386 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2387 struct drm_crtc *c;
2388 struct intel_crtc *i;
2ff8fde1 2389 struct drm_i915_gem_object *obj;
484b41dd 2390
66e514c1 2391 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2392 return;
2393
2394 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395 return;
2396
66e514c1
DA
2397 kfree(intel_crtc->base.primary->fb);
2398 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2399
2400 /*
2401 * Failed to alloc the obj, check to see if we should share
2402 * an fb with another CRTC instead
2403 */
70e1e0ec 2404 for_each_crtc(dev, c) {
484b41dd
JB
2405 i = to_intel_crtc(c);
2406
2407 if (c == &intel_crtc->base)
2408 continue;
2409
2ff8fde1
MR
2410 if (!i->active)
2411 continue;
2412
2413 obj = intel_fb_obj(c->primary->fb);
2414 if (obj == NULL)
484b41dd
JB
2415 continue;
2416
2ff8fde1 2417 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2418 if (obj->tiling_mode != I915_TILING_NONE)
2419 dev_priv->preserve_bios_swizzle = true;
2420
66e514c1
DA
2421 drm_framebuffer_reference(c->primary->fb);
2422 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2423 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2424 break;
2425 }
2426 }
46f297fb
JB
2427}
2428
29b9bde6
DV
2429static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430 struct drm_framebuffer *fb,
2431 int x, int y)
81255565
JB
2432{
2433 struct drm_device *dev = crtc->dev;
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2436 struct drm_i915_gem_object *obj;
81255565 2437 int plane = intel_crtc->plane;
e506a0c6 2438 unsigned long linear_offset;
81255565 2439 u32 dspcntr;
f45651ba 2440 u32 reg = DSPCNTR(plane);
48404c1e 2441 int pixel_size;
f45651ba 2442
fdd508a6
VS
2443 if (!intel_crtc->primary_enabled) {
2444 I915_WRITE(reg, 0);
2445 if (INTEL_INFO(dev)->gen >= 4)
2446 I915_WRITE(DSPSURF(plane), 0);
2447 else
2448 I915_WRITE(DSPADDR(plane), 0);
2449 POSTING_READ(reg);
2450 return;
2451 }
2452
c9ba6fad
VS
2453 obj = intel_fb_obj(fb);
2454 if (WARN_ON(obj == NULL))
2455 return;
2456
2457 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
f45651ba
VS
2459 dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
fdd508a6 2461 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2462
2463 if (INTEL_INFO(dev)->gen < 4) {
2464 if (intel_crtc->pipe == PIPE_B)
2465 dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467 /* pipesrc and dspsize control the size that is scaled from,
2468 * which should always be the user's requested size.
2469 */
2470 I915_WRITE(DSPSIZE(plane),
2471 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472 (intel_crtc->config.pipe_src_w - 1));
2473 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2474 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475 I915_WRITE(PRIMSIZE(plane),
2476 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477 (intel_crtc->config.pipe_src_w - 1));
2478 I915_WRITE(PRIMPOS(plane), 0);
2479 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2480 }
81255565 2481
57779d06
VS
2482 switch (fb->pixel_format) {
2483 case DRM_FORMAT_C8:
81255565
JB
2484 dspcntr |= DISPPLANE_8BPP;
2485 break;
57779d06
VS
2486 case DRM_FORMAT_XRGB1555:
2487 case DRM_FORMAT_ARGB1555:
2488 dspcntr |= DISPPLANE_BGRX555;
81255565 2489 break;
57779d06
VS
2490 case DRM_FORMAT_RGB565:
2491 dspcntr |= DISPPLANE_BGRX565;
2492 break;
2493 case DRM_FORMAT_XRGB8888:
2494 case DRM_FORMAT_ARGB8888:
2495 dspcntr |= DISPPLANE_BGRX888;
2496 break;
2497 case DRM_FORMAT_XBGR8888:
2498 case DRM_FORMAT_ABGR8888:
2499 dspcntr |= DISPPLANE_RGBX888;
2500 break;
2501 case DRM_FORMAT_XRGB2101010:
2502 case DRM_FORMAT_ARGB2101010:
2503 dspcntr |= DISPPLANE_BGRX101010;
2504 break;
2505 case DRM_FORMAT_XBGR2101010:
2506 case DRM_FORMAT_ABGR2101010:
2507 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2508 break;
2509 default:
baba133a 2510 BUG();
81255565 2511 }
57779d06 2512
f45651ba
VS
2513 if (INTEL_INFO(dev)->gen >= 4 &&
2514 obj->tiling_mode != I915_TILING_NONE)
2515 dspcntr |= DISPPLANE_TILED;
81255565 2516
de1aa629
VS
2517 if (IS_G4X(dev))
2518 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
b9897127 2520 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2521
c2c75131
DV
2522 if (INTEL_INFO(dev)->gen >= 4) {
2523 intel_crtc->dspaddr_offset =
bc752862 2524 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2525 pixel_size,
bc752862 2526 fb->pitches[0]);
c2c75131
DV
2527 linear_offset -= intel_crtc->dspaddr_offset;
2528 } else {
e506a0c6 2529 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2530 }
e506a0c6 2531
48404c1e
SJ
2532 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535 x += (intel_crtc->config.pipe_src_w - 1);
2536 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538 /* Finding the last pixel of the last line of the display
2539 data and adding to linear_offset*/
2540 linear_offset +=
2541 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543 }
2544
2545 I915_WRITE(reg, dspcntr);
2546
f343c5f6
BW
2547 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549 fb->pitches[0]);
01f2c773 2550 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2551 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2552 I915_WRITE(DSPSURF(plane),
2553 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2554 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2555 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2556 } else
f343c5f6 2557 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2558 POSTING_READ(reg);
17638cd6
JB
2559}
2560
29b9bde6
DV
2561static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562 struct drm_framebuffer *fb,
2563 int x, int y)
17638cd6
JB
2564{
2565 struct drm_device *dev = crtc->dev;
2566 struct drm_i915_private *dev_priv = dev->dev_private;
2567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2568 struct drm_i915_gem_object *obj;
17638cd6 2569 int plane = intel_crtc->plane;
e506a0c6 2570 unsigned long linear_offset;
17638cd6 2571 u32 dspcntr;
f45651ba 2572 u32 reg = DSPCNTR(plane);
48404c1e 2573 int pixel_size;
f45651ba 2574
fdd508a6
VS
2575 if (!intel_crtc->primary_enabled) {
2576 I915_WRITE(reg, 0);
2577 I915_WRITE(DSPSURF(plane), 0);
2578 POSTING_READ(reg);
2579 return;
2580 }
2581
c9ba6fad
VS
2582 obj = intel_fb_obj(fb);
2583 if (WARN_ON(obj == NULL))
2584 return;
2585
2586 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
f45651ba
VS
2588 dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
fdd508a6 2590 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2591
2592 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2594
57779d06
VS
2595 switch (fb->pixel_format) {
2596 case DRM_FORMAT_C8:
17638cd6
JB
2597 dspcntr |= DISPPLANE_8BPP;
2598 break;
57779d06
VS
2599 case DRM_FORMAT_RGB565:
2600 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2601 break;
57779d06
VS
2602 case DRM_FORMAT_XRGB8888:
2603 case DRM_FORMAT_ARGB8888:
2604 dspcntr |= DISPPLANE_BGRX888;
2605 break;
2606 case DRM_FORMAT_XBGR8888:
2607 case DRM_FORMAT_ABGR8888:
2608 dspcntr |= DISPPLANE_RGBX888;
2609 break;
2610 case DRM_FORMAT_XRGB2101010:
2611 case DRM_FORMAT_ARGB2101010:
2612 dspcntr |= DISPPLANE_BGRX101010;
2613 break;
2614 case DRM_FORMAT_XBGR2101010:
2615 case DRM_FORMAT_ABGR2101010:
2616 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2617 break;
2618 default:
baba133a 2619 BUG();
17638cd6
JB
2620 }
2621
2622 if (obj->tiling_mode != I915_TILING_NONE)
2623 dspcntr |= DISPPLANE_TILED;
17638cd6 2624
f45651ba 2625 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2626 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2627
b9897127 2628 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2629 intel_crtc->dspaddr_offset =
bc752862 2630 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2631 pixel_size,
bc752862 2632 fb->pitches[0]);
c2c75131 2633 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2634 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638 x += (intel_crtc->config.pipe_src_w - 1);
2639 y += (intel_crtc->config.pipe_src_h - 1);
2640
2641 /* Finding the last pixel of the last line of the display
2642 data and adding to linear_offset*/
2643 linear_offset +=
2644 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646 }
2647 }
2648
2649 I915_WRITE(reg, dspcntr);
17638cd6 2650
f343c5f6
BW
2651 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653 fb->pitches[0]);
01f2c773 2654 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2655 I915_WRITE(DSPSURF(plane),
2656 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2657 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2658 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659 } else {
2660 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662 }
17638cd6 2663 POSTING_READ(reg);
17638cd6
JB
2664}
2665
70d21f0e
DL
2666static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667 struct drm_framebuffer *fb,
2668 int x, int y)
2669{
2670 struct drm_device *dev = crtc->dev;
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673 struct intel_framebuffer *intel_fb;
2674 struct drm_i915_gem_object *obj;
2675 int pipe = intel_crtc->pipe;
2676 u32 plane_ctl, stride;
2677
2678 if (!intel_crtc->primary_enabled) {
2679 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681 POSTING_READ(PLANE_CTL(pipe, 0));
2682 return;
2683 }
2684
2685 plane_ctl = PLANE_CTL_ENABLE |
2686 PLANE_CTL_PIPE_GAMMA_ENABLE |
2687 PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689 switch (fb->pixel_format) {
2690 case DRM_FORMAT_RGB565:
2691 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692 break;
2693 case DRM_FORMAT_XRGB8888:
2694 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695 break;
2696 case DRM_FORMAT_XBGR8888:
2697 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699 break;
2700 case DRM_FORMAT_XRGB2101010:
2701 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702 break;
2703 case DRM_FORMAT_XBGR2101010:
2704 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706 break;
2707 default:
2708 BUG();
2709 }
2710
2711 intel_fb = to_intel_framebuffer(fb);
2712 obj = intel_fb->obj;
2713
2714 /*
2715 * The stride is either expressed as a multiple of 64 bytes chunks for
2716 * linear buffers or in number of tiles for tiled buffers.
2717 */
2718 switch (obj->tiling_mode) {
2719 case I915_TILING_NONE:
2720 stride = fb->pitches[0] >> 6;
2721 break;
2722 case I915_TILING_X:
2723 plane_ctl |= PLANE_CTL_TILED_X;
2724 stride = fb->pitches[0] >> 9;
2725 break;
2726 default:
2727 BUG();
2728 }
2729
2730 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
1447dde0
SJ
2731 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2733
2734 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737 i915_gem_obj_ggtt_offset(obj),
2738 x, y, fb->width, fb->height,
2739 fb->pitches[0]);
2740
2741 I915_WRITE(PLANE_POS(pipe, 0), 0);
2742 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743 I915_WRITE(PLANE_SIZE(pipe, 0),
2744 (intel_crtc->config.pipe_src_h - 1) << 16 |
2745 (intel_crtc->config.pipe_src_w - 1));
2746 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749 POSTING_READ(PLANE_SURF(pipe, 0));
2750}
2751
17638cd6
JB
2752/* Assume fb object is pinned & idle & fenced and just update base pointers */
2753static int
2754intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755 int x, int y, enum mode_set_atomic state)
2756{
2757 struct drm_device *dev = crtc->dev;
2758 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2759
6b8e6ed0
CW
2760 if (dev_priv->display.disable_fbc)
2761 dev_priv->display.disable_fbc(dev);
81255565 2762
29b9bde6
DV
2763 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765 return 0;
81255565
JB
2766}
2767
7514747d 2768static void intel_complete_page_flips(struct drm_device *dev)
96a02917 2769{
96a02917
VS
2770 struct drm_crtc *crtc;
2771
70e1e0ec 2772 for_each_crtc(dev, crtc) {
96a02917
VS
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 enum plane plane = intel_crtc->plane;
2775
2776 intel_prepare_page_flip(dev, plane);
2777 intel_finish_page_flip_plane(dev, plane);
2778 }
7514747d
VS
2779}
2780
2781static void intel_update_primary_planes(struct drm_device *dev)
2782{
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct drm_crtc *crtc;
96a02917 2785
70e1e0ec 2786 for_each_crtc(dev, crtc) {
96a02917
VS
2787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
51fd371b 2789 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2790 /*
2791 * FIXME: Once we have proper support for primary planes (and
2792 * disabling them without disabling the entire crtc) allow again
66e514c1 2793 * a NULL crtc->primary->fb.
947fdaad 2794 */
f4510a27 2795 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2796 dev_priv->display.update_primary_plane(crtc,
66e514c1 2797 crtc->primary->fb,
262ca2b0
MR
2798 crtc->x,
2799 crtc->y);
51fd371b 2800 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2801 }
2802}
2803
7514747d
VS
2804void intel_prepare_reset(struct drm_device *dev)
2805{
f98ce92f
VS
2806 struct drm_i915_private *dev_priv = to_i915(dev);
2807 struct intel_crtc *crtc;
2808
7514747d
VS
2809 /* no reset support for gen2 */
2810 if (IS_GEN2(dev))
2811 return;
2812
2813 /* reset doesn't touch the display */
2814 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2815 return;
2816
2817 drm_modeset_lock_all(dev);
f98ce92f
VS
2818
2819 /*
2820 * Disabling the crtcs gracefully seems nicer. Also the
2821 * g33 docs say we should at least disable all the planes.
2822 */
2823 for_each_intel_crtc(dev, crtc) {
2824 if (crtc->active)
2825 dev_priv->display.crtc_disable(&crtc->base);
2826 }
7514747d
VS
2827}
2828
2829void intel_finish_reset(struct drm_device *dev)
2830{
2831 struct drm_i915_private *dev_priv = to_i915(dev);
2832
2833 /*
2834 * Flips in the rings will be nuked by the reset,
2835 * so complete all pending flips so that user space
2836 * will get its events and not get stuck.
2837 */
2838 intel_complete_page_flips(dev);
2839
2840 /* no reset support for gen2 */
2841 if (IS_GEN2(dev))
2842 return;
2843
2844 /* reset doesn't touch the display */
2845 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2846 /*
2847 * Flips in the rings have been nuked by the reset,
2848 * so update the base address of all primary
2849 * planes to the the last fb to make sure we're
2850 * showing the correct fb after a reset.
2851 */
2852 intel_update_primary_planes(dev);
2853 return;
2854 }
2855
2856 /*
2857 * The display has been reset as well,
2858 * so need a full re-initialization.
2859 */
2860 intel_runtime_pm_disable_interrupts(dev_priv);
2861 intel_runtime_pm_enable_interrupts(dev_priv);
2862
2863 intel_modeset_init_hw(dev);
2864
2865 spin_lock_irq(&dev_priv->irq_lock);
2866 if (dev_priv->display.hpd_irq_setup)
2867 dev_priv->display.hpd_irq_setup(dev);
2868 spin_unlock_irq(&dev_priv->irq_lock);
2869
2870 intel_modeset_setup_hw_state(dev, true);
2871
2872 intel_hpd_init(dev_priv);
2873
2874 drm_modeset_unlock_all(dev);
2875}
2876
14667a4b
CW
2877static int
2878intel_finish_fb(struct drm_framebuffer *old_fb)
2879{
2ff8fde1 2880 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2882 bool was_interruptible = dev_priv->mm.interruptible;
2883 int ret;
2884
14667a4b
CW
2885 /* Big Hammer, we also need to ensure that any pending
2886 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2887 * current scanout is retired before unpinning the old
2888 * framebuffer.
2889 *
2890 * This should only fail upon a hung GPU, in which case we
2891 * can safely continue.
2892 */
2893 dev_priv->mm.interruptible = false;
2894 ret = i915_gem_object_finish_gpu(obj);
2895 dev_priv->mm.interruptible = was_interruptible;
2896
2897 return ret;
2898}
2899
7d5e3799
CW
2900static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901{
2902 struct drm_device *dev = crtc->dev;
2903 struct drm_i915_private *dev_priv = dev->dev_private;
2904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2905 bool pending;
2906
2907 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2908 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2909 return false;
2910
5e2d7afc 2911 spin_lock_irq(&dev->event_lock);
7d5e3799 2912 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2913 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2914
2915 return pending;
2916}
2917
e30e8f75
GP
2918static void intel_update_pipe_size(struct intel_crtc *crtc)
2919{
2920 struct drm_device *dev = crtc->base.dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 const struct drm_display_mode *adjusted_mode;
2923
2924 if (!i915.fastboot)
2925 return;
2926
2927 /*
2928 * Update pipe size and adjust fitter if needed: the reason for this is
2929 * that in compute_mode_changes we check the native mode (not the pfit
2930 * mode) to see if we can flip rather than do a full mode set. In the
2931 * fastboot case, we'll flip, but if we don't update the pipesrc and
2932 * pfit state, we'll end up with a big fb scanned out into the wrong
2933 * sized surface.
2934 *
2935 * To fix this properly, we need to hoist the checks up into
2936 * compute_mode_changes (or above), check the actual pfit state and
2937 * whether the platform allows pfit disable with pipe active, and only
2938 * then update the pipesrc and pfit state, even on the flip path.
2939 */
2940
2941 adjusted_mode = &crtc->config.adjusted_mode;
2942
2943 I915_WRITE(PIPESRC(crtc->pipe),
2944 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2945 (adjusted_mode->crtc_vdisplay - 1));
2946 if (!crtc->config.pch_pfit.enabled &&
409ee761
ACO
2947 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2948 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2949 I915_WRITE(PF_CTL(crtc->pipe), 0);
2950 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2951 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2952 }
2953 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2954 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2955}
2956
5c3b82e2 2957static int
3c4fdcfb 2958intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2959 struct drm_framebuffer *fb)
79e53945
JB
2960{
2961 struct drm_device *dev = crtc->dev;
6b8e6ed0 2962 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2964 enum pipe pipe = intel_crtc->pipe;
2ff8fde1 2965 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 2966 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2967 int ret;
79e53945 2968
7d5e3799
CW
2969 if (intel_crtc_has_pending_flip(crtc)) {
2970 DRM_ERROR("pipe is still busy with an old pageflip\n");
2971 return -EBUSY;
2972 }
2973
79e53945 2974 /* no fb bound */
94352cf9 2975 if (!fb) {
a5071c2f 2976 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2977 return 0;
2978 }
2979
7eb552ae 2980 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2981 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2982 plane_name(intel_crtc->plane),
2983 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2984 return -EINVAL;
79e53945
JB
2985 }
2986
5c3b82e2 2987 mutex_lock(&dev->struct_mutex);
850c4cdc 2988 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
a071fa00 2989 if (ret == 0)
850c4cdc 2990 i915_gem_track_fb(old_obj, intel_fb_obj(fb),
a071fa00 2991 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2992 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2993 if (ret != 0) {
a5071c2f 2994 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2995 return ret;
2996 }
79e53945 2997
29b9bde6 2998 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2999
f99d7069
DV
3000 if (intel_crtc->active)
3001 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
3002
f4510a27 3003 crtc->primary->fb = fb;
6c4c86f5
DV
3004 crtc->x = x;
3005 crtc->y = y;
94352cf9 3006
b7f1de28 3007 if (old_fb) {
d7697eea
DV
3008 if (intel_crtc->active && old_fb != fb)
3009 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 3010 mutex_lock(&dev->struct_mutex);
2ff8fde1 3011 intel_unpin_fb_obj(old_obj);
8ac36ec1 3012 mutex_unlock(&dev->struct_mutex);
b7f1de28 3013 }
652c393a 3014
8ac36ec1 3015 mutex_lock(&dev->struct_mutex);
6b8e6ed0 3016 intel_update_fbc(dev);
5c3b82e2 3017 mutex_unlock(&dev->struct_mutex);
79e53945 3018
5c3b82e2 3019 return 0;
79e53945
JB
3020}
3021
5e84e1a4
ZW
3022static void intel_fdi_normal_train(struct drm_crtc *crtc)
3023{
3024 struct drm_device *dev = crtc->dev;
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027 int pipe = intel_crtc->pipe;
3028 u32 reg, temp;
3029
3030 /* enable normal train */
3031 reg = FDI_TX_CTL(pipe);
3032 temp = I915_READ(reg);
61e499bf 3033 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3034 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3035 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3036 } else {
3037 temp &= ~FDI_LINK_TRAIN_NONE;
3038 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3039 }
5e84e1a4
ZW
3040 I915_WRITE(reg, temp);
3041
3042 reg = FDI_RX_CTL(pipe);
3043 temp = I915_READ(reg);
3044 if (HAS_PCH_CPT(dev)) {
3045 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3046 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3047 } else {
3048 temp &= ~FDI_LINK_TRAIN_NONE;
3049 temp |= FDI_LINK_TRAIN_NONE;
3050 }
3051 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3052
3053 /* wait one idle pattern time */
3054 POSTING_READ(reg);
3055 udelay(1000);
357555c0
JB
3056
3057 /* IVB wants error correction enabled */
3058 if (IS_IVYBRIDGE(dev))
3059 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3060 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3061}
3062
1fbc0d78 3063static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3064{
1fbc0d78
DV
3065 return crtc->base.enabled && crtc->active &&
3066 crtc->config.has_pch_encoder;
1e833f40
DV
3067}
3068
01a415fd
DV
3069static void ivb_modeset_global_resources(struct drm_device *dev)
3070{
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072 struct intel_crtc *pipe_B_crtc =
3073 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3074 struct intel_crtc *pipe_C_crtc =
3075 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3076 uint32_t temp;
3077
1e833f40
DV
3078 /*
3079 * When everything is off disable fdi C so that we could enable fdi B
3080 * with all lanes. Note that we don't care about enabled pipes without
3081 * an enabled pch encoder.
3082 */
3083 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3084 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3085 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3086 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3087
3088 temp = I915_READ(SOUTH_CHICKEN1);
3089 temp &= ~FDI_BC_BIFURCATION_SELECT;
3090 DRM_DEBUG_KMS("disabling fdi C rx\n");
3091 I915_WRITE(SOUTH_CHICKEN1, temp);
3092 }
3093}
3094
8db9d77b
ZW
3095/* The FDI link training functions for ILK/Ibexpeak. */
3096static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3097{
3098 struct drm_device *dev = crtc->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101 int pipe = intel_crtc->pipe;
5eddb70b 3102 u32 reg, temp, tries;
8db9d77b 3103
1c8562f6 3104 /* FDI needs bits from pipe first */
0fc932b8 3105 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3106
e1a44743
AJ
3107 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3108 for train result */
5eddb70b
CW
3109 reg = FDI_RX_IMR(pipe);
3110 temp = I915_READ(reg);
e1a44743
AJ
3111 temp &= ~FDI_RX_SYMBOL_LOCK;
3112 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3113 I915_WRITE(reg, temp);
3114 I915_READ(reg);
e1a44743
AJ
3115 udelay(150);
3116
8db9d77b 3117 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3118 reg = FDI_TX_CTL(pipe);
3119 temp = I915_READ(reg);
627eb5a3
DV
3120 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3121 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3122 temp &= ~FDI_LINK_TRAIN_NONE;
3123 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3124 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3125
5eddb70b
CW
3126 reg = FDI_RX_CTL(pipe);
3127 temp = I915_READ(reg);
8db9d77b
ZW
3128 temp &= ~FDI_LINK_TRAIN_NONE;
3129 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3130 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3131
3132 POSTING_READ(reg);
8db9d77b
ZW
3133 udelay(150);
3134
5b2adf89 3135 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3136 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3137 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3138 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3139
5eddb70b 3140 reg = FDI_RX_IIR(pipe);
e1a44743 3141 for (tries = 0; tries < 5; tries++) {
5eddb70b 3142 temp = I915_READ(reg);
8db9d77b
ZW
3143 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3144
3145 if ((temp & FDI_RX_BIT_LOCK)) {
3146 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3147 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3148 break;
3149 }
8db9d77b 3150 }
e1a44743 3151 if (tries == 5)
5eddb70b 3152 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3153
3154 /* Train 2 */
5eddb70b
CW
3155 reg = FDI_TX_CTL(pipe);
3156 temp = I915_READ(reg);
8db9d77b
ZW
3157 temp &= ~FDI_LINK_TRAIN_NONE;
3158 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3159 I915_WRITE(reg, temp);
8db9d77b 3160
5eddb70b
CW
3161 reg = FDI_RX_CTL(pipe);
3162 temp = I915_READ(reg);
8db9d77b
ZW
3163 temp &= ~FDI_LINK_TRAIN_NONE;
3164 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3165 I915_WRITE(reg, temp);
8db9d77b 3166
5eddb70b
CW
3167 POSTING_READ(reg);
3168 udelay(150);
8db9d77b 3169
5eddb70b 3170 reg = FDI_RX_IIR(pipe);
e1a44743 3171 for (tries = 0; tries < 5; tries++) {
5eddb70b 3172 temp = I915_READ(reg);
8db9d77b
ZW
3173 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3174
3175 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3176 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3177 DRM_DEBUG_KMS("FDI train 2 done.\n");
3178 break;
3179 }
8db9d77b 3180 }
e1a44743 3181 if (tries == 5)
5eddb70b 3182 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3183
3184 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3185
8db9d77b
ZW
3186}
3187
0206e353 3188static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3189 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3190 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3191 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3192 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3193};
3194
3195/* The FDI link training functions for SNB/Cougarpoint. */
3196static void gen6_fdi_link_train(struct drm_crtc *crtc)
3197{
3198 struct drm_device *dev = crtc->dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201 int pipe = intel_crtc->pipe;
fa37d39e 3202 u32 reg, temp, i, retry;
8db9d77b 3203
e1a44743
AJ
3204 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3205 for train result */
5eddb70b
CW
3206 reg = FDI_RX_IMR(pipe);
3207 temp = I915_READ(reg);
e1a44743
AJ
3208 temp &= ~FDI_RX_SYMBOL_LOCK;
3209 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3210 I915_WRITE(reg, temp);
3211
3212 POSTING_READ(reg);
e1a44743
AJ
3213 udelay(150);
3214
8db9d77b 3215 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3216 reg = FDI_TX_CTL(pipe);
3217 temp = I915_READ(reg);
627eb5a3
DV
3218 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3219 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3220 temp &= ~FDI_LINK_TRAIN_NONE;
3221 temp |= FDI_LINK_TRAIN_PATTERN_1;
3222 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3223 /* SNB-B */
3224 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3225 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3226
d74cf324
DV
3227 I915_WRITE(FDI_RX_MISC(pipe),
3228 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3229
5eddb70b
CW
3230 reg = FDI_RX_CTL(pipe);
3231 temp = I915_READ(reg);
8db9d77b
ZW
3232 if (HAS_PCH_CPT(dev)) {
3233 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3234 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3235 } else {
3236 temp &= ~FDI_LINK_TRAIN_NONE;
3237 temp |= FDI_LINK_TRAIN_PATTERN_1;
3238 }
5eddb70b
CW
3239 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3240
3241 POSTING_READ(reg);
8db9d77b
ZW
3242 udelay(150);
3243
0206e353 3244 for (i = 0; i < 4; i++) {
5eddb70b
CW
3245 reg = FDI_TX_CTL(pipe);
3246 temp = I915_READ(reg);
8db9d77b
ZW
3247 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3248 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3249 I915_WRITE(reg, temp);
3250
3251 POSTING_READ(reg);
8db9d77b
ZW
3252 udelay(500);
3253
fa37d39e
SP
3254 for (retry = 0; retry < 5; retry++) {
3255 reg = FDI_RX_IIR(pipe);
3256 temp = I915_READ(reg);
3257 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3258 if (temp & FDI_RX_BIT_LOCK) {
3259 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3260 DRM_DEBUG_KMS("FDI train 1 done.\n");
3261 break;
3262 }
3263 udelay(50);
8db9d77b 3264 }
fa37d39e
SP
3265 if (retry < 5)
3266 break;
8db9d77b
ZW
3267 }
3268 if (i == 4)
5eddb70b 3269 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3270
3271 /* Train 2 */
5eddb70b
CW
3272 reg = FDI_TX_CTL(pipe);
3273 temp = I915_READ(reg);
8db9d77b
ZW
3274 temp &= ~FDI_LINK_TRAIN_NONE;
3275 temp |= FDI_LINK_TRAIN_PATTERN_2;
3276 if (IS_GEN6(dev)) {
3277 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3278 /* SNB-B */
3279 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3280 }
5eddb70b 3281 I915_WRITE(reg, temp);
8db9d77b 3282
5eddb70b
CW
3283 reg = FDI_RX_CTL(pipe);
3284 temp = I915_READ(reg);
8db9d77b
ZW
3285 if (HAS_PCH_CPT(dev)) {
3286 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3287 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3288 } else {
3289 temp &= ~FDI_LINK_TRAIN_NONE;
3290 temp |= FDI_LINK_TRAIN_PATTERN_2;
3291 }
5eddb70b
CW
3292 I915_WRITE(reg, temp);
3293
3294 POSTING_READ(reg);
8db9d77b
ZW
3295 udelay(150);
3296
0206e353 3297 for (i = 0; i < 4; i++) {
5eddb70b
CW
3298 reg = FDI_TX_CTL(pipe);
3299 temp = I915_READ(reg);
8db9d77b
ZW
3300 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3301 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3302 I915_WRITE(reg, temp);
3303
3304 POSTING_READ(reg);
8db9d77b
ZW
3305 udelay(500);
3306
fa37d39e
SP
3307 for (retry = 0; retry < 5; retry++) {
3308 reg = FDI_RX_IIR(pipe);
3309 temp = I915_READ(reg);
3310 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3311 if (temp & FDI_RX_SYMBOL_LOCK) {
3312 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3313 DRM_DEBUG_KMS("FDI train 2 done.\n");
3314 break;
3315 }
3316 udelay(50);
8db9d77b 3317 }
fa37d39e
SP
3318 if (retry < 5)
3319 break;
8db9d77b
ZW
3320 }
3321 if (i == 4)
5eddb70b 3322 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3323
3324 DRM_DEBUG_KMS("FDI train done.\n");
3325}
3326
357555c0
JB
3327/* Manual link training for Ivy Bridge A0 parts */
3328static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3329{
3330 struct drm_device *dev = crtc->dev;
3331 struct drm_i915_private *dev_priv = dev->dev_private;
3332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333 int pipe = intel_crtc->pipe;
139ccd3f 3334 u32 reg, temp, i, j;
357555c0
JB
3335
3336 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3337 for train result */
3338 reg = FDI_RX_IMR(pipe);
3339 temp = I915_READ(reg);
3340 temp &= ~FDI_RX_SYMBOL_LOCK;
3341 temp &= ~FDI_RX_BIT_LOCK;
3342 I915_WRITE(reg, temp);
3343
3344 POSTING_READ(reg);
3345 udelay(150);
3346
01a415fd
DV
3347 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3348 I915_READ(FDI_RX_IIR(pipe)));
3349
139ccd3f
JB
3350 /* Try each vswing and preemphasis setting twice before moving on */
3351 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3352 /* disable first in case we need to retry */
3353 reg = FDI_TX_CTL(pipe);
3354 temp = I915_READ(reg);
3355 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3356 temp &= ~FDI_TX_ENABLE;
3357 I915_WRITE(reg, temp);
357555c0 3358
139ccd3f
JB
3359 reg = FDI_RX_CTL(pipe);
3360 temp = I915_READ(reg);
3361 temp &= ~FDI_LINK_TRAIN_AUTO;
3362 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3363 temp &= ~FDI_RX_ENABLE;
3364 I915_WRITE(reg, temp);
357555c0 3365
139ccd3f 3366 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3367 reg = FDI_TX_CTL(pipe);
3368 temp = I915_READ(reg);
139ccd3f
JB
3369 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3370 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3371 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3372 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3373 temp |= snb_b_fdi_train_param[j/2];
3374 temp |= FDI_COMPOSITE_SYNC;
3375 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3376
139ccd3f
JB
3377 I915_WRITE(FDI_RX_MISC(pipe),
3378 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3379
139ccd3f 3380 reg = FDI_RX_CTL(pipe);
357555c0 3381 temp = I915_READ(reg);
139ccd3f
JB
3382 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3383 temp |= FDI_COMPOSITE_SYNC;
3384 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3385
139ccd3f
JB
3386 POSTING_READ(reg);
3387 udelay(1); /* should be 0.5us */
357555c0 3388
139ccd3f
JB
3389 for (i = 0; i < 4; i++) {
3390 reg = FDI_RX_IIR(pipe);
3391 temp = I915_READ(reg);
3392 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3393
139ccd3f
JB
3394 if (temp & FDI_RX_BIT_LOCK ||
3395 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3396 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3397 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3398 i);
3399 break;
3400 }
3401 udelay(1); /* should be 0.5us */
3402 }
3403 if (i == 4) {
3404 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3405 continue;
3406 }
357555c0 3407
139ccd3f 3408 /* Train 2 */
357555c0
JB
3409 reg = FDI_TX_CTL(pipe);
3410 temp = I915_READ(reg);
139ccd3f
JB
3411 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3412 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3413 I915_WRITE(reg, temp);
3414
3415 reg = FDI_RX_CTL(pipe);
3416 temp = I915_READ(reg);
3417 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3418 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3419 I915_WRITE(reg, temp);
3420
3421 POSTING_READ(reg);
139ccd3f 3422 udelay(2); /* should be 1.5us */
357555c0 3423
139ccd3f
JB
3424 for (i = 0; i < 4; i++) {
3425 reg = FDI_RX_IIR(pipe);
3426 temp = I915_READ(reg);
3427 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3428
139ccd3f
JB
3429 if (temp & FDI_RX_SYMBOL_LOCK ||
3430 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3431 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3432 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3433 i);
3434 goto train_done;
3435 }
3436 udelay(2); /* should be 1.5us */
357555c0 3437 }
139ccd3f
JB
3438 if (i == 4)
3439 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3440 }
357555c0 3441
139ccd3f 3442train_done:
357555c0
JB
3443 DRM_DEBUG_KMS("FDI train done.\n");
3444}
3445
88cefb6c 3446static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3447{
88cefb6c 3448 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3449 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3450 int pipe = intel_crtc->pipe;
5eddb70b 3451 u32 reg, temp;
79e53945 3452
c64e311e 3453
c98e9dcf 3454 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3455 reg = FDI_RX_CTL(pipe);
3456 temp = I915_READ(reg);
627eb5a3
DV
3457 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3458 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3459 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3460 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3461
3462 POSTING_READ(reg);
c98e9dcf
JB
3463 udelay(200);
3464
3465 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3466 temp = I915_READ(reg);
3467 I915_WRITE(reg, temp | FDI_PCDCLK);
3468
3469 POSTING_READ(reg);
c98e9dcf
JB
3470 udelay(200);
3471
20749730
PZ
3472 /* Enable CPU FDI TX PLL, always on for Ironlake */
3473 reg = FDI_TX_CTL(pipe);
3474 temp = I915_READ(reg);
3475 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3476 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3477
20749730
PZ
3478 POSTING_READ(reg);
3479 udelay(100);
6be4a607 3480 }
0e23b99d
JB
3481}
3482
88cefb6c
DV
3483static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3484{
3485 struct drm_device *dev = intel_crtc->base.dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 int pipe = intel_crtc->pipe;
3488 u32 reg, temp;
3489
3490 /* Switch from PCDclk to Rawclk */
3491 reg = FDI_RX_CTL(pipe);
3492 temp = I915_READ(reg);
3493 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3494
3495 /* Disable CPU FDI TX PLL */
3496 reg = FDI_TX_CTL(pipe);
3497 temp = I915_READ(reg);
3498 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3499
3500 POSTING_READ(reg);
3501 udelay(100);
3502
3503 reg = FDI_RX_CTL(pipe);
3504 temp = I915_READ(reg);
3505 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3506
3507 /* Wait for the clocks to turn off. */
3508 POSTING_READ(reg);
3509 udelay(100);
3510}
3511
0fc932b8
JB
3512static void ironlake_fdi_disable(struct drm_crtc *crtc)
3513{
3514 struct drm_device *dev = crtc->dev;
3515 struct drm_i915_private *dev_priv = dev->dev_private;
3516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517 int pipe = intel_crtc->pipe;
3518 u32 reg, temp;
3519
3520 /* disable CPU FDI tx and PCH FDI rx */
3521 reg = FDI_TX_CTL(pipe);
3522 temp = I915_READ(reg);
3523 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3524 POSTING_READ(reg);
3525
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
3528 temp &= ~(0x7 << 16);
dfd07d72 3529 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3530 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3531
3532 POSTING_READ(reg);
3533 udelay(100);
3534
3535 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3536 if (HAS_PCH_IBX(dev))
6f06ce18 3537 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3538
3539 /* still set train pattern 1 */
3540 reg = FDI_TX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~FDI_LINK_TRAIN_NONE;
3543 temp |= FDI_LINK_TRAIN_PATTERN_1;
3544 I915_WRITE(reg, temp);
3545
3546 reg = FDI_RX_CTL(pipe);
3547 temp = I915_READ(reg);
3548 if (HAS_PCH_CPT(dev)) {
3549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3551 } else {
3552 temp &= ~FDI_LINK_TRAIN_NONE;
3553 temp |= FDI_LINK_TRAIN_PATTERN_1;
3554 }
3555 /* BPC in FDI rx is consistent with that in PIPECONF */
3556 temp &= ~(0x07 << 16);
dfd07d72 3557 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3558 I915_WRITE(reg, temp);
3559
3560 POSTING_READ(reg);
3561 udelay(100);
3562}
3563
5dce5b93
CW
3564bool intel_has_pending_fb_unpin(struct drm_device *dev)
3565{
3566 struct intel_crtc *crtc;
3567
3568 /* Note that we don't need to be called with mode_config.lock here
3569 * as our list of CRTC objects is static for the lifetime of the
3570 * device and so cannot disappear as we iterate. Similarly, we can
3571 * happily treat the predicates as racy, atomic checks as userspace
3572 * cannot claim and pin a new fb without at least acquring the
3573 * struct_mutex and so serialising with us.
3574 */
d3fcc808 3575 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3576 if (atomic_read(&crtc->unpin_work_count) == 0)
3577 continue;
3578
3579 if (crtc->unpin_work)
3580 intel_wait_for_vblank(dev, crtc->pipe);
3581
3582 return true;
3583 }
3584
3585 return false;
3586}
3587
d6bbafa1
CW
3588static void page_flip_completed(struct intel_crtc *intel_crtc)
3589{
3590 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3591 struct intel_unpin_work *work = intel_crtc->unpin_work;
3592
3593 /* ensure that the unpin work is consistent wrt ->pending. */
3594 smp_rmb();
3595 intel_crtc->unpin_work = NULL;
3596
3597 if (work->event)
3598 drm_send_vblank_event(intel_crtc->base.dev,
3599 intel_crtc->pipe,
3600 work->event);
3601
3602 drm_crtc_vblank_put(&intel_crtc->base);
3603
3604 wake_up_all(&dev_priv->pending_flip_queue);
3605 queue_work(dev_priv->wq, &work->work);
3606
3607 trace_i915_flip_complete(intel_crtc->plane,
3608 work->pending_flip_obj);
3609}
3610
46a55d30 3611void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3612{
0f91128d 3613 struct drm_device *dev = crtc->dev;
5bb61643 3614 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3615
2c10d571 3616 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3617 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3618 !intel_crtc_has_pending_flip(crtc),
3619 60*HZ) == 0)) {
3620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3621
5e2d7afc 3622 spin_lock_irq(&dev->event_lock);
9c787942
CW
3623 if (intel_crtc->unpin_work) {
3624 WARN_ONCE(1, "Removing stuck page flip\n");
3625 page_flip_completed(intel_crtc);
3626 }
5e2d7afc 3627 spin_unlock_irq(&dev->event_lock);
9c787942 3628 }
5bb61643 3629
975d568a
CW
3630 if (crtc->primary->fb) {
3631 mutex_lock(&dev->struct_mutex);
3632 intel_finish_fb(crtc->primary->fb);
3633 mutex_unlock(&dev->struct_mutex);
3634 }
e6c3a2a6
CW
3635}
3636
e615efe4
ED
3637/* Program iCLKIP clock to the desired frequency */
3638static void lpt_program_iclkip(struct drm_crtc *crtc)
3639{
3640 struct drm_device *dev = crtc->dev;
3641 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3642 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3643 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3644 u32 temp;
3645
09153000
DV
3646 mutex_lock(&dev_priv->dpio_lock);
3647
e615efe4
ED
3648 /* It is necessary to ungate the pixclk gate prior to programming
3649 * the divisors, and gate it back when it is done.
3650 */
3651 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3652
3653 /* Disable SSCCTL */
3654 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3655 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3656 SBI_SSCCTL_DISABLE,
3657 SBI_ICLK);
e615efe4
ED
3658
3659 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3660 if (clock == 20000) {
e615efe4
ED
3661 auxdiv = 1;
3662 divsel = 0x41;
3663 phaseinc = 0x20;
3664 } else {
3665 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3666 * but the adjusted_mode->crtc_clock in in KHz. To get the
3667 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3668 * convert the virtual clock precision to KHz here for higher
3669 * precision.
3670 */
3671 u32 iclk_virtual_root_freq = 172800 * 1000;
3672 u32 iclk_pi_range = 64;
3673 u32 desired_divisor, msb_divisor_value, pi_value;
3674
12d7ceed 3675 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3676 msb_divisor_value = desired_divisor / iclk_pi_range;
3677 pi_value = desired_divisor % iclk_pi_range;
3678
3679 auxdiv = 0;
3680 divsel = msb_divisor_value - 2;
3681 phaseinc = pi_value;
3682 }
3683
3684 /* This should not happen with any sane values */
3685 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3686 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3687 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3688 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3689
3690 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3691 clock,
e615efe4
ED
3692 auxdiv,
3693 divsel,
3694 phasedir,
3695 phaseinc);
3696
3697 /* Program SSCDIVINTPHASE6 */
988d6ee8 3698 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3699 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3700 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3701 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3702 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3703 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3704 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3705 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3706
3707 /* Program SSCAUXDIV */
988d6ee8 3708 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3709 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3710 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3711 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3712
3713 /* Enable modulator and associated divider */
988d6ee8 3714 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3715 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3716 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3717
3718 /* Wait for initialization time */
3719 udelay(24);
3720
3721 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3722
3723 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3724}
3725
275f01b2
DV
3726static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3727 enum pipe pch_transcoder)
3728{
3729 struct drm_device *dev = crtc->base.dev;
3730 struct drm_i915_private *dev_priv = dev->dev_private;
3731 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3732
3733 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3734 I915_READ(HTOTAL(cpu_transcoder)));
3735 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3736 I915_READ(HBLANK(cpu_transcoder)));
3737 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3738 I915_READ(HSYNC(cpu_transcoder)));
3739
3740 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3741 I915_READ(VTOTAL(cpu_transcoder)));
3742 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3743 I915_READ(VBLANK(cpu_transcoder)));
3744 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3745 I915_READ(VSYNC(cpu_transcoder)));
3746 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3747 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3748}
3749
1fbc0d78
DV
3750static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3751{
3752 struct drm_i915_private *dev_priv = dev->dev_private;
3753 uint32_t temp;
3754
3755 temp = I915_READ(SOUTH_CHICKEN1);
3756 if (temp & FDI_BC_BIFURCATION_SELECT)
3757 return;
3758
3759 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3760 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3761
3762 temp |= FDI_BC_BIFURCATION_SELECT;
3763 DRM_DEBUG_KMS("enabling fdi C rx\n");
3764 I915_WRITE(SOUTH_CHICKEN1, temp);
3765 POSTING_READ(SOUTH_CHICKEN1);
3766}
3767
3768static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3769{
3770 struct drm_device *dev = intel_crtc->base.dev;
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773 switch (intel_crtc->pipe) {
3774 case PIPE_A:
3775 break;
3776 case PIPE_B:
3777 if (intel_crtc->config.fdi_lanes > 2)
3778 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3779 else
3780 cpt_enable_fdi_bc_bifurcation(dev);
3781
3782 break;
3783 case PIPE_C:
3784 cpt_enable_fdi_bc_bifurcation(dev);
3785
3786 break;
3787 default:
3788 BUG();
3789 }
3790}
3791
f67a559d
JB
3792/*
3793 * Enable PCH resources required for PCH ports:
3794 * - PCH PLLs
3795 * - FDI training & RX/TX
3796 * - update transcoder timings
3797 * - DP transcoding bits
3798 * - transcoder
3799 */
3800static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3801{
3802 struct drm_device *dev = crtc->dev;
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3805 int pipe = intel_crtc->pipe;
ee7b9f93 3806 u32 reg, temp;
2c07245f 3807
ab9412ba 3808 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3809
1fbc0d78
DV
3810 if (IS_IVYBRIDGE(dev))
3811 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3812
cd986abb
DV
3813 /* Write the TU size bits before fdi link training, so that error
3814 * detection works. */
3815 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3816 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3817
c98e9dcf 3818 /* For PCH output, training FDI link */
674cf967 3819 dev_priv->display.fdi_link_train(crtc);
2c07245f 3820
3ad8a208
DV
3821 /* We need to program the right clock selection before writing the pixel
3822 * mutliplier into the DPLL. */
303b81e0 3823 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3824 u32 sel;
4b645f14 3825
c98e9dcf 3826 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3827 temp |= TRANS_DPLL_ENABLE(pipe);
3828 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3829 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3830 temp |= sel;
3831 else
3832 temp &= ~sel;
c98e9dcf 3833 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3834 }
5eddb70b 3835
3ad8a208
DV
3836 /* XXX: pch pll's can be enabled any time before we enable the PCH
3837 * transcoder, and we actually should do this to not upset any PCH
3838 * transcoder that already use the clock when we share it.
3839 *
3840 * Note that enable_shared_dpll tries to do the right thing, but
3841 * get_shared_dpll unconditionally resets the pll - we need that to have
3842 * the right LVDS enable sequence. */
85b3894f 3843 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3844
d9b6cb56
JB
3845 /* set transcoder timing, panel must allow it */
3846 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3847 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3848
303b81e0 3849 intel_fdi_normal_train(crtc);
5e84e1a4 3850
c98e9dcf 3851 /* For PCH DP, enable TRANS_DP_CTL */
0a88818d 3852 if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
dfd07d72 3853 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3854 reg = TRANS_DP_CTL(pipe);
3855 temp = I915_READ(reg);
3856 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3857 TRANS_DP_SYNC_MASK |
3858 TRANS_DP_BPC_MASK);
5eddb70b
CW
3859 temp |= (TRANS_DP_OUTPUT_ENABLE |
3860 TRANS_DP_ENH_FRAMING);
9325c9f0 3861 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3862
3863 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3864 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3865 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3866 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3867
3868 switch (intel_trans_dp_port_sel(crtc)) {
3869 case PCH_DP_B:
5eddb70b 3870 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3871 break;
3872 case PCH_DP_C:
5eddb70b 3873 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3874 break;
3875 case PCH_DP_D:
5eddb70b 3876 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3877 break;
3878 default:
e95d41e1 3879 BUG();
32f9d658 3880 }
2c07245f 3881
5eddb70b 3882 I915_WRITE(reg, temp);
6be4a607 3883 }
b52eb4dc 3884
b8a4f404 3885 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3886}
3887
1507e5bd
PZ
3888static void lpt_pch_enable(struct drm_crtc *crtc)
3889{
3890 struct drm_device *dev = crtc->dev;
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3893 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3894
ab9412ba 3895 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3896
8c52b5e8 3897 lpt_program_iclkip(crtc);
1507e5bd 3898
0540e488 3899 /* Set transcoder timing. */
275f01b2 3900 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3901
937bb610 3902 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3903}
3904
716c2e55 3905void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3906{
e2b78267 3907 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3908
3909 if (pll == NULL)
3910 return;
3911
3e369b76 3912 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3913 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3914 return;
3915 }
3916
3e369b76
ACO
3917 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3918 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3919 WARN_ON(pll->on);
3920 WARN_ON(pll->active);
3921 }
3922
a43f6e0f 3923 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3924}
3925
716c2e55 3926struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3927{
e2b78267 3928 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3929 struct intel_shared_dpll *pll;
e2b78267 3930 enum intel_dpll_id i;
ee7b9f93 3931
98b6bd99
DV
3932 if (HAS_PCH_IBX(dev_priv->dev)) {
3933 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3934 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3935 pll = &dev_priv->shared_dplls[i];
98b6bd99 3936
46edb027
DV
3937 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3938 crtc->base.base.id, pll->name);
98b6bd99 3939
8bd31e67 3940 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3941
98b6bd99
DV
3942 goto found;
3943 }
3944
e72f9fbf
DV
3945 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3946 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3947
3948 /* Only want to check enabled timings first */
8bd31e67 3949 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3950 continue;
3951
8bd31e67
ACO
3952 if (memcmp(&crtc->new_config->dpll_hw_state,
3953 &pll->new_config->hw_state,
3954 sizeof(pll->new_config->hw_state)) == 0) {
3955 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3956 crtc->base.base.id, pll->name,
8bd31e67
ACO
3957 pll->new_config->crtc_mask,
3958 pll->active);
ee7b9f93
JB
3959 goto found;
3960 }
3961 }
3962
3963 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3964 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3965 pll = &dev_priv->shared_dplls[i];
8bd31e67 3966 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3967 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3968 crtc->base.base.id, pll->name);
ee7b9f93
JB
3969 goto found;
3970 }
3971 }
3972
3973 return NULL;
3974
3975found:
8bd31e67
ACO
3976 if (pll->new_config->crtc_mask == 0)
3977 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
f2a69f44 3978
8bd31e67 3979 crtc->new_config->shared_dpll = i;
46edb027
DV
3980 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3981 pipe_name(crtc->pipe));
ee7b9f93 3982
8bd31e67 3983 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3984
ee7b9f93
JB
3985 return pll;
3986}
3987
8bd31e67
ACO
3988/**
3989 * intel_shared_dpll_start_config - start a new PLL staged config
3990 * @dev_priv: DRM device
3991 * @clear_pipes: mask of pipes that will have their PLLs freed
3992 *
3993 * Starts a new PLL staged config, copying the current config but
3994 * releasing the references of pipes specified in clear_pipes.
3995 */
3996static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3997 unsigned clear_pipes)
3998{
3999 struct intel_shared_dpll *pll;
4000 enum intel_dpll_id i;
4001
4002 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4003 pll = &dev_priv->shared_dplls[i];
4004
4005 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4006 GFP_KERNEL);
4007 if (!pll->new_config)
4008 goto cleanup;
4009
4010 pll->new_config->crtc_mask &= ~clear_pipes;
4011 }
4012
4013 return 0;
4014
4015cleanup:
4016 while (--i >= 0) {
4017 pll = &dev_priv->shared_dplls[i];
f354d733 4018 kfree(pll->new_config);
8bd31e67
ACO
4019 pll->new_config = NULL;
4020 }
4021
4022 return -ENOMEM;
4023}
4024
4025static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4026{
4027 struct intel_shared_dpll *pll;
4028 enum intel_dpll_id i;
4029
4030 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4031 pll = &dev_priv->shared_dplls[i];
4032
4033 WARN_ON(pll->new_config == &pll->config);
4034
4035 pll->config = *pll->new_config;
4036 kfree(pll->new_config);
4037 pll->new_config = NULL;
4038 }
4039}
4040
4041static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4042{
4043 struct intel_shared_dpll *pll;
4044 enum intel_dpll_id i;
4045
4046 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4047 pll = &dev_priv->shared_dplls[i];
4048
4049 WARN_ON(pll->new_config == &pll->config);
4050
4051 kfree(pll->new_config);
4052 pll->new_config = NULL;
4053 }
4054}
4055
a1520318 4056static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4057{
4058 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4059 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4060 u32 temp;
4061
4062 temp = I915_READ(dslreg);
4063 udelay(500);
4064 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4065 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4066 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4067 }
4068}
4069
bd2e244f
JB
4070static void skylake_pfit_enable(struct intel_crtc *crtc)
4071{
4072 struct drm_device *dev = crtc->base.dev;
4073 struct drm_i915_private *dev_priv = dev->dev_private;
4074 int pipe = crtc->pipe;
4075
4076 if (crtc->config.pch_pfit.enabled) {
4077 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4078 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4079 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4080 }
4081}
4082
b074cec8
JB
4083static void ironlake_pfit_enable(struct intel_crtc *crtc)
4084{
4085 struct drm_device *dev = crtc->base.dev;
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 int pipe = crtc->pipe;
4088
fd4daa9c 4089 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
4090 /* Force use of hard-coded filter coefficients
4091 * as some pre-programmed values are broken,
4092 * e.g. x201.
4093 */
4094 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4095 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4096 PF_PIPE_SEL_IVB(pipe));
4097 else
4098 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4099 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4100 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
4101 }
4102}
4103
bb53d4ae
VS
4104static void intel_enable_planes(struct drm_crtc *crtc)
4105{
4106 struct drm_device *dev = crtc->dev;
4107 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4108 struct drm_plane *plane;
bb53d4ae
VS
4109 struct intel_plane *intel_plane;
4110
af2b653b
MR
4111 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4112 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4113 if (intel_plane->pipe == pipe)
4114 intel_plane_restore(&intel_plane->base);
af2b653b 4115 }
bb53d4ae
VS
4116}
4117
4118static void intel_disable_planes(struct drm_crtc *crtc)
4119{
4120 struct drm_device *dev = crtc->dev;
4121 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4122 struct drm_plane *plane;
bb53d4ae
VS
4123 struct intel_plane *intel_plane;
4124
af2b653b
MR
4125 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4126 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4127 if (intel_plane->pipe == pipe)
4128 intel_plane_disable(&intel_plane->base);
af2b653b 4129 }
bb53d4ae
VS
4130}
4131
20bc8673 4132void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4133{
cea165c3
VS
4134 struct drm_device *dev = crtc->base.dev;
4135 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
4136
4137 if (!crtc->config.ips_enabled)
4138 return;
4139
cea165c3
VS
4140 /* We can only enable IPS after we enable a plane and wait for a vblank */
4141 intel_wait_for_vblank(dev, crtc->pipe);
4142
d77e4531 4143 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4144 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4145 mutex_lock(&dev_priv->rps.hw_lock);
4146 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4147 mutex_unlock(&dev_priv->rps.hw_lock);
4148 /* Quoting Art Runyan: "its not safe to expect any particular
4149 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4150 * mailbox." Moreover, the mailbox may return a bogus state,
4151 * so we need to just enable it and continue on.
2a114cc1
BW
4152 */
4153 } else {
4154 I915_WRITE(IPS_CTL, IPS_ENABLE);
4155 /* The bit only becomes 1 in the next vblank, so this wait here
4156 * is essentially intel_wait_for_vblank. If we don't have this
4157 * and don't wait for vblanks until the end of crtc_enable, then
4158 * the HW state readout code will complain that the expected
4159 * IPS_CTL value is not the one we read. */
4160 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4161 DRM_ERROR("Timed out waiting for IPS enable\n");
4162 }
d77e4531
PZ
4163}
4164
20bc8673 4165void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4166{
4167 struct drm_device *dev = crtc->base.dev;
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169
4170 if (!crtc->config.ips_enabled)
4171 return;
4172
4173 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4174 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4175 mutex_lock(&dev_priv->rps.hw_lock);
4176 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4177 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4178 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4179 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4180 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4181 } else {
2a114cc1 4182 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4183 POSTING_READ(IPS_CTL);
4184 }
d77e4531
PZ
4185
4186 /* We need to wait for a vblank before we can disable the plane. */
4187 intel_wait_for_vblank(dev, crtc->pipe);
4188}
4189
4190/** Loads the palette/gamma unit for the CRTC with the prepared values */
4191static void intel_crtc_load_lut(struct drm_crtc *crtc)
4192{
4193 struct drm_device *dev = crtc->dev;
4194 struct drm_i915_private *dev_priv = dev->dev_private;
4195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4196 enum pipe pipe = intel_crtc->pipe;
4197 int palreg = PALETTE(pipe);
4198 int i;
4199 bool reenable_ips = false;
4200
4201 /* The clocks have to be on to load the palette. */
4202 if (!crtc->enabled || !intel_crtc->active)
4203 return;
4204
4205 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4206 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4207 assert_dsi_pll_enabled(dev_priv);
4208 else
4209 assert_pll_enabled(dev_priv, pipe);
4210 }
4211
4212 /* use legacy palette for Ironlake */
7a1db49a 4213 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4214 palreg = LGC_PALETTE(pipe);
4215
4216 /* Workaround : Do not read or write the pipe palette/gamma data while
4217 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4218 */
41e6fc4c 4219 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4220 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4221 GAMMA_MODE_MODE_SPLIT)) {
4222 hsw_disable_ips(intel_crtc);
4223 reenable_ips = true;
4224 }
4225
4226 for (i = 0; i < 256; i++) {
4227 I915_WRITE(palreg + 4 * i,
4228 (intel_crtc->lut_r[i] << 16) |
4229 (intel_crtc->lut_g[i] << 8) |
4230 intel_crtc->lut_b[i]);
4231 }
4232
4233 if (reenable_ips)
4234 hsw_enable_ips(intel_crtc);
4235}
4236
d3eedb1a
VS
4237static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4238{
4239 if (!enable && intel_crtc->overlay) {
4240 struct drm_device *dev = intel_crtc->base.dev;
4241 struct drm_i915_private *dev_priv = dev->dev_private;
4242
4243 mutex_lock(&dev->struct_mutex);
4244 dev_priv->mm.interruptible = false;
4245 (void) intel_overlay_switch_off(intel_crtc->overlay);
4246 dev_priv->mm.interruptible = true;
4247 mutex_unlock(&dev->struct_mutex);
4248 }
4249
4250 /* Let userspace switch the overlay on again. In most cases userspace
4251 * has to recompute where to put it anyway.
4252 */
4253}
4254
d3eedb1a 4255static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4256{
4257 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4259 int pipe = intel_crtc->pipe;
a5c4d7bc 4260
fdd508a6 4261 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4262 intel_enable_planes(crtc);
4263 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4264 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4265
4266 hsw_enable_ips(intel_crtc);
4267
4268 mutex_lock(&dev->struct_mutex);
4269 intel_update_fbc(dev);
4270 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4271
4272 /*
4273 * FIXME: Once we grow proper nuclear flip support out of this we need
4274 * to compute the mask of flip planes precisely. For the time being
4275 * consider this a flip from a NULL plane.
4276 */
4277 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4278}
4279
d3eedb1a 4280static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4281{
4282 struct drm_device *dev = crtc->dev;
4283 struct drm_i915_private *dev_priv = dev->dev_private;
4284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4285 int pipe = intel_crtc->pipe;
4286 int plane = intel_crtc->plane;
4287
4288 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4289
4290 if (dev_priv->fbc.plane == plane)
4291 intel_disable_fbc(dev);
4292
4293 hsw_disable_ips(intel_crtc);
4294
d3eedb1a 4295 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4296 intel_crtc_update_cursor(crtc, false);
4297 intel_disable_planes(crtc);
fdd508a6 4298 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4299
f99d7069
DV
4300 /*
4301 * FIXME: Once we grow proper nuclear flip support out of this we need
4302 * to compute the mask of flip planes precisely. For the time being
4303 * consider this a flip to a NULL plane.
4304 */
4305 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4306}
4307
f67a559d
JB
4308static void ironlake_crtc_enable(struct drm_crtc *crtc)
4309{
4310 struct drm_device *dev = crtc->dev;
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4313 struct intel_encoder *encoder;
f67a559d 4314 int pipe = intel_crtc->pipe;
f67a559d 4315
08a48469
DV
4316 WARN_ON(!crtc->enabled);
4317
f67a559d
JB
4318 if (intel_crtc->active)
4319 return;
4320
b14b1055
DV
4321 if (intel_crtc->config.has_pch_encoder)
4322 intel_prepare_shared_dpll(intel_crtc);
4323
29407aab
DV
4324 if (intel_crtc->config.has_dp_encoder)
4325 intel_dp_set_m_n(intel_crtc);
4326
4327 intel_set_pipe_timings(intel_crtc);
4328
4329 if (intel_crtc->config.has_pch_encoder) {
4330 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4331 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4332 }
4333
4334 ironlake_set_pipeconf(crtc);
4335
f67a559d 4336 intel_crtc->active = true;
8664281b 4337
a72e4c9f
DV
4338 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4339 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4340
f6736a1a 4341 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4342 if (encoder->pre_enable)
4343 encoder->pre_enable(encoder);
f67a559d 4344
5bfe2ac0 4345 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4346 /* Note: FDI PLL enabling _must_ be done before we enable the
4347 * cpu pipes, hence this is separate from all the other fdi/pch
4348 * enabling. */
88cefb6c 4349 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4350 } else {
4351 assert_fdi_tx_disabled(dev_priv, pipe);
4352 assert_fdi_rx_disabled(dev_priv, pipe);
4353 }
f67a559d 4354
b074cec8 4355 ironlake_pfit_enable(intel_crtc);
f67a559d 4356
9c54c0dd
JB
4357 /*
4358 * On ILK+ LUT must be loaded before the pipe is running but with
4359 * clocks enabled
4360 */
4361 intel_crtc_load_lut(crtc);
4362
f37fcc2a 4363 intel_update_watermarks(crtc);
e1fdc473 4364 intel_enable_pipe(intel_crtc);
f67a559d 4365
5bfe2ac0 4366 if (intel_crtc->config.has_pch_encoder)
f67a559d 4367 ironlake_pch_enable(crtc);
c98e9dcf 4368
fa5c73b1
DV
4369 for_each_encoder_on_crtc(dev, crtc, encoder)
4370 encoder->enable(encoder);
61b77ddd
DV
4371
4372 if (HAS_PCH_CPT(dev))
a1520318 4373 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4374
4b3a9526
VS
4375 assert_vblank_disabled(crtc);
4376 drm_crtc_vblank_on(crtc);
4377
d3eedb1a 4378 intel_crtc_enable_planes(crtc);
6be4a607
JB
4379}
4380
42db64ef
PZ
4381/* IPS only exists on ULT machines and is tied to pipe A. */
4382static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4383{
f5adf94e 4384 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4385}
4386
e4916946
PZ
4387/*
4388 * This implements the workaround described in the "notes" section of the mode
4389 * set sequence documentation. When going from no pipes or single pipe to
4390 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4391 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4392 */
4393static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4394{
4395 struct drm_device *dev = crtc->base.dev;
4396 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4397
4398 /* We want to get the other_active_crtc only if there's only 1 other
4399 * active crtc. */
d3fcc808 4400 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4401 if (!crtc_it->active || crtc_it == crtc)
4402 continue;
4403
4404 if (other_active_crtc)
4405 return;
4406
4407 other_active_crtc = crtc_it;
4408 }
4409 if (!other_active_crtc)
4410 return;
4411
4412 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4413 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4414}
4415
4f771f10
PZ
4416static void haswell_crtc_enable(struct drm_crtc *crtc)
4417{
4418 struct drm_device *dev = crtc->dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4421 struct intel_encoder *encoder;
4422 int pipe = intel_crtc->pipe;
4f771f10
PZ
4423
4424 WARN_ON(!crtc->enabled);
4425
4426 if (intel_crtc->active)
4427 return;
4428
df8ad70c
DV
4429 if (intel_crtc_to_shared_dpll(intel_crtc))
4430 intel_enable_shared_dpll(intel_crtc);
4431
229fca97
DV
4432 if (intel_crtc->config.has_dp_encoder)
4433 intel_dp_set_m_n(intel_crtc);
4434
4435 intel_set_pipe_timings(intel_crtc);
4436
ebb69c95
CT
4437 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4438 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4439 intel_crtc->config.pixel_multiplier - 1);
4440 }
4441
229fca97
DV
4442 if (intel_crtc->config.has_pch_encoder) {
4443 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4444 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4445 }
4446
4447 haswell_set_pipeconf(crtc);
4448
4449 intel_set_pipe_csc(crtc);
4450
4f771f10 4451 intel_crtc->active = true;
8664281b 4452
a72e4c9f 4453 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4454 for_each_encoder_on_crtc(dev, crtc, encoder)
4455 if (encoder->pre_enable)
4456 encoder->pre_enable(encoder);
4457
4fe9467d 4458 if (intel_crtc->config.has_pch_encoder) {
a72e4c9f
DV
4459 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4460 true);
4fe9467d
ID
4461 dev_priv->display.fdi_link_train(crtc);
4462 }
4463
1f544388 4464 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4465
bd2e244f
JB
4466 if (IS_SKYLAKE(dev))
4467 skylake_pfit_enable(intel_crtc);
4468 else
4469 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4470
4471 /*
4472 * On ILK+ LUT must be loaded before the pipe is running but with
4473 * clocks enabled
4474 */
4475 intel_crtc_load_lut(crtc);
4476
1f544388 4477 intel_ddi_set_pipe_settings(crtc);
8228c251 4478 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4479
f37fcc2a 4480 intel_update_watermarks(crtc);
e1fdc473 4481 intel_enable_pipe(intel_crtc);
42db64ef 4482
5bfe2ac0 4483 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4484 lpt_pch_enable(crtc);
4f771f10 4485
0e32b39c
DA
4486 if (intel_crtc->config.dp_encoder_is_mst)
4487 intel_ddi_set_vc_payload_alloc(crtc, true);
4488
8807e55b 4489 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4490 encoder->enable(encoder);
8807e55b
JN
4491 intel_opregion_notify_encoder(encoder, true);
4492 }
4f771f10 4493
4b3a9526
VS
4494 assert_vblank_disabled(crtc);
4495 drm_crtc_vblank_on(crtc);
4496
e4916946
PZ
4497 /* If we change the relative order between pipe/planes enabling, we need
4498 * to change the workaround. */
4499 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4500 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4501}
4502
bd2e244f
JB
4503static void skylake_pfit_disable(struct intel_crtc *crtc)
4504{
4505 struct drm_device *dev = crtc->base.dev;
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 int pipe = crtc->pipe;
4508
4509 /* To avoid upsetting the power well on haswell only disable the pfit if
4510 * it's in use. The hw state code will make sure we get this right. */
4511 if (crtc->config.pch_pfit.enabled) {
4512 I915_WRITE(PS_CTL(pipe), 0);
4513 I915_WRITE(PS_WIN_POS(pipe), 0);
4514 I915_WRITE(PS_WIN_SZ(pipe), 0);
4515 }
4516}
4517
3f8dce3a
DV
4518static void ironlake_pfit_disable(struct intel_crtc *crtc)
4519{
4520 struct drm_device *dev = crtc->base.dev;
4521 struct drm_i915_private *dev_priv = dev->dev_private;
4522 int pipe = crtc->pipe;
4523
4524 /* To avoid upsetting the power well on haswell only disable the pfit if
4525 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4526 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4527 I915_WRITE(PF_CTL(pipe), 0);
4528 I915_WRITE(PF_WIN_POS(pipe), 0);
4529 I915_WRITE(PF_WIN_SZ(pipe), 0);
4530 }
4531}
4532
6be4a607
JB
4533static void ironlake_crtc_disable(struct drm_crtc *crtc)
4534{
4535 struct drm_device *dev = crtc->dev;
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4538 struct intel_encoder *encoder;
6be4a607 4539 int pipe = intel_crtc->pipe;
5eddb70b 4540 u32 reg, temp;
b52eb4dc 4541
f7abfe8b
CW
4542 if (!intel_crtc->active)
4543 return;
4544
d3eedb1a 4545 intel_crtc_disable_planes(crtc);
a5c4d7bc 4546
4b3a9526
VS
4547 drm_crtc_vblank_off(crtc);
4548 assert_vblank_disabled(crtc);
4549
ea9d758d
DV
4550 for_each_encoder_on_crtc(dev, crtc, encoder)
4551 encoder->disable(encoder);
4552
d925c59a 4553 if (intel_crtc->config.has_pch_encoder)
a72e4c9f 4554 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4555
575f7ab7 4556 intel_disable_pipe(intel_crtc);
32f9d658 4557
3f8dce3a 4558 ironlake_pfit_disable(intel_crtc);
2c07245f 4559
bf49ec8c
DV
4560 for_each_encoder_on_crtc(dev, crtc, encoder)
4561 if (encoder->post_disable)
4562 encoder->post_disable(encoder);
2c07245f 4563
d925c59a
DV
4564 if (intel_crtc->config.has_pch_encoder) {
4565 ironlake_fdi_disable(crtc);
913d8d11 4566
d925c59a 4567 ironlake_disable_pch_transcoder(dev_priv, pipe);
a72e4c9f 4568 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 4569
d925c59a
DV
4570 if (HAS_PCH_CPT(dev)) {
4571 /* disable TRANS_DP_CTL */
4572 reg = TRANS_DP_CTL(pipe);
4573 temp = I915_READ(reg);
4574 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4575 TRANS_DP_PORT_SEL_MASK);
4576 temp |= TRANS_DP_PORT_SEL_NONE;
4577 I915_WRITE(reg, temp);
4578
4579 /* disable DPLL_SEL */
4580 temp = I915_READ(PCH_DPLL_SEL);
11887397 4581 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4582 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4583 }
e3421a18 4584
d925c59a 4585 /* disable PCH DPLL */
e72f9fbf 4586 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4587
d925c59a
DV
4588 ironlake_fdi_pll_disable(intel_crtc);
4589 }
6b383a7f 4590
f7abfe8b 4591 intel_crtc->active = false;
46ba614c 4592 intel_update_watermarks(crtc);
d1ebd816
BW
4593
4594 mutex_lock(&dev->struct_mutex);
6b383a7f 4595 intel_update_fbc(dev);
d1ebd816 4596 mutex_unlock(&dev->struct_mutex);
6be4a607 4597}
1b3c7a47 4598
4f771f10 4599static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4600{
4f771f10
PZ
4601 struct drm_device *dev = crtc->dev;
4602 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4604 struct intel_encoder *encoder;
3b117c8f 4605 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4606
4f771f10
PZ
4607 if (!intel_crtc->active)
4608 return;
4609
d3eedb1a 4610 intel_crtc_disable_planes(crtc);
dda9a66a 4611
4b3a9526
VS
4612 drm_crtc_vblank_off(crtc);
4613 assert_vblank_disabled(crtc);
4614
8807e55b
JN
4615 for_each_encoder_on_crtc(dev, crtc, encoder) {
4616 intel_opregion_notify_encoder(encoder, false);
4f771f10 4617 encoder->disable(encoder);
8807e55b 4618 }
4f771f10 4619
8664281b 4620 if (intel_crtc->config.has_pch_encoder)
a72e4c9f
DV
4621 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4622 false);
575f7ab7 4623 intel_disable_pipe(intel_crtc);
4f771f10 4624
a4bf214f
VS
4625 if (intel_crtc->config.dp_encoder_is_mst)
4626 intel_ddi_set_vc_payload_alloc(crtc, false);
4627
ad80a810 4628 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4629
bd2e244f
JB
4630 if (IS_SKYLAKE(dev))
4631 skylake_pfit_disable(intel_crtc);
4632 else
4633 ironlake_pfit_disable(intel_crtc);
4f771f10 4634
1f544388 4635 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4636
88adfff1 4637 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4638 lpt_disable_pch_transcoder(dev_priv);
a72e4c9f
DV
4639 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4640 true);
1ad960f2 4641 intel_ddi_fdi_disable(crtc);
83616634 4642 }
4f771f10 4643
97b040aa
ID
4644 for_each_encoder_on_crtc(dev, crtc, encoder)
4645 if (encoder->post_disable)
4646 encoder->post_disable(encoder);
4647
4f771f10 4648 intel_crtc->active = false;
46ba614c 4649 intel_update_watermarks(crtc);
4f771f10
PZ
4650
4651 mutex_lock(&dev->struct_mutex);
4652 intel_update_fbc(dev);
4653 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4654
4655 if (intel_crtc_to_shared_dpll(intel_crtc))
4656 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4657}
4658
ee7b9f93
JB
4659static void ironlake_crtc_off(struct drm_crtc *crtc)
4660{
4661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4662 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4663}
4664
6441ab5f 4665
2dd24552
JB
4666static void i9xx_pfit_enable(struct intel_crtc *crtc)
4667{
4668 struct drm_device *dev = crtc->base.dev;
4669 struct drm_i915_private *dev_priv = dev->dev_private;
4670 struct intel_crtc_config *pipe_config = &crtc->config;
4671
328d8e82 4672 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4673 return;
4674
2dd24552 4675 /*
c0b03411
DV
4676 * The panel fitter should only be adjusted whilst the pipe is disabled,
4677 * according to register description and PRM.
2dd24552 4678 */
c0b03411
DV
4679 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4680 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4681
b074cec8
JB
4682 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4683 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4684
4685 /* Border color in case we don't scale up to the full screen. Black by
4686 * default, change to something else for debugging. */
4687 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4688}
4689
d05410f9
DA
4690static enum intel_display_power_domain port_to_power_domain(enum port port)
4691{
4692 switch (port) {
4693 case PORT_A:
4694 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4695 case PORT_B:
4696 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4697 case PORT_C:
4698 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4699 case PORT_D:
4700 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4701 default:
4702 WARN_ON_ONCE(1);
4703 return POWER_DOMAIN_PORT_OTHER;
4704 }
4705}
4706
77d22dca
ID
4707#define for_each_power_domain(domain, mask) \
4708 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4709 if ((1 << (domain)) & (mask))
4710
319be8ae
ID
4711enum intel_display_power_domain
4712intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4713{
4714 struct drm_device *dev = intel_encoder->base.dev;
4715 struct intel_digital_port *intel_dig_port;
4716
4717 switch (intel_encoder->type) {
4718 case INTEL_OUTPUT_UNKNOWN:
4719 /* Only DDI platforms should ever use this output type */
4720 WARN_ON_ONCE(!HAS_DDI(dev));
4721 case INTEL_OUTPUT_DISPLAYPORT:
4722 case INTEL_OUTPUT_HDMI:
4723 case INTEL_OUTPUT_EDP:
4724 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4725 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4726 case INTEL_OUTPUT_DP_MST:
4727 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4728 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4729 case INTEL_OUTPUT_ANALOG:
4730 return POWER_DOMAIN_PORT_CRT;
4731 case INTEL_OUTPUT_DSI:
4732 return POWER_DOMAIN_PORT_DSI;
4733 default:
4734 return POWER_DOMAIN_PORT_OTHER;
4735 }
4736}
4737
4738static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4739{
319be8ae
ID
4740 struct drm_device *dev = crtc->dev;
4741 struct intel_encoder *intel_encoder;
4742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4743 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4744 unsigned long mask;
4745 enum transcoder transcoder;
4746
4747 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4748
4749 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4750 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4751 if (intel_crtc->config.pch_pfit.enabled ||
4752 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4753 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4754
319be8ae
ID
4755 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4756 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4757
77d22dca
ID
4758 return mask;
4759}
4760
77d22dca
ID
4761static void modeset_update_crtc_power_domains(struct drm_device *dev)
4762{
4763 struct drm_i915_private *dev_priv = dev->dev_private;
4764 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4765 struct intel_crtc *crtc;
4766
4767 /*
4768 * First get all needed power domains, then put all unneeded, to avoid
4769 * any unnecessary toggling of the power wells.
4770 */
d3fcc808 4771 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4772 enum intel_display_power_domain domain;
4773
4774 if (!crtc->base.enabled)
4775 continue;
4776
319be8ae 4777 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4778
4779 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4780 intel_display_power_get(dev_priv, domain);
4781 }
4782
50f6e502
VS
4783 if (dev_priv->display.modeset_global_resources)
4784 dev_priv->display.modeset_global_resources(dev);
4785
d3fcc808 4786 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4787 enum intel_display_power_domain domain;
4788
4789 for_each_power_domain(domain, crtc->enabled_power_domains)
4790 intel_display_power_put(dev_priv, domain);
4791
4792 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4793 }
4794
4795 intel_display_set_init_power(dev_priv, false);
4796}
4797
dfcab17e 4798/* returns HPLL frequency in kHz */
f8bf63fd 4799static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4800{
586f49dc 4801 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4802
586f49dc
JB
4803 /* Obtain SKU information */
4804 mutex_lock(&dev_priv->dpio_lock);
4805 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4806 CCK_FUSE_HPLL_FREQ_MASK;
4807 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4808
dfcab17e 4809 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4810}
4811
f8bf63fd
VS
4812static void vlv_update_cdclk(struct drm_device *dev)
4813{
4814 struct drm_i915_private *dev_priv = dev->dev_private;
4815
4816 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4817 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4818 dev_priv->vlv_cdclk_freq);
4819
4820 /*
4821 * Program the gmbus_freq based on the cdclk frequency.
4822 * BSpec erroneously claims we should aim for 4MHz, but
4823 * in fact 1MHz is the correct frequency.
4824 */
6be1e3d3 4825 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4826}
4827
30a970c6
JB
4828/* Adjust CDclk dividers to allow high res or save power if possible */
4829static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4830{
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 u32 val, cmd;
4833
d197b7d3 4834 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4835
dfcab17e 4836 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4837 cmd = 2;
dfcab17e 4838 else if (cdclk == 266667)
30a970c6
JB
4839 cmd = 1;
4840 else
4841 cmd = 0;
4842
4843 mutex_lock(&dev_priv->rps.hw_lock);
4844 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4845 val &= ~DSPFREQGUAR_MASK;
4846 val |= (cmd << DSPFREQGUAR_SHIFT);
4847 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4848 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4849 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4850 50)) {
4851 DRM_ERROR("timed out waiting for CDclk change\n");
4852 }
4853 mutex_unlock(&dev_priv->rps.hw_lock);
4854
dfcab17e 4855 if (cdclk == 400000) {
6bcda4f0 4856 u32 divider;
30a970c6 4857
6bcda4f0 4858 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
4859
4860 mutex_lock(&dev_priv->dpio_lock);
4861 /* adjust cdclk divider */
4862 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4863 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4864 val |= divider;
4865 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4866
4867 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4868 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4869 50))
4870 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4871 mutex_unlock(&dev_priv->dpio_lock);
4872 }
4873
4874 mutex_lock(&dev_priv->dpio_lock);
4875 /* adjust self-refresh exit latency value */
4876 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4877 val &= ~0x7f;
4878
4879 /*
4880 * For high bandwidth configs, we set a higher latency in the bunit
4881 * so that the core display fetch happens in time to avoid underruns.
4882 */
dfcab17e 4883 if (cdclk == 400000)
30a970c6
JB
4884 val |= 4500 / 250; /* 4.5 usec */
4885 else
4886 val |= 3000 / 250; /* 3.0 usec */
4887 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4888 mutex_unlock(&dev_priv->dpio_lock);
4889
f8bf63fd 4890 vlv_update_cdclk(dev);
30a970c6
JB
4891}
4892
383c5a6a
VS
4893static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4894{
4895 struct drm_i915_private *dev_priv = dev->dev_private;
4896 u32 val, cmd;
4897
4898 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4899
4900 switch (cdclk) {
4901 case 400000:
4902 cmd = 3;
4903 break;
4904 case 333333:
4905 case 320000:
4906 cmd = 2;
4907 break;
4908 case 266667:
4909 cmd = 1;
4910 break;
4911 case 200000:
4912 cmd = 0;
4913 break;
4914 default:
4915 WARN_ON(1);
4916 return;
4917 }
4918
4919 mutex_lock(&dev_priv->rps.hw_lock);
4920 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4921 val &= ~DSPFREQGUAR_MASK_CHV;
4922 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4923 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4924 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4925 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4926 50)) {
4927 DRM_ERROR("timed out waiting for CDclk change\n");
4928 }
4929 mutex_unlock(&dev_priv->rps.hw_lock);
4930
4931 vlv_update_cdclk(dev);
4932}
4933
30a970c6
JB
4934static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4935 int max_pixclk)
4936{
6bcda4f0 4937 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
29dc7ef3 4938
d49a340d
VS
4939 /* FIXME: Punit isn't quite ready yet */
4940 if (IS_CHERRYVIEW(dev_priv->dev))
4941 return 400000;
4942
30a970c6
JB
4943 /*
4944 * Really only a few cases to deal with, as only 4 CDclks are supported:
4945 * 200MHz
4946 * 267MHz
29dc7ef3 4947 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4948 * 400MHz
4949 * So we check to see whether we're above 90% of the lower bin and
4950 * adjust if needed.
e37c67a1
VS
4951 *
4952 * We seem to get an unstable or solid color picture at 200MHz.
4953 * Not sure what's wrong. For now use 200MHz only when all pipes
4954 * are off.
30a970c6 4955 */
29dc7ef3 4956 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4957 return 400000;
4958 else if (max_pixclk > 266667*9/10)
29dc7ef3 4959 return freq_320;
e37c67a1 4960 else if (max_pixclk > 0)
dfcab17e 4961 return 266667;
e37c67a1
VS
4962 else
4963 return 200000;
30a970c6
JB
4964}
4965
2f2d7aa1
VS
4966/* compute the max pixel clock for new configuration */
4967static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4968{
4969 struct drm_device *dev = dev_priv->dev;
4970 struct intel_crtc *intel_crtc;
4971 int max_pixclk = 0;
4972
d3fcc808 4973 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4974 if (intel_crtc->new_enabled)
30a970c6 4975 max_pixclk = max(max_pixclk,
2f2d7aa1 4976 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4977 }
4978
4979 return max_pixclk;
4980}
4981
4982static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4983 unsigned *prepare_pipes)
30a970c6
JB
4984{
4985 struct drm_i915_private *dev_priv = dev->dev_private;
4986 struct intel_crtc *intel_crtc;
2f2d7aa1 4987 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4988
d60c4473
ID
4989 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4990 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4991 return;
4992
2f2d7aa1 4993 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4994 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4995 if (intel_crtc->base.enabled)
4996 *prepare_pipes |= (1 << intel_crtc->pipe);
4997}
4998
4999static void valleyview_modeset_global_resources(struct drm_device *dev)
5000{
5001 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 5002 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
5003 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5004
383c5a6a 5005 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
5006 /*
5007 * FIXME: We can end up here with all power domains off, yet
5008 * with a CDCLK frequency other than the minimum. To account
5009 * for this take the PIPE-A power domain, which covers the HW
5010 * blocks needed for the following programming. This can be
5011 * removed once it's guaranteed that we get here either with
5012 * the minimum CDCLK set, or the required power domains
5013 * enabled.
5014 */
5015 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5016
383c5a6a
VS
5017 if (IS_CHERRYVIEW(dev))
5018 cherryview_set_cdclk(dev, req_cdclk);
5019 else
5020 valleyview_set_cdclk(dev, req_cdclk);
738c05c0
ID
5021
5022 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5023 }
30a970c6
JB
5024}
5025
89b667f8
JB
5026static void valleyview_crtc_enable(struct drm_crtc *crtc)
5027{
5028 struct drm_device *dev = crtc->dev;
a72e4c9f 5029 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5031 struct intel_encoder *encoder;
5032 int pipe = intel_crtc->pipe;
23538ef1 5033 bool is_dsi;
89b667f8
JB
5034
5035 WARN_ON(!crtc->enabled);
5036
5037 if (intel_crtc->active)
5038 return;
5039
409ee761 5040 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5041
1ae0d137
VS
5042 if (!is_dsi) {
5043 if (IS_CHERRYVIEW(dev))
d288f65f 5044 chv_prepare_pll(intel_crtc, &intel_crtc->config);
1ae0d137 5045 else
d288f65f 5046 vlv_prepare_pll(intel_crtc, &intel_crtc->config);
1ae0d137 5047 }
5b18e57c
DV
5048
5049 if (intel_crtc->config.has_dp_encoder)
5050 intel_dp_set_m_n(intel_crtc);
5051
5052 intel_set_pipe_timings(intel_crtc);
5053
c14b0485
VS
5054 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5055 struct drm_i915_private *dev_priv = dev->dev_private;
5056
5057 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5058 I915_WRITE(CHV_CANVAS(pipe), 0);
5059 }
5060
5b18e57c
DV
5061 i9xx_set_pipeconf(intel_crtc);
5062
89b667f8 5063 intel_crtc->active = true;
89b667f8 5064
a72e4c9f 5065 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5066
89b667f8
JB
5067 for_each_encoder_on_crtc(dev, crtc, encoder)
5068 if (encoder->pre_pll_enable)
5069 encoder->pre_pll_enable(encoder);
5070
9d556c99
CML
5071 if (!is_dsi) {
5072 if (IS_CHERRYVIEW(dev))
d288f65f 5073 chv_enable_pll(intel_crtc, &intel_crtc->config);
9d556c99 5074 else
d288f65f 5075 vlv_enable_pll(intel_crtc, &intel_crtc->config);
9d556c99 5076 }
89b667f8
JB
5077
5078 for_each_encoder_on_crtc(dev, crtc, encoder)
5079 if (encoder->pre_enable)
5080 encoder->pre_enable(encoder);
5081
2dd24552
JB
5082 i9xx_pfit_enable(intel_crtc);
5083
63cbb074
VS
5084 intel_crtc_load_lut(crtc);
5085
f37fcc2a 5086 intel_update_watermarks(crtc);
e1fdc473 5087 intel_enable_pipe(intel_crtc);
be6a6f8e 5088
5004945f
JN
5089 for_each_encoder_on_crtc(dev, crtc, encoder)
5090 encoder->enable(encoder);
9ab0460b 5091
4b3a9526
VS
5092 assert_vblank_disabled(crtc);
5093 drm_crtc_vblank_on(crtc);
5094
9ab0460b 5095 intel_crtc_enable_planes(crtc);
d40d9187 5096
56b80e1f 5097 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5098 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5099}
5100
f13c2ef3
DV
5101static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5102{
5103 struct drm_device *dev = crtc->base.dev;
5104 struct drm_i915_private *dev_priv = dev->dev_private;
5105
5106 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5107 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5108}
5109
0b8765c6 5110static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5111{
5112 struct drm_device *dev = crtc->dev;
a72e4c9f 5113 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5115 struct intel_encoder *encoder;
79e53945 5116 int pipe = intel_crtc->pipe;
79e53945 5117
08a48469
DV
5118 WARN_ON(!crtc->enabled);
5119
f7abfe8b
CW
5120 if (intel_crtc->active)
5121 return;
5122
f13c2ef3
DV
5123 i9xx_set_pll_dividers(intel_crtc);
5124
5b18e57c
DV
5125 if (intel_crtc->config.has_dp_encoder)
5126 intel_dp_set_m_n(intel_crtc);
5127
5128 intel_set_pipe_timings(intel_crtc);
5129
5b18e57c
DV
5130 i9xx_set_pipeconf(intel_crtc);
5131
f7abfe8b 5132 intel_crtc->active = true;
6b383a7f 5133
4a3436e8 5134 if (!IS_GEN2(dev))
a72e4c9f 5135 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5136
9d6d9f19
MK
5137 for_each_encoder_on_crtc(dev, crtc, encoder)
5138 if (encoder->pre_enable)
5139 encoder->pre_enable(encoder);
5140
f6736a1a
DV
5141 i9xx_enable_pll(intel_crtc);
5142
2dd24552
JB
5143 i9xx_pfit_enable(intel_crtc);
5144
63cbb074
VS
5145 intel_crtc_load_lut(crtc);
5146
f37fcc2a 5147 intel_update_watermarks(crtc);
e1fdc473 5148 intel_enable_pipe(intel_crtc);
be6a6f8e 5149
fa5c73b1
DV
5150 for_each_encoder_on_crtc(dev, crtc, encoder)
5151 encoder->enable(encoder);
9ab0460b 5152
4b3a9526
VS
5153 assert_vblank_disabled(crtc);
5154 drm_crtc_vblank_on(crtc);
5155
9ab0460b 5156 intel_crtc_enable_planes(crtc);
d40d9187 5157
4a3436e8
VS
5158 /*
5159 * Gen2 reports pipe underruns whenever all planes are disabled.
5160 * So don't enable underrun reporting before at least some planes
5161 * are enabled.
5162 * FIXME: Need to fix the logic to work when we turn off all planes
5163 * but leave the pipe running.
5164 */
5165 if (IS_GEN2(dev))
a72e4c9f 5166 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5167
56b80e1f 5168 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5169 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5170}
79e53945 5171
87476d63
DV
5172static void i9xx_pfit_disable(struct intel_crtc *crtc)
5173{
5174 struct drm_device *dev = crtc->base.dev;
5175 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5176
328d8e82
DV
5177 if (!crtc->config.gmch_pfit.control)
5178 return;
87476d63 5179
328d8e82 5180 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5181
328d8e82
DV
5182 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5183 I915_READ(PFIT_CONTROL));
5184 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5185}
5186
0b8765c6
JB
5187static void i9xx_crtc_disable(struct drm_crtc *crtc)
5188{
5189 struct drm_device *dev = crtc->dev;
5190 struct drm_i915_private *dev_priv = dev->dev_private;
5191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5192 struct intel_encoder *encoder;
0b8765c6 5193 int pipe = intel_crtc->pipe;
ef9c3aee 5194
f7abfe8b
CW
5195 if (!intel_crtc->active)
5196 return;
5197
4a3436e8
VS
5198 /*
5199 * Gen2 reports pipe underruns whenever all planes are disabled.
5200 * So diasble underrun reporting before all the planes get disabled.
5201 * FIXME: Need to fix the logic to work when we turn off all planes
5202 * but leave the pipe running.
5203 */
5204 if (IS_GEN2(dev))
a72e4c9f 5205 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5206
564ed191
ID
5207 /*
5208 * Vblank time updates from the shadow to live plane control register
5209 * are blocked if the memory self-refresh mode is active at that
5210 * moment. So to make sure the plane gets truly disabled, disable
5211 * first the self-refresh mode. The self-refresh enable bit in turn
5212 * will be checked/applied by the HW only at the next frame start
5213 * event which is after the vblank start event, so we need to have a
5214 * wait-for-vblank between disabling the plane and the pipe.
5215 */
5216 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5217 intel_crtc_disable_planes(crtc);
5218
6304cd91
VS
5219 /*
5220 * On gen2 planes are double buffered but the pipe isn't, so we must
5221 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5222 * We also need to wait on all gmch platforms because of the
5223 * self-refresh mode constraint explained above.
6304cd91 5224 */
564ed191 5225 intel_wait_for_vblank(dev, pipe);
6304cd91 5226
4b3a9526
VS
5227 drm_crtc_vblank_off(crtc);
5228 assert_vblank_disabled(crtc);
5229
5230 for_each_encoder_on_crtc(dev, crtc, encoder)
5231 encoder->disable(encoder);
5232
575f7ab7 5233 intel_disable_pipe(intel_crtc);
24a1f16d 5234
87476d63 5235 i9xx_pfit_disable(intel_crtc);
24a1f16d 5236
89b667f8
JB
5237 for_each_encoder_on_crtc(dev, crtc, encoder)
5238 if (encoder->post_disable)
5239 encoder->post_disable(encoder);
5240
409ee761 5241 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5242 if (IS_CHERRYVIEW(dev))
5243 chv_disable_pll(dev_priv, pipe);
5244 else if (IS_VALLEYVIEW(dev))
5245 vlv_disable_pll(dev_priv, pipe);
5246 else
1c4e0274 5247 i9xx_disable_pll(intel_crtc);
076ed3b2 5248 }
0b8765c6 5249
4a3436e8 5250 if (!IS_GEN2(dev))
a72e4c9f 5251 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5252
f7abfe8b 5253 intel_crtc->active = false;
46ba614c 5254 intel_update_watermarks(crtc);
f37fcc2a 5255
efa9624e 5256 mutex_lock(&dev->struct_mutex);
6b383a7f 5257 intel_update_fbc(dev);
efa9624e 5258 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5259}
5260
ee7b9f93
JB
5261static void i9xx_crtc_off(struct drm_crtc *crtc)
5262{
5263}
5264
b04c5bd6
BF
5265/* Master function to enable/disable CRTC and corresponding power wells */
5266void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5267{
5268 struct drm_device *dev = crtc->dev;
5269 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5271 enum intel_display_power_domain domain;
5272 unsigned long domains;
976f8a20 5273
0e572fe7
DV
5274 if (enable) {
5275 if (!intel_crtc->active) {
e1e9fb84
DV
5276 domains = get_crtc_power_domains(crtc);
5277 for_each_power_domain(domain, domains)
5278 intel_display_power_get(dev_priv, domain);
5279 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5280
5281 dev_priv->display.crtc_enable(crtc);
5282 }
5283 } else {
5284 if (intel_crtc->active) {
5285 dev_priv->display.crtc_disable(crtc);
5286
e1e9fb84
DV
5287 domains = intel_crtc->enabled_power_domains;
5288 for_each_power_domain(domain, domains)
5289 intel_display_power_put(dev_priv, domain);
5290 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5291 }
5292 }
b04c5bd6
BF
5293}
5294
5295/**
5296 * Sets the power management mode of the pipe and plane.
5297 */
5298void intel_crtc_update_dpms(struct drm_crtc *crtc)
5299{
5300 struct drm_device *dev = crtc->dev;
5301 struct intel_encoder *intel_encoder;
5302 bool enable = false;
5303
5304 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5305 enable |= intel_encoder->connectors_active;
5306
5307 intel_crtc_control(crtc, enable);
976f8a20
DV
5308}
5309
cdd59983
CW
5310static void intel_crtc_disable(struct drm_crtc *crtc)
5311{
cdd59983 5312 struct drm_device *dev = crtc->dev;
976f8a20 5313 struct drm_connector *connector;
ee7b9f93 5314 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5315 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5316 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5317
976f8a20
DV
5318 /* crtc should still be enabled when we disable it. */
5319 WARN_ON(!crtc->enabled);
5320
5321 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5322 dev_priv->display.off(crtc);
5323
f4510a27 5324 if (crtc->primary->fb) {
cdd59983 5325 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5326 intel_unpin_fb_obj(old_obj);
5327 i915_gem_track_fb(old_obj, NULL,
5328 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5329 mutex_unlock(&dev->struct_mutex);
f4510a27 5330 crtc->primary->fb = NULL;
976f8a20
DV
5331 }
5332
5333 /* Update computed state. */
5334 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5335 if (!connector->encoder || !connector->encoder->crtc)
5336 continue;
5337
5338 if (connector->encoder->crtc != crtc)
5339 continue;
5340
5341 connector->dpms = DRM_MODE_DPMS_OFF;
5342 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5343 }
5344}
5345
ea5b213a 5346void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5347{
4ef69c7a 5348 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5349
ea5b213a
CW
5350 drm_encoder_cleanup(encoder);
5351 kfree(intel_encoder);
7e7d76c3
JB
5352}
5353
9237329d 5354/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5355 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5356 * state of the entire output pipe. */
9237329d 5357static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5358{
5ab432ef
DV
5359 if (mode == DRM_MODE_DPMS_ON) {
5360 encoder->connectors_active = true;
5361
b2cabb0e 5362 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5363 } else {
5364 encoder->connectors_active = false;
5365
b2cabb0e 5366 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5367 }
79e53945
JB
5368}
5369
0a91ca29
DV
5370/* Cross check the actual hw state with our own modeset state tracking (and it's
5371 * internal consistency). */
b980514c 5372static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5373{
0a91ca29
DV
5374 if (connector->get_hw_state(connector)) {
5375 struct intel_encoder *encoder = connector->encoder;
5376 struct drm_crtc *crtc;
5377 bool encoder_enabled;
5378 enum pipe pipe;
5379
5380 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5381 connector->base.base.id,
c23cc417 5382 connector->base.name);
0a91ca29 5383
0e32b39c
DA
5384 /* there is no real hw state for MST connectors */
5385 if (connector->mst_port)
5386 return;
5387
0a91ca29
DV
5388 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5389 "wrong connector dpms state\n");
5390 WARN(connector->base.encoder != &encoder->base,
5391 "active connector not linked to encoder\n");
0a91ca29 5392
36cd7444
DA
5393 if (encoder) {
5394 WARN(!encoder->connectors_active,
5395 "encoder->connectors_active not set\n");
5396
5397 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5398 WARN(!encoder_enabled, "encoder not enabled\n");
5399 if (WARN_ON(!encoder->base.crtc))
5400 return;
0a91ca29 5401
36cd7444 5402 crtc = encoder->base.crtc;
0a91ca29 5403
36cd7444
DA
5404 WARN(!crtc->enabled, "crtc not enabled\n");
5405 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5406 WARN(pipe != to_intel_crtc(crtc)->pipe,
5407 "encoder active on the wrong pipe\n");
5408 }
0a91ca29 5409 }
79e53945
JB
5410}
5411
5ab432ef
DV
5412/* Even simpler default implementation, if there's really no special case to
5413 * consider. */
5414void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5415{
5ab432ef
DV
5416 /* All the simple cases only support two dpms states. */
5417 if (mode != DRM_MODE_DPMS_ON)
5418 mode = DRM_MODE_DPMS_OFF;
d4270e57 5419
5ab432ef
DV
5420 if (mode == connector->dpms)
5421 return;
5422
5423 connector->dpms = mode;
5424
5425 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5426 if (connector->encoder)
5427 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5428
b980514c 5429 intel_modeset_check_state(connector->dev);
79e53945
JB
5430}
5431
f0947c37
DV
5432/* Simple connector->get_hw_state implementation for encoders that support only
5433 * one connector and no cloning and hence the encoder state determines the state
5434 * of the connector. */
5435bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5436{
24929352 5437 enum pipe pipe = 0;
f0947c37 5438 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5439
f0947c37 5440 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5441}
5442
1857e1da
DV
5443static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5444 struct intel_crtc_config *pipe_config)
5445{
5446 struct drm_i915_private *dev_priv = dev->dev_private;
5447 struct intel_crtc *pipe_B_crtc =
5448 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5449
5450 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5451 pipe_name(pipe), pipe_config->fdi_lanes);
5452 if (pipe_config->fdi_lanes > 4) {
5453 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5454 pipe_name(pipe), pipe_config->fdi_lanes);
5455 return false;
5456 }
5457
bafb6553 5458 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5459 if (pipe_config->fdi_lanes > 2) {
5460 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5461 pipe_config->fdi_lanes);
5462 return false;
5463 } else {
5464 return true;
5465 }
5466 }
5467
5468 if (INTEL_INFO(dev)->num_pipes == 2)
5469 return true;
5470
5471 /* Ivybridge 3 pipe is really complicated */
5472 switch (pipe) {
5473 case PIPE_A:
5474 return true;
5475 case PIPE_B:
5476 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5477 pipe_config->fdi_lanes > 2) {
5478 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5479 pipe_name(pipe), pipe_config->fdi_lanes);
5480 return false;
5481 }
5482 return true;
5483 case PIPE_C:
1e833f40 5484 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5485 pipe_B_crtc->config.fdi_lanes <= 2) {
5486 if (pipe_config->fdi_lanes > 2) {
5487 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5488 pipe_name(pipe), pipe_config->fdi_lanes);
5489 return false;
5490 }
5491 } else {
5492 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5493 return false;
5494 }
5495 return true;
5496 default:
5497 BUG();
5498 }
5499}
5500
e29c22c0
DV
5501#define RETRY 1
5502static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5503 struct intel_crtc_config *pipe_config)
877d48d5 5504{
1857e1da 5505 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5506 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5507 int lane, link_bw, fdi_dotclock;
e29c22c0 5508 bool setup_ok, needs_recompute = false;
877d48d5 5509
e29c22c0 5510retry:
877d48d5
DV
5511 /* FDI is a binary signal running at ~2.7GHz, encoding
5512 * each output octet as 10 bits. The actual frequency
5513 * is stored as a divider into a 100MHz clock, and the
5514 * mode pixel clock is stored in units of 1KHz.
5515 * Hence the bw of each lane in terms of the mode signal
5516 * is:
5517 */
5518 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5519
241bfc38 5520 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5521
2bd89a07 5522 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5523 pipe_config->pipe_bpp);
5524
5525 pipe_config->fdi_lanes = lane;
5526
2bd89a07 5527 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5528 link_bw, &pipe_config->fdi_m_n);
1857e1da 5529
e29c22c0
DV
5530 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5531 intel_crtc->pipe, pipe_config);
5532 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5533 pipe_config->pipe_bpp -= 2*3;
5534 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5535 pipe_config->pipe_bpp);
5536 needs_recompute = true;
5537 pipe_config->bw_constrained = true;
5538
5539 goto retry;
5540 }
5541
5542 if (needs_recompute)
5543 return RETRY;
5544
5545 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5546}
5547
42db64ef
PZ
5548static void hsw_compute_ips_config(struct intel_crtc *crtc,
5549 struct intel_crtc_config *pipe_config)
5550{
d330a953 5551 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5552 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5553 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5554}
5555
a43f6e0f 5556static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5557 struct intel_crtc_config *pipe_config)
79e53945 5558{
a43f6e0f 5559 struct drm_device *dev = crtc->base.dev;
8bd31e67 5560 struct drm_i915_private *dev_priv = dev->dev_private;
b8cecdf5 5561 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5562
ad3a4479 5563 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5564 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5565 int clock_limit =
5566 dev_priv->display.get_display_clock_speed(dev);
5567
5568 /*
5569 * Enable pixel doubling when the dot clock
5570 * is > 90% of the (display) core speed.
5571 *
b397c96b
VS
5572 * GDG double wide on either pipe,
5573 * otherwise pipe A only.
cf532bb2 5574 */
b397c96b 5575 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5576 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5577 clock_limit *= 2;
cf532bb2 5578 pipe_config->double_wide = true;
ad3a4479
VS
5579 }
5580
241bfc38 5581 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5582 return -EINVAL;
2c07245f 5583 }
89749350 5584
1d1d0e27
VS
5585 /*
5586 * Pipe horizontal size must be even in:
5587 * - DVO ganged mode
5588 * - LVDS dual channel mode
5589 * - Double wide pipe
5590 */
409ee761 5591 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5592 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5593 pipe_config->pipe_src_w &= ~1;
5594
8693a824
DL
5595 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5596 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5597 */
5598 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5599 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5600 return -EINVAL;
44f46b42 5601
bd080ee5 5602 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5603 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5604 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5605 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5606 * for lvds. */
5607 pipe_config->pipe_bpp = 8*3;
5608 }
5609
f5adf94e 5610 if (HAS_IPS(dev))
a43f6e0f
DV
5611 hsw_compute_ips_config(crtc, pipe_config);
5612
877d48d5 5613 if (pipe_config->has_pch_encoder)
a43f6e0f 5614 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5615
e29c22c0 5616 return 0;
79e53945
JB
5617}
5618
25eb05fc
JB
5619static int valleyview_get_display_clock_speed(struct drm_device *dev)
5620{
d197b7d3 5621 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5622 u32 val;
5623 int divider;
5624
d49a340d
VS
5625 /* FIXME: Punit isn't quite ready yet */
5626 if (IS_CHERRYVIEW(dev))
5627 return 400000;
5628
6bcda4f0
VS
5629 if (dev_priv->hpll_freq == 0)
5630 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5631
d197b7d3
VS
5632 mutex_lock(&dev_priv->dpio_lock);
5633 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5634 mutex_unlock(&dev_priv->dpio_lock);
5635
5636 divider = val & DISPLAY_FREQUENCY_VALUES;
5637
7d007f40
VS
5638 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5639 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5640 "cdclk change in progress\n");
5641
6bcda4f0 5642 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5643}
5644
e70236a8
JB
5645static int i945_get_display_clock_speed(struct drm_device *dev)
5646{
5647 return 400000;
5648}
79e53945 5649
e70236a8 5650static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5651{
e70236a8
JB
5652 return 333000;
5653}
79e53945 5654
e70236a8
JB
5655static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5656{
5657 return 200000;
5658}
79e53945 5659
257a7ffc
DV
5660static int pnv_get_display_clock_speed(struct drm_device *dev)
5661{
5662 u16 gcfgc = 0;
5663
5664 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5665
5666 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5667 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5668 return 267000;
5669 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5670 return 333000;
5671 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5672 return 444000;
5673 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5674 return 200000;
5675 default:
5676 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5677 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5678 return 133000;
5679 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5680 return 167000;
5681 }
5682}
5683
e70236a8
JB
5684static int i915gm_get_display_clock_speed(struct drm_device *dev)
5685{
5686 u16 gcfgc = 0;
79e53945 5687
e70236a8
JB
5688 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5689
5690 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5691 return 133000;
5692 else {
5693 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5694 case GC_DISPLAY_CLOCK_333_MHZ:
5695 return 333000;
5696 default:
5697 case GC_DISPLAY_CLOCK_190_200_MHZ:
5698 return 190000;
79e53945 5699 }
e70236a8
JB
5700 }
5701}
5702
5703static int i865_get_display_clock_speed(struct drm_device *dev)
5704{
5705 return 266000;
5706}
5707
5708static int i855_get_display_clock_speed(struct drm_device *dev)
5709{
5710 u16 hpllcc = 0;
5711 /* Assume that the hardware is in the high speed state. This
5712 * should be the default.
5713 */
5714 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5715 case GC_CLOCK_133_200:
5716 case GC_CLOCK_100_200:
5717 return 200000;
5718 case GC_CLOCK_166_250:
5719 return 250000;
5720 case GC_CLOCK_100_133:
79e53945 5721 return 133000;
e70236a8 5722 }
79e53945 5723
e70236a8
JB
5724 /* Shouldn't happen */
5725 return 0;
5726}
79e53945 5727
e70236a8
JB
5728static int i830_get_display_clock_speed(struct drm_device *dev)
5729{
5730 return 133000;
79e53945
JB
5731}
5732
2c07245f 5733static void
a65851af 5734intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5735{
a65851af
VS
5736 while (*num > DATA_LINK_M_N_MASK ||
5737 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5738 *num >>= 1;
5739 *den >>= 1;
5740 }
5741}
5742
a65851af
VS
5743static void compute_m_n(unsigned int m, unsigned int n,
5744 uint32_t *ret_m, uint32_t *ret_n)
5745{
5746 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5747 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5748 intel_reduce_m_n_ratio(ret_m, ret_n);
5749}
5750
e69d0bc1
DV
5751void
5752intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5753 int pixel_clock, int link_clock,
5754 struct intel_link_m_n *m_n)
2c07245f 5755{
e69d0bc1 5756 m_n->tu = 64;
a65851af
VS
5757
5758 compute_m_n(bits_per_pixel * pixel_clock,
5759 link_clock * nlanes * 8,
5760 &m_n->gmch_m, &m_n->gmch_n);
5761
5762 compute_m_n(pixel_clock, link_clock,
5763 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5764}
5765
a7615030
CW
5766static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5767{
d330a953
JN
5768 if (i915.panel_use_ssc >= 0)
5769 return i915.panel_use_ssc != 0;
41aa3448 5770 return dev_priv->vbt.lvds_use_ssc
435793df 5771 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5772}
5773
409ee761 5774static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5775{
409ee761 5776 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5777 struct drm_i915_private *dev_priv = dev->dev_private;
5778 int refclk;
5779
a0c4da24 5780 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5781 refclk = 100000;
d0737e1d 5782 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5783 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5784 refclk = dev_priv->vbt.lvds_ssc_freq;
5785 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5786 } else if (!IS_GEN2(dev)) {
5787 refclk = 96000;
5788 } else {
5789 refclk = 48000;
5790 }
5791
5792 return refclk;
5793}
5794
7429e9d4 5795static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5796{
7df00d7a 5797 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5798}
f47709a9 5799
7429e9d4
DV
5800static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5801{
5802 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5803}
5804
f47709a9 5805static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5806 intel_clock_t *reduced_clock)
5807{
f47709a9 5808 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5809 u32 fp, fp2 = 0;
5810
5811 if (IS_PINEVIEW(dev)) {
e1f234bd 5812 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
a7516a05 5813 if (reduced_clock)
7429e9d4 5814 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5815 } else {
e1f234bd 5816 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
a7516a05 5817 if (reduced_clock)
7429e9d4 5818 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5819 }
5820
e1f234bd 5821 crtc->new_config->dpll_hw_state.fp0 = fp;
a7516a05 5822
f47709a9 5823 crtc->lowfreq_avail = false;
e1f234bd 5824 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5825 reduced_clock && i915.powersave) {
e1f234bd 5826 crtc->new_config->dpll_hw_state.fp1 = fp2;
f47709a9 5827 crtc->lowfreq_avail = true;
a7516a05 5828 } else {
e1f234bd 5829 crtc->new_config->dpll_hw_state.fp1 = fp;
a7516a05
JB
5830 }
5831}
5832
5e69f97f
CML
5833static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5834 pipe)
89b667f8
JB
5835{
5836 u32 reg_val;
5837
5838 /*
5839 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5840 * and set it to a reasonable value instead.
5841 */
ab3c759a 5842 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5843 reg_val &= 0xffffff00;
5844 reg_val |= 0x00000030;
ab3c759a 5845 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5846
ab3c759a 5847 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5848 reg_val &= 0x8cffffff;
5849 reg_val = 0x8c000000;
ab3c759a 5850 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5851
ab3c759a 5852 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5853 reg_val &= 0xffffff00;
ab3c759a 5854 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5855
ab3c759a 5856 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5857 reg_val &= 0x00ffffff;
5858 reg_val |= 0xb0000000;
ab3c759a 5859 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5860}
5861
b551842d
DV
5862static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5863 struct intel_link_m_n *m_n)
5864{
5865 struct drm_device *dev = crtc->base.dev;
5866 struct drm_i915_private *dev_priv = dev->dev_private;
5867 int pipe = crtc->pipe;
5868
e3b95f1e
DV
5869 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5870 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5871 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5872 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5873}
5874
5875static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5876 struct intel_link_m_n *m_n,
5877 struct intel_link_m_n *m2_n2)
b551842d
DV
5878{
5879 struct drm_device *dev = crtc->base.dev;
5880 struct drm_i915_private *dev_priv = dev->dev_private;
5881 int pipe = crtc->pipe;
5882 enum transcoder transcoder = crtc->config.cpu_transcoder;
5883
5884 if (INTEL_INFO(dev)->gen >= 5) {
5885 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5886 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5887 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5888 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5889 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5890 * for gen < 8) and if DRRS is supported (to make sure the
5891 * registers are not unnecessarily accessed).
5892 */
5893 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5894 crtc->config.has_drrs) {
5895 I915_WRITE(PIPE_DATA_M2(transcoder),
5896 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5897 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5898 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5899 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5900 }
b551842d 5901 } else {
e3b95f1e
DV
5902 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5903 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5904 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5905 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5906 }
5907}
5908
f769cd24 5909void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5910{
5911 if (crtc->config.has_pch_encoder)
5912 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5913 else
f769cd24
VK
5914 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5915 &crtc->config.dp_m2_n2);
03afc4a2
DV
5916}
5917
d288f65f
VS
5918static void vlv_update_pll(struct intel_crtc *crtc,
5919 struct intel_crtc_config *pipe_config)
bdd4b6a6
DV
5920{
5921 u32 dpll, dpll_md;
5922
5923 /*
5924 * Enable DPIO clock input. We should never disable the reference
5925 * clock for pipe B, since VGA hotplug / manual detection depends
5926 * on it.
5927 */
5928 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5929 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5930 /* We should never disable this, set it here for state tracking */
5931 if (crtc->pipe == PIPE_B)
5932 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5933 dpll |= DPLL_VCO_ENABLE;
d288f65f 5934 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5935
d288f65f 5936 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5937 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5938 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5939}
5940
d288f65f
VS
5941static void vlv_prepare_pll(struct intel_crtc *crtc,
5942 const struct intel_crtc_config *pipe_config)
a0c4da24 5943{
f47709a9 5944 struct drm_device *dev = crtc->base.dev;
a0c4da24 5945 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5946 int pipe = crtc->pipe;
bdd4b6a6 5947 u32 mdiv;
a0c4da24 5948 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5949 u32 coreclk, reg_val;
a0c4da24 5950
09153000
DV
5951 mutex_lock(&dev_priv->dpio_lock);
5952
d288f65f
VS
5953 bestn = pipe_config->dpll.n;
5954 bestm1 = pipe_config->dpll.m1;
5955 bestm2 = pipe_config->dpll.m2;
5956 bestp1 = pipe_config->dpll.p1;
5957 bestp2 = pipe_config->dpll.p2;
a0c4da24 5958
89b667f8
JB
5959 /* See eDP HDMI DPIO driver vbios notes doc */
5960
5961 /* PLL B needs special handling */
bdd4b6a6 5962 if (pipe == PIPE_B)
5e69f97f 5963 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5964
5965 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5966 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5967
5968 /* Disable target IRef on PLL */
ab3c759a 5969 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5970 reg_val &= 0x00ffffff;
ab3c759a 5971 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5972
5973 /* Disable fast lock */
ab3c759a 5974 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5975
5976 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5977 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5978 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5979 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5980 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5981
5982 /*
5983 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5984 * but we don't support that).
5985 * Note: don't use the DAC post divider as it seems unstable.
5986 */
5987 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5988 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5989
a0c4da24 5990 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5991 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5992
89b667f8 5993 /* Set HBR and RBR LPF coefficients */
d288f65f 5994 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5995 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5996 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5997 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5998 0x009f0003);
89b667f8 5999 else
ab3c759a 6000 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
6001 0x00d0000f);
6002
0a88818d 6003 if (crtc->config.has_dp_encoder) {
89b667f8 6004 /* Use SSC source */
bdd4b6a6 6005 if (pipe == PIPE_A)
ab3c759a 6006 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6007 0x0df40000);
6008 else
ab3c759a 6009 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6010 0x0df70000);
6011 } else { /* HDMI or VGA */
6012 /* Use bend source */
bdd4b6a6 6013 if (pipe == PIPE_A)
ab3c759a 6014 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6015 0x0df70000);
6016 else
ab3c759a 6017 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6018 0x0df40000);
6019 }
a0c4da24 6020
ab3c759a 6021 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6022 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6023 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6024 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6025 coreclk |= 0x01000000;
ab3c759a 6026 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6027
ab3c759a 6028 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6029 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6030}
6031
d288f65f
VS
6032static void chv_update_pll(struct intel_crtc *crtc,
6033 struct intel_crtc_config *pipe_config)
1ae0d137 6034{
d288f65f 6035 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6036 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6037 DPLL_VCO_ENABLE;
6038 if (crtc->pipe != PIPE_A)
d288f65f 6039 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6040
d288f65f
VS
6041 pipe_config->dpll_hw_state.dpll_md =
6042 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6043}
6044
d288f65f
VS
6045static void chv_prepare_pll(struct intel_crtc *crtc,
6046 const struct intel_crtc_config *pipe_config)
9d556c99
CML
6047{
6048 struct drm_device *dev = crtc->base.dev;
6049 struct drm_i915_private *dev_priv = dev->dev_private;
6050 int pipe = crtc->pipe;
6051 int dpll_reg = DPLL(crtc->pipe);
6052 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 6053 u32 loopfilter, intcoeff;
9d556c99
CML
6054 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6055 int refclk;
6056
d288f65f
VS
6057 bestn = pipe_config->dpll.n;
6058 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6059 bestm1 = pipe_config->dpll.m1;
6060 bestm2 = pipe_config->dpll.m2 >> 22;
6061 bestp1 = pipe_config->dpll.p1;
6062 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
6063
6064 /*
6065 * Enable Refclk and SSC
6066 */
a11b0703 6067 I915_WRITE(dpll_reg,
d288f65f 6068 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6069
6070 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6071
9d556c99
CML
6072 /* p1 and p2 divider */
6073 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6074 5 << DPIO_CHV_S1_DIV_SHIFT |
6075 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6076 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6077 1 << DPIO_CHV_K_DIV_SHIFT);
6078
6079 /* Feedback post-divider - m2 */
6080 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6081
6082 /* Feedback refclk divider - n and m1 */
6083 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6084 DPIO_CHV_M1_DIV_BY_2 |
6085 1 << DPIO_CHV_N_DIV_SHIFT);
6086
6087 /* M2 fraction division */
6088 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6089
6090 /* M2 fraction division enable */
6091 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6092 DPIO_CHV_FRAC_DIV_EN |
6093 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6094
6095 /* Loop filter */
409ee761 6096 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6097 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6098 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6099 if (refclk == 100000)
6100 intcoeff = 11;
6101 else if (refclk == 38400)
6102 intcoeff = 10;
6103 else
6104 intcoeff = 9;
6105 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6106 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6107
6108 /* AFC Recal */
6109 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6110 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6111 DPIO_AFC_RECAL);
6112
6113 mutex_unlock(&dev_priv->dpio_lock);
6114}
6115
d288f65f
VS
6116/**
6117 * vlv_force_pll_on - forcibly enable just the PLL
6118 * @dev_priv: i915 private structure
6119 * @pipe: pipe PLL to enable
6120 * @dpll: PLL configuration
6121 *
6122 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6123 * in cases where we need the PLL enabled even when @pipe is not going to
6124 * be enabled.
6125 */
6126void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6127 const struct dpll *dpll)
6128{
6129 struct intel_crtc *crtc =
6130 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6131 struct intel_crtc_config pipe_config = {
6132 .pixel_multiplier = 1,
6133 .dpll = *dpll,
6134 };
6135
6136 if (IS_CHERRYVIEW(dev)) {
6137 chv_update_pll(crtc, &pipe_config);
6138 chv_prepare_pll(crtc, &pipe_config);
6139 chv_enable_pll(crtc, &pipe_config);
6140 } else {
6141 vlv_update_pll(crtc, &pipe_config);
6142 vlv_prepare_pll(crtc, &pipe_config);
6143 vlv_enable_pll(crtc, &pipe_config);
6144 }
6145}
6146
6147/**
6148 * vlv_force_pll_off - forcibly disable just the PLL
6149 * @dev_priv: i915 private structure
6150 * @pipe: pipe PLL to disable
6151 *
6152 * Disable the PLL for @pipe. To be used in cases where we need
6153 * the PLL enabled even when @pipe is not going to be enabled.
6154 */
6155void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6156{
6157 if (IS_CHERRYVIEW(dev))
6158 chv_disable_pll(to_i915(dev), pipe);
6159 else
6160 vlv_disable_pll(to_i915(dev), pipe);
6161}
6162
f47709a9
DV
6163static void i9xx_update_pll(struct intel_crtc *crtc,
6164 intel_clock_t *reduced_clock,
eb1cbe48
DV
6165 int num_connectors)
6166{
f47709a9 6167 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6168 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6169 u32 dpll;
6170 bool is_sdvo;
d0737e1d 6171 struct dpll *clock = &crtc->new_config->dpll;
eb1cbe48 6172
f47709a9 6173 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6174
d0737e1d
ACO
6175 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6176 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6177
6178 dpll = DPLL_VGA_MODE_DIS;
6179
d0737e1d 6180 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6181 dpll |= DPLLB_MODE_LVDS;
6182 else
6183 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6184
ef1b460d 6185 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
d0737e1d 6186 dpll |= (crtc->new_config->pixel_multiplier - 1)
198a037f 6187 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6188 }
198a037f
DV
6189
6190 if (is_sdvo)
4a33e48d 6191 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6192
0a88818d 6193 if (crtc->new_config->has_dp_encoder)
4a33e48d 6194 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6195
6196 /* compute bitmask from p1 value */
6197 if (IS_PINEVIEW(dev))
6198 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6199 else {
6200 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6201 if (IS_G4X(dev) && reduced_clock)
6202 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6203 }
6204 switch (clock->p2) {
6205 case 5:
6206 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6207 break;
6208 case 7:
6209 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6210 break;
6211 case 10:
6212 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6213 break;
6214 case 14:
6215 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6216 break;
6217 }
6218 if (INTEL_INFO(dev)->gen >= 4)
6219 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6220
d0737e1d 6221 if (crtc->new_config->sdvo_tv_clock)
eb1cbe48 6222 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6223 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6224 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6225 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6226 else
6227 dpll |= PLL_REF_INPUT_DREFCLK;
6228
6229 dpll |= DPLL_VCO_ENABLE;
d0737e1d 6230 crtc->new_config->dpll_hw_state.dpll = dpll;
8bcc2795 6231
eb1cbe48 6232 if (INTEL_INFO(dev)->gen >= 4) {
d0737e1d 6233 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
ef1b460d 6234 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d0737e1d 6235 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6236 }
6237}
6238
f47709a9 6239static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 6240 intel_clock_t *reduced_clock,
eb1cbe48
DV
6241 int num_connectors)
6242{
f47709a9 6243 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6244 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6245 u32 dpll;
d0737e1d 6246 struct dpll *clock = &crtc->new_config->dpll;
eb1cbe48 6247
f47709a9 6248 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6249
eb1cbe48
DV
6250 dpll = DPLL_VGA_MODE_DIS;
6251
d0737e1d 6252 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6253 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6254 } else {
6255 if (clock->p1 == 2)
6256 dpll |= PLL_P1_DIVIDE_BY_TWO;
6257 else
6258 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6259 if (clock->p2 == 4)
6260 dpll |= PLL_P2_DIVIDE_BY_4;
6261 }
6262
d0737e1d 6263 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6264 dpll |= DPLL_DVO_2X_MODE;
6265
d0737e1d 6266 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6267 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6268 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6269 else
6270 dpll |= PLL_REF_INPUT_DREFCLK;
6271
6272 dpll |= DPLL_VCO_ENABLE;
d0737e1d 6273 crtc->new_config->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6274}
6275
8a654f3b 6276static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6277{
6278 struct drm_device *dev = intel_crtc->base.dev;
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6281 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6282 struct drm_display_mode *adjusted_mode =
6283 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6284 uint32_t crtc_vtotal, crtc_vblank_end;
6285 int vsyncshift = 0;
4d8a62ea
DV
6286
6287 /* We need to be careful not to changed the adjusted mode, for otherwise
6288 * the hw state checker will get angry at the mismatch. */
6289 crtc_vtotal = adjusted_mode->crtc_vtotal;
6290 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6291
609aeaca 6292 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6293 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6294 crtc_vtotal -= 1;
6295 crtc_vblank_end -= 1;
609aeaca 6296
409ee761 6297 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6298 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6299 else
6300 vsyncshift = adjusted_mode->crtc_hsync_start -
6301 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6302 if (vsyncshift < 0)
6303 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6304 }
6305
6306 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6307 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6308
fe2b8f9d 6309 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6310 (adjusted_mode->crtc_hdisplay - 1) |
6311 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6312 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6313 (adjusted_mode->crtc_hblank_start - 1) |
6314 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6315 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6316 (adjusted_mode->crtc_hsync_start - 1) |
6317 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6318
fe2b8f9d 6319 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6320 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6321 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6322 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6323 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6324 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6325 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6326 (adjusted_mode->crtc_vsync_start - 1) |
6327 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6328
b5e508d4
PZ
6329 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6330 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6331 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6332 * bits. */
6333 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6334 (pipe == PIPE_B || pipe == PIPE_C))
6335 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6336
b0e77b9c
PZ
6337 /* pipesrc controls the size that is scaled from, which should
6338 * always be the user's requested size.
6339 */
6340 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6341 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6342 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6343}
6344
1bd1bd80
DV
6345static void intel_get_pipe_timings(struct intel_crtc *crtc,
6346 struct intel_crtc_config *pipe_config)
6347{
6348 struct drm_device *dev = crtc->base.dev;
6349 struct drm_i915_private *dev_priv = dev->dev_private;
6350 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6351 uint32_t tmp;
6352
6353 tmp = I915_READ(HTOTAL(cpu_transcoder));
6354 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6355 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6356 tmp = I915_READ(HBLANK(cpu_transcoder));
6357 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6358 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6359 tmp = I915_READ(HSYNC(cpu_transcoder));
6360 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6361 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6362
6363 tmp = I915_READ(VTOTAL(cpu_transcoder));
6364 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6365 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6366 tmp = I915_READ(VBLANK(cpu_transcoder));
6367 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6368 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6369 tmp = I915_READ(VSYNC(cpu_transcoder));
6370 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6371 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6372
6373 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6374 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6375 pipe_config->adjusted_mode.crtc_vtotal += 1;
6376 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6377 }
6378
6379 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6380 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6381 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6382
6383 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6384 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6385}
6386
f6a83288
DV
6387void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6388 struct intel_crtc_config *pipe_config)
babea61d 6389{
f6a83288
DV
6390 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6391 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6392 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6393 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6394
f6a83288
DV
6395 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6396 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6397 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6398 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6399
f6a83288 6400 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6401
f6a83288
DV
6402 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6403 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6404}
6405
84b046f3
DV
6406static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6407{
6408 struct drm_device *dev = intel_crtc->base.dev;
6409 struct drm_i915_private *dev_priv = dev->dev_private;
6410 uint32_t pipeconf;
6411
9f11a9e4 6412 pipeconf = 0;
84b046f3 6413
b6b5d049
VS
6414 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6415 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6416 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6417
cf532bb2
VS
6418 if (intel_crtc->config.double_wide)
6419 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6420
ff9ce46e
DV
6421 /* only g4x and later have fancy bpc/dither controls */
6422 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6423 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6424 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6425 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6426 PIPECONF_DITHER_TYPE_SP;
84b046f3 6427
ff9ce46e
DV
6428 switch (intel_crtc->config.pipe_bpp) {
6429 case 18:
6430 pipeconf |= PIPECONF_6BPC;
6431 break;
6432 case 24:
6433 pipeconf |= PIPECONF_8BPC;
6434 break;
6435 case 30:
6436 pipeconf |= PIPECONF_10BPC;
6437 break;
6438 default:
6439 /* Case prevented by intel_choose_pipe_bpp_dither. */
6440 BUG();
84b046f3
DV
6441 }
6442 }
6443
6444 if (HAS_PIPE_CXSR(dev)) {
6445 if (intel_crtc->lowfreq_avail) {
6446 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6447 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6448 } else {
6449 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6450 }
6451 }
6452
efc2cfff
VS
6453 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6454 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6455 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6456 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6457 else
6458 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6459 } else
84b046f3
DV
6460 pipeconf |= PIPECONF_PROGRESSIVE;
6461
9f11a9e4
DV
6462 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6463 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6464
84b046f3
DV
6465 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6466 POSTING_READ(PIPECONF(intel_crtc->pipe));
6467}
6468
d6dfee7a 6469static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
79e53945 6470{
c7653199 6471 struct drm_device *dev = crtc->base.dev;
79e53945 6472 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6473 int refclk, num_connectors = 0;
652c393a 6474 intel_clock_t clock, reduced_clock;
a16af721 6475 bool ok, has_reduced_clock = false;
e9fd1c02 6476 bool is_lvds = false, is_dsi = false;
5eddb70b 6477 struct intel_encoder *encoder;
d4906093 6478 const intel_limit_t *limit;
79e53945 6479
d0737e1d
ACO
6480 for_each_intel_encoder(dev, encoder) {
6481 if (encoder->new_crtc != crtc)
6482 continue;
6483
5eddb70b 6484 switch (encoder->type) {
79e53945
JB
6485 case INTEL_OUTPUT_LVDS:
6486 is_lvds = true;
6487 break;
e9fd1c02
JN
6488 case INTEL_OUTPUT_DSI:
6489 is_dsi = true;
6490 break;
6847d71b
PZ
6491 default:
6492 break;
79e53945 6493 }
43565a06 6494
c751ce4f 6495 num_connectors++;
79e53945
JB
6496 }
6497
f2335330 6498 if (is_dsi)
5b18e57c 6499 return 0;
f2335330 6500
d0737e1d 6501 if (!crtc->new_config->clock_set) {
409ee761 6502 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6503
e9fd1c02
JN
6504 /*
6505 * Returns a set of divisors for the desired target clock with
6506 * the given refclk, or FALSE. The returned values represent
6507 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6508 * 2) / p1 / p2.
6509 */
409ee761 6510 limit = intel_limit(crtc, refclk);
c7653199 6511 ok = dev_priv->display.find_dpll(limit, crtc,
d0737e1d 6512 crtc->new_config->port_clock,
e9fd1c02 6513 refclk, NULL, &clock);
f2335330 6514 if (!ok) {
e9fd1c02
JN
6515 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6516 return -EINVAL;
6517 }
79e53945 6518
f2335330
JN
6519 if (is_lvds && dev_priv->lvds_downclock_avail) {
6520 /*
6521 * Ensure we match the reduced clock's P to the target
6522 * clock. If the clocks don't match, we can't switch
6523 * the display clock by using the FP0/FP1. In such case
6524 * we will disable the LVDS downclock feature.
6525 */
6526 has_reduced_clock =
c7653199 6527 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6528 dev_priv->lvds_downclock,
6529 refclk, &clock,
6530 &reduced_clock);
6531 }
6532 /* Compat-code for transition, will disappear. */
d0737e1d
ACO
6533 crtc->new_config->dpll.n = clock.n;
6534 crtc->new_config->dpll.m1 = clock.m1;
6535 crtc->new_config->dpll.m2 = clock.m2;
6536 crtc->new_config->dpll.p1 = clock.p1;
6537 crtc->new_config->dpll.p2 = clock.p2;
f47709a9 6538 }
7026d4ac 6539
e9fd1c02 6540 if (IS_GEN2(dev)) {
c7653199 6541 i8xx_update_pll(crtc,
2a8f64ca
VP
6542 has_reduced_clock ? &reduced_clock : NULL,
6543 num_connectors);
9d556c99 6544 } else if (IS_CHERRYVIEW(dev)) {
d0737e1d 6545 chv_update_pll(crtc, crtc->new_config);
e9fd1c02 6546 } else if (IS_VALLEYVIEW(dev)) {
d0737e1d 6547 vlv_update_pll(crtc, crtc->new_config);
e9fd1c02 6548 } else {
c7653199 6549 i9xx_update_pll(crtc,
eb1cbe48 6550 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6551 num_connectors);
e9fd1c02 6552 }
79e53945 6553
c8f7a0db 6554 return 0;
f564048e
EA
6555}
6556
2fa2fe9a
DV
6557static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6558 struct intel_crtc_config *pipe_config)
6559{
6560 struct drm_device *dev = crtc->base.dev;
6561 struct drm_i915_private *dev_priv = dev->dev_private;
6562 uint32_t tmp;
6563
dc9e7dec
VS
6564 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6565 return;
6566
2fa2fe9a 6567 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6568 if (!(tmp & PFIT_ENABLE))
6569 return;
2fa2fe9a 6570
06922821 6571 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6572 if (INTEL_INFO(dev)->gen < 4) {
6573 if (crtc->pipe != PIPE_B)
6574 return;
2fa2fe9a
DV
6575 } else {
6576 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6577 return;
6578 }
6579
06922821 6580 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6581 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6582 if (INTEL_INFO(dev)->gen < 5)
6583 pipe_config->gmch_pfit.lvds_border_bits =
6584 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6585}
6586
acbec814
JB
6587static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6588 struct intel_crtc_config *pipe_config)
6589{
6590 struct drm_device *dev = crtc->base.dev;
6591 struct drm_i915_private *dev_priv = dev->dev_private;
6592 int pipe = pipe_config->cpu_transcoder;
6593 intel_clock_t clock;
6594 u32 mdiv;
662c6ecb 6595 int refclk = 100000;
acbec814 6596
f573de5a
SK
6597 /* In case of MIPI DPLL will not even be used */
6598 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6599 return;
6600
acbec814 6601 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6602 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6603 mutex_unlock(&dev_priv->dpio_lock);
6604
6605 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6606 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6607 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6608 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6609 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6610
f646628b 6611 vlv_clock(refclk, &clock);
acbec814 6612
f646628b
VS
6613 /* clock.dot is the fast clock */
6614 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6615}
6616
1ad292b5
JB
6617static void i9xx_get_plane_config(struct intel_crtc *crtc,
6618 struct intel_plane_config *plane_config)
6619{
6620 struct drm_device *dev = crtc->base.dev;
6621 struct drm_i915_private *dev_priv = dev->dev_private;
6622 u32 val, base, offset;
6623 int pipe = crtc->pipe, plane = crtc->plane;
6624 int fourcc, pixel_format;
6625 int aligned_height;
6626
66e514c1
DA
6627 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6628 if (!crtc->base.primary->fb) {
1ad292b5
JB
6629 DRM_DEBUG_KMS("failed to alloc fb\n");
6630 return;
6631 }
6632
6633 val = I915_READ(DSPCNTR(plane));
6634
6635 if (INTEL_INFO(dev)->gen >= 4)
6636 if (val & DISPPLANE_TILED)
6637 plane_config->tiled = true;
6638
6639 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6640 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6641 crtc->base.primary->fb->pixel_format = fourcc;
6642 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6643 drm_format_plane_cpp(fourcc, 0) * 8;
6644
6645 if (INTEL_INFO(dev)->gen >= 4) {
6646 if (plane_config->tiled)
6647 offset = I915_READ(DSPTILEOFF(plane));
6648 else
6649 offset = I915_READ(DSPLINOFF(plane));
6650 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6651 } else {
6652 base = I915_READ(DSPADDR(plane));
6653 }
6654 plane_config->base = base;
6655
6656 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6657 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6658 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6659
6660 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6661 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6662
66e514c1 6663 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6664 plane_config->tiled);
6665
1267a26b
FF
6666 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6667 aligned_height);
1ad292b5
JB
6668
6669 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6670 pipe, plane, crtc->base.primary->fb->width,
6671 crtc->base.primary->fb->height,
6672 crtc->base.primary->fb->bits_per_pixel, base,
6673 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6674 plane_config->size);
6675
6676}
6677
70b23a98
VS
6678static void chv_crtc_clock_get(struct intel_crtc *crtc,
6679 struct intel_crtc_config *pipe_config)
6680{
6681 struct drm_device *dev = crtc->base.dev;
6682 struct drm_i915_private *dev_priv = dev->dev_private;
6683 int pipe = pipe_config->cpu_transcoder;
6684 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6685 intel_clock_t clock;
6686 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6687 int refclk = 100000;
6688
6689 mutex_lock(&dev_priv->dpio_lock);
6690 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6691 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6692 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6693 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6694 mutex_unlock(&dev_priv->dpio_lock);
6695
6696 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6697 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6698 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6699 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6700 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6701
6702 chv_clock(refclk, &clock);
6703
6704 /* clock.dot is the fast clock */
6705 pipe_config->port_clock = clock.dot / 5;
6706}
6707
0e8ffe1b
DV
6708static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6709 struct intel_crtc_config *pipe_config)
6710{
6711 struct drm_device *dev = crtc->base.dev;
6712 struct drm_i915_private *dev_priv = dev->dev_private;
6713 uint32_t tmp;
6714
f458ebbc
DV
6715 if (!intel_display_power_is_enabled(dev_priv,
6716 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6717 return false;
6718
e143a21c 6719 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6720 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6721
0e8ffe1b
DV
6722 tmp = I915_READ(PIPECONF(crtc->pipe));
6723 if (!(tmp & PIPECONF_ENABLE))
6724 return false;
6725
42571aef
VS
6726 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6727 switch (tmp & PIPECONF_BPC_MASK) {
6728 case PIPECONF_6BPC:
6729 pipe_config->pipe_bpp = 18;
6730 break;
6731 case PIPECONF_8BPC:
6732 pipe_config->pipe_bpp = 24;
6733 break;
6734 case PIPECONF_10BPC:
6735 pipe_config->pipe_bpp = 30;
6736 break;
6737 default:
6738 break;
6739 }
6740 }
6741
b5a9fa09
DV
6742 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6743 pipe_config->limited_color_range = true;
6744
282740f7
VS
6745 if (INTEL_INFO(dev)->gen < 4)
6746 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6747
1bd1bd80
DV
6748 intel_get_pipe_timings(crtc, pipe_config);
6749
2fa2fe9a
DV
6750 i9xx_get_pfit_config(crtc, pipe_config);
6751
6c49f241
DV
6752 if (INTEL_INFO(dev)->gen >= 4) {
6753 tmp = I915_READ(DPLL_MD(crtc->pipe));
6754 pipe_config->pixel_multiplier =
6755 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6756 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6757 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6758 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6759 tmp = I915_READ(DPLL(crtc->pipe));
6760 pipe_config->pixel_multiplier =
6761 ((tmp & SDVO_MULTIPLIER_MASK)
6762 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6763 } else {
6764 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6765 * port and will be fixed up in the encoder->get_config
6766 * function. */
6767 pipe_config->pixel_multiplier = 1;
6768 }
8bcc2795
DV
6769 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6770 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6771 /*
6772 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6773 * on 830. Filter it out here so that we don't
6774 * report errors due to that.
6775 */
6776 if (IS_I830(dev))
6777 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6778
8bcc2795
DV
6779 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6780 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6781 } else {
6782 /* Mask out read-only status bits. */
6783 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6784 DPLL_PORTC_READY_MASK |
6785 DPLL_PORTB_READY_MASK);
8bcc2795 6786 }
6c49f241 6787
70b23a98
VS
6788 if (IS_CHERRYVIEW(dev))
6789 chv_crtc_clock_get(crtc, pipe_config);
6790 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6791 vlv_crtc_clock_get(crtc, pipe_config);
6792 else
6793 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6794
0e8ffe1b
DV
6795 return true;
6796}
6797
dde86e2d 6798static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6799{
6800 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6801 struct intel_encoder *encoder;
74cfd7ac 6802 u32 val, final;
13d83a67 6803 bool has_lvds = false;
199e5d79 6804 bool has_cpu_edp = false;
199e5d79 6805 bool has_panel = false;
99eb6a01
KP
6806 bool has_ck505 = false;
6807 bool can_ssc = false;
13d83a67
JB
6808
6809 /* We need to take the global config into account */
b2784e15 6810 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6811 switch (encoder->type) {
6812 case INTEL_OUTPUT_LVDS:
6813 has_panel = true;
6814 has_lvds = true;
6815 break;
6816 case INTEL_OUTPUT_EDP:
6817 has_panel = true;
2de6905f 6818 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6819 has_cpu_edp = true;
6820 break;
6847d71b
PZ
6821 default:
6822 break;
13d83a67
JB
6823 }
6824 }
6825
99eb6a01 6826 if (HAS_PCH_IBX(dev)) {
41aa3448 6827 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6828 can_ssc = has_ck505;
6829 } else {
6830 has_ck505 = false;
6831 can_ssc = true;
6832 }
6833
2de6905f
ID
6834 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6835 has_panel, has_lvds, has_ck505);
13d83a67
JB
6836
6837 /* Ironlake: try to setup display ref clock before DPLL
6838 * enabling. This is only under driver's control after
6839 * PCH B stepping, previous chipset stepping should be
6840 * ignoring this setting.
6841 */
74cfd7ac
CW
6842 val = I915_READ(PCH_DREF_CONTROL);
6843
6844 /* As we must carefully and slowly disable/enable each source in turn,
6845 * compute the final state we want first and check if we need to
6846 * make any changes at all.
6847 */
6848 final = val;
6849 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6850 if (has_ck505)
6851 final |= DREF_NONSPREAD_CK505_ENABLE;
6852 else
6853 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6854
6855 final &= ~DREF_SSC_SOURCE_MASK;
6856 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6857 final &= ~DREF_SSC1_ENABLE;
6858
6859 if (has_panel) {
6860 final |= DREF_SSC_SOURCE_ENABLE;
6861
6862 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6863 final |= DREF_SSC1_ENABLE;
6864
6865 if (has_cpu_edp) {
6866 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6867 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6868 else
6869 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6870 } else
6871 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6872 } else {
6873 final |= DREF_SSC_SOURCE_DISABLE;
6874 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6875 }
6876
6877 if (final == val)
6878 return;
6879
13d83a67 6880 /* Always enable nonspread source */
74cfd7ac 6881 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6882
99eb6a01 6883 if (has_ck505)
74cfd7ac 6884 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6885 else
74cfd7ac 6886 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6887
199e5d79 6888 if (has_panel) {
74cfd7ac
CW
6889 val &= ~DREF_SSC_SOURCE_MASK;
6890 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6891
199e5d79 6892 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6893 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6894 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6895 val |= DREF_SSC1_ENABLE;
e77166b5 6896 } else
74cfd7ac 6897 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6898
6899 /* Get SSC going before enabling the outputs */
74cfd7ac 6900 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6901 POSTING_READ(PCH_DREF_CONTROL);
6902 udelay(200);
6903
74cfd7ac 6904 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6905
6906 /* Enable CPU source on CPU attached eDP */
199e5d79 6907 if (has_cpu_edp) {
99eb6a01 6908 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6909 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6910 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6911 } else
74cfd7ac 6912 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6913 } else
74cfd7ac 6914 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6915
74cfd7ac 6916 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6917 POSTING_READ(PCH_DREF_CONTROL);
6918 udelay(200);
6919 } else {
6920 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6921
74cfd7ac 6922 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6923
6924 /* Turn off CPU output */
74cfd7ac 6925 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6926
74cfd7ac 6927 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6928 POSTING_READ(PCH_DREF_CONTROL);
6929 udelay(200);
6930
6931 /* Turn off the SSC source */
74cfd7ac
CW
6932 val &= ~DREF_SSC_SOURCE_MASK;
6933 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6934
6935 /* Turn off SSC1 */
74cfd7ac 6936 val &= ~DREF_SSC1_ENABLE;
199e5d79 6937
74cfd7ac 6938 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6939 POSTING_READ(PCH_DREF_CONTROL);
6940 udelay(200);
6941 }
74cfd7ac
CW
6942
6943 BUG_ON(val != final);
13d83a67
JB
6944}
6945
f31f2d55 6946static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6947{
f31f2d55 6948 uint32_t tmp;
dde86e2d 6949
0ff066a9
PZ
6950 tmp = I915_READ(SOUTH_CHICKEN2);
6951 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6952 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6953
0ff066a9
PZ
6954 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6955 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6956 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6957
0ff066a9
PZ
6958 tmp = I915_READ(SOUTH_CHICKEN2);
6959 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6960 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6961
0ff066a9
PZ
6962 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6963 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6964 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6965}
6966
6967/* WaMPhyProgramming:hsw */
6968static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6969{
6970 uint32_t tmp;
dde86e2d
PZ
6971
6972 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6973 tmp &= ~(0xFF << 24);
6974 tmp |= (0x12 << 24);
6975 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6976
dde86e2d
PZ
6977 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6978 tmp |= (1 << 11);
6979 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6980
6981 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6982 tmp |= (1 << 11);
6983 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6984
dde86e2d
PZ
6985 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6986 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6987 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6988
6989 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6990 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6991 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6992
0ff066a9
PZ
6993 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6994 tmp &= ~(7 << 13);
6995 tmp |= (5 << 13);
6996 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6997
0ff066a9
PZ
6998 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6999 tmp &= ~(7 << 13);
7000 tmp |= (5 << 13);
7001 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
7002
7003 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7004 tmp &= ~0xFF;
7005 tmp |= 0x1C;
7006 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7007
7008 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7009 tmp &= ~0xFF;
7010 tmp |= 0x1C;
7011 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7012
7013 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7014 tmp &= ~(0xFF << 16);
7015 tmp |= (0x1C << 16);
7016 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7017
7018 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7019 tmp &= ~(0xFF << 16);
7020 tmp |= (0x1C << 16);
7021 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7022
0ff066a9
PZ
7023 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7024 tmp |= (1 << 27);
7025 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 7026
0ff066a9
PZ
7027 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7028 tmp |= (1 << 27);
7029 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7030
0ff066a9
PZ
7031 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7032 tmp &= ~(0xF << 28);
7033 tmp |= (4 << 28);
7034 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7035
0ff066a9
PZ
7036 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7037 tmp &= ~(0xF << 28);
7038 tmp |= (4 << 28);
7039 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7040}
7041
2fa86a1f
PZ
7042/* Implements 3 different sequences from BSpec chapter "Display iCLK
7043 * Programming" based on the parameters passed:
7044 * - Sequence to enable CLKOUT_DP
7045 * - Sequence to enable CLKOUT_DP without spread
7046 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7047 */
7048static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7049 bool with_fdi)
f31f2d55
PZ
7050{
7051 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7052 uint32_t reg, tmp;
7053
7054 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7055 with_spread = true;
7056 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7057 with_fdi, "LP PCH doesn't have FDI\n"))
7058 with_fdi = false;
f31f2d55
PZ
7059
7060 mutex_lock(&dev_priv->dpio_lock);
7061
7062 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7063 tmp &= ~SBI_SSCCTL_DISABLE;
7064 tmp |= SBI_SSCCTL_PATHALT;
7065 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7066
7067 udelay(24);
7068
2fa86a1f
PZ
7069 if (with_spread) {
7070 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7071 tmp &= ~SBI_SSCCTL_PATHALT;
7072 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7073
2fa86a1f
PZ
7074 if (with_fdi) {
7075 lpt_reset_fdi_mphy(dev_priv);
7076 lpt_program_fdi_mphy(dev_priv);
7077 }
7078 }
dde86e2d 7079
2fa86a1f
PZ
7080 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7081 SBI_GEN0 : SBI_DBUFF0;
7082 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7083 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7084 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7085
7086 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7087}
7088
47701c3b
PZ
7089/* Sequence to disable CLKOUT_DP */
7090static void lpt_disable_clkout_dp(struct drm_device *dev)
7091{
7092 struct drm_i915_private *dev_priv = dev->dev_private;
7093 uint32_t reg, tmp;
7094
7095 mutex_lock(&dev_priv->dpio_lock);
7096
7097 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7098 SBI_GEN0 : SBI_DBUFF0;
7099 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7100 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7101 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7102
7103 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7104 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7105 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7106 tmp |= SBI_SSCCTL_PATHALT;
7107 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7108 udelay(32);
7109 }
7110 tmp |= SBI_SSCCTL_DISABLE;
7111 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7112 }
7113
7114 mutex_unlock(&dev_priv->dpio_lock);
7115}
7116
bf8fa3d3
PZ
7117static void lpt_init_pch_refclk(struct drm_device *dev)
7118{
bf8fa3d3
PZ
7119 struct intel_encoder *encoder;
7120 bool has_vga = false;
7121
b2784e15 7122 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7123 switch (encoder->type) {
7124 case INTEL_OUTPUT_ANALOG:
7125 has_vga = true;
7126 break;
6847d71b
PZ
7127 default:
7128 break;
bf8fa3d3
PZ
7129 }
7130 }
7131
47701c3b
PZ
7132 if (has_vga)
7133 lpt_enable_clkout_dp(dev, true, true);
7134 else
7135 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7136}
7137
dde86e2d
PZ
7138/*
7139 * Initialize reference clocks when the driver loads
7140 */
7141void intel_init_pch_refclk(struct drm_device *dev)
7142{
7143 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7144 ironlake_init_pch_refclk(dev);
7145 else if (HAS_PCH_LPT(dev))
7146 lpt_init_pch_refclk(dev);
7147}
7148
d9d444cb
JB
7149static int ironlake_get_refclk(struct drm_crtc *crtc)
7150{
7151 struct drm_device *dev = crtc->dev;
7152 struct drm_i915_private *dev_priv = dev->dev_private;
7153 struct intel_encoder *encoder;
d9d444cb
JB
7154 int num_connectors = 0;
7155 bool is_lvds = false;
7156
d0737e1d
ACO
7157 for_each_intel_encoder(dev, encoder) {
7158 if (encoder->new_crtc != to_intel_crtc(crtc))
7159 continue;
7160
d9d444cb
JB
7161 switch (encoder->type) {
7162 case INTEL_OUTPUT_LVDS:
7163 is_lvds = true;
7164 break;
6847d71b
PZ
7165 default:
7166 break;
d9d444cb
JB
7167 }
7168 num_connectors++;
7169 }
7170
7171 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7172 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7173 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7174 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7175 }
7176
7177 return 120000;
7178}
7179
6ff93609 7180static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7181{
c8203565 7182 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7184 int pipe = intel_crtc->pipe;
c8203565
PZ
7185 uint32_t val;
7186
78114071 7187 val = 0;
c8203565 7188
965e0c48 7189 switch (intel_crtc->config.pipe_bpp) {
c8203565 7190 case 18:
dfd07d72 7191 val |= PIPECONF_6BPC;
c8203565
PZ
7192 break;
7193 case 24:
dfd07d72 7194 val |= PIPECONF_8BPC;
c8203565
PZ
7195 break;
7196 case 30:
dfd07d72 7197 val |= PIPECONF_10BPC;
c8203565
PZ
7198 break;
7199 case 36:
dfd07d72 7200 val |= PIPECONF_12BPC;
c8203565
PZ
7201 break;
7202 default:
cc769b62
PZ
7203 /* Case prevented by intel_choose_pipe_bpp_dither. */
7204 BUG();
c8203565
PZ
7205 }
7206
d8b32247 7207 if (intel_crtc->config.dither)
c8203565
PZ
7208 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7209
6ff93609 7210 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7211 val |= PIPECONF_INTERLACED_ILK;
7212 else
7213 val |= PIPECONF_PROGRESSIVE;
7214
50f3b016 7215 if (intel_crtc->config.limited_color_range)
3685a8f3 7216 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7217
c8203565
PZ
7218 I915_WRITE(PIPECONF(pipe), val);
7219 POSTING_READ(PIPECONF(pipe));
7220}
7221
86d3efce
VS
7222/*
7223 * Set up the pipe CSC unit.
7224 *
7225 * Currently only full range RGB to limited range RGB conversion
7226 * is supported, but eventually this should handle various
7227 * RGB<->YCbCr scenarios as well.
7228 */
50f3b016 7229static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7230{
7231 struct drm_device *dev = crtc->dev;
7232 struct drm_i915_private *dev_priv = dev->dev_private;
7233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7234 int pipe = intel_crtc->pipe;
7235 uint16_t coeff = 0x7800; /* 1.0 */
7236
7237 /*
7238 * TODO: Check what kind of values actually come out of the pipe
7239 * with these coeff/postoff values and adjust to get the best
7240 * accuracy. Perhaps we even need to take the bpc value into
7241 * consideration.
7242 */
7243
50f3b016 7244 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7245 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7246
7247 /*
7248 * GY/GU and RY/RU should be the other way around according
7249 * to BSpec, but reality doesn't agree. Just set them up in
7250 * a way that results in the correct picture.
7251 */
7252 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7253 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7254
7255 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7256 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7257
7258 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7259 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7260
7261 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7262 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7263 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7264
7265 if (INTEL_INFO(dev)->gen > 6) {
7266 uint16_t postoff = 0;
7267
50f3b016 7268 if (intel_crtc->config.limited_color_range)
32cf0cb0 7269 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7270
7271 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7272 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7273 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7274
7275 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7276 } else {
7277 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7278
50f3b016 7279 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7280 mode |= CSC_BLACK_SCREEN_OFFSET;
7281
7282 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7283 }
7284}
7285
6ff93609 7286static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7287{
756f85cf
PZ
7288 struct drm_device *dev = crtc->dev;
7289 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7290 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7291 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7292 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7293 uint32_t val;
7294
3eff4faa 7295 val = 0;
ee2b0b38 7296
756f85cf 7297 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7298 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7299
6ff93609 7300 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7301 val |= PIPECONF_INTERLACED_ILK;
7302 else
7303 val |= PIPECONF_PROGRESSIVE;
7304
702e7a56
PZ
7305 I915_WRITE(PIPECONF(cpu_transcoder), val);
7306 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7307
7308 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7309 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7310
3cdf122c 7311 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7312 val = 0;
7313
7314 switch (intel_crtc->config.pipe_bpp) {
7315 case 18:
7316 val |= PIPEMISC_DITHER_6_BPC;
7317 break;
7318 case 24:
7319 val |= PIPEMISC_DITHER_8_BPC;
7320 break;
7321 case 30:
7322 val |= PIPEMISC_DITHER_10_BPC;
7323 break;
7324 case 36:
7325 val |= PIPEMISC_DITHER_12_BPC;
7326 break;
7327 default:
7328 /* Case prevented by pipe_config_set_bpp. */
7329 BUG();
7330 }
7331
7332 if (intel_crtc->config.dither)
7333 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7334
7335 I915_WRITE(PIPEMISC(pipe), val);
7336 }
ee2b0b38
PZ
7337}
7338
6591c6e4 7339static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7340 intel_clock_t *clock,
7341 bool *has_reduced_clock,
7342 intel_clock_t *reduced_clock)
7343{
7344 struct drm_device *dev = crtc->dev;
7345 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7347 int refclk;
d4906093 7348 const intel_limit_t *limit;
a16af721 7349 bool ret, is_lvds = false;
79e53945 7350
d0737e1d 7351 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7352
d9d444cb 7353 refclk = ironlake_get_refclk(crtc);
79e53945 7354
d4906093
ML
7355 /*
7356 * Returns a set of divisors for the desired target clock with the given
7357 * refclk, or FALSE. The returned values represent the clock equation:
7358 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7359 */
409ee761 7360 limit = intel_limit(intel_crtc, refclk);
a919ff14 7361 ret = dev_priv->display.find_dpll(limit, intel_crtc,
d0737e1d 7362 intel_crtc->new_config->port_clock,
ee9300bb 7363 refclk, NULL, clock);
6591c6e4
PZ
7364 if (!ret)
7365 return false;
cda4b7d3 7366
ddc9003c 7367 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7368 /*
7369 * Ensure we match the reduced clock's P to the target clock.
7370 * If the clocks don't match, we can't switch the display clock
7371 * by using the FP0/FP1. In such case we will disable the LVDS
7372 * downclock feature.
7373 */
ee9300bb 7374 *has_reduced_clock =
a919ff14 7375 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7376 dev_priv->lvds_downclock,
7377 refclk, clock,
7378 reduced_clock);
652c393a 7379 }
61e9653f 7380
6591c6e4
PZ
7381 return true;
7382}
7383
d4b1931c
PZ
7384int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7385{
7386 /*
7387 * Account for spread spectrum to avoid
7388 * oversubscribing the link. Max center spread
7389 * is 2.5%; use 5% for safety's sake.
7390 */
7391 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7392 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7393}
7394
7429e9d4 7395static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7396{
7429e9d4 7397 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7398}
7399
de13a2e3 7400static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7401 u32 *fp,
9a7c7890 7402 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7403{
de13a2e3 7404 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7405 struct drm_device *dev = crtc->dev;
7406 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7407 struct intel_encoder *intel_encoder;
7408 uint32_t dpll;
6cc5f341 7409 int factor, num_connectors = 0;
09ede541 7410 bool is_lvds = false, is_sdvo = false;
79e53945 7411
d0737e1d
ACO
7412 for_each_intel_encoder(dev, intel_encoder) {
7413 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7414 continue;
7415
de13a2e3 7416 switch (intel_encoder->type) {
79e53945
JB
7417 case INTEL_OUTPUT_LVDS:
7418 is_lvds = true;
7419 break;
7420 case INTEL_OUTPUT_SDVO:
7d57382e 7421 case INTEL_OUTPUT_HDMI:
79e53945 7422 is_sdvo = true;
79e53945 7423 break;
6847d71b
PZ
7424 default:
7425 break;
79e53945 7426 }
43565a06 7427
c751ce4f 7428 num_connectors++;
79e53945 7429 }
79e53945 7430
c1858123 7431 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7432 factor = 21;
7433 if (is_lvds) {
7434 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7435 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7436 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7437 factor = 25;
d0737e1d 7438 } else if (intel_crtc->new_config->sdvo_tv_clock)
8febb297 7439 factor = 20;
c1858123 7440
d0737e1d 7441 if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7d0ac5b7 7442 *fp |= FP_CB_TUNE;
2c07245f 7443
9a7c7890
DV
7444 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7445 *fp2 |= FP_CB_TUNE;
7446
5eddb70b 7447 dpll = 0;
2c07245f 7448
a07d6787
EA
7449 if (is_lvds)
7450 dpll |= DPLLB_MODE_LVDS;
7451 else
7452 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7453
d0737e1d 7454 dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
ef1b460d 7455 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7456
7457 if (is_sdvo)
4a33e48d 7458 dpll |= DPLL_SDVO_HIGH_SPEED;
d0737e1d 7459 if (intel_crtc->new_config->has_dp_encoder)
4a33e48d 7460 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7461
a07d6787 7462 /* compute bitmask from p1 value */
d0737e1d 7463 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7464 /* also FPA1 */
d0737e1d 7465 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7466
d0737e1d 7467 switch (intel_crtc->new_config->dpll.p2) {
a07d6787
EA
7468 case 5:
7469 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7470 break;
7471 case 7:
7472 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7473 break;
7474 case 10:
7475 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7476 break;
7477 case 14:
7478 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7479 break;
79e53945
JB
7480 }
7481
b4c09f3b 7482 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7483 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7484 else
7485 dpll |= PLL_REF_INPUT_DREFCLK;
7486
959e16d6 7487 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7488}
7489
3fb37703 7490static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
de13a2e3 7491{
c7653199 7492 struct drm_device *dev = crtc->base.dev;
de13a2e3 7493 intel_clock_t clock, reduced_clock;
cbbab5bd 7494 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7495 bool ok, has_reduced_clock = false;
8b47047b 7496 bool is_lvds = false;
e2b78267 7497 struct intel_shared_dpll *pll;
de13a2e3 7498
409ee761 7499 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7500
5dc5298b
PZ
7501 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7502 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7503
c7653199 7504 ok = ironlake_compute_clocks(&crtc->base, &clock,
de13a2e3 7505 &has_reduced_clock, &reduced_clock);
d0737e1d 7506 if (!ok && !crtc->new_config->clock_set) {
de13a2e3
PZ
7507 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7508 return -EINVAL;
79e53945 7509 }
f47709a9 7510 /* Compat-code for transition, will disappear. */
d0737e1d
ACO
7511 if (!crtc->new_config->clock_set) {
7512 crtc->new_config->dpll.n = clock.n;
7513 crtc->new_config->dpll.m1 = clock.m1;
7514 crtc->new_config->dpll.m2 = clock.m2;
7515 crtc->new_config->dpll.p1 = clock.p1;
7516 crtc->new_config->dpll.p2 = clock.p2;
f47709a9 7517 }
79e53945 7518
5dc5298b 7519 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
d0737e1d
ACO
7520 if (crtc->new_config->has_pch_encoder) {
7521 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
cbbab5bd 7522 if (has_reduced_clock)
7429e9d4 7523 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7524
c7653199 7525 dpll = ironlake_compute_dpll(crtc,
cbbab5bd
DV
7526 &fp, &reduced_clock,
7527 has_reduced_clock ? &fp2 : NULL);
7528
d0737e1d
ACO
7529 crtc->new_config->dpll_hw_state.dpll = dpll;
7530 crtc->new_config->dpll_hw_state.fp0 = fp;
66e985c0 7531 if (has_reduced_clock)
d0737e1d 7532 crtc->new_config->dpll_hw_state.fp1 = fp2;
66e985c0 7533 else
d0737e1d 7534 crtc->new_config->dpll_hw_state.fp1 = fp;
66e985c0 7535
c7653199 7536 pll = intel_get_shared_dpll(crtc);
ee7b9f93 7537 if (pll == NULL) {
84f44ce7 7538 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7539 pipe_name(crtc->pipe));
4b645f14
JB
7540 return -EINVAL;
7541 }
3fb37703 7542 }
79e53945 7543
d330a953 7544 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7545 crtc->lowfreq_avail = true;
bcd644e0 7546 else
c7653199 7547 crtc->lowfreq_avail = false;
e2b78267 7548
c8f7a0db 7549 return 0;
79e53945
JB
7550}
7551
eb14cb74
VS
7552static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7553 struct intel_link_m_n *m_n)
7554{
7555 struct drm_device *dev = crtc->base.dev;
7556 struct drm_i915_private *dev_priv = dev->dev_private;
7557 enum pipe pipe = crtc->pipe;
7558
7559 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7560 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7561 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7562 & ~TU_SIZE_MASK;
7563 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7564 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7565 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7566}
7567
7568static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7569 enum transcoder transcoder,
b95af8be
VK
7570 struct intel_link_m_n *m_n,
7571 struct intel_link_m_n *m2_n2)
72419203
DV
7572{
7573 struct drm_device *dev = crtc->base.dev;
7574 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7575 enum pipe pipe = crtc->pipe;
72419203 7576
eb14cb74
VS
7577 if (INTEL_INFO(dev)->gen >= 5) {
7578 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7579 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7580 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7581 & ~TU_SIZE_MASK;
7582 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7583 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7584 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7585 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7586 * gen < 8) and if DRRS is supported (to make sure the
7587 * registers are not unnecessarily read).
7588 */
7589 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7590 crtc->config.has_drrs) {
7591 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7592 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7593 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7594 & ~TU_SIZE_MASK;
7595 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7596 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7597 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7598 }
eb14cb74
VS
7599 } else {
7600 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7601 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7602 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7603 & ~TU_SIZE_MASK;
7604 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7605 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7606 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7607 }
7608}
7609
7610void intel_dp_get_m_n(struct intel_crtc *crtc,
7611 struct intel_crtc_config *pipe_config)
7612{
7613 if (crtc->config.has_pch_encoder)
7614 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7615 else
7616 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7617 &pipe_config->dp_m_n,
7618 &pipe_config->dp_m2_n2);
eb14cb74 7619}
72419203 7620
eb14cb74
VS
7621static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7622 struct intel_crtc_config *pipe_config)
7623{
7624 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7625 &pipe_config->fdi_m_n, NULL);
72419203
DV
7626}
7627
bd2e244f
JB
7628static void skylake_get_pfit_config(struct intel_crtc *crtc,
7629 struct intel_crtc_config *pipe_config)
7630{
7631 struct drm_device *dev = crtc->base.dev;
7632 struct drm_i915_private *dev_priv = dev->dev_private;
7633 uint32_t tmp;
7634
7635 tmp = I915_READ(PS_CTL(crtc->pipe));
7636
7637 if (tmp & PS_ENABLE) {
7638 pipe_config->pch_pfit.enabled = true;
7639 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7640 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7641 }
7642}
7643
2fa2fe9a
DV
7644static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7645 struct intel_crtc_config *pipe_config)
7646{
7647 struct drm_device *dev = crtc->base.dev;
7648 struct drm_i915_private *dev_priv = dev->dev_private;
7649 uint32_t tmp;
7650
7651 tmp = I915_READ(PF_CTL(crtc->pipe));
7652
7653 if (tmp & PF_ENABLE) {
fd4daa9c 7654 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7655 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7656 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7657
7658 /* We currently do not free assignements of panel fitters on
7659 * ivb/hsw (since we don't use the higher upscaling modes which
7660 * differentiates them) so just WARN about this case for now. */
7661 if (IS_GEN7(dev)) {
7662 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7663 PF_PIPE_SEL_IVB(crtc->pipe));
7664 }
2fa2fe9a 7665 }
79e53945
JB
7666}
7667
4c6baa59
JB
7668static void ironlake_get_plane_config(struct intel_crtc *crtc,
7669 struct intel_plane_config *plane_config)
7670{
7671 struct drm_device *dev = crtc->base.dev;
7672 struct drm_i915_private *dev_priv = dev->dev_private;
7673 u32 val, base, offset;
7674 int pipe = crtc->pipe, plane = crtc->plane;
7675 int fourcc, pixel_format;
7676 int aligned_height;
7677
66e514c1
DA
7678 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7679 if (!crtc->base.primary->fb) {
4c6baa59
JB
7680 DRM_DEBUG_KMS("failed to alloc fb\n");
7681 return;
7682 }
7683
7684 val = I915_READ(DSPCNTR(plane));
7685
7686 if (INTEL_INFO(dev)->gen >= 4)
7687 if (val & DISPPLANE_TILED)
7688 plane_config->tiled = true;
7689
7690 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7691 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7692 crtc->base.primary->fb->pixel_format = fourcc;
7693 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7694 drm_format_plane_cpp(fourcc, 0) * 8;
7695
7696 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7697 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7698 offset = I915_READ(DSPOFFSET(plane));
7699 } else {
7700 if (plane_config->tiled)
7701 offset = I915_READ(DSPTILEOFF(plane));
7702 else
7703 offset = I915_READ(DSPLINOFF(plane));
7704 }
7705 plane_config->base = base;
7706
7707 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7708 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7709 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7710
7711 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7712 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7713
66e514c1 7714 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7715 plane_config->tiled);
7716
1267a26b
FF
7717 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7718 aligned_height);
4c6baa59
JB
7719
7720 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7721 pipe, plane, crtc->base.primary->fb->width,
7722 crtc->base.primary->fb->height,
7723 crtc->base.primary->fb->bits_per_pixel, base,
7724 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7725 plane_config->size);
7726}
7727
0e8ffe1b
DV
7728static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7729 struct intel_crtc_config *pipe_config)
7730{
7731 struct drm_device *dev = crtc->base.dev;
7732 struct drm_i915_private *dev_priv = dev->dev_private;
7733 uint32_t tmp;
7734
f458ebbc
DV
7735 if (!intel_display_power_is_enabled(dev_priv,
7736 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7737 return false;
7738
e143a21c 7739 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7740 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7741
0e8ffe1b
DV
7742 tmp = I915_READ(PIPECONF(crtc->pipe));
7743 if (!(tmp & PIPECONF_ENABLE))
7744 return false;
7745
42571aef
VS
7746 switch (tmp & PIPECONF_BPC_MASK) {
7747 case PIPECONF_6BPC:
7748 pipe_config->pipe_bpp = 18;
7749 break;
7750 case PIPECONF_8BPC:
7751 pipe_config->pipe_bpp = 24;
7752 break;
7753 case PIPECONF_10BPC:
7754 pipe_config->pipe_bpp = 30;
7755 break;
7756 case PIPECONF_12BPC:
7757 pipe_config->pipe_bpp = 36;
7758 break;
7759 default:
7760 break;
7761 }
7762
b5a9fa09
DV
7763 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7764 pipe_config->limited_color_range = true;
7765
ab9412ba 7766 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7767 struct intel_shared_dpll *pll;
7768
88adfff1
DV
7769 pipe_config->has_pch_encoder = true;
7770
627eb5a3
DV
7771 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7772 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7773 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7774
7775 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7776
c0d43d62 7777 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7778 pipe_config->shared_dpll =
7779 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7780 } else {
7781 tmp = I915_READ(PCH_DPLL_SEL);
7782 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7783 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7784 else
7785 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7786 }
66e985c0
DV
7787
7788 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7789
7790 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7791 &pipe_config->dpll_hw_state));
c93f54cf
DV
7792
7793 tmp = pipe_config->dpll_hw_state.dpll;
7794 pipe_config->pixel_multiplier =
7795 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7796 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7797
7798 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7799 } else {
7800 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7801 }
7802
1bd1bd80
DV
7803 intel_get_pipe_timings(crtc, pipe_config);
7804
2fa2fe9a
DV
7805 ironlake_get_pfit_config(crtc, pipe_config);
7806
0e8ffe1b
DV
7807 return true;
7808}
7809
be256dc7
PZ
7810static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7811{
7812 struct drm_device *dev = dev_priv->dev;
be256dc7 7813 struct intel_crtc *crtc;
be256dc7 7814
d3fcc808 7815 for_each_intel_crtc(dev, crtc)
798183c5 7816 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7817 pipe_name(crtc->pipe));
7818
7819 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7820 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7821 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7822 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7823 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7824 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7825 "CPU PWM1 enabled\n");
c5107b87
PZ
7826 if (IS_HASWELL(dev))
7827 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7828 "CPU PWM2 enabled\n");
be256dc7
PZ
7829 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7830 "PCH PWM1 enabled\n");
7831 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7832 "Utility pin enabled\n");
7833 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7834
9926ada1
PZ
7835 /*
7836 * In theory we can still leave IRQs enabled, as long as only the HPD
7837 * interrupts remain enabled. We used to check for that, but since it's
7838 * gen-specific and since we only disable LCPLL after we fully disable
7839 * the interrupts, the check below should be enough.
7840 */
9df7575f 7841 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7842}
7843
9ccd5aeb
PZ
7844static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7845{
7846 struct drm_device *dev = dev_priv->dev;
7847
7848 if (IS_HASWELL(dev))
7849 return I915_READ(D_COMP_HSW);
7850 else
7851 return I915_READ(D_COMP_BDW);
7852}
7853
3c4c9b81
PZ
7854static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7855{
7856 struct drm_device *dev = dev_priv->dev;
7857
7858 if (IS_HASWELL(dev)) {
7859 mutex_lock(&dev_priv->rps.hw_lock);
7860 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7861 val))
f475dadf 7862 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7863 mutex_unlock(&dev_priv->rps.hw_lock);
7864 } else {
9ccd5aeb
PZ
7865 I915_WRITE(D_COMP_BDW, val);
7866 POSTING_READ(D_COMP_BDW);
3c4c9b81 7867 }
be256dc7
PZ
7868}
7869
7870/*
7871 * This function implements pieces of two sequences from BSpec:
7872 * - Sequence for display software to disable LCPLL
7873 * - Sequence for display software to allow package C8+
7874 * The steps implemented here are just the steps that actually touch the LCPLL
7875 * register. Callers should take care of disabling all the display engine
7876 * functions, doing the mode unset, fixing interrupts, etc.
7877 */
6ff58d53
PZ
7878static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7879 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7880{
7881 uint32_t val;
7882
7883 assert_can_disable_lcpll(dev_priv);
7884
7885 val = I915_READ(LCPLL_CTL);
7886
7887 if (switch_to_fclk) {
7888 val |= LCPLL_CD_SOURCE_FCLK;
7889 I915_WRITE(LCPLL_CTL, val);
7890
7891 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7892 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7893 DRM_ERROR("Switching to FCLK failed\n");
7894
7895 val = I915_READ(LCPLL_CTL);
7896 }
7897
7898 val |= LCPLL_PLL_DISABLE;
7899 I915_WRITE(LCPLL_CTL, val);
7900 POSTING_READ(LCPLL_CTL);
7901
7902 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7903 DRM_ERROR("LCPLL still locked\n");
7904
9ccd5aeb 7905 val = hsw_read_dcomp(dev_priv);
be256dc7 7906 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7907 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7908 ndelay(100);
7909
9ccd5aeb
PZ
7910 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7911 1))
be256dc7
PZ
7912 DRM_ERROR("D_COMP RCOMP still in progress\n");
7913
7914 if (allow_power_down) {
7915 val = I915_READ(LCPLL_CTL);
7916 val |= LCPLL_POWER_DOWN_ALLOW;
7917 I915_WRITE(LCPLL_CTL, val);
7918 POSTING_READ(LCPLL_CTL);
7919 }
7920}
7921
7922/*
7923 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7924 * source.
7925 */
6ff58d53 7926static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7927{
7928 uint32_t val;
7929
7930 val = I915_READ(LCPLL_CTL);
7931
7932 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7933 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7934 return;
7935
a8a8bd54
PZ
7936 /*
7937 * Make sure we're not on PC8 state before disabling PC8, otherwise
7938 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7939 *
7940 * The other problem is that hsw_restore_lcpll() is called as part of
7941 * the runtime PM resume sequence, so we can't just call
7942 * gen6_gt_force_wake_get() because that function calls
7943 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7944 * while we are on the resume sequence. So to solve this problem we have
7945 * to call special forcewake code that doesn't touch runtime PM and
7946 * doesn't enable the forcewake delayed work.
7947 */
d2e40e27 7948 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7949 if (dev_priv->uncore.forcewake_count++ == 0)
7950 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
d2e40e27 7951 spin_unlock_irq(&dev_priv->uncore.lock);
215733fa 7952
be256dc7
PZ
7953 if (val & LCPLL_POWER_DOWN_ALLOW) {
7954 val &= ~LCPLL_POWER_DOWN_ALLOW;
7955 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7956 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7957 }
7958
9ccd5aeb 7959 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7960 val |= D_COMP_COMP_FORCE;
7961 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7962 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7963
7964 val = I915_READ(LCPLL_CTL);
7965 val &= ~LCPLL_PLL_DISABLE;
7966 I915_WRITE(LCPLL_CTL, val);
7967
7968 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7969 DRM_ERROR("LCPLL not locked yet\n");
7970
7971 if (val & LCPLL_CD_SOURCE_FCLK) {
7972 val = I915_READ(LCPLL_CTL);
7973 val &= ~LCPLL_CD_SOURCE_FCLK;
7974 I915_WRITE(LCPLL_CTL, val);
7975
7976 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7977 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7978 DRM_ERROR("Switching back to LCPLL failed\n");
7979 }
215733fa 7980
a8a8bd54 7981 /* See the big comment above. */
d2e40e27 7982 spin_lock_irq(&dev_priv->uncore.lock);
a8a8bd54
PZ
7983 if (--dev_priv->uncore.forcewake_count == 0)
7984 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
d2e40e27 7985 spin_unlock_irq(&dev_priv->uncore.lock);
be256dc7
PZ
7986}
7987
765dab67
PZ
7988/*
7989 * Package states C8 and deeper are really deep PC states that can only be
7990 * reached when all the devices on the system allow it, so even if the graphics
7991 * device allows PC8+, it doesn't mean the system will actually get to these
7992 * states. Our driver only allows PC8+ when going into runtime PM.
7993 *
7994 * The requirements for PC8+ are that all the outputs are disabled, the power
7995 * well is disabled and most interrupts are disabled, and these are also
7996 * requirements for runtime PM. When these conditions are met, we manually do
7997 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7998 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7999 * hang the machine.
8000 *
8001 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8002 * the state of some registers, so when we come back from PC8+ we need to
8003 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8004 * need to take care of the registers kept by RC6. Notice that this happens even
8005 * if we don't put the device in PCI D3 state (which is what currently happens
8006 * because of the runtime PM support).
8007 *
8008 * For more, read "Display Sequences for Package C8" on the hardware
8009 * documentation.
8010 */
a14cb6fc 8011void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8012{
c67a470b
PZ
8013 struct drm_device *dev = dev_priv->dev;
8014 uint32_t val;
8015
c67a470b
PZ
8016 DRM_DEBUG_KMS("Enabling package C8+\n");
8017
c67a470b
PZ
8018 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8019 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8020 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8021 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8022 }
8023
8024 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8025 hsw_disable_lcpll(dev_priv, true, true);
8026}
8027
a14cb6fc 8028void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8029{
8030 struct drm_device *dev = dev_priv->dev;
8031 uint32_t val;
8032
c67a470b
PZ
8033 DRM_DEBUG_KMS("Disabling package C8+\n");
8034
8035 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8036 lpt_init_pch_refclk(dev);
8037
8038 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8039 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8040 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8041 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8042 }
8043
8044 intel_prepare_ddi(dev);
c67a470b
PZ
8045}
8046
797d0259 8047static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
09b4ddf9 8048{
c7653199 8049 if (!intel_ddi_pll_select(crtc))
6441ab5f 8050 return -EINVAL;
716c2e55 8051
c7653199 8052 crtc->lowfreq_avail = false;
644cef34 8053
c8f7a0db 8054 return 0;
79e53945
JB
8055}
8056
96b7dfb7
S
8057static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8058 enum port port,
8059 struct intel_crtc_config *pipe_config)
8060{
3148ade7 8061 u32 temp, dpll_ctl1;
96b7dfb7
S
8062
8063 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8064 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8065
8066 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8067 case SKL_DPLL0:
8068 /*
8069 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8070 * of the shared DPLL framework and thus needs to be read out
8071 * separately
8072 */
8073 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8074 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8075 break;
96b7dfb7
S
8076 case SKL_DPLL1:
8077 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8078 break;
8079 case SKL_DPLL2:
8080 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8081 break;
8082 case SKL_DPLL3:
8083 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8084 break;
96b7dfb7
S
8085 }
8086}
8087
7d2c8175
DL
8088static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8089 enum port port,
8090 struct intel_crtc_config *pipe_config)
8091{
8092 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8093
8094 switch (pipe_config->ddi_pll_sel) {
8095 case PORT_CLK_SEL_WRPLL1:
8096 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8097 break;
8098 case PORT_CLK_SEL_WRPLL2:
8099 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8100 break;
8101 }
8102}
8103
26804afd
DV
8104static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8105 struct intel_crtc_config *pipe_config)
8106{
8107 struct drm_device *dev = crtc->base.dev;
8108 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8109 struct intel_shared_dpll *pll;
26804afd
DV
8110 enum port port;
8111 uint32_t tmp;
8112
8113 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8114
8115 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8116
96b7dfb7
S
8117 if (IS_SKYLAKE(dev))
8118 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8119 else
8120 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8121
d452c5b6
DV
8122 if (pipe_config->shared_dpll >= 0) {
8123 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8124
8125 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8126 &pipe_config->dpll_hw_state));
8127 }
8128
26804afd
DV
8129 /*
8130 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8131 * DDI E. So just check whether this pipe is wired to DDI E and whether
8132 * the PCH transcoder is on.
8133 */
ca370455
DL
8134 if (INTEL_INFO(dev)->gen < 9 &&
8135 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8136 pipe_config->has_pch_encoder = true;
8137
8138 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8139 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8140 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8141
8142 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8143 }
8144}
8145
0e8ffe1b
DV
8146static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8147 struct intel_crtc_config *pipe_config)
8148{
8149 struct drm_device *dev = crtc->base.dev;
8150 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8151 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8152 uint32_t tmp;
8153
f458ebbc 8154 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8155 POWER_DOMAIN_PIPE(crtc->pipe)))
8156 return false;
8157
e143a21c 8158 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8159 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8160
eccb140b
DV
8161 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8162 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8163 enum pipe trans_edp_pipe;
8164 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8165 default:
8166 WARN(1, "unknown pipe linked to edp transcoder\n");
8167 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8168 case TRANS_DDI_EDP_INPUT_A_ON:
8169 trans_edp_pipe = PIPE_A;
8170 break;
8171 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8172 trans_edp_pipe = PIPE_B;
8173 break;
8174 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8175 trans_edp_pipe = PIPE_C;
8176 break;
8177 }
8178
8179 if (trans_edp_pipe == crtc->pipe)
8180 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8181 }
8182
f458ebbc 8183 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8184 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8185 return false;
8186
eccb140b 8187 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8188 if (!(tmp & PIPECONF_ENABLE))
8189 return false;
8190
26804afd 8191 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8192
1bd1bd80
DV
8193 intel_get_pipe_timings(crtc, pipe_config);
8194
2fa2fe9a 8195 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8196 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8197 if (IS_SKYLAKE(dev))
8198 skylake_get_pfit_config(crtc, pipe_config);
8199 else
8200 ironlake_get_pfit_config(crtc, pipe_config);
8201 }
88adfff1 8202
e59150dc
JB
8203 if (IS_HASWELL(dev))
8204 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8205 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8206
ebb69c95
CT
8207 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8208 pipe_config->pixel_multiplier =
8209 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8210 } else {
8211 pipe_config->pixel_multiplier = 1;
8212 }
6c49f241 8213
0e8ffe1b
DV
8214 return true;
8215}
8216
560b85bb
CW
8217static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8218{
8219 struct drm_device *dev = crtc->dev;
8220 struct drm_i915_private *dev_priv = dev->dev_private;
8221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8222 uint32_t cntl = 0, size = 0;
560b85bb 8223
dc41c154
VS
8224 if (base) {
8225 unsigned int width = intel_crtc->cursor_width;
8226 unsigned int height = intel_crtc->cursor_height;
8227 unsigned int stride = roundup_pow_of_two(width) * 4;
8228
8229 switch (stride) {
8230 default:
8231 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8232 width, stride);
8233 stride = 256;
8234 /* fallthrough */
8235 case 256:
8236 case 512:
8237 case 1024:
8238 case 2048:
8239 break;
4b0e333e
CW
8240 }
8241
dc41c154
VS
8242 cntl |= CURSOR_ENABLE |
8243 CURSOR_GAMMA_ENABLE |
8244 CURSOR_FORMAT_ARGB |
8245 CURSOR_STRIDE(stride);
8246
8247 size = (height << 12) | width;
4b0e333e 8248 }
560b85bb 8249
dc41c154
VS
8250 if (intel_crtc->cursor_cntl != 0 &&
8251 (intel_crtc->cursor_base != base ||
8252 intel_crtc->cursor_size != size ||
8253 intel_crtc->cursor_cntl != cntl)) {
8254 /* On these chipsets we can only modify the base/size/stride
8255 * whilst the cursor is disabled.
8256 */
8257 I915_WRITE(_CURACNTR, 0);
4b0e333e 8258 POSTING_READ(_CURACNTR);
dc41c154 8259 intel_crtc->cursor_cntl = 0;
4b0e333e 8260 }
560b85bb 8261
99d1f387 8262 if (intel_crtc->cursor_base != base) {
9db4a9c7 8263 I915_WRITE(_CURABASE, base);
99d1f387
VS
8264 intel_crtc->cursor_base = base;
8265 }
4726e0b0 8266
dc41c154
VS
8267 if (intel_crtc->cursor_size != size) {
8268 I915_WRITE(CURSIZE, size);
8269 intel_crtc->cursor_size = size;
4b0e333e 8270 }
560b85bb 8271
4b0e333e 8272 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8273 I915_WRITE(_CURACNTR, cntl);
8274 POSTING_READ(_CURACNTR);
4b0e333e 8275 intel_crtc->cursor_cntl = cntl;
560b85bb 8276 }
560b85bb
CW
8277}
8278
560b85bb 8279static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8280{
8281 struct drm_device *dev = crtc->dev;
8282 struct drm_i915_private *dev_priv = dev->dev_private;
8283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8284 int pipe = intel_crtc->pipe;
4b0e333e
CW
8285 uint32_t cntl;
8286
8287 cntl = 0;
8288 if (base) {
8289 cntl = MCURSOR_GAMMA_ENABLE;
8290 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8291 case 64:
8292 cntl |= CURSOR_MODE_64_ARGB_AX;
8293 break;
8294 case 128:
8295 cntl |= CURSOR_MODE_128_ARGB_AX;
8296 break;
8297 case 256:
8298 cntl |= CURSOR_MODE_256_ARGB_AX;
8299 break;
8300 default:
8301 WARN_ON(1);
8302 return;
65a21cd6 8303 }
4b0e333e 8304 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8305
8306 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8307 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8308 }
65a21cd6 8309
4398ad45
VS
8310 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8311 cntl |= CURSOR_ROTATE_180;
8312
4b0e333e
CW
8313 if (intel_crtc->cursor_cntl != cntl) {
8314 I915_WRITE(CURCNTR(pipe), cntl);
8315 POSTING_READ(CURCNTR(pipe));
8316 intel_crtc->cursor_cntl = cntl;
65a21cd6 8317 }
4b0e333e 8318
65a21cd6 8319 /* and commit changes on next vblank */
5efb3e28
VS
8320 I915_WRITE(CURBASE(pipe), base);
8321 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8322
8323 intel_crtc->cursor_base = base;
65a21cd6
JB
8324}
8325
cda4b7d3 8326/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8327static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8328 bool on)
cda4b7d3
CW
8329{
8330 struct drm_device *dev = crtc->dev;
8331 struct drm_i915_private *dev_priv = dev->dev_private;
8332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8333 int pipe = intel_crtc->pipe;
3d7d6510
MR
8334 int x = crtc->cursor_x;
8335 int y = crtc->cursor_y;
d6e4db15 8336 u32 base = 0, pos = 0;
cda4b7d3 8337
d6e4db15 8338 if (on)
cda4b7d3 8339 base = intel_crtc->cursor_addr;
cda4b7d3 8340
d6e4db15
VS
8341 if (x >= intel_crtc->config.pipe_src_w)
8342 base = 0;
8343
8344 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8345 base = 0;
8346
8347 if (x < 0) {
efc9064e 8348 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8349 base = 0;
8350
8351 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8352 x = -x;
8353 }
8354 pos |= x << CURSOR_X_SHIFT;
8355
8356 if (y < 0) {
efc9064e 8357 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8358 base = 0;
8359
8360 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8361 y = -y;
8362 }
8363 pos |= y << CURSOR_Y_SHIFT;
8364
4b0e333e 8365 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8366 return;
8367
5efb3e28
VS
8368 I915_WRITE(CURPOS(pipe), pos);
8369
4398ad45
VS
8370 /* ILK+ do this automagically */
8371 if (HAS_GMCH_DISPLAY(dev) &&
8372 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8373 base += (intel_crtc->cursor_height *
8374 intel_crtc->cursor_width - 1) * 4;
8375 }
8376
8ac54669 8377 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8378 i845_update_cursor(crtc, base);
8379 else
8380 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8381}
8382
dc41c154
VS
8383static bool cursor_size_ok(struct drm_device *dev,
8384 uint32_t width, uint32_t height)
8385{
8386 if (width == 0 || height == 0)
8387 return false;
8388
8389 /*
8390 * 845g/865g are special in that they are only limited by
8391 * the width of their cursors, the height is arbitrary up to
8392 * the precision of the register. Everything else requires
8393 * square cursors, limited to a few power-of-two sizes.
8394 */
8395 if (IS_845G(dev) || IS_I865G(dev)) {
8396 if ((width & 63) != 0)
8397 return false;
8398
8399 if (width > (IS_845G(dev) ? 64 : 512))
8400 return false;
8401
8402 if (height > 1023)
8403 return false;
8404 } else {
8405 switch (width | height) {
8406 case 256:
8407 case 128:
8408 if (IS_GEN2(dev))
8409 return false;
8410 case 64:
8411 break;
8412 default:
8413 return false;
8414 }
8415 }
8416
8417 return true;
8418}
8419
79e53945 8420static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8421 u16 *blue, uint32_t start, uint32_t size)
79e53945 8422{
7203425a 8423 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8425
7203425a 8426 for (i = start; i < end; i++) {
79e53945
JB
8427 intel_crtc->lut_r[i] = red[i] >> 8;
8428 intel_crtc->lut_g[i] = green[i] >> 8;
8429 intel_crtc->lut_b[i] = blue[i] >> 8;
8430 }
8431
8432 intel_crtc_load_lut(crtc);
8433}
8434
79e53945
JB
8435/* VESA 640x480x72Hz mode to set on the pipe */
8436static struct drm_display_mode load_detect_mode = {
8437 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8438 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8439};
8440
a8bb6818
DV
8441struct drm_framebuffer *
8442__intel_framebuffer_create(struct drm_device *dev,
8443 struct drm_mode_fb_cmd2 *mode_cmd,
8444 struct drm_i915_gem_object *obj)
d2dff872
CW
8445{
8446 struct intel_framebuffer *intel_fb;
8447 int ret;
8448
8449 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8450 if (!intel_fb) {
6ccb81f2 8451 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8452 return ERR_PTR(-ENOMEM);
8453 }
8454
8455 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8456 if (ret)
8457 goto err;
d2dff872
CW
8458
8459 return &intel_fb->base;
dd4916c5 8460err:
6ccb81f2 8461 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8462 kfree(intel_fb);
8463
8464 return ERR_PTR(ret);
d2dff872
CW
8465}
8466
b5ea642a 8467static struct drm_framebuffer *
a8bb6818
DV
8468intel_framebuffer_create(struct drm_device *dev,
8469 struct drm_mode_fb_cmd2 *mode_cmd,
8470 struct drm_i915_gem_object *obj)
8471{
8472 struct drm_framebuffer *fb;
8473 int ret;
8474
8475 ret = i915_mutex_lock_interruptible(dev);
8476 if (ret)
8477 return ERR_PTR(ret);
8478 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8479 mutex_unlock(&dev->struct_mutex);
8480
8481 return fb;
8482}
8483
d2dff872
CW
8484static u32
8485intel_framebuffer_pitch_for_width(int width, int bpp)
8486{
8487 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8488 return ALIGN(pitch, 64);
8489}
8490
8491static u32
8492intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8493{
8494 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8495 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8496}
8497
8498static struct drm_framebuffer *
8499intel_framebuffer_create_for_mode(struct drm_device *dev,
8500 struct drm_display_mode *mode,
8501 int depth, int bpp)
8502{
8503 struct drm_i915_gem_object *obj;
0fed39bd 8504 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8505
8506 obj = i915_gem_alloc_object(dev,
8507 intel_framebuffer_size_for_mode(mode, bpp));
8508 if (obj == NULL)
8509 return ERR_PTR(-ENOMEM);
8510
8511 mode_cmd.width = mode->hdisplay;
8512 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8513 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8514 bpp);
5ca0c34a 8515 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8516
8517 return intel_framebuffer_create(dev, &mode_cmd, obj);
8518}
8519
8520static struct drm_framebuffer *
8521mode_fits_in_fbdev(struct drm_device *dev,
8522 struct drm_display_mode *mode)
8523{
4520f53a 8524#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8525 struct drm_i915_private *dev_priv = dev->dev_private;
8526 struct drm_i915_gem_object *obj;
8527 struct drm_framebuffer *fb;
8528
4c0e5528 8529 if (!dev_priv->fbdev)
d2dff872
CW
8530 return NULL;
8531
4c0e5528 8532 if (!dev_priv->fbdev->fb)
d2dff872
CW
8533 return NULL;
8534
4c0e5528
DV
8535 obj = dev_priv->fbdev->fb->obj;
8536 BUG_ON(!obj);
8537
8bcd4553 8538 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8539 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8540 fb->bits_per_pixel))
d2dff872
CW
8541 return NULL;
8542
01f2c773 8543 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8544 return NULL;
8545
8546 return fb;
4520f53a
DV
8547#else
8548 return NULL;
8549#endif
d2dff872
CW
8550}
8551
d2434ab7 8552bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8553 struct drm_display_mode *mode,
51fd371b
RC
8554 struct intel_load_detect_pipe *old,
8555 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8556{
8557 struct intel_crtc *intel_crtc;
d2434ab7
DV
8558 struct intel_encoder *intel_encoder =
8559 intel_attached_encoder(connector);
79e53945 8560 struct drm_crtc *possible_crtc;
4ef69c7a 8561 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8562 struct drm_crtc *crtc = NULL;
8563 struct drm_device *dev = encoder->dev;
94352cf9 8564 struct drm_framebuffer *fb;
51fd371b
RC
8565 struct drm_mode_config *config = &dev->mode_config;
8566 int ret, i = -1;
79e53945 8567
d2dff872 8568 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8569 connector->base.id, connector->name,
8e329a03 8570 encoder->base.id, encoder->name);
d2dff872 8571
51fd371b
RC
8572retry:
8573 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8574 if (ret)
8575 goto fail_unlock;
6e9f798d 8576
79e53945
JB
8577 /*
8578 * Algorithm gets a little messy:
7a5e4805 8579 *
79e53945
JB
8580 * - if the connector already has an assigned crtc, use it (but make
8581 * sure it's on first)
7a5e4805 8582 *
79e53945
JB
8583 * - try to find the first unused crtc that can drive this connector,
8584 * and use that if we find one
79e53945
JB
8585 */
8586
8587 /* See if we already have a CRTC for this connector */
8588 if (encoder->crtc) {
8589 crtc = encoder->crtc;
8261b191 8590
51fd371b 8591 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8592 if (ret)
8593 goto fail_unlock;
8594 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8595 if (ret)
8596 goto fail_unlock;
7b24056b 8597
24218aac 8598 old->dpms_mode = connector->dpms;
8261b191
CW
8599 old->load_detect_temp = false;
8600
8601 /* Make sure the crtc and connector are running */
24218aac
DV
8602 if (connector->dpms != DRM_MODE_DPMS_ON)
8603 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8604
7173188d 8605 return true;
79e53945
JB
8606 }
8607
8608 /* Find an unused one (if possible) */
70e1e0ec 8609 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8610 i++;
8611 if (!(encoder->possible_crtcs & (1 << i)))
8612 continue;
a459249c
VS
8613 if (possible_crtc->enabled)
8614 continue;
8615 /* This can occur when applying the pipe A quirk on resume. */
8616 if (to_intel_crtc(possible_crtc)->new_enabled)
8617 continue;
8618
8619 crtc = possible_crtc;
8620 break;
79e53945
JB
8621 }
8622
8623 /*
8624 * If we didn't find an unused CRTC, don't use any.
8625 */
8626 if (!crtc) {
7173188d 8627 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8628 goto fail_unlock;
79e53945
JB
8629 }
8630
51fd371b
RC
8631 ret = drm_modeset_lock(&crtc->mutex, ctx);
8632 if (ret)
4d02e2de
DV
8633 goto fail_unlock;
8634 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8635 if (ret)
51fd371b 8636 goto fail_unlock;
fc303101
DV
8637 intel_encoder->new_crtc = to_intel_crtc(crtc);
8638 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8639
8640 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8641 intel_crtc->new_enabled = true;
8642 intel_crtc->new_config = &intel_crtc->config;
24218aac 8643 old->dpms_mode = connector->dpms;
8261b191 8644 old->load_detect_temp = true;
d2dff872 8645 old->release_fb = NULL;
79e53945 8646
6492711d
CW
8647 if (!mode)
8648 mode = &load_detect_mode;
79e53945 8649
d2dff872
CW
8650 /* We need a framebuffer large enough to accommodate all accesses
8651 * that the plane may generate whilst we perform load detection.
8652 * We can not rely on the fbcon either being present (we get called
8653 * during its initialisation to detect all boot displays, or it may
8654 * not even exist) or that it is large enough to satisfy the
8655 * requested mode.
8656 */
94352cf9
DV
8657 fb = mode_fits_in_fbdev(dev, mode);
8658 if (fb == NULL) {
d2dff872 8659 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8660 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8661 old->release_fb = fb;
d2dff872
CW
8662 } else
8663 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8664 if (IS_ERR(fb)) {
d2dff872 8665 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8666 goto fail;
79e53945 8667 }
79e53945 8668
c0c36b94 8669 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8670 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8671 if (old->release_fb)
8672 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8673 goto fail;
79e53945 8674 }
7173188d 8675
79e53945 8676 /* let the connector get through one full cycle before testing */
9d0498a2 8677 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8678 return true;
412b61d8
VS
8679
8680 fail:
8681 intel_crtc->new_enabled = crtc->enabled;
8682 if (intel_crtc->new_enabled)
8683 intel_crtc->new_config = &intel_crtc->config;
8684 else
8685 intel_crtc->new_config = NULL;
51fd371b
RC
8686fail_unlock:
8687 if (ret == -EDEADLK) {
8688 drm_modeset_backoff(ctx);
8689 goto retry;
8690 }
8691
412b61d8 8692 return false;
79e53945
JB
8693}
8694
d2434ab7 8695void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8696 struct intel_load_detect_pipe *old)
79e53945 8697{
d2434ab7
DV
8698 struct intel_encoder *intel_encoder =
8699 intel_attached_encoder(connector);
4ef69c7a 8700 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8701 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8703
d2dff872 8704 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8705 connector->base.id, connector->name,
8e329a03 8706 encoder->base.id, encoder->name);
d2dff872 8707
8261b191 8708 if (old->load_detect_temp) {
fc303101
DV
8709 to_intel_connector(connector)->new_encoder = NULL;
8710 intel_encoder->new_crtc = NULL;
412b61d8
VS
8711 intel_crtc->new_enabled = false;
8712 intel_crtc->new_config = NULL;
fc303101 8713 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8714
36206361
DV
8715 if (old->release_fb) {
8716 drm_framebuffer_unregister_private(old->release_fb);
8717 drm_framebuffer_unreference(old->release_fb);
8718 }
d2dff872 8719
0622a53c 8720 return;
79e53945
JB
8721 }
8722
c751ce4f 8723 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8724 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8725 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8726}
8727
da4a1efa
VS
8728static int i9xx_pll_refclk(struct drm_device *dev,
8729 const struct intel_crtc_config *pipe_config)
8730{
8731 struct drm_i915_private *dev_priv = dev->dev_private;
8732 u32 dpll = pipe_config->dpll_hw_state.dpll;
8733
8734 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8735 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8736 else if (HAS_PCH_SPLIT(dev))
8737 return 120000;
8738 else if (!IS_GEN2(dev))
8739 return 96000;
8740 else
8741 return 48000;
8742}
8743
79e53945 8744/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8745static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8746 struct intel_crtc_config *pipe_config)
79e53945 8747{
f1f644dc 8748 struct drm_device *dev = crtc->base.dev;
79e53945 8749 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8750 int pipe = pipe_config->cpu_transcoder;
293623f7 8751 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8752 u32 fp;
8753 intel_clock_t clock;
da4a1efa 8754 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8755
8756 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8757 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8758 else
293623f7 8759 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8760
8761 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8762 if (IS_PINEVIEW(dev)) {
8763 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8764 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8765 } else {
8766 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8767 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8768 }
8769
a6c45cf0 8770 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8771 if (IS_PINEVIEW(dev))
8772 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8773 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8774 else
8775 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8776 DPLL_FPA01_P1_POST_DIV_SHIFT);
8777
8778 switch (dpll & DPLL_MODE_MASK) {
8779 case DPLLB_MODE_DAC_SERIAL:
8780 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8781 5 : 10;
8782 break;
8783 case DPLLB_MODE_LVDS:
8784 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8785 7 : 14;
8786 break;
8787 default:
28c97730 8788 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8789 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8790 return;
79e53945
JB
8791 }
8792
ac58c3f0 8793 if (IS_PINEVIEW(dev))
da4a1efa 8794 pineview_clock(refclk, &clock);
ac58c3f0 8795 else
da4a1efa 8796 i9xx_clock(refclk, &clock);
79e53945 8797 } else {
0fb58223 8798 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8799 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8800
8801 if (is_lvds) {
8802 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8803 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8804
8805 if (lvds & LVDS_CLKB_POWER_UP)
8806 clock.p2 = 7;
8807 else
8808 clock.p2 = 14;
79e53945
JB
8809 } else {
8810 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8811 clock.p1 = 2;
8812 else {
8813 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8814 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8815 }
8816 if (dpll & PLL_P2_DIVIDE_BY_4)
8817 clock.p2 = 4;
8818 else
8819 clock.p2 = 2;
79e53945 8820 }
da4a1efa
VS
8821
8822 i9xx_clock(refclk, &clock);
79e53945
JB
8823 }
8824
18442d08
VS
8825 /*
8826 * This value includes pixel_multiplier. We will use
241bfc38 8827 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8828 * encoder's get_config() function.
8829 */
8830 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8831}
8832
6878da05
VS
8833int intel_dotclock_calculate(int link_freq,
8834 const struct intel_link_m_n *m_n)
f1f644dc 8835{
f1f644dc
JB
8836 /*
8837 * The calculation for the data clock is:
1041a02f 8838 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8839 * But we want to avoid losing precison if possible, so:
1041a02f 8840 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8841 *
8842 * and the link clock is simpler:
1041a02f 8843 * link_clock = (m * link_clock) / n
f1f644dc
JB
8844 */
8845
6878da05
VS
8846 if (!m_n->link_n)
8847 return 0;
f1f644dc 8848
6878da05
VS
8849 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8850}
f1f644dc 8851
18442d08
VS
8852static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8853 struct intel_crtc_config *pipe_config)
6878da05
VS
8854{
8855 struct drm_device *dev = crtc->base.dev;
79e53945 8856
18442d08
VS
8857 /* read out port_clock from the DPLL */
8858 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8859
f1f644dc 8860 /*
18442d08 8861 * This value does not include pixel_multiplier.
241bfc38 8862 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8863 * agree once we know their relationship in the encoder's
8864 * get_config() function.
79e53945 8865 */
241bfc38 8866 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8867 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8868 &pipe_config->fdi_m_n);
79e53945
JB
8869}
8870
8871/** Returns the currently programmed mode of the given pipe. */
8872struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8873 struct drm_crtc *crtc)
8874{
548f245b 8875 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8877 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8878 struct drm_display_mode *mode;
f1f644dc 8879 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8880 int htot = I915_READ(HTOTAL(cpu_transcoder));
8881 int hsync = I915_READ(HSYNC(cpu_transcoder));
8882 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8883 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8884 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8885
8886 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8887 if (!mode)
8888 return NULL;
8889
f1f644dc
JB
8890 /*
8891 * Construct a pipe_config sufficient for getting the clock info
8892 * back out of crtc_clock_get.
8893 *
8894 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8895 * to use a real value here instead.
8896 */
293623f7 8897 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8898 pipe_config.pixel_multiplier = 1;
293623f7
VS
8899 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8900 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8901 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8902 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8903
773ae034 8904 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8905 mode->hdisplay = (htot & 0xffff) + 1;
8906 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8907 mode->hsync_start = (hsync & 0xffff) + 1;
8908 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8909 mode->vdisplay = (vtot & 0xffff) + 1;
8910 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8911 mode->vsync_start = (vsync & 0xffff) + 1;
8912 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8913
8914 drm_mode_set_name(mode);
79e53945
JB
8915
8916 return mode;
8917}
8918
652c393a
JB
8919static void intel_decrease_pllclock(struct drm_crtc *crtc)
8920{
8921 struct drm_device *dev = crtc->dev;
fbee40df 8922 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8924
baff296c 8925 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8926 return;
8927
8928 if (!dev_priv->lvds_downclock_avail)
8929 return;
8930
8931 /*
8932 * Since this is called by a timer, we should never get here in
8933 * the manual case.
8934 */
8935 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8936 int pipe = intel_crtc->pipe;
8937 int dpll_reg = DPLL(pipe);
8938 int dpll;
f6e5b160 8939
44d98a61 8940 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8941
8ac5a6d5 8942 assert_panel_unlocked(dev_priv, pipe);
652c393a 8943
dc257cf1 8944 dpll = I915_READ(dpll_reg);
652c393a
JB
8945 dpll |= DISPLAY_RATE_SELECT_FPA1;
8946 I915_WRITE(dpll_reg, dpll);
9d0498a2 8947 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8948 dpll = I915_READ(dpll_reg);
8949 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8950 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8951 }
8952
8953}
8954
f047e395
CW
8955void intel_mark_busy(struct drm_device *dev)
8956{
c67a470b
PZ
8957 struct drm_i915_private *dev_priv = dev->dev_private;
8958
f62a0076
CW
8959 if (dev_priv->mm.busy)
8960 return;
8961
43694d69 8962 intel_runtime_pm_get(dev_priv);
c67a470b 8963 i915_update_gfx_val(dev_priv);
f62a0076 8964 dev_priv->mm.busy = true;
f047e395
CW
8965}
8966
8967void intel_mark_idle(struct drm_device *dev)
652c393a 8968{
c67a470b 8969 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8970 struct drm_crtc *crtc;
652c393a 8971
f62a0076
CW
8972 if (!dev_priv->mm.busy)
8973 return;
8974
8975 dev_priv->mm.busy = false;
8976
d330a953 8977 if (!i915.powersave)
bb4cdd53 8978 goto out;
652c393a 8979
70e1e0ec 8980 for_each_crtc(dev, crtc) {
f4510a27 8981 if (!crtc->primary->fb)
652c393a
JB
8982 continue;
8983
725a5b54 8984 intel_decrease_pllclock(crtc);
652c393a 8985 }
b29c19b6 8986
3d13ef2e 8987 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8988 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8989
8990out:
43694d69 8991 intel_runtime_pm_put(dev_priv);
652c393a
JB
8992}
8993
79e53945
JB
8994static void intel_crtc_destroy(struct drm_crtc *crtc)
8995{
8996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
8997 struct drm_device *dev = crtc->dev;
8998 struct intel_unpin_work *work;
67e77c5a 8999
5e2d7afc 9000 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9001 work = intel_crtc->unpin_work;
9002 intel_crtc->unpin_work = NULL;
5e2d7afc 9003 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9004
9005 if (work) {
9006 cancel_work_sync(&work->work);
9007 kfree(work);
9008 }
79e53945
JB
9009
9010 drm_crtc_cleanup(crtc);
67e77c5a 9011
79e53945
JB
9012 kfree(intel_crtc);
9013}
9014
6b95a207
KH
9015static void intel_unpin_work_fn(struct work_struct *__work)
9016{
9017 struct intel_unpin_work *work =
9018 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9019 struct drm_device *dev = work->crtc->dev;
f99d7069 9020 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9021
b4a98e57 9022 mutex_lock(&dev->struct_mutex);
1690e1eb 9023 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9024 drm_gem_object_unreference(&work->pending_flip_obj->base);
9025 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9026
b4a98e57 9027 intel_update_fbc(dev);
f06cc1b9
JH
9028
9029 if (work->flip_queued_req)
9030 i915_gem_request_unreference(work->flip_queued_req);
9031 work->flip_queued_req = NULL;
b4a98e57
CW
9032 mutex_unlock(&dev->struct_mutex);
9033
f99d7069
DV
9034 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9035
b4a98e57
CW
9036 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9037 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9038
6b95a207
KH
9039 kfree(work);
9040}
9041
1afe3e9d 9042static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9043 struct drm_crtc *crtc)
6b95a207 9044{
6b95a207
KH
9045 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9046 struct intel_unpin_work *work;
6b95a207
KH
9047 unsigned long flags;
9048
9049 /* Ignore early vblank irqs */
9050 if (intel_crtc == NULL)
9051 return;
9052
f326038a
DV
9053 /*
9054 * This is called both by irq handlers and the reset code (to complete
9055 * lost pageflips) so needs the full irqsave spinlocks.
9056 */
6b95a207
KH
9057 spin_lock_irqsave(&dev->event_lock, flags);
9058 work = intel_crtc->unpin_work;
e7d841ca
CW
9059
9060 /* Ensure we don't miss a work->pending update ... */
9061 smp_rmb();
9062
9063 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9064 spin_unlock_irqrestore(&dev->event_lock, flags);
9065 return;
9066 }
9067
d6bbafa1 9068 page_flip_completed(intel_crtc);
0af7e4df 9069
6b95a207 9070 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9071}
9072
1afe3e9d
JB
9073void intel_finish_page_flip(struct drm_device *dev, int pipe)
9074{
fbee40df 9075 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9076 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9077
49b14a5c 9078 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9079}
9080
9081void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9082{
fbee40df 9083 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9084 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9085
49b14a5c 9086 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9087}
9088
75f7f3ec
VS
9089/* Is 'a' after or equal to 'b'? */
9090static bool g4x_flip_count_after_eq(u32 a, u32 b)
9091{
9092 return !((a - b) & 0x80000000);
9093}
9094
9095static bool page_flip_finished(struct intel_crtc *crtc)
9096{
9097 struct drm_device *dev = crtc->base.dev;
9098 struct drm_i915_private *dev_priv = dev->dev_private;
9099
bdfa7542
VS
9100 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9101 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9102 return true;
9103
75f7f3ec
VS
9104 /*
9105 * The relevant registers doen't exist on pre-ctg.
9106 * As the flip done interrupt doesn't trigger for mmio
9107 * flips on gmch platforms, a flip count check isn't
9108 * really needed there. But since ctg has the registers,
9109 * include it in the check anyway.
9110 */
9111 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9112 return true;
9113
9114 /*
9115 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9116 * used the same base address. In that case the mmio flip might
9117 * have completed, but the CS hasn't even executed the flip yet.
9118 *
9119 * A flip count check isn't enough as the CS might have updated
9120 * the base address just after start of vblank, but before we
9121 * managed to process the interrupt. This means we'd complete the
9122 * CS flip too soon.
9123 *
9124 * Combining both checks should get us a good enough result. It may
9125 * still happen that the CS flip has been executed, but has not
9126 * yet actually completed. But in case the base address is the same
9127 * anyway, we don't really care.
9128 */
9129 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9130 crtc->unpin_work->gtt_offset &&
9131 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9132 crtc->unpin_work->flip_count);
9133}
9134
6b95a207
KH
9135void intel_prepare_page_flip(struct drm_device *dev, int plane)
9136{
fbee40df 9137 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9138 struct intel_crtc *intel_crtc =
9139 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9140 unsigned long flags;
9141
f326038a
DV
9142
9143 /*
9144 * This is called both by irq handlers and the reset code (to complete
9145 * lost pageflips) so needs the full irqsave spinlocks.
9146 *
9147 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9148 * generate a page-flip completion irq, i.e. every modeset
9149 * is also accompanied by a spurious intel_prepare_page_flip().
9150 */
6b95a207 9151 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9152 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9153 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9154 spin_unlock_irqrestore(&dev->event_lock, flags);
9155}
9156
eba905b2 9157static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9158{
9159 /* Ensure that the work item is consistent when activating it ... */
9160 smp_wmb();
9161 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9162 /* and that it is marked active as soon as the irq could fire. */
9163 smp_wmb();
9164}
9165
8c9f3aaf
JB
9166static int intel_gen2_queue_flip(struct drm_device *dev,
9167 struct drm_crtc *crtc,
9168 struct drm_framebuffer *fb,
ed8d1975 9169 struct drm_i915_gem_object *obj,
a4872ba6 9170 struct intel_engine_cs *ring,
ed8d1975 9171 uint32_t flags)
8c9f3aaf 9172{
8c9f3aaf 9173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9174 u32 flip_mask;
9175 int ret;
9176
6d90c952 9177 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9178 if (ret)
4fa62c89 9179 return ret;
8c9f3aaf
JB
9180
9181 /* Can't queue multiple flips, so wait for the previous
9182 * one to finish before executing the next.
9183 */
9184 if (intel_crtc->plane)
9185 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9186 else
9187 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9188 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9189 intel_ring_emit(ring, MI_NOOP);
9190 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9191 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9192 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9193 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9194 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9195
9196 intel_mark_page_flip_active(intel_crtc);
09246732 9197 __intel_ring_advance(ring);
83d4092b 9198 return 0;
8c9f3aaf
JB
9199}
9200
9201static int intel_gen3_queue_flip(struct drm_device *dev,
9202 struct drm_crtc *crtc,
9203 struct drm_framebuffer *fb,
ed8d1975 9204 struct drm_i915_gem_object *obj,
a4872ba6 9205 struct intel_engine_cs *ring,
ed8d1975 9206 uint32_t flags)
8c9f3aaf 9207{
8c9f3aaf 9208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9209 u32 flip_mask;
9210 int ret;
9211
6d90c952 9212 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9213 if (ret)
4fa62c89 9214 return ret;
8c9f3aaf
JB
9215
9216 if (intel_crtc->plane)
9217 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9218 else
9219 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9220 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9221 intel_ring_emit(ring, MI_NOOP);
9222 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9223 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9224 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9225 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9226 intel_ring_emit(ring, MI_NOOP);
9227
e7d841ca 9228 intel_mark_page_flip_active(intel_crtc);
09246732 9229 __intel_ring_advance(ring);
83d4092b 9230 return 0;
8c9f3aaf
JB
9231}
9232
9233static int intel_gen4_queue_flip(struct drm_device *dev,
9234 struct drm_crtc *crtc,
9235 struct drm_framebuffer *fb,
ed8d1975 9236 struct drm_i915_gem_object *obj,
a4872ba6 9237 struct intel_engine_cs *ring,
ed8d1975 9238 uint32_t flags)
8c9f3aaf
JB
9239{
9240 struct drm_i915_private *dev_priv = dev->dev_private;
9241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9242 uint32_t pf, pipesrc;
9243 int ret;
9244
6d90c952 9245 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9246 if (ret)
4fa62c89 9247 return ret;
8c9f3aaf
JB
9248
9249 /* i965+ uses the linear or tiled offsets from the
9250 * Display Registers (which do not change across a page-flip)
9251 * so we need only reprogram the base address.
9252 */
6d90c952
DV
9253 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9254 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9255 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9256 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9257 obj->tiling_mode);
8c9f3aaf
JB
9258
9259 /* XXX Enabling the panel-fitter across page-flip is so far
9260 * untested on non-native modes, so ignore it for now.
9261 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9262 */
9263 pf = 0;
9264 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9265 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9266
9267 intel_mark_page_flip_active(intel_crtc);
09246732 9268 __intel_ring_advance(ring);
83d4092b 9269 return 0;
8c9f3aaf
JB
9270}
9271
9272static int intel_gen6_queue_flip(struct drm_device *dev,
9273 struct drm_crtc *crtc,
9274 struct drm_framebuffer *fb,
ed8d1975 9275 struct drm_i915_gem_object *obj,
a4872ba6 9276 struct intel_engine_cs *ring,
ed8d1975 9277 uint32_t flags)
8c9f3aaf
JB
9278{
9279 struct drm_i915_private *dev_priv = dev->dev_private;
9280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9281 uint32_t pf, pipesrc;
9282 int ret;
9283
6d90c952 9284 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9285 if (ret)
4fa62c89 9286 return ret;
8c9f3aaf 9287
6d90c952
DV
9288 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9289 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9290 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9291 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9292
dc257cf1
DV
9293 /* Contrary to the suggestions in the documentation,
9294 * "Enable Panel Fitter" does not seem to be required when page
9295 * flipping with a non-native mode, and worse causes a normal
9296 * modeset to fail.
9297 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9298 */
9299 pf = 0;
8c9f3aaf 9300 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9301 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9302
9303 intel_mark_page_flip_active(intel_crtc);
09246732 9304 __intel_ring_advance(ring);
83d4092b 9305 return 0;
8c9f3aaf
JB
9306}
9307
7c9017e5
JB
9308static int intel_gen7_queue_flip(struct drm_device *dev,
9309 struct drm_crtc *crtc,
9310 struct drm_framebuffer *fb,
ed8d1975 9311 struct drm_i915_gem_object *obj,
a4872ba6 9312 struct intel_engine_cs *ring,
ed8d1975 9313 uint32_t flags)
7c9017e5 9314{
7c9017e5 9315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9316 uint32_t plane_bit = 0;
ffe74d75
CW
9317 int len, ret;
9318
eba905b2 9319 switch (intel_crtc->plane) {
cb05d8de
DV
9320 case PLANE_A:
9321 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9322 break;
9323 case PLANE_B:
9324 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9325 break;
9326 case PLANE_C:
9327 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9328 break;
9329 default:
9330 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9331 return -ENODEV;
cb05d8de
DV
9332 }
9333
ffe74d75 9334 len = 4;
f476828a 9335 if (ring->id == RCS) {
ffe74d75 9336 len += 6;
f476828a
DL
9337 /*
9338 * On Gen 8, SRM is now taking an extra dword to accommodate
9339 * 48bits addresses, and we need a NOOP for the batch size to
9340 * stay even.
9341 */
9342 if (IS_GEN8(dev))
9343 len += 2;
9344 }
ffe74d75 9345
f66fab8e
VS
9346 /*
9347 * BSpec MI_DISPLAY_FLIP for IVB:
9348 * "The full packet must be contained within the same cache line."
9349 *
9350 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9351 * cacheline, if we ever start emitting more commands before
9352 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9353 * then do the cacheline alignment, and finally emit the
9354 * MI_DISPLAY_FLIP.
9355 */
9356 ret = intel_ring_cacheline_align(ring);
9357 if (ret)
4fa62c89 9358 return ret;
f66fab8e 9359
ffe74d75 9360 ret = intel_ring_begin(ring, len);
7c9017e5 9361 if (ret)
4fa62c89 9362 return ret;
7c9017e5 9363
ffe74d75
CW
9364 /* Unmask the flip-done completion message. Note that the bspec says that
9365 * we should do this for both the BCS and RCS, and that we must not unmask
9366 * more than one flip event at any time (or ensure that one flip message
9367 * can be sent by waiting for flip-done prior to queueing new flips).
9368 * Experimentation says that BCS works despite DERRMR masking all
9369 * flip-done completion events and that unmasking all planes at once
9370 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9371 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9372 */
9373 if (ring->id == RCS) {
9374 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9375 intel_ring_emit(ring, DERRMR);
9376 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9377 DERRMR_PIPEB_PRI_FLIP_DONE |
9378 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9379 if (IS_GEN8(dev))
9380 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9381 MI_SRM_LRM_GLOBAL_GTT);
9382 else
9383 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9384 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9385 intel_ring_emit(ring, DERRMR);
9386 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9387 if (IS_GEN8(dev)) {
9388 intel_ring_emit(ring, 0);
9389 intel_ring_emit(ring, MI_NOOP);
9390 }
ffe74d75
CW
9391 }
9392
cb05d8de 9393 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9394 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9395 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9396 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9397
9398 intel_mark_page_flip_active(intel_crtc);
09246732 9399 __intel_ring_advance(ring);
83d4092b 9400 return 0;
7c9017e5
JB
9401}
9402
84c33a64
SG
9403static bool use_mmio_flip(struct intel_engine_cs *ring,
9404 struct drm_i915_gem_object *obj)
9405{
9406 /*
9407 * This is not being used for older platforms, because
9408 * non-availability of flip done interrupt forces us to use
9409 * CS flips. Older platforms derive flip done using some clever
9410 * tricks involving the flip_pending status bits and vblank irqs.
9411 * So using MMIO flips there would disrupt this mechanism.
9412 */
9413
8e09bf83
CW
9414 if (ring == NULL)
9415 return true;
9416
84c33a64
SG
9417 if (INTEL_INFO(ring->dev)->gen < 5)
9418 return false;
9419
9420 if (i915.use_mmio_flip < 0)
9421 return false;
9422 else if (i915.use_mmio_flip > 0)
9423 return true;
14bf993e
OM
9424 else if (i915.enable_execlists)
9425 return true;
84c33a64 9426 else
41c52415 9427 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9428}
9429
ff944564
DL
9430static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9431{
9432 struct drm_device *dev = intel_crtc->base.dev;
9433 struct drm_i915_private *dev_priv = dev->dev_private;
9434 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9435 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9436 struct drm_i915_gem_object *obj = intel_fb->obj;
9437 const enum pipe pipe = intel_crtc->pipe;
9438 u32 ctl, stride;
9439
9440 ctl = I915_READ(PLANE_CTL(pipe, 0));
9441 ctl &= ~PLANE_CTL_TILED_MASK;
9442 if (obj->tiling_mode == I915_TILING_X)
9443 ctl |= PLANE_CTL_TILED_X;
9444
9445 /*
9446 * The stride is either expressed as a multiple of 64 bytes chunks for
9447 * linear buffers or in number of tiles for tiled buffers.
9448 */
9449 stride = fb->pitches[0] >> 6;
9450 if (obj->tiling_mode == I915_TILING_X)
9451 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9452
9453 /*
9454 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9455 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9456 */
9457 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9458 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9459
9460 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9461 POSTING_READ(PLANE_SURF(pipe, 0));
9462}
9463
9464static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9465{
9466 struct drm_device *dev = intel_crtc->base.dev;
9467 struct drm_i915_private *dev_priv = dev->dev_private;
9468 struct intel_framebuffer *intel_fb =
9469 to_intel_framebuffer(intel_crtc->base.primary->fb);
9470 struct drm_i915_gem_object *obj = intel_fb->obj;
9471 u32 dspcntr;
9472 u32 reg;
9473
84c33a64
SG
9474 reg = DSPCNTR(intel_crtc->plane);
9475 dspcntr = I915_READ(reg);
9476
c5d97472
DL
9477 if (obj->tiling_mode != I915_TILING_NONE)
9478 dspcntr |= DISPPLANE_TILED;
9479 else
9480 dspcntr &= ~DISPPLANE_TILED;
9481
84c33a64
SG
9482 I915_WRITE(reg, dspcntr);
9483
9484 I915_WRITE(DSPSURF(intel_crtc->plane),
9485 intel_crtc->unpin_work->gtt_offset);
9486 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9487
ff944564
DL
9488}
9489
9490/*
9491 * XXX: This is the temporary way to update the plane registers until we get
9492 * around to using the usual plane update functions for MMIO flips
9493 */
9494static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9495{
9496 struct drm_device *dev = intel_crtc->base.dev;
9497 bool atomic_update;
9498 u32 start_vbl_count;
9499
9500 intel_mark_page_flip_active(intel_crtc);
9501
9502 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9503
9504 if (INTEL_INFO(dev)->gen >= 9)
9505 skl_do_mmio_flip(intel_crtc);
9506 else
9507 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9508 ilk_do_mmio_flip(intel_crtc);
9509
9362c7c5
ACO
9510 if (atomic_update)
9511 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9512}
9513
9362c7c5 9514static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9515{
cc8c4cc2 9516 struct intel_crtc *crtc =
9362c7c5 9517 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9518 struct intel_mmio_flip *mmio_flip;
84c33a64 9519
cc8c4cc2
JH
9520 mmio_flip = &crtc->mmio_flip;
9521 if (mmio_flip->req)
9c654818
JH
9522 WARN_ON(__i915_wait_request(mmio_flip->req,
9523 crtc->reset_counter,
9524 false, NULL, NULL) != 0);
84c33a64 9525
cc8c4cc2
JH
9526 intel_do_mmio_flip(crtc);
9527 if (mmio_flip->req) {
9528 mutex_lock(&crtc->base.dev->struct_mutex);
9529 i915_gem_request_unreference(mmio_flip->req);
9530 mutex_unlock(&crtc->base.dev->struct_mutex);
9531 }
9532 mmio_flip->req = NULL;
84c33a64
SG
9533}
9534
9535static int intel_queue_mmio_flip(struct drm_device *dev,
9536 struct drm_crtc *crtc,
9537 struct drm_framebuffer *fb,
9538 struct drm_i915_gem_object *obj,
9539 struct intel_engine_cs *ring,
9540 uint32_t flags)
9541{
84c33a64 9542 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9543
cc8c4cc2
JH
9544 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9545 obj->last_write_req);
536f5b5e
ACO
9546
9547 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9548
84c33a64
SG
9549 return 0;
9550}
9551
830c81db
DL
9552static int intel_gen9_queue_flip(struct drm_device *dev,
9553 struct drm_crtc *crtc,
9554 struct drm_framebuffer *fb,
9555 struct drm_i915_gem_object *obj,
9556 struct intel_engine_cs *ring,
9557 uint32_t flags)
9558{
9559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9560 uint32_t plane = 0, stride;
9561 int ret;
9562
9563 switch(intel_crtc->pipe) {
9564 case PIPE_A:
9565 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9566 break;
9567 case PIPE_B:
9568 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9569 break;
9570 case PIPE_C:
9571 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9572 break;
9573 default:
9574 WARN_ONCE(1, "unknown plane in flip command\n");
9575 return -ENODEV;
9576 }
9577
9578 switch (obj->tiling_mode) {
9579 case I915_TILING_NONE:
9580 stride = fb->pitches[0] >> 6;
9581 break;
9582 case I915_TILING_X:
9583 stride = fb->pitches[0] >> 9;
9584 break;
9585 default:
9586 WARN_ONCE(1, "unknown tiling in flip command\n");
9587 return -ENODEV;
9588 }
9589
9590 ret = intel_ring_begin(ring, 10);
9591 if (ret)
9592 return ret;
9593
9594 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9595 intel_ring_emit(ring, DERRMR);
9596 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9597 DERRMR_PIPEB_PRI_FLIP_DONE |
9598 DERRMR_PIPEC_PRI_FLIP_DONE));
9599 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9600 MI_SRM_LRM_GLOBAL_GTT);
9601 intel_ring_emit(ring, DERRMR);
9602 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9603 intel_ring_emit(ring, 0);
9604
9605 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9606 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9607 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9608
9609 intel_mark_page_flip_active(intel_crtc);
9610 __intel_ring_advance(ring);
9611
9612 return 0;
9613}
9614
8c9f3aaf
JB
9615static int intel_default_queue_flip(struct drm_device *dev,
9616 struct drm_crtc *crtc,
9617 struct drm_framebuffer *fb,
ed8d1975 9618 struct drm_i915_gem_object *obj,
a4872ba6 9619 struct intel_engine_cs *ring,
ed8d1975 9620 uint32_t flags)
8c9f3aaf
JB
9621{
9622 return -ENODEV;
9623}
9624
d6bbafa1
CW
9625static bool __intel_pageflip_stall_check(struct drm_device *dev,
9626 struct drm_crtc *crtc)
9627{
9628 struct drm_i915_private *dev_priv = dev->dev_private;
9629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9630 struct intel_unpin_work *work = intel_crtc->unpin_work;
9631 u32 addr;
9632
9633 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9634 return true;
9635
9636 if (!work->enable_stall_check)
9637 return false;
9638
9639 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9640 if (work->flip_queued_req &&
9641 !i915_gem_request_completed(work->flip_queued_req, true))
9642 return false;
d6bbafa1
CW
9643
9644 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9645 }
9646
9647 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9648 return false;
9649
9650 /* Potential stall - if we see that the flip has happened,
9651 * assume a missed interrupt. */
9652 if (INTEL_INFO(dev)->gen >= 4)
9653 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9654 else
9655 addr = I915_READ(DSPADDR(intel_crtc->plane));
9656
9657 /* There is a potential issue here with a false positive after a flip
9658 * to the same address. We could address this by checking for a
9659 * non-incrementing frame counter.
9660 */
9661 return addr == work->gtt_offset;
9662}
9663
9664void intel_check_page_flip(struct drm_device *dev, int pipe)
9665{
9666 struct drm_i915_private *dev_priv = dev->dev_private;
9667 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9669
9670 WARN_ON(!in_irq());
d6bbafa1
CW
9671
9672 if (crtc == NULL)
9673 return;
9674
f326038a 9675 spin_lock(&dev->event_lock);
d6bbafa1
CW
9676 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9677 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9678 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9679 page_flip_completed(intel_crtc);
9680 }
f326038a 9681 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9682}
9683
6b95a207
KH
9684static int intel_crtc_page_flip(struct drm_crtc *crtc,
9685 struct drm_framebuffer *fb,
ed8d1975
KP
9686 struct drm_pending_vblank_event *event,
9687 uint32_t page_flip_flags)
6b95a207
KH
9688{
9689 struct drm_device *dev = crtc->dev;
9690 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9691 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9692 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9694 enum pipe pipe = intel_crtc->pipe;
6b95a207 9695 struct intel_unpin_work *work;
a4872ba6 9696 struct intel_engine_cs *ring;
52e68630 9697 int ret;
6b95a207 9698
2ff8fde1
MR
9699 /*
9700 * drm_mode_page_flip_ioctl() should already catch this, but double
9701 * check to be safe. In the future we may enable pageflipping from
9702 * a disabled primary plane.
9703 */
9704 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9705 return -EBUSY;
9706
e6a595d2 9707 /* Can't change pixel format via MI display flips. */
f4510a27 9708 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9709 return -EINVAL;
9710
9711 /*
9712 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9713 * Note that pitch changes could also affect these register.
9714 */
9715 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9716 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9717 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9718 return -EINVAL;
9719
f900db47
CW
9720 if (i915_terminally_wedged(&dev_priv->gpu_error))
9721 goto out_hang;
9722
b14c5679 9723 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9724 if (work == NULL)
9725 return -ENOMEM;
9726
6b95a207 9727 work->event = event;
b4a98e57 9728 work->crtc = crtc;
2ff8fde1 9729 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9730 INIT_WORK(&work->work, intel_unpin_work_fn);
9731
87b6b101 9732 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9733 if (ret)
9734 goto free_work;
9735
6b95a207 9736 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9737 spin_lock_irq(&dev->event_lock);
6b95a207 9738 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9739 /* Before declaring the flip queue wedged, check if
9740 * the hardware completed the operation behind our backs.
9741 */
9742 if (__intel_pageflip_stall_check(dev, crtc)) {
9743 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9744 page_flip_completed(intel_crtc);
9745 } else {
9746 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9747 spin_unlock_irq(&dev->event_lock);
468f0b44 9748
d6bbafa1
CW
9749 drm_crtc_vblank_put(crtc);
9750 kfree(work);
9751 return -EBUSY;
9752 }
6b95a207
KH
9753 }
9754 intel_crtc->unpin_work = work;
5e2d7afc 9755 spin_unlock_irq(&dev->event_lock);
6b95a207 9756
b4a98e57
CW
9757 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9758 flush_workqueue(dev_priv->wq);
9759
79158103
CW
9760 ret = i915_mutex_lock_interruptible(dev);
9761 if (ret)
9762 goto cleanup;
6b95a207 9763
75dfca80 9764 /* Reference the objects for the scheduled work. */
05394f39
CW
9765 drm_gem_object_reference(&work->old_fb_obj->base);
9766 drm_gem_object_reference(&obj->base);
6b95a207 9767
f4510a27 9768 crtc->primary->fb = fb;
96b099fd 9769
e1f99ce6 9770 work->pending_flip_obj = obj;
e1f99ce6 9771
b4a98e57 9772 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9773 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9774
75f7f3ec 9775 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9776 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9777
4fa62c89
VS
9778 if (IS_VALLEYVIEW(dev)) {
9779 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9780 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9781 /* vlv: DISPLAY_FLIP fails to change tiling */
9782 ring = NULL;
2a92d5bc
CW
9783 } else if (IS_IVYBRIDGE(dev)) {
9784 ring = &dev_priv->ring[BCS];
4fa62c89 9785 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 9786 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
9787 if (ring == NULL || ring->id != RCS)
9788 ring = &dev_priv->ring[BCS];
9789 } else {
9790 ring = &dev_priv->ring[RCS];
9791 }
9792
850c4cdc 9793 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
8c9f3aaf
JB
9794 if (ret)
9795 goto cleanup_pending;
6b95a207 9796
4fa62c89
VS
9797 work->gtt_offset =
9798 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9799
d6bbafa1 9800 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9801 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9802 page_flip_flags);
d6bbafa1
CW
9803 if (ret)
9804 goto cleanup_unpin;
9805
f06cc1b9
JH
9806 i915_gem_request_assign(&work->flip_queued_req,
9807 obj->last_write_req);
d6bbafa1 9808 } else {
84c33a64 9809 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9810 page_flip_flags);
9811 if (ret)
9812 goto cleanup_unpin;
9813
f06cc1b9
JH
9814 i915_gem_request_assign(&work->flip_queued_req,
9815 intel_ring_get_request(ring));
d6bbafa1
CW
9816 }
9817
9818 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9819 work->enable_stall_check = true;
4fa62c89 9820
a071fa00
DV
9821 i915_gem_track_fb(work->old_fb_obj, obj,
9822 INTEL_FRONTBUFFER_PRIMARY(pipe));
9823
7782de3b 9824 intel_disable_fbc(dev);
f99d7069 9825 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9826 mutex_unlock(&dev->struct_mutex);
9827
e5510fac
JB
9828 trace_i915_flip_request(intel_crtc->plane, obj);
9829
6b95a207 9830 return 0;
96b099fd 9831
4fa62c89
VS
9832cleanup_unpin:
9833 intel_unpin_fb_obj(obj);
8c9f3aaf 9834cleanup_pending:
b4a98e57 9835 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9836 crtc->primary->fb = old_fb;
05394f39
CW
9837 drm_gem_object_unreference(&work->old_fb_obj->base);
9838 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9839 mutex_unlock(&dev->struct_mutex);
9840
79158103 9841cleanup:
5e2d7afc 9842 spin_lock_irq(&dev->event_lock);
96b099fd 9843 intel_crtc->unpin_work = NULL;
5e2d7afc 9844 spin_unlock_irq(&dev->event_lock);
96b099fd 9845
87b6b101 9846 drm_crtc_vblank_put(crtc);
7317c75e 9847free_work:
96b099fd
CW
9848 kfree(work);
9849
f900db47
CW
9850 if (ret == -EIO) {
9851out_hang:
9852 intel_crtc_wait_for_pending_flips(crtc);
9853 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
f0d3dad3 9854 if (ret == 0 && event) {
5e2d7afc 9855 spin_lock_irq(&dev->event_lock);
a071fa00 9856 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9857 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9858 }
f900db47 9859 }
96b099fd 9860 return ret;
6b95a207
KH
9861}
9862
f6e5b160 9863static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9864 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9865 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9866};
9867
9a935856
DV
9868/**
9869 * intel_modeset_update_staged_output_state
9870 *
9871 * Updates the staged output configuration state, e.g. after we've read out the
9872 * current hw state.
9873 */
9874static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9875{
7668851f 9876 struct intel_crtc *crtc;
9a935856
DV
9877 struct intel_encoder *encoder;
9878 struct intel_connector *connector;
f6e5b160 9879
9a935856
DV
9880 list_for_each_entry(connector, &dev->mode_config.connector_list,
9881 base.head) {
9882 connector->new_encoder =
9883 to_intel_encoder(connector->base.encoder);
9884 }
f6e5b160 9885
b2784e15 9886 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9887 encoder->new_crtc =
9888 to_intel_crtc(encoder->base.crtc);
9889 }
7668851f 9890
d3fcc808 9891 for_each_intel_crtc(dev, crtc) {
7668851f 9892 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9893
9894 if (crtc->new_enabled)
9895 crtc->new_config = &crtc->config;
9896 else
9897 crtc->new_config = NULL;
7668851f 9898 }
f6e5b160
CW
9899}
9900
9a935856
DV
9901/**
9902 * intel_modeset_commit_output_state
9903 *
9904 * This function copies the stage display pipe configuration to the real one.
9905 */
9906static void intel_modeset_commit_output_state(struct drm_device *dev)
9907{
7668851f 9908 struct intel_crtc *crtc;
9a935856
DV
9909 struct intel_encoder *encoder;
9910 struct intel_connector *connector;
f6e5b160 9911
9a935856
DV
9912 list_for_each_entry(connector, &dev->mode_config.connector_list,
9913 base.head) {
9914 connector->base.encoder = &connector->new_encoder->base;
9915 }
f6e5b160 9916
b2784e15 9917 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9918 encoder->base.crtc = &encoder->new_crtc->base;
9919 }
7668851f 9920
d3fcc808 9921 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9922 crtc->base.enabled = crtc->new_enabled;
9923 }
9a935856
DV
9924}
9925
050f7aeb 9926static void
eba905b2 9927connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9928 struct intel_crtc_config *pipe_config)
9929{
9930 int bpp = pipe_config->pipe_bpp;
9931
9932 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9933 connector->base.base.id,
c23cc417 9934 connector->base.name);
050f7aeb
DV
9935
9936 /* Don't use an invalid EDID bpc value */
9937 if (connector->base.display_info.bpc &&
9938 connector->base.display_info.bpc * 3 < bpp) {
9939 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9940 bpp, connector->base.display_info.bpc*3);
9941 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9942 }
9943
9944 /* Clamp bpp to 8 on screens without EDID 1.4 */
9945 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9946 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9947 bpp);
9948 pipe_config->pipe_bpp = 24;
9949 }
9950}
9951
4e53c2e0 9952static int
050f7aeb
DV
9953compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9954 struct drm_framebuffer *fb,
9955 struct intel_crtc_config *pipe_config)
4e53c2e0 9956{
050f7aeb
DV
9957 struct drm_device *dev = crtc->base.dev;
9958 struct intel_connector *connector;
4e53c2e0
DV
9959 int bpp;
9960
d42264b1
DV
9961 switch (fb->pixel_format) {
9962 case DRM_FORMAT_C8:
4e53c2e0
DV
9963 bpp = 8*3; /* since we go through a colormap */
9964 break;
d42264b1
DV
9965 case DRM_FORMAT_XRGB1555:
9966 case DRM_FORMAT_ARGB1555:
9967 /* checked in intel_framebuffer_init already */
9968 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9969 return -EINVAL;
9970 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9971 bpp = 6*3; /* min is 18bpp */
9972 break;
d42264b1
DV
9973 case DRM_FORMAT_XBGR8888:
9974 case DRM_FORMAT_ABGR8888:
9975 /* checked in intel_framebuffer_init already */
9976 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9977 return -EINVAL;
9978 case DRM_FORMAT_XRGB8888:
9979 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9980 bpp = 8*3;
9981 break;
d42264b1
DV
9982 case DRM_FORMAT_XRGB2101010:
9983 case DRM_FORMAT_ARGB2101010:
9984 case DRM_FORMAT_XBGR2101010:
9985 case DRM_FORMAT_ABGR2101010:
9986 /* checked in intel_framebuffer_init already */
9987 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9988 return -EINVAL;
4e53c2e0
DV
9989 bpp = 10*3;
9990 break;
baba133a 9991 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9992 default:
9993 DRM_DEBUG_KMS("unsupported depth\n");
9994 return -EINVAL;
9995 }
9996
4e53c2e0
DV
9997 pipe_config->pipe_bpp = bpp;
9998
9999 /* Clamp display bpp to EDID value */
10000 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10001 base.head) {
1b829e05
DV
10002 if (!connector->new_encoder ||
10003 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10004 continue;
10005
050f7aeb 10006 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10007 }
10008
10009 return bpp;
10010}
10011
644db711
DV
10012static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10013{
10014 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10015 "type: 0x%x flags: 0x%x\n",
1342830c 10016 mode->crtc_clock,
644db711
DV
10017 mode->crtc_hdisplay, mode->crtc_hsync_start,
10018 mode->crtc_hsync_end, mode->crtc_htotal,
10019 mode->crtc_vdisplay, mode->crtc_vsync_start,
10020 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10021}
10022
c0b03411
DV
10023static void intel_dump_pipe_config(struct intel_crtc *crtc,
10024 struct intel_crtc_config *pipe_config,
10025 const char *context)
10026{
10027 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10028 context, pipe_name(crtc->pipe));
10029
10030 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10031 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10032 pipe_config->pipe_bpp, pipe_config->dither);
10033 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10034 pipe_config->has_pch_encoder,
10035 pipe_config->fdi_lanes,
10036 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10037 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10038 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10039 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10040 pipe_config->has_dp_encoder,
10041 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10042 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10043 pipe_config->dp_m_n.tu);
b95af8be
VK
10044
10045 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10046 pipe_config->has_dp_encoder,
10047 pipe_config->dp_m2_n2.gmch_m,
10048 pipe_config->dp_m2_n2.gmch_n,
10049 pipe_config->dp_m2_n2.link_m,
10050 pipe_config->dp_m2_n2.link_n,
10051 pipe_config->dp_m2_n2.tu);
10052
55072d19
DV
10053 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10054 pipe_config->has_audio,
10055 pipe_config->has_infoframe);
10056
c0b03411
DV
10057 DRM_DEBUG_KMS("requested mode:\n");
10058 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10059 DRM_DEBUG_KMS("adjusted mode:\n");
10060 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10061 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10062 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10063 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10064 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10065 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10066 pipe_config->gmch_pfit.control,
10067 pipe_config->gmch_pfit.pgm_ratios,
10068 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10069 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10070 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10071 pipe_config->pch_pfit.size,
10072 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10073 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10074 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10075}
10076
bc079e8b
VS
10077static bool encoders_cloneable(const struct intel_encoder *a,
10078 const struct intel_encoder *b)
accfc0c5 10079{
bc079e8b
VS
10080 /* masks could be asymmetric, so check both ways */
10081 return a == b || (a->cloneable & (1 << b->type) &&
10082 b->cloneable & (1 << a->type));
10083}
10084
10085static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10086 struct intel_encoder *encoder)
10087{
10088 struct drm_device *dev = crtc->base.dev;
10089 struct intel_encoder *source_encoder;
10090
b2784e15 10091 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10092 if (source_encoder->new_crtc != crtc)
10093 continue;
10094
10095 if (!encoders_cloneable(encoder, source_encoder))
10096 return false;
10097 }
10098
10099 return true;
10100}
10101
10102static bool check_encoder_cloning(struct intel_crtc *crtc)
10103{
10104 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10105 struct intel_encoder *encoder;
10106
b2784e15 10107 for_each_intel_encoder(dev, encoder) {
bc079e8b 10108 if (encoder->new_crtc != crtc)
accfc0c5
DV
10109 continue;
10110
bc079e8b
VS
10111 if (!check_single_encoder_cloning(crtc, encoder))
10112 return false;
accfc0c5
DV
10113 }
10114
bc079e8b 10115 return true;
accfc0c5
DV
10116}
10117
00f0b378
VS
10118static bool check_digital_port_conflicts(struct drm_device *dev)
10119{
10120 struct intel_connector *connector;
10121 unsigned int used_ports = 0;
10122
10123 /*
10124 * Walk the connector list instead of the encoder
10125 * list to detect the problem on ddi platforms
10126 * where there's just one encoder per digital port.
10127 */
10128 list_for_each_entry(connector,
10129 &dev->mode_config.connector_list, base.head) {
10130 struct intel_encoder *encoder = connector->new_encoder;
10131
10132 if (!encoder)
10133 continue;
10134
10135 WARN_ON(!encoder->new_crtc);
10136
10137 switch (encoder->type) {
10138 unsigned int port_mask;
10139 case INTEL_OUTPUT_UNKNOWN:
10140 if (WARN_ON(!HAS_DDI(dev)))
10141 break;
10142 case INTEL_OUTPUT_DISPLAYPORT:
10143 case INTEL_OUTPUT_HDMI:
10144 case INTEL_OUTPUT_EDP:
10145 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10146
10147 /* the same port mustn't appear more than once */
10148 if (used_ports & port_mask)
10149 return false;
10150
10151 used_ports |= port_mask;
10152 default:
10153 break;
10154 }
10155 }
10156
10157 return true;
10158}
10159
b8cecdf5
DV
10160static struct intel_crtc_config *
10161intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10162 struct drm_framebuffer *fb,
b8cecdf5 10163 struct drm_display_mode *mode)
ee7b9f93 10164{
7758a113 10165 struct drm_device *dev = crtc->dev;
7758a113 10166 struct intel_encoder *encoder;
b8cecdf5 10167 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10168 int plane_bpp, ret = -EINVAL;
10169 bool retry = true;
ee7b9f93 10170
bc079e8b 10171 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10172 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10173 return ERR_PTR(-EINVAL);
10174 }
10175
00f0b378
VS
10176 if (!check_digital_port_conflicts(dev)) {
10177 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10178 return ERR_PTR(-EINVAL);
10179 }
10180
b8cecdf5
DV
10181 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10182 if (!pipe_config)
7758a113
DV
10183 return ERR_PTR(-ENOMEM);
10184
b8cecdf5
DV
10185 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10186 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10187
e143a21c
DV
10188 pipe_config->cpu_transcoder =
10189 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10190 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10191
2960bc9c
ID
10192 /*
10193 * Sanitize sync polarity flags based on requested ones. If neither
10194 * positive or negative polarity is requested, treat this as meaning
10195 * negative polarity.
10196 */
10197 if (!(pipe_config->adjusted_mode.flags &
10198 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10199 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10200
10201 if (!(pipe_config->adjusted_mode.flags &
10202 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10203 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10204
050f7aeb
DV
10205 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10206 * plane pixel format and any sink constraints into account. Returns the
10207 * source plane bpp so that dithering can be selected on mismatches
10208 * after encoders and crtc also have had their say. */
10209 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10210 fb, pipe_config);
4e53c2e0
DV
10211 if (plane_bpp < 0)
10212 goto fail;
10213
e41a56be
VS
10214 /*
10215 * Determine the real pipe dimensions. Note that stereo modes can
10216 * increase the actual pipe size due to the frame doubling and
10217 * insertion of additional space for blanks between the frame. This
10218 * is stored in the crtc timings. We use the requested mode to do this
10219 * computation to clearly distinguish it from the adjusted mode, which
10220 * can be changed by the connectors in the below retry loop.
10221 */
ecb7e16b
GP
10222 drm_crtc_get_hv_timing(&pipe_config->requested_mode,
10223 &pipe_config->pipe_src_w,
10224 &pipe_config->pipe_src_h);
e41a56be 10225
e29c22c0 10226encoder_retry:
ef1b460d 10227 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10228 pipe_config->port_clock = 0;
ef1b460d 10229 pipe_config->pixel_multiplier = 1;
ff9a6750 10230
135c81b8 10231 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10232 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10233
7758a113
DV
10234 /* Pass our mode to the connectors and the CRTC to give them a chance to
10235 * adjust it according to limitations or connector properties, and also
10236 * a chance to reject the mode entirely.
47f1c6c9 10237 */
b2784e15 10238 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10239
7758a113
DV
10240 if (&encoder->new_crtc->base != crtc)
10241 continue;
7ae89233 10242
efea6e8e
DV
10243 if (!(encoder->compute_config(encoder, pipe_config))) {
10244 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10245 goto fail;
10246 }
ee7b9f93 10247 }
47f1c6c9 10248
ff9a6750
DV
10249 /* Set default port clock if not overwritten by the encoder. Needs to be
10250 * done afterwards in case the encoder adjusts the mode. */
10251 if (!pipe_config->port_clock)
241bfc38
DL
10252 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10253 * pipe_config->pixel_multiplier;
ff9a6750 10254
a43f6e0f 10255 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10256 if (ret < 0) {
7758a113
DV
10257 DRM_DEBUG_KMS("CRTC fixup failed\n");
10258 goto fail;
ee7b9f93 10259 }
e29c22c0
DV
10260
10261 if (ret == RETRY) {
10262 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10263 ret = -EINVAL;
10264 goto fail;
10265 }
10266
10267 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10268 retry = false;
10269 goto encoder_retry;
10270 }
10271
4e53c2e0
DV
10272 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10273 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10274 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10275
b8cecdf5 10276 return pipe_config;
7758a113 10277fail:
b8cecdf5 10278 kfree(pipe_config);
e29c22c0 10279 return ERR_PTR(ret);
ee7b9f93 10280}
47f1c6c9 10281
e2e1ed41
DV
10282/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10283 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10284static void
10285intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10286 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10287{
10288 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10289 struct drm_device *dev = crtc->dev;
10290 struct intel_encoder *encoder;
10291 struct intel_connector *connector;
10292 struct drm_crtc *tmp_crtc;
79e53945 10293
e2e1ed41 10294 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10295
e2e1ed41
DV
10296 /* Check which crtcs have changed outputs connected to them, these need
10297 * to be part of the prepare_pipes mask. We don't (yet) support global
10298 * modeset across multiple crtcs, so modeset_pipes will only have one
10299 * bit set at most. */
10300 list_for_each_entry(connector, &dev->mode_config.connector_list,
10301 base.head) {
10302 if (connector->base.encoder == &connector->new_encoder->base)
10303 continue;
79e53945 10304
e2e1ed41
DV
10305 if (connector->base.encoder) {
10306 tmp_crtc = connector->base.encoder->crtc;
10307
10308 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10309 }
10310
10311 if (connector->new_encoder)
10312 *prepare_pipes |=
10313 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10314 }
10315
b2784e15 10316 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10317 if (encoder->base.crtc == &encoder->new_crtc->base)
10318 continue;
10319
10320 if (encoder->base.crtc) {
10321 tmp_crtc = encoder->base.crtc;
10322
10323 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10324 }
10325
10326 if (encoder->new_crtc)
10327 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10328 }
10329
7668851f 10330 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10331 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10332 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10333 continue;
7e7d76c3 10334
7668851f 10335 if (!intel_crtc->new_enabled)
e2e1ed41 10336 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10337 else
10338 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10339 }
10340
e2e1ed41
DV
10341
10342 /* set_mode is also used to update properties on life display pipes. */
10343 intel_crtc = to_intel_crtc(crtc);
7668851f 10344 if (intel_crtc->new_enabled)
e2e1ed41
DV
10345 *prepare_pipes |= 1 << intel_crtc->pipe;
10346
b6c5164d
DV
10347 /*
10348 * For simplicity do a full modeset on any pipe where the output routing
10349 * changed. We could be more clever, but that would require us to be
10350 * more careful with calling the relevant encoder->mode_set functions.
10351 */
e2e1ed41
DV
10352 if (*prepare_pipes)
10353 *modeset_pipes = *prepare_pipes;
10354
10355 /* ... and mask these out. */
10356 *modeset_pipes &= ~(*disable_pipes);
10357 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10358
10359 /*
10360 * HACK: We don't (yet) fully support global modesets. intel_set_config
10361 * obies this rule, but the modeset restore mode of
10362 * intel_modeset_setup_hw_state does not.
10363 */
10364 *modeset_pipes &= 1 << intel_crtc->pipe;
10365 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10366
10367 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10368 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10369}
79e53945 10370
ea9d758d 10371static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10372{
ea9d758d 10373 struct drm_encoder *encoder;
f6e5b160 10374 struct drm_device *dev = crtc->dev;
f6e5b160 10375
ea9d758d
DV
10376 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10377 if (encoder->crtc == crtc)
10378 return true;
10379
10380 return false;
10381}
10382
10383static void
10384intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10385{
ba41c0de 10386 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10387 struct intel_encoder *intel_encoder;
10388 struct intel_crtc *intel_crtc;
10389 struct drm_connector *connector;
10390
ba41c0de
DV
10391 intel_shared_dpll_commit(dev_priv);
10392
b2784e15 10393 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10394 if (!intel_encoder->base.crtc)
10395 continue;
10396
10397 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10398
10399 if (prepare_pipes & (1 << intel_crtc->pipe))
10400 intel_encoder->connectors_active = false;
10401 }
10402
10403 intel_modeset_commit_output_state(dev);
10404
7668851f 10405 /* Double check state. */
d3fcc808 10406 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10407 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10408 WARN_ON(intel_crtc->new_config &&
10409 intel_crtc->new_config != &intel_crtc->config);
10410 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10411 }
10412
10413 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10414 if (!connector->encoder || !connector->encoder->crtc)
10415 continue;
10416
10417 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10418
10419 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10420 struct drm_property *dpms_property =
10421 dev->mode_config.dpms_property;
10422
ea9d758d 10423 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10424 drm_object_property_set_value(&connector->base,
68d34720
DV
10425 dpms_property,
10426 DRM_MODE_DPMS_ON);
ea9d758d
DV
10427
10428 intel_encoder = to_intel_encoder(connector->encoder);
10429 intel_encoder->connectors_active = true;
10430 }
10431 }
10432
10433}
10434
3bd26263 10435static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10436{
3bd26263 10437 int diff;
f1f644dc
JB
10438
10439 if (clock1 == clock2)
10440 return true;
10441
10442 if (!clock1 || !clock2)
10443 return false;
10444
10445 diff = abs(clock1 - clock2);
10446
10447 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10448 return true;
10449
10450 return false;
10451}
10452
25c5b266
DV
10453#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10454 list_for_each_entry((intel_crtc), \
10455 &(dev)->mode_config.crtc_list, \
10456 base.head) \
0973f18f 10457 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10458
0e8ffe1b 10459static bool
2fa2fe9a
DV
10460intel_pipe_config_compare(struct drm_device *dev,
10461 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10462 struct intel_crtc_config *pipe_config)
10463{
66e985c0
DV
10464#define PIPE_CONF_CHECK_X(name) \
10465 if (current_config->name != pipe_config->name) { \
10466 DRM_ERROR("mismatch in " #name " " \
10467 "(expected 0x%08x, found 0x%08x)\n", \
10468 current_config->name, \
10469 pipe_config->name); \
10470 return false; \
10471 }
10472
08a24034
DV
10473#define PIPE_CONF_CHECK_I(name) \
10474 if (current_config->name != pipe_config->name) { \
10475 DRM_ERROR("mismatch in " #name " " \
10476 "(expected %i, found %i)\n", \
10477 current_config->name, \
10478 pipe_config->name); \
10479 return false; \
88adfff1
DV
10480 }
10481
b95af8be
VK
10482/* This is required for BDW+ where there is only one set of registers for
10483 * switching between high and low RR.
10484 * This macro can be used whenever a comparison has to be made between one
10485 * hw state and multiple sw state variables.
10486 */
10487#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10488 if ((current_config->name != pipe_config->name) && \
10489 (current_config->alt_name != pipe_config->name)) { \
10490 DRM_ERROR("mismatch in " #name " " \
10491 "(expected %i or %i, found %i)\n", \
10492 current_config->name, \
10493 current_config->alt_name, \
10494 pipe_config->name); \
10495 return false; \
10496 }
10497
1bd1bd80
DV
10498#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10499 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10500 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10501 "(expected %i, found %i)\n", \
10502 current_config->name & (mask), \
10503 pipe_config->name & (mask)); \
10504 return false; \
10505 }
10506
5e550656
VS
10507#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10508 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10509 DRM_ERROR("mismatch in " #name " " \
10510 "(expected %i, found %i)\n", \
10511 current_config->name, \
10512 pipe_config->name); \
10513 return false; \
10514 }
10515
bb760063
DV
10516#define PIPE_CONF_QUIRK(quirk) \
10517 ((current_config->quirks | pipe_config->quirks) & (quirk))
10518
eccb140b
DV
10519 PIPE_CONF_CHECK_I(cpu_transcoder);
10520
08a24034
DV
10521 PIPE_CONF_CHECK_I(has_pch_encoder);
10522 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10523 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10524 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10525 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10526 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10527 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10528
eb14cb74 10529 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10530
10531 if (INTEL_INFO(dev)->gen < 8) {
10532 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10533 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10534 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10535 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10536 PIPE_CONF_CHECK_I(dp_m_n.tu);
10537
10538 if (current_config->has_drrs) {
10539 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10540 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10541 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10542 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10543 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10544 }
10545 } else {
10546 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10547 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10548 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10549 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10550 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10551 }
eb14cb74 10552
1bd1bd80
DV
10553 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10554 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10555 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10556 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10557 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10558 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10559
10560 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10561 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10562 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10563 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10564 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10565 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10566
c93f54cf 10567 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10568 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10569 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10570 IS_VALLEYVIEW(dev))
10571 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10572 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10573
9ed109a7
DV
10574 PIPE_CONF_CHECK_I(has_audio);
10575
1bd1bd80
DV
10576 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10577 DRM_MODE_FLAG_INTERLACE);
10578
bb760063
DV
10579 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10580 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10581 DRM_MODE_FLAG_PHSYNC);
10582 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10583 DRM_MODE_FLAG_NHSYNC);
10584 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10585 DRM_MODE_FLAG_PVSYNC);
10586 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10587 DRM_MODE_FLAG_NVSYNC);
10588 }
045ac3b5 10589
37327abd
VS
10590 PIPE_CONF_CHECK_I(pipe_src_w);
10591 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10592
9953599b
DV
10593 /*
10594 * FIXME: BIOS likes to set up a cloned config with lvds+external
10595 * screen. Since we don't yet re-compute the pipe config when moving
10596 * just the lvds port away to another pipe the sw tracking won't match.
10597 *
10598 * Proper atomic modesets with recomputed global state will fix this.
10599 * Until then just don't check gmch state for inherited modes.
10600 */
10601 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10602 PIPE_CONF_CHECK_I(gmch_pfit.control);
10603 /* pfit ratios are autocomputed by the hw on gen4+ */
10604 if (INTEL_INFO(dev)->gen < 4)
10605 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10606 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10607 }
10608
fd4daa9c
CW
10609 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10610 if (current_config->pch_pfit.enabled) {
10611 PIPE_CONF_CHECK_I(pch_pfit.pos);
10612 PIPE_CONF_CHECK_I(pch_pfit.size);
10613 }
2fa2fe9a 10614
e59150dc
JB
10615 /* BDW+ don't expose a synchronous way to read the state */
10616 if (IS_HASWELL(dev))
10617 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10618
282740f7
VS
10619 PIPE_CONF_CHECK_I(double_wide);
10620
26804afd
DV
10621 PIPE_CONF_CHECK_X(ddi_pll_sel);
10622
c0d43d62 10623 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10624 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10625 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10626 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10627 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10628 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
10629 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10630 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10631 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 10632
42571aef
VS
10633 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10634 PIPE_CONF_CHECK_I(pipe_bpp);
10635
a9a7e98a
JB
10636 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10637 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10638
66e985c0 10639#undef PIPE_CONF_CHECK_X
08a24034 10640#undef PIPE_CONF_CHECK_I
b95af8be 10641#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10642#undef PIPE_CONF_CHECK_FLAGS
5e550656 10643#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10644#undef PIPE_CONF_QUIRK
88adfff1 10645
0e8ffe1b
DV
10646 return true;
10647}
10648
08db6652
DL
10649static void check_wm_state(struct drm_device *dev)
10650{
10651 struct drm_i915_private *dev_priv = dev->dev_private;
10652 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10653 struct intel_crtc *intel_crtc;
10654 int plane;
10655
10656 if (INTEL_INFO(dev)->gen < 9)
10657 return;
10658
10659 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10660 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10661
10662 for_each_intel_crtc(dev, intel_crtc) {
10663 struct skl_ddb_entry *hw_entry, *sw_entry;
10664 const enum pipe pipe = intel_crtc->pipe;
10665
10666 if (!intel_crtc->active)
10667 continue;
10668
10669 /* planes */
10670 for_each_plane(pipe, plane) {
10671 hw_entry = &hw_ddb.plane[pipe][plane];
10672 sw_entry = &sw_ddb->plane[pipe][plane];
10673
10674 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10675 continue;
10676
10677 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10678 "(expected (%u,%u), found (%u,%u))\n",
10679 pipe_name(pipe), plane + 1,
10680 sw_entry->start, sw_entry->end,
10681 hw_entry->start, hw_entry->end);
10682 }
10683
10684 /* cursor */
10685 hw_entry = &hw_ddb.cursor[pipe];
10686 sw_entry = &sw_ddb->cursor[pipe];
10687
10688 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10689 continue;
10690
10691 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10692 "(expected (%u,%u), found (%u,%u))\n",
10693 pipe_name(pipe),
10694 sw_entry->start, sw_entry->end,
10695 hw_entry->start, hw_entry->end);
10696 }
10697}
10698
91d1b4bd
DV
10699static void
10700check_connector_state(struct drm_device *dev)
8af6cf88 10701{
8af6cf88
DV
10702 struct intel_connector *connector;
10703
10704 list_for_each_entry(connector, &dev->mode_config.connector_list,
10705 base.head) {
10706 /* This also checks the encoder/connector hw state with the
10707 * ->get_hw_state callbacks. */
10708 intel_connector_check_state(connector);
10709
10710 WARN(&connector->new_encoder->base != connector->base.encoder,
10711 "connector's staged encoder doesn't match current encoder\n");
10712 }
91d1b4bd
DV
10713}
10714
10715static void
10716check_encoder_state(struct drm_device *dev)
10717{
10718 struct intel_encoder *encoder;
10719 struct intel_connector *connector;
8af6cf88 10720
b2784e15 10721 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10722 bool enabled = false;
10723 bool active = false;
10724 enum pipe pipe, tracked_pipe;
10725
10726 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10727 encoder->base.base.id,
8e329a03 10728 encoder->base.name);
8af6cf88
DV
10729
10730 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10731 "encoder's stage crtc doesn't match current crtc\n");
10732 WARN(encoder->connectors_active && !encoder->base.crtc,
10733 "encoder's active_connectors set, but no crtc\n");
10734
10735 list_for_each_entry(connector, &dev->mode_config.connector_list,
10736 base.head) {
10737 if (connector->base.encoder != &encoder->base)
10738 continue;
10739 enabled = true;
10740 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10741 active = true;
10742 }
0e32b39c
DA
10743 /*
10744 * for MST connectors if we unplug the connector is gone
10745 * away but the encoder is still connected to a crtc
10746 * until a modeset happens in response to the hotplug.
10747 */
10748 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10749 continue;
10750
8af6cf88
DV
10751 WARN(!!encoder->base.crtc != enabled,
10752 "encoder's enabled state mismatch "
10753 "(expected %i, found %i)\n",
10754 !!encoder->base.crtc, enabled);
10755 WARN(active && !encoder->base.crtc,
10756 "active encoder with no crtc\n");
10757
10758 WARN(encoder->connectors_active != active,
10759 "encoder's computed active state doesn't match tracked active state "
10760 "(expected %i, found %i)\n", active, encoder->connectors_active);
10761
10762 active = encoder->get_hw_state(encoder, &pipe);
10763 WARN(active != encoder->connectors_active,
10764 "encoder's hw state doesn't match sw tracking "
10765 "(expected %i, found %i)\n",
10766 encoder->connectors_active, active);
10767
10768 if (!encoder->base.crtc)
10769 continue;
10770
10771 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10772 WARN(active && pipe != tracked_pipe,
10773 "active encoder's pipe doesn't match"
10774 "(expected %i, found %i)\n",
10775 tracked_pipe, pipe);
10776
10777 }
91d1b4bd
DV
10778}
10779
10780static void
10781check_crtc_state(struct drm_device *dev)
10782{
fbee40df 10783 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10784 struct intel_crtc *crtc;
10785 struct intel_encoder *encoder;
10786 struct intel_crtc_config pipe_config;
8af6cf88 10787
d3fcc808 10788 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10789 bool enabled = false;
10790 bool active = false;
10791
045ac3b5
JB
10792 memset(&pipe_config, 0, sizeof(pipe_config));
10793
8af6cf88
DV
10794 DRM_DEBUG_KMS("[CRTC:%d]\n",
10795 crtc->base.base.id);
10796
10797 WARN(crtc->active && !crtc->base.enabled,
10798 "active crtc, but not enabled in sw tracking\n");
10799
b2784e15 10800 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10801 if (encoder->base.crtc != &crtc->base)
10802 continue;
10803 enabled = true;
10804 if (encoder->connectors_active)
10805 active = true;
10806 }
6c49f241 10807
8af6cf88
DV
10808 WARN(active != crtc->active,
10809 "crtc's computed active state doesn't match tracked active state "
10810 "(expected %i, found %i)\n", active, crtc->active);
10811 WARN(enabled != crtc->base.enabled,
10812 "crtc's computed enabled state doesn't match tracked enabled state "
10813 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10814
0e8ffe1b
DV
10815 active = dev_priv->display.get_pipe_config(crtc,
10816 &pipe_config);
d62cf62a 10817
b6b5d049
VS
10818 /* hw state is inconsistent with the pipe quirk */
10819 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10820 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10821 active = crtc->active;
10822
b2784e15 10823 for_each_intel_encoder(dev, encoder) {
3eaba51c 10824 enum pipe pipe;
6c49f241
DV
10825 if (encoder->base.crtc != &crtc->base)
10826 continue;
1d37b689 10827 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10828 encoder->get_config(encoder, &pipe_config);
10829 }
10830
0e8ffe1b
DV
10831 WARN(crtc->active != active,
10832 "crtc active state doesn't match with hw state "
10833 "(expected %i, found %i)\n", crtc->active, active);
10834
c0b03411
DV
10835 if (active &&
10836 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10837 WARN(1, "pipe state doesn't match!\n");
10838 intel_dump_pipe_config(crtc, &pipe_config,
10839 "[hw state]");
10840 intel_dump_pipe_config(crtc, &crtc->config,
10841 "[sw state]");
10842 }
8af6cf88
DV
10843 }
10844}
10845
91d1b4bd
DV
10846static void
10847check_shared_dpll_state(struct drm_device *dev)
10848{
fbee40df 10849 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10850 struct intel_crtc *crtc;
10851 struct intel_dpll_hw_state dpll_hw_state;
10852 int i;
5358901f
DV
10853
10854 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10855 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10856 int enabled_crtcs = 0, active_crtcs = 0;
10857 bool active;
10858
10859 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10860
10861 DRM_DEBUG_KMS("%s\n", pll->name);
10862
10863 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10864
3e369b76 10865 WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10866 "more active pll users than references: %i vs %i\n",
3e369b76 10867 pll->active, hweight32(pll->config.crtc_mask));
5358901f
DV
10868 WARN(pll->active && !pll->on,
10869 "pll in active use but not on in sw tracking\n");
35c95375
DV
10870 WARN(pll->on && !pll->active,
10871 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10872 WARN(pll->on != active,
10873 "pll on state mismatch (expected %i, found %i)\n",
10874 pll->on, active);
10875
d3fcc808 10876 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10877 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10878 enabled_crtcs++;
10879 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10880 active_crtcs++;
10881 }
10882 WARN(pll->active != active_crtcs,
10883 "pll active crtcs mismatch (expected %i, found %i)\n",
10884 pll->active, active_crtcs);
3e369b76 10885 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10886 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10887 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10888
3e369b76 10889 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10890 sizeof(dpll_hw_state)),
10891 "pll hw state mismatch\n");
5358901f 10892 }
8af6cf88
DV
10893}
10894
91d1b4bd
DV
10895void
10896intel_modeset_check_state(struct drm_device *dev)
10897{
08db6652 10898 check_wm_state(dev);
91d1b4bd
DV
10899 check_connector_state(dev);
10900 check_encoder_state(dev);
10901 check_crtc_state(dev);
10902 check_shared_dpll_state(dev);
10903}
10904
18442d08
VS
10905void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10906 int dotclock)
10907{
10908 /*
10909 * FDI already provided one idea for the dotclock.
10910 * Yell if the encoder disagrees.
10911 */
241bfc38 10912 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10913 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10914 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10915}
10916
80715b2f
VS
10917static void update_scanline_offset(struct intel_crtc *crtc)
10918{
10919 struct drm_device *dev = crtc->base.dev;
10920
10921 /*
10922 * The scanline counter increments at the leading edge of hsync.
10923 *
10924 * On most platforms it starts counting from vtotal-1 on the
10925 * first active line. That means the scanline counter value is
10926 * always one less than what we would expect. Ie. just after
10927 * start of vblank, which also occurs at start of hsync (on the
10928 * last active line), the scanline counter will read vblank_start-1.
10929 *
10930 * On gen2 the scanline counter starts counting from 1 instead
10931 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10932 * to keep the value positive), instead of adding one.
10933 *
10934 * On HSW+ the behaviour of the scanline counter depends on the output
10935 * type. For DP ports it behaves like most other platforms, but on HDMI
10936 * there's an extra 1 line difference. So we need to add two instead of
10937 * one to the value.
10938 */
10939 if (IS_GEN2(dev)) {
10940 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10941 int vtotal;
10942
10943 vtotal = mode->crtc_vtotal;
10944 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10945 vtotal /= 2;
10946
10947 crtc->scanline_offset = vtotal - 1;
10948 } else if (HAS_DDI(dev) &&
409ee761 10949 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10950 crtc->scanline_offset = 2;
10951 } else
10952 crtc->scanline_offset = 1;
10953}
10954
7f27126e
JB
10955static struct intel_crtc_config *
10956intel_modeset_compute_config(struct drm_crtc *crtc,
10957 struct drm_display_mode *mode,
10958 struct drm_framebuffer *fb,
10959 unsigned *modeset_pipes,
10960 unsigned *prepare_pipes,
10961 unsigned *disable_pipes)
10962{
10963 struct intel_crtc_config *pipe_config = NULL;
10964
10965 intel_modeset_affected_pipes(crtc, modeset_pipes,
10966 prepare_pipes, disable_pipes);
10967
10968 if ((*modeset_pipes) == 0)
10969 goto out;
10970
10971 /*
10972 * Note this needs changes when we start tracking multiple modes
10973 * and crtcs. At that point we'll need to compute the whole config
10974 * (i.e. one pipe_config for each crtc) rather than just the one
10975 * for this crtc.
10976 */
10977 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10978 if (IS_ERR(pipe_config)) {
10979 goto out;
10980 }
10981 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10982 "[modeset]");
7f27126e
JB
10983
10984out:
10985 return pipe_config;
10986}
10987
f30da187
DV
10988static int __intel_set_mode(struct drm_crtc *crtc,
10989 struct drm_display_mode *mode,
7f27126e
JB
10990 int x, int y, struct drm_framebuffer *fb,
10991 struct intel_crtc_config *pipe_config,
10992 unsigned modeset_pipes,
10993 unsigned prepare_pipes,
10994 unsigned disable_pipes)
a6778b3c
DV
10995{
10996 struct drm_device *dev = crtc->dev;
fbee40df 10997 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10998 struct drm_display_mode *saved_mode;
25c5b266 10999 struct intel_crtc *intel_crtc;
c0c36b94 11000 int ret = 0;
a6778b3c 11001
4b4b9238 11002 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11003 if (!saved_mode)
11004 return -ENOMEM;
a6778b3c 11005
3ac18232 11006 *saved_mode = crtc->mode;
a6778b3c 11007
b9950a13
VS
11008 if (modeset_pipes)
11009 to_intel_crtc(crtc)->new_config = pipe_config;
11010
30a970c6
JB
11011 /*
11012 * See if the config requires any additional preparation, e.g.
11013 * to adjust global state with pipes off. We need to do this
11014 * here so we can get the modeset_pipe updated config for the new
11015 * mode set on this crtc. For other crtcs we need to use the
11016 * adjusted_mode bits in the crtc directly.
11017 */
c164f833 11018 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11019 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11020
c164f833
VS
11021 /* may have added more to prepare_pipes than we should */
11022 prepare_pipes &= ~disable_pipes;
11023 }
11024
8bd31e67
ACO
11025 if (dev_priv->display.crtc_compute_clock) {
11026 unsigned clear_pipes = modeset_pipes | disable_pipes;
11027
11028 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11029 if (ret)
11030 goto done;
11031
11032 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11033 ret = dev_priv->display.crtc_compute_clock(intel_crtc);
11034 if (ret) {
11035 intel_shared_dpll_abort_config(dev_priv);
11036 goto done;
11037 }
11038 }
11039 }
11040
460da916
DV
11041 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11042 intel_crtc_disable(&intel_crtc->base);
11043
ea9d758d
DV
11044 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11045 if (intel_crtc->base.enabled)
11046 dev_priv->display.crtc_disable(&intel_crtc->base);
11047 }
a6778b3c 11048
6c4c86f5
DV
11049 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11050 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11051 *
11052 * Note we'll need to fix this up when we start tracking multiple
11053 * pipes; here we assume a single modeset_pipe and only track the
11054 * single crtc and mode.
f6e5b160 11055 */
b8cecdf5 11056 if (modeset_pipes) {
25c5b266 11057 crtc->mode = *mode;
b8cecdf5
DV
11058 /* mode_set/enable/disable functions rely on a correct pipe
11059 * config. */
11060 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 11061 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
11062
11063 /*
11064 * Calculate and store various constants which
11065 * are later needed by vblank and swap-completion
11066 * timestamping. They are derived from true hwmode.
11067 */
11068 drm_calc_timestamping_constants(crtc,
11069 &pipe_config->adjusted_mode);
b8cecdf5 11070 }
7758a113 11071
ea9d758d
DV
11072 /* Only after disabling all output pipelines that will be changed can we
11073 * update the the output configuration. */
11074 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11075
50f6e502 11076 modeset_update_crtc_power_domains(dev);
47fab737 11077
a6778b3c
DV
11078 /* Set up the DPLL and any encoders state that needs to adjust or depend
11079 * on the DPLL.
f6e5b160 11080 */
25c5b266 11081 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
11082 struct drm_framebuffer *old_fb = crtc->primary->fb;
11083 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11084 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
11085
11086 mutex_lock(&dev->struct_mutex);
850c4cdc 11087 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
4c10794f
DV
11088 if (ret != 0) {
11089 DRM_ERROR("pin & fence failed\n");
11090 mutex_unlock(&dev->struct_mutex);
11091 goto done;
11092 }
2ff8fde1 11093 if (old_fb)
a071fa00 11094 intel_unpin_fb_obj(old_obj);
a071fa00
DV
11095 i915_gem_track_fb(old_obj, obj,
11096 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
11097 mutex_unlock(&dev->struct_mutex);
11098
11099 crtc->primary->fb = fb;
11100 crtc->x = x;
11101 crtc->y = y;
a6778b3c
DV
11102 }
11103
11104 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11105 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11106 update_scanline_offset(intel_crtc);
11107
25c5b266 11108 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11109 }
a6778b3c 11110
a6778b3c
DV
11111 /* FIXME: add subpixel order */
11112done:
4b4b9238 11113 if (ret && crtc->enabled)
3ac18232 11114 crtc->mode = *saved_mode;
a6778b3c 11115
b8cecdf5 11116 kfree(pipe_config);
3ac18232 11117 kfree(saved_mode);
a6778b3c 11118 return ret;
f6e5b160
CW
11119}
11120
7f27126e
JB
11121static int intel_set_mode_pipes(struct drm_crtc *crtc,
11122 struct drm_display_mode *mode,
11123 int x, int y, struct drm_framebuffer *fb,
11124 struct intel_crtc_config *pipe_config,
11125 unsigned modeset_pipes,
11126 unsigned prepare_pipes,
11127 unsigned disable_pipes)
f30da187
DV
11128{
11129 int ret;
11130
7f27126e
JB
11131 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11132 prepare_pipes, disable_pipes);
f30da187
DV
11133
11134 if (ret == 0)
11135 intel_modeset_check_state(crtc->dev);
11136
11137 return ret;
11138}
11139
7f27126e
JB
11140static int intel_set_mode(struct drm_crtc *crtc,
11141 struct drm_display_mode *mode,
11142 int x, int y, struct drm_framebuffer *fb)
11143{
11144 struct intel_crtc_config *pipe_config;
11145 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11146
11147 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11148 &modeset_pipes,
11149 &prepare_pipes,
11150 &disable_pipes);
11151
11152 if (IS_ERR(pipe_config))
11153 return PTR_ERR(pipe_config);
11154
11155 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11156 modeset_pipes, prepare_pipes,
11157 disable_pipes);
11158}
11159
c0c36b94
CW
11160void intel_crtc_restore_mode(struct drm_crtc *crtc)
11161{
f4510a27 11162 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11163}
11164
25c5b266
DV
11165#undef for_each_intel_crtc_masked
11166
d9e55608
DV
11167static void intel_set_config_free(struct intel_set_config *config)
11168{
11169 if (!config)
11170 return;
11171
1aa4b628
DV
11172 kfree(config->save_connector_encoders);
11173 kfree(config->save_encoder_crtcs);
7668851f 11174 kfree(config->save_crtc_enabled);
d9e55608
DV
11175 kfree(config);
11176}
11177
85f9eb71
DV
11178static int intel_set_config_save_state(struct drm_device *dev,
11179 struct intel_set_config *config)
11180{
7668851f 11181 struct drm_crtc *crtc;
85f9eb71
DV
11182 struct drm_encoder *encoder;
11183 struct drm_connector *connector;
11184 int count;
11185
7668851f
VS
11186 config->save_crtc_enabled =
11187 kcalloc(dev->mode_config.num_crtc,
11188 sizeof(bool), GFP_KERNEL);
11189 if (!config->save_crtc_enabled)
11190 return -ENOMEM;
11191
1aa4b628
DV
11192 config->save_encoder_crtcs =
11193 kcalloc(dev->mode_config.num_encoder,
11194 sizeof(struct drm_crtc *), GFP_KERNEL);
11195 if (!config->save_encoder_crtcs)
85f9eb71
DV
11196 return -ENOMEM;
11197
1aa4b628
DV
11198 config->save_connector_encoders =
11199 kcalloc(dev->mode_config.num_connector,
11200 sizeof(struct drm_encoder *), GFP_KERNEL);
11201 if (!config->save_connector_encoders)
85f9eb71
DV
11202 return -ENOMEM;
11203
11204 /* Copy data. Note that driver private data is not affected.
11205 * Should anything bad happen only the expected state is
11206 * restored, not the drivers personal bookkeeping.
11207 */
7668851f 11208 count = 0;
70e1e0ec 11209 for_each_crtc(dev, crtc) {
7668851f
VS
11210 config->save_crtc_enabled[count++] = crtc->enabled;
11211 }
11212
85f9eb71
DV
11213 count = 0;
11214 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11215 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11216 }
11217
11218 count = 0;
11219 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11220 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11221 }
11222
11223 return 0;
11224}
11225
11226static void intel_set_config_restore_state(struct drm_device *dev,
11227 struct intel_set_config *config)
11228{
7668851f 11229 struct intel_crtc *crtc;
9a935856
DV
11230 struct intel_encoder *encoder;
11231 struct intel_connector *connector;
85f9eb71
DV
11232 int count;
11233
7668851f 11234 count = 0;
d3fcc808 11235 for_each_intel_crtc(dev, crtc) {
7668851f 11236 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11237
11238 if (crtc->new_enabled)
11239 crtc->new_config = &crtc->config;
11240 else
11241 crtc->new_config = NULL;
7668851f
VS
11242 }
11243
85f9eb71 11244 count = 0;
b2784e15 11245 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11246 encoder->new_crtc =
11247 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11248 }
11249
11250 count = 0;
9a935856
DV
11251 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11252 connector->new_encoder =
11253 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11254 }
11255}
11256
e3de42b6 11257static bool
2e57f47d 11258is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11259{
11260 int i;
11261
2e57f47d
CW
11262 if (set->num_connectors == 0)
11263 return false;
11264
11265 if (WARN_ON(set->connectors == NULL))
11266 return false;
11267
11268 for (i = 0; i < set->num_connectors; i++)
11269 if (set->connectors[i]->encoder &&
11270 set->connectors[i]->encoder->crtc == set->crtc &&
11271 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11272 return true;
11273
11274 return false;
11275}
11276
5e2b584e
DV
11277static void
11278intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11279 struct intel_set_config *config)
11280{
11281
11282 /* We should be able to check here if the fb has the same properties
11283 * and then just flip_or_move it */
2e57f47d
CW
11284 if (is_crtc_connector_off(set)) {
11285 config->mode_changed = true;
f4510a27 11286 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11287 /*
11288 * If we have no fb, we can only flip as long as the crtc is
11289 * active, otherwise we need a full mode set. The crtc may
11290 * be active if we've only disabled the primary plane, or
11291 * in fastboot situations.
11292 */
f4510a27 11293 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11294 struct intel_crtc *intel_crtc =
11295 to_intel_crtc(set->crtc);
11296
3b150f08 11297 if (intel_crtc->active) {
319d9827
JB
11298 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11299 config->fb_changed = true;
11300 } else {
11301 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11302 config->mode_changed = true;
11303 }
5e2b584e
DV
11304 } else if (set->fb == NULL) {
11305 config->mode_changed = true;
72f4901e 11306 } else if (set->fb->pixel_format !=
f4510a27 11307 set->crtc->primary->fb->pixel_format) {
5e2b584e 11308 config->mode_changed = true;
e3de42b6 11309 } else {
5e2b584e 11310 config->fb_changed = true;
e3de42b6 11311 }
5e2b584e
DV
11312 }
11313
835c5873 11314 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11315 config->fb_changed = true;
11316
11317 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11318 DRM_DEBUG_KMS("modes are different, full mode set\n");
11319 drm_mode_debug_printmodeline(&set->crtc->mode);
11320 drm_mode_debug_printmodeline(set->mode);
11321 config->mode_changed = true;
11322 }
a1d95703
CW
11323
11324 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11325 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11326}
11327
2e431051 11328static int
9a935856
DV
11329intel_modeset_stage_output_state(struct drm_device *dev,
11330 struct drm_mode_set *set,
11331 struct intel_set_config *config)
50f56119 11332{
9a935856
DV
11333 struct intel_connector *connector;
11334 struct intel_encoder *encoder;
7668851f 11335 struct intel_crtc *crtc;
f3f08572 11336 int ro;
50f56119 11337
9abdda74 11338 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11339 * of connectors. For paranoia, double-check this. */
11340 WARN_ON(!set->fb && (set->num_connectors != 0));
11341 WARN_ON(set->fb && (set->num_connectors == 0));
11342
9a935856
DV
11343 list_for_each_entry(connector, &dev->mode_config.connector_list,
11344 base.head) {
11345 /* Otherwise traverse passed in connector list and get encoders
11346 * for them. */
50f56119 11347 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11348 if (set->connectors[ro] == &connector->base) {
0e32b39c 11349 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11350 break;
11351 }
11352 }
11353
9a935856
DV
11354 /* If we disable the crtc, disable all its connectors. Also, if
11355 * the connector is on the changing crtc but not on the new
11356 * connector list, disable it. */
11357 if ((!set->fb || ro == set->num_connectors) &&
11358 connector->base.encoder &&
11359 connector->base.encoder->crtc == set->crtc) {
11360 connector->new_encoder = NULL;
11361
11362 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11363 connector->base.base.id,
c23cc417 11364 connector->base.name);
9a935856
DV
11365 }
11366
11367
11368 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11369 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11370 config->mode_changed = true;
50f56119
DV
11371 }
11372 }
9a935856 11373 /* connector->new_encoder is now updated for all connectors. */
50f56119 11374
9a935856 11375 /* Update crtc of enabled connectors. */
9a935856
DV
11376 list_for_each_entry(connector, &dev->mode_config.connector_list,
11377 base.head) {
7668851f
VS
11378 struct drm_crtc *new_crtc;
11379
9a935856 11380 if (!connector->new_encoder)
50f56119
DV
11381 continue;
11382
9a935856 11383 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11384
11385 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11386 if (set->connectors[ro] == &connector->base)
50f56119
DV
11387 new_crtc = set->crtc;
11388 }
11389
11390 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11391 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11392 new_crtc)) {
5e2b584e 11393 return -EINVAL;
50f56119 11394 }
0e32b39c 11395 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11396
11397 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11398 connector->base.base.id,
c23cc417 11399 connector->base.name,
9a935856
DV
11400 new_crtc->base.id);
11401 }
11402
11403 /* Check for any encoders that needs to be disabled. */
b2784e15 11404 for_each_intel_encoder(dev, encoder) {
5a65f358 11405 int num_connectors = 0;
9a935856
DV
11406 list_for_each_entry(connector,
11407 &dev->mode_config.connector_list,
11408 base.head) {
11409 if (connector->new_encoder == encoder) {
11410 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11411 num_connectors++;
9a935856
DV
11412 }
11413 }
5a65f358
PZ
11414
11415 if (num_connectors == 0)
11416 encoder->new_crtc = NULL;
11417 else if (num_connectors > 1)
11418 return -EINVAL;
11419
9a935856
DV
11420 /* Only now check for crtc changes so we don't miss encoders
11421 * that will be disabled. */
11422 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11423 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11424 config->mode_changed = true;
50f56119
DV
11425 }
11426 }
9a935856 11427 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11428 list_for_each_entry(connector, &dev->mode_config.connector_list,
11429 base.head) {
11430 if (connector->new_encoder)
11431 if (connector->new_encoder != connector->encoder)
11432 connector->encoder = connector->new_encoder;
11433 }
d3fcc808 11434 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11435 crtc->new_enabled = false;
11436
b2784e15 11437 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11438 if (encoder->new_crtc == crtc) {
11439 crtc->new_enabled = true;
11440 break;
11441 }
11442 }
11443
11444 if (crtc->new_enabled != crtc->base.enabled) {
11445 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11446 crtc->new_enabled ? "en" : "dis");
11447 config->mode_changed = true;
11448 }
7bd0a8e7
VS
11449
11450 if (crtc->new_enabled)
11451 crtc->new_config = &crtc->config;
11452 else
11453 crtc->new_config = NULL;
7668851f
VS
11454 }
11455
2e431051
DV
11456 return 0;
11457}
11458
7d00a1f5
VS
11459static void disable_crtc_nofb(struct intel_crtc *crtc)
11460{
11461 struct drm_device *dev = crtc->base.dev;
11462 struct intel_encoder *encoder;
11463 struct intel_connector *connector;
11464
11465 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11466 pipe_name(crtc->pipe));
11467
11468 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11469 if (connector->new_encoder &&
11470 connector->new_encoder->new_crtc == crtc)
11471 connector->new_encoder = NULL;
11472 }
11473
b2784e15 11474 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11475 if (encoder->new_crtc == crtc)
11476 encoder->new_crtc = NULL;
11477 }
11478
11479 crtc->new_enabled = false;
7bd0a8e7 11480 crtc->new_config = NULL;
7d00a1f5
VS
11481}
11482
2e431051
DV
11483static int intel_crtc_set_config(struct drm_mode_set *set)
11484{
11485 struct drm_device *dev;
2e431051
DV
11486 struct drm_mode_set save_set;
11487 struct intel_set_config *config;
50f52756
JB
11488 struct intel_crtc_config *pipe_config;
11489 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11490 int ret;
2e431051 11491
8d3e375e
DV
11492 BUG_ON(!set);
11493 BUG_ON(!set->crtc);
11494 BUG_ON(!set->crtc->helper_private);
2e431051 11495
7e53f3a4
DV
11496 /* Enforce sane interface api - has been abused by the fb helper. */
11497 BUG_ON(!set->mode && set->fb);
11498 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11499
2e431051
DV
11500 if (set->fb) {
11501 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11502 set->crtc->base.id, set->fb->base.id,
11503 (int)set->num_connectors, set->x, set->y);
11504 } else {
11505 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11506 }
11507
11508 dev = set->crtc->dev;
11509
11510 ret = -ENOMEM;
11511 config = kzalloc(sizeof(*config), GFP_KERNEL);
11512 if (!config)
11513 goto out_config;
11514
11515 ret = intel_set_config_save_state(dev, config);
11516 if (ret)
11517 goto out_config;
11518
11519 save_set.crtc = set->crtc;
11520 save_set.mode = &set->crtc->mode;
11521 save_set.x = set->crtc->x;
11522 save_set.y = set->crtc->y;
f4510a27 11523 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11524
11525 /* Compute whether we need a full modeset, only an fb base update or no
11526 * change at all. In the future we might also check whether only the
11527 * mode changed, e.g. for LVDS where we only change the panel fitter in
11528 * such cases. */
11529 intel_set_config_compute_mode_changes(set, config);
11530
9a935856 11531 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11532 if (ret)
11533 goto fail;
11534
50f52756
JB
11535 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11536 set->fb,
11537 &modeset_pipes,
11538 &prepare_pipes,
11539 &disable_pipes);
20664591 11540 if (IS_ERR(pipe_config)) {
6ac0483b 11541 ret = PTR_ERR(pipe_config);
50f52756 11542 goto fail;
20664591 11543 } else if (pipe_config) {
b9950a13 11544 if (pipe_config->has_audio !=
20664591
JB
11545 to_intel_crtc(set->crtc)->config.has_audio)
11546 config->mode_changed = true;
11547
11548 /* Force mode sets for any infoframe stuff */
b9950a13 11549 if (pipe_config->has_infoframe ||
20664591
JB
11550 to_intel_crtc(set->crtc)->config.has_infoframe)
11551 config->mode_changed = true;
11552 }
50f52756
JB
11553
11554 /* set_mode will free it in the mode_changed case */
11555 if (!config->mode_changed)
11556 kfree(pipe_config);
11557
1f9954d0
JB
11558 intel_update_pipe_size(to_intel_crtc(set->crtc));
11559
5e2b584e 11560 if (config->mode_changed) {
50f52756
JB
11561 ret = intel_set_mode_pipes(set->crtc, set->mode,
11562 set->x, set->y, set->fb, pipe_config,
11563 modeset_pipes, prepare_pipes,
11564 disable_pipes);
5e2b584e 11565 } else if (config->fb_changed) {
3b150f08
MR
11566 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11567
4878cae2
VS
11568 intel_crtc_wait_for_pending_flips(set->crtc);
11569
4f660f49 11570 ret = intel_pipe_set_base(set->crtc,
94352cf9 11571 set->x, set->y, set->fb);
3b150f08
MR
11572
11573 /*
11574 * We need to make sure the primary plane is re-enabled if it
11575 * has previously been turned off.
11576 */
11577 if (!intel_crtc->primary_enabled && ret == 0) {
11578 WARN_ON(!intel_crtc->active);
fdd508a6 11579 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11580 }
11581
7ca51a3a
JB
11582 /*
11583 * In the fastboot case this may be our only check of the
11584 * state after boot. It would be better to only do it on
11585 * the first update, but we don't have a nice way of doing that
11586 * (and really, set_config isn't used much for high freq page
11587 * flipping, so increasing its cost here shouldn't be a big
11588 * deal).
11589 */
d330a953 11590 if (i915.fastboot && ret == 0)
7ca51a3a 11591 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11592 }
11593
2d05eae1 11594 if (ret) {
bf67dfeb
DV
11595 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11596 set->crtc->base.id, ret);
50f56119 11597fail:
2d05eae1 11598 intel_set_config_restore_state(dev, config);
50f56119 11599
7d00a1f5
VS
11600 /*
11601 * HACK: if the pipe was on, but we didn't have a framebuffer,
11602 * force the pipe off to avoid oopsing in the modeset code
11603 * due to fb==NULL. This should only happen during boot since
11604 * we don't yet reconstruct the FB from the hardware state.
11605 */
11606 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11607 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11608
2d05eae1
CW
11609 /* Try to restore the config */
11610 if (config->mode_changed &&
11611 intel_set_mode(save_set.crtc, save_set.mode,
11612 save_set.x, save_set.y, save_set.fb))
11613 DRM_ERROR("failed to restore config after modeset failure\n");
11614 }
50f56119 11615
d9e55608
DV
11616out_config:
11617 intel_set_config_free(config);
50f56119
DV
11618 return ret;
11619}
f6e5b160
CW
11620
11621static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11622 .gamma_set = intel_crtc_gamma_set,
50f56119 11623 .set_config = intel_crtc_set_config,
f6e5b160
CW
11624 .destroy = intel_crtc_destroy,
11625 .page_flip = intel_crtc_page_flip,
11626};
11627
5358901f
DV
11628static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11629 struct intel_shared_dpll *pll,
11630 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11631{
5358901f 11632 uint32_t val;
ee7b9f93 11633
f458ebbc 11634 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11635 return false;
11636
5358901f 11637 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11638 hw_state->dpll = val;
11639 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11640 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11641
11642 return val & DPLL_VCO_ENABLE;
11643}
11644
15bdd4cf
DV
11645static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11646 struct intel_shared_dpll *pll)
11647{
3e369b76
ACO
11648 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11649 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11650}
11651
e7b903d2
DV
11652static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11653 struct intel_shared_dpll *pll)
11654{
e7b903d2 11655 /* PCH refclock must be enabled first */
89eff4be 11656 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11657
3e369b76 11658 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11659
11660 /* Wait for the clocks to stabilize. */
11661 POSTING_READ(PCH_DPLL(pll->id));
11662 udelay(150);
11663
11664 /* The pixel multiplier can only be updated once the
11665 * DPLL is enabled and the clocks are stable.
11666 *
11667 * So write it again.
11668 */
3e369b76 11669 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11670 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11671 udelay(200);
11672}
11673
11674static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11675 struct intel_shared_dpll *pll)
11676{
11677 struct drm_device *dev = dev_priv->dev;
11678 struct intel_crtc *crtc;
e7b903d2
DV
11679
11680 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11681 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11682 if (intel_crtc_to_shared_dpll(crtc) == pll)
11683 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11684 }
11685
15bdd4cf
DV
11686 I915_WRITE(PCH_DPLL(pll->id), 0);
11687 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11688 udelay(200);
11689}
11690
46edb027
DV
11691static char *ibx_pch_dpll_names[] = {
11692 "PCH DPLL A",
11693 "PCH DPLL B",
11694};
11695
7c74ade1 11696static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11697{
e7b903d2 11698 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11699 int i;
11700
7c74ade1 11701 dev_priv->num_shared_dpll = 2;
ee7b9f93 11702
e72f9fbf 11703 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11704 dev_priv->shared_dplls[i].id = i;
11705 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11706 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11707 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11708 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11709 dev_priv->shared_dplls[i].get_hw_state =
11710 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11711 }
11712}
11713
7c74ade1
DV
11714static void intel_shared_dpll_init(struct drm_device *dev)
11715{
e7b903d2 11716 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11717
9cd86933
DV
11718 if (HAS_DDI(dev))
11719 intel_ddi_pll_init(dev);
11720 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11721 ibx_pch_dpll_init(dev);
11722 else
11723 dev_priv->num_shared_dpll = 0;
11724
11725 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11726}
11727
465c120c
MR
11728static int
11729intel_primary_plane_disable(struct drm_plane *plane)
11730{
11731 struct drm_device *dev = plane->dev;
465c120c
MR
11732 struct intel_crtc *intel_crtc;
11733
11734 if (!plane->fb)
11735 return 0;
11736
11737 BUG_ON(!plane->crtc);
11738
11739 intel_crtc = to_intel_crtc(plane->crtc);
11740
11741 /*
11742 * Even though we checked plane->fb above, it's still possible that
11743 * the primary plane has been implicitly disabled because the crtc
11744 * coordinates given weren't visible, or because we detected
11745 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11746 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11747 * In either case, we need to unpin the FB and let the fb pointer get
11748 * updated, but otherwise we don't need to touch the hardware.
11749 */
36d0a82e
ACO
11750 if (intel_crtc->primary_enabled) {
11751 intel_crtc_wait_for_pending_flips(plane->crtc);
11752 intel_disable_primary_hw_plane(plane, plane->crtc);
11753 }
fdd508a6 11754
4c34574f 11755 mutex_lock(&dev->struct_mutex);
2ff8fde1 11756 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11757 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11758 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11759 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11760 plane->fb = NULL;
11761
11762 return 0;
11763}
11764
11765static int
3c692a41
GP
11766intel_check_primary_plane(struct drm_plane *plane,
11767 struct intel_plane_state *state)
11768{
11769 struct drm_crtc *crtc = state->crtc;
11770 struct drm_framebuffer *fb = state->fb;
11771 struct drm_rect *dest = &state->dst;
11772 struct drm_rect *src = &state->src;
11773 const struct drm_rect *clip = &state->clip;
ccc759dc 11774
3ead8bb2
GP
11775 return drm_plane_helper_check_update(plane, crtc, fb,
11776 src, dest, clip,
11777 DRM_PLANE_HELPER_NO_SCALING,
11778 DRM_PLANE_HELPER_NO_SCALING,
11779 false, true, &state->visible);
3c692a41
GP
11780}
11781
11782static int
14af293f
GP
11783intel_prepare_primary_plane(struct drm_plane *plane,
11784 struct intel_plane_state *state)
465c120c 11785{
3c692a41
GP
11786 struct drm_crtc *crtc = state->crtc;
11787 struct drm_framebuffer *fb = state->fb;
465c120c 11788 struct drm_device *dev = crtc->dev;
465c120c 11789 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ccc759dc 11790 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
11791 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11792 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11793 int ret;
11794
465c120c
MR
11795 intel_crtc_wait_for_pending_flips(crtc);
11796
ccc759dc
GP
11797 if (intel_crtc_has_pending_flip(crtc)) {
11798 DRM_ERROR("pipe is still busy with an old pageflip\n");
11799 return -EBUSY;
11800 }
11801
14af293f 11802 if (old_obj != obj) {
4c34574f 11803 mutex_lock(&dev->struct_mutex);
850c4cdc 11804 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
ccc759dc
GP
11805 if (ret == 0)
11806 i915_gem_track_fb(old_obj, obj,
11807 INTEL_FRONTBUFFER_PRIMARY(pipe));
11808 mutex_unlock(&dev->struct_mutex);
11809 if (ret != 0) {
11810 DRM_DEBUG_KMS("pin & fence failed\n");
11811 return ret;
11812 }
11813 }
11814
14af293f
GP
11815 return 0;
11816}
11817
11818static void
11819intel_commit_primary_plane(struct drm_plane *plane,
11820 struct intel_plane_state *state)
11821{
11822 struct drm_crtc *crtc = state->crtc;
11823 struct drm_framebuffer *fb = state->fb;
11824 struct drm_device *dev = crtc->dev;
11825 struct drm_i915_private *dev_priv = dev->dev_private;
11826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11827 enum pipe pipe = intel_crtc->pipe;
11828 struct drm_framebuffer *old_fb = plane->fb;
11829 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11830 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11831 struct intel_plane *intel_plane = to_intel_plane(plane);
11832 struct drm_rect *src = &state->src;
11833
ccc759dc 11834 crtc->primary->fb = fb;
9dc806fc
MR
11835 crtc->x = src->x1 >> 16;
11836 crtc->y = src->y1 >> 16;
ccc759dc
GP
11837
11838 intel_plane->crtc_x = state->orig_dst.x1;
11839 intel_plane->crtc_y = state->orig_dst.y1;
11840 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11841 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11842 intel_plane->src_x = state->orig_src.x1;
11843 intel_plane->src_y = state->orig_src.y1;
11844 intel_plane->src_w = drm_rect_width(&state->orig_src);
11845 intel_plane->src_h = drm_rect_height(&state->orig_src);
11846 intel_plane->obj = obj;
4c34574f 11847
ccc759dc 11848 if (intel_crtc->active) {
465c120c 11849 /*
ccc759dc
GP
11850 * FBC does not work on some platforms for rotated
11851 * planes, so disable it when rotation is not 0 and
11852 * update it when rotation is set back to 0.
11853 *
11854 * FIXME: This is redundant with the fbc update done in
11855 * the primary plane enable function except that that
11856 * one is done too late. We eventually need to unify
11857 * this.
465c120c 11858 */
ccc759dc
GP
11859 if (intel_crtc->primary_enabled &&
11860 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11861 dev_priv->fbc.plane == intel_crtc->plane &&
11862 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11863 intel_disable_fbc(dev);
465c120c
MR
11864 }
11865
ccc759dc
GP
11866 if (state->visible) {
11867 bool was_enabled = intel_crtc->primary_enabled;
465c120c 11868
ccc759dc
GP
11869 /* FIXME: kill this fastboot hack */
11870 intel_update_pipe_size(intel_crtc);
465c120c 11871
ccc759dc 11872 intel_crtc->primary_enabled = true;
465c120c 11873
ccc759dc
GP
11874 dev_priv->display.update_primary_plane(crtc, plane->fb,
11875 crtc->x, crtc->y);
4c34574f 11876
48404c1e 11877 /*
ccc759dc
GP
11878 * BDW signals flip done immediately if the plane
11879 * is disabled, even if the plane enable is already
11880 * armed to occur at the next vblank :(
48404c1e 11881 */
ccc759dc
GP
11882 if (IS_BROADWELL(dev) && !was_enabled)
11883 intel_wait_for_vblank(dev, intel_crtc->pipe);
11884 } else {
11885 /*
11886 * If clipping results in a non-visible primary plane,
11887 * we'll disable the primary plane. Note that this is
11888 * a bit different than what happens if userspace
11889 * explicitly disables the plane by passing fb=0
11890 * because plane->fb still gets set and pinned.
11891 */
11892 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11893 }
465c120c 11894
ccc759dc
GP
11895 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11896
11897 mutex_lock(&dev->struct_mutex);
11898 intel_update_fbc(dev);
11899 mutex_unlock(&dev->struct_mutex);
ce54d85a 11900 }
465c120c 11901
ccc759dc
GP
11902 if (old_fb && old_fb != fb) {
11903 if (intel_crtc->active)
11904 intel_wait_for_vblank(dev, intel_crtc->pipe);
11905
11906 mutex_lock(&dev->struct_mutex);
11907 intel_unpin_fb_obj(old_obj);
11908 mutex_unlock(&dev->struct_mutex);
11909 }
465c120c
MR
11910}
11911
3c692a41
GP
11912static int
11913intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11914 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11915 unsigned int crtc_w, unsigned int crtc_h,
11916 uint32_t src_x, uint32_t src_y,
11917 uint32_t src_w, uint32_t src_h)
11918{
11919 struct intel_plane_state state;
11920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11921 int ret;
11922
11923 state.crtc = crtc;
11924 state.fb = fb;
11925
11926 /* sample coordinates in 16.16 fixed point */
11927 state.src.x1 = src_x;
11928 state.src.x2 = src_x + src_w;
11929 state.src.y1 = src_y;
11930 state.src.y2 = src_y + src_h;
11931
11932 /* integer pixels */
11933 state.dst.x1 = crtc_x;
11934 state.dst.x2 = crtc_x + crtc_w;
11935 state.dst.y1 = crtc_y;
11936 state.dst.y2 = crtc_y + crtc_h;
11937
11938 state.clip.x1 = 0;
11939 state.clip.y1 = 0;
11940 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11941 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11942
11943 state.orig_src = state.src;
11944 state.orig_dst = state.dst;
11945
11946 ret = intel_check_primary_plane(plane, &state);
11947 if (ret)
11948 return ret;
11949
14af293f
GP
11950 ret = intel_prepare_primary_plane(plane, &state);
11951 if (ret)
3c692a41
GP
11952 return ret;
11953
11954 intel_commit_primary_plane(plane, &state);
11955
11956 return 0;
11957}
11958
3d7d6510
MR
11959/* Common destruction function for both primary and cursor planes */
11960static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11961{
11962 struct intel_plane *intel_plane = to_intel_plane(plane);
11963 drm_plane_cleanup(plane);
11964 kfree(intel_plane);
11965}
11966
11967static const struct drm_plane_funcs intel_primary_plane_funcs = {
11968 .update_plane = intel_primary_plane_setplane,
11969 .disable_plane = intel_primary_plane_disable,
3d7d6510 11970 .destroy = intel_plane_destroy,
48404c1e 11971 .set_property = intel_plane_set_property
465c120c
MR
11972};
11973
11974static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11975 int pipe)
11976{
11977 struct intel_plane *primary;
11978 const uint32_t *intel_primary_formats;
11979 int num_formats;
11980
11981 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11982 if (primary == NULL)
11983 return NULL;
11984
11985 primary->can_scale = false;
11986 primary->max_downscale = 1;
11987 primary->pipe = pipe;
11988 primary->plane = pipe;
48404c1e 11989 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11990 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11991 primary->plane = !pipe;
11992
11993 if (INTEL_INFO(dev)->gen <= 3) {
11994 intel_primary_formats = intel_primary_formats_gen2;
11995 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11996 } else {
11997 intel_primary_formats = intel_primary_formats_gen4;
11998 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11999 }
12000
12001 drm_universal_plane_init(dev, &primary->base, 0,
12002 &intel_primary_plane_funcs,
12003 intel_primary_formats, num_formats,
12004 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12005
12006 if (INTEL_INFO(dev)->gen >= 4) {
12007 if (!dev->mode_config.rotation_property)
12008 dev->mode_config.rotation_property =
12009 drm_mode_create_rotation_property(dev,
12010 BIT(DRM_ROTATE_0) |
12011 BIT(DRM_ROTATE_180));
12012 if (dev->mode_config.rotation_property)
12013 drm_object_attach_property(&primary->base.base,
12014 dev->mode_config.rotation_property,
12015 primary->rotation);
12016 }
12017
465c120c
MR
12018 return &primary->base;
12019}
12020
3d7d6510
MR
12021static int
12022intel_cursor_plane_disable(struct drm_plane *plane)
12023{
12024 if (!plane->fb)
12025 return 0;
12026
12027 BUG_ON(!plane->crtc);
12028
a912f12f
GP
12029 return plane->funcs->update_plane(plane, plane->crtc, NULL,
12030 0, 0, 0, 0, 0, 0, 0, 0);
3d7d6510
MR
12031}
12032
12033static int
852e787c
GP
12034intel_check_cursor_plane(struct drm_plane *plane,
12035 struct intel_plane_state *state)
3d7d6510 12036{
852e787c 12037 struct drm_crtc *crtc = state->crtc;
757f9a3e 12038 struct drm_device *dev = crtc->dev;
852e787c
GP
12039 struct drm_framebuffer *fb = state->fb;
12040 struct drm_rect *dest = &state->dst;
12041 struct drm_rect *src = &state->src;
12042 const struct drm_rect *clip = &state->clip;
757f9a3e
GP
12043 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12044 int crtc_w, crtc_h;
12045 unsigned stride;
12046 int ret;
3d7d6510 12047
757f9a3e 12048 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12049 src, dest, clip,
3d7d6510
MR
12050 DRM_PLANE_HELPER_NO_SCALING,
12051 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12052 true, true, &state->visible);
757f9a3e
GP
12053 if (ret)
12054 return ret;
12055
12056
12057 /* if we want to turn off the cursor ignore width and height */
12058 if (!obj)
12059 return 0;
12060
757f9a3e
GP
12061 /* Check for which cursor types we support */
12062 crtc_w = drm_rect_width(&state->orig_dst);
12063 crtc_h = drm_rect_height(&state->orig_dst);
12064 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
12065 DRM_DEBUG("Cursor dimension not supported\n");
12066 return -EINVAL;
12067 }
12068
12069 stride = roundup_pow_of_two(crtc_w) * 4;
12070 if (obj->base.size < stride * crtc_h) {
12071 DRM_DEBUG_KMS("buffer is too small\n");
12072 return -ENOMEM;
12073 }
12074
e391ea88
GP
12075 if (fb == crtc->cursor->fb)
12076 return 0;
12077
757f9a3e
GP
12078 /* we only need to pin inside GTT if cursor is non-phy */
12079 mutex_lock(&dev->struct_mutex);
12080 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12081 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12082 ret = -EINVAL;
12083 }
12084 mutex_unlock(&dev->struct_mutex);
12085
12086 return ret;
852e787c 12087}
3d7d6510 12088
852e787c
GP
12089static int
12090intel_commit_cursor_plane(struct drm_plane *plane,
12091 struct intel_plane_state *state)
12092{
12093 struct drm_crtc *crtc = state->crtc;
a912f12f
GP
12094 struct drm_device *dev = crtc->dev;
12095 struct drm_i915_private *dev_priv = dev->dev_private;
852e787c 12096 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a919db90 12097 struct intel_plane *intel_plane = to_intel_plane(plane);
a912f12f
GP
12098 struct drm_i915_gem_object *obj = intel_fb_obj(state->fb);
12099 enum pipe pipe = intel_crtc->pipe;
12100 unsigned old_width;
12101 uint32_t addr;
12102 int ret;
852e787c
GP
12103
12104 crtc->cursor_x = state->orig_dst.x1;
12105 crtc->cursor_y = state->orig_dst.y1;
a919db90
SJ
12106
12107 intel_plane->crtc_x = state->orig_dst.x1;
12108 intel_plane->crtc_y = state->orig_dst.y1;
12109 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12110 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12111 intel_plane->src_x = state->orig_src.x1;
12112 intel_plane->src_y = state->orig_src.y1;
12113 intel_plane->src_w = drm_rect_width(&state->orig_src);
12114 intel_plane->src_h = drm_rect_height(&state->orig_src);
12115 intel_plane->obj = obj;
12116
a912f12f
GP
12117 if (intel_crtc->cursor_bo == obj)
12118 goto update;
12119
12120 /* if we want to turn off the cursor ignore width and height */
12121 if (!obj) {
12122 DRM_DEBUG_KMS("cursor off\n");
12123 addr = 0;
12124 mutex_lock(&dev->struct_mutex);
12125 goto finish;
12126 }
12127
12128 /* we only need to pin inside GTT if cursor is non-phy */
12129 mutex_lock(&dev->struct_mutex);
12130 if (!INTEL_INFO(dev)->cursor_needs_physical) {
12131 unsigned alignment;
12132
12133 /*
12134 * Global gtt pte registers are special registers which actually
12135 * forward writes to a chunk of system memory. Which means that
12136 * there is no risk that the register values disappear as soon
12137 * as we call intel_runtime_pm_put(), so it is correct to wrap
12138 * only the pin/unpin/fence and not more.
12139 */
12140 intel_runtime_pm_get(dev_priv);
12141
12142 /* Note that the w/a also requires 2 PTE of padding following
12143 * the bo. We currently fill all unused PTE with the shadow
12144 * page and so we should always have valid PTE following the
12145 * cursor preventing the VT-d warning.
12146 */
12147 alignment = 0;
12148 if (need_vtd_wa(dev))
12149 alignment = 64*1024;
12150
12151 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
12152 if (ret) {
12153 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
12154 intel_runtime_pm_put(dev_priv);
12155 goto fail_locked;
12156 }
12157
12158 ret = i915_gem_object_put_fence(obj);
12159 if (ret) {
12160 DRM_DEBUG_KMS("failed to release fence for cursor");
12161 intel_runtime_pm_put(dev_priv);
12162 goto fail_unpin;
12163 }
12164
12165 addr = i915_gem_obj_ggtt_offset(obj);
12166
12167 intel_runtime_pm_put(dev_priv);
12168
3d7d6510 12169 } else {
a912f12f
GP
12170 int align = IS_I830(dev) ? 16 * 1024 : 256;
12171 ret = i915_gem_object_attach_phys(obj, align);
12172 if (ret) {
12173 DRM_DEBUG_KMS("failed to attach phys object\n");
12174 goto fail_locked;
12175 }
12176 addr = obj->phys_handle->busaddr;
12177 }
4ed91096 12178
a912f12f
GP
12179finish:
12180 if (intel_crtc->cursor_bo) {
12181 if (!INTEL_INFO(dev)->cursor_needs_physical)
12182 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
12183 }
4ed91096 12184
a912f12f
GP
12185 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
12186 INTEL_FRONTBUFFER_CURSOR(pipe));
12187 mutex_unlock(&dev->struct_mutex);
12188
12189 intel_crtc->cursor_addr = addr;
12190 intel_crtc->cursor_bo = obj;
12191update:
12192 old_width = intel_crtc->cursor_width;
12193
12194 intel_crtc->cursor_width = drm_rect_width(&state->orig_dst);
12195 intel_crtc->cursor_height = drm_rect_height(&state->orig_dst);
12196
12197 if (intel_crtc->active) {
12198 if (old_width != intel_crtc->cursor_width)
12199 intel_update_watermarks(crtc);
12200 intel_crtc_update_cursor(crtc, state->visible);
12201
12202 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
3d7d6510 12203 }
a912f12f
GP
12204
12205 return 0;
12206fail_unpin:
12207 i915_gem_object_unpin_from_display_plane(obj);
12208fail_locked:
12209 mutex_unlock(&dev->struct_mutex);
12210 return ret;
3d7d6510 12211}
852e787c
GP
12212
12213static int
12214intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12215 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12216 unsigned int crtc_w, unsigned int crtc_h,
12217 uint32_t src_x, uint32_t src_y,
12218 uint32_t src_w, uint32_t src_h)
12219{
12220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12221 struct intel_plane_state state;
12222 int ret;
12223
12224 state.crtc = crtc;
12225 state.fb = fb;
12226
12227 /* sample coordinates in 16.16 fixed point */
12228 state.src.x1 = src_x;
12229 state.src.x2 = src_x + src_w;
12230 state.src.y1 = src_y;
12231 state.src.y2 = src_y + src_h;
12232
12233 /* integer pixels */
12234 state.dst.x1 = crtc_x;
12235 state.dst.x2 = crtc_x + crtc_w;
12236 state.dst.y1 = crtc_y;
12237 state.dst.y2 = crtc_y + crtc_h;
12238
12239 state.clip.x1 = 0;
12240 state.clip.y1 = 0;
12241 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12242 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12243
12244 state.orig_src = state.src;
12245 state.orig_dst = state.dst;
12246
12247 ret = intel_check_cursor_plane(plane, &state);
12248 if (ret)
12249 return ret;
12250
12251 return intel_commit_cursor_plane(plane, &state);
12252}
12253
3d7d6510
MR
12254static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12255 .update_plane = intel_cursor_plane_update,
12256 .disable_plane = intel_cursor_plane_disable,
12257 .destroy = intel_plane_destroy,
4398ad45 12258 .set_property = intel_plane_set_property,
3d7d6510
MR
12259};
12260
12261static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12262 int pipe)
12263{
12264 struct intel_plane *cursor;
12265
12266 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12267 if (cursor == NULL)
12268 return NULL;
12269
12270 cursor->can_scale = false;
12271 cursor->max_downscale = 1;
12272 cursor->pipe = pipe;
12273 cursor->plane = pipe;
4398ad45 12274 cursor->rotation = BIT(DRM_ROTATE_0);
3d7d6510
MR
12275
12276 drm_universal_plane_init(dev, &cursor->base, 0,
12277 &intel_cursor_plane_funcs,
12278 intel_cursor_formats,
12279 ARRAY_SIZE(intel_cursor_formats),
12280 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12281
12282 if (INTEL_INFO(dev)->gen >= 4) {
12283 if (!dev->mode_config.rotation_property)
12284 dev->mode_config.rotation_property =
12285 drm_mode_create_rotation_property(dev,
12286 BIT(DRM_ROTATE_0) |
12287 BIT(DRM_ROTATE_180));
12288 if (dev->mode_config.rotation_property)
12289 drm_object_attach_property(&cursor->base.base,
12290 dev->mode_config.rotation_property,
12291 cursor->rotation);
12292 }
12293
3d7d6510
MR
12294 return &cursor->base;
12295}
12296
b358d0a6 12297static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12298{
fbee40df 12299 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12300 struct intel_crtc *intel_crtc;
3d7d6510
MR
12301 struct drm_plane *primary = NULL;
12302 struct drm_plane *cursor = NULL;
465c120c 12303 int i, ret;
79e53945 12304
955382f3 12305 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12306 if (intel_crtc == NULL)
12307 return;
12308
465c120c 12309 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12310 if (!primary)
12311 goto fail;
12312
12313 cursor = intel_cursor_plane_create(dev, pipe);
12314 if (!cursor)
12315 goto fail;
12316
465c120c 12317 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12318 cursor, &intel_crtc_funcs);
12319 if (ret)
12320 goto fail;
79e53945
JB
12321
12322 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12323 for (i = 0; i < 256; i++) {
12324 intel_crtc->lut_r[i] = i;
12325 intel_crtc->lut_g[i] = i;
12326 intel_crtc->lut_b[i] = i;
12327 }
12328
1f1c2e24
VS
12329 /*
12330 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12331 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12332 */
80824003
JB
12333 intel_crtc->pipe = pipe;
12334 intel_crtc->plane = pipe;
3a77c4c4 12335 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12336 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12337 intel_crtc->plane = !pipe;
80824003
JB
12338 }
12339
4b0e333e
CW
12340 intel_crtc->cursor_base = ~0;
12341 intel_crtc->cursor_cntl = ~0;
dc41c154 12342 intel_crtc->cursor_size = ~0;
8d7849db 12343
22fd0fab
JB
12344 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12345 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12346 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12347 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12348
9362c7c5
ACO
12349 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12350
79e53945 12351 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12352
12353 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12354 return;
12355
12356fail:
12357 if (primary)
12358 drm_plane_cleanup(primary);
12359 if (cursor)
12360 drm_plane_cleanup(cursor);
12361 kfree(intel_crtc);
79e53945
JB
12362}
12363
752aa88a
JB
12364enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12365{
12366 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12367 struct drm_device *dev = connector->base.dev;
752aa88a 12368
51fd371b 12369 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12370
d3babd3f 12371 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12372 return INVALID_PIPE;
12373
12374 return to_intel_crtc(encoder->crtc)->pipe;
12375}
12376
08d7b3d1 12377int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12378 struct drm_file *file)
08d7b3d1 12379{
08d7b3d1 12380 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12381 struct drm_crtc *drmmode_crtc;
c05422d5 12382 struct intel_crtc *crtc;
08d7b3d1 12383
1cff8f6b
DV
12384 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12385 return -ENODEV;
08d7b3d1 12386
7707e653 12387 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12388
7707e653 12389 if (!drmmode_crtc) {
08d7b3d1 12390 DRM_ERROR("no such CRTC id\n");
3f2c2057 12391 return -ENOENT;
08d7b3d1
CW
12392 }
12393
7707e653 12394 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12395 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12396
c05422d5 12397 return 0;
08d7b3d1
CW
12398}
12399
66a9278e 12400static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12401{
66a9278e
DV
12402 struct drm_device *dev = encoder->base.dev;
12403 struct intel_encoder *source_encoder;
79e53945 12404 int index_mask = 0;
79e53945
JB
12405 int entry = 0;
12406
b2784e15 12407 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12408 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12409 index_mask |= (1 << entry);
12410
79e53945
JB
12411 entry++;
12412 }
4ef69c7a 12413
79e53945
JB
12414 return index_mask;
12415}
12416
4d302442
CW
12417static bool has_edp_a(struct drm_device *dev)
12418{
12419 struct drm_i915_private *dev_priv = dev->dev_private;
12420
12421 if (!IS_MOBILE(dev))
12422 return false;
12423
12424 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12425 return false;
12426
e3589908 12427 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12428 return false;
12429
12430 return true;
12431}
12432
ba0fbca4
DL
12433const char *intel_output_name(int output)
12434{
12435 static const char *names[] = {
12436 [INTEL_OUTPUT_UNUSED] = "Unused",
12437 [INTEL_OUTPUT_ANALOG] = "Analog",
12438 [INTEL_OUTPUT_DVO] = "DVO",
12439 [INTEL_OUTPUT_SDVO] = "SDVO",
12440 [INTEL_OUTPUT_LVDS] = "LVDS",
12441 [INTEL_OUTPUT_TVOUT] = "TV",
12442 [INTEL_OUTPUT_HDMI] = "HDMI",
12443 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12444 [INTEL_OUTPUT_EDP] = "eDP",
12445 [INTEL_OUTPUT_DSI] = "DSI",
12446 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12447 };
12448
12449 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12450 return "Invalid";
12451
12452 return names[output];
12453}
12454
84b4e042
JB
12455static bool intel_crt_present(struct drm_device *dev)
12456{
12457 struct drm_i915_private *dev_priv = dev->dev_private;
12458
884497ed
DL
12459 if (INTEL_INFO(dev)->gen >= 9)
12460 return false;
12461
cf404ce4 12462 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12463 return false;
12464
12465 if (IS_CHERRYVIEW(dev))
12466 return false;
12467
12468 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12469 return false;
12470
12471 return true;
12472}
12473
79e53945
JB
12474static void intel_setup_outputs(struct drm_device *dev)
12475{
725e30ad 12476 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12477 struct intel_encoder *encoder;
cb0953d7 12478 bool dpd_is_edp = false;
79e53945 12479
c9093354 12480 intel_lvds_init(dev);
79e53945 12481
84b4e042 12482 if (intel_crt_present(dev))
79935fca 12483 intel_crt_init(dev);
cb0953d7 12484
affa9354 12485 if (HAS_DDI(dev)) {
0e72a5b5
ED
12486 int found;
12487
12488 /* Haswell uses DDI functions to detect digital outputs */
12489 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12490 /* DDI A only supports eDP */
12491 if (found)
12492 intel_ddi_init(dev, PORT_A);
12493
12494 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12495 * register */
12496 found = I915_READ(SFUSE_STRAP);
12497
12498 if (found & SFUSE_STRAP_DDIB_DETECTED)
12499 intel_ddi_init(dev, PORT_B);
12500 if (found & SFUSE_STRAP_DDIC_DETECTED)
12501 intel_ddi_init(dev, PORT_C);
12502 if (found & SFUSE_STRAP_DDID_DETECTED)
12503 intel_ddi_init(dev, PORT_D);
12504 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12505 int found;
5d8a7752 12506 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12507
12508 if (has_edp_a(dev))
12509 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12510
dc0fa718 12511 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12512 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12513 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12514 if (!found)
e2debe91 12515 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12516 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12517 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12518 }
12519
dc0fa718 12520 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12521 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12522
dc0fa718 12523 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12524 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12525
5eb08b69 12526 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12527 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12528
270b3042 12529 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12530 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12531 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12532 /*
12533 * The DP_DETECTED bit is the latched state of the DDC
12534 * SDA pin at boot. However since eDP doesn't require DDC
12535 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12536 * eDP ports may have been muxed to an alternate function.
12537 * Thus we can't rely on the DP_DETECTED bit alone to detect
12538 * eDP ports. Consult the VBT as well as DP_DETECTED to
12539 * detect eDP ports.
12540 */
12541 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
585a94b8
AB
12542 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12543 PORT_B);
e17ac6db
VS
12544 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12545 intel_dp_is_edp(dev, PORT_B))
12546 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12547
e17ac6db 12548 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
6f6005a5
JB
12549 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12550 PORT_C);
e17ac6db
VS
12551 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12552 intel_dp_is_edp(dev, PORT_C))
12553 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12554
9418c1f1 12555 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12556 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12557 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12558 PORT_D);
e17ac6db
VS
12559 /* eDP not supported on port D, so don't check VBT */
12560 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12561 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12562 }
12563
3cfca973 12564 intel_dsi_init(dev);
103a196f 12565 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12566 bool found = false;
7d57382e 12567
e2debe91 12568 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12569 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12570 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12571 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12572 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12573 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12574 }
27185ae1 12575
e7281eab 12576 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12577 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12578 }
13520b05
KH
12579
12580 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12581
e2debe91 12582 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12583 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12584 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12585 }
27185ae1 12586
e2debe91 12587 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12588
b01f2c3a
JB
12589 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12590 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12591 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12592 }
e7281eab 12593 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12594 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12595 }
27185ae1 12596
b01f2c3a 12597 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12598 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12599 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12600 } else if (IS_GEN2(dev))
79e53945
JB
12601 intel_dvo_init(dev);
12602
103a196f 12603 if (SUPPORTS_TV(dev))
79e53945
JB
12604 intel_tv_init(dev);
12605
0bc12bcb 12606 intel_psr_init(dev);
7c8f8a70 12607
b2784e15 12608 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12609 encoder->base.possible_crtcs = encoder->crtc_mask;
12610 encoder->base.possible_clones =
66a9278e 12611 intel_encoder_clones(encoder);
79e53945 12612 }
47356eb6 12613
dde86e2d 12614 intel_init_pch_refclk(dev);
270b3042
DV
12615
12616 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12617}
12618
12619static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12620{
60a5ca01 12621 struct drm_device *dev = fb->dev;
79e53945 12622 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12623
ef2d633e 12624 drm_framebuffer_cleanup(fb);
60a5ca01 12625 mutex_lock(&dev->struct_mutex);
ef2d633e 12626 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12627 drm_gem_object_unreference(&intel_fb->obj->base);
12628 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12629 kfree(intel_fb);
12630}
12631
12632static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12633 struct drm_file *file,
79e53945
JB
12634 unsigned int *handle)
12635{
12636 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12637 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12638
05394f39 12639 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12640}
12641
12642static const struct drm_framebuffer_funcs intel_fb_funcs = {
12643 .destroy = intel_user_framebuffer_destroy,
12644 .create_handle = intel_user_framebuffer_create_handle,
12645};
12646
b5ea642a
DV
12647static int intel_framebuffer_init(struct drm_device *dev,
12648 struct intel_framebuffer *intel_fb,
12649 struct drm_mode_fb_cmd2 *mode_cmd,
12650 struct drm_i915_gem_object *obj)
79e53945 12651{
a57ce0b2 12652 int aligned_height;
a35cdaa0 12653 int pitch_limit;
79e53945
JB
12654 int ret;
12655
dd4916c5
DV
12656 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12657
c16ed4be
CW
12658 if (obj->tiling_mode == I915_TILING_Y) {
12659 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12660 return -EINVAL;
c16ed4be 12661 }
57cd6508 12662
c16ed4be
CW
12663 if (mode_cmd->pitches[0] & 63) {
12664 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12665 mode_cmd->pitches[0]);
57cd6508 12666 return -EINVAL;
c16ed4be 12667 }
57cd6508 12668
a35cdaa0
CW
12669 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12670 pitch_limit = 32*1024;
12671 } else if (INTEL_INFO(dev)->gen >= 4) {
12672 if (obj->tiling_mode)
12673 pitch_limit = 16*1024;
12674 else
12675 pitch_limit = 32*1024;
12676 } else if (INTEL_INFO(dev)->gen >= 3) {
12677 if (obj->tiling_mode)
12678 pitch_limit = 8*1024;
12679 else
12680 pitch_limit = 16*1024;
12681 } else
12682 /* XXX DSPC is limited to 4k tiled */
12683 pitch_limit = 8*1024;
12684
12685 if (mode_cmd->pitches[0] > pitch_limit) {
12686 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12687 obj->tiling_mode ? "tiled" : "linear",
12688 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12689 return -EINVAL;
c16ed4be 12690 }
5d7bd705
VS
12691
12692 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12693 mode_cmd->pitches[0] != obj->stride) {
12694 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12695 mode_cmd->pitches[0], obj->stride);
5d7bd705 12696 return -EINVAL;
c16ed4be 12697 }
5d7bd705 12698
57779d06 12699 /* Reject formats not supported by any plane early. */
308e5bcb 12700 switch (mode_cmd->pixel_format) {
57779d06 12701 case DRM_FORMAT_C8:
04b3924d
VS
12702 case DRM_FORMAT_RGB565:
12703 case DRM_FORMAT_XRGB8888:
12704 case DRM_FORMAT_ARGB8888:
57779d06
VS
12705 break;
12706 case DRM_FORMAT_XRGB1555:
12707 case DRM_FORMAT_ARGB1555:
c16ed4be 12708 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12709 DRM_DEBUG("unsupported pixel format: %s\n",
12710 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12711 return -EINVAL;
c16ed4be 12712 }
57779d06
VS
12713 break;
12714 case DRM_FORMAT_XBGR8888:
12715 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12716 case DRM_FORMAT_XRGB2101010:
12717 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12718 case DRM_FORMAT_XBGR2101010:
12719 case DRM_FORMAT_ABGR2101010:
c16ed4be 12720 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12721 DRM_DEBUG("unsupported pixel format: %s\n",
12722 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12723 return -EINVAL;
c16ed4be 12724 }
b5626747 12725 break;
04b3924d
VS
12726 case DRM_FORMAT_YUYV:
12727 case DRM_FORMAT_UYVY:
12728 case DRM_FORMAT_YVYU:
12729 case DRM_FORMAT_VYUY:
c16ed4be 12730 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12731 DRM_DEBUG("unsupported pixel format: %s\n",
12732 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12733 return -EINVAL;
c16ed4be 12734 }
57cd6508
CW
12735 break;
12736 default:
4ee62c76
VS
12737 DRM_DEBUG("unsupported pixel format: %s\n",
12738 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12739 return -EINVAL;
12740 }
12741
90f9a336
VS
12742 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12743 if (mode_cmd->offsets[0] != 0)
12744 return -EINVAL;
12745
a57ce0b2
JB
12746 aligned_height = intel_align_height(dev, mode_cmd->height,
12747 obj->tiling_mode);
53155c0a
DV
12748 /* FIXME drm helper for size checks (especially planar formats)? */
12749 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12750 return -EINVAL;
12751
c7d73f6a
DV
12752 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12753 intel_fb->obj = obj;
80075d49 12754 intel_fb->obj->framebuffer_references++;
c7d73f6a 12755
79e53945
JB
12756 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12757 if (ret) {
12758 DRM_ERROR("framebuffer init failed %d\n", ret);
12759 return ret;
12760 }
12761
79e53945
JB
12762 return 0;
12763}
12764
79e53945
JB
12765static struct drm_framebuffer *
12766intel_user_framebuffer_create(struct drm_device *dev,
12767 struct drm_file *filp,
308e5bcb 12768 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12769{
05394f39 12770 struct drm_i915_gem_object *obj;
79e53945 12771
308e5bcb
JB
12772 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12773 mode_cmd->handles[0]));
c8725226 12774 if (&obj->base == NULL)
cce13ff7 12775 return ERR_PTR(-ENOENT);
79e53945 12776
d2dff872 12777 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12778}
12779
4520f53a 12780#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12781static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12782{
12783}
12784#endif
12785
79e53945 12786static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12787 .fb_create = intel_user_framebuffer_create,
0632fef6 12788 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12789};
12790
e70236a8
JB
12791/* Set up chip specific display functions */
12792static void intel_init_display(struct drm_device *dev)
12793{
12794 struct drm_i915_private *dev_priv = dev->dev_private;
12795
ee9300bb
DV
12796 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12797 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12798 else if (IS_CHERRYVIEW(dev))
12799 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12800 else if (IS_VALLEYVIEW(dev))
12801 dev_priv->display.find_dpll = vlv_find_best_dpll;
12802 else if (IS_PINEVIEW(dev))
12803 dev_priv->display.find_dpll = pnv_find_best_dpll;
12804 else
12805 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12806
affa9354 12807 if (HAS_DDI(dev)) {
0e8ffe1b 12808 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12809 dev_priv->display.get_plane_config = ironlake_get_plane_config;
797d0259
ACO
12810 dev_priv->display.crtc_compute_clock =
12811 haswell_crtc_compute_clock;
4f771f10
PZ
12812 dev_priv->display.crtc_enable = haswell_crtc_enable;
12813 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12814 dev_priv->display.off = ironlake_crtc_off;
70d21f0e
DL
12815 if (INTEL_INFO(dev)->gen >= 9)
12816 dev_priv->display.update_primary_plane =
12817 skylake_update_primary_plane;
12818 else
12819 dev_priv->display.update_primary_plane =
12820 ironlake_update_primary_plane;
09b4ddf9 12821 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12822 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12823 dev_priv->display.get_plane_config = ironlake_get_plane_config;
3fb37703
ACO
12824 dev_priv->display.crtc_compute_clock =
12825 ironlake_crtc_compute_clock;
76e5a89c
DV
12826 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12827 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12828 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12829 dev_priv->display.update_primary_plane =
12830 ironlake_update_primary_plane;
89b667f8
JB
12831 } else if (IS_VALLEYVIEW(dev)) {
12832 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12833 dev_priv->display.get_plane_config = i9xx_get_plane_config;
d6dfee7a 12834 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
12835 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12836 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12837 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12838 dev_priv->display.update_primary_plane =
12839 i9xx_update_primary_plane;
f564048e 12840 } else {
0e8ffe1b 12841 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12842 dev_priv->display.get_plane_config = i9xx_get_plane_config;
d6dfee7a 12843 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
12844 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12845 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12846 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12847 dev_priv->display.update_primary_plane =
12848 i9xx_update_primary_plane;
f564048e 12849 }
e70236a8 12850
e70236a8 12851 /* Returns the core display clock speed */
25eb05fc
JB
12852 if (IS_VALLEYVIEW(dev))
12853 dev_priv->display.get_display_clock_speed =
12854 valleyview_get_display_clock_speed;
12855 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12856 dev_priv->display.get_display_clock_speed =
12857 i945_get_display_clock_speed;
12858 else if (IS_I915G(dev))
12859 dev_priv->display.get_display_clock_speed =
12860 i915_get_display_clock_speed;
257a7ffc 12861 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12862 dev_priv->display.get_display_clock_speed =
12863 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12864 else if (IS_PINEVIEW(dev))
12865 dev_priv->display.get_display_clock_speed =
12866 pnv_get_display_clock_speed;
e70236a8
JB
12867 else if (IS_I915GM(dev))
12868 dev_priv->display.get_display_clock_speed =
12869 i915gm_get_display_clock_speed;
12870 else if (IS_I865G(dev))
12871 dev_priv->display.get_display_clock_speed =
12872 i865_get_display_clock_speed;
f0f8a9ce 12873 else if (IS_I85X(dev))
e70236a8
JB
12874 dev_priv->display.get_display_clock_speed =
12875 i855_get_display_clock_speed;
12876 else /* 852, 830 */
12877 dev_priv->display.get_display_clock_speed =
12878 i830_get_display_clock_speed;
12879
7c10a2b5 12880 if (IS_GEN5(dev)) {
3bb11b53 12881 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12882 } else if (IS_GEN6(dev)) {
12883 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12884 } else if (IS_IVYBRIDGE(dev)) {
12885 /* FIXME: detect B0+ stepping and use auto training */
12886 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12887 dev_priv->display.modeset_global_resources =
12888 ivb_modeset_global_resources;
059b2fe9 12889 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12890 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
12891 } else if (IS_VALLEYVIEW(dev)) {
12892 dev_priv->display.modeset_global_resources =
12893 valleyview_modeset_global_resources;
e70236a8 12894 }
8c9f3aaf
JB
12895
12896 /* Default just returns -ENODEV to indicate unsupported */
12897 dev_priv->display.queue_flip = intel_default_queue_flip;
12898
12899 switch (INTEL_INFO(dev)->gen) {
12900 case 2:
12901 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12902 break;
12903
12904 case 3:
12905 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12906 break;
12907
12908 case 4:
12909 case 5:
12910 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12911 break;
12912
12913 case 6:
12914 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12915 break;
7c9017e5 12916 case 7:
4e0bbc31 12917 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12918 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12919 break;
830c81db
DL
12920 case 9:
12921 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12922 break;
8c9f3aaf 12923 }
7bd688cd
JN
12924
12925 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12926
12927 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12928}
12929
b690e96c
JB
12930/*
12931 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12932 * resume, or other times. This quirk makes sure that's the case for
12933 * affected systems.
12934 */
0206e353 12935static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12936{
12937 struct drm_i915_private *dev_priv = dev->dev_private;
12938
12939 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12940 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12941}
12942
b6b5d049
VS
12943static void quirk_pipeb_force(struct drm_device *dev)
12944{
12945 struct drm_i915_private *dev_priv = dev->dev_private;
12946
12947 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12948 DRM_INFO("applying pipe b force quirk\n");
12949}
12950
435793df
KP
12951/*
12952 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12953 */
12954static void quirk_ssc_force_disable(struct drm_device *dev)
12955{
12956 struct drm_i915_private *dev_priv = dev->dev_private;
12957 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12958 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12959}
12960
4dca20ef 12961/*
5a15ab5b
CE
12962 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12963 * brightness value
4dca20ef
CE
12964 */
12965static void quirk_invert_brightness(struct drm_device *dev)
12966{
12967 struct drm_i915_private *dev_priv = dev->dev_private;
12968 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12969 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12970}
12971
9c72cc6f
SD
12972/* Some VBT's incorrectly indicate no backlight is present */
12973static void quirk_backlight_present(struct drm_device *dev)
12974{
12975 struct drm_i915_private *dev_priv = dev->dev_private;
12976 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12977 DRM_INFO("applying backlight present quirk\n");
12978}
12979
b690e96c
JB
12980struct intel_quirk {
12981 int device;
12982 int subsystem_vendor;
12983 int subsystem_device;
12984 void (*hook)(struct drm_device *dev);
12985};
12986
5f85f176
EE
12987/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12988struct intel_dmi_quirk {
12989 void (*hook)(struct drm_device *dev);
12990 const struct dmi_system_id (*dmi_id_list)[];
12991};
12992
12993static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12994{
12995 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12996 return 1;
12997}
12998
12999static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13000 {
13001 .dmi_id_list = &(const struct dmi_system_id[]) {
13002 {
13003 .callback = intel_dmi_reverse_brightness,
13004 .ident = "NCR Corporation",
13005 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13006 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13007 },
13008 },
13009 { } /* terminating entry */
13010 },
13011 .hook = quirk_invert_brightness,
13012 },
13013};
13014
c43b5634 13015static struct intel_quirk intel_quirks[] = {
b690e96c 13016 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13017 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13018
b690e96c
JB
13019 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13020 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13021
b690e96c
JB
13022 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13023 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13024
5f080c0f
VS
13025 /* 830 needs to leave pipe A & dpll A up */
13026 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13027
b6b5d049
VS
13028 /* 830 needs to leave pipe B & dpll B up */
13029 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13030
435793df
KP
13031 /* Lenovo U160 cannot use SSC on LVDS */
13032 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13033
13034 /* Sony Vaio Y cannot use SSC on LVDS */
13035 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13036
be505f64
AH
13037 /* Acer Aspire 5734Z must invert backlight brightness */
13038 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13039
13040 /* Acer/eMachines G725 */
13041 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13042
13043 /* Acer/eMachines e725 */
13044 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13045
13046 /* Acer/Packard Bell NCL20 */
13047 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13048
13049 /* Acer Aspire 4736Z */
13050 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13051
13052 /* Acer Aspire 5336 */
13053 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13054
13055 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13056 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13057
dfb3d47b
SD
13058 /* Acer C720 Chromebook (Core i3 4005U) */
13059 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13060
b2a9601c 13061 /* Apple Macbook 2,1 (Core 2 T7400) */
13062 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13063
d4967d8c
SD
13064 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13065 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13066
13067 /* HP Chromebook 14 (Celeron 2955U) */
13068 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
13069};
13070
13071static void intel_init_quirks(struct drm_device *dev)
13072{
13073 struct pci_dev *d = dev->pdev;
13074 int i;
13075
13076 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13077 struct intel_quirk *q = &intel_quirks[i];
13078
13079 if (d->device == q->device &&
13080 (d->subsystem_vendor == q->subsystem_vendor ||
13081 q->subsystem_vendor == PCI_ANY_ID) &&
13082 (d->subsystem_device == q->subsystem_device ||
13083 q->subsystem_device == PCI_ANY_ID))
13084 q->hook(dev);
13085 }
5f85f176
EE
13086 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13087 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13088 intel_dmi_quirks[i].hook(dev);
13089 }
b690e96c
JB
13090}
13091
9cce37f4
JB
13092/* Disable the VGA plane that we never use */
13093static void i915_disable_vga(struct drm_device *dev)
13094{
13095 struct drm_i915_private *dev_priv = dev->dev_private;
13096 u8 sr1;
766aa1c4 13097 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13098
2b37c616 13099 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13100 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13101 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13102 sr1 = inb(VGA_SR_DATA);
13103 outb(sr1 | 1<<5, VGA_SR_DATA);
13104 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13105 udelay(300);
13106
69769f9a
VS
13107 /*
13108 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
13109 * from S3 without preserving (some of?) the other bits.
13110 */
13111 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
13112 POSTING_READ(vga_reg);
13113}
13114
f817586c
DV
13115void intel_modeset_init_hw(struct drm_device *dev)
13116{
a8f78b58
ED
13117 intel_prepare_ddi(dev);
13118
f8bf63fd
VS
13119 if (IS_VALLEYVIEW(dev))
13120 vlv_update_cdclk(dev);
13121
f817586c
DV
13122 intel_init_clock_gating(dev);
13123
8090c6b9 13124 intel_enable_gt_powersave(dev);
f817586c
DV
13125}
13126
79e53945
JB
13127void intel_modeset_init(struct drm_device *dev)
13128{
652c393a 13129 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13130 int sprite, ret;
8cc87b75 13131 enum pipe pipe;
46f297fb 13132 struct intel_crtc *crtc;
79e53945
JB
13133
13134 drm_mode_config_init(dev);
13135
13136 dev->mode_config.min_width = 0;
13137 dev->mode_config.min_height = 0;
13138
019d96cb
DA
13139 dev->mode_config.preferred_depth = 24;
13140 dev->mode_config.prefer_shadow = 1;
13141
e6ecefaa 13142 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13143
b690e96c
JB
13144 intel_init_quirks(dev);
13145
1fa61106
ED
13146 intel_init_pm(dev);
13147
e3c74757
BW
13148 if (INTEL_INFO(dev)->num_pipes == 0)
13149 return;
13150
e70236a8 13151 intel_init_display(dev);
7c10a2b5 13152 intel_init_audio(dev);
e70236a8 13153
a6c45cf0
CW
13154 if (IS_GEN2(dev)) {
13155 dev->mode_config.max_width = 2048;
13156 dev->mode_config.max_height = 2048;
13157 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13158 dev->mode_config.max_width = 4096;
13159 dev->mode_config.max_height = 4096;
79e53945 13160 } else {
a6c45cf0
CW
13161 dev->mode_config.max_width = 8192;
13162 dev->mode_config.max_height = 8192;
79e53945 13163 }
068be561 13164
dc41c154
VS
13165 if (IS_845G(dev) || IS_I865G(dev)) {
13166 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13167 dev->mode_config.cursor_height = 1023;
13168 } else if (IS_GEN2(dev)) {
068be561
DL
13169 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13170 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13171 } else {
13172 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13173 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13174 }
13175
5d4545ae 13176 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13177
28c97730 13178 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13179 INTEL_INFO(dev)->num_pipes,
13180 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13181
055e393f 13182 for_each_pipe(dev_priv, pipe) {
8cc87b75 13183 intel_crtc_init(dev, pipe);
1fe47785
DL
13184 for_each_sprite(pipe, sprite) {
13185 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13186 if (ret)
06da8da2 13187 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13188 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13189 }
79e53945
JB
13190 }
13191
f42bb70d
JB
13192 intel_init_dpio(dev);
13193
e72f9fbf 13194 intel_shared_dpll_init(dev);
ee7b9f93 13195
69769f9a
VS
13196 /* save the BIOS value before clobbering it */
13197 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
13198 /* Just disable it once at startup */
13199 i915_disable_vga(dev);
79e53945 13200 intel_setup_outputs(dev);
11be49eb
CW
13201
13202 /* Just in case the BIOS is doing something questionable. */
13203 intel_disable_fbc(dev);
fa9fa083 13204
6e9f798d 13205 drm_modeset_lock_all(dev);
fa9fa083 13206 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13207 drm_modeset_unlock_all(dev);
46f297fb 13208
d3fcc808 13209 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13210 if (!crtc->active)
13211 continue;
13212
46f297fb 13213 /*
46f297fb
JB
13214 * Note that reserving the BIOS fb up front prevents us
13215 * from stuffing other stolen allocations like the ring
13216 * on top. This prevents some ugliness at boot time, and
13217 * can even allow for smooth boot transitions if the BIOS
13218 * fb is large enough for the active pipe configuration.
13219 */
13220 if (dev_priv->display.get_plane_config) {
13221 dev_priv->display.get_plane_config(crtc,
13222 &crtc->plane_config);
13223 /*
13224 * If the fb is shared between multiple heads, we'll
13225 * just get the first one.
13226 */
484b41dd 13227 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13228 }
46f297fb 13229 }
2c7111db
CW
13230}
13231
7fad798e
DV
13232static void intel_enable_pipe_a(struct drm_device *dev)
13233{
13234 struct intel_connector *connector;
13235 struct drm_connector *crt = NULL;
13236 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13237 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13238
13239 /* We can't just switch on the pipe A, we need to set things up with a
13240 * proper mode and output configuration. As a gross hack, enable pipe A
13241 * by enabling the load detect pipe once. */
13242 list_for_each_entry(connector,
13243 &dev->mode_config.connector_list,
13244 base.head) {
13245 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13246 crt = &connector->base;
13247 break;
13248 }
13249 }
13250
13251 if (!crt)
13252 return;
13253
208bf9fd
VS
13254 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13255 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13256}
13257
fa555837
DV
13258static bool
13259intel_check_plane_mapping(struct intel_crtc *crtc)
13260{
7eb552ae
BW
13261 struct drm_device *dev = crtc->base.dev;
13262 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13263 u32 reg, val;
13264
7eb552ae 13265 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13266 return true;
13267
13268 reg = DSPCNTR(!crtc->plane);
13269 val = I915_READ(reg);
13270
13271 if ((val & DISPLAY_PLANE_ENABLE) &&
13272 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13273 return false;
13274
13275 return true;
13276}
13277
24929352
DV
13278static void intel_sanitize_crtc(struct intel_crtc *crtc)
13279{
13280 struct drm_device *dev = crtc->base.dev;
13281 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13282 u32 reg;
24929352 13283
24929352 13284 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 13285 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
13286 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13287
d3eaf884 13288 /* restore vblank interrupts to correct state */
d297e103
VS
13289 if (crtc->active) {
13290 update_scanline_offset(crtc);
d3eaf884 13291 drm_vblank_on(dev, crtc->pipe);
d297e103 13292 } else
d3eaf884
VS
13293 drm_vblank_off(dev, crtc->pipe);
13294
24929352 13295 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13296 * disable the crtc (and hence change the state) if it is wrong. Note
13297 * that gen4+ has a fixed plane -> pipe mapping. */
13298 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13299 struct intel_connector *connector;
13300 bool plane;
13301
24929352
DV
13302 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13303 crtc->base.base.id);
13304
13305 /* Pipe has the wrong plane attached and the plane is active.
13306 * Temporarily change the plane mapping and disable everything
13307 * ... */
13308 plane = crtc->plane;
13309 crtc->plane = !plane;
9c8958bc 13310 crtc->primary_enabled = true;
24929352
DV
13311 dev_priv->display.crtc_disable(&crtc->base);
13312 crtc->plane = plane;
13313
13314 /* ... and break all links. */
13315 list_for_each_entry(connector, &dev->mode_config.connector_list,
13316 base.head) {
13317 if (connector->encoder->base.crtc != &crtc->base)
13318 continue;
13319
7f1950fb
EE
13320 connector->base.dpms = DRM_MODE_DPMS_OFF;
13321 connector->base.encoder = NULL;
24929352 13322 }
7f1950fb
EE
13323 /* multiple connectors may have the same encoder:
13324 * handle them and break crtc link separately */
13325 list_for_each_entry(connector, &dev->mode_config.connector_list,
13326 base.head)
13327 if (connector->encoder->base.crtc == &crtc->base) {
13328 connector->encoder->base.crtc = NULL;
13329 connector->encoder->connectors_active = false;
13330 }
24929352
DV
13331
13332 WARN_ON(crtc->active);
13333 crtc->base.enabled = false;
13334 }
24929352 13335
7fad798e
DV
13336 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13337 crtc->pipe == PIPE_A && !crtc->active) {
13338 /* BIOS forgot to enable pipe A, this mostly happens after
13339 * resume. Force-enable the pipe to fix this, the update_dpms
13340 * call below we restore the pipe to the right state, but leave
13341 * the required bits on. */
13342 intel_enable_pipe_a(dev);
13343 }
13344
24929352
DV
13345 /* Adjust the state of the output pipe according to whether we
13346 * have active connectors/encoders. */
13347 intel_crtc_update_dpms(&crtc->base);
13348
13349 if (crtc->active != crtc->base.enabled) {
13350 struct intel_encoder *encoder;
13351
13352 /* This can happen either due to bugs in the get_hw_state
13353 * functions or because the pipe is force-enabled due to the
13354 * pipe A quirk. */
13355 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13356 crtc->base.base.id,
13357 crtc->base.enabled ? "enabled" : "disabled",
13358 crtc->active ? "enabled" : "disabled");
13359
13360 crtc->base.enabled = crtc->active;
13361
13362 /* Because we only establish the connector -> encoder ->
13363 * crtc links if something is active, this means the
13364 * crtc is now deactivated. Break the links. connector
13365 * -> encoder links are only establish when things are
13366 * actually up, hence no need to break them. */
13367 WARN_ON(crtc->active);
13368
13369 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13370 WARN_ON(encoder->connectors_active);
13371 encoder->base.crtc = NULL;
13372 }
13373 }
c5ab3bc0 13374
a3ed6aad 13375 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13376 /*
13377 * We start out with underrun reporting disabled to avoid races.
13378 * For correct bookkeeping mark this on active crtcs.
13379 *
c5ab3bc0
DV
13380 * Also on gmch platforms we dont have any hardware bits to
13381 * disable the underrun reporting. Which means we need to start
13382 * out with underrun reporting disabled also on inactive pipes,
13383 * since otherwise we'll complain about the garbage we read when
13384 * e.g. coming up after runtime pm.
13385 *
4cc31489
DV
13386 * No protection against concurrent access is required - at
13387 * worst a fifo underrun happens which also sets this to false.
13388 */
13389 crtc->cpu_fifo_underrun_disabled = true;
13390 crtc->pch_fifo_underrun_disabled = true;
13391 }
24929352
DV
13392}
13393
13394static void intel_sanitize_encoder(struct intel_encoder *encoder)
13395{
13396 struct intel_connector *connector;
13397 struct drm_device *dev = encoder->base.dev;
13398
13399 /* We need to check both for a crtc link (meaning that the
13400 * encoder is active and trying to read from a pipe) and the
13401 * pipe itself being active. */
13402 bool has_active_crtc = encoder->base.crtc &&
13403 to_intel_crtc(encoder->base.crtc)->active;
13404
13405 if (encoder->connectors_active && !has_active_crtc) {
13406 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13407 encoder->base.base.id,
8e329a03 13408 encoder->base.name);
24929352
DV
13409
13410 /* Connector is active, but has no active pipe. This is
13411 * fallout from our resume register restoring. Disable
13412 * the encoder manually again. */
13413 if (encoder->base.crtc) {
13414 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13415 encoder->base.base.id,
8e329a03 13416 encoder->base.name);
24929352 13417 encoder->disable(encoder);
a62d1497
VS
13418 if (encoder->post_disable)
13419 encoder->post_disable(encoder);
24929352 13420 }
7f1950fb
EE
13421 encoder->base.crtc = NULL;
13422 encoder->connectors_active = false;
24929352
DV
13423
13424 /* Inconsistent output/port/pipe state happens presumably due to
13425 * a bug in one of the get_hw_state functions. Or someplace else
13426 * in our code, like the register restore mess on resume. Clamp
13427 * things to off as a safer default. */
13428 list_for_each_entry(connector,
13429 &dev->mode_config.connector_list,
13430 base.head) {
13431 if (connector->encoder != encoder)
13432 continue;
7f1950fb
EE
13433 connector->base.dpms = DRM_MODE_DPMS_OFF;
13434 connector->base.encoder = NULL;
24929352
DV
13435 }
13436 }
13437 /* Enabled encoders without active connectors will be fixed in
13438 * the crtc fixup. */
13439}
13440
04098753 13441void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13442{
13443 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13444 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13445
04098753
ID
13446 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13447 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13448 i915_disable_vga(dev);
13449 }
13450}
13451
13452void i915_redisable_vga(struct drm_device *dev)
13453{
13454 struct drm_i915_private *dev_priv = dev->dev_private;
13455
8dc8a27c
PZ
13456 /* This function can be called both from intel_modeset_setup_hw_state or
13457 * at a very early point in our resume sequence, where the power well
13458 * structures are not yet restored. Since this function is at a very
13459 * paranoid "someone might have enabled VGA while we were not looking"
13460 * level, just check if the power well is enabled instead of trying to
13461 * follow the "don't touch the power well if we don't need it" policy
13462 * the rest of the driver uses. */
f458ebbc 13463 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13464 return;
13465
04098753 13466 i915_redisable_vga_power_on(dev);
0fde901f
KM
13467}
13468
98ec7739
VS
13469static bool primary_get_hw_state(struct intel_crtc *crtc)
13470{
13471 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13472
13473 if (!crtc->active)
13474 return false;
13475
13476 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13477}
13478
30e984df 13479static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13480{
13481 struct drm_i915_private *dev_priv = dev->dev_private;
13482 enum pipe pipe;
24929352
DV
13483 struct intel_crtc *crtc;
13484 struct intel_encoder *encoder;
13485 struct intel_connector *connector;
5358901f 13486 int i;
24929352 13487
d3fcc808 13488 for_each_intel_crtc(dev, crtc) {
88adfff1 13489 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13490
9953599b
DV
13491 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13492
0e8ffe1b
DV
13493 crtc->active = dev_priv->display.get_pipe_config(crtc,
13494 &crtc->config);
24929352
DV
13495
13496 crtc->base.enabled = crtc->active;
98ec7739 13497 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13498
13499 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13500 crtc->base.base.id,
13501 crtc->active ? "enabled" : "disabled");
13502 }
13503
5358901f
DV
13504 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13505 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13506
3e369b76
ACO
13507 pll->on = pll->get_hw_state(dev_priv, pll,
13508 &pll->config.hw_state);
5358901f 13509 pll->active = 0;
3e369b76 13510 pll->config.crtc_mask = 0;
d3fcc808 13511 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13512 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13513 pll->active++;
3e369b76 13514 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13515 }
5358901f 13516 }
5358901f 13517
1e6f2ddc 13518 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13519 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13520
3e369b76 13521 if (pll->config.crtc_mask)
bd2bb1b9 13522 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13523 }
13524
b2784e15 13525 for_each_intel_encoder(dev, encoder) {
24929352
DV
13526 pipe = 0;
13527
13528 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13529 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13530 encoder->base.crtc = &crtc->base;
1d37b689 13531 encoder->get_config(encoder, &crtc->config);
24929352
DV
13532 } else {
13533 encoder->base.crtc = NULL;
13534 }
13535
13536 encoder->connectors_active = false;
6f2bcceb 13537 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13538 encoder->base.base.id,
8e329a03 13539 encoder->base.name,
24929352 13540 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13541 pipe_name(pipe));
24929352
DV
13542 }
13543
13544 list_for_each_entry(connector, &dev->mode_config.connector_list,
13545 base.head) {
13546 if (connector->get_hw_state(connector)) {
13547 connector->base.dpms = DRM_MODE_DPMS_ON;
13548 connector->encoder->connectors_active = true;
13549 connector->base.encoder = &connector->encoder->base;
13550 } else {
13551 connector->base.dpms = DRM_MODE_DPMS_OFF;
13552 connector->base.encoder = NULL;
13553 }
13554 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13555 connector->base.base.id,
c23cc417 13556 connector->base.name,
24929352
DV
13557 connector->base.encoder ? "enabled" : "disabled");
13558 }
30e984df
DV
13559}
13560
13561/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13562 * and i915 state tracking structures. */
13563void intel_modeset_setup_hw_state(struct drm_device *dev,
13564 bool force_restore)
13565{
13566 struct drm_i915_private *dev_priv = dev->dev_private;
13567 enum pipe pipe;
30e984df
DV
13568 struct intel_crtc *crtc;
13569 struct intel_encoder *encoder;
35c95375 13570 int i;
30e984df
DV
13571
13572 intel_modeset_readout_hw_state(dev);
24929352 13573
babea61d
JB
13574 /*
13575 * Now that we have the config, copy it to each CRTC struct
13576 * Note that this could go away if we move to using crtc_config
13577 * checking everywhere.
13578 */
d3fcc808 13579 for_each_intel_crtc(dev, crtc) {
d330a953 13580 if (crtc->active && i915.fastboot) {
f6a83288 13581 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13582 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13583 crtc->base.base.id);
13584 drm_mode_debug_printmodeline(&crtc->base.mode);
13585 }
13586 }
13587
24929352 13588 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13589 for_each_intel_encoder(dev, encoder) {
24929352
DV
13590 intel_sanitize_encoder(encoder);
13591 }
13592
055e393f 13593 for_each_pipe(dev_priv, pipe) {
24929352
DV
13594 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13595 intel_sanitize_crtc(crtc);
c0b03411 13596 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13597 }
9a935856 13598
35c95375
DV
13599 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13600 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13601
13602 if (!pll->on || pll->active)
13603 continue;
13604
13605 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13606
13607 pll->disable(dev_priv, pll);
13608 pll->on = false;
13609 }
13610
3078999f
PB
13611 if (IS_GEN9(dev))
13612 skl_wm_get_hw_state(dev);
13613 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13614 ilk_wm_get_hw_state(dev);
13615
45e2b5f6 13616 if (force_restore) {
7d0bc1ea
VS
13617 i915_redisable_vga(dev);
13618
f30da187
DV
13619 /*
13620 * We need to use raw interfaces for restoring state to avoid
13621 * checking (bogus) intermediate states.
13622 */
055e393f 13623 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13624 struct drm_crtc *crtc =
13625 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 13626
7f27126e
JB
13627 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13628 crtc->primary->fb);
45e2b5f6
DV
13629 }
13630 } else {
13631 intel_modeset_update_staged_output_state(dev);
13632 }
8af6cf88
DV
13633
13634 intel_modeset_check_state(dev);
2c7111db
CW
13635}
13636
13637void intel_modeset_gem_init(struct drm_device *dev)
13638{
92122789 13639 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 13640 struct drm_crtc *c;
2ff8fde1 13641 struct drm_i915_gem_object *obj;
484b41dd 13642
ae48434c
ID
13643 mutex_lock(&dev->struct_mutex);
13644 intel_init_gt_powersave(dev);
13645 mutex_unlock(&dev->struct_mutex);
13646
92122789
JB
13647 /*
13648 * There may be no VBT; and if the BIOS enabled SSC we can
13649 * just keep using it to avoid unnecessary flicker. Whereas if the
13650 * BIOS isn't using it, don't assume it will work even if the VBT
13651 * indicates as much.
13652 */
13653 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13654 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13655 DREF_SSC1_ENABLE);
13656
1833b134 13657 intel_modeset_init_hw(dev);
02e792fb
DV
13658
13659 intel_setup_overlay(dev);
484b41dd
JB
13660
13661 /*
13662 * Make sure any fbs we allocated at startup are properly
13663 * pinned & fenced. When we do the allocation it's too early
13664 * for this.
13665 */
13666 mutex_lock(&dev->struct_mutex);
70e1e0ec 13667 for_each_crtc(dev, c) {
2ff8fde1
MR
13668 obj = intel_fb_obj(c->primary->fb);
13669 if (obj == NULL)
484b41dd
JB
13670 continue;
13671
850c4cdc
TU
13672 if (intel_pin_and_fence_fb_obj(c->primary,
13673 c->primary->fb,
13674 NULL)) {
484b41dd
JB
13675 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13676 to_intel_crtc(c)->pipe);
66e514c1
DA
13677 drm_framebuffer_unreference(c->primary->fb);
13678 c->primary->fb = NULL;
484b41dd
JB
13679 }
13680 }
13681 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
13682
13683 intel_backlight_register(dev);
79e53945
JB
13684}
13685
4932e2c3
ID
13686void intel_connector_unregister(struct intel_connector *intel_connector)
13687{
13688 struct drm_connector *connector = &intel_connector->base;
13689
13690 intel_panel_destroy_backlight(connector);
34ea3d38 13691 drm_connector_unregister(connector);
4932e2c3
ID
13692}
13693
79e53945
JB
13694void intel_modeset_cleanup(struct drm_device *dev)
13695{
652c393a 13696 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13697 struct drm_connector *connector;
652c393a 13698
2eb5252e
ID
13699 intel_disable_gt_powersave(dev);
13700
0962c3c9
VS
13701 intel_backlight_unregister(dev);
13702
fd0c0642
DV
13703 /*
13704 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 13705 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
13706 * experience fancy races otherwise.
13707 */
2aeb7d3a 13708 intel_irq_uninstall(dev_priv);
eb21b92b 13709
fd0c0642
DV
13710 /*
13711 * Due to the hpd irq storm handling the hotplug work can re-arm the
13712 * poll handlers. Hence disable polling after hpd handling is shut down.
13713 */
f87ea761 13714 drm_kms_helper_poll_fini(dev);
fd0c0642 13715
652c393a
JB
13716 mutex_lock(&dev->struct_mutex);
13717
723bfd70
JB
13718 intel_unregister_dsm_handler();
13719
973d04f9 13720 intel_disable_fbc(dev);
e70236a8 13721
930ebb46
DV
13722 ironlake_teardown_rc6(dev);
13723
69341a5e
KH
13724 mutex_unlock(&dev->struct_mutex);
13725
1630fe75
CW
13726 /* flush any delayed tasks or pending work */
13727 flush_scheduled_work();
13728
db31af1d
JN
13729 /* destroy the backlight and sysfs files before encoders/connectors */
13730 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13731 struct intel_connector *intel_connector;
13732
13733 intel_connector = to_intel_connector(connector);
13734 intel_connector->unregister(intel_connector);
db31af1d 13735 }
d9255d57 13736
79e53945 13737 drm_mode_config_cleanup(dev);
4d7bb011
DV
13738
13739 intel_cleanup_overlay(dev);
ae48434c
ID
13740
13741 mutex_lock(&dev->struct_mutex);
13742 intel_cleanup_gt_powersave(dev);
13743 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13744}
13745
f1c79df3
ZW
13746/*
13747 * Return which encoder is currently attached for connector.
13748 */
df0e9248 13749struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13750{
df0e9248
CW
13751 return &intel_attached_encoder(connector)->base;
13752}
f1c79df3 13753
df0e9248
CW
13754void intel_connector_attach_encoder(struct intel_connector *connector,
13755 struct intel_encoder *encoder)
13756{
13757 connector->encoder = encoder;
13758 drm_mode_connector_attach_encoder(&connector->base,
13759 &encoder->base);
79e53945 13760}
28d52043
DA
13761
13762/*
13763 * set vga decode state - true == enable VGA decode
13764 */
13765int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13766{
13767 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13768 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13769 u16 gmch_ctrl;
13770
75fa041d
CW
13771 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13772 DRM_ERROR("failed to read control word\n");
13773 return -EIO;
13774 }
13775
c0cc8a55
CW
13776 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13777 return 0;
13778
28d52043
DA
13779 if (state)
13780 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13781 else
13782 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13783
13784 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13785 DRM_ERROR("failed to write control word\n");
13786 return -EIO;
13787 }
13788
28d52043
DA
13789 return 0;
13790}
c4a1d9e4 13791
c4a1d9e4 13792struct intel_display_error_state {
ff57f1b0
PZ
13793
13794 u32 power_well_driver;
13795
63b66e5b
CW
13796 int num_transcoders;
13797
c4a1d9e4
CW
13798 struct intel_cursor_error_state {
13799 u32 control;
13800 u32 position;
13801 u32 base;
13802 u32 size;
52331309 13803 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13804
13805 struct intel_pipe_error_state {
ddf9c536 13806 bool power_domain_on;
c4a1d9e4 13807 u32 source;
f301b1e1 13808 u32 stat;
52331309 13809 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13810
13811 struct intel_plane_error_state {
13812 u32 control;
13813 u32 stride;
13814 u32 size;
13815 u32 pos;
13816 u32 addr;
13817 u32 surface;
13818 u32 tile_offset;
52331309 13819 } plane[I915_MAX_PIPES];
63b66e5b
CW
13820
13821 struct intel_transcoder_error_state {
ddf9c536 13822 bool power_domain_on;
63b66e5b
CW
13823 enum transcoder cpu_transcoder;
13824
13825 u32 conf;
13826
13827 u32 htotal;
13828 u32 hblank;
13829 u32 hsync;
13830 u32 vtotal;
13831 u32 vblank;
13832 u32 vsync;
13833 } transcoder[4];
c4a1d9e4
CW
13834};
13835
13836struct intel_display_error_state *
13837intel_display_capture_error_state(struct drm_device *dev)
13838{
fbee40df 13839 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13840 struct intel_display_error_state *error;
63b66e5b
CW
13841 int transcoders[] = {
13842 TRANSCODER_A,
13843 TRANSCODER_B,
13844 TRANSCODER_C,
13845 TRANSCODER_EDP,
13846 };
c4a1d9e4
CW
13847 int i;
13848
63b66e5b
CW
13849 if (INTEL_INFO(dev)->num_pipes == 0)
13850 return NULL;
13851
9d1cb914 13852 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13853 if (error == NULL)
13854 return NULL;
13855
190be112 13856 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13857 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13858
055e393f 13859 for_each_pipe(dev_priv, i) {
ddf9c536 13860 error->pipe[i].power_domain_on =
f458ebbc
DV
13861 __intel_display_power_is_enabled(dev_priv,
13862 POWER_DOMAIN_PIPE(i));
ddf9c536 13863 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13864 continue;
13865
5efb3e28
VS
13866 error->cursor[i].control = I915_READ(CURCNTR(i));
13867 error->cursor[i].position = I915_READ(CURPOS(i));
13868 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13869
13870 error->plane[i].control = I915_READ(DSPCNTR(i));
13871 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13872 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13873 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13874 error->plane[i].pos = I915_READ(DSPPOS(i));
13875 }
ca291363
PZ
13876 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13877 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13878 if (INTEL_INFO(dev)->gen >= 4) {
13879 error->plane[i].surface = I915_READ(DSPSURF(i));
13880 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13881 }
13882
c4a1d9e4 13883 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13884
3abfce77 13885 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13886 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13887 }
13888
13889 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13890 if (HAS_DDI(dev_priv->dev))
13891 error->num_transcoders++; /* Account for eDP. */
13892
13893 for (i = 0; i < error->num_transcoders; i++) {
13894 enum transcoder cpu_transcoder = transcoders[i];
13895
ddf9c536 13896 error->transcoder[i].power_domain_on =
f458ebbc 13897 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13898 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13899 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13900 continue;
13901
63b66e5b
CW
13902 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13903
13904 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13905 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13906 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13907 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13908 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13909 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13910 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13911 }
13912
13913 return error;
13914}
13915
edc3d884
MK
13916#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13917
c4a1d9e4 13918void
edc3d884 13919intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13920 struct drm_device *dev,
13921 struct intel_display_error_state *error)
13922{
055e393f 13923 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13924 int i;
13925
63b66e5b
CW
13926 if (!error)
13927 return;
13928
edc3d884 13929 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13930 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13931 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13932 error->power_well_driver);
055e393f 13933 for_each_pipe(dev_priv, i) {
edc3d884 13934 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13935 err_printf(m, " Power: %s\n",
13936 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13937 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13938 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13939
13940 err_printf(m, "Plane [%d]:\n", i);
13941 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13942 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13943 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13944 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13945 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13946 }
4b71a570 13947 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13948 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13949 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13950 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13951 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13952 }
13953
edc3d884
MK
13954 err_printf(m, "Cursor [%d]:\n", i);
13955 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13956 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13957 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13958 }
63b66e5b
CW
13959
13960 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13961 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13962 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13963 err_printf(m, " Power: %s\n",
13964 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13965 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13966 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13967 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13968 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13969 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13970 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13971 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13972 }
c4a1d9e4 13973}
e2fcdaa9
VS
13974
13975void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13976{
13977 struct intel_crtc *crtc;
13978
13979 for_each_intel_crtc(dev, crtc) {
13980 struct intel_unpin_work *work;
e2fcdaa9 13981
5e2d7afc 13982 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
13983
13984 work = crtc->unpin_work;
13985
13986 if (work && work->event &&
13987 work->event->base.file_priv == file) {
13988 kfree(work->event);
13989 work->event = NULL;
13990 }
13991
5e2d7afc 13992 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
13993 }
13994}
This page took 2.527762 seconds and 5 git commands to generate.