drm/i915: Move disable_cxsr to the crtc_state.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
fd8e058a
AG
47#include <linux/reservation.h>
48#include <linux/dma-buf.h>
79e53945 49
465c120c 50/* Primary plane formats for gen <= 3 */
568db4f2 51static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
52 DRM_FORMAT_C8,
53 DRM_FORMAT_RGB565,
465c120c 54 DRM_FORMAT_XRGB1555,
67fe7dc5 55 DRM_FORMAT_XRGB8888,
465c120c
MR
56};
57
58/* Primary plane formats for gen >= 4 */
568db4f2 59static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
60 DRM_FORMAT_C8,
61 DRM_FORMAT_RGB565,
62 DRM_FORMAT_XRGB8888,
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_XRGB2101010,
65 DRM_FORMAT_XBGR2101010,
66};
67
68static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
69 DRM_FORMAT_C8,
70 DRM_FORMAT_RGB565,
71 DRM_FORMAT_XRGB8888,
465c120c 72 DRM_FORMAT_XBGR8888,
67fe7dc5 73 DRM_FORMAT_ARGB8888,
465c120c
MR
74 DRM_FORMAT_ABGR8888,
75 DRM_FORMAT_XRGB2101010,
465c120c 76 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
77 DRM_FORMAT_YUYV,
78 DRM_FORMAT_YVYU,
79 DRM_FORMAT_UYVY,
80 DRM_FORMAT_VYUY,
465c120c
MR
81};
82
3d7d6510
MR
83/* Cursor formats */
84static const uint32_t intel_cursor_formats[] = {
85 DRM_FORMAT_ARGB8888,
86};
87
6b383a7f 88static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 89
f1f644dc 90static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 91 struct intel_crtc_state *pipe_config);
18442d08 92static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 93 struct intel_crtc_state *pipe_config);
f1f644dc 94
eb1bfe80
JB
95static int intel_framebuffer_init(struct drm_device *dev,
96 struct intel_framebuffer *ifb,
97 struct drm_mode_fb_cmd2 *mode_cmd,
98 struct drm_i915_gem_object *obj);
5b18e57c
DV
99static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
100static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 101static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
102 struct intel_link_m_n *m_n,
103 struct intel_link_m_n *m2_n2);
29407aab 104static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
105static void haswell_set_pipeconf(struct drm_crtc *crtc);
106static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 107static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 108 const struct intel_crtc_state *pipe_config);
d288f65f 109static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 110 const struct intel_crtc_state *pipe_config);
613d2b27
ML
111static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
113static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
115static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
116 int num_connectors);
bfd16b2a
ML
117static void skylake_pfit_enable(struct intel_crtc *crtc);
118static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
119static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 120static void intel_modeset_setup_hw_state(struct drm_device *dev);
e7457a9a 121
79e53945 122typedef struct {
0206e353 123 int min, max;
79e53945
JB
124} intel_range_t;
125
126typedef struct {
0206e353
AJ
127 int dot_limit;
128 int p2_slow, p2_fast;
79e53945
JB
129} intel_p2_t;
130
d4906093
ML
131typedef struct intel_limit intel_limit_t;
132struct intel_limit {
0206e353
AJ
133 intel_range_t dot, vco, n, m, m1, m2, p, p1;
134 intel_p2_t p2;
d4906093 135};
79e53945 136
bfa7df01
VS
137/* returns HPLL frequency in kHz */
138static int valleyview_get_vco(struct drm_i915_private *dev_priv)
139{
140 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
141
142 /* Obtain SKU information */
143 mutex_lock(&dev_priv->sb_lock);
144 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
145 CCK_FUSE_HPLL_FREQ_MASK;
146 mutex_unlock(&dev_priv->sb_lock);
147
148 return vco_freq[hpll_freq] * 1000;
149}
150
151static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
152 const char *name, u32 reg)
153{
154 u32 val;
155 int divider;
156
157 if (dev_priv->hpll_freq == 0)
158 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
171}
172
d2acd215
DV
173int
174intel_pch_rawclk(struct drm_device *dev)
175{
176 struct drm_i915_private *dev_priv = dev->dev_private;
177
178 WARN_ON(!HAS_PCH_SPLIT(dev));
179
180 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
181}
182
79e50a4f
JN
183/* hrawclock is 1/4 the FSB frequency */
184int intel_hrawclk(struct drm_device *dev)
185{
186 struct drm_i915_private *dev_priv = dev->dev_private;
187 uint32_t clkcfg;
188
189 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
190 if (IS_VALLEYVIEW(dev))
191 return 200;
192
193 clkcfg = I915_READ(CLKCFG);
194 switch (clkcfg & CLKCFG_FSB_MASK) {
195 case CLKCFG_FSB_400:
196 return 100;
197 case CLKCFG_FSB_533:
198 return 133;
199 case CLKCFG_FSB_667:
200 return 166;
201 case CLKCFG_FSB_800:
202 return 200;
203 case CLKCFG_FSB_1067:
204 return 266;
205 case CLKCFG_FSB_1333:
206 return 333;
207 /* these two are just a guess; one of them might be right */
208 case CLKCFG_FSB_1600:
209 case CLKCFG_FSB_1600_ALT:
210 return 400;
211 default:
212 return 133;
213 }
214}
215
bfa7df01
VS
216static void intel_update_czclk(struct drm_i915_private *dev_priv)
217{
218 if (!IS_VALLEYVIEW(dev_priv))
219 return;
220
221 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
222 CCK_CZ_CLOCK_CONTROL);
223
224 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
225}
226
021357ac
CW
227static inline u32 /* units of 100MHz */
228intel_fdi_link_freq(struct drm_device *dev)
229{
8b99e68c
CW
230 if (IS_GEN5(dev)) {
231 struct drm_i915_private *dev_priv = dev->dev_private;
232 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
233 } else
234 return 27;
021357ac
CW
235}
236
5d536e28 237static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 238 .dot = { .min = 25000, .max = 350000 },
9c333719 239 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 240 .n = { .min = 2, .max = 16 },
0206e353
AJ
241 .m = { .min = 96, .max = 140 },
242 .m1 = { .min = 18, .max = 26 },
243 .m2 = { .min = 6, .max = 16 },
244 .p = { .min = 4, .max = 128 },
245 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
246 .p2 = { .dot_limit = 165000,
247 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
248};
249
5d536e28
DV
250static const intel_limit_t intel_limits_i8xx_dvo = {
251 .dot = { .min = 25000, .max = 350000 },
9c333719 252 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 253 .n = { .min = 2, .max = 16 },
5d536e28
DV
254 .m = { .min = 96, .max = 140 },
255 .m1 = { .min = 18, .max = 26 },
256 .m2 = { .min = 6, .max = 16 },
257 .p = { .min = 4, .max = 128 },
258 .p1 = { .min = 2, .max = 33 },
259 .p2 = { .dot_limit = 165000,
260 .p2_slow = 4, .p2_fast = 4 },
261};
262
e4b36699 263static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 264 .dot = { .min = 25000, .max = 350000 },
9c333719 265 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 266 .n = { .min = 2, .max = 16 },
0206e353
AJ
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 14, .p2_fast = 7 },
e4b36699 274};
273e27ca 275
e4b36699 276static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1400000, .max = 2800000 },
279 .n = { .min = 1, .max = 6 },
280 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
281 .m1 = { .min = 8, .max = 18 },
282 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
283 .p = { .min = 5, .max = 80 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 200000,
286 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
287};
288
289static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
290 .dot = { .min = 20000, .max = 400000 },
291 .vco = { .min = 1400000, .max = 2800000 },
292 .n = { .min = 1, .max = 6 },
293 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
294 .m1 = { .min = 8, .max = 18 },
295 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
296 .p = { .min = 7, .max = 98 },
297 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
298 .p2 = { .dot_limit = 112000,
299 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
300};
301
273e27ca 302
e4b36699 303static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 270000 },
305 .vco = { .min = 1750000, .max = 3500000},
306 .n = { .min = 1, .max = 4 },
307 .m = { .min = 104, .max = 138 },
308 .m1 = { .min = 17, .max = 23 },
309 .m2 = { .min = 5, .max = 11 },
310 .p = { .min = 10, .max = 30 },
311 .p1 = { .min = 1, .max = 3},
312 .p2 = { .dot_limit = 270000,
313 .p2_slow = 10,
314 .p2_fast = 10
044c7c41 315 },
e4b36699
KP
316};
317
318static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
319 .dot = { .min = 22000, .max = 400000 },
320 .vco = { .min = 1750000, .max = 3500000},
321 .n = { .min = 1, .max = 4 },
322 .m = { .min = 104, .max = 138 },
323 .m1 = { .min = 16, .max = 23 },
324 .m2 = { .min = 5, .max = 11 },
325 .p = { .min = 5, .max = 80 },
326 .p1 = { .min = 1, .max = 8},
327 .p2 = { .dot_limit = 165000,
328 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
329};
330
331static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
332 .dot = { .min = 20000, .max = 115000 },
333 .vco = { .min = 1750000, .max = 3500000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 104, .max = 138 },
336 .m1 = { .min = 17, .max = 23 },
337 .m2 = { .min = 5, .max = 11 },
338 .p = { .min = 28, .max = 112 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 0,
341 .p2_slow = 14, .p2_fast = 14
044c7c41 342 },
e4b36699
KP
343};
344
345static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
346 .dot = { .min = 80000, .max = 224000 },
347 .vco = { .min = 1750000, .max = 3500000 },
348 .n = { .min = 1, .max = 3 },
349 .m = { .min = 104, .max = 138 },
350 .m1 = { .min = 17, .max = 23 },
351 .m2 = { .min = 5, .max = 11 },
352 .p = { .min = 14, .max = 42 },
353 .p1 = { .min = 2, .max = 6 },
354 .p2 = { .dot_limit = 0,
355 .p2_slow = 7, .p2_fast = 7
044c7c41 356 },
e4b36699
KP
357};
358
f2b115e6 359static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
360 .dot = { .min = 20000, .max = 400000},
361 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 362 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
363 .n = { .min = 3, .max = 6 },
364 .m = { .min = 2, .max = 256 },
273e27ca 365 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
366 .m1 = { .min = 0, .max = 0 },
367 .m2 = { .min = 0, .max = 254 },
368 .p = { .min = 5, .max = 80 },
369 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
370 .p2 = { .dot_limit = 200000,
371 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
372};
373
f2b115e6 374static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
375 .dot = { .min = 20000, .max = 400000 },
376 .vco = { .min = 1700000, .max = 3500000 },
377 .n = { .min = 3, .max = 6 },
378 .m = { .min = 2, .max = 256 },
379 .m1 = { .min = 0, .max = 0 },
380 .m2 = { .min = 0, .max = 254 },
381 .p = { .min = 7, .max = 112 },
382 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
383 .p2 = { .dot_limit = 112000,
384 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
385};
386
273e27ca
EA
387/* Ironlake / Sandybridge
388 *
389 * We calculate clock using (register_value + 2) for N/M1/M2, so here
390 * the range value for them is (actual_value - 2).
391 */
b91ad0ec 392static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
393 .dot = { .min = 25000, .max = 350000 },
394 .vco = { .min = 1760000, .max = 3510000 },
395 .n = { .min = 1, .max = 5 },
396 .m = { .min = 79, .max = 127 },
397 .m1 = { .min = 12, .max = 22 },
398 .m2 = { .min = 5, .max = 9 },
399 .p = { .min = 5, .max = 80 },
400 .p1 = { .min = 1, .max = 8 },
401 .p2 = { .dot_limit = 225000,
402 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
403};
404
b91ad0ec 405static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
406 .dot = { .min = 25000, .max = 350000 },
407 .vco = { .min = 1760000, .max = 3510000 },
408 .n = { .min = 1, .max = 3 },
409 .m = { .min = 79, .max = 118 },
410 .m1 = { .min = 12, .max = 22 },
411 .m2 = { .min = 5, .max = 9 },
412 .p = { .min = 28, .max = 112 },
413 .p1 = { .min = 2, .max = 8 },
414 .p2 = { .dot_limit = 225000,
415 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
416};
417
418static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 3 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 14, .max = 56 },
426 .p1 = { .min = 2, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
429};
430
273e27ca 431/* LVDS 100mhz refclk limits. */
b91ad0ec 432static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
433 .dot = { .min = 25000, .max = 350000 },
434 .vco = { .min = 1760000, .max = 3510000 },
435 .n = { .min = 1, .max = 2 },
436 .m = { .min = 79, .max = 126 },
437 .m1 = { .min = 12, .max = 22 },
438 .m2 = { .min = 5, .max = 9 },
439 .p = { .min = 28, .max = 112 },
0206e353 440 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
441 .p2 = { .dot_limit = 225000,
442 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
443};
444
445static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
446 .dot = { .min = 25000, .max = 350000 },
447 .vco = { .min = 1760000, .max = 3510000 },
448 .n = { .min = 1, .max = 3 },
449 .m = { .min = 79, .max = 126 },
450 .m1 = { .min = 12, .max = 22 },
451 .m2 = { .min = 5, .max = 9 },
452 .p = { .min = 14, .max = 42 },
0206e353 453 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
454 .p2 = { .dot_limit = 225000,
455 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
456};
457
dc730512 458static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
459 /*
460 * These are the data rate limits (measured in fast clocks)
461 * since those are the strictest limits we have. The fast
462 * clock and actual rate limits are more relaxed, so checking
463 * them would make no difference.
464 */
465 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 466 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 467 .n = { .min = 1, .max = 7 },
a0c4da24
JB
468 .m1 = { .min = 2, .max = 3 },
469 .m2 = { .min = 11, .max = 156 },
b99ab663 470 .p1 = { .min = 2, .max = 3 },
5fdc9c49 471 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
472};
473
ef9348c8
CML
474static const intel_limit_t intel_limits_chv = {
475 /*
476 * These are the data rate limits (measured in fast clocks)
477 * since those are the strictest limits we have. The fast
478 * clock and actual rate limits are more relaxed, so checking
479 * them would make no difference.
480 */
481 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 482 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
483 .n = { .min = 1, .max = 1 },
484 .m1 = { .min = 2, .max = 2 },
485 .m2 = { .min = 24 << 22, .max = 175 << 22 },
486 .p1 = { .min = 2, .max = 4 },
487 .p2 = { .p2_slow = 1, .p2_fast = 14 },
488};
489
5ab7b0b7
ID
490static const intel_limit_t intel_limits_bxt = {
491 /* FIXME: find real dot limits */
492 .dot = { .min = 0, .max = INT_MAX },
e6292556 493 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
494 .n = { .min = 1, .max = 1 },
495 .m1 = { .min = 2, .max = 2 },
496 /* FIXME: find real m2 limits */
497 .m2 = { .min = 2 << 22, .max = 255 << 22 },
498 .p1 = { .min = 2, .max = 4 },
499 .p2 = { .p2_slow = 1, .p2_fast = 20 },
500};
501
cdba954e
ACO
502static bool
503needs_modeset(struct drm_crtc_state *state)
504{
fc596660 505 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
506}
507
e0638cdf
PZ
508/**
509 * Returns whether any output on the specified pipe is of the specified type
510 */
4093561b 511bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 512{
409ee761 513 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
514 struct intel_encoder *encoder;
515
409ee761 516 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
517 if (encoder->type == type)
518 return true;
519
520 return false;
521}
522
d0737e1d
ACO
523/**
524 * Returns whether any output on the specified pipe will have the specified
525 * type after a staged modeset is complete, i.e., the same as
526 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
527 * encoder->crtc.
528 */
a93e255f
ACO
529static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
530 int type)
d0737e1d 531{
a93e255f 532 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 533 struct drm_connector *connector;
a93e255f 534 struct drm_connector_state *connector_state;
d0737e1d 535 struct intel_encoder *encoder;
a93e255f
ACO
536 int i, num_connectors = 0;
537
da3ced29 538 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
539 if (connector_state->crtc != crtc_state->base.crtc)
540 continue;
541
542 num_connectors++;
d0737e1d 543
a93e255f
ACO
544 encoder = to_intel_encoder(connector_state->best_encoder);
545 if (encoder->type == type)
d0737e1d 546 return true;
a93e255f
ACO
547 }
548
549 WARN_ON(num_connectors == 0);
d0737e1d
ACO
550
551 return false;
552}
553
a93e255f
ACO
554static const intel_limit_t *
555intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 556{
a93e255f 557 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 558 const intel_limit_t *limit;
b91ad0ec 559
a93e255f 560 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 561 if (intel_is_dual_link_lvds(dev)) {
1b894b59 562 if (refclk == 100000)
b91ad0ec
ZW
563 limit = &intel_limits_ironlake_dual_lvds_100m;
564 else
565 limit = &intel_limits_ironlake_dual_lvds;
566 } else {
1b894b59 567 if (refclk == 100000)
b91ad0ec
ZW
568 limit = &intel_limits_ironlake_single_lvds_100m;
569 else
570 limit = &intel_limits_ironlake_single_lvds;
571 }
c6bb3538 572 } else
b91ad0ec 573 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
574
575 return limit;
576}
577
a93e255f
ACO
578static const intel_limit_t *
579intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 580{
a93e255f 581 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
582 const intel_limit_t *limit;
583
a93e255f 584 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 585 if (intel_is_dual_link_lvds(dev))
e4b36699 586 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 587 else
e4b36699 588 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
589 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
590 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 591 limit = &intel_limits_g4x_hdmi;
a93e255f 592 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 593 limit = &intel_limits_g4x_sdvo;
044c7c41 594 } else /* The option is for other outputs */
e4b36699 595 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
596
597 return limit;
598}
599
a93e255f
ACO
600static const intel_limit_t *
601intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 602{
a93e255f 603 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
604 const intel_limit_t *limit;
605
5ab7b0b7
ID
606 if (IS_BROXTON(dev))
607 limit = &intel_limits_bxt;
608 else if (HAS_PCH_SPLIT(dev))
a93e255f 609 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 610 else if (IS_G4X(dev)) {
a93e255f 611 limit = intel_g4x_limit(crtc_state);
f2b115e6 612 } else if (IS_PINEVIEW(dev)) {
a93e255f 613 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 614 limit = &intel_limits_pineview_lvds;
2177832f 615 else
f2b115e6 616 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
617 } else if (IS_CHERRYVIEW(dev)) {
618 limit = &intel_limits_chv;
a0c4da24 619 } else if (IS_VALLEYVIEW(dev)) {
dc730512 620 limit = &intel_limits_vlv;
a6c45cf0 621 } else if (!IS_GEN2(dev)) {
a93e255f 622 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
623 limit = &intel_limits_i9xx_lvds;
624 else
625 limit = &intel_limits_i9xx_sdvo;
79e53945 626 } else {
a93e255f 627 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 628 limit = &intel_limits_i8xx_lvds;
a93e255f 629 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 630 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
631 else
632 limit = &intel_limits_i8xx_dac;
79e53945
JB
633 }
634 return limit;
635}
636
dccbea3b
ID
637/*
638 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
639 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
640 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
641 * The helpers' return value is the rate of the clock that is fed to the
642 * display engine's pipe which can be the above fast dot clock rate or a
643 * divided-down version of it.
644 */
f2b115e6 645/* m1 is reserved as 0 in Pineview, n is a ring counter */
dccbea3b 646static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
79e53945 647{
2177832f
SL
648 clock->m = clock->m2 + 2;
649 clock->p = clock->p1 * clock->p2;
ed5ca77e 650 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 651 return 0;
fb03ac01
VS
652 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
653 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
654
655 return clock->dot;
2177832f
SL
656}
657
7429e9d4
DV
658static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
659{
660 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
661}
662
dccbea3b 663static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
2177832f 664{
7429e9d4 665 clock->m = i9xx_dpll_compute_m(clock);
79e53945 666 clock->p = clock->p1 * clock->p2;
ed5ca77e 667 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 668 return 0;
fb03ac01
VS
669 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
670 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
671
672 return clock->dot;
79e53945
JB
673}
674
dccbea3b 675static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
589eca67
ID
676{
677 clock->m = clock->m1 * clock->m2;
678 clock->p = clock->p1 * clock->p2;
679 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 680 return 0;
589eca67
ID
681 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
682 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
683
684 return clock->dot / 5;
589eca67
ID
685}
686
dccbea3b 687int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
ef9348c8
CML
688{
689 clock->m = clock->m1 * clock->m2;
690 clock->p = clock->p1 * clock->p2;
691 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 692 return 0;
ef9348c8
CML
693 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
694 clock->n << 22);
695 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
696
697 return clock->dot / 5;
ef9348c8
CML
698}
699
7c04d1d9 700#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
701/**
702 * Returns whether the given set of divisors are valid for a given refclk with
703 * the given connectors.
704 */
705
1b894b59
CW
706static bool intel_PLL_is_valid(struct drm_device *dev,
707 const intel_limit_t *limit,
708 const intel_clock_t *clock)
79e53945 709{
f01b7962
VS
710 if (clock->n < limit->n.min || limit->n.max < clock->n)
711 INTELPllInvalid("n out of range\n");
79e53945 712 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 713 INTELPllInvalid("p1 out of range\n");
79e53945 714 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 715 INTELPllInvalid("m2 out of range\n");
79e53945 716 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 717 INTELPllInvalid("m1 out of range\n");
f01b7962 718
5ab7b0b7 719 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
720 if (clock->m1 <= clock->m2)
721 INTELPllInvalid("m1 <= m2\n");
722
5ab7b0b7 723 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
724 if (clock->p < limit->p.min || limit->p.max < clock->p)
725 INTELPllInvalid("p out of range\n");
726 if (clock->m < limit->m.min || limit->m.max < clock->m)
727 INTELPllInvalid("m out of range\n");
728 }
729
79e53945 730 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 731 INTELPllInvalid("vco out of range\n");
79e53945
JB
732 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
733 * connector, etc., rather than just a single range.
734 */
735 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 736 INTELPllInvalid("dot out of range\n");
79e53945
JB
737
738 return true;
739}
740
3b1429d9
VS
741static int
742i9xx_select_p2_div(const intel_limit_t *limit,
743 const struct intel_crtc_state *crtc_state,
744 int target)
79e53945 745{
3b1429d9 746 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 747
a93e255f 748 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 749 /*
a210b028
DV
750 * For LVDS just rely on its current settings for dual-channel.
751 * We haven't figured out how to reliably set up different
752 * single/dual channel state, if we even can.
79e53945 753 */
1974cad0 754 if (intel_is_dual_link_lvds(dev))
3b1429d9 755 return limit->p2.p2_fast;
79e53945 756 else
3b1429d9 757 return limit->p2.p2_slow;
79e53945
JB
758 } else {
759 if (target < limit->p2.dot_limit)
3b1429d9 760 return limit->p2.p2_slow;
79e53945 761 else
3b1429d9 762 return limit->p2.p2_fast;
79e53945 763 }
3b1429d9
VS
764}
765
766static bool
767i9xx_find_best_dpll(const intel_limit_t *limit,
768 struct intel_crtc_state *crtc_state,
769 int target, int refclk, intel_clock_t *match_clock,
770 intel_clock_t *best_clock)
771{
772 struct drm_device *dev = crtc_state->base.crtc->dev;
773 intel_clock_t clock;
774 int err = target;
79e53945 775
0206e353 776 memset(best_clock, 0, sizeof(*best_clock));
79e53945 777
3b1429d9
VS
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
42158660
ZY
780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 clock.m1++) {
782 for (clock.m2 = limit->m2.min;
783 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 784 if (clock.m2 >= clock.m1)
42158660
ZY
785 break;
786 for (clock.n = limit->n.min;
787 clock.n <= limit->n.max; clock.n++) {
788 for (clock.p1 = limit->p1.min;
789 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
790 int this_err;
791
dccbea3b 792 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
793 if (!intel_PLL_is_valid(dev, limit,
794 &clock))
795 continue;
796 if (match_clock &&
797 clock.p != match_clock->p)
798 continue;
799
800 this_err = abs(clock.dot - target);
801 if (this_err < err) {
802 *best_clock = clock;
803 err = this_err;
804 }
805 }
806 }
807 }
808 }
809
810 return (err != target);
811}
812
813static bool
a93e255f
ACO
814pnv_find_best_dpll(const intel_limit_t *limit,
815 struct intel_crtc_state *crtc_state,
ee9300bb
DV
816 int target, int refclk, intel_clock_t *match_clock,
817 intel_clock_t *best_clock)
79e53945 818{
3b1429d9 819 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 820 intel_clock_t clock;
79e53945
JB
821 int err = target;
822
0206e353 823 memset(best_clock, 0, sizeof(*best_clock));
79e53945 824
3b1429d9
VS
825 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826
42158660
ZY
827 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
828 clock.m1++) {
829 for (clock.m2 = limit->m2.min;
830 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
831 for (clock.n = limit->n.min;
832 clock.n <= limit->n.max; clock.n++) {
833 for (clock.p1 = limit->p1.min;
834 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
835 int this_err;
836
dccbea3b 837 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
838 if (!intel_PLL_is_valid(dev, limit,
839 &clock))
79e53945 840 continue;
cec2f356
SP
841 if (match_clock &&
842 clock.p != match_clock->p)
843 continue;
79e53945
JB
844
845 this_err = abs(clock.dot - target);
846 if (this_err < err) {
847 *best_clock = clock;
848 err = this_err;
849 }
850 }
851 }
852 }
853 }
854
855 return (err != target);
856}
857
d4906093 858static bool
a93e255f
ACO
859g4x_find_best_dpll(const intel_limit_t *limit,
860 struct intel_crtc_state *crtc_state,
ee9300bb
DV
861 int target, int refclk, intel_clock_t *match_clock,
862 intel_clock_t *best_clock)
d4906093 863{
3b1429d9 864 struct drm_device *dev = crtc_state->base.crtc->dev;
d4906093
ML
865 intel_clock_t clock;
866 int max_n;
3b1429d9 867 bool found = false;
6ba770dc
AJ
868 /* approximately equals target * 0.00585 */
869 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
870
871 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
872
873 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874
d4906093 875 max_n = limit->n.max;
f77f13e2 876 /* based on hardware requirement, prefer smaller n to precision */
d4906093 877 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 878 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
879 for (clock.m1 = limit->m1.max;
880 clock.m1 >= limit->m1.min; clock.m1--) {
881 for (clock.m2 = limit->m2.max;
882 clock.m2 >= limit->m2.min; clock.m2--) {
883 for (clock.p1 = limit->p1.max;
884 clock.p1 >= limit->p1.min; clock.p1--) {
885 int this_err;
886
dccbea3b 887 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
888 if (!intel_PLL_is_valid(dev, limit,
889 &clock))
d4906093 890 continue;
1b894b59
CW
891
892 this_err = abs(clock.dot - target);
d4906093
ML
893 if (this_err < err_most) {
894 *best_clock = clock;
895 err_most = this_err;
896 max_n = clock.n;
897 found = true;
898 }
899 }
900 }
901 }
902 }
2c07245f
ZW
903 return found;
904}
905
d5dd62bd
ID
906/*
907 * Check if the calculated PLL configuration is more optimal compared to the
908 * best configuration and error found so far. Return the calculated error.
909 */
910static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
911 const intel_clock_t *calculated_clock,
912 const intel_clock_t *best_clock,
913 unsigned int best_error_ppm,
914 unsigned int *error_ppm)
915{
9ca3ba01
ID
916 /*
917 * For CHV ignore the error and consider only the P value.
918 * Prefer a bigger P value based on HW requirements.
919 */
920 if (IS_CHERRYVIEW(dev)) {
921 *error_ppm = 0;
922
923 return calculated_clock->p > best_clock->p;
924 }
925
24be4e46
ID
926 if (WARN_ON_ONCE(!target_freq))
927 return false;
928
d5dd62bd
ID
929 *error_ppm = div_u64(1000000ULL *
930 abs(target_freq - calculated_clock->dot),
931 target_freq);
932 /*
933 * Prefer a better P value over a better (smaller) error if the error
934 * is small. Ensure this preference for future configurations too by
935 * setting the error to 0.
936 */
937 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
938 *error_ppm = 0;
939
940 return true;
941 }
942
943 return *error_ppm + 10 < best_error_ppm;
944}
945
a0c4da24 946static bool
a93e255f
ACO
947vlv_find_best_dpll(const intel_limit_t *limit,
948 struct intel_crtc_state *crtc_state,
ee9300bb
DV
949 int target, int refclk, intel_clock_t *match_clock,
950 intel_clock_t *best_clock)
a0c4da24 951{
a93e255f 952 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 953 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 954 intel_clock_t clock;
69e4f900 955 unsigned int bestppm = 1000000;
27e639bf
VS
956 /* min update 19.2 MHz */
957 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 958 bool found = false;
a0c4da24 959
6b4bf1c4
VS
960 target *= 5; /* fast clock */
961
962 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
963
964 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 965 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 966 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 967 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 968 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 969 clock.p = clock.p1 * clock.p2;
a0c4da24 970 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 971 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 972 unsigned int ppm;
69e4f900 973
6b4bf1c4
VS
974 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
975 refclk * clock.m1);
976
dccbea3b 977 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 978
f01b7962
VS
979 if (!intel_PLL_is_valid(dev, limit,
980 &clock))
43b0ac53
VS
981 continue;
982
d5dd62bd
ID
983 if (!vlv_PLL_is_optimal(dev, target,
984 &clock,
985 best_clock,
986 bestppm, &ppm))
987 continue;
6b4bf1c4 988
d5dd62bd
ID
989 *best_clock = clock;
990 bestppm = ppm;
991 found = true;
a0c4da24
JB
992 }
993 }
994 }
995 }
a0c4da24 996
49e497ef 997 return found;
a0c4da24 998}
a4fc5ed6 999
ef9348c8 1000static bool
a93e255f
ACO
1001chv_find_best_dpll(const intel_limit_t *limit,
1002 struct intel_crtc_state *crtc_state,
ef9348c8
CML
1003 int target, int refclk, intel_clock_t *match_clock,
1004 intel_clock_t *best_clock)
1005{
a93e255f 1006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 1007 struct drm_device *dev = crtc->base.dev;
9ca3ba01 1008 unsigned int best_error_ppm;
ef9348c8
CML
1009 intel_clock_t clock;
1010 uint64_t m2;
1011 int found = false;
1012
1013 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 1014 best_error_ppm = 1000000;
ef9348c8
CML
1015
1016 /*
1017 * Based on hardware doc, the n always set to 1, and m1 always
1018 * set to 2. If requires to support 200Mhz refclk, we need to
1019 * revisit this because n may not 1 anymore.
1020 */
1021 clock.n = 1, clock.m1 = 2;
1022 target *= 5; /* fast clock */
1023
1024 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1025 for (clock.p2 = limit->p2.p2_fast;
1026 clock.p2 >= limit->p2.p2_slow;
1027 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1028 unsigned int error_ppm;
ef9348c8
CML
1029
1030 clock.p = clock.p1 * clock.p2;
1031
1032 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1033 clock.n) << 22, refclk * clock.m1);
1034
1035 if (m2 > INT_MAX/clock.m1)
1036 continue;
1037
1038 clock.m2 = m2;
1039
dccbea3b 1040 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1041
1042 if (!intel_PLL_is_valid(dev, limit, &clock))
1043 continue;
1044
9ca3ba01
ID
1045 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1046 best_error_ppm, &error_ppm))
1047 continue;
1048
1049 *best_clock = clock;
1050 best_error_ppm = error_ppm;
1051 found = true;
ef9348c8
CML
1052 }
1053 }
1054
1055 return found;
1056}
1057
5ab7b0b7
ID
1058bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1059 intel_clock_t *best_clock)
1060{
1061 int refclk = i9xx_get_refclk(crtc_state, 0);
1062
1063 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1064 target_clock, refclk, NULL, best_clock);
1065}
1066
20ddf665
VS
1067bool intel_crtc_active(struct drm_crtc *crtc)
1068{
1069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071 /* Be paranoid as we can arrive here with only partial
1072 * state retrieved from the hardware during setup.
1073 *
241bfc38 1074 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1075 * as Haswell has gained clock readout/fastboot support.
1076 *
66e514c1 1077 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1078 * properly reconstruct framebuffers.
c3d1f436
MR
1079 *
1080 * FIXME: The intel_crtc->active here should be switched to
1081 * crtc->state->active once we have proper CRTC states wired up
1082 * for atomic.
20ddf665 1083 */
c3d1f436 1084 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1085 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1086}
1087
a5c961d1
PZ
1088enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1089 enum pipe pipe)
1090{
1091 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093
6e3c9717 1094 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1095}
1096
fbf49ea2
VS
1097static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098{
1099 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1100 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1101 u32 line1, line2;
1102 u32 line_mask;
1103
1104 if (IS_GEN2(dev))
1105 line_mask = DSL_LINEMASK_GEN2;
1106 else
1107 line_mask = DSL_LINEMASK_GEN3;
1108
1109 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1110 msleep(5);
fbf49ea2
VS
1111 line2 = I915_READ(reg) & line_mask;
1112
1113 return line1 == line2;
1114}
1115
ab7ad7f6
KP
1116/*
1117 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1118 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1119 *
1120 * After disabling a pipe, we can't wait for vblank in the usual way,
1121 * spinning on the vblank interrupt status bit, since we won't actually
1122 * see an interrupt when the pipe is disabled.
1123 *
ab7ad7f6
KP
1124 * On Gen4 and above:
1125 * wait for the pipe register state bit to turn off
1126 *
1127 * Otherwise:
1128 * wait for the display line value to settle (it usually
1129 * ends up stopping at the start of the next frame).
58e10eb9 1130 *
9d0498a2 1131 */
575f7ab7 1132static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1133{
575f7ab7 1134 struct drm_device *dev = crtc->base.dev;
9d0498a2 1135 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1136 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1137 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1138
1139 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1140 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1141
1142 /* Wait for the Pipe State to go off */
58e10eb9
CW
1143 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1144 100))
284637d9 1145 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1146 } else {
ab7ad7f6 1147 /* Wait for the display line to settle */
fbf49ea2 1148 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1149 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1150 }
79e53945
JB
1151}
1152
b24e7179
JB
1153static const char *state_string(bool enabled)
1154{
1155 return enabled ? "on" : "off";
1156}
1157
1158/* Only for pre-ILK configs */
55607e8a
DV
1159void assert_pll(struct drm_i915_private *dev_priv,
1160 enum pipe pipe, bool state)
b24e7179 1161{
b24e7179
JB
1162 u32 val;
1163 bool cur_state;
1164
649636ef 1165 val = I915_READ(DPLL(pipe));
b24e7179 1166 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1167 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1168 "PLL state assertion failure (expected %s, current %s)\n",
1169 state_string(state), state_string(cur_state));
1170}
b24e7179 1171
23538ef1
JN
1172/* XXX: the dsi pll is shared between MIPI DSI ports */
1173static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1174{
1175 u32 val;
1176 bool cur_state;
1177
a580516d 1178 mutex_lock(&dev_priv->sb_lock);
23538ef1 1179 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1180 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1181
1182 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1183 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1184 "DSI PLL state assertion failure (expected %s, current %s)\n",
1185 state_string(state), state_string(cur_state));
1186}
1187#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1188#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1189
55607e8a 1190struct intel_shared_dpll *
e2b78267
DV
1191intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1192{
1193 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1194
6e3c9717 1195 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1196 return NULL;
1197
6e3c9717 1198 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1199}
1200
040484af 1201/* For ILK+ */
55607e8a
DV
1202void assert_shared_dpll(struct drm_i915_private *dev_priv,
1203 struct intel_shared_dpll *pll,
1204 bool state)
040484af 1205{
040484af 1206 bool cur_state;
5358901f 1207 struct intel_dpll_hw_state hw_state;
040484af 1208
92b27b08 1209 if (WARN (!pll,
46edb027 1210 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1211 return;
ee7b9f93 1212
5358901f 1213 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1214 I915_STATE_WARN(cur_state != state,
5358901f
DV
1215 "%s assertion failure (expected %s, current %s)\n",
1216 pll->name, state_string(state), state_string(cur_state));
040484af 1217}
040484af
JB
1218
1219static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
1221{
040484af 1222 bool cur_state;
ad80a810
PZ
1223 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224 pipe);
040484af 1225
affa9354
PZ
1226 if (HAS_DDI(dev_priv->dev)) {
1227 /* DDI does not have a specific FDI_TX register */
649636ef 1228 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1229 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1230 } else {
649636ef 1231 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1232 cur_state = !!(val & FDI_TX_ENABLE);
1233 }
e2c719b7 1234 I915_STATE_WARN(cur_state != state,
040484af
JB
1235 "FDI TX state assertion failure (expected %s, current %s)\n",
1236 state_string(state), state_string(cur_state));
1237}
1238#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1239#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1240
1241static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1242 enum pipe pipe, bool state)
1243{
040484af
JB
1244 u32 val;
1245 bool cur_state;
1246
649636ef 1247 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1248 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1249 I915_STATE_WARN(cur_state != state,
040484af
JB
1250 "FDI RX state assertion failure (expected %s, current %s)\n",
1251 state_string(state), state_string(cur_state));
1252}
1253#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1254#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1255
1256static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe)
1258{
040484af
JB
1259 u32 val;
1260
1261 /* ILK FDI PLL is always enabled */
3d13ef2e 1262 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1263 return;
1264
bf507ef7 1265 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1266 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1267 return;
1268
649636ef 1269 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1270 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1271}
1272
55607e8a
DV
1273void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1274 enum pipe pipe, bool state)
040484af 1275{
040484af 1276 u32 val;
55607e8a 1277 bool cur_state;
040484af 1278
649636ef 1279 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1280 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1281 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1282 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1283 state_string(state), state_string(cur_state));
040484af
JB
1284}
1285
b680c37a
DV
1286void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1287 enum pipe pipe)
ea0760cf 1288{
bedd4dba 1289 struct drm_device *dev = dev_priv->dev;
f0f59a00 1290 i915_reg_t pp_reg;
ea0760cf
JB
1291 u32 val;
1292 enum pipe panel_pipe = PIPE_A;
0de3b485 1293 bool locked = true;
ea0760cf 1294
bedd4dba
JN
1295 if (WARN_ON(HAS_DDI(dev)))
1296 return;
1297
1298 if (HAS_PCH_SPLIT(dev)) {
1299 u32 port_sel;
1300
ea0760cf 1301 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1302 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1303
1304 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1305 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1306 panel_pipe = PIPE_B;
1307 /* XXX: else fix for eDP */
1308 } else if (IS_VALLEYVIEW(dev)) {
1309 /* presumably write lock depends on pipe, not port select */
1310 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1311 panel_pipe = pipe;
ea0760cf
JB
1312 } else {
1313 pp_reg = PP_CONTROL;
bedd4dba
JN
1314 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1315 panel_pipe = PIPE_B;
ea0760cf
JB
1316 }
1317
1318 val = I915_READ(pp_reg);
1319 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1320 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1321 locked = false;
1322
e2c719b7 1323 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1324 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1325 pipe_name(pipe));
ea0760cf
JB
1326}
1327
93ce0ba6
JN
1328static void assert_cursor(struct drm_i915_private *dev_priv,
1329 enum pipe pipe, bool state)
1330{
1331 struct drm_device *dev = dev_priv->dev;
1332 bool cur_state;
1333
d9d82081 1334 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1335 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1336 else
5efb3e28 1337 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1338
e2c719b7 1339 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1340 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1341 pipe_name(pipe), state_string(state), state_string(cur_state));
1342}
1343#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1344#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1345
b840d907
JB
1346void assert_pipe(struct drm_i915_private *dev_priv,
1347 enum pipe pipe, bool state)
b24e7179 1348{
63d7bbe9 1349 bool cur_state;
702e7a56
PZ
1350 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1351 pipe);
b24e7179 1352
b6b5d049
VS
1353 /* if we need the pipe quirk it must be always on */
1354 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1355 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1356 state = true;
1357
f458ebbc 1358 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1359 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1360 cur_state = false;
1361 } else {
649636ef 1362 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161
PZ
1363 cur_state = !!(val & PIPECONF_ENABLE);
1364 }
1365
e2c719b7 1366 I915_STATE_WARN(cur_state != state,
63d7bbe9 1367 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1368 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1369}
1370
931872fc
CW
1371static void assert_plane(struct drm_i915_private *dev_priv,
1372 enum plane plane, bool state)
b24e7179 1373{
b24e7179 1374 u32 val;
931872fc 1375 bool cur_state;
b24e7179 1376
649636ef 1377 val = I915_READ(DSPCNTR(plane));
931872fc 1378 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1379 I915_STATE_WARN(cur_state != state,
931872fc
CW
1380 "plane %c assertion failure (expected %s, current %s)\n",
1381 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1382}
1383
931872fc
CW
1384#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1385#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1386
b24e7179
JB
1387static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe)
1389{
653e1026 1390 struct drm_device *dev = dev_priv->dev;
649636ef 1391 int i;
b24e7179 1392
653e1026
VS
1393 /* Primary planes are fixed to pipes on gen4+ */
1394 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1395 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1396 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1397 "plane %c assertion failure, should be disabled but not\n",
1398 plane_name(pipe));
19ec1358 1399 return;
28c05794 1400 }
19ec1358 1401
b24e7179 1402 /* Need to check both planes against the pipe */
055e393f 1403 for_each_pipe(dev_priv, i) {
649636ef
VS
1404 u32 val = I915_READ(DSPCNTR(i));
1405 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1406 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1407 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1408 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1409 plane_name(i), pipe_name(pipe));
b24e7179
JB
1410 }
1411}
1412
19332d7a
JB
1413static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1414 enum pipe pipe)
1415{
20674eef 1416 struct drm_device *dev = dev_priv->dev;
649636ef 1417 int sprite;
19332d7a 1418
7feb8b88 1419 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1420 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1421 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1422 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1423 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1424 sprite, pipe_name(pipe));
1425 }
1426 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1427 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1428 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1429 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1430 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1431 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1432 }
1433 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1434 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1435 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1436 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1437 plane_name(pipe), pipe_name(pipe));
1438 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1439 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1440 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1441 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1442 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1443 }
1444}
1445
08c71e5e
VS
1446static void assert_vblank_disabled(struct drm_crtc *crtc)
1447{
e2c719b7 1448 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1449 drm_crtc_vblank_put(crtc);
1450}
1451
89eff4be 1452static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1453{
1454 u32 val;
1455 bool enabled;
1456
e2c719b7 1457 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1458
92f2584a
JB
1459 val = I915_READ(PCH_DREF_CONTROL);
1460 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1461 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1462 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1463}
1464
ab9412ba
DV
1465static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1466 enum pipe pipe)
92f2584a 1467{
92f2584a
JB
1468 u32 val;
1469 bool enabled;
1470
649636ef 1471 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1472 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1473 I915_STATE_WARN(enabled,
9db4a9c7
JB
1474 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1475 pipe_name(pipe));
92f2584a
JB
1476}
1477
4e634389
KP
1478static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1479 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1480{
1481 if ((val & DP_PORT_EN) == 0)
1482 return false;
1483
1484 if (HAS_PCH_CPT(dev_priv->dev)) {
f0f59a00 1485 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1486 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487 return false;
44f37d1f
CML
1488 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490 return false;
f0575e92
KP
1491 } else {
1492 if ((val & DP_PIPE_MASK) != (pipe << 30))
1493 return false;
1494 }
1495 return true;
1496}
1497
1519b995
KP
1498static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499 enum pipe pipe, u32 val)
1500{
dc0fa718 1501 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1502 return false;
1503
1504 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1505 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1506 return false;
44f37d1f
CML
1507 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509 return false;
1519b995 1510 } else {
dc0fa718 1511 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1512 return false;
1513 }
1514 return true;
1515}
1516
1517static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1519{
1520 if ((val & LVDS_PORT_EN) == 0)
1521 return false;
1522
1523 if (HAS_PCH_CPT(dev_priv->dev)) {
1524 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525 return false;
1526 } else {
1527 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528 return false;
1529 }
1530 return true;
1531}
1532
1533static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534 enum pipe pipe, u32 val)
1535{
1536 if ((val & ADPA_DAC_ENABLE) == 0)
1537 return false;
1538 if (HAS_PCH_CPT(dev_priv->dev)) {
1539 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540 return false;
1541 } else {
1542 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543 return false;
1544 }
1545 return true;
1546}
1547
291906f1 1548static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1549 enum pipe pipe, i915_reg_t reg,
1550 u32 port_sel)
291906f1 1551{
47a05eca 1552 u32 val = I915_READ(reg);
e2c719b7 1553 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1554 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1555 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1556
e2c719b7 1557 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1558 && (val & DP_PIPEB_SELECT),
de9a35ab 1559 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1560}
1561
1562static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1563 enum pipe pipe, i915_reg_t reg)
291906f1 1564{
47a05eca 1565 u32 val = I915_READ(reg);
e2c719b7 1566 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1567 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1568 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1569
e2c719b7 1570 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1571 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1572 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1573}
1574
1575static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1576 enum pipe pipe)
1577{
291906f1 1578 u32 val;
291906f1 1579
f0575e92
KP
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1581 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1582 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1583
649636ef 1584 val = I915_READ(PCH_ADPA);
e2c719b7 1585 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1586 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1587 pipe_name(pipe));
291906f1 1588
649636ef 1589 val = I915_READ(PCH_LVDS);
e2c719b7 1590 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1591 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1592 pipe_name(pipe));
291906f1 1593
e2debe91
PZ
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1595 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1596 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1597}
1598
d288f65f 1599static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1600 const struct intel_crtc_state *pipe_config)
87442f73 1601{
426115cf
DV
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1604 i915_reg_t reg = DPLL(crtc->pipe);
d288f65f 1605 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1606
426115cf 1607 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1608
1609 /* No really, not for ILK+ */
1610 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1611
1612 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1613 if (IS_MOBILE(dev_priv->dev))
426115cf 1614 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1615
426115cf
DV
1616 I915_WRITE(reg, dpll);
1617 POSTING_READ(reg);
1618 udelay(150);
1619
1620 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1621 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1622
d288f65f 1623 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1624 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1625
1626 /* We do this three times for luck */
426115cf 1627 I915_WRITE(reg, dpll);
87442f73
DV
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
426115cf 1630 I915_WRITE(reg, dpll);
87442f73
DV
1631 POSTING_READ(reg);
1632 udelay(150); /* wait for warmup */
426115cf 1633 I915_WRITE(reg, dpll);
87442f73
DV
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
1636}
1637
d288f65f 1638static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1639 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1640{
1641 struct drm_device *dev = crtc->base.dev;
1642 struct drm_i915_private *dev_priv = dev->dev_private;
1643 int pipe = crtc->pipe;
1644 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1645 u32 tmp;
1646
1647 assert_pipe_disabled(dev_priv, crtc->pipe);
1648
1649 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1650
a580516d 1651 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1652
1653 /* Enable back the 10bit clock to display controller */
1654 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1655 tmp |= DPIO_DCLKP_EN;
1656 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1657
54433e91
VS
1658 mutex_unlock(&dev_priv->sb_lock);
1659
9d556c99
CML
1660 /*
1661 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1662 */
1663 udelay(1);
1664
1665 /* Enable PLL */
d288f65f 1666 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1667
1668 /* Check PLL is locked */
a11b0703 1669 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1670 DRM_ERROR("PLL %d failed to lock\n", pipe);
1671
a11b0703 1672 /* not sure when this should be written */
d288f65f 1673 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1674 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1675}
1676
1c4e0274
VS
1677static int intel_num_dvo_pipes(struct drm_device *dev)
1678{
1679 struct intel_crtc *crtc;
1680 int count = 0;
1681
1682 for_each_intel_crtc(dev, crtc)
3538b9df 1683 count += crtc->base.state->active &&
409ee761 1684 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1685
1686 return count;
1687}
1688
66e3d5c0 1689static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1690{
66e3d5c0
DV
1691 struct drm_device *dev = crtc->base.dev;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1693 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1694 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1695
66e3d5c0 1696 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1697
63d7bbe9 1698 /* No really, not for ILK+ */
3d13ef2e 1699 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1700
1701 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1702 if (IS_MOBILE(dev) && !IS_I830(dev))
1703 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1704
1c4e0274
VS
1705 /* Enable DVO 2x clock on both PLLs if necessary */
1706 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1707 /*
1708 * It appears to be important that we don't enable this
1709 * for the current pipe before otherwise configuring the
1710 * PLL. No idea how this should be handled if multiple
1711 * DVO outputs are enabled simultaneosly.
1712 */
1713 dpll |= DPLL_DVO_2X_MODE;
1714 I915_WRITE(DPLL(!crtc->pipe),
1715 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1716 }
66e3d5c0 1717
c2b63374
VS
1718 /*
1719 * Apparently we need to have VGA mode enabled prior to changing
1720 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1721 * dividers, even though the register value does change.
1722 */
1723 I915_WRITE(reg, 0);
1724
8e7a65aa
VS
1725 I915_WRITE(reg, dpll);
1726
66e3d5c0
DV
1727 /* Wait for the clocks to stabilize. */
1728 POSTING_READ(reg);
1729 udelay(150);
1730
1731 if (INTEL_INFO(dev)->gen >= 4) {
1732 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1733 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1734 } else {
1735 /* The pixel multiplier can only be updated once the
1736 * DPLL is enabled and the clocks are stable.
1737 *
1738 * So write it again.
1739 */
1740 I915_WRITE(reg, dpll);
1741 }
63d7bbe9
JB
1742
1743 /* We do this three times for luck */
66e3d5c0 1744 I915_WRITE(reg, dpll);
63d7bbe9
JB
1745 POSTING_READ(reg);
1746 udelay(150); /* wait for warmup */
66e3d5c0 1747 I915_WRITE(reg, dpll);
63d7bbe9
JB
1748 POSTING_READ(reg);
1749 udelay(150); /* wait for warmup */
66e3d5c0 1750 I915_WRITE(reg, dpll);
63d7bbe9
JB
1751 POSTING_READ(reg);
1752 udelay(150); /* wait for warmup */
1753}
1754
1755/**
50b44a44 1756 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1757 * @dev_priv: i915 private structure
1758 * @pipe: pipe PLL to disable
1759 *
1760 * Disable the PLL for @pipe, making sure the pipe is off first.
1761 *
1762 * Note! This is for pre-ILK only.
1763 */
1c4e0274 1764static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1765{
1c4e0274
VS
1766 struct drm_device *dev = crtc->base.dev;
1767 struct drm_i915_private *dev_priv = dev->dev_private;
1768 enum pipe pipe = crtc->pipe;
1769
1770 /* Disable DVO 2x clock on both PLLs if necessary */
1771 if (IS_I830(dev) &&
409ee761 1772 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1773 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1774 I915_WRITE(DPLL(PIPE_B),
1775 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1776 I915_WRITE(DPLL(PIPE_A),
1777 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1778 }
1779
b6b5d049
VS
1780 /* Don't disable pipe or pipe PLLs if needed */
1781 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1782 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1783 return;
1784
1785 /* Make sure the pipe isn't still relying on us */
1786 assert_pipe_disabled(dev_priv, pipe);
1787
b8afb911 1788 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1789 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1790}
1791
f6071166
JB
1792static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1793{
b8afb911 1794 u32 val;
f6071166
JB
1795
1796 /* Make sure the pipe isn't still relying on us */
1797 assert_pipe_disabled(dev_priv, pipe);
1798
e5cbfbfb
ID
1799 /*
1800 * Leave integrated clock source and reference clock enabled for pipe B.
1801 * The latter is needed for VGA hotplug / manual detection.
1802 */
b8afb911 1803 val = DPLL_VGA_MODE_DIS;
f6071166 1804 if (pipe == PIPE_B)
60bfe44f 1805 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
f6071166
JB
1806 I915_WRITE(DPLL(pipe), val);
1807 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1808
1809}
1810
1811static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1812{
d752048d 1813 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1814 u32 val;
1815
a11b0703
VS
1816 /* Make sure the pipe isn't still relying on us */
1817 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1818
a11b0703 1819 /* Set PLL en = 0 */
60bfe44f
VS
1820 val = DPLL_SSC_REF_CLK_CHV |
1821 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1822 if (pipe != PIPE_A)
1823 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1824 I915_WRITE(DPLL(pipe), val);
1825 POSTING_READ(DPLL(pipe));
d752048d 1826
a580516d 1827 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1828
1829 /* Disable 10bit clock to display controller */
1830 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1831 val &= ~DPIO_DCLKP_EN;
1832 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1833
a580516d 1834 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1835}
1836
e4607fcf 1837void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1838 struct intel_digital_port *dport,
1839 unsigned int expected_mask)
89b667f8
JB
1840{
1841 u32 port_mask;
f0f59a00 1842 i915_reg_t dpll_reg;
89b667f8 1843
e4607fcf
CML
1844 switch (dport->port) {
1845 case PORT_B:
89b667f8 1846 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1847 dpll_reg = DPLL(0);
e4607fcf
CML
1848 break;
1849 case PORT_C:
89b667f8 1850 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1851 dpll_reg = DPLL(0);
9b6de0a1 1852 expected_mask <<= 4;
00fc31b7
CML
1853 break;
1854 case PORT_D:
1855 port_mask = DPLL_PORTD_READY_MASK;
1856 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1857 break;
1858 default:
1859 BUG();
1860 }
89b667f8 1861
9b6de0a1
VS
1862 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1863 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1864 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1865}
1866
b14b1055
DV
1867static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1868{
1869 struct drm_device *dev = crtc->base.dev;
1870 struct drm_i915_private *dev_priv = dev->dev_private;
1871 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1872
be19f0ff
CW
1873 if (WARN_ON(pll == NULL))
1874 return;
1875
3e369b76 1876 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1877 if (pll->active == 0) {
1878 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1879 WARN_ON(pll->on);
1880 assert_shared_dpll_disabled(dev_priv, pll);
1881
1882 pll->mode_set(dev_priv, pll);
1883 }
1884}
1885
92f2584a 1886/**
85b3894f 1887 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1888 * @dev_priv: i915 private structure
1889 * @pipe: pipe PLL to enable
1890 *
1891 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1892 * drives the transcoder clock.
1893 */
85b3894f 1894static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1895{
3d13ef2e
DL
1896 struct drm_device *dev = crtc->base.dev;
1897 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1898 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1899
87a875bb 1900 if (WARN_ON(pll == NULL))
48da64a8
CW
1901 return;
1902
3e369b76 1903 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1904 return;
ee7b9f93 1905
74dd6928 1906 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1907 pll->name, pll->active, pll->on,
e2b78267 1908 crtc->base.base.id);
92f2584a 1909
cdbd2316
DV
1910 if (pll->active++) {
1911 WARN_ON(!pll->on);
e9d6944e 1912 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1913 return;
1914 }
f4a091c7 1915 WARN_ON(pll->on);
ee7b9f93 1916
bd2bb1b9
PZ
1917 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1918
46edb027 1919 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1920 pll->enable(dev_priv, pll);
ee7b9f93 1921 pll->on = true;
92f2584a
JB
1922}
1923
f6daaec2 1924static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1925{
3d13ef2e
DL
1926 struct drm_device *dev = crtc->base.dev;
1927 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1928 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1929
92f2584a 1930 /* PCH only available on ILK+ */
80aa9312
JB
1931 if (INTEL_INFO(dev)->gen < 5)
1932 return;
1933
eddfcbcd
ML
1934 if (pll == NULL)
1935 return;
92f2584a 1936
eddfcbcd 1937 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
48da64a8 1938 return;
7a419866 1939
46edb027
DV
1940 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1941 pll->name, pll->active, pll->on,
e2b78267 1942 crtc->base.base.id);
7a419866 1943
48da64a8 1944 if (WARN_ON(pll->active == 0)) {
e9d6944e 1945 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1946 return;
1947 }
1948
e9d6944e 1949 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1950 WARN_ON(!pll->on);
cdbd2316 1951 if (--pll->active)
7a419866 1952 return;
ee7b9f93 1953
46edb027 1954 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1955 pll->disable(dev_priv, pll);
ee7b9f93 1956 pll->on = false;
bd2bb1b9
PZ
1957
1958 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1959}
1960
b8a4f404
PZ
1961static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1962 enum pipe pipe)
040484af 1963{
23670b32 1964 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1965 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1967 i915_reg_t reg;
1968 uint32_t val, pipeconf_val;
040484af
JB
1969
1970 /* PCH only available on ILK+ */
55522f37 1971 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1972
1973 /* Make sure PCH DPLL is enabled */
e72f9fbf 1974 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1975 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1976
1977 /* FDI must be feeding us bits for PCH ports */
1978 assert_fdi_tx_enabled(dev_priv, pipe);
1979 assert_fdi_rx_enabled(dev_priv, pipe);
1980
23670b32
DV
1981 if (HAS_PCH_CPT(dev)) {
1982 /* Workaround: Set the timing override bit before enabling the
1983 * pch transcoder. */
1984 reg = TRANS_CHICKEN2(pipe);
1985 val = I915_READ(reg);
1986 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1987 I915_WRITE(reg, val);
59c859d6 1988 }
23670b32 1989
ab9412ba 1990 reg = PCH_TRANSCONF(pipe);
040484af 1991 val = I915_READ(reg);
5f7f726d 1992 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1993
1994 if (HAS_PCH_IBX(dev_priv->dev)) {
1995 /*
c5de7c6f
VS
1996 * Make the BPC in transcoder be consistent with
1997 * that in pipeconf reg. For HDMI we must use 8bpc
1998 * here for both 8bpc and 12bpc.
e9bcff5c 1999 */
dfd07d72 2000 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
2001 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2002 val |= PIPECONF_8BPC;
2003 else
2004 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 2005 }
5f7f726d
PZ
2006
2007 val &= ~TRANS_INTERLACE_MASK;
2008 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 2009 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 2010 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
2011 val |= TRANS_LEGACY_INTERLACED_ILK;
2012 else
2013 val |= TRANS_INTERLACED;
5f7f726d
PZ
2014 else
2015 val |= TRANS_PROGRESSIVE;
2016
040484af
JB
2017 I915_WRITE(reg, val | TRANS_ENABLE);
2018 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 2019 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
2020}
2021
8fb033d7 2022static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2023 enum transcoder cpu_transcoder)
040484af 2024{
8fb033d7 2025 u32 val, pipeconf_val;
8fb033d7
PZ
2026
2027 /* PCH only available on ILK+ */
55522f37 2028 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2029
8fb033d7 2030 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2031 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2032 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2033
223a6fdf 2034 /* Workaround: set timing override bit. */
36c0d0cf 2035 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 2036 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 2037 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 2038
25f3ef11 2039 val = TRANS_ENABLE;
937bb610 2040 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2041
9a76b1c6
PZ
2042 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2043 PIPECONF_INTERLACED_ILK)
a35f2679 2044 val |= TRANS_INTERLACED;
8fb033d7
PZ
2045 else
2046 val |= TRANS_PROGRESSIVE;
2047
ab9412ba
DV
2048 I915_WRITE(LPT_TRANSCONF, val);
2049 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2050 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2051}
2052
b8a4f404
PZ
2053static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2054 enum pipe pipe)
040484af 2055{
23670b32 2056 struct drm_device *dev = dev_priv->dev;
f0f59a00
VS
2057 i915_reg_t reg;
2058 uint32_t val;
040484af
JB
2059
2060 /* FDI relies on the transcoder */
2061 assert_fdi_tx_disabled(dev_priv, pipe);
2062 assert_fdi_rx_disabled(dev_priv, pipe);
2063
291906f1
JB
2064 /* Ports must be off as well */
2065 assert_pch_ports_disabled(dev_priv, pipe);
2066
ab9412ba 2067 reg = PCH_TRANSCONF(pipe);
040484af
JB
2068 val = I915_READ(reg);
2069 val &= ~TRANS_ENABLE;
2070 I915_WRITE(reg, val);
2071 /* wait for PCH transcoder off, transcoder state */
2072 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2073 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 2074
c465613b 2075 if (HAS_PCH_CPT(dev)) {
23670b32
DV
2076 /* Workaround: Clear the timing override chicken bit again. */
2077 reg = TRANS_CHICKEN2(pipe);
2078 val = I915_READ(reg);
2079 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2080 I915_WRITE(reg, val);
2081 }
040484af
JB
2082}
2083
ab4d966c 2084static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2085{
8fb033d7
PZ
2086 u32 val;
2087
ab9412ba 2088 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2089 val &= ~TRANS_ENABLE;
ab9412ba 2090 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2091 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2092 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2093 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2094
2095 /* Workaround: clear timing override bit. */
36c0d0cf 2096 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 2097 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 2098 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
2099}
2100
b24e7179 2101/**
309cfea8 2102 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2103 * @crtc: crtc responsible for the pipe
b24e7179 2104 *
0372264a 2105 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2106 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2107 */
e1fdc473 2108static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2109{
0372264a
PZ
2110 struct drm_device *dev = crtc->base.dev;
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112 enum pipe pipe = crtc->pipe;
1a70a728 2113 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 2114 enum pipe pch_transcoder;
f0f59a00 2115 i915_reg_t reg;
b24e7179
JB
2116 u32 val;
2117
9e2ee2dd
VS
2118 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2119
58c6eaa2 2120 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2121 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2122 assert_sprites_disabled(dev_priv, pipe);
2123
681e5811 2124 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2125 pch_transcoder = TRANSCODER_A;
2126 else
2127 pch_transcoder = pipe;
2128
b24e7179
JB
2129 /*
2130 * A pipe without a PLL won't actually be able to drive bits from
2131 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2132 * need the check.
2133 */
50360403 2134 if (HAS_GMCH_DISPLAY(dev_priv->dev))
a65347ba 2135 if (crtc->config->has_dsi_encoder)
23538ef1
JN
2136 assert_dsi_pll_enabled(dev_priv);
2137 else
2138 assert_pll_enabled(dev_priv, pipe);
040484af 2139 else {
6e3c9717 2140 if (crtc->config->has_pch_encoder) {
040484af 2141 /* if driving the PCH, we need FDI enabled */
cc391bbb 2142 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2143 assert_fdi_tx_pll_enabled(dev_priv,
2144 (enum pipe) cpu_transcoder);
040484af
JB
2145 }
2146 /* FIXME: assert CPU port conditions for SNB+ */
2147 }
b24e7179 2148
702e7a56 2149 reg = PIPECONF(cpu_transcoder);
b24e7179 2150 val = I915_READ(reg);
7ad25d48 2151 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2152 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2153 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2154 return;
7ad25d48 2155 }
00d70b15
CW
2156
2157 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2158 POSTING_READ(reg);
b24e7179
JB
2159}
2160
2161/**
309cfea8 2162 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2163 * @crtc: crtc whose pipes is to be disabled
b24e7179 2164 *
575f7ab7
VS
2165 * Disable the pipe of @crtc, making sure that various hardware
2166 * specific requirements are met, if applicable, e.g. plane
2167 * disabled, panel fitter off, etc.
b24e7179
JB
2168 *
2169 * Will wait until the pipe has shut down before returning.
2170 */
575f7ab7 2171static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2172{
575f7ab7 2173 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2174 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2175 enum pipe pipe = crtc->pipe;
f0f59a00 2176 i915_reg_t reg;
b24e7179
JB
2177 u32 val;
2178
9e2ee2dd
VS
2179 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2180
b24e7179
JB
2181 /*
2182 * Make sure planes won't keep trying to pump pixels to us,
2183 * or we might hang the display.
2184 */
2185 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2186 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2187 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2188
702e7a56 2189 reg = PIPECONF(cpu_transcoder);
b24e7179 2190 val = I915_READ(reg);
00d70b15
CW
2191 if ((val & PIPECONF_ENABLE) == 0)
2192 return;
2193
67adc644
VS
2194 /*
2195 * Double wide has implications for planes
2196 * so best keep it disabled when not needed.
2197 */
6e3c9717 2198 if (crtc->config->double_wide)
67adc644
VS
2199 val &= ~PIPECONF_DOUBLE_WIDE;
2200
2201 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2202 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2203 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2204 val &= ~PIPECONF_ENABLE;
2205
2206 I915_WRITE(reg, val);
2207 if ((val & PIPECONF_ENABLE) == 0)
2208 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2209}
2210
693db184
CW
2211static bool need_vtd_wa(struct drm_device *dev)
2212{
2213#ifdef CONFIG_INTEL_IOMMU
2214 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2215 return true;
2216#endif
2217 return false;
2218}
2219
50470bb0 2220unsigned int
6761dd31 2221intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
fe47ea0c 2222 uint64_t fb_format_modifier, unsigned int plane)
a57ce0b2 2223{
6761dd31
TU
2224 unsigned int tile_height;
2225 uint32_t pixel_bytes;
a57ce0b2 2226
b5d0e9bf
DL
2227 switch (fb_format_modifier) {
2228 case DRM_FORMAT_MOD_NONE:
2229 tile_height = 1;
2230 break;
2231 case I915_FORMAT_MOD_X_TILED:
2232 tile_height = IS_GEN2(dev) ? 16 : 8;
2233 break;
2234 case I915_FORMAT_MOD_Y_TILED:
2235 tile_height = 32;
2236 break;
2237 case I915_FORMAT_MOD_Yf_TILED:
fe47ea0c 2238 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
6761dd31 2239 switch (pixel_bytes) {
b5d0e9bf 2240 default:
6761dd31 2241 case 1:
b5d0e9bf
DL
2242 tile_height = 64;
2243 break;
6761dd31
TU
2244 case 2:
2245 case 4:
b5d0e9bf
DL
2246 tile_height = 32;
2247 break;
6761dd31 2248 case 8:
b5d0e9bf
DL
2249 tile_height = 16;
2250 break;
6761dd31 2251 case 16:
b5d0e9bf
DL
2252 WARN_ONCE(1,
2253 "128-bit pixels are not supported for display!");
2254 tile_height = 16;
2255 break;
2256 }
2257 break;
2258 default:
2259 MISSING_CASE(fb_format_modifier);
2260 tile_height = 1;
2261 break;
2262 }
091df6cb 2263
6761dd31
TU
2264 return tile_height;
2265}
2266
2267unsigned int
2268intel_fb_align_height(struct drm_device *dev, unsigned int height,
2269 uint32_t pixel_format, uint64_t fb_format_modifier)
2270{
2271 return ALIGN(height, intel_tile_height(dev, pixel_format,
fe47ea0c 2272 fb_format_modifier, 0));
a57ce0b2
JB
2273}
2274
75c82a53 2275static void
f64b98cd
TU
2276intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2277 const struct drm_plane_state *plane_state)
2278{
a6d09186 2279 struct intel_rotation_info *info = &view->params.rotation_info;
84fe03f7 2280 unsigned int tile_height, tile_pitch;
50470bb0 2281
f64b98cd
TU
2282 *view = i915_ggtt_view_normal;
2283
50470bb0 2284 if (!plane_state)
75c82a53 2285 return;
50470bb0 2286
121920fa 2287 if (!intel_rotation_90_or_270(plane_state->rotation))
75c82a53 2288 return;
50470bb0 2289
9abc4648 2290 *view = i915_ggtt_view_rotated;
50470bb0
TU
2291
2292 info->height = fb->height;
2293 info->pixel_format = fb->pixel_format;
2294 info->pitch = fb->pitches[0];
89e3e142 2295 info->uv_offset = fb->offsets[1];
50470bb0
TU
2296 info->fb_modifier = fb->modifier[0];
2297
84fe03f7 2298 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
fe47ea0c 2299 fb->modifier[0], 0);
84fe03f7
TU
2300 tile_pitch = PAGE_SIZE / tile_height;
2301 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2302 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2303 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2304
89e3e142
TU
2305 if (info->pixel_format == DRM_FORMAT_NV12) {
2306 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2307 fb->modifier[0], 1);
2308 tile_pitch = PAGE_SIZE / tile_height;
2309 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2310 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2311 tile_height);
2312 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2313 PAGE_SIZE;
2314 }
f64b98cd
TU
2315}
2316
4e9a86b6
VS
2317static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2318{
2319 if (INTEL_INFO(dev_priv)->gen >= 9)
2320 return 256 * 1024;
985b8bb4
VS
2321 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322 IS_VALLEYVIEW(dev_priv))
4e9a86b6
VS
2323 return 128 * 1024;
2324 else if (INTEL_INFO(dev_priv)->gen >= 4)
2325 return 4 * 1024;
2326 else
44c5905e 2327 return 0;
4e9a86b6
VS
2328}
2329
127bd2ac 2330int
850c4cdc
TU
2331intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332 struct drm_framebuffer *fb,
7580d774 2333 const struct drm_plane_state *plane_state)
6b95a207 2334{
850c4cdc 2335 struct drm_device *dev = fb->dev;
ce453d81 2336 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2337 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2338 struct i915_ggtt_view view;
6b95a207
KH
2339 u32 alignment;
2340 int ret;
2341
ebcdd39e
MR
2342 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2343
7b911adc
TU
2344 switch (fb->modifier[0]) {
2345 case DRM_FORMAT_MOD_NONE:
4e9a86b6 2346 alignment = intel_linear_alignment(dev_priv);
6b95a207 2347 break;
7b911adc 2348 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2349 if (INTEL_INFO(dev)->gen >= 9)
2350 alignment = 256 * 1024;
2351 else {
2352 /* pin() will align the object as required by fence */
2353 alignment = 0;
2354 }
6b95a207 2355 break;
7b911adc 2356 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2357 case I915_FORMAT_MOD_Yf_TILED:
2358 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2359 "Y tiling bo slipped through, driver bug!\n"))
2360 return -EINVAL;
2361 alignment = 1 * 1024 * 1024;
2362 break;
6b95a207 2363 default:
7b911adc
TU
2364 MISSING_CASE(fb->modifier[0]);
2365 return -EINVAL;
6b95a207
KH
2366 }
2367
75c82a53 2368 intel_fill_fb_ggtt_view(&view, fb, plane_state);
f64b98cd 2369
693db184
CW
2370 /* Note that the w/a also requires 64 PTE of padding following the
2371 * bo. We currently fill all unused PTE with the shadow page and so
2372 * we should always have valid PTE following the scanout preventing
2373 * the VT-d warning.
2374 */
2375 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2376 alignment = 256 * 1024;
2377
d6dd6843
PZ
2378 /*
2379 * Global gtt pte registers are special registers which actually forward
2380 * writes to a chunk of system memory. Which means that there is no risk
2381 * that the register values disappear as soon as we call
2382 * intel_runtime_pm_put(), so it is correct to wrap only the
2383 * pin/unpin/fence and not more.
2384 */
2385 intel_runtime_pm_get(dev_priv);
2386
7580d774
ML
2387 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2388 &view);
48b956c5 2389 if (ret)
b26a6b35 2390 goto err_pm;
6b95a207
KH
2391
2392 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2393 * fence, whereas 965+ only requires a fence if using
2394 * framebuffer compression. For simplicity, we always install
2395 * a fence as the cost is not that onerous.
2396 */
9807216f
VK
2397 if (view.type == I915_GGTT_VIEW_NORMAL) {
2398 ret = i915_gem_object_get_fence(obj);
2399 if (ret == -EDEADLK) {
2400 /*
2401 * -EDEADLK means there are no free fences
2402 * no pending flips.
2403 *
2404 * This is propagated to atomic, but it uses
2405 * -EDEADLK to force a locking recovery, so
2406 * change the returned error to -EBUSY.
2407 */
2408 ret = -EBUSY;
2409 goto err_unpin;
2410 } else if (ret)
2411 goto err_unpin;
1690e1eb 2412
9807216f
VK
2413 i915_gem_object_pin_fence(obj);
2414 }
6b95a207 2415
d6dd6843 2416 intel_runtime_pm_put(dev_priv);
6b95a207 2417 return 0;
48b956c5
CW
2418
2419err_unpin:
f64b98cd 2420 i915_gem_object_unpin_from_display_plane(obj, &view);
b26a6b35 2421err_pm:
d6dd6843 2422 intel_runtime_pm_put(dev_priv);
48b956c5 2423 return ret;
6b95a207
KH
2424}
2425
82bc3b2d
TU
2426static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2427 const struct drm_plane_state *plane_state)
1690e1eb 2428{
82bc3b2d 2429 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2430 struct i915_ggtt_view view;
82bc3b2d 2431
ebcdd39e
MR
2432 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2433
75c82a53 2434 intel_fill_fb_ggtt_view(&view, fb, plane_state);
f64b98cd 2435
9807216f
VK
2436 if (view.type == I915_GGTT_VIEW_NORMAL)
2437 i915_gem_object_unpin_fence(obj);
2438
f64b98cd 2439 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2440}
2441
c2c75131
DV
2442/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2443 * is assumed to be a power-of-two. */
4e9a86b6
VS
2444unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2445 int *x, int *y,
bc752862
CW
2446 unsigned int tiling_mode,
2447 unsigned int cpp,
2448 unsigned int pitch)
c2c75131 2449{
bc752862
CW
2450 if (tiling_mode != I915_TILING_NONE) {
2451 unsigned int tile_rows, tiles;
c2c75131 2452
bc752862
CW
2453 tile_rows = *y / 8;
2454 *y %= 8;
c2c75131 2455
bc752862
CW
2456 tiles = *x / (512/cpp);
2457 *x %= 512/cpp;
2458
2459 return tile_rows * pitch * 8 + tiles * 4096;
2460 } else {
4e9a86b6 2461 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
bc752862
CW
2462 unsigned int offset;
2463
2464 offset = *y * pitch + *x * cpp;
4e9a86b6
VS
2465 *y = (offset & alignment) / pitch;
2466 *x = ((offset & alignment) - *y * pitch) / cpp;
2467 return offset & ~alignment;
bc752862 2468 }
c2c75131
DV
2469}
2470
b35d63fa 2471static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2472{
2473 switch (format) {
2474 case DISPPLANE_8BPP:
2475 return DRM_FORMAT_C8;
2476 case DISPPLANE_BGRX555:
2477 return DRM_FORMAT_XRGB1555;
2478 case DISPPLANE_BGRX565:
2479 return DRM_FORMAT_RGB565;
2480 default:
2481 case DISPPLANE_BGRX888:
2482 return DRM_FORMAT_XRGB8888;
2483 case DISPPLANE_RGBX888:
2484 return DRM_FORMAT_XBGR8888;
2485 case DISPPLANE_BGRX101010:
2486 return DRM_FORMAT_XRGB2101010;
2487 case DISPPLANE_RGBX101010:
2488 return DRM_FORMAT_XBGR2101010;
2489 }
2490}
2491
bc8d7dff
DL
2492static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2493{
2494 switch (format) {
2495 case PLANE_CTL_FORMAT_RGB_565:
2496 return DRM_FORMAT_RGB565;
2497 default:
2498 case PLANE_CTL_FORMAT_XRGB_8888:
2499 if (rgb_order) {
2500 if (alpha)
2501 return DRM_FORMAT_ABGR8888;
2502 else
2503 return DRM_FORMAT_XBGR8888;
2504 } else {
2505 if (alpha)
2506 return DRM_FORMAT_ARGB8888;
2507 else
2508 return DRM_FORMAT_XRGB8888;
2509 }
2510 case PLANE_CTL_FORMAT_XRGB_2101010:
2511 if (rgb_order)
2512 return DRM_FORMAT_XBGR2101010;
2513 else
2514 return DRM_FORMAT_XRGB2101010;
2515 }
2516}
2517
5724dbd1 2518static bool
f6936e29
DV
2519intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2520 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2521{
2522 struct drm_device *dev = crtc->base.dev;
3badb49f 2523 struct drm_i915_private *dev_priv = to_i915(dev);
46f297fb
JB
2524 struct drm_i915_gem_object *obj = NULL;
2525 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2526 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2527 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2528 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2529 PAGE_SIZE);
2530
2531 size_aligned -= base_aligned;
46f297fb 2532
ff2652ea
CW
2533 if (plane_config->size == 0)
2534 return false;
2535
3badb49f
PZ
2536 /* If the FB is too big, just don't use it since fbdev is not very
2537 * important and we should probably use that space with FBC or other
2538 * features. */
2539 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2540 return false;
2541
f37b5c2b
DV
2542 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2543 base_aligned,
2544 base_aligned,
2545 size_aligned);
46f297fb 2546 if (!obj)
484b41dd 2547 return false;
46f297fb 2548
49af449b
DL
2549 obj->tiling_mode = plane_config->tiling;
2550 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2551 obj->stride = fb->pitches[0];
46f297fb 2552
6bf129df
DL
2553 mode_cmd.pixel_format = fb->pixel_format;
2554 mode_cmd.width = fb->width;
2555 mode_cmd.height = fb->height;
2556 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2557 mode_cmd.modifier[0] = fb->modifier[0];
2558 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2559
2560 mutex_lock(&dev->struct_mutex);
6bf129df 2561 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2562 &mode_cmd, obj)) {
46f297fb
JB
2563 DRM_DEBUG_KMS("intel fb init failed\n");
2564 goto out_unref_obj;
2565 }
46f297fb 2566 mutex_unlock(&dev->struct_mutex);
484b41dd 2567
f6936e29 2568 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2569 return true;
46f297fb
JB
2570
2571out_unref_obj:
2572 drm_gem_object_unreference(&obj->base);
2573 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2574 return false;
2575}
2576
afd65eb4
MR
2577/* Update plane->state->fb to match plane->fb after driver-internal updates */
2578static void
2579update_state_fb(struct drm_plane *plane)
2580{
2581 if (plane->fb == plane->state->fb)
2582 return;
2583
2584 if (plane->state->fb)
2585 drm_framebuffer_unreference(plane->state->fb);
2586 plane->state->fb = plane->fb;
2587 if (plane->state->fb)
2588 drm_framebuffer_reference(plane->state->fb);
2589}
2590
5724dbd1 2591static void
f6936e29
DV
2592intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2593 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2594{
2595 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2596 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2597 struct drm_crtc *c;
2598 struct intel_crtc *i;
2ff8fde1 2599 struct drm_i915_gem_object *obj;
88595ac9 2600 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2601 struct drm_plane_state *plane_state = primary->state;
88595ac9 2602 struct drm_framebuffer *fb;
484b41dd 2603
2d14030b 2604 if (!plane_config->fb)
484b41dd
JB
2605 return;
2606
f6936e29 2607 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2608 fb = &plane_config->fb->base;
2609 goto valid_fb;
f55548b5 2610 }
484b41dd 2611
2d14030b 2612 kfree(plane_config->fb);
484b41dd
JB
2613
2614 /*
2615 * Failed to alloc the obj, check to see if we should share
2616 * an fb with another CRTC instead
2617 */
70e1e0ec 2618 for_each_crtc(dev, c) {
484b41dd
JB
2619 i = to_intel_crtc(c);
2620
2621 if (c == &intel_crtc->base)
2622 continue;
2623
2ff8fde1
MR
2624 if (!i->active)
2625 continue;
2626
88595ac9
DV
2627 fb = c->primary->fb;
2628 if (!fb)
484b41dd
JB
2629 continue;
2630
88595ac9 2631 obj = intel_fb_obj(fb);
2ff8fde1 2632 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2633 drm_framebuffer_reference(fb);
2634 goto valid_fb;
484b41dd
JB
2635 }
2636 }
88595ac9
DV
2637
2638 return;
2639
2640valid_fb:
f44e2659
VS
2641 plane_state->src_x = 0;
2642 plane_state->src_y = 0;
be5651f2
ML
2643 plane_state->src_w = fb->width << 16;
2644 plane_state->src_h = fb->height << 16;
2645
f44e2659
VS
2646 plane_state->crtc_x = 0;
2647 plane_state->crtc_y = 0;
be5651f2
ML
2648 plane_state->crtc_w = fb->width;
2649 plane_state->crtc_h = fb->height;
2650
88595ac9
DV
2651 obj = intel_fb_obj(fb);
2652 if (obj->tiling_mode != I915_TILING_NONE)
2653 dev_priv->preserve_bios_swizzle = true;
2654
be5651f2
ML
2655 drm_framebuffer_reference(fb);
2656 primary->fb = primary->state->fb = fb;
36750f28 2657 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2658 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2659 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2660}
2661
29b9bde6
DV
2662static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2663 struct drm_framebuffer *fb,
2664 int x, int y)
81255565
JB
2665{
2666 struct drm_device *dev = crtc->dev;
2667 struct drm_i915_private *dev_priv = dev->dev_private;
2668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2669 struct drm_plane *primary = crtc->primary;
2670 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2671 struct drm_i915_gem_object *obj;
81255565 2672 int plane = intel_crtc->plane;
e506a0c6 2673 unsigned long linear_offset;
81255565 2674 u32 dspcntr;
f0f59a00 2675 i915_reg_t reg = DSPCNTR(plane);
48404c1e 2676 int pixel_size;
f45651ba 2677
b70709a6 2678 if (!visible || !fb) {
fdd508a6
VS
2679 I915_WRITE(reg, 0);
2680 if (INTEL_INFO(dev)->gen >= 4)
2681 I915_WRITE(DSPSURF(plane), 0);
2682 else
2683 I915_WRITE(DSPADDR(plane), 0);
2684 POSTING_READ(reg);
2685 return;
2686 }
2687
c9ba6fad
VS
2688 obj = intel_fb_obj(fb);
2689 if (WARN_ON(obj == NULL))
2690 return;
2691
2692 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2693
f45651ba
VS
2694 dspcntr = DISPPLANE_GAMMA_ENABLE;
2695
fdd508a6 2696 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2697
2698 if (INTEL_INFO(dev)->gen < 4) {
2699 if (intel_crtc->pipe == PIPE_B)
2700 dspcntr |= DISPPLANE_SEL_PIPE_B;
2701
2702 /* pipesrc and dspsize control the size that is scaled from,
2703 * which should always be the user's requested size.
2704 */
2705 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2706 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2707 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2708 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2709 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2710 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2711 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2712 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2713 I915_WRITE(PRIMPOS(plane), 0);
2714 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2715 }
81255565 2716
57779d06
VS
2717 switch (fb->pixel_format) {
2718 case DRM_FORMAT_C8:
81255565
JB
2719 dspcntr |= DISPPLANE_8BPP;
2720 break;
57779d06 2721 case DRM_FORMAT_XRGB1555:
57779d06 2722 dspcntr |= DISPPLANE_BGRX555;
81255565 2723 break;
57779d06
VS
2724 case DRM_FORMAT_RGB565:
2725 dspcntr |= DISPPLANE_BGRX565;
2726 break;
2727 case DRM_FORMAT_XRGB8888:
57779d06
VS
2728 dspcntr |= DISPPLANE_BGRX888;
2729 break;
2730 case DRM_FORMAT_XBGR8888:
57779d06
VS
2731 dspcntr |= DISPPLANE_RGBX888;
2732 break;
2733 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2734 dspcntr |= DISPPLANE_BGRX101010;
2735 break;
2736 case DRM_FORMAT_XBGR2101010:
57779d06 2737 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2738 break;
2739 default:
baba133a 2740 BUG();
81255565 2741 }
57779d06 2742
f45651ba
VS
2743 if (INTEL_INFO(dev)->gen >= 4 &&
2744 obj->tiling_mode != I915_TILING_NONE)
2745 dspcntr |= DISPPLANE_TILED;
81255565 2746
de1aa629
VS
2747 if (IS_G4X(dev))
2748 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2749
b9897127 2750 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2751
c2c75131
DV
2752 if (INTEL_INFO(dev)->gen >= 4) {
2753 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2754 intel_gen4_compute_page_offset(dev_priv,
2755 &x, &y, obj->tiling_mode,
b9897127 2756 pixel_size,
bc752862 2757 fb->pitches[0]);
c2c75131
DV
2758 linear_offset -= intel_crtc->dspaddr_offset;
2759 } else {
e506a0c6 2760 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2761 }
e506a0c6 2762
8e7d688b 2763 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2764 dspcntr |= DISPPLANE_ROTATE_180;
2765
6e3c9717
ACO
2766 x += (intel_crtc->config->pipe_src_w - 1);
2767 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2768
2769 /* Finding the last pixel of the last line of the display
2770 data and adding to linear_offset*/
2771 linear_offset +=
6e3c9717
ACO
2772 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2773 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2774 }
2775
2db3366b
PZ
2776 intel_crtc->adjusted_x = x;
2777 intel_crtc->adjusted_y = y;
2778
48404c1e
SJ
2779 I915_WRITE(reg, dspcntr);
2780
01f2c773 2781 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2782 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2783 I915_WRITE(DSPSURF(plane),
2784 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2785 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2786 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2787 } else
f343c5f6 2788 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2789 POSTING_READ(reg);
17638cd6
JB
2790}
2791
29b9bde6
DV
2792static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2793 struct drm_framebuffer *fb,
2794 int x, int y)
17638cd6
JB
2795{
2796 struct drm_device *dev = crtc->dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2799 struct drm_plane *primary = crtc->primary;
2800 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2801 struct drm_i915_gem_object *obj;
17638cd6 2802 int plane = intel_crtc->plane;
e506a0c6 2803 unsigned long linear_offset;
17638cd6 2804 u32 dspcntr;
f0f59a00 2805 i915_reg_t reg = DSPCNTR(plane);
48404c1e 2806 int pixel_size;
f45651ba 2807
b70709a6 2808 if (!visible || !fb) {
fdd508a6
VS
2809 I915_WRITE(reg, 0);
2810 I915_WRITE(DSPSURF(plane), 0);
2811 POSTING_READ(reg);
2812 return;
2813 }
2814
c9ba6fad
VS
2815 obj = intel_fb_obj(fb);
2816 if (WARN_ON(obj == NULL))
2817 return;
2818
2819 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2820
f45651ba
VS
2821 dspcntr = DISPPLANE_GAMMA_ENABLE;
2822
fdd508a6 2823 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2824
2825 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2826 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2827
57779d06
VS
2828 switch (fb->pixel_format) {
2829 case DRM_FORMAT_C8:
17638cd6
JB
2830 dspcntr |= DISPPLANE_8BPP;
2831 break;
57779d06
VS
2832 case DRM_FORMAT_RGB565:
2833 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2834 break;
57779d06 2835 case DRM_FORMAT_XRGB8888:
57779d06
VS
2836 dspcntr |= DISPPLANE_BGRX888;
2837 break;
2838 case DRM_FORMAT_XBGR8888:
57779d06
VS
2839 dspcntr |= DISPPLANE_RGBX888;
2840 break;
2841 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2842 dspcntr |= DISPPLANE_BGRX101010;
2843 break;
2844 case DRM_FORMAT_XBGR2101010:
57779d06 2845 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2846 break;
2847 default:
baba133a 2848 BUG();
17638cd6
JB
2849 }
2850
2851 if (obj->tiling_mode != I915_TILING_NONE)
2852 dspcntr |= DISPPLANE_TILED;
17638cd6 2853
f45651ba 2854 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2855 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2856
b9897127 2857 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2858 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2859 intel_gen4_compute_page_offset(dev_priv,
2860 &x, &y, obj->tiling_mode,
b9897127 2861 pixel_size,
bc752862 2862 fb->pitches[0]);
c2c75131 2863 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2864 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2865 dspcntr |= DISPPLANE_ROTATE_180;
2866
2867 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2868 x += (intel_crtc->config->pipe_src_w - 1);
2869 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2870
2871 /* Finding the last pixel of the last line of the display
2872 data and adding to linear_offset*/
2873 linear_offset +=
6e3c9717
ACO
2874 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2875 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2876 }
2877 }
2878
2db3366b
PZ
2879 intel_crtc->adjusted_x = x;
2880 intel_crtc->adjusted_y = y;
2881
48404c1e 2882 I915_WRITE(reg, dspcntr);
17638cd6 2883
01f2c773 2884 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2885 I915_WRITE(DSPSURF(plane),
2886 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2887 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2888 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2889 } else {
2890 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2891 I915_WRITE(DSPLINOFF(plane), linear_offset);
2892 }
17638cd6 2893 POSTING_READ(reg);
17638cd6
JB
2894}
2895
b321803d
DL
2896u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2897 uint32_t pixel_format)
2898{
2899 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2900
2901 /*
2902 * The stride is either expressed as a multiple of 64 bytes
2903 * chunks for linear buffers or in number of tiles for tiled
2904 * buffers.
2905 */
2906 switch (fb_modifier) {
2907 case DRM_FORMAT_MOD_NONE:
2908 return 64;
2909 case I915_FORMAT_MOD_X_TILED:
2910 if (INTEL_INFO(dev)->gen == 2)
2911 return 128;
2912 return 512;
2913 case I915_FORMAT_MOD_Y_TILED:
2914 /* No need to check for old gens and Y tiling since this is
2915 * about the display engine and those will be blocked before
2916 * we get here.
2917 */
2918 return 128;
2919 case I915_FORMAT_MOD_Yf_TILED:
2920 if (bits_per_pixel == 8)
2921 return 64;
2922 else
2923 return 128;
2924 default:
2925 MISSING_CASE(fb_modifier);
2926 return 64;
2927 }
2928}
2929
44eb0cb9
MK
2930u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2931 struct drm_i915_gem_object *obj,
2932 unsigned int plane)
121920fa 2933{
ce7f1728 2934 struct i915_ggtt_view view;
dedf278c 2935 struct i915_vma *vma;
44eb0cb9 2936 u64 offset;
121920fa 2937
ce7f1728
DV
2938 intel_fill_fb_ggtt_view(&view, intel_plane->base.fb,
2939 intel_plane->base.state);
121920fa 2940
ce7f1728 2941 vma = i915_gem_obj_to_ggtt_view(obj, &view);
dedf278c 2942 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
ce7f1728 2943 view.type))
dedf278c
TU
2944 return -1;
2945
44eb0cb9 2946 offset = vma->node.start;
dedf278c
TU
2947
2948 if (plane == 1) {
a6d09186 2949 offset += vma->ggtt_view.params.rotation_info.uv_start_page *
dedf278c
TU
2950 PAGE_SIZE;
2951 }
2952
44eb0cb9
MK
2953 WARN_ON(upper_32_bits(offset));
2954
2955 return lower_32_bits(offset);
121920fa
TU
2956}
2957
e435d6e5
ML
2958static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2959{
2960 struct drm_device *dev = intel_crtc->base.dev;
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962
2963 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2964 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2965 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2966}
2967
a1b2278e
CK
2968/*
2969 * This function detaches (aka. unbinds) unused scalers in hardware
2970 */
0583236e 2971static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2972{
a1b2278e
CK
2973 struct intel_crtc_scaler_state *scaler_state;
2974 int i;
2975
a1b2278e
CK
2976 scaler_state = &intel_crtc->config->scaler_state;
2977
2978 /* loop through and disable scalers that aren't in use */
2979 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2980 if (!scaler_state->scalers[i].in_use)
2981 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2982 }
2983}
2984
6156a456 2985u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2986{
6156a456 2987 switch (pixel_format) {
d161cf7a 2988 case DRM_FORMAT_C8:
c34ce3d1 2989 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2990 case DRM_FORMAT_RGB565:
c34ce3d1 2991 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2992 case DRM_FORMAT_XBGR8888:
c34ce3d1 2993 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2994 case DRM_FORMAT_XRGB8888:
c34ce3d1 2995 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2996 /*
2997 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2998 * to be already pre-multiplied. We need to add a knob (or a different
2999 * DRM_FORMAT) for user-space to configure that.
3000 */
f75fb42a 3001 case DRM_FORMAT_ABGR8888:
c34ce3d1 3002 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 3003 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 3004 case DRM_FORMAT_ARGB8888:
c34ce3d1 3005 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 3006 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 3007 case DRM_FORMAT_XRGB2101010:
c34ce3d1 3008 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 3009 case DRM_FORMAT_XBGR2101010:
c34ce3d1 3010 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 3011 case DRM_FORMAT_YUYV:
c34ce3d1 3012 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 3013 case DRM_FORMAT_YVYU:
c34ce3d1 3014 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 3015 case DRM_FORMAT_UYVY:
c34ce3d1 3016 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 3017 case DRM_FORMAT_VYUY:
c34ce3d1 3018 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 3019 default:
4249eeef 3020 MISSING_CASE(pixel_format);
70d21f0e 3021 }
8cfcba41 3022
c34ce3d1 3023 return 0;
6156a456 3024}
70d21f0e 3025
6156a456
CK
3026u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3027{
6156a456 3028 switch (fb_modifier) {
30af77c4 3029 case DRM_FORMAT_MOD_NONE:
70d21f0e 3030 break;
30af77c4 3031 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 3032 return PLANE_CTL_TILED_X;
b321803d 3033 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 3034 return PLANE_CTL_TILED_Y;
b321803d 3035 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 3036 return PLANE_CTL_TILED_YF;
70d21f0e 3037 default:
6156a456 3038 MISSING_CASE(fb_modifier);
70d21f0e 3039 }
8cfcba41 3040
c34ce3d1 3041 return 0;
6156a456 3042}
70d21f0e 3043
6156a456
CK
3044u32 skl_plane_ctl_rotation(unsigned int rotation)
3045{
3b7a5119 3046 switch (rotation) {
6156a456
CK
3047 case BIT(DRM_ROTATE_0):
3048 break;
1e8df167
SJ
3049 /*
3050 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3051 * while i915 HW rotation is clockwise, thats why this swapping.
3052 */
3b7a5119 3053 case BIT(DRM_ROTATE_90):
1e8df167 3054 return PLANE_CTL_ROTATE_270;
3b7a5119 3055 case BIT(DRM_ROTATE_180):
c34ce3d1 3056 return PLANE_CTL_ROTATE_180;
3b7a5119 3057 case BIT(DRM_ROTATE_270):
1e8df167 3058 return PLANE_CTL_ROTATE_90;
6156a456
CK
3059 default:
3060 MISSING_CASE(rotation);
3061 }
3062
c34ce3d1 3063 return 0;
6156a456
CK
3064}
3065
3066static void skylake_update_primary_plane(struct drm_crtc *crtc,
3067 struct drm_framebuffer *fb,
3068 int x, int y)
3069{
3070 struct drm_device *dev = crtc->dev;
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
3073 struct drm_plane *plane = crtc->primary;
3074 bool visible = to_intel_plane_state(plane->state)->visible;
6156a456
CK
3075 struct drm_i915_gem_object *obj;
3076 int pipe = intel_crtc->pipe;
3077 u32 plane_ctl, stride_div, stride;
3078 u32 tile_height, plane_offset, plane_size;
3079 unsigned int rotation;
3080 int x_offset, y_offset;
44eb0cb9 3081 u32 surf_addr;
6156a456
CK
3082 struct intel_crtc_state *crtc_state = intel_crtc->config;
3083 struct intel_plane_state *plane_state;
3084 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3085 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3086 int scaler_id = -1;
3087
6156a456
CK
3088 plane_state = to_intel_plane_state(plane->state);
3089
b70709a6 3090 if (!visible || !fb) {
6156a456
CK
3091 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3092 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3093 POSTING_READ(PLANE_CTL(pipe, 0));
3094 return;
3b7a5119 3095 }
70d21f0e 3096
6156a456
CK
3097 plane_ctl = PLANE_CTL_ENABLE |
3098 PLANE_CTL_PIPE_GAMMA_ENABLE |
3099 PLANE_CTL_PIPE_CSC_ENABLE;
3100
3101 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3102 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3103 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3104
3105 rotation = plane->state->rotation;
3106 plane_ctl |= skl_plane_ctl_rotation(rotation);
3107
b321803d
DL
3108 obj = intel_fb_obj(fb);
3109 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3110 fb->pixel_format);
dedf278c 3111 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3112
a42e5a23
PZ
3113 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3114
3115 scaler_id = plane_state->scaler_id;
3116 src_x = plane_state->src.x1 >> 16;
3117 src_y = plane_state->src.y1 >> 16;
3118 src_w = drm_rect_width(&plane_state->src) >> 16;
3119 src_h = drm_rect_height(&plane_state->src) >> 16;
3120 dst_x = plane_state->dst.x1;
3121 dst_y = plane_state->dst.y1;
3122 dst_w = drm_rect_width(&plane_state->dst);
3123 dst_h = drm_rect_height(&plane_state->dst);
3124
3125 WARN_ON(x != src_x || y != src_y);
6156a456 3126
3b7a5119
SJ
3127 if (intel_rotation_90_or_270(rotation)) {
3128 /* stride = Surface height in tiles */
2614f17d 3129 tile_height = intel_tile_height(dev, fb->pixel_format,
fe47ea0c 3130 fb->modifier[0], 0);
3b7a5119 3131 stride = DIV_ROUND_UP(fb->height, tile_height);
6156a456 3132 x_offset = stride * tile_height - y - src_h;
3b7a5119 3133 y_offset = x;
6156a456 3134 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3135 } else {
3136 stride = fb->pitches[0] / stride_div;
3137 x_offset = x;
3138 y_offset = y;
6156a456 3139 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3140 }
3141 plane_offset = y_offset << 16 | x_offset;
b321803d 3142
2db3366b
PZ
3143 intel_crtc->adjusted_x = x_offset;
3144 intel_crtc->adjusted_y = y_offset;
3145
70d21f0e 3146 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3147 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3148 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3149 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3150
3151 if (scaler_id >= 0) {
3152 uint32_t ps_ctrl = 0;
3153
3154 WARN_ON(!dst_w || !dst_h);
3155 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3156 crtc_state->scaler_state.scalers[scaler_id].mode;
3157 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3158 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3159 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3160 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3161 I915_WRITE(PLANE_POS(pipe, 0), 0);
3162 } else {
3163 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3164 }
3165
121920fa 3166 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3167
3168 POSTING_READ(PLANE_SURF(pipe, 0));
3169}
3170
17638cd6
JB
3171/* Assume fb object is pinned & idle & fenced and just update base pointers */
3172static int
3173intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3174 int x, int y, enum mode_set_atomic state)
3175{
3176 struct drm_device *dev = crtc->dev;
3177 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3178
0e631adc
PZ
3179 if (dev_priv->fbc.deactivate)
3180 dev_priv->fbc.deactivate(dev_priv);
81255565 3181
29b9bde6
DV
3182 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3183
3184 return 0;
81255565
JB
3185}
3186
7514747d 3187static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3188{
96a02917
VS
3189 struct drm_crtc *crtc;
3190
70e1e0ec 3191 for_each_crtc(dev, crtc) {
96a02917
VS
3192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3193 enum plane plane = intel_crtc->plane;
3194
3195 intel_prepare_page_flip(dev, plane);
3196 intel_finish_page_flip_plane(dev, plane);
3197 }
7514747d
VS
3198}
3199
3200static void intel_update_primary_planes(struct drm_device *dev)
3201{
7514747d 3202 struct drm_crtc *crtc;
96a02917 3203
70e1e0ec 3204 for_each_crtc(dev, crtc) {
11c22da6
ML
3205 struct intel_plane *plane = to_intel_plane(crtc->primary);
3206 struct intel_plane_state *plane_state;
96a02917 3207
11c22da6 3208 drm_modeset_lock_crtc(crtc, &plane->base);
11c22da6
ML
3209 plane_state = to_intel_plane_state(plane->base.state);
3210
f029ee82 3211 if (crtc->state->active && plane_state->base.fb)
11c22da6
ML
3212 plane->commit_plane(&plane->base, plane_state);
3213
3214 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3215 }
3216}
3217
7514747d
VS
3218void intel_prepare_reset(struct drm_device *dev)
3219{
3220 /* no reset support for gen2 */
3221 if (IS_GEN2(dev))
3222 return;
3223
3224 /* reset doesn't touch the display */
3225 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3226 return;
3227
3228 drm_modeset_lock_all(dev);
f98ce92f
VS
3229 /*
3230 * Disabling the crtcs gracefully seems nicer. Also the
3231 * g33 docs say we should at least disable all the planes.
3232 */
6b72d486 3233 intel_display_suspend(dev);
7514747d
VS
3234}
3235
3236void intel_finish_reset(struct drm_device *dev)
3237{
3238 struct drm_i915_private *dev_priv = to_i915(dev);
3239
3240 /*
3241 * Flips in the rings will be nuked by the reset,
3242 * so complete all pending flips so that user space
3243 * will get its events and not get stuck.
3244 */
3245 intel_complete_page_flips(dev);
3246
3247 /* no reset support for gen2 */
3248 if (IS_GEN2(dev))
3249 return;
3250
3251 /* reset doesn't touch the display */
3252 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3253 /*
3254 * Flips in the rings have been nuked by the reset,
3255 * so update the base address of all primary
3256 * planes to the the last fb to make sure we're
3257 * showing the correct fb after a reset.
11c22da6
ML
3258 *
3259 * FIXME: Atomic will make this obsolete since we won't schedule
3260 * CS-based flips (which might get lost in gpu resets) any more.
7514747d
VS
3261 */
3262 intel_update_primary_planes(dev);
3263 return;
3264 }
3265
3266 /*
3267 * The display has been reset as well,
3268 * so need a full re-initialization.
3269 */
3270 intel_runtime_pm_disable_interrupts(dev_priv);
3271 intel_runtime_pm_enable_interrupts(dev_priv);
3272
3273 intel_modeset_init_hw(dev);
3274
3275 spin_lock_irq(&dev_priv->irq_lock);
3276 if (dev_priv->display.hpd_irq_setup)
3277 dev_priv->display.hpd_irq_setup(dev);
3278 spin_unlock_irq(&dev_priv->irq_lock);
3279
043e9bda 3280 intel_display_resume(dev);
7514747d
VS
3281
3282 intel_hpd_init(dev_priv);
3283
3284 drm_modeset_unlock_all(dev);
3285}
3286
7d5e3799
CW
3287static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3288{
3289 struct drm_device *dev = crtc->dev;
3290 struct drm_i915_private *dev_priv = dev->dev_private;
3291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3292 bool pending;
3293
3294 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3295 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3296 return false;
3297
5e2d7afc 3298 spin_lock_irq(&dev->event_lock);
7d5e3799 3299 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3300 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3301
3302 return pending;
3303}
3304
bfd16b2a
ML
3305static void intel_update_pipe_config(struct intel_crtc *crtc,
3306 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3307{
3308 struct drm_device *dev = crtc->base.dev;
3309 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3310 struct intel_crtc_state *pipe_config =
3311 to_intel_crtc_state(crtc->base.state);
e30e8f75 3312
bfd16b2a
ML
3313 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3314 crtc->base.mode = crtc->base.state->mode;
3315
3316 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3317 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3318 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75 3319
44522d85
ML
3320 if (HAS_DDI(dev))
3321 intel_set_pipe_csc(&crtc->base);
3322
e30e8f75
GP
3323 /*
3324 * Update pipe size and adjust fitter if needed: the reason for this is
3325 * that in compute_mode_changes we check the native mode (not the pfit
3326 * mode) to see if we can flip rather than do a full mode set. In the
3327 * fastboot case, we'll flip, but if we don't update the pipesrc and
3328 * pfit state, we'll end up with a big fb scanned out into the wrong
3329 * sized surface.
e30e8f75
GP
3330 */
3331
e30e8f75 3332 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3333 ((pipe_config->pipe_src_w - 1) << 16) |
3334 (pipe_config->pipe_src_h - 1));
3335
3336 /* on skylake this is done by detaching scalers */
3337 if (INTEL_INFO(dev)->gen >= 9) {
3338 skl_detach_scalers(crtc);
3339
3340 if (pipe_config->pch_pfit.enabled)
3341 skylake_pfit_enable(crtc);
3342 } else if (HAS_PCH_SPLIT(dev)) {
3343 if (pipe_config->pch_pfit.enabled)
3344 ironlake_pfit_enable(crtc);
3345 else if (old_crtc_state->pch_pfit.enabled)
3346 ironlake_pfit_disable(crtc, true);
e30e8f75 3347 }
e30e8f75
GP
3348}
3349
5e84e1a4
ZW
3350static void intel_fdi_normal_train(struct drm_crtc *crtc)
3351{
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3355 int pipe = intel_crtc->pipe;
f0f59a00
VS
3356 i915_reg_t reg;
3357 u32 temp;
5e84e1a4
ZW
3358
3359 /* enable normal train */
3360 reg = FDI_TX_CTL(pipe);
3361 temp = I915_READ(reg);
61e499bf 3362 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3363 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3364 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3365 } else {
3366 temp &= ~FDI_LINK_TRAIN_NONE;
3367 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3368 }
5e84e1a4
ZW
3369 I915_WRITE(reg, temp);
3370
3371 reg = FDI_RX_CTL(pipe);
3372 temp = I915_READ(reg);
3373 if (HAS_PCH_CPT(dev)) {
3374 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3375 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3376 } else {
3377 temp &= ~FDI_LINK_TRAIN_NONE;
3378 temp |= FDI_LINK_TRAIN_NONE;
3379 }
3380 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3381
3382 /* wait one idle pattern time */
3383 POSTING_READ(reg);
3384 udelay(1000);
357555c0
JB
3385
3386 /* IVB wants error correction enabled */
3387 if (IS_IVYBRIDGE(dev))
3388 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3389 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3390}
3391
8db9d77b
ZW
3392/* The FDI link training functions for ILK/Ibexpeak. */
3393static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3394{
3395 struct drm_device *dev = crtc->dev;
3396 struct drm_i915_private *dev_priv = dev->dev_private;
3397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3398 int pipe = intel_crtc->pipe;
f0f59a00
VS
3399 i915_reg_t reg;
3400 u32 temp, tries;
8db9d77b 3401
1c8562f6 3402 /* FDI needs bits from pipe first */
0fc932b8 3403 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3404
e1a44743
AJ
3405 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3406 for train result */
5eddb70b
CW
3407 reg = FDI_RX_IMR(pipe);
3408 temp = I915_READ(reg);
e1a44743
AJ
3409 temp &= ~FDI_RX_SYMBOL_LOCK;
3410 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3411 I915_WRITE(reg, temp);
3412 I915_READ(reg);
e1a44743
AJ
3413 udelay(150);
3414
8db9d77b 3415 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3416 reg = FDI_TX_CTL(pipe);
3417 temp = I915_READ(reg);
627eb5a3 3418 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3419 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3420 temp &= ~FDI_LINK_TRAIN_NONE;
3421 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3422 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3423
5eddb70b
CW
3424 reg = FDI_RX_CTL(pipe);
3425 temp = I915_READ(reg);
8db9d77b
ZW
3426 temp &= ~FDI_LINK_TRAIN_NONE;
3427 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3428 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3429
3430 POSTING_READ(reg);
8db9d77b
ZW
3431 udelay(150);
3432
5b2adf89 3433 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3434 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3435 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3436 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3437
5eddb70b 3438 reg = FDI_RX_IIR(pipe);
e1a44743 3439 for (tries = 0; tries < 5; tries++) {
5eddb70b 3440 temp = I915_READ(reg);
8db9d77b
ZW
3441 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3442
3443 if ((temp & FDI_RX_BIT_LOCK)) {
3444 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3445 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3446 break;
3447 }
8db9d77b 3448 }
e1a44743 3449 if (tries == 5)
5eddb70b 3450 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3451
3452 /* Train 2 */
5eddb70b
CW
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
8db9d77b
ZW
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3457 I915_WRITE(reg, temp);
8db9d77b 3458
5eddb70b
CW
3459 reg = FDI_RX_CTL(pipe);
3460 temp = I915_READ(reg);
8db9d77b
ZW
3461 temp &= ~FDI_LINK_TRAIN_NONE;
3462 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3463 I915_WRITE(reg, temp);
8db9d77b 3464
5eddb70b
CW
3465 POSTING_READ(reg);
3466 udelay(150);
8db9d77b 3467
5eddb70b 3468 reg = FDI_RX_IIR(pipe);
e1a44743 3469 for (tries = 0; tries < 5; tries++) {
5eddb70b 3470 temp = I915_READ(reg);
8db9d77b
ZW
3471 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3472
3473 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3474 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3475 DRM_DEBUG_KMS("FDI train 2 done.\n");
3476 break;
3477 }
8db9d77b 3478 }
e1a44743 3479 if (tries == 5)
5eddb70b 3480 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3481
3482 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3483
8db9d77b
ZW
3484}
3485
0206e353 3486static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3487 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3488 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3489 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3490 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3491};
3492
3493/* The FDI link training functions for SNB/Cougarpoint. */
3494static void gen6_fdi_link_train(struct drm_crtc *crtc)
3495{
3496 struct drm_device *dev = crtc->dev;
3497 struct drm_i915_private *dev_priv = dev->dev_private;
3498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3499 int pipe = intel_crtc->pipe;
f0f59a00
VS
3500 i915_reg_t reg;
3501 u32 temp, i, retry;
8db9d77b 3502
e1a44743
AJ
3503 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3504 for train result */
5eddb70b
CW
3505 reg = FDI_RX_IMR(pipe);
3506 temp = I915_READ(reg);
e1a44743
AJ
3507 temp &= ~FDI_RX_SYMBOL_LOCK;
3508 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3509 I915_WRITE(reg, temp);
3510
3511 POSTING_READ(reg);
e1a44743
AJ
3512 udelay(150);
3513
8db9d77b 3514 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3515 reg = FDI_TX_CTL(pipe);
3516 temp = I915_READ(reg);
627eb5a3 3517 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3518 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3519 temp &= ~FDI_LINK_TRAIN_NONE;
3520 temp |= FDI_LINK_TRAIN_PATTERN_1;
3521 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3522 /* SNB-B */
3523 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3524 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3525
d74cf324
DV
3526 I915_WRITE(FDI_RX_MISC(pipe),
3527 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3528
5eddb70b
CW
3529 reg = FDI_RX_CTL(pipe);
3530 temp = I915_READ(reg);
8db9d77b
ZW
3531 if (HAS_PCH_CPT(dev)) {
3532 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3533 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3534 } else {
3535 temp &= ~FDI_LINK_TRAIN_NONE;
3536 temp |= FDI_LINK_TRAIN_PATTERN_1;
3537 }
5eddb70b
CW
3538 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3539
3540 POSTING_READ(reg);
8db9d77b
ZW
3541 udelay(150);
3542
0206e353 3543 for (i = 0; i < 4; i++) {
5eddb70b
CW
3544 reg = FDI_TX_CTL(pipe);
3545 temp = I915_READ(reg);
8db9d77b
ZW
3546 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3547 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3548 I915_WRITE(reg, temp);
3549
3550 POSTING_READ(reg);
8db9d77b
ZW
3551 udelay(500);
3552
fa37d39e
SP
3553 for (retry = 0; retry < 5; retry++) {
3554 reg = FDI_RX_IIR(pipe);
3555 temp = I915_READ(reg);
3556 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3557 if (temp & FDI_RX_BIT_LOCK) {
3558 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3559 DRM_DEBUG_KMS("FDI train 1 done.\n");
3560 break;
3561 }
3562 udelay(50);
8db9d77b 3563 }
fa37d39e
SP
3564 if (retry < 5)
3565 break;
8db9d77b
ZW
3566 }
3567 if (i == 4)
5eddb70b 3568 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3569
3570 /* Train 2 */
5eddb70b
CW
3571 reg = FDI_TX_CTL(pipe);
3572 temp = I915_READ(reg);
8db9d77b
ZW
3573 temp &= ~FDI_LINK_TRAIN_NONE;
3574 temp |= FDI_LINK_TRAIN_PATTERN_2;
3575 if (IS_GEN6(dev)) {
3576 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3577 /* SNB-B */
3578 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3579 }
5eddb70b 3580 I915_WRITE(reg, temp);
8db9d77b 3581
5eddb70b
CW
3582 reg = FDI_RX_CTL(pipe);
3583 temp = I915_READ(reg);
8db9d77b
ZW
3584 if (HAS_PCH_CPT(dev)) {
3585 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3586 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3587 } else {
3588 temp &= ~FDI_LINK_TRAIN_NONE;
3589 temp |= FDI_LINK_TRAIN_PATTERN_2;
3590 }
5eddb70b
CW
3591 I915_WRITE(reg, temp);
3592
3593 POSTING_READ(reg);
8db9d77b
ZW
3594 udelay(150);
3595
0206e353 3596 for (i = 0; i < 4; i++) {
5eddb70b
CW
3597 reg = FDI_TX_CTL(pipe);
3598 temp = I915_READ(reg);
8db9d77b
ZW
3599 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3600 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3601 I915_WRITE(reg, temp);
3602
3603 POSTING_READ(reg);
8db9d77b
ZW
3604 udelay(500);
3605
fa37d39e
SP
3606 for (retry = 0; retry < 5; retry++) {
3607 reg = FDI_RX_IIR(pipe);
3608 temp = I915_READ(reg);
3609 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3610 if (temp & FDI_RX_SYMBOL_LOCK) {
3611 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3612 DRM_DEBUG_KMS("FDI train 2 done.\n");
3613 break;
3614 }
3615 udelay(50);
8db9d77b 3616 }
fa37d39e
SP
3617 if (retry < 5)
3618 break;
8db9d77b
ZW
3619 }
3620 if (i == 4)
5eddb70b 3621 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3622
3623 DRM_DEBUG_KMS("FDI train done.\n");
3624}
3625
357555c0
JB
3626/* Manual link training for Ivy Bridge A0 parts */
3627static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3628{
3629 struct drm_device *dev = crtc->dev;
3630 struct drm_i915_private *dev_priv = dev->dev_private;
3631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3632 int pipe = intel_crtc->pipe;
f0f59a00
VS
3633 i915_reg_t reg;
3634 u32 temp, i, j;
357555c0
JB
3635
3636 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3637 for train result */
3638 reg = FDI_RX_IMR(pipe);
3639 temp = I915_READ(reg);
3640 temp &= ~FDI_RX_SYMBOL_LOCK;
3641 temp &= ~FDI_RX_BIT_LOCK;
3642 I915_WRITE(reg, temp);
3643
3644 POSTING_READ(reg);
3645 udelay(150);
3646
01a415fd
DV
3647 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3648 I915_READ(FDI_RX_IIR(pipe)));
3649
139ccd3f
JB
3650 /* Try each vswing and preemphasis setting twice before moving on */
3651 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3652 /* disable first in case we need to retry */
3653 reg = FDI_TX_CTL(pipe);
3654 temp = I915_READ(reg);
3655 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3656 temp &= ~FDI_TX_ENABLE;
3657 I915_WRITE(reg, temp);
357555c0 3658
139ccd3f
JB
3659 reg = FDI_RX_CTL(pipe);
3660 temp = I915_READ(reg);
3661 temp &= ~FDI_LINK_TRAIN_AUTO;
3662 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3663 temp &= ~FDI_RX_ENABLE;
3664 I915_WRITE(reg, temp);
357555c0 3665
139ccd3f 3666 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3667 reg = FDI_TX_CTL(pipe);
3668 temp = I915_READ(reg);
139ccd3f 3669 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3670 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3671 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3672 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3673 temp |= snb_b_fdi_train_param[j/2];
3674 temp |= FDI_COMPOSITE_SYNC;
3675 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3676
139ccd3f
JB
3677 I915_WRITE(FDI_RX_MISC(pipe),
3678 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3679
139ccd3f 3680 reg = FDI_RX_CTL(pipe);
357555c0 3681 temp = I915_READ(reg);
139ccd3f
JB
3682 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3683 temp |= FDI_COMPOSITE_SYNC;
3684 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3685
139ccd3f
JB
3686 POSTING_READ(reg);
3687 udelay(1); /* should be 0.5us */
357555c0 3688
139ccd3f
JB
3689 for (i = 0; i < 4; i++) {
3690 reg = FDI_RX_IIR(pipe);
3691 temp = I915_READ(reg);
3692 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3693
139ccd3f
JB
3694 if (temp & FDI_RX_BIT_LOCK ||
3695 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3696 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3697 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3698 i);
3699 break;
3700 }
3701 udelay(1); /* should be 0.5us */
3702 }
3703 if (i == 4) {
3704 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3705 continue;
3706 }
357555c0 3707
139ccd3f 3708 /* Train 2 */
357555c0
JB
3709 reg = FDI_TX_CTL(pipe);
3710 temp = I915_READ(reg);
139ccd3f
JB
3711 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3712 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3713 I915_WRITE(reg, temp);
3714
3715 reg = FDI_RX_CTL(pipe);
3716 temp = I915_READ(reg);
3717 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3718 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3719 I915_WRITE(reg, temp);
3720
3721 POSTING_READ(reg);
139ccd3f 3722 udelay(2); /* should be 1.5us */
357555c0 3723
139ccd3f
JB
3724 for (i = 0; i < 4; i++) {
3725 reg = FDI_RX_IIR(pipe);
3726 temp = I915_READ(reg);
3727 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3728
139ccd3f
JB
3729 if (temp & FDI_RX_SYMBOL_LOCK ||
3730 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3731 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3732 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3733 i);
3734 goto train_done;
3735 }
3736 udelay(2); /* should be 1.5us */
357555c0 3737 }
139ccd3f
JB
3738 if (i == 4)
3739 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3740 }
357555c0 3741
139ccd3f 3742train_done:
357555c0
JB
3743 DRM_DEBUG_KMS("FDI train done.\n");
3744}
3745
88cefb6c 3746static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3747{
88cefb6c 3748 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3749 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3750 int pipe = intel_crtc->pipe;
f0f59a00
VS
3751 i915_reg_t reg;
3752 u32 temp;
c64e311e 3753
c98e9dcf 3754 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3755 reg = FDI_RX_CTL(pipe);
3756 temp = I915_READ(reg);
627eb5a3 3757 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3758 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3759 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3760 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3761
3762 POSTING_READ(reg);
c98e9dcf
JB
3763 udelay(200);
3764
3765 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3766 temp = I915_READ(reg);
3767 I915_WRITE(reg, temp | FDI_PCDCLK);
3768
3769 POSTING_READ(reg);
c98e9dcf
JB
3770 udelay(200);
3771
20749730
PZ
3772 /* Enable CPU FDI TX PLL, always on for Ironlake */
3773 reg = FDI_TX_CTL(pipe);
3774 temp = I915_READ(reg);
3775 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3776 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3777
20749730
PZ
3778 POSTING_READ(reg);
3779 udelay(100);
6be4a607 3780 }
0e23b99d
JB
3781}
3782
88cefb6c
DV
3783static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3784{
3785 struct drm_device *dev = intel_crtc->base.dev;
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787 int pipe = intel_crtc->pipe;
f0f59a00
VS
3788 i915_reg_t reg;
3789 u32 temp;
88cefb6c
DV
3790
3791 /* Switch from PCDclk to Rawclk */
3792 reg = FDI_RX_CTL(pipe);
3793 temp = I915_READ(reg);
3794 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3795
3796 /* Disable CPU FDI TX PLL */
3797 reg = FDI_TX_CTL(pipe);
3798 temp = I915_READ(reg);
3799 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3800
3801 POSTING_READ(reg);
3802 udelay(100);
3803
3804 reg = FDI_RX_CTL(pipe);
3805 temp = I915_READ(reg);
3806 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3807
3808 /* Wait for the clocks to turn off. */
3809 POSTING_READ(reg);
3810 udelay(100);
3811}
3812
0fc932b8
JB
3813static void ironlake_fdi_disable(struct drm_crtc *crtc)
3814{
3815 struct drm_device *dev = crtc->dev;
3816 struct drm_i915_private *dev_priv = dev->dev_private;
3817 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3818 int pipe = intel_crtc->pipe;
f0f59a00
VS
3819 i915_reg_t reg;
3820 u32 temp;
0fc932b8
JB
3821
3822 /* disable CPU FDI tx and PCH FDI rx */
3823 reg = FDI_TX_CTL(pipe);
3824 temp = I915_READ(reg);
3825 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3826 POSTING_READ(reg);
3827
3828 reg = FDI_RX_CTL(pipe);
3829 temp = I915_READ(reg);
3830 temp &= ~(0x7 << 16);
dfd07d72 3831 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3832 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3833
3834 POSTING_READ(reg);
3835 udelay(100);
3836
3837 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3838 if (HAS_PCH_IBX(dev))
6f06ce18 3839 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3840
3841 /* still set train pattern 1 */
3842 reg = FDI_TX_CTL(pipe);
3843 temp = I915_READ(reg);
3844 temp &= ~FDI_LINK_TRAIN_NONE;
3845 temp |= FDI_LINK_TRAIN_PATTERN_1;
3846 I915_WRITE(reg, temp);
3847
3848 reg = FDI_RX_CTL(pipe);
3849 temp = I915_READ(reg);
3850 if (HAS_PCH_CPT(dev)) {
3851 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3852 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3853 } else {
3854 temp &= ~FDI_LINK_TRAIN_NONE;
3855 temp |= FDI_LINK_TRAIN_PATTERN_1;
3856 }
3857 /* BPC in FDI rx is consistent with that in PIPECONF */
3858 temp &= ~(0x07 << 16);
dfd07d72 3859 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3860 I915_WRITE(reg, temp);
3861
3862 POSTING_READ(reg);
3863 udelay(100);
3864}
3865
5dce5b93
CW
3866bool intel_has_pending_fb_unpin(struct drm_device *dev)
3867{
3868 struct intel_crtc *crtc;
3869
3870 /* Note that we don't need to be called with mode_config.lock here
3871 * as our list of CRTC objects is static for the lifetime of the
3872 * device and so cannot disappear as we iterate. Similarly, we can
3873 * happily treat the predicates as racy, atomic checks as userspace
3874 * cannot claim and pin a new fb without at least acquring the
3875 * struct_mutex and so serialising with us.
3876 */
d3fcc808 3877 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3878 if (atomic_read(&crtc->unpin_work_count) == 0)
3879 continue;
3880
3881 if (crtc->unpin_work)
3882 intel_wait_for_vblank(dev, crtc->pipe);
3883
3884 return true;
3885 }
3886
3887 return false;
3888}
3889
d6bbafa1
CW
3890static void page_flip_completed(struct intel_crtc *intel_crtc)
3891{
3892 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3893 struct intel_unpin_work *work = intel_crtc->unpin_work;
3894
3895 /* ensure that the unpin work is consistent wrt ->pending. */
3896 smp_rmb();
3897 intel_crtc->unpin_work = NULL;
3898
3899 if (work->event)
3900 drm_send_vblank_event(intel_crtc->base.dev,
3901 intel_crtc->pipe,
3902 work->event);
3903
3904 drm_crtc_vblank_put(&intel_crtc->base);
3905
3906 wake_up_all(&dev_priv->pending_flip_queue);
3907 queue_work(dev_priv->wq, &work->work);
3908
3909 trace_i915_flip_complete(intel_crtc->plane,
3910 work->pending_flip_obj);
3911}
3912
5008e874 3913static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3914{
0f91128d 3915 struct drm_device *dev = crtc->dev;
5bb61643 3916 struct drm_i915_private *dev_priv = dev->dev_private;
5008e874 3917 long ret;
e6c3a2a6 3918
2c10d571 3919 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
3920
3921 ret = wait_event_interruptible_timeout(
3922 dev_priv->pending_flip_queue,
3923 !intel_crtc_has_pending_flip(crtc),
3924 60*HZ);
3925
3926 if (ret < 0)
3927 return ret;
3928
3929 if (ret == 0) {
9c787942 3930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3931
5e2d7afc 3932 spin_lock_irq(&dev->event_lock);
9c787942
CW
3933 if (intel_crtc->unpin_work) {
3934 WARN_ONCE(1, "Removing stuck page flip\n");
3935 page_flip_completed(intel_crtc);
3936 }
5e2d7afc 3937 spin_unlock_irq(&dev->event_lock);
9c787942 3938 }
5bb61643 3939
5008e874 3940 return 0;
e6c3a2a6
CW
3941}
3942
e615efe4
ED
3943/* Program iCLKIP clock to the desired frequency */
3944static void lpt_program_iclkip(struct drm_crtc *crtc)
3945{
3946 struct drm_device *dev = crtc->dev;
3947 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3948 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3949 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3950 u32 temp;
3951
a580516d 3952 mutex_lock(&dev_priv->sb_lock);
09153000 3953
e615efe4
ED
3954 /* It is necessary to ungate the pixclk gate prior to programming
3955 * the divisors, and gate it back when it is done.
3956 */
3957 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3958
3959 /* Disable SSCCTL */
3960 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3961 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3962 SBI_SSCCTL_DISABLE,
3963 SBI_ICLK);
e615efe4
ED
3964
3965 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3966 if (clock == 20000) {
e615efe4
ED
3967 auxdiv = 1;
3968 divsel = 0x41;
3969 phaseinc = 0x20;
3970 } else {
3971 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3972 * but the adjusted_mode->crtc_clock in in KHz. To get the
3973 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3974 * convert the virtual clock precision to KHz here for higher
3975 * precision.
3976 */
3977 u32 iclk_virtual_root_freq = 172800 * 1000;
3978 u32 iclk_pi_range = 64;
3979 u32 desired_divisor, msb_divisor_value, pi_value;
3980
12d7ceed 3981 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3982 msb_divisor_value = desired_divisor / iclk_pi_range;
3983 pi_value = desired_divisor % iclk_pi_range;
3984
3985 auxdiv = 0;
3986 divsel = msb_divisor_value - 2;
3987 phaseinc = pi_value;
3988 }
3989
3990 /* This should not happen with any sane values */
3991 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3992 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3993 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3994 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3995
3996 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3997 clock,
e615efe4
ED
3998 auxdiv,
3999 divsel,
4000 phasedir,
4001 phaseinc);
4002
4003 /* Program SSCDIVINTPHASE6 */
988d6ee8 4004 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
4005 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4006 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4007 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4008 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4009 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4010 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 4011 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
4012
4013 /* Program SSCAUXDIV */
988d6ee8 4014 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
4015 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4016 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 4017 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
4018
4019 /* Enable modulator and associated divider */
988d6ee8 4020 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 4021 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4022 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
4023
4024 /* Wait for initialization time */
4025 udelay(24);
4026
4027 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000 4028
a580516d 4029 mutex_unlock(&dev_priv->sb_lock);
e615efe4
ED
4030}
4031
275f01b2
DV
4032static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4033 enum pipe pch_transcoder)
4034{
4035 struct drm_device *dev = crtc->base.dev;
4036 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4037 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4038
4039 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4040 I915_READ(HTOTAL(cpu_transcoder)));
4041 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4042 I915_READ(HBLANK(cpu_transcoder)));
4043 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4044 I915_READ(HSYNC(cpu_transcoder)));
4045
4046 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4047 I915_READ(VTOTAL(cpu_transcoder)));
4048 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4049 I915_READ(VBLANK(cpu_transcoder)));
4050 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4051 I915_READ(VSYNC(cpu_transcoder)));
4052 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4053 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4054}
4055
003632d9 4056static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4057{
4058 struct drm_i915_private *dev_priv = dev->dev_private;
4059 uint32_t temp;
4060
4061 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4062 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4063 return;
4064
4065 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4066 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4067
003632d9
ACO
4068 temp &= ~FDI_BC_BIFURCATION_SELECT;
4069 if (enable)
4070 temp |= FDI_BC_BIFURCATION_SELECT;
4071
4072 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4073 I915_WRITE(SOUTH_CHICKEN1, temp);
4074 POSTING_READ(SOUTH_CHICKEN1);
4075}
4076
4077static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4078{
4079 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4080
4081 switch (intel_crtc->pipe) {
4082 case PIPE_A:
4083 break;
4084 case PIPE_B:
6e3c9717 4085 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4086 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4087 else
003632d9 4088 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4089
4090 break;
4091 case PIPE_C:
003632d9 4092 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4093
4094 break;
4095 default:
4096 BUG();
4097 }
4098}
4099
c48b5305
VS
4100/* Return which DP Port should be selected for Transcoder DP control */
4101static enum port
4102intel_trans_dp_port_sel(struct drm_crtc *crtc)
4103{
4104 struct drm_device *dev = crtc->dev;
4105 struct intel_encoder *encoder;
4106
4107 for_each_encoder_on_crtc(dev, crtc, encoder) {
4108 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4109 encoder->type == INTEL_OUTPUT_EDP)
4110 return enc_to_dig_port(&encoder->base)->port;
4111 }
4112
4113 return -1;
4114}
4115
f67a559d
JB
4116/*
4117 * Enable PCH resources required for PCH ports:
4118 * - PCH PLLs
4119 * - FDI training & RX/TX
4120 * - update transcoder timings
4121 * - DP transcoding bits
4122 * - transcoder
4123 */
4124static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4125{
4126 struct drm_device *dev = crtc->dev;
4127 struct drm_i915_private *dev_priv = dev->dev_private;
4128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4129 int pipe = intel_crtc->pipe;
f0f59a00 4130 u32 temp;
2c07245f 4131
ab9412ba 4132 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4133
1fbc0d78
DV
4134 if (IS_IVYBRIDGE(dev))
4135 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4136
cd986abb
DV
4137 /* Write the TU size bits before fdi link training, so that error
4138 * detection works. */
4139 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4140 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4141
3860b2ec
VS
4142 /*
4143 * Sometimes spurious CPU pipe underruns happen during FDI
4144 * training, at least with VGA+HDMI cloning. Suppress them.
4145 */
4146 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4147
c98e9dcf 4148 /* For PCH output, training FDI link */
674cf967 4149 dev_priv->display.fdi_link_train(crtc);
2c07245f 4150
3ad8a208
DV
4151 /* We need to program the right clock selection before writing the pixel
4152 * mutliplier into the DPLL. */
303b81e0 4153 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4154 u32 sel;
4b645f14 4155
c98e9dcf 4156 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4157 temp |= TRANS_DPLL_ENABLE(pipe);
4158 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4159 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4160 temp |= sel;
4161 else
4162 temp &= ~sel;
c98e9dcf 4163 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4164 }
5eddb70b 4165
3ad8a208
DV
4166 /* XXX: pch pll's can be enabled any time before we enable the PCH
4167 * transcoder, and we actually should do this to not upset any PCH
4168 * transcoder that already use the clock when we share it.
4169 *
4170 * Note that enable_shared_dpll tries to do the right thing, but
4171 * get_shared_dpll unconditionally resets the pll - we need that to have
4172 * the right LVDS enable sequence. */
85b3894f 4173 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4174
d9b6cb56
JB
4175 /* set transcoder timing, panel must allow it */
4176 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4177 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4178
303b81e0 4179 intel_fdi_normal_train(crtc);
5e84e1a4 4180
3860b2ec
VS
4181 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4182
c98e9dcf 4183 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4184 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
9c4edaee
VS
4185 const struct drm_display_mode *adjusted_mode =
4186 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4187 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4188 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4189 temp = I915_READ(reg);
4190 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4191 TRANS_DP_SYNC_MASK |
4192 TRANS_DP_BPC_MASK);
e3ef4479 4193 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4194 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4195
9c4edaee 4196 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4197 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4198 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4199 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4200
4201 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4202 case PORT_B:
5eddb70b 4203 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4204 break;
c48b5305 4205 case PORT_C:
5eddb70b 4206 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4207 break;
c48b5305 4208 case PORT_D:
5eddb70b 4209 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4210 break;
4211 default:
e95d41e1 4212 BUG();
32f9d658 4213 }
2c07245f 4214
5eddb70b 4215 I915_WRITE(reg, temp);
6be4a607 4216 }
b52eb4dc 4217
b8a4f404 4218 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4219}
4220
1507e5bd
PZ
4221static void lpt_pch_enable(struct drm_crtc *crtc)
4222{
4223 struct drm_device *dev = crtc->dev;
4224 struct drm_i915_private *dev_priv = dev->dev_private;
4225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4226 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4227
ab9412ba 4228 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4229
8c52b5e8 4230 lpt_program_iclkip(crtc);
1507e5bd 4231
0540e488 4232 /* Set transcoder timing. */
275f01b2 4233 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4234
937bb610 4235 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4236}
4237
190f68c5
ACO
4238struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4239 struct intel_crtc_state *crtc_state)
ee7b9f93 4240{
e2b78267 4241 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4242 struct intel_shared_dpll *pll;
de419ab6 4243 struct intel_shared_dpll_config *shared_dpll;
e2b78267 4244 enum intel_dpll_id i;
00490c22 4245 int max = dev_priv->num_shared_dpll;
ee7b9f93 4246
de419ab6
ML
4247 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4248
98b6bd99
DV
4249 if (HAS_PCH_IBX(dev_priv->dev)) {
4250 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4251 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4252 pll = &dev_priv->shared_dplls[i];
98b6bd99 4253
46edb027
DV
4254 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4255 crtc->base.base.id, pll->name);
98b6bd99 4256
de419ab6 4257 WARN_ON(shared_dpll[i].crtc_mask);
f2a69f44 4258
98b6bd99
DV
4259 goto found;
4260 }
4261
bcddf610
S
4262 if (IS_BROXTON(dev_priv->dev)) {
4263 /* PLL is attached to port in bxt */
4264 struct intel_encoder *encoder;
4265 struct intel_digital_port *intel_dig_port;
4266
4267 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4268 if (WARN_ON(!encoder))
4269 return NULL;
4270
4271 intel_dig_port = enc_to_dig_port(&encoder->base);
4272 /* 1:1 mapping between ports and PLLs */
4273 i = (enum intel_dpll_id)intel_dig_port->port;
4274 pll = &dev_priv->shared_dplls[i];
4275 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4276 crtc->base.base.id, pll->name);
de419ab6 4277 WARN_ON(shared_dpll[i].crtc_mask);
bcddf610
S
4278
4279 goto found;
00490c22
ML
4280 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4281 /* Do not consider SPLL */
4282 max = 2;
bcddf610 4283
00490c22 4284 for (i = 0; i < max; i++) {
e72f9fbf 4285 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4286
4287 /* Only want to check enabled timings first */
de419ab6 4288 if (shared_dpll[i].crtc_mask == 0)
ee7b9f93
JB
4289 continue;
4290
190f68c5 4291 if (memcmp(&crtc_state->dpll_hw_state,
de419ab6
ML
4292 &shared_dpll[i].hw_state,
4293 sizeof(crtc_state->dpll_hw_state)) == 0) {
8bd31e67 4294 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4295 crtc->base.base.id, pll->name,
de419ab6 4296 shared_dpll[i].crtc_mask,
8bd31e67 4297 pll->active);
ee7b9f93
JB
4298 goto found;
4299 }
4300 }
4301
4302 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4303 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4304 pll = &dev_priv->shared_dplls[i];
de419ab6 4305 if (shared_dpll[i].crtc_mask == 0) {
46edb027
DV
4306 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4307 crtc->base.base.id, pll->name);
ee7b9f93
JB
4308 goto found;
4309 }
4310 }
4311
4312 return NULL;
4313
4314found:
de419ab6
ML
4315 if (shared_dpll[i].crtc_mask == 0)
4316 shared_dpll[i].hw_state =
4317 crtc_state->dpll_hw_state;
f2a69f44 4318
190f68c5 4319 crtc_state->shared_dpll = i;
46edb027
DV
4320 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4321 pipe_name(crtc->pipe));
ee7b9f93 4322
de419ab6 4323 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
e04c7350 4324
ee7b9f93
JB
4325 return pll;
4326}
4327
de419ab6 4328static void intel_shared_dpll_commit(struct drm_atomic_state *state)
8bd31e67 4329{
de419ab6
ML
4330 struct drm_i915_private *dev_priv = to_i915(state->dev);
4331 struct intel_shared_dpll_config *shared_dpll;
8bd31e67
ACO
4332 struct intel_shared_dpll *pll;
4333 enum intel_dpll_id i;
4334
de419ab6
ML
4335 if (!to_intel_atomic_state(state)->dpll_set)
4336 return;
8bd31e67 4337
de419ab6 4338 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
8bd31e67
ACO
4339 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4340 pll = &dev_priv->shared_dplls[i];
de419ab6 4341 pll->config = shared_dpll[i];
8bd31e67
ACO
4342 }
4343}
4344
a1520318 4345static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4346{
4347 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 4348 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4349 u32 temp;
4350
4351 temp = I915_READ(dslreg);
4352 udelay(500);
4353 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4354 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4355 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4356 }
4357}
4358
86adf9d7
ML
4359static int
4360skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4361 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4362 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4363{
86adf9d7
ML
4364 struct intel_crtc_scaler_state *scaler_state =
4365 &crtc_state->scaler_state;
4366 struct intel_crtc *intel_crtc =
4367 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4368 int need_scaling;
6156a456
CK
4369
4370 need_scaling = intel_rotation_90_or_270(rotation) ?
4371 (src_h != dst_w || src_w != dst_h):
4372 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4373
4374 /*
4375 * if plane is being disabled or scaler is no more required or force detach
4376 * - free scaler binded to this plane/crtc
4377 * - in order to do this, update crtc->scaler_usage
4378 *
4379 * Here scaler state in crtc_state is set free so that
4380 * scaler can be assigned to other user. Actual register
4381 * update to free the scaler is done in plane/panel-fit programming.
4382 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4383 */
86adf9d7 4384 if (force_detach || !need_scaling) {
a1b2278e 4385 if (*scaler_id >= 0) {
86adf9d7 4386 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4387 scaler_state->scalers[*scaler_id].in_use = 0;
4388
86adf9d7
ML
4389 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4390 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4391 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4392 scaler_state->scaler_users);
4393 *scaler_id = -1;
4394 }
4395 return 0;
4396 }
4397
4398 /* range checks */
4399 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4400 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4401
4402 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4403 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4404 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4405 "size is out of scaler range\n",
86adf9d7 4406 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4407 return -EINVAL;
4408 }
4409
86adf9d7
ML
4410 /* mark this plane as a scaler user in crtc_state */
4411 scaler_state->scaler_users |= (1 << scaler_user);
4412 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4413 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4414 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4415 scaler_state->scaler_users);
4416
4417 return 0;
4418}
4419
4420/**
4421 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4422 *
4423 * @state: crtc's scaler state
86adf9d7
ML
4424 *
4425 * Return
4426 * 0 - scaler_usage updated successfully
4427 * error - requested scaling cannot be supported or other error condition
4428 */
e435d6e5 4429int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4430{
4431 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4432 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7
ML
4433
4434 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4435 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4436
e435d6e5 4437 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
86adf9d7
ML
4438 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4439 state->pipe_src_w, state->pipe_src_h,
aad941d5 4440 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4441}
4442
4443/**
4444 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4445 *
4446 * @state: crtc's scaler state
86adf9d7
ML
4447 * @plane_state: atomic plane state to update
4448 *
4449 * Return
4450 * 0 - scaler_usage updated successfully
4451 * error - requested scaling cannot be supported or other error condition
4452 */
da20eabd
ML
4453static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4454 struct intel_plane_state *plane_state)
86adf9d7
ML
4455{
4456
4457 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4458 struct intel_plane *intel_plane =
4459 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4460 struct drm_framebuffer *fb = plane_state->base.fb;
4461 int ret;
4462
4463 bool force_detach = !fb || !plane_state->visible;
4464
4465 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4466 intel_plane->base.base.id, intel_crtc->pipe,
4467 drm_plane_index(&intel_plane->base));
4468
4469 ret = skl_update_scaler(crtc_state, force_detach,
4470 drm_plane_index(&intel_plane->base),
4471 &plane_state->scaler_id,
4472 plane_state->base.rotation,
4473 drm_rect_width(&plane_state->src) >> 16,
4474 drm_rect_height(&plane_state->src) >> 16,
4475 drm_rect_width(&plane_state->dst),
4476 drm_rect_height(&plane_state->dst));
4477
4478 if (ret || plane_state->scaler_id < 0)
4479 return ret;
4480
a1b2278e 4481 /* check colorkey */
818ed961 4482 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4483 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4484 intel_plane->base.base.id);
a1b2278e
CK
4485 return -EINVAL;
4486 }
4487
4488 /* Check src format */
86adf9d7
ML
4489 switch (fb->pixel_format) {
4490 case DRM_FORMAT_RGB565:
4491 case DRM_FORMAT_XBGR8888:
4492 case DRM_FORMAT_XRGB8888:
4493 case DRM_FORMAT_ABGR8888:
4494 case DRM_FORMAT_ARGB8888:
4495 case DRM_FORMAT_XRGB2101010:
4496 case DRM_FORMAT_XBGR2101010:
4497 case DRM_FORMAT_YUYV:
4498 case DRM_FORMAT_YVYU:
4499 case DRM_FORMAT_UYVY:
4500 case DRM_FORMAT_VYUY:
4501 break;
4502 default:
4503 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4504 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4505 return -EINVAL;
a1b2278e
CK
4506 }
4507
a1b2278e
CK
4508 return 0;
4509}
4510
e435d6e5
ML
4511static void skylake_scaler_disable(struct intel_crtc *crtc)
4512{
4513 int i;
4514
4515 for (i = 0; i < crtc->num_scalers; i++)
4516 skl_detach_scaler(crtc, i);
4517}
4518
4519static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4520{
4521 struct drm_device *dev = crtc->base.dev;
4522 struct drm_i915_private *dev_priv = dev->dev_private;
4523 int pipe = crtc->pipe;
a1b2278e
CK
4524 struct intel_crtc_scaler_state *scaler_state =
4525 &crtc->config->scaler_state;
4526
4527 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4528
6e3c9717 4529 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4530 int id;
4531
4532 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4533 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4534 return;
4535 }
4536
4537 id = scaler_state->scaler_id;
4538 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4539 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4540 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4541 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4542
4543 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4544 }
4545}
4546
b074cec8
JB
4547static void ironlake_pfit_enable(struct intel_crtc *crtc)
4548{
4549 struct drm_device *dev = crtc->base.dev;
4550 struct drm_i915_private *dev_priv = dev->dev_private;
4551 int pipe = crtc->pipe;
4552
6e3c9717 4553 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4554 /* Force use of hard-coded filter coefficients
4555 * as some pre-programmed values are broken,
4556 * e.g. x201.
4557 */
4558 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4559 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4560 PF_PIPE_SEL_IVB(pipe));
4561 else
4562 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4563 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4564 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4565 }
4566}
4567
20bc8673 4568void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4569{
cea165c3
VS
4570 struct drm_device *dev = crtc->base.dev;
4571 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4572
6e3c9717 4573 if (!crtc->config->ips_enabled)
d77e4531
PZ
4574 return;
4575
cea165c3
VS
4576 /* We can only enable IPS after we enable a plane and wait for a vblank */
4577 intel_wait_for_vblank(dev, crtc->pipe);
4578
d77e4531 4579 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4580 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4581 mutex_lock(&dev_priv->rps.hw_lock);
4582 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4583 mutex_unlock(&dev_priv->rps.hw_lock);
4584 /* Quoting Art Runyan: "its not safe to expect any particular
4585 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4586 * mailbox." Moreover, the mailbox may return a bogus state,
4587 * so we need to just enable it and continue on.
2a114cc1
BW
4588 */
4589 } else {
4590 I915_WRITE(IPS_CTL, IPS_ENABLE);
4591 /* The bit only becomes 1 in the next vblank, so this wait here
4592 * is essentially intel_wait_for_vblank. If we don't have this
4593 * and don't wait for vblanks until the end of crtc_enable, then
4594 * the HW state readout code will complain that the expected
4595 * IPS_CTL value is not the one we read. */
4596 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4597 DRM_ERROR("Timed out waiting for IPS enable\n");
4598 }
d77e4531
PZ
4599}
4600
20bc8673 4601void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4602{
4603 struct drm_device *dev = crtc->base.dev;
4604 struct drm_i915_private *dev_priv = dev->dev_private;
4605
6e3c9717 4606 if (!crtc->config->ips_enabled)
d77e4531
PZ
4607 return;
4608
4609 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4610 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4611 mutex_lock(&dev_priv->rps.hw_lock);
4612 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4613 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4614 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4615 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4616 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4617 } else {
2a114cc1 4618 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4619 POSTING_READ(IPS_CTL);
4620 }
d77e4531
PZ
4621
4622 /* We need to wait for a vblank before we can disable the plane. */
4623 intel_wait_for_vblank(dev, crtc->pipe);
4624}
4625
4626/** Loads the palette/gamma unit for the CRTC with the prepared values */
4627static void intel_crtc_load_lut(struct drm_crtc *crtc)
4628{
4629 struct drm_device *dev = crtc->dev;
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4632 enum pipe pipe = intel_crtc->pipe;
d77e4531
PZ
4633 int i;
4634 bool reenable_ips = false;
4635
4636 /* The clocks have to be on to load the palette. */
53d9f4e9 4637 if (!crtc->state->active)
d77e4531
PZ
4638 return;
4639
50360403 4640 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
a65347ba 4641 if (intel_crtc->config->has_dsi_encoder)
d77e4531
PZ
4642 assert_dsi_pll_enabled(dev_priv);
4643 else
4644 assert_pll_enabled(dev_priv, pipe);
4645 }
4646
d77e4531
PZ
4647 /* Workaround : Do not read or write the pipe palette/gamma data while
4648 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4649 */
6e3c9717 4650 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4651 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4652 GAMMA_MODE_MODE_SPLIT)) {
4653 hsw_disable_ips(intel_crtc);
4654 reenable_ips = true;
4655 }
4656
4657 for (i = 0; i < 256; i++) {
f0f59a00 4658 i915_reg_t palreg;
f65a9c5b
VS
4659
4660 if (HAS_GMCH_DISPLAY(dev))
4661 palreg = PALETTE(pipe, i);
4662 else
4663 palreg = LGC_PALETTE(pipe, i);
4664
4665 I915_WRITE(palreg,
d77e4531
PZ
4666 (intel_crtc->lut_r[i] << 16) |
4667 (intel_crtc->lut_g[i] << 8) |
4668 intel_crtc->lut_b[i]);
4669 }
4670
4671 if (reenable_ips)
4672 hsw_enable_ips(intel_crtc);
4673}
4674
7cac945f 4675static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4676{
7cac945f 4677 if (intel_crtc->overlay) {
d3eedb1a
VS
4678 struct drm_device *dev = intel_crtc->base.dev;
4679 struct drm_i915_private *dev_priv = dev->dev_private;
4680
4681 mutex_lock(&dev->struct_mutex);
4682 dev_priv->mm.interruptible = false;
4683 (void) intel_overlay_switch_off(intel_crtc->overlay);
4684 dev_priv->mm.interruptible = true;
4685 mutex_unlock(&dev->struct_mutex);
4686 }
4687
4688 /* Let userspace switch the overlay on again. In most cases userspace
4689 * has to recompute where to put it anyway.
4690 */
4691}
4692
87d4300a
ML
4693/**
4694 * intel_post_enable_primary - Perform operations after enabling primary plane
4695 * @crtc: the CRTC whose primary plane was just enabled
4696 *
4697 * Performs potentially sleeping operations that must be done after the primary
4698 * plane is enabled, such as updating FBC and IPS. Note that this may be
4699 * called due to an explicit primary plane update, or due to an implicit
4700 * re-enable that is caused when a sprite plane is updated to no longer
4701 * completely hide the primary plane.
4702 */
4703static void
4704intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4705{
4706 struct drm_device *dev = crtc->dev;
87d4300a 4707 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709 int pipe = intel_crtc->pipe;
a5c4d7bc 4710
87d4300a
ML
4711 /*
4712 * BDW signals flip done immediately if the plane
4713 * is disabled, even if the plane enable is already
4714 * armed to occur at the next vblank :(
4715 */
4716 if (IS_BROADWELL(dev))
4717 intel_wait_for_vblank(dev, pipe);
a5c4d7bc 4718
87d4300a
ML
4719 /*
4720 * FIXME IPS should be fine as long as one plane is
4721 * enabled, but in practice it seems to have problems
4722 * when going from primary only to sprite only and vice
4723 * versa.
4724 */
a5c4d7bc
VS
4725 hsw_enable_ips(intel_crtc);
4726
f99d7069 4727 /*
87d4300a
ML
4728 * Gen2 reports pipe underruns whenever all planes are disabled.
4729 * So don't enable underrun reporting before at least some planes
4730 * are enabled.
4731 * FIXME: Need to fix the logic to work when we turn off all planes
4732 * but leave the pipe running.
f99d7069 4733 */
87d4300a
ML
4734 if (IS_GEN2(dev))
4735 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4736
aca7b684
VS
4737 /* Underruns don't always raise interrupts, so check manually. */
4738 intel_check_cpu_fifo_underruns(dev_priv);
4739 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4740}
4741
87d4300a
ML
4742/**
4743 * intel_pre_disable_primary - Perform operations before disabling primary plane
4744 * @crtc: the CRTC whose primary plane is to be disabled
4745 *
4746 * Performs potentially sleeping operations that must be done before the
4747 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4748 * be called due to an explicit primary plane update, or due to an implicit
4749 * disable that is caused when a sprite plane completely hides the primary
4750 * plane.
4751 */
4752static void
4753intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4754{
4755 struct drm_device *dev = crtc->dev;
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4758 int pipe = intel_crtc->pipe;
a5c4d7bc 4759
87d4300a
ML
4760 /*
4761 * Gen2 reports pipe underruns whenever all planes are disabled.
4762 * So diasble underrun reporting before all the planes get disabled.
4763 * FIXME: Need to fix the logic to work when we turn off all planes
4764 * but leave the pipe running.
4765 */
4766 if (IS_GEN2(dev))
4767 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4768
87d4300a
ML
4769 /*
4770 * Vblank time updates from the shadow to live plane control register
4771 * are blocked if the memory self-refresh mode is active at that
4772 * moment. So to make sure the plane gets truly disabled, disable
4773 * first the self-refresh mode. The self-refresh enable bit in turn
4774 * will be checked/applied by the HW only at the next frame start
4775 * event which is after the vblank start event, so we need to have a
4776 * wait-for-vblank between disabling the plane and the pipe.
4777 */
262cd2e1 4778 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4779 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4780 dev_priv->wm.vlv.cxsr = false;
4781 intel_wait_for_vblank(dev, pipe);
4782 }
87d4300a 4783
87d4300a
ML
4784 /*
4785 * FIXME IPS should be fine as long as one plane is
4786 * enabled, but in practice it seems to have problems
4787 * when going from primary only to sprite only and vice
4788 * versa.
4789 */
a5c4d7bc 4790 hsw_disable_ips(intel_crtc);
87d4300a
ML
4791}
4792
ac21b225
ML
4793static void intel_post_plane_update(struct intel_crtc *crtc)
4794{
4795 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4796 struct drm_device *dev = crtc->base.dev;
ac21b225
ML
4797
4798 if (atomic->wait_vblank)
4799 intel_wait_for_vblank(dev, crtc->pipe);
4800
4801 intel_frontbuffer_flip(dev, atomic->fb_bits);
4802
ab1d3a0e 4803 crtc->wm.cxsr_allowed = true;
852eb00d 4804
f015c551
VS
4805 if (crtc->atomic.update_wm_post)
4806 intel_update_watermarks(&crtc->base);
4807
c80ac854 4808 if (atomic->update_fbc)
754d1133 4809 intel_fbc_update(crtc);
ac21b225
ML
4810
4811 if (atomic->post_enable_primary)
4812 intel_post_enable_primary(&crtc->base);
4813
ac21b225
ML
4814 memset(atomic, 0, sizeof(*atomic));
4815}
4816
4817static void intel_pre_plane_update(struct intel_crtc *crtc)
4818{
4819 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4820 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225 4821 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
ab1d3a0e
ML
4822 struct intel_crtc_state *pipe_config =
4823 to_intel_crtc_state(crtc->base.state);
ac21b225 4824
c80ac854 4825 if (atomic->disable_fbc)
d029bcad 4826 intel_fbc_deactivate(crtc);
ac21b225 4827
066cf55b
RV
4828 if (crtc->atomic.disable_ips)
4829 hsw_disable_ips(crtc);
4830
ac21b225
ML
4831 if (atomic->pre_disable_primary)
4832 intel_pre_disable_primary(&crtc->base);
852eb00d 4833
ab1d3a0e 4834 if (pipe_config->disable_cxsr) {
852eb00d
VS
4835 crtc->wm.cxsr_allowed = false;
4836 intel_set_memory_cxsr(dev_priv, false);
4837 }
ac21b225
ML
4838}
4839
d032ffa0 4840static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4841{
4842 struct drm_device *dev = crtc->dev;
4843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4844 struct drm_plane *p;
87d4300a
ML
4845 int pipe = intel_crtc->pipe;
4846
7cac945f 4847 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4848
d032ffa0
ML
4849 drm_for_each_plane_mask(p, dev, plane_mask)
4850 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4851
f99d7069
DV
4852 /*
4853 * FIXME: Once we grow proper nuclear flip support out of this we need
4854 * to compute the mask of flip planes precisely. For the time being
4855 * consider this a flip to a NULL plane.
4856 */
4857 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4858}
4859
f67a559d
JB
4860static void ironlake_crtc_enable(struct drm_crtc *crtc)
4861{
4862 struct drm_device *dev = crtc->dev;
4863 struct drm_i915_private *dev_priv = dev->dev_private;
4864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4865 struct intel_encoder *encoder;
f67a559d 4866 int pipe = intel_crtc->pipe;
f67a559d 4867
53d9f4e9 4868 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4869 return;
4870
81b088ca
VS
4871 if (intel_crtc->config->has_pch_encoder)
4872 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4873
6e3c9717 4874 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4875 intel_prepare_shared_dpll(intel_crtc);
4876
6e3c9717 4877 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4878 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4879
4880 intel_set_pipe_timings(intel_crtc);
4881
6e3c9717 4882 if (intel_crtc->config->has_pch_encoder) {
29407aab 4883 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4884 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4885 }
4886
4887 ironlake_set_pipeconf(crtc);
4888
f67a559d 4889 intel_crtc->active = true;
8664281b 4890
a72e4c9f 4891 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4892
f6736a1a 4893 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4894 if (encoder->pre_enable)
4895 encoder->pre_enable(encoder);
f67a559d 4896
6e3c9717 4897 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4898 /* Note: FDI PLL enabling _must_ be done before we enable the
4899 * cpu pipes, hence this is separate from all the other fdi/pch
4900 * enabling. */
88cefb6c 4901 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4902 } else {
4903 assert_fdi_tx_disabled(dev_priv, pipe);
4904 assert_fdi_rx_disabled(dev_priv, pipe);
4905 }
f67a559d 4906
b074cec8 4907 ironlake_pfit_enable(intel_crtc);
f67a559d 4908
9c54c0dd
JB
4909 /*
4910 * On ILK+ LUT must be loaded before the pipe is running but with
4911 * clocks enabled
4912 */
4913 intel_crtc_load_lut(crtc);
4914
f37fcc2a 4915 intel_update_watermarks(crtc);
e1fdc473 4916 intel_enable_pipe(intel_crtc);
f67a559d 4917
6e3c9717 4918 if (intel_crtc->config->has_pch_encoder)
f67a559d 4919 ironlake_pch_enable(crtc);
c98e9dcf 4920
f9b61ff6
DV
4921 assert_vblank_disabled(crtc);
4922 drm_crtc_vblank_on(crtc);
4923
fa5c73b1
DV
4924 for_each_encoder_on_crtc(dev, crtc, encoder)
4925 encoder->enable(encoder);
61b77ddd
DV
4926
4927 if (HAS_PCH_CPT(dev))
a1520318 4928 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
4929
4930 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4931 if (intel_crtc->config->has_pch_encoder)
4932 intel_wait_for_vblank(dev, pipe);
4933 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
d029bcad
PZ
4934
4935 intel_fbc_enable(intel_crtc);
6be4a607
JB
4936}
4937
42db64ef
PZ
4938/* IPS only exists on ULT machines and is tied to pipe A. */
4939static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4940{
f5adf94e 4941 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4942}
4943
4f771f10
PZ
4944static void haswell_crtc_enable(struct drm_crtc *crtc)
4945{
4946 struct drm_device *dev = crtc->dev;
4947 struct drm_i915_private *dev_priv = dev->dev_private;
4948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4949 struct intel_encoder *encoder;
99d736a2
ML
4950 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4951 struct intel_crtc_state *pipe_config =
4952 to_intel_crtc_state(crtc->state);
4f771f10 4953
53d9f4e9 4954 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4955 return;
4956
81b088ca
VS
4957 if (intel_crtc->config->has_pch_encoder)
4958 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4959 false);
4960
df8ad70c
DV
4961 if (intel_crtc_to_shared_dpll(intel_crtc))
4962 intel_enable_shared_dpll(intel_crtc);
4963
6e3c9717 4964 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4965 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4966
4967 intel_set_pipe_timings(intel_crtc);
4968
6e3c9717
ACO
4969 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4970 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4971 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4972 }
4973
6e3c9717 4974 if (intel_crtc->config->has_pch_encoder) {
229fca97 4975 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4976 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4977 }
4978
4979 haswell_set_pipeconf(crtc);
4980
4981 intel_set_pipe_csc(crtc);
4982
4f771f10 4983 intel_crtc->active = true;
8664281b 4984
6b698516
DV
4985 if (intel_crtc->config->has_pch_encoder)
4986 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4987 else
4988 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4989
7d4aefd0 4990 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10
PZ
4991 if (encoder->pre_enable)
4992 encoder->pre_enable(encoder);
7d4aefd0 4993 }
4f771f10 4994
d2d65408 4995 if (intel_crtc->config->has_pch_encoder)
4fe9467d 4996 dev_priv->display.fdi_link_train(crtc);
4fe9467d 4997
a65347ba 4998 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4999 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 5000
1c132b44 5001 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5002 skylake_pfit_enable(intel_crtc);
ff6d9f55 5003 else
1c132b44 5004 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
5005
5006 /*
5007 * On ILK+ LUT must be loaded before the pipe is running but with
5008 * clocks enabled
5009 */
5010 intel_crtc_load_lut(crtc);
5011
1f544388 5012 intel_ddi_set_pipe_settings(crtc);
a65347ba 5013 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5014 intel_ddi_enable_transcoder_func(crtc);
4f771f10 5015
f37fcc2a 5016 intel_update_watermarks(crtc);
e1fdc473 5017 intel_enable_pipe(intel_crtc);
42db64ef 5018
6e3c9717 5019 if (intel_crtc->config->has_pch_encoder)
1507e5bd 5020 lpt_pch_enable(crtc);
4f771f10 5021
a65347ba 5022 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
5023 intel_ddi_set_vc_payload_alloc(crtc, true);
5024
f9b61ff6
DV
5025 assert_vblank_disabled(crtc);
5026 drm_crtc_vblank_on(crtc);
5027
8807e55b 5028 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 5029 encoder->enable(encoder);
8807e55b
JN
5030 intel_opregion_notify_encoder(encoder, true);
5031 }
4f771f10 5032
6b698516
DV
5033 if (intel_crtc->config->has_pch_encoder) {
5034 intel_wait_for_vblank(dev, pipe);
5035 intel_wait_for_vblank(dev, pipe);
5036 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
5037 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5038 true);
6b698516 5039 }
d2d65408 5040
e4916946
PZ
5041 /* If we change the relative order between pipe/planes enabling, we need
5042 * to change the workaround. */
99d736a2
ML
5043 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5044 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5045 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5046 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5047 }
d029bcad
PZ
5048
5049 intel_fbc_enable(intel_crtc);
4f771f10
PZ
5050}
5051
bfd16b2a 5052static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
5053{
5054 struct drm_device *dev = crtc->base.dev;
5055 struct drm_i915_private *dev_priv = dev->dev_private;
5056 int pipe = crtc->pipe;
5057
5058 /* To avoid upsetting the power well on haswell only disable the pfit if
5059 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 5060 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5061 I915_WRITE(PF_CTL(pipe), 0);
5062 I915_WRITE(PF_WIN_POS(pipe), 0);
5063 I915_WRITE(PF_WIN_SZ(pipe), 0);
5064 }
5065}
5066
6be4a607
JB
5067static void ironlake_crtc_disable(struct drm_crtc *crtc)
5068{
5069 struct drm_device *dev = crtc->dev;
5070 struct drm_i915_private *dev_priv = dev->dev_private;
5071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5072 struct intel_encoder *encoder;
6be4a607 5073 int pipe = intel_crtc->pipe;
b52eb4dc 5074
37ca8d4c
VS
5075 if (intel_crtc->config->has_pch_encoder)
5076 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5077
ea9d758d
DV
5078 for_each_encoder_on_crtc(dev, crtc, encoder)
5079 encoder->disable(encoder);
5080
f9b61ff6
DV
5081 drm_crtc_vblank_off(crtc);
5082 assert_vblank_disabled(crtc);
5083
3860b2ec
VS
5084 /*
5085 * Sometimes spurious CPU pipe underruns happen when the
5086 * pipe is already disabled, but FDI RX/TX is still enabled.
5087 * Happens at least with VGA+HDMI cloning. Suppress them.
5088 */
5089 if (intel_crtc->config->has_pch_encoder)
5090 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5091
575f7ab7 5092 intel_disable_pipe(intel_crtc);
32f9d658 5093
bfd16b2a 5094 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5095
3860b2ec 5096 if (intel_crtc->config->has_pch_encoder) {
5a74f70a 5097 ironlake_fdi_disable(crtc);
3860b2ec
VS
5098 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5099 }
5a74f70a 5100
bf49ec8c
DV
5101 for_each_encoder_on_crtc(dev, crtc, encoder)
5102 if (encoder->post_disable)
5103 encoder->post_disable(encoder);
2c07245f 5104
6e3c9717 5105 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5106 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5107
d925c59a 5108 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
5109 i915_reg_t reg;
5110 u32 temp;
5111
d925c59a
DV
5112 /* disable TRANS_DP_CTL */
5113 reg = TRANS_DP_CTL(pipe);
5114 temp = I915_READ(reg);
5115 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5116 TRANS_DP_PORT_SEL_MASK);
5117 temp |= TRANS_DP_PORT_SEL_NONE;
5118 I915_WRITE(reg, temp);
5119
5120 /* disable DPLL_SEL */
5121 temp = I915_READ(PCH_DPLL_SEL);
11887397 5122 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5123 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5124 }
e3421a18 5125
d925c59a
DV
5126 ironlake_fdi_pll_disable(intel_crtc);
5127 }
81b088ca
VS
5128
5129 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
d029bcad
PZ
5130
5131 intel_fbc_disable_crtc(intel_crtc);
6be4a607 5132}
1b3c7a47 5133
4f771f10 5134static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5135{
4f771f10
PZ
5136 struct drm_device *dev = crtc->dev;
5137 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5139 struct intel_encoder *encoder;
6e3c9717 5140 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5141
d2d65408
VS
5142 if (intel_crtc->config->has_pch_encoder)
5143 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5144 false);
5145
8807e55b
JN
5146 for_each_encoder_on_crtc(dev, crtc, encoder) {
5147 intel_opregion_notify_encoder(encoder, false);
4f771f10 5148 encoder->disable(encoder);
8807e55b 5149 }
4f771f10 5150
f9b61ff6
DV
5151 drm_crtc_vblank_off(crtc);
5152 assert_vblank_disabled(crtc);
5153
575f7ab7 5154 intel_disable_pipe(intel_crtc);
4f771f10 5155
6e3c9717 5156 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5157 intel_ddi_set_vc_payload_alloc(crtc, false);
5158
a65347ba 5159 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5160 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5161
1c132b44 5162 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5163 skylake_scaler_disable(intel_crtc);
ff6d9f55 5164 else
bfd16b2a 5165 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5166
a65347ba 5167 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5168 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5169
6e3c9717 5170 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5171 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5172 intel_ddi_fdi_disable(crtc);
83616634 5173 }
4f771f10 5174
97b040aa
ID
5175 for_each_encoder_on_crtc(dev, crtc, encoder)
5176 if (encoder->post_disable)
5177 encoder->post_disable(encoder);
81b088ca
VS
5178
5179 if (intel_crtc->config->has_pch_encoder)
5180 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5181 true);
d029bcad
PZ
5182
5183 intel_fbc_disable_crtc(intel_crtc);
4f771f10
PZ
5184}
5185
2dd24552
JB
5186static void i9xx_pfit_enable(struct intel_crtc *crtc)
5187{
5188 struct drm_device *dev = crtc->base.dev;
5189 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5190 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5191
681a8504 5192 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5193 return;
5194
2dd24552 5195 /*
c0b03411
DV
5196 * The panel fitter should only be adjusted whilst the pipe is disabled,
5197 * according to register description and PRM.
2dd24552 5198 */
c0b03411
DV
5199 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5200 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5201
b074cec8
JB
5202 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5203 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5204
5205 /* Border color in case we don't scale up to the full screen. Black by
5206 * default, change to something else for debugging. */
5207 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5208}
5209
d05410f9
DA
5210static enum intel_display_power_domain port_to_power_domain(enum port port)
5211{
5212 switch (port) {
5213 case PORT_A:
6331a704 5214 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5215 case PORT_B:
6331a704 5216 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5217 case PORT_C:
6331a704 5218 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5219 case PORT_D:
6331a704 5220 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5221 case PORT_E:
6331a704 5222 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5223 default:
b9fec167 5224 MISSING_CASE(port);
d05410f9
DA
5225 return POWER_DOMAIN_PORT_OTHER;
5226 }
5227}
5228
25f78f58
VS
5229static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5230{
5231 switch (port) {
5232 case PORT_A:
5233 return POWER_DOMAIN_AUX_A;
5234 case PORT_B:
5235 return POWER_DOMAIN_AUX_B;
5236 case PORT_C:
5237 return POWER_DOMAIN_AUX_C;
5238 case PORT_D:
5239 return POWER_DOMAIN_AUX_D;
5240 case PORT_E:
5241 /* FIXME: Check VBT for actual wiring of PORT E */
5242 return POWER_DOMAIN_AUX_D;
5243 default:
b9fec167 5244 MISSING_CASE(port);
25f78f58
VS
5245 return POWER_DOMAIN_AUX_A;
5246 }
5247}
5248
319be8ae
ID
5249enum intel_display_power_domain
5250intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5251{
5252 struct drm_device *dev = intel_encoder->base.dev;
5253 struct intel_digital_port *intel_dig_port;
5254
5255 switch (intel_encoder->type) {
5256 case INTEL_OUTPUT_UNKNOWN:
5257 /* Only DDI platforms should ever use this output type */
5258 WARN_ON_ONCE(!HAS_DDI(dev));
5259 case INTEL_OUTPUT_DISPLAYPORT:
5260 case INTEL_OUTPUT_HDMI:
5261 case INTEL_OUTPUT_EDP:
5262 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5263 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5264 case INTEL_OUTPUT_DP_MST:
5265 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5266 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5267 case INTEL_OUTPUT_ANALOG:
5268 return POWER_DOMAIN_PORT_CRT;
5269 case INTEL_OUTPUT_DSI:
5270 return POWER_DOMAIN_PORT_DSI;
5271 default:
5272 return POWER_DOMAIN_PORT_OTHER;
5273 }
5274}
5275
25f78f58
VS
5276enum intel_display_power_domain
5277intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5278{
5279 struct drm_device *dev = intel_encoder->base.dev;
5280 struct intel_digital_port *intel_dig_port;
5281
5282 switch (intel_encoder->type) {
5283 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5284 case INTEL_OUTPUT_HDMI:
5285 /*
5286 * Only DDI platforms should ever use these output types.
5287 * We can get here after the HDMI detect code has already set
5288 * the type of the shared encoder. Since we can't be sure
5289 * what's the status of the given connectors, play safe and
5290 * run the DP detection too.
5291 */
25f78f58
VS
5292 WARN_ON_ONCE(!HAS_DDI(dev));
5293 case INTEL_OUTPUT_DISPLAYPORT:
5294 case INTEL_OUTPUT_EDP:
5295 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5296 return port_to_aux_power_domain(intel_dig_port->port);
5297 case INTEL_OUTPUT_DP_MST:
5298 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5299 return port_to_aux_power_domain(intel_dig_port->port);
5300 default:
b9fec167 5301 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5302 return POWER_DOMAIN_AUX_A;
5303 }
5304}
5305
319be8ae 5306static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5307{
319be8ae
ID
5308 struct drm_device *dev = crtc->dev;
5309 struct intel_encoder *intel_encoder;
5310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5311 enum pipe pipe = intel_crtc->pipe;
77d22dca 5312 unsigned long mask;
1a70a728 5313 enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
77d22dca 5314
292b990e
ML
5315 if (!crtc->state->active)
5316 return 0;
5317
77d22dca
ID
5318 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5319 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5320 if (intel_crtc->config->pch_pfit.enabled ||
5321 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5322 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5323
319be8ae
ID
5324 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5325 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5326
77d22dca
ID
5327 return mask;
5328}
5329
292b990e 5330static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5331{
292b990e
ML
5332 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5334 enum intel_display_power_domain domain;
5335 unsigned long domains, new_domains, old_domains;
77d22dca 5336
292b990e
ML
5337 old_domains = intel_crtc->enabled_power_domains;
5338 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
77d22dca 5339
292b990e
ML
5340 domains = new_domains & ~old_domains;
5341
5342 for_each_power_domain(domain, domains)
5343 intel_display_power_get(dev_priv, domain);
5344
5345 return old_domains & ~new_domains;
5346}
5347
5348static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5349 unsigned long domains)
5350{
5351 enum intel_display_power_domain domain;
5352
5353 for_each_power_domain(domain, domains)
5354 intel_display_power_put(dev_priv, domain);
5355}
77d22dca 5356
292b990e
ML
5357static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5358{
5359 struct drm_device *dev = state->dev;
5360 struct drm_i915_private *dev_priv = dev->dev_private;
5361 unsigned long put_domains[I915_MAX_PIPES] = {};
5362 struct drm_crtc_state *crtc_state;
5363 struct drm_crtc *crtc;
5364 int i;
77d22dca 5365
292b990e
ML
5366 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5367 if (needs_modeset(crtc->state))
5368 put_domains[to_intel_crtc(crtc)->pipe] =
5369 modeset_get_crtc_power_domains(crtc);
77d22dca
ID
5370 }
5371
27c329ed
ML
5372 if (dev_priv->display.modeset_commit_cdclk) {
5373 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5374
5375 if (cdclk != dev_priv->cdclk_freq &&
5376 !WARN_ON(!state->allow_modeset))
5377 dev_priv->display.modeset_commit_cdclk(state);
5378 }
50f6e502 5379
292b990e
ML
5380 for (i = 0; i < I915_MAX_PIPES; i++)
5381 if (put_domains[i])
5382 modeset_put_power_domains(dev_priv, put_domains[i]);
77d22dca
ID
5383}
5384
adafdc6f
MK
5385static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5386{
5387 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5388
5389 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5390 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5391 return max_cdclk_freq;
5392 else if (IS_CHERRYVIEW(dev_priv))
5393 return max_cdclk_freq*95/100;
5394 else if (INTEL_INFO(dev_priv)->gen < 4)
5395 return 2*max_cdclk_freq*90/100;
5396 else
5397 return max_cdclk_freq*90/100;
5398}
5399
560a7ae4
DL
5400static void intel_update_max_cdclk(struct drm_device *dev)
5401{
5402 struct drm_i915_private *dev_priv = dev->dev_private;
5403
ef11bdb3 5404 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4
DL
5405 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5406
5407 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5408 dev_priv->max_cdclk_freq = 675000;
5409 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5410 dev_priv->max_cdclk_freq = 540000;
5411 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5412 dev_priv->max_cdclk_freq = 450000;
5413 else
5414 dev_priv->max_cdclk_freq = 337500;
5415 } else if (IS_BROADWELL(dev)) {
5416 /*
5417 * FIXME with extra cooling we can allow
5418 * 540 MHz for ULX and 675 Mhz for ULT.
5419 * How can we know if extra cooling is
5420 * available? PCI ID, VTB, something else?
5421 */
5422 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5423 dev_priv->max_cdclk_freq = 450000;
5424 else if (IS_BDW_ULX(dev))
5425 dev_priv->max_cdclk_freq = 450000;
5426 else if (IS_BDW_ULT(dev))
5427 dev_priv->max_cdclk_freq = 540000;
5428 else
5429 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5430 } else if (IS_CHERRYVIEW(dev)) {
5431 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5432 } else if (IS_VALLEYVIEW(dev)) {
5433 dev_priv->max_cdclk_freq = 400000;
5434 } else {
5435 /* otherwise assume cdclk is fixed */
5436 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5437 }
5438
adafdc6f
MK
5439 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5440
560a7ae4
DL
5441 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5442 dev_priv->max_cdclk_freq);
adafdc6f
MK
5443
5444 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5445 dev_priv->max_dotclk_freq);
560a7ae4
DL
5446}
5447
5448static void intel_update_cdclk(struct drm_device *dev)
5449{
5450 struct drm_i915_private *dev_priv = dev->dev_private;
5451
5452 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5453 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5454 dev_priv->cdclk_freq);
5455
5456 /*
5457 * Program the gmbus_freq based on the cdclk frequency.
5458 * BSpec erroneously claims we should aim for 4MHz, but
5459 * in fact 1MHz is the correct frequency.
5460 */
5461 if (IS_VALLEYVIEW(dev)) {
5462 /*
5463 * Program the gmbus_freq based on the cdclk frequency.
5464 * BSpec erroneously claims we should aim for 4MHz, but
5465 * in fact 1MHz is the correct frequency.
5466 */
5467 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5468 }
5469
5470 if (dev_priv->max_cdclk_freq == 0)
5471 intel_update_max_cdclk(dev);
5472}
5473
70d0c574 5474static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5475{
5476 struct drm_i915_private *dev_priv = dev->dev_private;
5477 uint32_t divider;
5478 uint32_t ratio;
5479 uint32_t current_freq;
5480 int ret;
5481
5482 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5483 switch (frequency) {
5484 case 144000:
5485 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5486 ratio = BXT_DE_PLL_RATIO(60);
5487 break;
5488 case 288000:
5489 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5490 ratio = BXT_DE_PLL_RATIO(60);
5491 break;
5492 case 384000:
5493 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5494 ratio = BXT_DE_PLL_RATIO(60);
5495 break;
5496 case 576000:
5497 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5498 ratio = BXT_DE_PLL_RATIO(60);
5499 break;
5500 case 624000:
5501 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5502 ratio = BXT_DE_PLL_RATIO(65);
5503 break;
5504 case 19200:
5505 /*
5506 * Bypass frequency with DE PLL disabled. Init ratio, divider
5507 * to suppress GCC warning.
5508 */
5509 ratio = 0;
5510 divider = 0;
5511 break;
5512 default:
5513 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5514
5515 return;
5516 }
5517
5518 mutex_lock(&dev_priv->rps.hw_lock);
5519 /* Inform power controller of upcoming frequency change */
5520 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5521 0x80000000);
5522 mutex_unlock(&dev_priv->rps.hw_lock);
5523
5524 if (ret) {
5525 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5526 ret, frequency);
5527 return;
5528 }
5529
5530 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5531 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5532 current_freq = current_freq * 500 + 1000;
5533
5534 /*
5535 * DE PLL has to be disabled when
5536 * - setting to 19.2MHz (bypass, PLL isn't used)
5537 * - before setting to 624MHz (PLL needs toggling)
5538 * - before setting to any frequency from 624MHz (PLL needs toggling)
5539 */
5540 if (frequency == 19200 || frequency == 624000 ||
5541 current_freq == 624000) {
5542 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5543 /* Timeout 200us */
5544 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5545 1))
5546 DRM_ERROR("timout waiting for DE PLL unlock\n");
5547 }
5548
5549 if (frequency != 19200) {
5550 uint32_t val;
5551
5552 val = I915_READ(BXT_DE_PLL_CTL);
5553 val &= ~BXT_DE_PLL_RATIO_MASK;
5554 val |= ratio;
5555 I915_WRITE(BXT_DE_PLL_CTL, val);
5556
5557 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5558 /* Timeout 200us */
5559 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5560 DRM_ERROR("timeout waiting for DE PLL lock\n");
5561
5562 val = I915_READ(CDCLK_CTL);
5563 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5564 val |= divider;
5565 /*
5566 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5567 * enable otherwise.
5568 */
5569 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5570 if (frequency >= 500000)
5571 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5572
5573 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5574 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5575 val |= (frequency - 1000) / 500;
5576 I915_WRITE(CDCLK_CTL, val);
5577 }
5578
5579 mutex_lock(&dev_priv->rps.hw_lock);
5580 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5581 DIV_ROUND_UP(frequency, 25000));
5582 mutex_unlock(&dev_priv->rps.hw_lock);
5583
5584 if (ret) {
5585 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5586 ret, frequency);
5587 return;
5588 }
5589
a47871bd 5590 intel_update_cdclk(dev);
f8437dd1
VK
5591}
5592
5593void broxton_init_cdclk(struct drm_device *dev)
5594{
5595 struct drm_i915_private *dev_priv = dev->dev_private;
5596 uint32_t val;
5597
5598 /*
5599 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5600 * or else the reset will hang because there is no PCH to respond.
5601 * Move the handshake programming to initialization sequence.
5602 * Previously was left up to BIOS.
5603 */
5604 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5605 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5606 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5607
5608 /* Enable PG1 for cdclk */
5609 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5610
5611 /* check if cd clock is enabled */
5612 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5613 DRM_DEBUG_KMS("Display already initialized\n");
5614 return;
5615 }
5616
5617 /*
5618 * FIXME:
5619 * - The initial CDCLK needs to be read from VBT.
5620 * Need to make this change after VBT has changes for BXT.
5621 * - check if setting the max (or any) cdclk freq is really necessary
5622 * here, it belongs to modeset time
5623 */
5624 broxton_set_cdclk(dev, 624000);
5625
5626 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5627 POSTING_READ(DBUF_CTL);
5628
f8437dd1
VK
5629 udelay(10);
5630
5631 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5632 DRM_ERROR("DBuf power enable timeout!\n");
5633}
5634
5635void broxton_uninit_cdclk(struct drm_device *dev)
5636{
5637 struct drm_i915_private *dev_priv = dev->dev_private;
5638
5639 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5640 POSTING_READ(DBUF_CTL);
5641
f8437dd1
VK
5642 udelay(10);
5643
5644 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5645 DRM_ERROR("DBuf power disable timeout!\n");
5646
5647 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5648 broxton_set_cdclk(dev, 19200);
5649
5650 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5651}
5652
5d96d8af
DL
5653static const struct skl_cdclk_entry {
5654 unsigned int freq;
5655 unsigned int vco;
5656} skl_cdclk_frequencies[] = {
5657 { .freq = 308570, .vco = 8640 },
5658 { .freq = 337500, .vco = 8100 },
5659 { .freq = 432000, .vco = 8640 },
5660 { .freq = 450000, .vco = 8100 },
5661 { .freq = 540000, .vco = 8100 },
5662 { .freq = 617140, .vco = 8640 },
5663 { .freq = 675000, .vco = 8100 },
5664};
5665
5666static unsigned int skl_cdclk_decimal(unsigned int freq)
5667{
5668 return (freq - 1000) / 500;
5669}
5670
5671static unsigned int skl_cdclk_get_vco(unsigned int freq)
5672{
5673 unsigned int i;
5674
5675 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5676 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5677
5678 if (e->freq == freq)
5679 return e->vco;
5680 }
5681
5682 return 8100;
5683}
5684
5685static void
5686skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5687{
5688 unsigned int min_freq;
5689 u32 val;
5690
5691 /* select the minimum CDCLK before enabling DPLL 0 */
5692 val = I915_READ(CDCLK_CTL);
5693 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5694 val |= CDCLK_FREQ_337_308;
5695
5696 if (required_vco == 8640)
5697 min_freq = 308570;
5698 else
5699 min_freq = 337500;
5700
5701 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5702
5703 I915_WRITE(CDCLK_CTL, val);
5704 POSTING_READ(CDCLK_CTL);
5705
5706 /*
5707 * We always enable DPLL0 with the lowest link rate possible, but still
5708 * taking into account the VCO required to operate the eDP panel at the
5709 * desired frequency. The usual DP link rates operate with a VCO of
5710 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5711 * The modeset code is responsible for the selection of the exact link
5712 * rate later on, with the constraint of choosing a frequency that
5713 * works with required_vco.
5714 */
5715 val = I915_READ(DPLL_CTRL1);
5716
5717 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5718 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5719 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5720 if (required_vco == 8640)
5721 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5722 SKL_DPLL0);
5723 else
5724 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5725 SKL_DPLL0);
5726
5727 I915_WRITE(DPLL_CTRL1, val);
5728 POSTING_READ(DPLL_CTRL1);
5729
5730 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5731
5732 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5733 DRM_ERROR("DPLL0 not locked\n");
5734}
5735
5736static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5737{
5738 int ret;
5739 u32 val;
5740
5741 /* inform PCU we want to change CDCLK */
5742 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5743 mutex_lock(&dev_priv->rps.hw_lock);
5744 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5745 mutex_unlock(&dev_priv->rps.hw_lock);
5746
5747 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5748}
5749
5750static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5751{
5752 unsigned int i;
5753
5754 for (i = 0; i < 15; i++) {
5755 if (skl_cdclk_pcu_ready(dev_priv))
5756 return true;
5757 udelay(10);
5758 }
5759
5760 return false;
5761}
5762
5763static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5764{
560a7ae4 5765 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5766 u32 freq_select, pcu_ack;
5767
5768 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5769
5770 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5771 DRM_ERROR("failed to inform PCU about cdclk change\n");
5772 return;
5773 }
5774
5775 /* set CDCLK_CTL */
5776 switch(freq) {
5777 case 450000:
5778 case 432000:
5779 freq_select = CDCLK_FREQ_450_432;
5780 pcu_ack = 1;
5781 break;
5782 case 540000:
5783 freq_select = CDCLK_FREQ_540;
5784 pcu_ack = 2;
5785 break;
5786 case 308570:
5787 case 337500:
5788 default:
5789 freq_select = CDCLK_FREQ_337_308;
5790 pcu_ack = 0;
5791 break;
5792 case 617140:
5793 case 675000:
5794 freq_select = CDCLK_FREQ_675_617;
5795 pcu_ack = 3;
5796 break;
5797 }
5798
5799 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5800 POSTING_READ(CDCLK_CTL);
5801
5802 /* inform PCU of the change */
5803 mutex_lock(&dev_priv->rps.hw_lock);
5804 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5805 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5806
5807 intel_update_cdclk(dev);
5d96d8af
DL
5808}
5809
5810void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5811{
5812 /* disable DBUF power */
5813 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5814 POSTING_READ(DBUF_CTL);
5815
5816 udelay(10);
5817
5818 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5819 DRM_ERROR("DBuf power disable timeout\n");
5820
ab96c1ee
ID
5821 /* disable DPLL0 */
5822 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5823 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5824 DRM_ERROR("Couldn't disable DPLL0\n");
5d96d8af
DL
5825}
5826
5827void skl_init_cdclk(struct drm_i915_private *dev_priv)
5828{
5d96d8af
DL
5829 unsigned int required_vco;
5830
39d9b85a
GW
5831 /* DPLL0 not enabled (happens on early BIOS versions) */
5832 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5833 /* enable DPLL0 */
5834 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5835 skl_dpll0_enable(dev_priv, required_vco);
5d96d8af
DL
5836 }
5837
5d96d8af
DL
5838 /* set CDCLK to the frequency the BIOS chose */
5839 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5840
5841 /* enable DBUF power */
5842 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5843 POSTING_READ(DBUF_CTL);
5844
5845 udelay(10);
5846
5847 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5848 DRM_ERROR("DBuf power enable timeout\n");
5849}
5850
c73666f3
SK
5851int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5852{
5853 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5854 uint32_t cdctl = I915_READ(CDCLK_CTL);
5855 int freq = dev_priv->skl_boot_cdclk;
5856
f1b391a5
SK
5857 /*
5858 * check if the pre-os intialized the display
5859 * There is SWF18 scratchpad register defined which is set by the
5860 * pre-os which can be used by the OS drivers to check the status
5861 */
5862 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5863 goto sanitize;
5864
c73666f3
SK
5865 /* Is PLL enabled and locked ? */
5866 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5867 goto sanitize;
5868
5869 /* DPLL okay; verify the cdclock
5870 *
5871 * Noticed in some instances that the freq selection is correct but
5872 * decimal part is programmed wrong from BIOS where pre-os does not
5873 * enable display. Verify the same as well.
5874 */
5875 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5876 /* All well; nothing to sanitize */
5877 return false;
5878sanitize:
5879 /*
5880 * As of now initialize with max cdclk till
5881 * we get dynamic cdclk support
5882 * */
5883 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5884 skl_init_cdclk(dev_priv);
5885
5886 /* we did have to sanitize */
5887 return true;
5888}
5889
30a970c6
JB
5890/* Adjust CDclk dividers to allow high res or save power if possible */
5891static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5892{
5893 struct drm_i915_private *dev_priv = dev->dev_private;
5894 u32 val, cmd;
5895
164dfd28
VK
5896 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5897 != dev_priv->cdclk_freq);
d60c4473 5898
dfcab17e 5899 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5900 cmd = 2;
dfcab17e 5901 else if (cdclk == 266667)
30a970c6
JB
5902 cmd = 1;
5903 else
5904 cmd = 0;
5905
5906 mutex_lock(&dev_priv->rps.hw_lock);
5907 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5908 val &= ~DSPFREQGUAR_MASK;
5909 val |= (cmd << DSPFREQGUAR_SHIFT);
5910 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5911 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5912 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5913 50)) {
5914 DRM_ERROR("timed out waiting for CDclk change\n");
5915 }
5916 mutex_unlock(&dev_priv->rps.hw_lock);
5917
54433e91
VS
5918 mutex_lock(&dev_priv->sb_lock);
5919
dfcab17e 5920 if (cdclk == 400000) {
6bcda4f0 5921 u32 divider;
30a970c6 5922
6bcda4f0 5923 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5924
30a970c6
JB
5925 /* adjust cdclk divider */
5926 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5927 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5928 val |= divider;
5929 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5930
5931 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5932 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5933 50))
5934 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5935 }
5936
30a970c6
JB
5937 /* adjust self-refresh exit latency value */
5938 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5939 val &= ~0x7f;
5940
5941 /*
5942 * For high bandwidth configs, we set a higher latency in the bunit
5943 * so that the core display fetch happens in time to avoid underruns.
5944 */
dfcab17e 5945 if (cdclk == 400000)
30a970c6
JB
5946 val |= 4500 / 250; /* 4.5 usec */
5947 else
5948 val |= 3000 / 250; /* 3.0 usec */
5949 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5950
a580516d 5951 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5952
b6283055 5953 intel_update_cdclk(dev);
30a970c6
JB
5954}
5955
383c5a6a
VS
5956static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5957{
5958 struct drm_i915_private *dev_priv = dev->dev_private;
5959 u32 val, cmd;
5960
164dfd28
VK
5961 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5962 != dev_priv->cdclk_freq);
383c5a6a
VS
5963
5964 switch (cdclk) {
383c5a6a
VS
5965 case 333333:
5966 case 320000:
383c5a6a 5967 case 266667:
383c5a6a 5968 case 200000:
383c5a6a
VS
5969 break;
5970 default:
5f77eeb0 5971 MISSING_CASE(cdclk);
383c5a6a
VS
5972 return;
5973 }
5974
9d0d3fda
VS
5975 /*
5976 * Specs are full of misinformation, but testing on actual
5977 * hardware has shown that we just need to write the desired
5978 * CCK divider into the Punit register.
5979 */
5980 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5981
383c5a6a
VS
5982 mutex_lock(&dev_priv->rps.hw_lock);
5983 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5984 val &= ~DSPFREQGUAR_MASK_CHV;
5985 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5986 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5987 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5988 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5989 50)) {
5990 DRM_ERROR("timed out waiting for CDclk change\n");
5991 }
5992 mutex_unlock(&dev_priv->rps.hw_lock);
5993
b6283055 5994 intel_update_cdclk(dev);
383c5a6a
VS
5995}
5996
30a970c6
JB
5997static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5998 int max_pixclk)
5999{
6bcda4f0 6000 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 6001 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 6002
30a970c6
JB
6003 /*
6004 * Really only a few cases to deal with, as only 4 CDclks are supported:
6005 * 200MHz
6006 * 267MHz
29dc7ef3 6007 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
6008 * 400MHz (VLV only)
6009 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6010 * of the lower bin and adjust if needed.
e37c67a1
VS
6011 *
6012 * We seem to get an unstable or solid color picture at 200MHz.
6013 * Not sure what's wrong. For now use 200MHz only when all pipes
6014 * are off.
30a970c6 6015 */
6cca3195
VS
6016 if (!IS_CHERRYVIEW(dev_priv) &&
6017 max_pixclk > freq_320*limit/100)
dfcab17e 6018 return 400000;
6cca3195 6019 else if (max_pixclk > 266667*limit/100)
29dc7ef3 6020 return freq_320;
e37c67a1 6021 else if (max_pixclk > 0)
dfcab17e 6022 return 266667;
e37c67a1
VS
6023 else
6024 return 200000;
30a970c6
JB
6025}
6026
f8437dd1
VK
6027static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6028 int max_pixclk)
6029{
6030 /*
6031 * FIXME:
6032 * - remove the guardband, it's not needed on BXT
6033 * - set 19.2MHz bypass frequency if there are no active pipes
6034 */
6035 if (max_pixclk > 576000*9/10)
6036 return 624000;
6037 else if (max_pixclk > 384000*9/10)
6038 return 576000;
6039 else if (max_pixclk > 288000*9/10)
6040 return 384000;
6041 else if (max_pixclk > 144000*9/10)
6042 return 288000;
6043 else
6044 return 144000;
6045}
6046
a821fc46
ACO
6047/* Compute the max pixel clock for new configuration. Uses atomic state if
6048 * that's non-NULL, look at current state otherwise. */
6049static int intel_mode_max_pixclk(struct drm_device *dev,
6050 struct drm_atomic_state *state)
30a970c6 6051{
30a970c6 6052 struct intel_crtc *intel_crtc;
304603f4 6053 struct intel_crtc_state *crtc_state;
30a970c6
JB
6054 int max_pixclk = 0;
6055
d3fcc808 6056 for_each_intel_crtc(dev, intel_crtc) {
27c329ed 6057 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
304603f4
ACO
6058 if (IS_ERR(crtc_state))
6059 return PTR_ERR(crtc_state);
6060
6061 if (!crtc_state->base.enable)
6062 continue;
6063
6064 max_pixclk = max(max_pixclk,
6065 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
6066 }
6067
6068 return max_pixclk;
6069}
6070
27c329ed 6071static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 6072{
27c329ed
ML
6073 struct drm_device *dev = state->dev;
6074 struct drm_i915_private *dev_priv = dev->dev_private;
6075 int max_pixclk = intel_mode_max_pixclk(dev, state);
30a970c6 6076
304603f4
ACO
6077 if (max_pixclk < 0)
6078 return max_pixclk;
30a970c6 6079
27c329ed
ML
6080 to_intel_atomic_state(state)->cdclk =
6081 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 6082
27c329ed
ML
6083 return 0;
6084}
304603f4 6085
27c329ed
ML
6086static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6087{
6088 struct drm_device *dev = state->dev;
6089 struct drm_i915_private *dev_priv = dev->dev_private;
6090 int max_pixclk = intel_mode_max_pixclk(dev, state);
85a96e7a 6091
27c329ed
ML
6092 if (max_pixclk < 0)
6093 return max_pixclk;
85a96e7a 6094
27c329ed
ML
6095 to_intel_atomic_state(state)->cdclk =
6096 broxton_calc_cdclk(dev_priv, max_pixclk);
85a96e7a 6097
27c329ed 6098 return 0;
30a970c6
JB
6099}
6100
1e69cd74
VS
6101static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6102{
6103 unsigned int credits, default_credits;
6104
6105 if (IS_CHERRYVIEW(dev_priv))
6106 default_credits = PFI_CREDIT(12);
6107 else
6108 default_credits = PFI_CREDIT(8);
6109
bfa7df01 6110 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6111 /* CHV suggested value is 31 or 63 */
6112 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6113 credits = PFI_CREDIT_63;
1e69cd74
VS
6114 else
6115 credits = PFI_CREDIT(15);
6116 } else {
6117 credits = default_credits;
6118 }
6119
6120 /*
6121 * WA - write default credits before re-programming
6122 * FIXME: should we also set the resend bit here?
6123 */
6124 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6125 default_credits);
6126
6127 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6128 credits | PFI_CREDIT_RESEND);
6129
6130 /*
6131 * FIXME is this guaranteed to clear
6132 * immediately or should we poll for it?
6133 */
6134 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6135}
6136
27c329ed 6137static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6138{
a821fc46 6139 struct drm_device *dev = old_state->dev;
27c329ed 6140 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
30a970c6 6141 struct drm_i915_private *dev_priv = dev->dev_private;
30a970c6 6142
27c329ed
ML
6143 /*
6144 * FIXME: We can end up here with all power domains off, yet
6145 * with a CDCLK frequency other than the minimum. To account
6146 * for this take the PIPE-A power domain, which covers the HW
6147 * blocks needed for the following programming. This can be
6148 * removed once it's guaranteed that we get here either with
6149 * the minimum CDCLK set, or the required power domains
6150 * enabled.
6151 */
6152 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6153
27c329ed
ML
6154 if (IS_CHERRYVIEW(dev))
6155 cherryview_set_cdclk(dev, req_cdclk);
6156 else
6157 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6158
27c329ed 6159 vlv_program_pfi_credits(dev_priv);
1e69cd74 6160
27c329ed 6161 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6162}
6163
89b667f8
JB
6164static void valleyview_crtc_enable(struct drm_crtc *crtc)
6165{
6166 struct drm_device *dev = crtc->dev;
a72e4c9f 6167 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6169 struct intel_encoder *encoder;
6170 int pipe = intel_crtc->pipe;
89b667f8 6171
53d9f4e9 6172 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6173 return;
6174
6e3c9717 6175 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6176 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6177
6178 intel_set_pipe_timings(intel_crtc);
6179
c14b0485
VS
6180 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6181 struct drm_i915_private *dev_priv = dev->dev_private;
6182
6183 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6184 I915_WRITE(CHV_CANVAS(pipe), 0);
6185 }
6186
5b18e57c
DV
6187 i9xx_set_pipeconf(intel_crtc);
6188
89b667f8 6189 intel_crtc->active = true;
89b667f8 6190
a72e4c9f 6191 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6192
89b667f8
JB
6193 for_each_encoder_on_crtc(dev, crtc, encoder)
6194 if (encoder->pre_pll_enable)
6195 encoder->pre_pll_enable(encoder);
6196
a65347ba 6197 if (!intel_crtc->config->has_dsi_encoder) {
c0b4c660
VS
6198 if (IS_CHERRYVIEW(dev)) {
6199 chv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6200 chv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660
VS
6201 } else {
6202 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6203 vlv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660 6204 }
9d556c99 6205 }
89b667f8
JB
6206
6207 for_each_encoder_on_crtc(dev, crtc, encoder)
6208 if (encoder->pre_enable)
6209 encoder->pre_enable(encoder);
6210
2dd24552
JB
6211 i9xx_pfit_enable(intel_crtc);
6212
63cbb074
VS
6213 intel_crtc_load_lut(crtc);
6214
e1fdc473 6215 intel_enable_pipe(intel_crtc);
be6a6f8e 6216
4b3a9526
VS
6217 assert_vblank_disabled(crtc);
6218 drm_crtc_vblank_on(crtc);
6219
f9b61ff6
DV
6220 for_each_encoder_on_crtc(dev, crtc, encoder)
6221 encoder->enable(encoder);
89b667f8
JB
6222}
6223
f13c2ef3
DV
6224static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6225{
6226 struct drm_device *dev = crtc->base.dev;
6227 struct drm_i915_private *dev_priv = dev->dev_private;
6228
6e3c9717
ACO
6229 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6230 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6231}
6232
0b8765c6 6233static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6234{
6235 struct drm_device *dev = crtc->dev;
a72e4c9f 6236 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6238 struct intel_encoder *encoder;
79e53945 6239 int pipe = intel_crtc->pipe;
79e53945 6240
53d9f4e9 6241 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6242 return;
6243
f13c2ef3
DV
6244 i9xx_set_pll_dividers(intel_crtc);
6245
6e3c9717 6246 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6247 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6248
6249 intel_set_pipe_timings(intel_crtc);
6250
5b18e57c
DV
6251 i9xx_set_pipeconf(intel_crtc);
6252
f7abfe8b 6253 intel_crtc->active = true;
6b383a7f 6254
4a3436e8 6255 if (!IS_GEN2(dev))
a72e4c9f 6256 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6257
9d6d9f19
MK
6258 for_each_encoder_on_crtc(dev, crtc, encoder)
6259 if (encoder->pre_enable)
6260 encoder->pre_enable(encoder);
6261
f6736a1a
DV
6262 i9xx_enable_pll(intel_crtc);
6263
2dd24552
JB
6264 i9xx_pfit_enable(intel_crtc);
6265
63cbb074
VS
6266 intel_crtc_load_lut(crtc);
6267
f37fcc2a 6268 intel_update_watermarks(crtc);
e1fdc473 6269 intel_enable_pipe(intel_crtc);
be6a6f8e 6270
4b3a9526
VS
6271 assert_vblank_disabled(crtc);
6272 drm_crtc_vblank_on(crtc);
6273
f9b61ff6
DV
6274 for_each_encoder_on_crtc(dev, crtc, encoder)
6275 encoder->enable(encoder);
d029bcad
PZ
6276
6277 intel_fbc_enable(intel_crtc);
0b8765c6 6278}
79e53945 6279
87476d63
DV
6280static void i9xx_pfit_disable(struct intel_crtc *crtc)
6281{
6282 struct drm_device *dev = crtc->base.dev;
6283 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6284
6e3c9717 6285 if (!crtc->config->gmch_pfit.control)
328d8e82 6286 return;
87476d63 6287
328d8e82 6288 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6289
328d8e82
DV
6290 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6291 I915_READ(PFIT_CONTROL));
6292 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6293}
6294
0b8765c6
JB
6295static void i9xx_crtc_disable(struct drm_crtc *crtc)
6296{
6297 struct drm_device *dev = crtc->dev;
6298 struct drm_i915_private *dev_priv = dev->dev_private;
6299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6300 struct intel_encoder *encoder;
0b8765c6 6301 int pipe = intel_crtc->pipe;
ef9c3aee 6302
6304cd91
VS
6303 /*
6304 * On gen2 planes are double buffered but the pipe isn't, so we must
6305 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6306 * We also need to wait on all gmch platforms because of the
6307 * self-refresh mode constraint explained above.
6304cd91 6308 */
564ed191 6309 intel_wait_for_vblank(dev, pipe);
6304cd91 6310
4b3a9526
VS
6311 for_each_encoder_on_crtc(dev, crtc, encoder)
6312 encoder->disable(encoder);
6313
f9b61ff6
DV
6314 drm_crtc_vblank_off(crtc);
6315 assert_vblank_disabled(crtc);
6316
575f7ab7 6317 intel_disable_pipe(intel_crtc);
24a1f16d 6318
87476d63 6319 i9xx_pfit_disable(intel_crtc);
24a1f16d 6320
89b667f8
JB
6321 for_each_encoder_on_crtc(dev, crtc, encoder)
6322 if (encoder->post_disable)
6323 encoder->post_disable(encoder);
6324
a65347ba 6325 if (!intel_crtc->config->has_dsi_encoder) {
076ed3b2
CML
6326 if (IS_CHERRYVIEW(dev))
6327 chv_disable_pll(dev_priv, pipe);
6328 else if (IS_VALLEYVIEW(dev))
6329 vlv_disable_pll(dev_priv, pipe);
6330 else
1c4e0274 6331 i9xx_disable_pll(intel_crtc);
076ed3b2 6332 }
0b8765c6 6333
d6db995f
VS
6334 for_each_encoder_on_crtc(dev, crtc, encoder)
6335 if (encoder->post_pll_disable)
6336 encoder->post_pll_disable(encoder);
6337
4a3436e8 6338 if (!IS_GEN2(dev))
a72e4c9f 6339 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
d029bcad
PZ
6340
6341 intel_fbc_disable_crtc(intel_crtc);
0b8765c6
JB
6342}
6343
b17d48e2
ML
6344static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6345{
6346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6348 enum intel_display_power_domain domain;
6349 unsigned long domains;
6350
6351 if (!intel_crtc->active)
6352 return;
6353
a539205a 6354 if (to_intel_plane_state(crtc->primary->state)->visible) {
fc32b1fd
ML
6355 WARN_ON(intel_crtc->unpin_work);
6356
a539205a
ML
6357 intel_pre_disable_primary(crtc);
6358 }
6359
d032ffa0 6360 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
b17d48e2 6361 dev_priv->display.crtc_disable(crtc);
37d9078b
MR
6362 intel_crtc->active = false;
6363 intel_update_watermarks(crtc);
1f7457b1 6364 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6365
6366 domains = intel_crtc->enabled_power_domains;
6367 for_each_power_domain(domain, domains)
6368 intel_display_power_put(dev_priv, domain);
6369 intel_crtc->enabled_power_domains = 0;
6370}
6371
6b72d486
ML
6372/*
6373 * turn all crtc's off, but do not adjust state
6374 * This has to be paired with a call to intel_modeset_setup_hw_state.
6375 */
70e0bd74 6376int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6377{
70e0bd74
ML
6378 struct drm_mode_config *config = &dev->mode_config;
6379 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6380 struct drm_atomic_state *state;
6b72d486 6381 struct drm_crtc *crtc;
70e0bd74
ML
6382 unsigned crtc_mask = 0;
6383 int ret = 0;
6384
6385 if (WARN_ON(!ctx))
6386 return 0;
6387
6388 lockdep_assert_held(&ctx->ww_ctx);
6389 state = drm_atomic_state_alloc(dev);
6390 if (WARN_ON(!state))
6391 return -ENOMEM;
6392
6393 state->acquire_ctx = ctx;
6394 state->allow_modeset = true;
6395
6396 for_each_crtc(dev, crtc) {
6397 struct drm_crtc_state *crtc_state =
6398 drm_atomic_get_crtc_state(state, crtc);
6b72d486 6399
70e0bd74
ML
6400 ret = PTR_ERR_OR_ZERO(crtc_state);
6401 if (ret)
6402 goto free;
6403
6404 if (!crtc_state->active)
6405 continue;
6406
6407 crtc_state->active = false;
6408 crtc_mask |= 1 << drm_crtc_index(crtc);
6409 }
6410
6411 if (crtc_mask) {
74c090b1 6412 ret = drm_atomic_commit(state);
70e0bd74
ML
6413
6414 if (!ret) {
6415 for_each_crtc(dev, crtc)
6416 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6417 crtc->state->active = true;
6418
6419 return ret;
6420 }
6421 }
6422
6423free:
6424 if (ret)
6425 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6426 drm_atomic_state_free(state);
6427 return ret;
ee7b9f93
JB
6428}
6429
ea5b213a 6430void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6431{
4ef69c7a 6432 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6433
ea5b213a
CW
6434 drm_encoder_cleanup(encoder);
6435 kfree(intel_encoder);
7e7d76c3
JB
6436}
6437
0a91ca29
DV
6438/* Cross check the actual hw state with our own modeset state tracking (and it's
6439 * internal consistency). */
b980514c 6440static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6441{
35dd3c64
ML
6442 struct drm_crtc *crtc = connector->base.state->crtc;
6443
6444 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6445 connector->base.base.id,
6446 connector->base.name);
6447
0a91ca29 6448 if (connector->get_hw_state(connector)) {
e85376cb 6449 struct intel_encoder *encoder = connector->encoder;
35dd3c64 6450 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6451
35dd3c64
ML
6452 I915_STATE_WARN(!crtc,
6453 "connector enabled without attached crtc\n");
0a91ca29 6454
35dd3c64
ML
6455 if (!crtc)
6456 return;
6457
6458 I915_STATE_WARN(!crtc->state->active,
6459 "connector is active, but attached crtc isn't\n");
6460
e85376cb 6461 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6462 return;
6463
e85376cb 6464 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6465 "atomic encoder doesn't match attached encoder\n");
6466
e85376cb 6467 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6468 "attached encoder crtc differs from connector crtc\n");
6469 } else {
4d688a2a
ML
6470 I915_STATE_WARN(crtc && crtc->state->active,
6471 "attached crtc is active, but connector isn't\n");
35dd3c64
ML
6472 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6473 "best encoder set without crtc!\n");
0a91ca29 6474 }
79e53945
JB
6475}
6476
08d9bc92
ACO
6477int intel_connector_init(struct intel_connector *connector)
6478{
6479 struct drm_connector_state *connector_state;
6480
6481 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6482 if (!connector_state)
6483 return -ENOMEM;
6484
6485 connector->base.state = connector_state;
6486 return 0;
6487}
6488
6489struct intel_connector *intel_connector_alloc(void)
6490{
6491 struct intel_connector *connector;
6492
6493 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6494 if (!connector)
6495 return NULL;
6496
6497 if (intel_connector_init(connector) < 0) {
6498 kfree(connector);
6499 return NULL;
6500 }
6501
6502 return connector;
6503}
6504
f0947c37
DV
6505/* Simple connector->get_hw_state implementation for encoders that support only
6506 * one connector and no cloning and hence the encoder state determines the state
6507 * of the connector. */
6508bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6509{
24929352 6510 enum pipe pipe = 0;
f0947c37 6511 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6512
f0947c37 6513 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6514}
6515
6d293983 6516static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6517{
6d293983
ACO
6518 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6519 return crtc_state->fdi_lanes;
d272ddfa
VS
6520
6521 return 0;
6522}
6523
6d293983 6524static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6525 struct intel_crtc_state *pipe_config)
1857e1da 6526{
6d293983
ACO
6527 struct drm_atomic_state *state = pipe_config->base.state;
6528 struct intel_crtc *other_crtc;
6529 struct intel_crtc_state *other_crtc_state;
6530
1857e1da
DV
6531 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6532 pipe_name(pipe), pipe_config->fdi_lanes);
6533 if (pipe_config->fdi_lanes > 4) {
6534 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6535 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6536 return -EINVAL;
1857e1da
DV
6537 }
6538
bafb6553 6539 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6540 if (pipe_config->fdi_lanes > 2) {
6541 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6542 pipe_config->fdi_lanes);
6d293983 6543 return -EINVAL;
1857e1da 6544 } else {
6d293983 6545 return 0;
1857e1da
DV
6546 }
6547 }
6548
6549 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6550 return 0;
1857e1da
DV
6551
6552 /* Ivybridge 3 pipe is really complicated */
6553 switch (pipe) {
6554 case PIPE_A:
6d293983 6555 return 0;
1857e1da 6556 case PIPE_B:
6d293983
ACO
6557 if (pipe_config->fdi_lanes <= 2)
6558 return 0;
6559
6560 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6561 other_crtc_state =
6562 intel_atomic_get_crtc_state(state, other_crtc);
6563 if (IS_ERR(other_crtc_state))
6564 return PTR_ERR(other_crtc_state);
6565
6566 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6567 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6568 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6569 return -EINVAL;
1857e1da 6570 }
6d293983 6571 return 0;
1857e1da 6572 case PIPE_C:
251cc67c
VS
6573 if (pipe_config->fdi_lanes > 2) {
6574 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6575 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6576 return -EINVAL;
251cc67c 6577 }
6d293983
ACO
6578
6579 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6580 other_crtc_state =
6581 intel_atomic_get_crtc_state(state, other_crtc);
6582 if (IS_ERR(other_crtc_state))
6583 return PTR_ERR(other_crtc_state);
6584
6585 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6586 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6587 return -EINVAL;
1857e1da 6588 }
6d293983 6589 return 0;
1857e1da
DV
6590 default:
6591 BUG();
6592 }
6593}
6594
e29c22c0
DV
6595#define RETRY 1
6596static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6597 struct intel_crtc_state *pipe_config)
877d48d5 6598{
1857e1da 6599 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6600 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6601 int lane, link_bw, fdi_dotclock, ret;
6602 bool needs_recompute = false;
877d48d5 6603
e29c22c0 6604retry:
877d48d5
DV
6605 /* FDI is a binary signal running at ~2.7GHz, encoding
6606 * each output octet as 10 bits. The actual frequency
6607 * is stored as a divider into a 100MHz clock, and the
6608 * mode pixel clock is stored in units of 1KHz.
6609 * Hence the bw of each lane in terms of the mode signal
6610 * is:
6611 */
6612 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6613
241bfc38 6614 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6615
2bd89a07 6616 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6617 pipe_config->pipe_bpp);
6618
6619 pipe_config->fdi_lanes = lane;
6620
2bd89a07 6621 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6622 link_bw, &pipe_config->fdi_m_n);
1857e1da 6623
6d293983
ACO
6624 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6625 intel_crtc->pipe, pipe_config);
6626 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6627 pipe_config->pipe_bpp -= 2*3;
6628 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6629 pipe_config->pipe_bpp);
6630 needs_recompute = true;
6631 pipe_config->bw_constrained = true;
6632
6633 goto retry;
6634 }
6635
6636 if (needs_recompute)
6637 return RETRY;
6638
6d293983 6639 return ret;
877d48d5
DV
6640}
6641
8cfb3407
VS
6642static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6643 struct intel_crtc_state *pipe_config)
6644{
6645 if (pipe_config->pipe_bpp > 24)
6646 return false;
6647
6648 /* HSW can handle pixel rate up to cdclk? */
6649 if (IS_HASWELL(dev_priv->dev))
6650 return true;
6651
6652 /*
b432e5cf
VS
6653 * We compare against max which means we must take
6654 * the increased cdclk requirement into account when
6655 * calculating the new cdclk.
6656 *
6657 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6658 */
6659 return ilk_pipe_pixel_rate(pipe_config) <=
6660 dev_priv->max_cdclk_freq * 95 / 100;
6661}
6662
42db64ef 6663static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6664 struct intel_crtc_state *pipe_config)
42db64ef 6665{
8cfb3407
VS
6666 struct drm_device *dev = crtc->base.dev;
6667 struct drm_i915_private *dev_priv = dev->dev_private;
6668
d330a953 6669 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6670 hsw_crtc_supports_ips(crtc) &&
6671 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6672}
6673
39acb4aa
VS
6674static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6675{
6676 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6677
6678 /* GDG double wide on either pipe, otherwise pipe A only */
6679 return INTEL_INFO(dev_priv)->gen < 4 &&
6680 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6681}
6682
a43f6e0f 6683static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6684 struct intel_crtc_state *pipe_config)
79e53945 6685{
a43f6e0f 6686 struct drm_device *dev = crtc->base.dev;
8bd31e67 6687 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6688 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6689
ad3a4479 6690 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6691 if (INTEL_INFO(dev)->gen < 4) {
39acb4aa 6692 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
6693
6694 /*
39acb4aa 6695 * Enable double wide mode when the dot clock
cf532bb2 6696 * is > 90% of the (display) core speed.
cf532bb2 6697 */
39acb4aa
VS
6698 if (intel_crtc_supports_double_wide(crtc) &&
6699 adjusted_mode->crtc_clock > clock_limit) {
ad3a4479 6700 clock_limit *= 2;
cf532bb2 6701 pipe_config->double_wide = true;
ad3a4479
VS
6702 }
6703
39acb4aa
VS
6704 if (adjusted_mode->crtc_clock > clock_limit) {
6705 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6706 adjusted_mode->crtc_clock, clock_limit,
6707 yesno(pipe_config->double_wide));
e29c22c0 6708 return -EINVAL;
39acb4aa 6709 }
2c07245f 6710 }
89749350 6711
1d1d0e27
VS
6712 /*
6713 * Pipe horizontal size must be even in:
6714 * - DVO ganged mode
6715 * - LVDS dual channel mode
6716 * - Double wide pipe
6717 */
a93e255f 6718 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6719 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6720 pipe_config->pipe_src_w &= ~1;
6721
8693a824
DL
6722 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6723 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6724 */
6725 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6726 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6727 return -EINVAL;
44f46b42 6728
f5adf94e 6729 if (HAS_IPS(dev))
a43f6e0f
DV
6730 hsw_compute_ips_config(crtc, pipe_config);
6731
877d48d5 6732 if (pipe_config->has_pch_encoder)
a43f6e0f 6733 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6734
cf5a15be 6735 return 0;
79e53945
JB
6736}
6737
1652d19e
VS
6738static int skylake_get_display_clock_speed(struct drm_device *dev)
6739{
6740 struct drm_i915_private *dev_priv = to_i915(dev);
6741 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6742 uint32_t cdctl = I915_READ(CDCLK_CTL);
6743 uint32_t linkrate;
6744
414355a7 6745 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6746 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6747
6748 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6749 return 540000;
6750
6751 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6752 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6753
71cd8423
DL
6754 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6755 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6756 /* vco 8640 */
6757 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6758 case CDCLK_FREQ_450_432:
6759 return 432000;
6760 case CDCLK_FREQ_337_308:
6761 return 308570;
6762 case CDCLK_FREQ_675_617:
6763 return 617140;
6764 default:
6765 WARN(1, "Unknown cd freq selection\n");
6766 }
6767 } else {
6768 /* vco 8100 */
6769 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6770 case CDCLK_FREQ_450_432:
6771 return 450000;
6772 case CDCLK_FREQ_337_308:
6773 return 337500;
6774 case CDCLK_FREQ_675_617:
6775 return 675000;
6776 default:
6777 WARN(1, "Unknown cd freq selection\n");
6778 }
6779 }
6780
6781 /* error case, do as if DPLL0 isn't enabled */
6782 return 24000;
6783}
6784
acd3f3d3
BP
6785static int broxton_get_display_clock_speed(struct drm_device *dev)
6786{
6787 struct drm_i915_private *dev_priv = to_i915(dev);
6788 uint32_t cdctl = I915_READ(CDCLK_CTL);
6789 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6790 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6791 int cdclk;
6792
6793 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6794 return 19200;
6795
6796 cdclk = 19200 * pll_ratio / 2;
6797
6798 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6799 case BXT_CDCLK_CD2X_DIV_SEL_1:
6800 return cdclk; /* 576MHz or 624MHz */
6801 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6802 return cdclk * 2 / 3; /* 384MHz */
6803 case BXT_CDCLK_CD2X_DIV_SEL_2:
6804 return cdclk / 2; /* 288MHz */
6805 case BXT_CDCLK_CD2X_DIV_SEL_4:
6806 return cdclk / 4; /* 144MHz */
6807 }
6808
6809 /* error case, do as if DE PLL isn't enabled */
6810 return 19200;
6811}
6812
1652d19e
VS
6813static int broadwell_get_display_clock_speed(struct drm_device *dev)
6814{
6815 struct drm_i915_private *dev_priv = dev->dev_private;
6816 uint32_t lcpll = I915_READ(LCPLL_CTL);
6817 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6818
6819 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6820 return 800000;
6821 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6822 return 450000;
6823 else if (freq == LCPLL_CLK_FREQ_450)
6824 return 450000;
6825 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6826 return 540000;
6827 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6828 return 337500;
6829 else
6830 return 675000;
6831}
6832
6833static int haswell_get_display_clock_speed(struct drm_device *dev)
6834{
6835 struct drm_i915_private *dev_priv = dev->dev_private;
6836 uint32_t lcpll = I915_READ(LCPLL_CTL);
6837 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6838
6839 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6840 return 800000;
6841 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6842 return 450000;
6843 else if (freq == LCPLL_CLK_FREQ_450)
6844 return 450000;
6845 else if (IS_HSW_ULT(dev))
6846 return 337500;
6847 else
6848 return 540000;
79e53945
JB
6849}
6850
25eb05fc
JB
6851static int valleyview_get_display_clock_speed(struct drm_device *dev)
6852{
bfa7df01
VS
6853 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6854 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6855}
6856
b37a6434
VS
6857static int ilk_get_display_clock_speed(struct drm_device *dev)
6858{
6859 return 450000;
6860}
6861
e70236a8
JB
6862static int i945_get_display_clock_speed(struct drm_device *dev)
6863{
6864 return 400000;
6865}
79e53945 6866
e70236a8 6867static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6868{
e907f170 6869 return 333333;
e70236a8 6870}
79e53945 6871
e70236a8
JB
6872static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6873{
6874 return 200000;
6875}
79e53945 6876
257a7ffc
DV
6877static int pnv_get_display_clock_speed(struct drm_device *dev)
6878{
6879 u16 gcfgc = 0;
6880
6881 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6882
6883 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6884 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6885 return 266667;
257a7ffc 6886 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6887 return 333333;
257a7ffc 6888 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6889 return 444444;
257a7ffc
DV
6890 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6891 return 200000;
6892 default:
6893 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6894 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6895 return 133333;
257a7ffc 6896 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6897 return 166667;
257a7ffc
DV
6898 }
6899}
6900
e70236a8
JB
6901static int i915gm_get_display_clock_speed(struct drm_device *dev)
6902{
6903 u16 gcfgc = 0;
79e53945 6904
e70236a8
JB
6905 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6906
6907 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6908 return 133333;
e70236a8
JB
6909 else {
6910 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6911 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6912 return 333333;
e70236a8
JB
6913 default:
6914 case GC_DISPLAY_CLOCK_190_200_MHZ:
6915 return 190000;
79e53945 6916 }
e70236a8
JB
6917 }
6918}
6919
6920static int i865_get_display_clock_speed(struct drm_device *dev)
6921{
e907f170 6922 return 266667;
e70236a8
JB
6923}
6924
1b1d2716 6925static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6926{
6927 u16 hpllcc = 0;
1b1d2716 6928
65cd2b3f
VS
6929 /*
6930 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6931 * encoding is different :(
6932 * FIXME is this the right way to detect 852GM/852GMV?
6933 */
6934 if (dev->pdev->revision == 0x1)
6935 return 133333;
6936
1b1d2716
VS
6937 pci_bus_read_config_word(dev->pdev->bus,
6938 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6939
e70236a8
JB
6940 /* Assume that the hardware is in the high speed state. This
6941 * should be the default.
6942 */
6943 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6944 case GC_CLOCK_133_200:
1b1d2716 6945 case GC_CLOCK_133_200_2:
e70236a8
JB
6946 case GC_CLOCK_100_200:
6947 return 200000;
6948 case GC_CLOCK_166_250:
6949 return 250000;
6950 case GC_CLOCK_100_133:
e907f170 6951 return 133333;
1b1d2716
VS
6952 case GC_CLOCK_133_266:
6953 case GC_CLOCK_133_266_2:
6954 case GC_CLOCK_166_266:
6955 return 266667;
e70236a8 6956 }
79e53945 6957
e70236a8
JB
6958 /* Shouldn't happen */
6959 return 0;
6960}
79e53945 6961
e70236a8
JB
6962static int i830_get_display_clock_speed(struct drm_device *dev)
6963{
e907f170 6964 return 133333;
79e53945
JB
6965}
6966
34edce2f
VS
6967static unsigned int intel_hpll_vco(struct drm_device *dev)
6968{
6969 struct drm_i915_private *dev_priv = dev->dev_private;
6970 static const unsigned int blb_vco[8] = {
6971 [0] = 3200000,
6972 [1] = 4000000,
6973 [2] = 5333333,
6974 [3] = 4800000,
6975 [4] = 6400000,
6976 };
6977 static const unsigned int pnv_vco[8] = {
6978 [0] = 3200000,
6979 [1] = 4000000,
6980 [2] = 5333333,
6981 [3] = 4800000,
6982 [4] = 2666667,
6983 };
6984 static const unsigned int cl_vco[8] = {
6985 [0] = 3200000,
6986 [1] = 4000000,
6987 [2] = 5333333,
6988 [3] = 6400000,
6989 [4] = 3333333,
6990 [5] = 3566667,
6991 [6] = 4266667,
6992 };
6993 static const unsigned int elk_vco[8] = {
6994 [0] = 3200000,
6995 [1] = 4000000,
6996 [2] = 5333333,
6997 [3] = 4800000,
6998 };
6999 static const unsigned int ctg_vco[8] = {
7000 [0] = 3200000,
7001 [1] = 4000000,
7002 [2] = 5333333,
7003 [3] = 6400000,
7004 [4] = 2666667,
7005 [5] = 4266667,
7006 };
7007 const unsigned int *vco_table;
7008 unsigned int vco;
7009 uint8_t tmp = 0;
7010
7011 /* FIXME other chipsets? */
7012 if (IS_GM45(dev))
7013 vco_table = ctg_vco;
7014 else if (IS_G4X(dev))
7015 vco_table = elk_vco;
7016 else if (IS_CRESTLINE(dev))
7017 vco_table = cl_vco;
7018 else if (IS_PINEVIEW(dev))
7019 vco_table = pnv_vco;
7020 else if (IS_G33(dev))
7021 vco_table = blb_vco;
7022 else
7023 return 0;
7024
7025 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7026
7027 vco = vco_table[tmp & 0x7];
7028 if (vco == 0)
7029 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7030 else
7031 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7032
7033 return vco;
7034}
7035
7036static int gm45_get_display_clock_speed(struct drm_device *dev)
7037{
7038 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7039 uint16_t tmp = 0;
7040
7041 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7042
7043 cdclk_sel = (tmp >> 12) & 0x1;
7044
7045 switch (vco) {
7046 case 2666667:
7047 case 4000000:
7048 case 5333333:
7049 return cdclk_sel ? 333333 : 222222;
7050 case 3200000:
7051 return cdclk_sel ? 320000 : 228571;
7052 default:
7053 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7054 return 222222;
7055 }
7056}
7057
7058static int i965gm_get_display_clock_speed(struct drm_device *dev)
7059{
7060 static const uint8_t div_3200[] = { 16, 10, 8 };
7061 static const uint8_t div_4000[] = { 20, 12, 10 };
7062 static const uint8_t div_5333[] = { 24, 16, 14 };
7063 const uint8_t *div_table;
7064 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7065 uint16_t tmp = 0;
7066
7067 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7068
7069 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7070
7071 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7072 goto fail;
7073
7074 switch (vco) {
7075 case 3200000:
7076 div_table = div_3200;
7077 break;
7078 case 4000000:
7079 div_table = div_4000;
7080 break;
7081 case 5333333:
7082 div_table = div_5333;
7083 break;
7084 default:
7085 goto fail;
7086 }
7087
7088 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7089
caf4e252 7090fail:
34edce2f
VS
7091 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7092 return 200000;
7093}
7094
7095static int g33_get_display_clock_speed(struct drm_device *dev)
7096{
7097 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7098 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7099 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7100 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7101 const uint8_t *div_table;
7102 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7103 uint16_t tmp = 0;
7104
7105 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7106
7107 cdclk_sel = (tmp >> 4) & 0x7;
7108
7109 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7110 goto fail;
7111
7112 switch (vco) {
7113 case 3200000:
7114 div_table = div_3200;
7115 break;
7116 case 4000000:
7117 div_table = div_4000;
7118 break;
7119 case 4800000:
7120 div_table = div_4800;
7121 break;
7122 case 5333333:
7123 div_table = div_5333;
7124 break;
7125 default:
7126 goto fail;
7127 }
7128
7129 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7130
caf4e252 7131fail:
34edce2f
VS
7132 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7133 return 190476;
7134}
7135
2c07245f 7136static void
a65851af 7137intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7138{
a65851af
VS
7139 while (*num > DATA_LINK_M_N_MASK ||
7140 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7141 *num >>= 1;
7142 *den >>= 1;
7143 }
7144}
7145
a65851af
VS
7146static void compute_m_n(unsigned int m, unsigned int n,
7147 uint32_t *ret_m, uint32_t *ret_n)
7148{
7149 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7150 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7151 intel_reduce_m_n_ratio(ret_m, ret_n);
7152}
7153
e69d0bc1
DV
7154void
7155intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7156 int pixel_clock, int link_clock,
7157 struct intel_link_m_n *m_n)
2c07245f 7158{
e69d0bc1 7159 m_n->tu = 64;
a65851af
VS
7160
7161 compute_m_n(bits_per_pixel * pixel_clock,
7162 link_clock * nlanes * 8,
7163 &m_n->gmch_m, &m_n->gmch_n);
7164
7165 compute_m_n(pixel_clock, link_clock,
7166 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7167}
7168
a7615030
CW
7169static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7170{
d330a953
JN
7171 if (i915.panel_use_ssc >= 0)
7172 return i915.panel_use_ssc != 0;
41aa3448 7173 return dev_priv->vbt.lvds_use_ssc
435793df 7174 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7175}
7176
a93e255f
ACO
7177static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7178 int num_connectors)
c65d77d8 7179{
a93e255f 7180 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7181 struct drm_i915_private *dev_priv = dev->dev_private;
7182 int refclk;
7183
a93e255f
ACO
7184 WARN_ON(!crtc_state->base.state);
7185
5ab7b0b7 7186 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7187 refclk = 100000;
a93e255f 7188 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7189 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7190 refclk = dev_priv->vbt.lvds_ssc_freq;
7191 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7192 } else if (!IS_GEN2(dev)) {
7193 refclk = 96000;
7194 } else {
7195 refclk = 48000;
7196 }
7197
7198 return refclk;
7199}
7200
7429e9d4 7201static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7202{
7df00d7a 7203 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7204}
f47709a9 7205
7429e9d4
DV
7206static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7207{
7208 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7209}
7210
f47709a9 7211static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7212 struct intel_crtc_state *crtc_state,
a7516a05
JB
7213 intel_clock_t *reduced_clock)
7214{
f47709a9 7215 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7216 u32 fp, fp2 = 0;
7217
7218 if (IS_PINEVIEW(dev)) {
190f68c5 7219 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7220 if (reduced_clock)
7429e9d4 7221 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7222 } else {
190f68c5 7223 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7224 if (reduced_clock)
7429e9d4 7225 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7226 }
7227
190f68c5 7228 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7229
f47709a9 7230 crtc->lowfreq_avail = false;
a93e255f 7231 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7232 reduced_clock) {
190f68c5 7233 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7234 crtc->lowfreq_avail = true;
a7516a05 7235 } else {
190f68c5 7236 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7237 }
7238}
7239
5e69f97f
CML
7240static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7241 pipe)
89b667f8
JB
7242{
7243 u32 reg_val;
7244
7245 /*
7246 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7247 * and set it to a reasonable value instead.
7248 */
ab3c759a 7249 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7250 reg_val &= 0xffffff00;
7251 reg_val |= 0x00000030;
ab3c759a 7252 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7253
ab3c759a 7254 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7255 reg_val &= 0x8cffffff;
7256 reg_val = 0x8c000000;
ab3c759a 7257 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7258
ab3c759a 7259 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7260 reg_val &= 0xffffff00;
ab3c759a 7261 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7262
ab3c759a 7263 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7264 reg_val &= 0x00ffffff;
7265 reg_val |= 0xb0000000;
ab3c759a 7266 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7267}
7268
b551842d
DV
7269static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7270 struct intel_link_m_n *m_n)
7271{
7272 struct drm_device *dev = crtc->base.dev;
7273 struct drm_i915_private *dev_priv = dev->dev_private;
7274 int pipe = crtc->pipe;
7275
e3b95f1e
DV
7276 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7277 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7278 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7279 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7280}
7281
7282static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7283 struct intel_link_m_n *m_n,
7284 struct intel_link_m_n *m2_n2)
b551842d
DV
7285{
7286 struct drm_device *dev = crtc->base.dev;
7287 struct drm_i915_private *dev_priv = dev->dev_private;
7288 int pipe = crtc->pipe;
6e3c9717 7289 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7290
7291 if (INTEL_INFO(dev)->gen >= 5) {
7292 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7293 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7294 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7295 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7296 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7297 * for gen < 8) and if DRRS is supported (to make sure the
7298 * registers are not unnecessarily accessed).
7299 */
44395bfe 7300 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7301 crtc->config->has_drrs) {
f769cd24
VK
7302 I915_WRITE(PIPE_DATA_M2(transcoder),
7303 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7304 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7305 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7306 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7307 }
b551842d 7308 } else {
e3b95f1e
DV
7309 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7310 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7311 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7312 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7313 }
7314}
7315
fe3cd48d 7316void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7317{
fe3cd48d
R
7318 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7319
7320 if (m_n == M1_N1) {
7321 dp_m_n = &crtc->config->dp_m_n;
7322 dp_m2_n2 = &crtc->config->dp_m2_n2;
7323 } else if (m_n == M2_N2) {
7324
7325 /*
7326 * M2_N2 registers are not supported. Hence m2_n2 divider value
7327 * needs to be programmed into M1_N1.
7328 */
7329 dp_m_n = &crtc->config->dp_m2_n2;
7330 } else {
7331 DRM_ERROR("Unsupported divider value\n");
7332 return;
7333 }
7334
6e3c9717
ACO
7335 if (crtc->config->has_pch_encoder)
7336 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7337 else
fe3cd48d 7338 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7339}
7340
251ac862
DV
7341static void vlv_compute_dpll(struct intel_crtc *crtc,
7342 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7343{
7344 u32 dpll, dpll_md;
7345
7346 /*
7347 * Enable DPIO clock input. We should never disable the reference
7348 * clock for pipe B, since VGA hotplug / manual detection depends
7349 * on it.
7350 */
60bfe44f
VS
7351 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7352 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
bdd4b6a6
DV
7353 /* We should never disable this, set it here for state tracking */
7354 if (crtc->pipe == PIPE_B)
7355 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7356 dpll |= DPLL_VCO_ENABLE;
d288f65f 7357 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7358
d288f65f 7359 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7360 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7361 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7362}
7363
d288f65f 7364static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7365 const struct intel_crtc_state *pipe_config)
a0c4da24 7366{
f47709a9 7367 struct drm_device *dev = crtc->base.dev;
a0c4da24 7368 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7369 int pipe = crtc->pipe;
bdd4b6a6 7370 u32 mdiv;
a0c4da24 7371 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7372 u32 coreclk, reg_val;
a0c4da24 7373
a580516d 7374 mutex_lock(&dev_priv->sb_lock);
09153000 7375
d288f65f
VS
7376 bestn = pipe_config->dpll.n;
7377 bestm1 = pipe_config->dpll.m1;
7378 bestm2 = pipe_config->dpll.m2;
7379 bestp1 = pipe_config->dpll.p1;
7380 bestp2 = pipe_config->dpll.p2;
a0c4da24 7381
89b667f8
JB
7382 /* See eDP HDMI DPIO driver vbios notes doc */
7383
7384 /* PLL B needs special handling */
bdd4b6a6 7385 if (pipe == PIPE_B)
5e69f97f 7386 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7387
7388 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7389 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7390
7391 /* Disable target IRef on PLL */
ab3c759a 7392 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7393 reg_val &= 0x00ffffff;
ab3c759a 7394 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7395
7396 /* Disable fast lock */
ab3c759a 7397 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7398
7399 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7400 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7401 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7402 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7403 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7404
7405 /*
7406 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7407 * but we don't support that).
7408 * Note: don't use the DAC post divider as it seems unstable.
7409 */
7410 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7411 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7412
a0c4da24 7413 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7414 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7415
89b667f8 7416 /* Set HBR and RBR LPF coefficients */
d288f65f 7417 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7418 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7419 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7420 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7421 0x009f0003);
89b667f8 7422 else
ab3c759a 7423 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7424 0x00d0000f);
7425
681a8504 7426 if (pipe_config->has_dp_encoder) {
89b667f8 7427 /* Use SSC source */
bdd4b6a6 7428 if (pipe == PIPE_A)
ab3c759a 7429 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7430 0x0df40000);
7431 else
ab3c759a 7432 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7433 0x0df70000);
7434 } else { /* HDMI or VGA */
7435 /* Use bend source */
bdd4b6a6 7436 if (pipe == PIPE_A)
ab3c759a 7437 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7438 0x0df70000);
7439 else
ab3c759a 7440 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7441 0x0df40000);
7442 }
a0c4da24 7443
ab3c759a 7444 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7445 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7447 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7448 coreclk |= 0x01000000;
ab3c759a 7449 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7450
ab3c759a 7451 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7452 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7453}
7454
251ac862
DV
7455static void chv_compute_dpll(struct intel_crtc *crtc,
7456 struct intel_crtc_state *pipe_config)
1ae0d137 7457{
60bfe44f
VS
7458 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7459 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
1ae0d137
VS
7460 DPLL_VCO_ENABLE;
7461 if (crtc->pipe != PIPE_A)
d288f65f 7462 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7463
d288f65f
VS
7464 pipe_config->dpll_hw_state.dpll_md =
7465 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7466}
7467
d288f65f 7468static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7469 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7470{
7471 struct drm_device *dev = crtc->base.dev;
7472 struct drm_i915_private *dev_priv = dev->dev_private;
7473 int pipe = crtc->pipe;
f0f59a00 7474 i915_reg_t dpll_reg = DPLL(crtc->pipe);
9d556c99 7475 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7476 u32 loopfilter, tribuf_calcntr;
9d556c99 7477 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7478 u32 dpio_val;
9cbe40c1 7479 int vco;
9d556c99 7480
d288f65f
VS
7481 bestn = pipe_config->dpll.n;
7482 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7483 bestm1 = pipe_config->dpll.m1;
7484 bestm2 = pipe_config->dpll.m2 >> 22;
7485 bestp1 = pipe_config->dpll.p1;
7486 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7487 vco = pipe_config->dpll.vco;
a945ce7e 7488 dpio_val = 0;
9cbe40c1 7489 loopfilter = 0;
9d556c99
CML
7490
7491 /*
7492 * Enable Refclk and SSC
7493 */
a11b0703 7494 I915_WRITE(dpll_reg,
d288f65f 7495 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7496
a580516d 7497 mutex_lock(&dev_priv->sb_lock);
9d556c99 7498
9d556c99
CML
7499 /* p1 and p2 divider */
7500 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7501 5 << DPIO_CHV_S1_DIV_SHIFT |
7502 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7503 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7504 1 << DPIO_CHV_K_DIV_SHIFT);
7505
7506 /* Feedback post-divider - m2 */
7507 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7508
7509 /* Feedback refclk divider - n and m1 */
7510 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7511 DPIO_CHV_M1_DIV_BY_2 |
7512 1 << DPIO_CHV_N_DIV_SHIFT);
7513
7514 /* M2 fraction division */
25a25dfc 7515 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7516
7517 /* M2 fraction division enable */
a945ce7e
VP
7518 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7519 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7520 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7521 if (bestm2_frac)
7522 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7523 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7524
de3a0fde
VP
7525 /* Program digital lock detect threshold */
7526 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7527 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7528 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7529 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7530 if (!bestm2_frac)
7531 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7532 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7533
9d556c99 7534 /* Loop filter */
9cbe40c1
VP
7535 if (vco == 5400000) {
7536 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7537 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7538 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7539 tribuf_calcntr = 0x9;
7540 } else if (vco <= 6200000) {
7541 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7542 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7543 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7544 tribuf_calcntr = 0x9;
7545 } else if (vco <= 6480000) {
7546 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7547 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7548 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7549 tribuf_calcntr = 0x8;
7550 } else {
7551 /* Not supported. Apply the same limits as in the max case */
7552 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7553 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7554 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7555 tribuf_calcntr = 0;
7556 }
9d556c99
CML
7557 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7558
968040b2 7559 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7560 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7561 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7562 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7563
9d556c99
CML
7564 /* AFC Recal */
7565 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7566 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7567 DPIO_AFC_RECAL);
7568
a580516d 7569 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7570}
7571
d288f65f
VS
7572/**
7573 * vlv_force_pll_on - forcibly enable just the PLL
7574 * @dev_priv: i915 private structure
7575 * @pipe: pipe PLL to enable
7576 * @dpll: PLL configuration
7577 *
7578 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7579 * in cases where we need the PLL enabled even when @pipe is not going to
7580 * be enabled.
7581 */
7582void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7583 const struct dpll *dpll)
7584{
7585 struct intel_crtc *crtc =
7586 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 7587 struct intel_crtc_state pipe_config = {
a93e255f 7588 .base.crtc = &crtc->base,
d288f65f
VS
7589 .pixel_multiplier = 1,
7590 .dpll = *dpll,
7591 };
7592
7593 if (IS_CHERRYVIEW(dev)) {
251ac862 7594 chv_compute_dpll(crtc, &pipe_config);
d288f65f
VS
7595 chv_prepare_pll(crtc, &pipe_config);
7596 chv_enable_pll(crtc, &pipe_config);
7597 } else {
251ac862 7598 vlv_compute_dpll(crtc, &pipe_config);
d288f65f
VS
7599 vlv_prepare_pll(crtc, &pipe_config);
7600 vlv_enable_pll(crtc, &pipe_config);
7601 }
7602}
7603
7604/**
7605 * vlv_force_pll_off - forcibly disable just the PLL
7606 * @dev_priv: i915 private structure
7607 * @pipe: pipe PLL to disable
7608 *
7609 * Disable the PLL for @pipe. To be used in cases where we need
7610 * the PLL enabled even when @pipe is not going to be enabled.
7611 */
7612void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7613{
7614 if (IS_CHERRYVIEW(dev))
7615 chv_disable_pll(to_i915(dev), pipe);
7616 else
7617 vlv_disable_pll(to_i915(dev), pipe);
7618}
7619
251ac862
DV
7620static void i9xx_compute_dpll(struct intel_crtc *crtc,
7621 struct intel_crtc_state *crtc_state,
7622 intel_clock_t *reduced_clock,
7623 int num_connectors)
eb1cbe48 7624{
f47709a9 7625 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7626 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7627 u32 dpll;
7628 bool is_sdvo;
190f68c5 7629 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7630
190f68c5 7631 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7632
a93e255f
ACO
7633 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7634 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7635
7636 dpll = DPLL_VGA_MODE_DIS;
7637
a93e255f 7638 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7639 dpll |= DPLLB_MODE_LVDS;
7640 else
7641 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7642
ef1b460d 7643 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7644 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7645 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7646 }
198a037f
DV
7647
7648 if (is_sdvo)
4a33e48d 7649 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7650
190f68c5 7651 if (crtc_state->has_dp_encoder)
4a33e48d 7652 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7653
7654 /* compute bitmask from p1 value */
7655 if (IS_PINEVIEW(dev))
7656 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7657 else {
7658 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7659 if (IS_G4X(dev) && reduced_clock)
7660 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7661 }
7662 switch (clock->p2) {
7663 case 5:
7664 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7665 break;
7666 case 7:
7667 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7668 break;
7669 case 10:
7670 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7671 break;
7672 case 14:
7673 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7674 break;
7675 }
7676 if (INTEL_INFO(dev)->gen >= 4)
7677 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7678
190f68c5 7679 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7680 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7681 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7682 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7683 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7684 else
7685 dpll |= PLL_REF_INPUT_DREFCLK;
7686
7687 dpll |= DPLL_VCO_ENABLE;
190f68c5 7688 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7689
eb1cbe48 7690 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7691 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7692 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7693 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7694 }
7695}
7696
251ac862
DV
7697static void i8xx_compute_dpll(struct intel_crtc *crtc,
7698 struct intel_crtc_state *crtc_state,
7699 intel_clock_t *reduced_clock,
7700 int num_connectors)
eb1cbe48 7701{
f47709a9 7702 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7703 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7704 u32 dpll;
190f68c5 7705 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7706
190f68c5 7707 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7708
eb1cbe48
DV
7709 dpll = DPLL_VGA_MODE_DIS;
7710
a93e255f 7711 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7712 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7713 } else {
7714 if (clock->p1 == 2)
7715 dpll |= PLL_P1_DIVIDE_BY_TWO;
7716 else
7717 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7718 if (clock->p2 == 4)
7719 dpll |= PLL_P2_DIVIDE_BY_4;
7720 }
7721
a93e255f 7722 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7723 dpll |= DPLL_DVO_2X_MODE;
7724
a93e255f 7725 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7726 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7727 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7728 else
7729 dpll |= PLL_REF_INPUT_DREFCLK;
7730
7731 dpll |= DPLL_VCO_ENABLE;
190f68c5 7732 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7733}
7734
8a654f3b 7735static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7736{
7737 struct drm_device *dev = intel_crtc->base.dev;
7738 struct drm_i915_private *dev_priv = dev->dev_private;
7739 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7740 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7741 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7742 uint32_t crtc_vtotal, crtc_vblank_end;
7743 int vsyncshift = 0;
4d8a62ea
DV
7744
7745 /* We need to be careful not to changed the adjusted mode, for otherwise
7746 * the hw state checker will get angry at the mismatch. */
7747 crtc_vtotal = adjusted_mode->crtc_vtotal;
7748 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7749
609aeaca 7750 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7751 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7752 crtc_vtotal -= 1;
7753 crtc_vblank_end -= 1;
609aeaca 7754
409ee761 7755 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7756 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7757 else
7758 vsyncshift = adjusted_mode->crtc_hsync_start -
7759 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7760 if (vsyncshift < 0)
7761 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7762 }
7763
7764 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7765 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7766
fe2b8f9d 7767 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7768 (adjusted_mode->crtc_hdisplay - 1) |
7769 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7770 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7771 (adjusted_mode->crtc_hblank_start - 1) |
7772 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7773 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7774 (adjusted_mode->crtc_hsync_start - 1) |
7775 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7776
fe2b8f9d 7777 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7778 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7779 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7780 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7781 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7782 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7783 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7784 (adjusted_mode->crtc_vsync_start - 1) |
7785 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7786
b5e508d4
PZ
7787 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7788 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7789 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7790 * bits. */
7791 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7792 (pipe == PIPE_B || pipe == PIPE_C))
7793 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7794
b0e77b9c
PZ
7795 /* pipesrc controls the size that is scaled from, which should
7796 * always be the user's requested size.
7797 */
7798 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7799 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7800 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7801}
7802
1bd1bd80 7803static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7804 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7805{
7806 struct drm_device *dev = crtc->base.dev;
7807 struct drm_i915_private *dev_priv = dev->dev_private;
7808 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7809 uint32_t tmp;
7810
7811 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7812 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7813 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7814 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7815 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7816 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7817 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7818 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7819 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7820
7821 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7822 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7823 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7824 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7825 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7826 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7827 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7828 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7829 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7830
7831 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7832 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7833 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7834 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7835 }
7836
7837 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7838 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7839 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7840
2d112de7
ACO
7841 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7842 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7843}
7844
f6a83288 7845void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7846 struct intel_crtc_state *pipe_config)
babea61d 7847{
2d112de7
ACO
7848 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7849 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7850 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7851 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7852
2d112de7
ACO
7853 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7854 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7855 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7856 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7857
2d112de7 7858 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7859 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7860
2d112de7
ACO
7861 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7862 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7863
7864 mode->hsync = drm_mode_hsync(mode);
7865 mode->vrefresh = drm_mode_vrefresh(mode);
7866 drm_mode_set_name(mode);
babea61d
JB
7867}
7868
84b046f3
DV
7869static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7870{
7871 struct drm_device *dev = intel_crtc->base.dev;
7872 struct drm_i915_private *dev_priv = dev->dev_private;
7873 uint32_t pipeconf;
7874
9f11a9e4 7875 pipeconf = 0;
84b046f3 7876
b6b5d049
VS
7877 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7878 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7879 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7880
6e3c9717 7881 if (intel_crtc->config->double_wide)
cf532bb2 7882 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7883
ff9ce46e
DV
7884 /* only g4x and later have fancy bpc/dither controls */
7885 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7886 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7887 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7888 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7889 PIPECONF_DITHER_TYPE_SP;
84b046f3 7890
6e3c9717 7891 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7892 case 18:
7893 pipeconf |= PIPECONF_6BPC;
7894 break;
7895 case 24:
7896 pipeconf |= PIPECONF_8BPC;
7897 break;
7898 case 30:
7899 pipeconf |= PIPECONF_10BPC;
7900 break;
7901 default:
7902 /* Case prevented by intel_choose_pipe_bpp_dither. */
7903 BUG();
84b046f3
DV
7904 }
7905 }
7906
7907 if (HAS_PIPE_CXSR(dev)) {
7908 if (intel_crtc->lowfreq_avail) {
7909 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7910 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7911 } else {
7912 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7913 }
7914 }
7915
6e3c9717 7916 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7917 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7918 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7919 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7920 else
7921 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7922 } else
84b046f3
DV
7923 pipeconf |= PIPECONF_PROGRESSIVE;
7924
6e3c9717 7925 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7926 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7927
84b046f3
DV
7928 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7929 POSTING_READ(PIPECONF(intel_crtc->pipe));
7930}
7931
190f68c5
ACO
7932static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7933 struct intel_crtc_state *crtc_state)
79e53945 7934{
c7653199 7935 struct drm_device *dev = crtc->base.dev;
79e53945 7936 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7937 int refclk, num_connectors = 0;
c329a4ec
DV
7938 intel_clock_t clock;
7939 bool ok;
d4906093 7940 const intel_limit_t *limit;
55bb9992 7941 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7942 struct drm_connector *connector;
55bb9992
ACO
7943 struct drm_connector_state *connector_state;
7944 int i;
79e53945 7945
dd3cd74a
ACO
7946 memset(&crtc_state->dpll_hw_state, 0,
7947 sizeof(crtc_state->dpll_hw_state));
7948
a65347ba
JN
7949 if (crtc_state->has_dsi_encoder)
7950 return 0;
43565a06 7951
a65347ba
JN
7952 for_each_connector_in_state(state, connector, connector_state, i) {
7953 if (connector_state->crtc == &crtc->base)
7954 num_connectors++;
79e53945
JB
7955 }
7956
190f68c5 7957 if (!crtc_state->clock_set) {
a93e255f 7958 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7959
e9fd1c02
JN
7960 /*
7961 * Returns a set of divisors for the desired target clock with
7962 * the given refclk, or FALSE. The returned values represent
7963 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7964 * 2) / p1 / p2.
7965 */
a93e255f
ACO
7966 limit = intel_limit(crtc_state, refclk);
7967 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7968 crtc_state->port_clock,
e9fd1c02 7969 refclk, NULL, &clock);
f2335330 7970 if (!ok) {
e9fd1c02
JN
7971 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7972 return -EINVAL;
7973 }
79e53945 7974
f2335330 7975 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7976 crtc_state->dpll.n = clock.n;
7977 crtc_state->dpll.m1 = clock.m1;
7978 crtc_state->dpll.m2 = clock.m2;
7979 crtc_state->dpll.p1 = clock.p1;
7980 crtc_state->dpll.p2 = clock.p2;
f47709a9 7981 }
7026d4ac 7982
e9fd1c02 7983 if (IS_GEN2(dev)) {
c329a4ec 7984 i8xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7985 num_connectors);
9d556c99 7986 } else if (IS_CHERRYVIEW(dev)) {
251ac862 7987 chv_compute_dpll(crtc, crtc_state);
e9fd1c02 7988 } else if (IS_VALLEYVIEW(dev)) {
251ac862 7989 vlv_compute_dpll(crtc, crtc_state);
e9fd1c02 7990 } else {
c329a4ec 7991 i9xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7992 num_connectors);
e9fd1c02 7993 }
79e53945 7994
c8f7a0db 7995 return 0;
f564048e
EA
7996}
7997
2fa2fe9a 7998static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7999 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8000{
8001 struct drm_device *dev = crtc->base.dev;
8002 struct drm_i915_private *dev_priv = dev->dev_private;
8003 uint32_t tmp;
8004
dc9e7dec
VS
8005 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8006 return;
8007
2fa2fe9a 8008 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
8009 if (!(tmp & PFIT_ENABLE))
8010 return;
2fa2fe9a 8011
06922821 8012 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
8013 if (INTEL_INFO(dev)->gen < 4) {
8014 if (crtc->pipe != PIPE_B)
8015 return;
2fa2fe9a
DV
8016 } else {
8017 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8018 return;
8019 }
8020
06922821 8021 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
8022 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8023 if (INTEL_INFO(dev)->gen < 5)
8024 pipe_config->gmch_pfit.lvds_border_bits =
8025 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8026}
8027
acbec814 8028static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8029 struct intel_crtc_state *pipe_config)
acbec814
JB
8030{
8031 struct drm_device *dev = crtc->base.dev;
8032 struct drm_i915_private *dev_priv = dev->dev_private;
8033 int pipe = pipe_config->cpu_transcoder;
8034 intel_clock_t clock;
8035 u32 mdiv;
662c6ecb 8036 int refclk = 100000;
acbec814 8037
f573de5a
SK
8038 /* In case of MIPI DPLL will not even be used */
8039 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8040 return;
8041
a580516d 8042 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8043 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8044 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8045
8046 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8047 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8048 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8049 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8050 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8051
dccbea3b 8052 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
8053}
8054
5724dbd1
DL
8055static void
8056i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8057 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8058{
8059 struct drm_device *dev = crtc->base.dev;
8060 struct drm_i915_private *dev_priv = dev->dev_private;
8061 u32 val, base, offset;
8062 int pipe = crtc->pipe, plane = crtc->plane;
8063 int fourcc, pixel_format;
6761dd31 8064 unsigned int aligned_height;
b113d5ee 8065 struct drm_framebuffer *fb;
1b842c89 8066 struct intel_framebuffer *intel_fb;
1ad292b5 8067
42a7b088
DL
8068 val = I915_READ(DSPCNTR(plane));
8069 if (!(val & DISPLAY_PLANE_ENABLE))
8070 return;
8071
d9806c9f 8072 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8073 if (!intel_fb) {
1ad292b5
JB
8074 DRM_DEBUG_KMS("failed to alloc fb\n");
8075 return;
8076 }
8077
1b842c89
DL
8078 fb = &intel_fb->base;
8079
18c5247e
DV
8080 if (INTEL_INFO(dev)->gen >= 4) {
8081 if (val & DISPPLANE_TILED) {
49af449b 8082 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8083 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8084 }
8085 }
1ad292b5
JB
8086
8087 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8088 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8089 fb->pixel_format = fourcc;
8090 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8091
8092 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8093 if (plane_config->tiling)
1ad292b5
JB
8094 offset = I915_READ(DSPTILEOFF(plane));
8095 else
8096 offset = I915_READ(DSPLINOFF(plane));
8097 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8098 } else {
8099 base = I915_READ(DSPADDR(plane));
8100 }
8101 plane_config->base = base;
8102
8103 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8104 fb->width = ((val >> 16) & 0xfff) + 1;
8105 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8106
8107 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8108 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8109
b113d5ee 8110 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8111 fb->pixel_format,
8112 fb->modifier[0]);
1ad292b5 8113
f37b5c2b 8114 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8115
2844a921
DL
8116 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8117 pipe_name(pipe), plane, fb->width, fb->height,
8118 fb->bits_per_pixel, base, fb->pitches[0],
8119 plane_config->size);
1ad292b5 8120
2d14030b 8121 plane_config->fb = intel_fb;
1ad292b5
JB
8122}
8123
70b23a98 8124static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8125 struct intel_crtc_state *pipe_config)
70b23a98
VS
8126{
8127 struct drm_device *dev = crtc->base.dev;
8128 struct drm_i915_private *dev_priv = dev->dev_private;
8129 int pipe = pipe_config->cpu_transcoder;
8130 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8131 intel_clock_t clock;
0d7b6b11 8132 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8133 int refclk = 100000;
8134
a580516d 8135 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8136 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8137 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8138 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8139 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8140 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8141 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8142
8143 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8144 clock.m2 = (pll_dw0 & 0xff) << 22;
8145 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8146 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8147 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8148 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8149 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8150
dccbea3b 8151 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8152}
8153
0e8ffe1b 8154static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8155 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8156{
8157 struct drm_device *dev = crtc->base.dev;
8158 struct drm_i915_private *dev_priv = dev->dev_private;
8159 uint32_t tmp;
8160
f458ebbc
DV
8161 if (!intel_display_power_is_enabled(dev_priv,
8162 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
8163 return false;
8164
e143a21c 8165 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8166 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8167
0e8ffe1b
DV
8168 tmp = I915_READ(PIPECONF(crtc->pipe));
8169 if (!(tmp & PIPECONF_ENABLE))
8170 return false;
8171
42571aef
VS
8172 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8173 switch (tmp & PIPECONF_BPC_MASK) {
8174 case PIPECONF_6BPC:
8175 pipe_config->pipe_bpp = 18;
8176 break;
8177 case PIPECONF_8BPC:
8178 pipe_config->pipe_bpp = 24;
8179 break;
8180 case PIPECONF_10BPC:
8181 pipe_config->pipe_bpp = 30;
8182 break;
8183 default:
8184 break;
8185 }
8186 }
8187
b5a9fa09
DV
8188 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8189 pipe_config->limited_color_range = true;
8190
282740f7
VS
8191 if (INTEL_INFO(dev)->gen < 4)
8192 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8193
1bd1bd80
DV
8194 intel_get_pipe_timings(crtc, pipe_config);
8195
2fa2fe9a
DV
8196 i9xx_get_pfit_config(crtc, pipe_config);
8197
6c49f241
DV
8198 if (INTEL_INFO(dev)->gen >= 4) {
8199 tmp = I915_READ(DPLL_MD(crtc->pipe));
8200 pipe_config->pixel_multiplier =
8201 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8202 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8203 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8204 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8205 tmp = I915_READ(DPLL(crtc->pipe));
8206 pipe_config->pixel_multiplier =
8207 ((tmp & SDVO_MULTIPLIER_MASK)
8208 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8209 } else {
8210 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8211 * port and will be fixed up in the encoder->get_config
8212 * function. */
8213 pipe_config->pixel_multiplier = 1;
8214 }
8bcc2795
DV
8215 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8216 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
8217 /*
8218 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8219 * on 830. Filter it out here so that we don't
8220 * report errors due to that.
8221 */
8222 if (IS_I830(dev))
8223 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8224
8bcc2795
DV
8225 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8226 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8227 } else {
8228 /* Mask out read-only status bits. */
8229 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8230 DPLL_PORTC_READY_MASK |
8231 DPLL_PORTB_READY_MASK);
8bcc2795 8232 }
6c49f241 8233
70b23a98
VS
8234 if (IS_CHERRYVIEW(dev))
8235 chv_crtc_clock_get(crtc, pipe_config);
8236 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8237 vlv_crtc_clock_get(crtc, pipe_config);
8238 else
8239 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8240
0f64614d
VS
8241 /*
8242 * Normally the dotclock is filled in by the encoder .get_config()
8243 * but in case the pipe is enabled w/o any ports we need a sane
8244 * default.
8245 */
8246 pipe_config->base.adjusted_mode.crtc_clock =
8247 pipe_config->port_clock / pipe_config->pixel_multiplier;
8248
0e8ffe1b
DV
8249 return true;
8250}
8251
dde86e2d 8252static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8253{
8254 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8255 struct intel_encoder *encoder;
74cfd7ac 8256 u32 val, final;
13d83a67 8257 bool has_lvds = false;
199e5d79 8258 bool has_cpu_edp = false;
199e5d79 8259 bool has_panel = false;
99eb6a01
KP
8260 bool has_ck505 = false;
8261 bool can_ssc = false;
13d83a67
JB
8262
8263 /* We need to take the global config into account */
b2784e15 8264 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8265 switch (encoder->type) {
8266 case INTEL_OUTPUT_LVDS:
8267 has_panel = true;
8268 has_lvds = true;
8269 break;
8270 case INTEL_OUTPUT_EDP:
8271 has_panel = true;
2de6905f 8272 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8273 has_cpu_edp = true;
8274 break;
6847d71b
PZ
8275 default:
8276 break;
13d83a67
JB
8277 }
8278 }
8279
99eb6a01 8280 if (HAS_PCH_IBX(dev)) {
41aa3448 8281 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8282 can_ssc = has_ck505;
8283 } else {
8284 has_ck505 = false;
8285 can_ssc = true;
8286 }
8287
2de6905f
ID
8288 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8289 has_panel, has_lvds, has_ck505);
13d83a67
JB
8290
8291 /* Ironlake: try to setup display ref clock before DPLL
8292 * enabling. This is only under driver's control after
8293 * PCH B stepping, previous chipset stepping should be
8294 * ignoring this setting.
8295 */
74cfd7ac
CW
8296 val = I915_READ(PCH_DREF_CONTROL);
8297
8298 /* As we must carefully and slowly disable/enable each source in turn,
8299 * compute the final state we want first and check if we need to
8300 * make any changes at all.
8301 */
8302 final = val;
8303 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8304 if (has_ck505)
8305 final |= DREF_NONSPREAD_CK505_ENABLE;
8306 else
8307 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8308
8309 final &= ~DREF_SSC_SOURCE_MASK;
8310 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8311 final &= ~DREF_SSC1_ENABLE;
8312
8313 if (has_panel) {
8314 final |= DREF_SSC_SOURCE_ENABLE;
8315
8316 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8317 final |= DREF_SSC1_ENABLE;
8318
8319 if (has_cpu_edp) {
8320 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8321 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8322 else
8323 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8324 } else
8325 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8326 } else {
8327 final |= DREF_SSC_SOURCE_DISABLE;
8328 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8329 }
8330
8331 if (final == val)
8332 return;
8333
13d83a67 8334 /* Always enable nonspread source */
74cfd7ac 8335 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8336
99eb6a01 8337 if (has_ck505)
74cfd7ac 8338 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8339 else
74cfd7ac 8340 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8341
199e5d79 8342 if (has_panel) {
74cfd7ac
CW
8343 val &= ~DREF_SSC_SOURCE_MASK;
8344 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8345
199e5d79 8346 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8347 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8348 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8349 val |= DREF_SSC1_ENABLE;
e77166b5 8350 } else
74cfd7ac 8351 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8352
8353 /* Get SSC going before enabling the outputs */
74cfd7ac 8354 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8355 POSTING_READ(PCH_DREF_CONTROL);
8356 udelay(200);
8357
74cfd7ac 8358 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8359
8360 /* Enable CPU source on CPU attached eDP */
199e5d79 8361 if (has_cpu_edp) {
99eb6a01 8362 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8363 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8364 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8365 } else
74cfd7ac 8366 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8367 } else
74cfd7ac 8368 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8369
74cfd7ac 8370 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8371 POSTING_READ(PCH_DREF_CONTROL);
8372 udelay(200);
8373 } else {
8374 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8375
74cfd7ac 8376 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8377
8378 /* Turn off CPU output */
74cfd7ac 8379 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8380
74cfd7ac 8381 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8382 POSTING_READ(PCH_DREF_CONTROL);
8383 udelay(200);
8384
8385 /* Turn off the SSC source */
74cfd7ac
CW
8386 val &= ~DREF_SSC_SOURCE_MASK;
8387 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8388
8389 /* Turn off SSC1 */
74cfd7ac 8390 val &= ~DREF_SSC1_ENABLE;
199e5d79 8391
74cfd7ac 8392 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8393 POSTING_READ(PCH_DREF_CONTROL);
8394 udelay(200);
8395 }
74cfd7ac
CW
8396
8397 BUG_ON(val != final);
13d83a67
JB
8398}
8399
f31f2d55 8400static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8401{
f31f2d55 8402 uint32_t tmp;
dde86e2d 8403
0ff066a9
PZ
8404 tmp = I915_READ(SOUTH_CHICKEN2);
8405 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8406 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8407
0ff066a9
PZ
8408 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8409 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8410 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8411
0ff066a9
PZ
8412 tmp = I915_READ(SOUTH_CHICKEN2);
8413 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8414 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8415
0ff066a9
PZ
8416 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8417 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8418 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8419}
8420
8421/* WaMPhyProgramming:hsw */
8422static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8423{
8424 uint32_t tmp;
dde86e2d
PZ
8425
8426 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8427 tmp &= ~(0xFF << 24);
8428 tmp |= (0x12 << 24);
8429 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8430
dde86e2d
PZ
8431 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8432 tmp |= (1 << 11);
8433 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8434
8435 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8436 tmp |= (1 << 11);
8437 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8438
dde86e2d
PZ
8439 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8440 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8441 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8442
8443 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8444 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8445 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8446
0ff066a9
PZ
8447 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8448 tmp &= ~(7 << 13);
8449 tmp |= (5 << 13);
8450 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8451
0ff066a9
PZ
8452 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8453 tmp &= ~(7 << 13);
8454 tmp |= (5 << 13);
8455 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8456
8457 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8458 tmp &= ~0xFF;
8459 tmp |= 0x1C;
8460 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8461
8462 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8463 tmp &= ~0xFF;
8464 tmp |= 0x1C;
8465 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8466
8467 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8468 tmp &= ~(0xFF << 16);
8469 tmp |= (0x1C << 16);
8470 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8471
8472 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8473 tmp &= ~(0xFF << 16);
8474 tmp |= (0x1C << 16);
8475 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8476
0ff066a9
PZ
8477 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8478 tmp |= (1 << 27);
8479 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8480
0ff066a9
PZ
8481 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8482 tmp |= (1 << 27);
8483 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8484
0ff066a9
PZ
8485 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8486 tmp &= ~(0xF << 28);
8487 tmp |= (4 << 28);
8488 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8489
0ff066a9
PZ
8490 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8491 tmp &= ~(0xF << 28);
8492 tmp |= (4 << 28);
8493 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8494}
8495
2fa86a1f
PZ
8496/* Implements 3 different sequences from BSpec chapter "Display iCLK
8497 * Programming" based on the parameters passed:
8498 * - Sequence to enable CLKOUT_DP
8499 * - Sequence to enable CLKOUT_DP without spread
8500 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8501 */
8502static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8503 bool with_fdi)
f31f2d55
PZ
8504{
8505 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8506 uint32_t reg, tmp;
8507
8508 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8509 with_spread = true;
c2699524 8510 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8511 with_fdi = false;
f31f2d55 8512
a580516d 8513 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8514
8515 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8516 tmp &= ~SBI_SSCCTL_DISABLE;
8517 tmp |= SBI_SSCCTL_PATHALT;
8518 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8519
8520 udelay(24);
8521
2fa86a1f
PZ
8522 if (with_spread) {
8523 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8524 tmp &= ~SBI_SSCCTL_PATHALT;
8525 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8526
2fa86a1f
PZ
8527 if (with_fdi) {
8528 lpt_reset_fdi_mphy(dev_priv);
8529 lpt_program_fdi_mphy(dev_priv);
8530 }
8531 }
dde86e2d 8532
c2699524 8533 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8534 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8535 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8536 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8537
a580516d 8538 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8539}
8540
47701c3b
PZ
8541/* Sequence to disable CLKOUT_DP */
8542static void lpt_disable_clkout_dp(struct drm_device *dev)
8543{
8544 struct drm_i915_private *dev_priv = dev->dev_private;
8545 uint32_t reg, tmp;
8546
a580516d 8547 mutex_lock(&dev_priv->sb_lock);
47701c3b 8548
c2699524 8549 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8550 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8551 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8552 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8553
8554 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8555 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8556 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8557 tmp |= SBI_SSCCTL_PATHALT;
8558 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8559 udelay(32);
8560 }
8561 tmp |= SBI_SSCCTL_DISABLE;
8562 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8563 }
8564
a580516d 8565 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8566}
8567
bf8fa3d3
PZ
8568static void lpt_init_pch_refclk(struct drm_device *dev)
8569{
bf8fa3d3
PZ
8570 struct intel_encoder *encoder;
8571 bool has_vga = false;
8572
b2784e15 8573 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8574 switch (encoder->type) {
8575 case INTEL_OUTPUT_ANALOG:
8576 has_vga = true;
8577 break;
6847d71b
PZ
8578 default:
8579 break;
bf8fa3d3
PZ
8580 }
8581 }
8582
47701c3b
PZ
8583 if (has_vga)
8584 lpt_enable_clkout_dp(dev, true, true);
8585 else
8586 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8587}
8588
dde86e2d
PZ
8589/*
8590 * Initialize reference clocks when the driver loads
8591 */
8592void intel_init_pch_refclk(struct drm_device *dev)
8593{
8594 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8595 ironlake_init_pch_refclk(dev);
8596 else if (HAS_PCH_LPT(dev))
8597 lpt_init_pch_refclk(dev);
8598}
8599
55bb9992 8600static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8601{
55bb9992 8602 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8603 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8604 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8605 struct drm_connector *connector;
55bb9992 8606 struct drm_connector_state *connector_state;
d9d444cb 8607 struct intel_encoder *encoder;
55bb9992 8608 int num_connectors = 0, i;
d9d444cb
JB
8609 bool is_lvds = false;
8610
da3ced29 8611 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8612 if (connector_state->crtc != crtc_state->base.crtc)
8613 continue;
8614
8615 encoder = to_intel_encoder(connector_state->best_encoder);
8616
d9d444cb
JB
8617 switch (encoder->type) {
8618 case INTEL_OUTPUT_LVDS:
8619 is_lvds = true;
8620 break;
6847d71b
PZ
8621 default:
8622 break;
d9d444cb
JB
8623 }
8624 num_connectors++;
8625 }
8626
8627 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8628 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8629 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8630 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8631 }
8632
8633 return 120000;
8634}
8635
6ff93609 8636static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8637{
c8203565 8638 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8639 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8640 int pipe = intel_crtc->pipe;
c8203565
PZ
8641 uint32_t val;
8642
78114071 8643 val = 0;
c8203565 8644
6e3c9717 8645 switch (intel_crtc->config->pipe_bpp) {
c8203565 8646 case 18:
dfd07d72 8647 val |= PIPECONF_6BPC;
c8203565
PZ
8648 break;
8649 case 24:
dfd07d72 8650 val |= PIPECONF_8BPC;
c8203565
PZ
8651 break;
8652 case 30:
dfd07d72 8653 val |= PIPECONF_10BPC;
c8203565
PZ
8654 break;
8655 case 36:
dfd07d72 8656 val |= PIPECONF_12BPC;
c8203565
PZ
8657 break;
8658 default:
cc769b62
PZ
8659 /* Case prevented by intel_choose_pipe_bpp_dither. */
8660 BUG();
c8203565
PZ
8661 }
8662
6e3c9717 8663 if (intel_crtc->config->dither)
c8203565
PZ
8664 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8665
6e3c9717 8666 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8667 val |= PIPECONF_INTERLACED_ILK;
8668 else
8669 val |= PIPECONF_PROGRESSIVE;
8670
6e3c9717 8671 if (intel_crtc->config->limited_color_range)
3685a8f3 8672 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8673
c8203565
PZ
8674 I915_WRITE(PIPECONF(pipe), val);
8675 POSTING_READ(PIPECONF(pipe));
8676}
8677
86d3efce
VS
8678/*
8679 * Set up the pipe CSC unit.
8680 *
8681 * Currently only full range RGB to limited range RGB conversion
8682 * is supported, but eventually this should handle various
8683 * RGB<->YCbCr scenarios as well.
8684 */
50f3b016 8685static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8686{
8687 struct drm_device *dev = crtc->dev;
8688 struct drm_i915_private *dev_priv = dev->dev_private;
8689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8690 int pipe = intel_crtc->pipe;
8691 uint16_t coeff = 0x7800; /* 1.0 */
8692
8693 /*
8694 * TODO: Check what kind of values actually come out of the pipe
8695 * with these coeff/postoff values and adjust to get the best
8696 * accuracy. Perhaps we even need to take the bpc value into
8697 * consideration.
8698 */
8699
6e3c9717 8700 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8701 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8702
8703 /*
8704 * GY/GU and RY/RU should be the other way around according
8705 * to BSpec, but reality doesn't agree. Just set them up in
8706 * a way that results in the correct picture.
8707 */
8708 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8709 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8710
8711 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8712 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8713
8714 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8715 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8716
8717 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8718 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8719 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8720
8721 if (INTEL_INFO(dev)->gen > 6) {
8722 uint16_t postoff = 0;
8723
6e3c9717 8724 if (intel_crtc->config->limited_color_range)
32cf0cb0 8725 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8726
8727 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8728 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8729 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8730
8731 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8732 } else {
8733 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8734
6e3c9717 8735 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8736 mode |= CSC_BLACK_SCREEN_OFFSET;
8737
8738 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8739 }
8740}
8741
6ff93609 8742static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8743{
756f85cf
PZ
8744 struct drm_device *dev = crtc->dev;
8745 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8747 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8748 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8749 uint32_t val;
8750
3eff4faa 8751 val = 0;
ee2b0b38 8752
6e3c9717 8753 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8754 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8755
6e3c9717 8756 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8757 val |= PIPECONF_INTERLACED_ILK;
8758 else
8759 val |= PIPECONF_PROGRESSIVE;
8760
702e7a56
PZ
8761 I915_WRITE(PIPECONF(cpu_transcoder), val);
8762 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8763
8764 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8765 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8766
3cdf122c 8767 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8768 val = 0;
8769
6e3c9717 8770 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8771 case 18:
8772 val |= PIPEMISC_DITHER_6_BPC;
8773 break;
8774 case 24:
8775 val |= PIPEMISC_DITHER_8_BPC;
8776 break;
8777 case 30:
8778 val |= PIPEMISC_DITHER_10_BPC;
8779 break;
8780 case 36:
8781 val |= PIPEMISC_DITHER_12_BPC;
8782 break;
8783 default:
8784 /* Case prevented by pipe_config_set_bpp. */
8785 BUG();
8786 }
8787
6e3c9717 8788 if (intel_crtc->config->dither)
756f85cf
PZ
8789 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8790
8791 I915_WRITE(PIPEMISC(pipe), val);
8792 }
ee2b0b38
PZ
8793}
8794
6591c6e4 8795static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8796 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8797 intel_clock_t *clock,
8798 bool *has_reduced_clock,
8799 intel_clock_t *reduced_clock)
8800{
8801 struct drm_device *dev = crtc->dev;
8802 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8803 int refclk;
d4906093 8804 const intel_limit_t *limit;
c329a4ec 8805 bool ret;
79e53945 8806
55bb9992 8807 refclk = ironlake_get_refclk(crtc_state);
79e53945 8808
d4906093
ML
8809 /*
8810 * Returns a set of divisors for the desired target clock with the given
8811 * refclk, or FALSE. The returned values represent the clock equation:
8812 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8813 */
a93e255f
ACO
8814 limit = intel_limit(crtc_state, refclk);
8815 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8816 crtc_state->port_clock,
ee9300bb 8817 refclk, NULL, clock);
6591c6e4
PZ
8818 if (!ret)
8819 return false;
cda4b7d3 8820
6591c6e4
PZ
8821 return true;
8822}
8823
d4b1931c
PZ
8824int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8825{
8826 /*
8827 * Account for spread spectrum to avoid
8828 * oversubscribing the link. Max center spread
8829 * is 2.5%; use 5% for safety's sake.
8830 */
8831 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8832 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8833}
8834
7429e9d4 8835static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8836{
7429e9d4 8837 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8838}
8839
de13a2e3 8840static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8841 struct intel_crtc_state *crtc_state,
7429e9d4 8842 u32 *fp,
9a7c7890 8843 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8844{
de13a2e3 8845 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8846 struct drm_device *dev = crtc->dev;
8847 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8848 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8849 struct drm_connector *connector;
55bb9992
ACO
8850 struct drm_connector_state *connector_state;
8851 struct intel_encoder *encoder;
de13a2e3 8852 uint32_t dpll;
55bb9992 8853 int factor, num_connectors = 0, i;
09ede541 8854 bool is_lvds = false, is_sdvo = false;
79e53945 8855
da3ced29 8856 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8857 if (connector_state->crtc != crtc_state->base.crtc)
8858 continue;
8859
8860 encoder = to_intel_encoder(connector_state->best_encoder);
8861
8862 switch (encoder->type) {
79e53945
JB
8863 case INTEL_OUTPUT_LVDS:
8864 is_lvds = true;
8865 break;
8866 case INTEL_OUTPUT_SDVO:
7d57382e 8867 case INTEL_OUTPUT_HDMI:
79e53945 8868 is_sdvo = true;
79e53945 8869 break;
6847d71b
PZ
8870 default:
8871 break;
79e53945 8872 }
43565a06 8873
c751ce4f 8874 num_connectors++;
79e53945 8875 }
79e53945 8876
c1858123 8877 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8878 factor = 21;
8879 if (is_lvds) {
8880 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8881 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8882 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8883 factor = 25;
190f68c5 8884 } else if (crtc_state->sdvo_tv_clock)
8febb297 8885 factor = 20;
c1858123 8886
190f68c5 8887 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8888 *fp |= FP_CB_TUNE;
2c07245f 8889
9a7c7890
DV
8890 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8891 *fp2 |= FP_CB_TUNE;
8892
5eddb70b 8893 dpll = 0;
2c07245f 8894
a07d6787
EA
8895 if (is_lvds)
8896 dpll |= DPLLB_MODE_LVDS;
8897 else
8898 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8899
190f68c5 8900 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8901 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8902
8903 if (is_sdvo)
4a33e48d 8904 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8905 if (crtc_state->has_dp_encoder)
4a33e48d 8906 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8907
a07d6787 8908 /* compute bitmask from p1 value */
190f68c5 8909 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8910 /* also FPA1 */
190f68c5 8911 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8912
190f68c5 8913 switch (crtc_state->dpll.p2) {
a07d6787
EA
8914 case 5:
8915 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8916 break;
8917 case 7:
8918 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8919 break;
8920 case 10:
8921 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8922 break;
8923 case 14:
8924 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8925 break;
79e53945
JB
8926 }
8927
b4c09f3b 8928 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8929 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8930 else
8931 dpll |= PLL_REF_INPUT_DREFCLK;
8932
959e16d6 8933 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8934}
8935
190f68c5
ACO
8936static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8937 struct intel_crtc_state *crtc_state)
de13a2e3 8938{
c7653199 8939 struct drm_device *dev = crtc->base.dev;
de13a2e3 8940 intel_clock_t clock, reduced_clock;
cbbab5bd 8941 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8942 bool ok, has_reduced_clock = false;
8b47047b 8943 bool is_lvds = false;
e2b78267 8944 struct intel_shared_dpll *pll;
de13a2e3 8945
dd3cd74a
ACO
8946 memset(&crtc_state->dpll_hw_state, 0,
8947 sizeof(crtc_state->dpll_hw_state));
8948
7905df29 8949 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8950
5dc5298b
PZ
8951 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8952 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8953
190f68c5 8954 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8955 &has_reduced_clock, &reduced_clock);
190f68c5 8956 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8957 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8958 return -EINVAL;
79e53945 8959 }
f47709a9 8960 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8961 if (!crtc_state->clock_set) {
8962 crtc_state->dpll.n = clock.n;
8963 crtc_state->dpll.m1 = clock.m1;
8964 crtc_state->dpll.m2 = clock.m2;
8965 crtc_state->dpll.p1 = clock.p1;
8966 crtc_state->dpll.p2 = clock.p2;
f47709a9 8967 }
79e53945 8968
5dc5298b 8969 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8970 if (crtc_state->has_pch_encoder) {
8971 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8972 if (has_reduced_clock)
7429e9d4 8973 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8974
190f68c5 8975 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8976 &fp, &reduced_clock,
8977 has_reduced_clock ? &fp2 : NULL);
8978
190f68c5
ACO
8979 crtc_state->dpll_hw_state.dpll = dpll;
8980 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8981 if (has_reduced_clock)
190f68c5 8982 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8983 else
190f68c5 8984 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8985
190f68c5 8986 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8987 if (pll == NULL) {
84f44ce7 8988 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8989 pipe_name(crtc->pipe));
4b645f14
JB
8990 return -EINVAL;
8991 }
3fb37703 8992 }
79e53945 8993
ab585dea 8994 if (is_lvds && has_reduced_clock)
c7653199 8995 crtc->lowfreq_avail = true;
bcd644e0 8996 else
c7653199 8997 crtc->lowfreq_avail = false;
e2b78267 8998
c8f7a0db 8999 return 0;
79e53945
JB
9000}
9001
eb14cb74
VS
9002static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9003 struct intel_link_m_n *m_n)
9004{
9005 struct drm_device *dev = crtc->base.dev;
9006 struct drm_i915_private *dev_priv = dev->dev_private;
9007 enum pipe pipe = crtc->pipe;
9008
9009 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9010 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9011 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9012 & ~TU_SIZE_MASK;
9013 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9014 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9015 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9016}
9017
9018static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9019 enum transcoder transcoder,
b95af8be
VK
9020 struct intel_link_m_n *m_n,
9021 struct intel_link_m_n *m2_n2)
72419203
DV
9022{
9023 struct drm_device *dev = crtc->base.dev;
9024 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 9025 enum pipe pipe = crtc->pipe;
72419203 9026
eb14cb74
VS
9027 if (INTEL_INFO(dev)->gen >= 5) {
9028 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9029 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9030 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9031 & ~TU_SIZE_MASK;
9032 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9033 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9034 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9035 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9036 * gen < 8) and if DRRS is supported (to make sure the
9037 * registers are not unnecessarily read).
9038 */
9039 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9040 crtc->config->has_drrs) {
b95af8be
VK
9041 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9042 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9043 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9044 & ~TU_SIZE_MASK;
9045 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9046 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9047 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9048 }
eb14cb74
VS
9049 } else {
9050 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9051 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9052 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9053 & ~TU_SIZE_MASK;
9054 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9055 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9056 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9057 }
9058}
9059
9060void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9061 struct intel_crtc_state *pipe_config)
eb14cb74 9062{
681a8504 9063 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9064 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9065 else
9066 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9067 &pipe_config->dp_m_n,
9068 &pipe_config->dp_m2_n2);
eb14cb74 9069}
72419203 9070
eb14cb74 9071static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9072 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9073{
9074 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9075 &pipe_config->fdi_m_n, NULL);
72419203
DV
9076}
9077
bd2e244f 9078static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9079 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9080{
9081 struct drm_device *dev = crtc->base.dev;
9082 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9083 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9084 uint32_t ps_ctrl = 0;
9085 int id = -1;
9086 int i;
bd2e244f 9087
a1b2278e
CK
9088 /* find scaler attached to this pipe */
9089 for (i = 0; i < crtc->num_scalers; i++) {
9090 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9091 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9092 id = i;
9093 pipe_config->pch_pfit.enabled = true;
9094 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9095 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9096 break;
9097 }
9098 }
bd2e244f 9099
a1b2278e
CK
9100 scaler_state->scaler_id = id;
9101 if (id >= 0) {
9102 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9103 } else {
9104 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9105 }
9106}
9107
5724dbd1
DL
9108static void
9109skylake_get_initial_plane_config(struct intel_crtc *crtc,
9110 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9111{
9112 struct drm_device *dev = crtc->base.dev;
9113 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9114 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9115 int pipe = crtc->pipe;
9116 int fourcc, pixel_format;
6761dd31 9117 unsigned int aligned_height;
bc8d7dff 9118 struct drm_framebuffer *fb;
1b842c89 9119 struct intel_framebuffer *intel_fb;
bc8d7dff 9120
d9806c9f 9121 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9122 if (!intel_fb) {
bc8d7dff
DL
9123 DRM_DEBUG_KMS("failed to alloc fb\n");
9124 return;
9125 }
9126
1b842c89
DL
9127 fb = &intel_fb->base;
9128
bc8d7dff 9129 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9130 if (!(val & PLANE_CTL_ENABLE))
9131 goto error;
9132
bc8d7dff
DL
9133 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9134 fourcc = skl_format_to_fourcc(pixel_format,
9135 val & PLANE_CTL_ORDER_RGBX,
9136 val & PLANE_CTL_ALPHA_MASK);
9137 fb->pixel_format = fourcc;
9138 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9139
40f46283
DL
9140 tiling = val & PLANE_CTL_TILED_MASK;
9141 switch (tiling) {
9142 case PLANE_CTL_TILED_LINEAR:
9143 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9144 break;
9145 case PLANE_CTL_TILED_X:
9146 plane_config->tiling = I915_TILING_X;
9147 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9148 break;
9149 case PLANE_CTL_TILED_Y:
9150 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9151 break;
9152 case PLANE_CTL_TILED_YF:
9153 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9154 break;
9155 default:
9156 MISSING_CASE(tiling);
9157 goto error;
9158 }
9159
bc8d7dff
DL
9160 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9161 plane_config->base = base;
9162
9163 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9164
9165 val = I915_READ(PLANE_SIZE(pipe, 0));
9166 fb->height = ((val >> 16) & 0xfff) + 1;
9167 fb->width = ((val >> 0) & 0x1fff) + 1;
9168
9169 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
9170 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9171 fb->pixel_format);
bc8d7dff
DL
9172 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9173
9174 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9175 fb->pixel_format,
9176 fb->modifier[0]);
bc8d7dff 9177
f37b5c2b 9178 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9179
9180 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9181 pipe_name(pipe), fb->width, fb->height,
9182 fb->bits_per_pixel, base, fb->pitches[0],
9183 plane_config->size);
9184
2d14030b 9185 plane_config->fb = intel_fb;
bc8d7dff
DL
9186 return;
9187
9188error:
9189 kfree(fb);
9190}
9191
2fa2fe9a 9192static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9193 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9194{
9195 struct drm_device *dev = crtc->base.dev;
9196 struct drm_i915_private *dev_priv = dev->dev_private;
9197 uint32_t tmp;
9198
9199 tmp = I915_READ(PF_CTL(crtc->pipe));
9200
9201 if (tmp & PF_ENABLE) {
fd4daa9c 9202 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9203 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9204 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9205
9206 /* We currently do not free assignements of panel fitters on
9207 * ivb/hsw (since we don't use the higher upscaling modes which
9208 * differentiates them) so just WARN about this case for now. */
9209 if (IS_GEN7(dev)) {
9210 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9211 PF_PIPE_SEL_IVB(crtc->pipe));
9212 }
2fa2fe9a 9213 }
79e53945
JB
9214}
9215
5724dbd1
DL
9216static void
9217ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9218 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9219{
9220 struct drm_device *dev = crtc->base.dev;
9221 struct drm_i915_private *dev_priv = dev->dev_private;
9222 u32 val, base, offset;
aeee5a49 9223 int pipe = crtc->pipe;
4c6baa59 9224 int fourcc, pixel_format;
6761dd31 9225 unsigned int aligned_height;
b113d5ee 9226 struct drm_framebuffer *fb;
1b842c89 9227 struct intel_framebuffer *intel_fb;
4c6baa59 9228
42a7b088
DL
9229 val = I915_READ(DSPCNTR(pipe));
9230 if (!(val & DISPLAY_PLANE_ENABLE))
9231 return;
9232
d9806c9f 9233 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9234 if (!intel_fb) {
4c6baa59
JB
9235 DRM_DEBUG_KMS("failed to alloc fb\n");
9236 return;
9237 }
9238
1b842c89
DL
9239 fb = &intel_fb->base;
9240
18c5247e
DV
9241 if (INTEL_INFO(dev)->gen >= 4) {
9242 if (val & DISPPLANE_TILED) {
49af449b 9243 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9244 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9245 }
9246 }
4c6baa59
JB
9247
9248 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9249 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9250 fb->pixel_format = fourcc;
9251 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9252
aeee5a49 9253 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9254 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9255 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9256 } else {
49af449b 9257 if (plane_config->tiling)
aeee5a49 9258 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9259 else
aeee5a49 9260 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9261 }
9262 plane_config->base = base;
9263
9264 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9265 fb->width = ((val >> 16) & 0xfff) + 1;
9266 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9267
9268 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9269 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9270
b113d5ee 9271 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9272 fb->pixel_format,
9273 fb->modifier[0]);
4c6baa59 9274
f37b5c2b 9275 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9276
2844a921
DL
9277 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9278 pipe_name(pipe), fb->width, fb->height,
9279 fb->bits_per_pixel, base, fb->pitches[0],
9280 plane_config->size);
b113d5ee 9281
2d14030b 9282 plane_config->fb = intel_fb;
4c6baa59
JB
9283}
9284
0e8ffe1b 9285static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9286 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9287{
9288 struct drm_device *dev = crtc->base.dev;
9289 struct drm_i915_private *dev_priv = dev->dev_private;
9290 uint32_t tmp;
9291
f458ebbc
DV
9292 if (!intel_display_power_is_enabled(dev_priv,
9293 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
9294 return false;
9295
e143a21c 9296 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 9297 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 9298
0e8ffe1b
DV
9299 tmp = I915_READ(PIPECONF(crtc->pipe));
9300 if (!(tmp & PIPECONF_ENABLE))
9301 return false;
9302
42571aef
VS
9303 switch (tmp & PIPECONF_BPC_MASK) {
9304 case PIPECONF_6BPC:
9305 pipe_config->pipe_bpp = 18;
9306 break;
9307 case PIPECONF_8BPC:
9308 pipe_config->pipe_bpp = 24;
9309 break;
9310 case PIPECONF_10BPC:
9311 pipe_config->pipe_bpp = 30;
9312 break;
9313 case PIPECONF_12BPC:
9314 pipe_config->pipe_bpp = 36;
9315 break;
9316 default:
9317 break;
9318 }
9319
b5a9fa09
DV
9320 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9321 pipe_config->limited_color_range = true;
9322
ab9412ba 9323 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
9324 struct intel_shared_dpll *pll;
9325
88adfff1
DV
9326 pipe_config->has_pch_encoder = true;
9327
627eb5a3
DV
9328 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9329 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9330 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9331
9332 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9333
c0d43d62 9334 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
9335 pipe_config->shared_dpll =
9336 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9337 } else {
9338 tmp = I915_READ(PCH_DPLL_SEL);
9339 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9340 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9341 else
9342 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9343 }
66e985c0
DV
9344
9345 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9346
9347 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9348 &pipe_config->dpll_hw_state));
c93f54cf
DV
9349
9350 tmp = pipe_config->dpll_hw_state.dpll;
9351 pipe_config->pixel_multiplier =
9352 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9353 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9354
9355 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9356 } else {
9357 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9358 }
9359
1bd1bd80
DV
9360 intel_get_pipe_timings(crtc, pipe_config);
9361
2fa2fe9a
DV
9362 ironlake_get_pfit_config(crtc, pipe_config);
9363
0e8ffe1b
DV
9364 return true;
9365}
9366
be256dc7
PZ
9367static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9368{
9369 struct drm_device *dev = dev_priv->dev;
be256dc7 9370 struct intel_crtc *crtc;
be256dc7 9371
d3fcc808 9372 for_each_intel_crtc(dev, crtc)
e2c719b7 9373 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9374 pipe_name(crtc->pipe));
9375
e2c719b7
RC
9376 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9377 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
9378 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9379 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
e2c719b7
RC
9380 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9381 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9382 "CPU PWM1 enabled\n");
c5107b87 9383 if (IS_HASWELL(dev))
e2c719b7 9384 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9385 "CPU PWM2 enabled\n");
e2c719b7 9386 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9387 "PCH PWM1 enabled\n");
e2c719b7 9388 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9389 "Utility pin enabled\n");
e2c719b7 9390 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9391
9926ada1
PZ
9392 /*
9393 * In theory we can still leave IRQs enabled, as long as only the HPD
9394 * interrupts remain enabled. We used to check for that, but since it's
9395 * gen-specific and since we only disable LCPLL after we fully disable
9396 * the interrupts, the check below should be enough.
9397 */
e2c719b7 9398 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9399}
9400
9ccd5aeb
PZ
9401static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9402{
9403 struct drm_device *dev = dev_priv->dev;
9404
9405 if (IS_HASWELL(dev))
9406 return I915_READ(D_COMP_HSW);
9407 else
9408 return I915_READ(D_COMP_BDW);
9409}
9410
3c4c9b81
PZ
9411static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9412{
9413 struct drm_device *dev = dev_priv->dev;
9414
9415 if (IS_HASWELL(dev)) {
9416 mutex_lock(&dev_priv->rps.hw_lock);
9417 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9418 val))
f475dadf 9419 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9420 mutex_unlock(&dev_priv->rps.hw_lock);
9421 } else {
9ccd5aeb
PZ
9422 I915_WRITE(D_COMP_BDW, val);
9423 POSTING_READ(D_COMP_BDW);
3c4c9b81 9424 }
be256dc7
PZ
9425}
9426
9427/*
9428 * This function implements pieces of two sequences from BSpec:
9429 * - Sequence for display software to disable LCPLL
9430 * - Sequence for display software to allow package C8+
9431 * The steps implemented here are just the steps that actually touch the LCPLL
9432 * register. Callers should take care of disabling all the display engine
9433 * functions, doing the mode unset, fixing interrupts, etc.
9434 */
6ff58d53
PZ
9435static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9436 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9437{
9438 uint32_t val;
9439
9440 assert_can_disable_lcpll(dev_priv);
9441
9442 val = I915_READ(LCPLL_CTL);
9443
9444 if (switch_to_fclk) {
9445 val |= LCPLL_CD_SOURCE_FCLK;
9446 I915_WRITE(LCPLL_CTL, val);
9447
9448 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9449 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9450 DRM_ERROR("Switching to FCLK failed\n");
9451
9452 val = I915_READ(LCPLL_CTL);
9453 }
9454
9455 val |= LCPLL_PLL_DISABLE;
9456 I915_WRITE(LCPLL_CTL, val);
9457 POSTING_READ(LCPLL_CTL);
9458
9459 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9460 DRM_ERROR("LCPLL still locked\n");
9461
9ccd5aeb 9462 val = hsw_read_dcomp(dev_priv);
be256dc7 9463 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9464 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9465 ndelay(100);
9466
9ccd5aeb
PZ
9467 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9468 1))
be256dc7
PZ
9469 DRM_ERROR("D_COMP RCOMP still in progress\n");
9470
9471 if (allow_power_down) {
9472 val = I915_READ(LCPLL_CTL);
9473 val |= LCPLL_POWER_DOWN_ALLOW;
9474 I915_WRITE(LCPLL_CTL, val);
9475 POSTING_READ(LCPLL_CTL);
9476 }
9477}
9478
9479/*
9480 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9481 * source.
9482 */
6ff58d53 9483static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9484{
9485 uint32_t val;
9486
9487 val = I915_READ(LCPLL_CTL);
9488
9489 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9490 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9491 return;
9492
a8a8bd54
PZ
9493 /*
9494 * Make sure we're not on PC8 state before disabling PC8, otherwise
9495 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9496 */
59bad947 9497 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9498
be256dc7
PZ
9499 if (val & LCPLL_POWER_DOWN_ALLOW) {
9500 val &= ~LCPLL_POWER_DOWN_ALLOW;
9501 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9502 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9503 }
9504
9ccd5aeb 9505 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9506 val |= D_COMP_COMP_FORCE;
9507 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9508 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9509
9510 val = I915_READ(LCPLL_CTL);
9511 val &= ~LCPLL_PLL_DISABLE;
9512 I915_WRITE(LCPLL_CTL, val);
9513
9514 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9515 DRM_ERROR("LCPLL not locked yet\n");
9516
9517 if (val & LCPLL_CD_SOURCE_FCLK) {
9518 val = I915_READ(LCPLL_CTL);
9519 val &= ~LCPLL_CD_SOURCE_FCLK;
9520 I915_WRITE(LCPLL_CTL, val);
9521
9522 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9523 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9524 DRM_ERROR("Switching back to LCPLL failed\n");
9525 }
215733fa 9526
59bad947 9527 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9528 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9529}
9530
765dab67
PZ
9531/*
9532 * Package states C8 and deeper are really deep PC states that can only be
9533 * reached when all the devices on the system allow it, so even if the graphics
9534 * device allows PC8+, it doesn't mean the system will actually get to these
9535 * states. Our driver only allows PC8+ when going into runtime PM.
9536 *
9537 * The requirements for PC8+ are that all the outputs are disabled, the power
9538 * well is disabled and most interrupts are disabled, and these are also
9539 * requirements for runtime PM. When these conditions are met, we manually do
9540 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9541 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9542 * hang the machine.
9543 *
9544 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9545 * the state of some registers, so when we come back from PC8+ we need to
9546 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9547 * need to take care of the registers kept by RC6. Notice that this happens even
9548 * if we don't put the device in PCI D3 state (which is what currently happens
9549 * because of the runtime PM support).
9550 *
9551 * For more, read "Display Sequences for Package C8" on the hardware
9552 * documentation.
9553 */
a14cb6fc 9554void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9555{
c67a470b
PZ
9556 struct drm_device *dev = dev_priv->dev;
9557 uint32_t val;
9558
c67a470b
PZ
9559 DRM_DEBUG_KMS("Enabling package C8+\n");
9560
c2699524 9561 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9562 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9563 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9564 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9565 }
9566
9567 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9568 hsw_disable_lcpll(dev_priv, true, true);
9569}
9570
a14cb6fc 9571void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9572{
9573 struct drm_device *dev = dev_priv->dev;
9574 uint32_t val;
9575
c67a470b
PZ
9576 DRM_DEBUG_KMS("Disabling package C8+\n");
9577
9578 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9579 lpt_init_pch_refclk(dev);
9580
c2699524 9581 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9582 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9583 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9584 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9585 }
9586
9587 intel_prepare_ddi(dev);
c67a470b
PZ
9588}
9589
27c329ed 9590static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9591{
a821fc46 9592 struct drm_device *dev = old_state->dev;
27c329ed 9593 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
f8437dd1 9594
27c329ed 9595 broxton_set_cdclk(dev, req_cdclk);
f8437dd1
VK
9596}
9597
b432e5cf 9598/* compute the max rate for new configuration */
27c329ed 9599static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9600{
b432e5cf 9601 struct intel_crtc *intel_crtc;
27c329ed 9602 struct intel_crtc_state *crtc_state;
b432e5cf 9603 int max_pixel_rate = 0;
b432e5cf 9604
27c329ed
ML
9605 for_each_intel_crtc(state->dev, intel_crtc) {
9606 int pixel_rate;
9607
9608 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9609 if (IS_ERR(crtc_state))
9610 return PTR_ERR(crtc_state);
9611
9612 if (!crtc_state->base.enable)
b432e5cf
VS
9613 continue;
9614
27c329ed 9615 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9616
9617 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
27c329ed 9618 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
b432e5cf
VS
9619 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9620
9621 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9622 }
9623
9624 return max_pixel_rate;
9625}
9626
9627static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9628{
9629 struct drm_i915_private *dev_priv = dev->dev_private;
9630 uint32_t val, data;
9631 int ret;
9632
9633 if (WARN((I915_READ(LCPLL_CTL) &
9634 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9635 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9636 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9637 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9638 "trying to change cdclk frequency with cdclk not enabled\n"))
9639 return;
9640
9641 mutex_lock(&dev_priv->rps.hw_lock);
9642 ret = sandybridge_pcode_write(dev_priv,
9643 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9644 mutex_unlock(&dev_priv->rps.hw_lock);
9645 if (ret) {
9646 DRM_ERROR("failed to inform pcode about cdclk change\n");
9647 return;
9648 }
9649
9650 val = I915_READ(LCPLL_CTL);
9651 val |= LCPLL_CD_SOURCE_FCLK;
9652 I915_WRITE(LCPLL_CTL, val);
9653
9654 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9655 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9656 DRM_ERROR("Switching to FCLK failed\n");
9657
9658 val = I915_READ(LCPLL_CTL);
9659 val &= ~LCPLL_CLK_FREQ_MASK;
9660
9661 switch (cdclk) {
9662 case 450000:
9663 val |= LCPLL_CLK_FREQ_450;
9664 data = 0;
9665 break;
9666 case 540000:
9667 val |= LCPLL_CLK_FREQ_54O_BDW;
9668 data = 1;
9669 break;
9670 case 337500:
9671 val |= LCPLL_CLK_FREQ_337_5_BDW;
9672 data = 2;
9673 break;
9674 case 675000:
9675 val |= LCPLL_CLK_FREQ_675_BDW;
9676 data = 3;
9677 break;
9678 default:
9679 WARN(1, "invalid cdclk frequency\n");
9680 return;
9681 }
9682
9683 I915_WRITE(LCPLL_CTL, val);
9684
9685 val = I915_READ(LCPLL_CTL);
9686 val &= ~LCPLL_CD_SOURCE_FCLK;
9687 I915_WRITE(LCPLL_CTL, val);
9688
9689 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9690 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9691 DRM_ERROR("Switching back to LCPLL failed\n");
9692
9693 mutex_lock(&dev_priv->rps.hw_lock);
9694 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9695 mutex_unlock(&dev_priv->rps.hw_lock);
9696
9697 intel_update_cdclk(dev);
9698
9699 WARN(cdclk != dev_priv->cdclk_freq,
9700 "cdclk requested %d kHz but got %d kHz\n",
9701 cdclk, dev_priv->cdclk_freq);
9702}
9703
27c329ed 9704static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9705{
27c329ed
ML
9706 struct drm_i915_private *dev_priv = to_i915(state->dev);
9707 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9708 int cdclk;
9709
9710 /*
9711 * FIXME should also account for plane ratio
9712 * once 64bpp pixel formats are supported.
9713 */
27c329ed 9714 if (max_pixclk > 540000)
b432e5cf 9715 cdclk = 675000;
27c329ed 9716 else if (max_pixclk > 450000)
b432e5cf 9717 cdclk = 540000;
27c329ed 9718 else if (max_pixclk > 337500)
b432e5cf
VS
9719 cdclk = 450000;
9720 else
9721 cdclk = 337500;
9722
b432e5cf 9723 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
9724 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9725 cdclk, dev_priv->max_cdclk_freq);
9726 return -EINVAL;
b432e5cf
VS
9727 }
9728
27c329ed 9729 to_intel_atomic_state(state)->cdclk = cdclk;
b432e5cf
VS
9730
9731 return 0;
9732}
9733
27c329ed 9734static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9735{
27c329ed
ML
9736 struct drm_device *dev = old_state->dev;
9737 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
b432e5cf 9738
27c329ed 9739 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9740}
9741
190f68c5
ACO
9742static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9743 struct intel_crtc_state *crtc_state)
09b4ddf9 9744{
190f68c5 9745 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9746 return -EINVAL;
716c2e55 9747
c7653199 9748 crtc->lowfreq_avail = false;
644cef34 9749
c8f7a0db 9750 return 0;
79e53945
JB
9751}
9752
3760b59c
S
9753static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9754 enum port port,
9755 struct intel_crtc_state *pipe_config)
9756{
9757 switch (port) {
9758 case PORT_A:
9759 pipe_config->ddi_pll_sel = SKL_DPLL0;
9760 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9761 break;
9762 case PORT_B:
9763 pipe_config->ddi_pll_sel = SKL_DPLL1;
9764 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9765 break;
9766 case PORT_C:
9767 pipe_config->ddi_pll_sel = SKL_DPLL2;
9768 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9769 break;
9770 default:
9771 DRM_ERROR("Incorrect port type\n");
9772 }
9773}
9774
96b7dfb7
S
9775static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9776 enum port port,
5cec258b 9777 struct intel_crtc_state *pipe_config)
96b7dfb7 9778{
3148ade7 9779 u32 temp, dpll_ctl1;
96b7dfb7
S
9780
9781 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9782 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9783
9784 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9785 case SKL_DPLL0:
9786 /*
9787 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9788 * of the shared DPLL framework and thus needs to be read out
9789 * separately
9790 */
9791 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9792 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9793 break;
96b7dfb7
S
9794 case SKL_DPLL1:
9795 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9796 break;
9797 case SKL_DPLL2:
9798 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9799 break;
9800 case SKL_DPLL3:
9801 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9802 break;
96b7dfb7
S
9803 }
9804}
9805
7d2c8175
DL
9806static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9807 enum port port,
5cec258b 9808 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9809{
9810 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9811
9812 switch (pipe_config->ddi_pll_sel) {
9813 case PORT_CLK_SEL_WRPLL1:
9814 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9815 break;
9816 case PORT_CLK_SEL_WRPLL2:
9817 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9818 break;
00490c22
ML
9819 case PORT_CLK_SEL_SPLL:
9820 pipe_config->shared_dpll = DPLL_ID_SPLL;
79bd23da 9821 break;
7d2c8175
DL
9822 }
9823}
9824
26804afd 9825static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9826 struct intel_crtc_state *pipe_config)
26804afd
DV
9827{
9828 struct drm_device *dev = crtc->base.dev;
9829 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9830 struct intel_shared_dpll *pll;
26804afd
DV
9831 enum port port;
9832 uint32_t tmp;
9833
9834 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9835
9836 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9837
ef11bdb3 9838 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 9839 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9840 else if (IS_BROXTON(dev))
9841 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9842 else
9843 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9844
d452c5b6
DV
9845 if (pipe_config->shared_dpll >= 0) {
9846 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9847
9848 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9849 &pipe_config->dpll_hw_state));
9850 }
9851
26804afd
DV
9852 /*
9853 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9854 * DDI E. So just check whether this pipe is wired to DDI E and whether
9855 * the PCH transcoder is on.
9856 */
ca370455
DL
9857 if (INTEL_INFO(dev)->gen < 9 &&
9858 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9859 pipe_config->has_pch_encoder = true;
9860
9861 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9862 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9863 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9864
9865 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9866 }
9867}
9868
0e8ffe1b 9869static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9870 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9871{
9872 struct drm_device *dev = crtc->base.dev;
9873 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9874 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9875 uint32_t tmp;
9876
f458ebbc 9877 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9878 POWER_DOMAIN_PIPE(crtc->pipe)))
9879 return false;
9880
e143a21c 9881 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9882 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9883
eccb140b
DV
9884 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9885 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9886 enum pipe trans_edp_pipe;
9887 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9888 default:
9889 WARN(1, "unknown pipe linked to edp transcoder\n");
9890 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9891 case TRANS_DDI_EDP_INPUT_A_ON:
9892 trans_edp_pipe = PIPE_A;
9893 break;
9894 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9895 trans_edp_pipe = PIPE_B;
9896 break;
9897 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9898 trans_edp_pipe = PIPE_C;
9899 break;
9900 }
9901
9902 if (trans_edp_pipe == crtc->pipe)
9903 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9904 }
9905
f458ebbc 9906 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9907 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9908 return false;
9909
eccb140b 9910 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9911 if (!(tmp & PIPECONF_ENABLE))
9912 return false;
9913
26804afd 9914 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9915
1bd1bd80
DV
9916 intel_get_pipe_timings(crtc, pipe_config);
9917
a1b2278e
CK
9918 if (INTEL_INFO(dev)->gen >= 9) {
9919 skl_init_scalers(dev, crtc, pipe_config);
9920 }
9921
2fa2fe9a 9922 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
af99ceda
CK
9923
9924 if (INTEL_INFO(dev)->gen >= 9) {
9925 pipe_config->scaler_state.scaler_id = -1;
9926 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9927 }
9928
bd2e244f 9929 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
1c132b44 9930 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 9931 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9932 else
1c132b44 9933 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 9934 }
88adfff1 9935
e59150dc
JB
9936 if (IS_HASWELL(dev))
9937 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9938 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9939
ebb69c95
CT
9940 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9941 pipe_config->pixel_multiplier =
9942 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9943 } else {
9944 pipe_config->pixel_multiplier = 1;
9945 }
6c49f241 9946
0e8ffe1b
DV
9947 return true;
9948}
9949
560b85bb
CW
9950static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9951{
9952 struct drm_device *dev = crtc->dev;
9953 struct drm_i915_private *dev_priv = dev->dev_private;
9954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9955 uint32_t cntl = 0, size = 0;
560b85bb 9956
dc41c154 9957 if (base) {
3dd512fb
MR
9958 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9959 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
9960 unsigned int stride = roundup_pow_of_two(width) * 4;
9961
9962 switch (stride) {
9963 default:
9964 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9965 width, stride);
9966 stride = 256;
9967 /* fallthrough */
9968 case 256:
9969 case 512:
9970 case 1024:
9971 case 2048:
9972 break;
4b0e333e
CW
9973 }
9974
dc41c154
VS
9975 cntl |= CURSOR_ENABLE |
9976 CURSOR_GAMMA_ENABLE |
9977 CURSOR_FORMAT_ARGB |
9978 CURSOR_STRIDE(stride);
9979
9980 size = (height << 12) | width;
4b0e333e 9981 }
560b85bb 9982
dc41c154
VS
9983 if (intel_crtc->cursor_cntl != 0 &&
9984 (intel_crtc->cursor_base != base ||
9985 intel_crtc->cursor_size != size ||
9986 intel_crtc->cursor_cntl != cntl)) {
9987 /* On these chipsets we can only modify the base/size/stride
9988 * whilst the cursor is disabled.
9989 */
0b87c24e
VS
9990 I915_WRITE(CURCNTR(PIPE_A), 0);
9991 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 9992 intel_crtc->cursor_cntl = 0;
4b0e333e 9993 }
560b85bb 9994
99d1f387 9995 if (intel_crtc->cursor_base != base) {
0b87c24e 9996 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
9997 intel_crtc->cursor_base = base;
9998 }
4726e0b0 9999
dc41c154
VS
10000 if (intel_crtc->cursor_size != size) {
10001 I915_WRITE(CURSIZE, size);
10002 intel_crtc->cursor_size = size;
4b0e333e 10003 }
560b85bb 10004
4b0e333e 10005 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10006 I915_WRITE(CURCNTR(PIPE_A), cntl);
10007 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10008 intel_crtc->cursor_cntl = cntl;
560b85bb 10009 }
560b85bb
CW
10010}
10011
560b85bb 10012static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
10013{
10014 struct drm_device *dev = crtc->dev;
10015 struct drm_i915_private *dev_priv = dev->dev_private;
10016 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10017 int pipe = intel_crtc->pipe;
4b0e333e
CW
10018 uint32_t cntl;
10019
10020 cntl = 0;
10021 if (base) {
10022 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 10023 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
10024 case 64:
10025 cntl |= CURSOR_MODE_64_ARGB_AX;
10026 break;
10027 case 128:
10028 cntl |= CURSOR_MODE_128_ARGB_AX;
10029 break;
10030 case 256:
10031 cntl |= CURSOR_MODE_256_ARGB_AX;
10032 break;
10033 default:
3dd512fb 10034 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 10035 return;
65a21cd6 10036 }
4b0e333e 10037 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10038
fc6f93bc 10039 if (HAS_DDI(dev))
47bf17a7 10040 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 10041 }
65a21cd6 10042
8e7d688b 10043 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
10044 cntl |= CURSOR_ROTATE_180;
10045
4b0e333e
CW
10046 if (intel_crtc->cursor_cntl != cntl) {
10047 I915_WRITE(CURCNTR(pipe), cntl);
10048 POSTING_READ(CURCNTR(pipe));
10049 intel_crtc->cursor_cntl = cntl;
65a21cd6 10050 }
4b0e333e 10051
65a21cd6 10052 /* and commit changes on next vblank */
5efb3e28
VS
10053 I915_WRITE(CURBASE(pipe), base);
10054 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10055
10056 intel_crtc->cursor_base = base;
65a21cd6
JB
10057}
10058
cda4b7d3 10059/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
10060static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10061 bool on)
cda4b7d3
CW
10062{
10063 struct drm_device *dev = crtc->dev;
10064 struct drm_i915_private *dev_priv = dev->dev_private;
10065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10066 int pipe = intel_crtc->pipe;
9b4101be
ML
10067 struct drm_plane_state *cursor_state = crtc->cursor->state;
10068 int x = cursor_state->crtc_x;
10069 int y = cursor_state->crtc_y;
d6e4db15 10070 u32 base = 0, pos = 0;
cda4b7d3 10071
d6e4db15 10072 if (on)
cda4b7d3 10073 base = intel_crtc->cursor_addr;
cda4b7d3 10074
6e3c9717 10075 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
10076 base = 0;
10077
6e3c9717 10078 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
10079 base = 0;
10080
10081 if (x < 0) {
9b4101be 10082 if (x + cursor_state->crtc_w <= 0)
cda4b7d3
CW
10083 base = 0;
10084
10085 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10086 x = -x;
10087 }
10088 pos |= x << CURSOR_X_SHIFT;
10089
10090 if (y < 0) {
9b4101be 10091 if (y + cursor_state->crtc_h <= 0)
cda4b7d3
CW
10092 base = 0;
10093
10094 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10095 y = -y;
10096 }
10097 pos |= y << CURSOR_Y_SHIFT;
10098
4b0e333e 10099 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
10100 return;
10101
5efb3e28
VS
10102 I915_WRITE(CURPOS(pipe), pos);
10103
4398ad45
VS
10104 /* ILK+ do this automagically */
10105 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 10106 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9b4101be
ML
10107 base += (cursor_state->crtc_h *
10108 cursor_state->crtc_w - 1) * 4;
4398ad45
VS
10109 }
10110
8ac54669 10111 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
10112 i845_update_cursor(crtc, base);
10113 else
10114 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
10115}
10116
dc41c154
VS
10117static bool cursor_size_ok(struct drm_device *dev,
10118 uint32_t width, uint32_t height)
10119{
10120 if (width == 0 || height == 0)
10121 return false;
10122
10123 /*
10124 * 845g/865g are special in that they are only limited by
10125 * the width of their cursors, the height is arbitrary up to
10126 * the precision of the register. Everything else requires
10127 * square cursors, limited to a few power-of-two sizes.
10128 */
10129 if (IS_845G(dev) || IS_I865G(dev)) {
10130 if ((width & 63) != 0)
10131 return false;
10132
10133 if (width > (IS_845G(dev) ? 64 : 512))
10134 return false;
10135
10136 if (height > 1023)
10137 return false;
10138 } else {
10139 switch (width | height) {
10140 case 256:
10141 case 128:
10142 if (IS_GEN2(dev))
10143 return false;
10144 case 64:
10145 break;
10146 default:
10147 return false;
10148 }
10149 }
10150
10151 return true;
10152}
10153
79e53945 10154static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10155 u16 *blue, uint32_t start, uint32_t size)
79e53945 10156{
7203425a 10157 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10159
7203425a 10160 for (i = start; i < end; i++) {
79e53945
JB
10161 intel_crtc->lut_r[i] = red[i] >> 8;
10162 intel_crtc->lut_g[i] = green[i] >> 8;
10163 intel_crtc->lut_b[i] = blue[i] >> 8;
10164 }
10165
10166 intel_crtc_load_lut(crtc);
10167}
10168
79e53945
JB
10169/* VESA 640x480x72Hz mode to set on the pipe */
10170static struct drm_display_mode load_detect_mode = {
10171 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10172 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10173};
10174
a8bb6818
DV
10175struct drm_framebuffer *
10176__intel_framebuffer_create(struct drm_device *dev,
10177 struct drm_mode_fb_cmd2 *mode_cmd,
10178 struct drm_i915_gem_object *obj)
d2dff872
CW
10179{
10180 struct intel_framebuffer *intel_fb;
10181 int ret;
10182
10183 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10184 if (!intel_fb)
d2dff872 10185 return ERR_PTR(-ENOMEM);
d2dff872
CW
10186
10187 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10188 if (ret)
10189 goto err;
d2dff872
CW
10190
10191 return &intel_fb->base;
dcb1394e 10192
dd4916c5 10193err:
dd4916c5 10194 kfree(intel_fb);
dd4916c5 10195 return ERR_PTR(ret);
d2dff872
CW
10196}
10197
b5ea642a 10198static struct drm_framebuffer *
a8bb6818
DV
10199intel_framebuffer_create(struct drm_device *dev,
10200 struct drm_mode_fb_cmd2 *mode_cmd,
10201 struct drm_i915_gem_object *obj)
10202{
10203 struct drm_framebuffer *fb;
10204 int ret;
10205
10206 ret = i915_mutex_lock_interruptible(dev);
10207 if (ret)
10208 return ERR_PTR(ret);
10209 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10210 mutex_unlock(&dev->struct_mutex);
10211
10212 return fb;
10213}
10214
d2dff872
CW
10215static u32
10216intel_framebuffer_pitch_for_width(int width, int bpp)
10217{
10218 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10219 return ALIGN(pitch, 64);
10220}
10221
10222static u32
10223intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10224{
10225 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10226 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10227}
10228
10229static struct drm_framebuffer *
10230intel_framebuffer_create_for_mode(struct drm_device *dev,
10231 struct drm_display_mode *mode,
10232 int depth, int bpp)
10233{
dcb1394e 10234 struct drm_framebuffer *fb;
d2dff872 10235 struct drm_i915_gem_object *obj;
0fed39bd 10236 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10237
10238 obj = i915_gem_alloc_object(dev,
10239 intel_framebuffer_size_for_mode(mode, bpp));
10240 if (obj == NULL)
10241 return ERR_PTR(-ENOMEM);
10242
10243 mode_cmd.width = mode->hdisplay;
10244 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10245 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10246 bpp);
5ca0c34a 10247 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 10248
dcb1394e
LW
10249 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10250 if (IS_ERR(fb))
10251 drm_gem_object_unreference_unlocked(&obj->base);
10252
10253 return fb;
d2dff872
CW
10254}
10255
10256static struct drm_framebuffer *
10257mode_fits_in_fbdev(struct drm_device *dev,
10258 struct drm_display_mode *mode)
10259{
0695726e 10260#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10261 struct drm_i915_private *dev_priv = dev->dev_private;
10262 struct drm_i915_gem_object *obj;
10263 struct drm_framebuffer *fb;
10264
4c0e5528 10265 if (!dev_priv->fbdev)
d2dff872
CW
10266 return NULL;
10267
4c0e5528 10268 if (!dev_priv->fbdev->fb)
d2dff872
CW
10269 return NULL;
10270
4c0e5528
DV
10271 obj = dev_priv->fbdev->fb->obj;
10272 BUG_ON(!obj);
10273
8bcd4553 10274 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10275 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10276 fb->bits_per_pixel))
d2dff872
CW
10277 return NULL;
10278
01f2c773 10279 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10280 return NULL;
10281
10282 return fb;
4520f53a
DV
10283#else
10284 return NULL;
10285#endif
d2dff872
CW
10286}
10287
d3a40d1b
ACO
10288static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10289 struct drm_crtc *crtc,
10290 struct drm_display_mode *mode,
10291 struct drm_framebuffer *fb,
10292 int x, int y)
10293{
10294 struct drm_plane_state *plane_state;
10295 int hdisplay, vdisplay;
10296 int ret;
10297
10298 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10299 if (IS_ERR(plane_state))
10300 return PTR_ERR(plane_state);
10301
10302 if (mode)
10303 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10304 else
10305 hdisplay = vdisplay = 0;
10306
10307 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10308 if (ret)
10309 return ret;
10310 drm_atomic_set_fb_for_plane(plane_state, fb);
10311 plane_state->crtc_x = 0;
10312 plane_state->crtc_y = 0;
10313 plane_state->crtc_w = hdisplay;
10314 plane_state->crtc_h = vdisplay;
10315 plane_state->src_x = x << 16;
10316 plane_state->src_y = y << 16;
10317 plane_state->src_w = hdisplay << 16;
10318 plane_state->src_h = vdisplay << 16;
10319
10320 return 0;
10321}
10322
d2434ab7 10323bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10324 struct drm_display_mode *mode,
51fd371b
RC
10325 struct intel_load_detect_pipe *old,
10326 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10327{
10328 struct intel_crtc *intel_crtc;
d2434ab7
DV
10329 struct intel_encoder *intel_encoder =
10330 intel_attached_encoder(connector);
79e53945 10331 struct drm_crtc *possible_crtc;
4ef69c7a 10332 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10333 struct drm_crtc *crtc = NULL;
10334 struct drm_device *dev = encoder->dev;
94352cf9 10335 struct drm_framebuffer *fb;
51fd371b 10336 struct drm_mode_config *config = &dev->mode_config;
83a57153 10337 struct drm_atomic_state *state = NULL;
944b0c76 10338 struct drm_connector_state *connector_state;
4be07317 10339 struct intel_crtc_state *crtc_state;
51fd371b 10340 int ret, i = -1;
79e53945 10341
d2dff872 10342 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10343 connector->base.id, connector->name,
8e329a03 10344 encoder->base.id, encoder->name);
d2dff872 10345
51fd371b
RC
10346retry:
10347 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10348 if (ret)
ad3c558f 10349 goto fail;
6e9f798d 10350
79e53945
JB
10351 /*
10352 * Algorithm gets a little messy:
7a5e4805 10353 *
79e53945
JB
10354 * - if the connector already has an assigned crtc, use it (but make
10355 * sure it's on first)
7a5e4805 10356 *
79e53945
JB
10357 * - try to find the first unused crtc that can drive this connector,
10358 * and use that if we find one
79e53945
JB
10359 */
10360
10361 /* See if we already have a CRTC for this connector */
10362 if (encoder->crtc) {
10363 crtc = encoder->crtc;
8261b191 10364
51fd371b 10365 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10366 if (ret)
ad3c558f 10367 goto fail;
4d02e2de 10368 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b 10369 if (ret)
ad3c558f 10370 goto fail;
7b24056b 10371
24218aac 10372 old->dpms_mode = connector->dpms;
8261b191
CW
10373 old->load_detect_temp = false;
10374
10375 /* Make sure the crtc and connector are running */
24218aac
DV
10376 if (connector->dpms != DRM_MODE_DPMS_ON)
10377 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 10378
7173188d 10379 return true;
79e53945
JB
10380 }
10381
10382 /* Find an unused one (if possible) */
70e1e0ec 10383 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10384 i++;
10385 if (!(encoder->possible_crtcs & (1 << i)))
10386 continue;
83d65738 10387 if (possible_crtc->state->enable)
a459249c 10388 continue;
a459249c
VS
10389
10390 crtc = possible_crtc;
10391 break;
79e53945
JB
10392 }
10393
10394 /*
10395 * If we didn't find an unused CRTC, don't use any.
10396 */
10397 if (!crtc) {
7173188d 10398 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10399 goto fail;
79e53945
JB
10400 }
10401
51fd371b
RC
10402 ret = drm_modeset_lock(&crtc->mutex, ctx);
10403 if (ret)
ad3c558f 10404 goto fail;
4d02e2de
DV
10405 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10406 if (ret)
ad3c558f 10407 goto fail;
79e53945
JB
10408
10409 intel_crtc = to_intel_crtc(crtc);
24218aac 10410 old->dpms_mode = connector->dpms;
8261b191 10411 old->load_detect_temp = true;
d2dff872 10412 old->release_fb = NULL;
79e53945 10413
83a57153
ACO
10414 state = drm_atomic_state_alloc(dev);
10415 if (!state)
10416 return false;
10417
10418 state->acquire_ctx = ctx;
10419
944b0c76
ACO
10420 connector_state = drm_atomic_get_connector_state(state, connector);
10421 if (IS_ERR(connector_state)) {
10422 ret = PTR_ERR(connector_state);
10423 goto fail;
10424 }
10425
10426 connector_state->crtc = crtc;
10427 connector_state->best_encoder = &intel_encoder->base;
10428
4be07317
ACO
10429 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10430 if (IS_ERR(crtc_state)) {
10431 ret = PTR_ERR(crtc_state);
10432 goto fail;
10433 }
10434
49d6fa21 10435 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10436
6492711d
CW
10437 if (!mode)
10438 mode = &load_detect_mode;
79e53945 10439
d2dff872
CW
10440 /* We need a framebuffer large enough to accommodate all accesses
10441 * that the plane may generate whilst we perform load detection.
10442 * We can not rely on the fbcon either being present (we get called
10443 * during its initialisation to detect all boot displays, or it may
10444 * not even exist) or that it is large enough to satisfy the
10445 * requested mode.
10446 */
94352cf9
DV
10447 fb = mode_fits_in_fbdev(dev, mode);
10448 if (fb == NULL) {
d2dff872 10449 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
10450 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10451 old->release_fb = fb;
d2dff872
CW
10452 } else
10453 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10454 if (IS_ERR(fb)) {
d2dff872 10455 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10456 goto fail;
79e53945 10457 }
79e53945 10458
d3a40d1b
ACO
10459 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10460 if (ret)
10461 goto fail;
10462
8c7b5ccb
ACO
10463 drm_mode_copy(&crtc_state->base.mode, mode);
10464
74c090b1 10465 if (drm_atomic_commit(state)) {
6492711d 10466 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
10467 if (old->release_fb)
10468 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 10469 goto fail;
79e53945 10470 }
9128b040 10471 crtc->primary->crtc = crtc;
7173188d 10472
79e53945 10473 /* let the connector get through one full cycle before testing */
9d0498a2 10474 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10475 return true;
412b61d8 10476
ad3c558f 10477fail:
e5d958ef
ACO
10478 drm_atomic_state_free(state);
10479 state = NULL;
83a57153 10480
51fd371b
RC
10481 if (ret == -EDEADLK) {
10482 drm_modeset_backoff(ctx);
10483 goto retry;
10484 }
10485
412b61d8 10486 return false;
79e53945
JB
10487}
10488
d2434ab7 10489void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10490 struct intel_load_detect_pipe *old,
10491 struct drm_modeset_acquire_ctx *ctx)
79e53945 10492{
83a57153 10493 struct drm_device *dev = connector->dev;
d2434ab7
DV
10494 struct intel_encoder *intel_encoder =
10495 intel_attached_encoder(connector);
4ef69c7a 10496 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 10497 struct drm_crtc *crtc = encoder->crtc;
412b61d8 10498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 10499 struct drm_atomic_state *state;
944b0c76 10500 struct drm_connector_state *connector_state;
4be07317 10501 struct intel_crtc_state *crtc_state;
d3a40d1b 10502 int ret;
79e53945 10503
d2dff872 10504 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10505 connector->base.id, connector->name,
8e329a03 10506 encoder->base.id, encoder->name);
d2dff872 10507
8261b191 10508 if (old->load_detect_temp) {
83a57153 10509 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
10510 if (!state)
10511 goto fail;
83a57153
ACO
10512
10513 state->acquire_ctx = ctx;
10514
944b0c76
ACO
10515 connector_state = drm_atomic_get_connector_state(state, connector);
10516 if (IS_ERR(connector_state))
10517 goto fail;
10518
4be07317
ACO
10519 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10520 if (IS_ERR(crtc_state))
10521 goto fail;
10522
944b0c76
ACO
10523 connector_state->best_encoder = NULL;
10524 connector_state->crtc = NULL;
10525
49d6fa21 10526 crtc_state->base.enable = crtc_state->base.active = false;
4be07317 10527
d3a40d1b
ACO
10528 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10529 0, 0);
10530 if (ret)
10531 goto fail;
10532
74c090b1 10533 ret = drm_atomic_commit(state);
2bfb4627
ACO
10534 if (ret)
10535 goto fail;
d2dff872 10536
36206361
DV
10537 if (old->release_fb) {
10538 drm_framebuffer_unregister_private(old->release_fb);
10539 drm_framebuffer_unreference(old->release_fb);
10540 }
d2dff872 10541
0622a53c 10542 return;
79e53945
JB
10543 }
10544
c751ce4f 10545 /* Switch crtc and encoder back off if necessary */
24218aac
DV
10546 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10547 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
10548
10549 return;
10550fail:
10551 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10552 drm_atomic_state_free(state);
79e53945
JB
10553}
10554
da4a1efa 10555static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10556 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10557{
10558 struct drm_i915_private *dev_priv = dev->dev_private;
10559 u32 dpll = pipe_config->dpll_hw_state.dpll;
10560
10561 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10562 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10563 else if (HAS_PCH_SPLIT(dev))
10564 return 120000;
10565 else if (!IS_GEN2(dev))
10566 return 96000;
10567 else
10568 return 48000;
10569}
10570
79e53945 10571/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10572static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10573 struct intel_crtc_state *pipe_config)
79e53945 10574{
f1f644dc 10575 struct drm_device *dev = crtc->base.dev;
79e53945 10576 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10577 int pipe = pipe_config->cpu_transcoder;
293623f7 10578 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10579 u32 fp;
10580 intel_clock_t clock;
dccbea3b 10581 int port_clock;
da4a1efa 10582 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10583
10584 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10585 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10586 else
293623f7 10587 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10588
10589 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10590 if (IS_PINEVIEW(dev)) {
10591 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10592 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10593 } else {
10594 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10595 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10596 }
10597
a6c45cf0 10598 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10599 if (IS_PINEVIEW(dev))
10600 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10601 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10602 else
10603 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10604 DPLL_FPA01_P1_POST_DIV_SHIFT);
10605
10606 switch (dpll & DPLL_MODE_MASK) {
10607 case DPLLB_MODE_DAC_SERIAL:
10608 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10609 5 : 10;
10610 break;
10611 case DPLLB_MODE_LVDS:
10612 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10613 7 : 14;
10614 break;
10615 default:
28c97730 10616 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10617 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10618 return;
79e53945
JB
10619 }
10620
ac58c3f0 10621 if (IS_PINEVIEW(dev))
dccbea3b 10622 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10623 else
dccbea3b 10624 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10625 } else {
0fb58223 10626 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10627 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10628
10629 if (is_lvds) {
10630 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10631 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10632
10633 if (lvds & LVDS_CLKB_POWER_UP)
10634 clock.p2 = 7;
10635 else
10636 clock.p2 = 14;
79e53945
JB
10637 } else {
10638 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10639 clock.p1 = 2;
10640 else {
10641 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10642 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10643 }
10644 if (dpll & PLL_P2_DIVIDE_BY_4)
10645 clock.p2 = 4;
10646 else
10647 clock.p2 = 2;
79e53945 10648 }
da4a1efa 10649
dccbea3b 10650 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10651 }
10652
18442d08
VS
10653 /*
10654 * This value includes pixel_multiplier. We will use
241bfc38 10655 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10656 * encoder's get_config() function.
10657 */
dccbea3b 10658 pipe_config->port_clock = port_clock;
f1f644dc
JB
10659}
10660
6878da05
VS
10661int intel_dotclock_calculate(int link_freq,
10662 const struct intel_link_m_n *m_n)
f1f644dc 10663{
f1f644dc
JB
10664 /*
10665 * The calculation for the data clock is:
1041a02f 10666 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10667 * But we want to avoid losing precison if possible, so:
1041a02f 10668 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10669 *
10670 * and the link clock is simpler:
1041a02f 10671 * link_clock = (m * link_clock) / n
f1f644dc
JB
10672 */
10673
6878da05
VS
10674 if (!m_n->link_n)
10675 return 0;
f1f644dc 10676
6878da05
VS
10677 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10678}
f1f644dc 10679
18442d08 10680static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10681 struct intel_crtc_state *pipe_config)
6878da05
VS
10682{
10683 struct drm_device *dev = crtc->base.dev;
79e53945 10684
18442d08
VS
10685 /* read out port_clock from the DPLL */
10686 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10687
f1f644dc 10688 /*
18442d08 10689 * This value does not include pixel_multiplier.
241bfc38 10690 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
10691 * agree once we know their relationship in the encoder's
10692 * get_config() function.
79e53945 10693 */
2d112de7 10694 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
10695 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10696 &pipe_config->fdi_m_n);
79e53945
JB
10697}
10698
10699/** Returns the currently programmed mode of the given pipe. */
10700struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10701 struct drm_crtc *crtc)
10702{
548f245b 10703 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10705 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10706 struct drm_display_mode *mode;
5cec258b 10707 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
10708 int htot = I915_READ(HTOTAL(cpu_transcoder));
10709 int hsync = I915_READ(HSYNC(cpu_transcoder));
10710 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10711 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10712 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10713
10714 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10715 if (!mode)
10716 return NULL;
10717
f1f644dc
JB
10718 /*
10719 * Construct a pipe_config sufficient for getting the clock info
10720 * back out of crtc_clock_get.
10721 *
10722 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10723 * to use a real value here instead.
10724 */
293623f7 10725 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 10726 pipe_config.pixel_multiplier = 1;
293623f7
VS
10727 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10728 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10729 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
10730 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10731
773ae034 10732 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
10733 mode->hdisplay = (htot & 0xffff) + 1;
10734 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10735 mode->hsync_start = (hsync & 0xffff) + 1;
10736 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10737 mode->vdisplay = (vtot & 0xffff) + 1;
10738 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10739 mode->vsync_start = (vsync & 0xffff) + 1;
10740 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10741
10742 drm_mode_set_name(mode);
79e53945
JB
10743
10744 return mode;
10745}
10746
f047e395
CW
10747void intel_mark_busy(struct drm_device *dev)
10748{
c67a470b
PZ
10749 struct drm_i915_private *dev_priv = dev->dev_private;
10750
f62a0076
CW
10751 if (dev_priv->mm.busy)
10752 return;
10753
43694d69 10754 intel_runtime_pm_get(dev_priv);
c67a470b 10755 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10756 if (INTEL_INFO(dev)->gen >= 6)
10757 gen6_rps_busy(dev_priv);
f62a0076 10758 dev_priv->mm.busy = true;
f047e395
CW
10759}
10760
10761void intel_mark_idle(struct drm_device *dev)
652c393a 10762{
c67a470b 10763 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10764
f62a0076
CW
10765 if (!dev_priv->mm.busy)
10766 return;
10767
10768 dev_priv->mm.busy = false;
10769
3d13ef2e 10770 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10771 gen6_rps_idle(dev->dev_private);
bb4cdd53 10772
43694d69 10773 intel_runtime_pm_put(dev_priv);
652c393a
JB
10774}
10775
79e53945
JB
10776static void intel_crtc_destroy(struct drm_crtc *crtc)
10777{
10778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10779 struct drm_device *dev = crtc->dev;
10780 struct intel_unpin_work *work;
67e77c5a 10781
5e2d7afc 10782 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10783 work = intel_crtc->unpin_work;
10784 intel_crtc->unpin_work = NULL;
5e2d7afc 10785 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10786
10787 if (work) {
10788 cancel_work_sync(&work->work);
10789 kfree(work);
10790 }
79e53945
JB
10791
10792 drm_crtc_cleanup(crtc);
67e77c5a 10793
79e53945
JB
10794 kfree(intel_crtc);
10795}
10796
6b95a207
KH
10797static void intel_unpin_work_fn(struct work_struct *__work)
10798{
10799 struct intel_unpin_work *work =
10800 container_of(__work, struct intel_unpin_work, work);
a9ff8714
VS
10801 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10802 struct drm_device *dev = crtc->base.dev;
10803 struct drm_plane *primary = crtc->base.primary;
6b95a207 10804
b4a98e57 10805 mutex_lock(&dev->struct_mutex);
a9ff8714 10806 intel_unpin_fb_obj(work->old_fb, primary->state);
05394f39 10807 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10808
f06cc1b9 10809 if (work->flip_queued_req)
146d84f0 10810 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10811 mutex_unlock(&dev->struct_mutex);
10812
a9ff8714 10813 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
89ed88ba 10814 drm_framebuffer_unreference(work->old_fb);
f99d7069 10815
a9ff8714
VS
10816 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10817 atomic_dec(&crtc->unpin_work_count);
b4a98e57 10818
6b95a207
KH
10819 kfree(work);
10820}
10821
1afe3e9d 10822static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10823 struct drm_crtc *crtc)
6b95a207 10824{
6b95a207
KH
10825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10826 struct intel_unpin_work *work;
6b95a207
KH
10827 unsigned long flags;
10828
10829 /* Ignore early vblank irqs */
10830 if (intel_crtc == NULL)
10831 return;
10832
f326038a
DV
10833 /*
10834 * This is called both by irq handlers and the reset code (to complete
10835 * lost pageflips) so needs the full irqsave spinlocks.
10836 */
6b95a207
KH
10837 spin_lock_irqsave(&dev->event_lock, flags);
10838 work = intel_crtc->unpin_work;
e7d841ca
CW
10839
10840 /* Ensure we don't miss a work->pending update ... */
10841 smp_rmb();
10842
10843 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10844 spin_unlock_irqrestore(&dev->event_lock, flags);
10845 return;
10846 }
10847
d6bbafa1 10848 page_flip_completed(intel_crtc);
0af7e4df 10849
6b95a207 10850 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10851}
10852
1afe3e9d
JB
10853void intel_finish_page_flip(struct drm_device *dev, int pipe)
10854{
fbee40df 10855 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10856 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10857
49b14a5c 10858 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10859}
10860
10861void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10862{
fbee40df 10863 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10864 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10865
49b14a5c 10866 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10867}
10868
75f7f3ec
VS
10869/* Is 'a' after or equal to 'b'? */
10870static bool g4x_flip_count_after_eq(u32 a, u32 b)
10871{
10872 return !((a - b) & 0x80000000);
10873}
10874
10875static bool page_flip_finished(struct intel_crtc *crtc)
10876{
10877 struct drm_device *dev = crtc->base.dev;
10878 struct drm_i915_private *dev_priv = dev->dev_private;
10879
bdfa7542
VS
10880 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10881 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10882 return true;
10883
75f7f3ec
VS
10884 /*
10885 * The relevant registers doen't exist on pre-ctg.
10886 * As the flip done interrupt doesn't trigger for mmio
10887 * flips on gmch platforms, a flip count check isn't
10888 * really needed there. But since ctg has the registers,
10889 * include it in the check anyway.
10890 */
10891 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10892 return true;
10893
10894 /*
10895 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10896 * used the same base address. In that case the mmio flip might
10897 * have completed, but the CS hasn't even executed the flip yet.
10898 *
10899 * A flip count check isn't enough as the CS might have updated
10900 * the base address just after start of vblank, but before we
10901 * managed to process the interrupt. This means we'd complete the
10902 * CS flip too soon.
10903 *
10904 * Combining both checks should get us a good enough result. It may
10905 * still happen that the CS flip has been executed, but has not
10906 * yet actually completed. But in case the base address is the same
10907 * anyway, we don't really care.
10908 */
10909 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10910 crtc->unpin_work->gtt_offset &&
fd8f507c 10911 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
75f7f3ec
VS
10912 crtc->unpin_work->flip_count);
10913}
10914
6b95a207
KH
10915void intel_prepare_page_flip(struct drm_device *dev, int plane)
10916{
fbee40df 10917 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10918 struct intel_crtc *intel_crtc =
10919 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10920 unsigned long flags;
10921
f326038a
DV
10922
10923 /*
10924 * This is called both by irq handlers and the reset code (to complete
10925 * lost pageflips) so needs the full irqsave spinlocks.
10926 *
10927 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10928 * generate a page-flip completion irq, i.e. every modeset
10929 * is also accompanied by a spurious intel_prepare_page_flip().
10930 */
6b95a207 10931 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10932 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10933 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10934 spin_unlock_irqrestore(&dev->event_lock, flags);
10935}
10936
6042639c 10937static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
e7d841ca
CW
10938{
10939 /* Ensure that the work item is consistent when activating it ... */
10940 smp_wmb();
6042639c 10941 atomic_set(&work->pending, INTEL_FLIP_PENDING);
e7d841ca
CW
10942 /* and that it is marked active as soon as the irq could fire. */
10943 smp_wmb();
10944}
10945
8c9f3aaf
JB
10946static int intel_gen2_queue_flip(struct drm_device *dev,
10947 struct drm_crtc *crtc,
10948 struct drm_framebuffer *fb,
ed8d1975 10949 struct drm_i915_gem_object *obj,
6258fbe2 10950 struct drm_i915_gem_request *req,
ed8d1975 10951 uint32_t flags)
8c9f3aaf 10952{
6258fbe2 10953 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10955 u32 flip_mask;
10956 int ret;
10957
5fb9de1a 10958 ret = intel_ring_begin(req, 6);
8c9f3aaf 10959 if (ret)
4fa62c89 10960 return ret;
8c9f3aaf
JB
10961
10962 /* Can't queue multiple flips, so wait for the previous
10963 * one to finish before executing the next.
10964 */
10965 if (intel_crtc->plane)
10966 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10967 else
10968 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10969 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10970 intel_ring_emit(ring, MI_NOOP);
10971 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10972 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10973 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10974 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10975 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca 10976
6042639c 10977 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10978 return 0;
8c9f3aaf
JB
10979}
10980
10981static int intel_gen3_queue_flip(struct drm_device *dev,
10982 struct drm_crtc *crtc,
10983 struct drm_framebuffer *fb,
ed8d1975 10984 struct drm_i915_gem_object *obj,
6258fbe2 10985 struct drm_i915_gem_request *req,
ed8d1975 10986 uint32_t flags)
8c9f3aaf 10987{
6258fbe2 10988 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10989 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10990 u32 flip_mask;
10991 int ret;
10992
5fb9de1a 10993 ret = intel_ring_begin(req, 6);
8c9f3aaf 10994 if (ret)
4fa62c89 10995 return ret;
8c9f3aaf
JB
10996
10997 if (intel_crtc->plane)
10998 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10999 else
11000 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
11001 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11002 intel_ring_emit(ring, MI_NOOP);
11003 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11004 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11005 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11006 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
11007 intel_ring_emit(ring, MI_NOOP);
11008
6042639c 11009 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11010 return 0;
8c9f3aaf
JB
11011}
11012
11013static int intel_gen4_queue_flip(struct drm_device *dev,
11014 struct drm_crtc *crtc,
11015 struct drm_framebuffer *fb,
ed8d1975 11016 struct drm_i915_gem_object *obj,
6258fbe2 11017 struct drm_i915_gem_request *req,
ed8d1975 11018 uint32_t flags)
8c9f3aaf 11019{
6258fbe2 11020 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
11021 struct drm_i915_private *dev_priv = dev->dev_private;
11022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11023 uint32_t pf, pipesrc;
11024 int ret;
11025
5fb9de1a 11026 ret = intel_ring_begin(req, 4);
8c9f3aaf 11027 if (ret)
4fa62c89 11028 return ret;
8c9f3aaf
JB
11029
11030 /* i965+ uses the linear or tiled offsets from the
11031 * Display Registers (which do not change across a page-flip)
11032 * so we need only reprogram the base address.
11033 */
6d90c952
DV
11034 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11035 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11036 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11037 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 11038 obj->tiling_mode);
8c9f3aaf
JB
11039
11040 /* XXX Enabling the panel-fitter across page-flip is so far
11041 * untested on non-native modes, so ignore it for now.
11042 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11043 */
11044 pf = 0;
11045 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11046 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 11047
6042639c 11048 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11049 return 0;
8c9f3aaf
JB
11050}
11051
11052static int intel_gen6_queue_flip(struct drm_device *dev,
11053 struct drm_crtc *crtc,
11054 struct drm_framebuffer *fb,
ed8d1975 11055 struct drm_i915_gem_object *obj,
6258fbe2 11056 struct drm_i915_gem_request *req,
ed8d1975 11057 uint32_t flags)
8c9f3aaf 11058{
6258fbe2 11059 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
11060 struct drm_i915_private *dev_priv = dev->dev_private;
11061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11062 uint32_t pf, pipesrc;
11063 int ret;
11064
5fb9de1a 11065 ret = intel_ring_begin(req, 4);
8c9f3aaf 11066 if (ret)
4fa62c89 11067 return ret;
8c9f3aaf 11068
6d90c952
DV
11069 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11070 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11071 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 11072 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 11073
dc257cf1
DV
11074 /* Contrary to the suggestions in the documentation,
11075 * "Enable Panel Fitter" does not seem to be required when page
11076 * flipping with a non-native mode, and worse causes a normal
11077 * modeset to fail.
11078 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11079 */
11080 pf = 0;
8c9f3aaf 11081 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11082 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 11083
6042639c 11084 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11085 return 0;
8c9f3aaf
JB
11086}
11087
7c9017e5
JB
11088static int intel_gen7_queue_flip(struct drm_device *dev,
11089 struct drm_crtc *crtc,
11090 struct drm_framebuffer *fb,
ed8d1975 11091 struct drm_i915_gem_object *obj,
6258fbe2 11092 struct drm_i915_gem_request *req,
ed8d1975 11093 uint32_t flags)
7c9017e5 11094{
6258fbe2 11095 struct intel_engine_cs *ring = req->ring;
7c9017e5 11096 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11097 uint32_t plane_bit = 0;
ffe74d75
CW
11098 int len, ret;
11099
eba905b2 11100 switch (intel_crtc->plane) {
cb05d8de
DV
11101 case PLANE_A:
11102 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11103 break;
11104 case PLANE_B:
11105 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11106 break;
11107 case PLANE_C:
11108 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11109 break;
11110 default:
11111 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11112 return -ENODEV;
cb05d8de
DV
11113 }
11114
ffe74d75 11115 len = 4;
f476828a 11116 if (ring->id == RCS) {
ffe74d75 11117 len += 6;
f476828a
DL
11118 /*
11119 * On Gen 8, SRM is now taking an extra dword to accommodate
11120 * 48bits addresses, and we need a NOOP for the batch size to
11121 * stay even.
11122 */
11123 if (IS_GEN8(dev))
11124 len += 2;
11125 }
ffe74d75 11126
f66fab8e
VS
11127 /*
11128 * BSpec MI_DISPLAY_FLIP for IVB:
11129 * "The full packet must be contained within the same cache line."
11130 *
11131 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11132 * cacheline, if we ever start emitting more commands before
11133 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11134 * then do the cacheline alignment, and finally emit the
11135 * MI_DISPLAY_FLIP.
11136 */
bba09b12 11137 ret = intel_ring_cacheline_align(req);
f66fab8e 11138 if (ret)
4fa62c89 11139 return ret;
f66fab8e 11140
5fb9de1a 11141 ret = intel_ring_begin(req, len);
7c9017e5 11142 if (ret)
4fa62c89 11143 return ret;
7c9017e5 11144
ffe74d75
CW
11145 /* Unmask the flip-done completion message. Note that the bspec says that
11146 * we should do this for both the BCS and RCS, and that we must not unmask
11147 * more than one flip event at any time (or ensure that one flip message
11148 * can be sent by waiting for flip-done prior to queueing new flips).
11149 * Experimentation says that BCS works despite DERRMR masking all
11150 * flip-done completion events and that unmasking all planes at once
11151 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11152 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11153 */
11154 if (ring->id == RCS) {
11155 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 11156 intel_ring_emit_reg(ring, DERRMR);
ffe74d75
CW
11157 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11158 DERRMR_PIPEB_PRI_FLIP_DONE |
11159 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a 11160 if (IS_GEN8(dev))
f1afe24f 11161 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
f476828a
DL
11162 MI_SRM_LRM_GLOBAL_GTT);
11163 else
f1afe24f 11164 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
f476828a 11165 MI_SRM_LRM_GLOBAL_GTT);
f92a9162 11166 intel_ring_emit_reg(ring, DERRMR);
ffe74d75 11167 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
11168 if (IS_GEN8(dev)) {
11169 intel_ring_emit(ring, 0);
11170 intel_ring_emit(ring, MI_NOOP);
11171 }
ffe74d75
CW
11172 }
11173
cb05d8de 11174 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 11175 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 11176 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 11177 intel_ring_emit(ring, (MI_NOOP));
e7d841ca 11178
6042639c 11179 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11180 return 0;
7c9017e5
JB
11181}
11182
84c33a64
SG
11183static bool use_mmio_flip(struct intel_engine_cs *ring,
11184 struct drm_i915_gem_object *obj)
11185{
11186 /*
11187 * This is not being used for older platforms, because
11188 * non-availability of flip done interrupt forces us to use
11189 * CS flips. Older platforms derive flip done using some clever
11190 * tricks involving the flip_pending status bits and vblank irqs.
11191 * So using MMIO flips there would disrupt this mechanism.
11192 */
11193
8e09bf83
CW
11194 if (ring == NULL)
11195 return true;
11196
84c33a64
SG
11197 if (INTEL_INFO(ring->dev)->gen < 5)
11198 return false;
11199
11200 if (i915.use_mmio_flip < 0)
11201 return false;
11202 else if (i915.use_mmio_flip > 0)
11203 return true;
14bf993e
OM
11204 else if (i915.enable_execlists)
11205 return true;
fd8e058a
AG
11206 else if (obj->base.dma_buf &&
11207 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11208 false))
11209 return true;
84c33a64 11210 else
b4716185 11211 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11212}
11213
6042639c 11214static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
86efe24a 11215 unsigned int rotation,
6042639c 11216 struct intel_unpin_work *work)
ff944564
DL
11217{
11218 struct drm_device *dev = intel_crtc->base.dev;
11219 struct drm_i915_private *dev_priv = dev->dev_private;
11220 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564 11221 const enum pipe pipe = intel_crtc->pipe;
86efe24a 11222 u32 ctl, stride, tile_height;
ff944564
DL
11223
11224 ctl = I915_READ(PLANE_CTL(pipe, 0));
11225 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11226 switch (fb->modifier[0]) {
11227 case DRM_FORMAT_MOD_NONE:
11228 break;
11229 case I915_FORMAT_MOD_X_TILED:
ff944564 11230 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11231 break;
11232 case I915_FORMAT_MOD_Y_TILED:
11233 ctl |= PLANE_CTL_TILED_Y;
11234 break;
11235 case I915_FORMAT_MOD_Yf_TILED:
11236 ctl |= PLANE_CTL_TILED_YF;
11237 break;
11238 default:
11239 MISSING_CASE(fb->modifier[0]);
11240 }
ff944564
DL
11241
11242 /*
11243 * The stride is either expressed as a multiple of 64 bytes chunks for
11244 * linear buffers or in number of tiles for tiled buffers.
11245 */
86efe24a
TU
11246 if (intel_rotation_90_or_270(rotation)) {
11247 /* stride = Surface height in tiles */
11248 tile_height = intel_tile_height(dev, fb->pixel_format,
11249 fb->modifier[0], 0);
11250 stride = DIV_ROUND_UP(fb->height, tile_height);
11251 } else {
11252 stride = fb->pitches[0] /
11253 intel_fb_stride_alignment(dev, fb->modifier[0],
11254 fb->pixel_format);
11255 }
ff944564
DL
11256
11257 /*
11258 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11259 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11260 */
11261 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11262 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11263
6042639c 11264 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
ff944564
DL
11265 POSTING_READ(PLANE_SURF(pipe, 0));
11266}
11267
6042639c
CW
11268static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11269 struct intel_unpin_work *work)
84c33a64
SG
11270{
11271 struct drm_device *dev = intel_crtc->base.dev;
11272 struct drm_i915_private *dev_priv = dev->dev_private;
11273 struct intel_framebuffer *intel_fb =
11274 to_intel_framebuffer(intel_crtc->base.primary->fb);
11275 struct drm_i915_gem_object *obj = intel_fb->obj;
f0f59a00 11276 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
84c33a64 11277 u32 dspcntr;
84c33a64 11278
84c33a64
SG
11279 dspcntr = I915_READ(reg);
11280
c5d97472
DL
11281 if (obj->tiling_mode != I915_TILING_NONE)
11282 dspcntr |= DISPPLANE_TILED;
11283 else
11284 dspcntr &= ~DISPPLANE_TILED;
11285
84c33a64
SG
11286 I915_WRITE(reg, dspcntr);
11287
6042639c 11288 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
84c33a64 11289 POSTING_READ(DSPSURF(intel_crtc->plane));
ff944564
DL
11290}
11291
11292/*
11293 * XXX: This is the temporary way to update the plane registers until we get
11294 * around to using the usual plane update functions for MMIO flips
11295 */
6042639c 11296static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
ff944564 11297{
6042639c
CW
11298 struct intel_crtc *crtc = mmio_flip->crtc;
11299 struct intel_unpin_work *work;
11300
11301 spin_lock_irq(&crtc->base.dev->event_lock);
11302 work = crtc->unpin_work;
11303 spin_unlock_irq(&crtc->base.dev->event_lock);
11304 if (work == NULL)
11305 return;
ff944564 11306
6042639c 11307 intel_mark_page_flip_active(work);
ff944564 11308
6042639c 11309 intel_pipe_update_start(crtc);
ff944564 11310
6042639c 11311 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
86efe24a 11312 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
ff944564
DL
11313 else
11314 /* use_mmio_flip() retricts MMIO flips to ilk+ */
6042639c 11315 ilk_do_mmio_flip(crtc, work);
ff944564 11316
6042639c 11317 intel_pipe_update_end(crtc);
84c33a64
SG
11318}
11319
9362c7c5 11320static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11321{
b2cfe0ab
CW
11322 struct intel_mmio_flip *mmio_flip =
11323 container_of(work, struct intel_mmio_flip, work);
fd8e058a
AG
11324 struct intel_framebuffer *intel_fb =
11325 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11326 struct drm_i915_gem_object *obj = intel_fb->obj;
84c33a64 11327
6042639c 11328 if (mmio_flip->req) {
eed29a5b 11329 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11330 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11331 false, NULL,
11332 &mmio_flip->i915->rps.mmioflips));
6042639c
CW
11333 i915_gem_request_unreference__unlocked(mmio_flip->req);
11334 }
84c33a64 11335
fd8e058a
AG
11336 /* For framebuffer backed by dmabuf, wait for fence */
11337 if (obj->base.dma_buf)
11338 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11339 false, false,
11340 MAX_SCHEDULE_TIMEOUT) < 0);
11341
6042639c 11342 intel_do_mmio_flip(mmio_flip);
b2cfe0ab 11343 kfree(mmio_flip);
84c33a64
SG
11344}
11345
11346static int intel_queue_mmio_flip(struct drm_device *dev,
11347 struct drm_crtc *crtc,
86efe24a 11348 struct drm_i915_gem_object *obj)
84c33a64 11349{
b2cfe0ab
CW
11350 struct intel_mmio_flip *mmio_flip;
11351
11352 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11353 if (mmio_flip == NULL)
11354 return -ENOMEM;
84c33a64 11355
bcafc4e3 11356 mmio_flip->i915 = to_i915(dev);
eed29a5b 11357 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11358 mmio_flip->crtc = to_intel_crtc(crtc);
86efe24a 11359 mmio_flip->rotation = crtc->primary->state->rotation;
536f5b5e 11360
b2cfe0ab
CW
11361 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11362 schedule_work(&mmio_flip->work);
84c33a64 11363
84c33a64
SG
11364 return 0;
11365}
11366
8c9f3aaf
JB
11367static int intel_default_queue_flip(struct drm_device *dev,
11368 struct drm_crtc *crtc,
11369 struct drm_framebuffer *fb,
ed8d1975 11370 struct drm_i915_gem_object *obj,
6258fbe2 11371 struct drm_i915_gem_request *req,
ed8d1975 11372 uint32_t flags)
8c9f3aaf
JB
11373{
11374 return -ENODEV;
11375}
11376
d6bbafa1
CW
11377static bool __intel_pageflip_stall_check(struct drm_device *dev,
11378 struct drm_crtc *crtc)
11379{
11380 struct drm_i915_private *dev_priv = dev->dev_private;
11381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11382 struct intel_unpin_work *work = intel_crtc->unpin_work;
11383 u32 addr;
11384
11385 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11386 return true;
11387
908565c2
CW
11388 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11389 return false;
11390
d6bbafa1
CW
11391 if (!work->enable_stall_check)
11392 return false;
11393
11394 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11395 if (work->flip_queued_req &&
11396 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11397 return false;
11398
1e3feefd 11399 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11400 }
11401
1e3feefd 11402 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11403 return false;
11404
11405 /* Potential stall - if we see that the flip has happened,
11406 * assume a missed interrupt. */
11407 if (INTEL_INFO(dev)->gen >= 4)
11408 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11409 else
11410 addr = I915_READ(DSPADDR(intel_crtc->plane));
11411
11412 /* There is a potential issue here with a false positive after a flip
11413 * to the same address. We could address this by checking for a
11414 * non-incrementing frame counter.
11415 */
11416 return addr == work->gtt_offset;
11417}
11418
11419void intel_check_page_flip(struct drm_device *dev, int pipe)
11420{
11421 struct drm_i915_private *dev_priv = dev->dev_private;
11422 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11424 struct intel_unpin_work *work;
f326038a 11425
6c51d46f 11426 WARN_ON(!in_interrupt());
d6bbafa1
CW
11427
11428 if (crtc == NULL)
11429 return;
11430
f326038a 11431 spin_lock(&dev->event_lock);
6ad790c0
CW
11432 work = intel_crtc->unpin_work;
11433 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11434 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11435 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11436 page_flip_completed(intel_crtc);
6ad790c0 11437 work = NULL;
d6bbafa1 11438 }
6ad790c0
CW
11439 if (work != NULL &&
11440 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11441 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11442 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11443}
11444
6b95a207
KH
11445static int intel_crtc_page_flip(struct drm_crtc *crtc,
11446 struct drm_framebuffer *fb,
ed8d1975
KP
11447 struct drm_pending_vblank_event *event,
11448 uint32_t page_flip_flags)
6b95a207
KH
11449{
11450 struct drm_device *dev = crtc->dev;
11451 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11452 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11453 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11455 struct drm_plane *primary = crtc->primary;
a071fa00 11456 enum pipe pipe = intel_crtc->pipe;
6b95a207 11457 struct intel_unpin_work *work;
a4872ba6 11458 struct intel_engine_cs *ring;
cf5d8a46 11459 bool mmio_flip;
91af127f 11460 struct drm_i915_gem_request *request = NULL;
52e68630 11461 int ret;
6b95a207 11462
2ff8fde1
MR
11463 /*
11464 * drm_mode_page_flip_ioctl() should already catch this, but double
11465 * check to be safe. In the future we may enable pageflipping from
11466 * a disabled primary plane.
11467 */
11468 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11469 return -EBUSY;
11470
e6a595d2 11471 /* Can't change pixel format via MI display flips. */
f4510a27 11472 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11473 return -EINVAL;
11474
11475 /*
11476 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11477 * Note that pitch changes could also affect these register.
11478 */
11479 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11480 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11481 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11482 return -EINVAL;
11483
f900db47
CW
11484 if (i915_terminally_wedged(&dev_priv->gpu_error))
11485 goto out_hang;
11486
b14c5679 11487 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11488 if (work == NULL)
11489 return -ENOMEM;
11490
6b95a207 11491 work->event = event;
b4a98e57 11492 work->crtc = crtc;
ab8d6675 11493 work->old_fb = old_fb;
6b95a207
KH
11494 INIT_WORK(&work->work, intel_unpin_work_fn);
11495
87b6b101 11496 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11497 if (ret)
11498 goto free_work;
11499
6b95a207 11500 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11501 spin_lock_irq(&dev->event_lock);
6b95a207 11502 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11503 /* Before declaring the flip queue wedged, check if
11504 * the hardware completed the operation behind our backs.
11505 */
11506 if (__intel_pageflip_stall_check(dev, crtc)) {
11507 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11508 page_flip_completed(intel_crtc);
11509 } else {
11510 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11511 spin_unlock_irq(&dev->event_lock);
468f0b44 11512
d6bbafa1
CW
11513 drm_crtc_vblank_put(crtc);
11514 kfree(work);
11515 return -EBUSY;
11516 }
6b95a207
KH
11517 }
11518 intel_crtc->unpin_work = work;
5e2d7afc 11519 spin_unlock_irq(&dev->event_lock);
6b95a207 11520
b4a98e57
CW
11521 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11522 flush_workqueue(dev_priv->wq);
11523
75dfca80 11524 /* Reference the objects for the scheduled work. */
ab8d6675 11525 drm_framebuffer_reference(work->old_fb);
05394f39 11526 drm_gem_object_reference(&obj->base);
6b95a207 11527
f4510a27 11528 crtc->primary->fb = fb;
afd65eb4 11529 update_state_fb(crtc->primary);
1ed1f968 11530
e1f99ce6 11531 work->pending_flip_obj = obj;
e1f99ce6 11532
89ed88ba
CW
11533 ret = i915_mutex_lock_interruptible(dev);
11534 if (ret)
11535 goto cleanup;
11536
b4a98e57 11537 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11538 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11539
75f7f3ec 11540 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
fd8f507c 11541 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
75f7f3ec 11542
4fa62c89
VS
11543 if (IS_VALLEYVIEW(dev)) {
11544 ring = &dev_priv->ring[BCS];
ab8d6675 11545 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11546 /* vlv: DISPLAY_FLIP fails to change tiling */
11547 ring = NULL;
48bf5b2d 11548 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11549 ring = &dev_priv->ring[BCS];
4fa62c89 11550 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11551 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11552 if (ring == NULL || ring->id != RCS)
11553 ring = &dev_priv->ring[BCS];
11554 } else {
11555 ring = &dev_priv->ring[RCS];
11556 }
11557
cf5d8a46
CW
11558 mmio_flip = use_mmio_flip(ring, obj);
11559
11560 /* When using CS flips, we want to emit semaphores between rings.
11561 * However, when using mmio flips we will create a task to do the
11562 * synchronisation, so all we want here is to pin the framebuffer
11563 * into the display plane and skip any waits.
11564 */
7580d774
ML
11565 if (!mmio_flip) {
11566 ret = i915_gem_object_sync(obj, ring, &request);
11567 if (ret)
11568 goto cleanup_pending;
11569 }
11570
82bc3b2d 11571 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
7580d774 11572 crtc->primary->state);
8c9f3aaf
JB
11573 if (ret)
11574 goto cleanup_pending;
6b95a207 11575
dedf278c
TU
11576 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11577 obj, 0);
11578 work->gtt_offset += intel_crtc->dspaddr_offset;
4fa62c89 11579
cf5d8a46 11580 if (mmio_flip) {
86efe24a 11581 ret = intel_queue_mmio_flip(dev, crtc, obj);
d6bbafa1
CW
11582 if (ret)
11583 goto cleanup_unpin;
11584
f06cc1b9
JH
11585 i915_gem_request_assign(&work->flip_queued_req,
11586 obj->last_write_req);
d6bbafa1 11587 } else {
6258fbe2
JH
11588 if (!request) {
11589 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11590 if (ret)
11591 goto cleanup_unpin;
11592 }
11593
11594 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11595 page_flip_flags);
11596 if (ret)
11597 goto cleanup_unpin;
11598
6258fbe2 11599 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11600 }
11601
91af127f 11602 if (request)
75289874 11603 i915_add_request_no_flush(request);
91af127f 11604
1e3feefd 11605 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11606 work->enable_stall_check = true;
4fa62c89 11607
ab8d6675 11608 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a9ff8714 11609 to_intel_plane(primary)->frontbuffer_bit);
c80ac854 11610 mutex_unlock(&dev->struct_mutex);
a071fa00 11611
d029bcad 11612 intel_fbc_deactivate(intel_crtc);
a9ff8714
VS
11613 intel_frontbuffer_flip_prepare(dev,
11614 to_intel_plane(primary)->frontbuffer_bit);
6b95a207 11615
e5510fac
JB
11616 trace_i915_flip_request(intel_crtc->plane, obj);
11617
6b95a207 11618 return 0;
96b099fd 11619
4fa62c89 11620cleanup_unpin:
82bc3b2d 11621 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 11622cleanup_pending:
91af127f
JH
11623 if (request)
11624 i915_gem_request_cancel(request);
b4a98e57 11625 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11626 mutex_unlock(&dev->struct_mutex);
11627cleanup:
f4510a27 11628 crtc->primary->fb = old_fb;
afd65eb4 11629 update_state_fb(crtc->primary);
89ed88ba
CW
11630
11631 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11632 drm_framebuffer_unreference(work->old_fb);
96b099fd 11633
5e2d7afc 11634 spin_lock_irq(&dev->event_lock);
96b099fd 11635 intel_crtc->unpin_work = NULL;
5e2d7afc 11636 spin_unlock_irq(&dev->event_lock);
96b099fd 11637
87b6b101 11638 drm_crtc_vblank_put(crtc);
7317c75e 11639free_work:
96b099fd
CW
11640 kfree(work);
11641
f900db47 11642 if (ret == -EIO) {
02e0efb5
ML
11643 struct drm_atomic_state *state;
11644 struct drm_plane_state *plane_state;
11645
f900db47 11646out_hang:
02e0efb5
ML
11647 state = drm_atomic_state_alloc(dev);
11648 if (!state)
11649 return -ENOMEM;
11650 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11651
11652retry:
11653 plane_state = drm_atomic_get_plane_state(state, primary);
11654 ret = PTR_ERR_OR_ZERO(plane_state);
11655 if (!ret) {
11656 drm_atomic_set_fb_for_plane(plane_state, fb);
11657
11658 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11659 if (!ret)
11660 ret = drm_atomic_commit(state);
11661 }
11662
11663 if (ret == -EDEADLK) {
11664 drm_modeset_backoff(state->acquire_ctx);
11665 drm_atomic_state_clear(state);
11666 goto retry;
11667 }
11668
11669 if (ret)
11670 drm_atomic_state_free(state);
11671
f0d3dad3 11672 if (ret == 0 && event) {
5e2d7afc 11673 spin_lock_irq(&dev->event_lock);
a071fa00 11674 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11675 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11676 }
f900db47 11677 }
96b099fd 11678 return ret;
6b95a207
KH
11679}
11680
da20eabd
ML
11681
11682/**
11683 * intel_wm_need_update - Check whether watermarks need updating
11684 * @plane: drm plane
11685 * @state: new plane state
11686 *
11687 * Check current plane state versus the new one to determine whether
11688 * watermarks need to be recalculated.
11689 *
11690 * Returns true or false.
11691 */
11692static bool intel_wm_need_update(struct drm_plane *plane,
11693 struct drm_plane_state *state)
11694{
d21fbe87
MR
11695 struct intel_plane_state *new = to_intel_plane_state(state);
11696 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11697
11698 /* Update watermarks on tiling or size changes. */
da20eabd
ML
11699 if (!plane->state->fb || !state->fb ||
11700 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
d21fbe87
MR
11701 plane->state->rotation != state->rotation ||
11702 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11703 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11704 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11705 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
2791a16c 11706 return true;
7809e5ae 11707
2791a16c 11708 return false;
7809e5ae
MR
11709}
11710
d21fbe87
MR
11711static bool needs_scaling(struct intel_plane_state *state)
11712{
11713 int src_w = drm_rect_width(&state->src) >> 16;
11714 int src_h = drm_rect_height(&state->src) >> 16;
11715 int dst_w = drm_rect_width(&state->dst);
11716 int dst_h = drm_rect_height(&state->dst);
11717
11718 return (src_w != dst_w || src_h != dst_h);
11719}
11720
da20eabd
ML
11721int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11722 struct drm_plane_state *plane_state)
11723{
ab1d3a0e 11724 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
11725 struct drm_crtc *crtc = crtc_state->crtc;
11726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11727 struct drm_plane *plane = plane_state->plane;
11728 struct drm_device *dev = crtc->dev;
11729 struct drm_i915_private *dev_priv = dev->dev_private;
11730 struct intel_plane_state *old_plane_state =
11731 to_intel_plane_state(plane->state);
11732 int idx = intel_crtc->base.base.id, ret;
11733 int i = drm_plane_index(plane);
11734 bool mode_changed = needs_modeset(crtc_state);
11735 bool was_crtc_enabled = crtc->state->active;
11736 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
11737 bool turn_off, turn_on, visible, was_visible;
11738 struct drm_framebuffer *fb = plane_state->fb;
11739
11740 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11741 plane->type != DRM_PLANE_TYPE_CURSOR) {
11742 ret = skl_update_scaler_plane(
11743 to_intel_crtc_state(crtc_state),
11744 to_intel_plane_state(plane_state));
11745 if (ret)
11746 return ret;
11747 }
11748
da20eabd
ML
11749 was_visible = old_plane_state->visible;
11750 visible = to_intel_plane_state(plane_state)->visible;
11751
11752 if (!was_crtc_enabled && WARN_ON(was_visible))
11753 was_visible = false;
11754
11755 if (!is_crtc_enabled && WARN_ON(visible))
11756 visible = false;
11757
11758 if (!was_visible && !visible)
11759 return 0;
11760
11761 turn_off = was_visible && (!visible || mode_changed);
11762 turn_on = visible && (!was_visible || mode_changed);
11763
11764 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11765 plane->base.id, fb ? fb->base.id : -1);
11766
11767 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11768 plane->base.id, was_visible, visible,
11769 turn_off, turn_on, mode_changed);
11770
852eb00d 11771 if (turn_on) {
f015c551 11772 intel_crtc->atomic.update_wm_pre = true;
852eb00d
VS
11773 /* must disable cxsr around plane enable/disable */
11774 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
ab1d3a0e 11775 pipe_config->disable_cxsr = true;
852eb00d
VS
11776 /* to potentially re-enable cxsr */
11777 intel_crtc->atomic.wait_vblank = true;
11778 intel_crtc->atomic.update_wm_post = true;
11779 }
11780 } else if (turn_off) {
f015c551 11781 intel_crtc->atomic.update_wm_post = true;
852eb00d
VS
11782 /* must disable cxsr around plane enable/disable */
11783 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11784 if (is_crtc_enabled)
11785 intel_crtc->atomic.wait_vblank = true;
ab1d3a0e 11786 pipe_config->disable_cxsr = true;
852eb00d
VS
11787 }
11788 } else if (intel_wm_need_update(plane, plane_state)) {
f015c551 11789 intel_crtc->atomic.update_wm_pre = true;
852eb00d 11790 }
da20eabd 11791
8be6ca85 11792 if (visible || was_visible)
a9ff8714
VS
11793 intel_crtc->atomic.fb_bits |=
11794 to_intel_plane(plane)->frontbuffer_bit;
11795
da20eabd
ML
11796 switch (plane->type) {
11797 case DRM_PLANE_TYPE_PRIMARY:
da20eabd
ML
11798 intel_crtc->atomic.pre_disable_primary = turn_off;
11799 intel_crtc->atomic.post_enable_primary = turn_on;
11800
066cf55b
RV
11801 if (turn_off) {
11802 /*
11803 * FIXME: Actually if we will still have any other
11804 * plane enabled on the pipe we could let IPS enabled
11805 * still, but for now lets consider that when we make
11806 * primary invisible by setting DSPCNTR to 0 on
11807 * update_primary_plane function IPS needs to be
11808 * disable.
11809 */
11810 intel_crtc->atomic.disable_ips = true;
11811
da20eabd 11812 intel_crtc->atomic.disable_fbc = true;
066cf55b 11813 }
da20eabd
ML
11814
11815 /*
11816 * FBC does not work on some platforms for rotated
11817 * planes, so disable it when rotation is not 0 and
11818 * update it when rotation is set back to 0.
11819 *
11820 * FIXME: This is redundant with the fbc update done in
11821 * the primary plane enable function except that that
11822 * one is done too late. We eventually need to unify
11823 * this.
11824 */
11825
11826 if (visible &&
11827 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11828 dev_priv->fbc.crtc == intel_crtc &&
11829 plane_state->rotation != BIT(DRM_ROTATE_0))
11830 intel_crtc->atomic.disable_fbc = true;
11831
11832 /*
11833 * BDW signals flip done immediately if the plane
11834 * is disabled, even if the plane enable is already
11835 * armed to occur at the next vblank :(
11836 */
11837 if (turn_on && IS_BROADWELL(dev))
11838 intel_crtc->atomic.wait_vblank = true;
11839
11840 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11841 break;
11842 case DRM_PLANE_TYPE_CURSOR:
da20eabd
ML
11843 break;
11844 case DRM_PLANE_TYPE_OVERLAY:
d21fbe87
MR
11845 /*
11846 * WaCxSRDisabledForSpriteScaling:ivb
11847 *
11848 * cstate->update_wm was already set above, so this flag will
11849 * take effect when we commit and program watermarks.
11850 */
11851 if (IS_IVYBRIDGE(dev) &&
11852 needs_scaling(to_intel_plane_state(plane_state)) &&
11853 !needs_scaling(old_plane_state)) {
11854 to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11855 } else if (turn_off && !mode_changed) {
da20eabd
ML
11856 intel_crtc->atomic.wait_vblank = true;
11857 intel_crtc->atomic.update_sprite_watermarks |=
11858 1 << i;
11859 }
d21fbe87
MR
11860
11861 break;
da20eabd
ML
11862 }
11863 return 0;
11864}
11865
6d3a1ce7
ML
11866static bool encoders_cloneable(const struct intel_encoder *a,
11867 const struct intel_encoder *b)
11868{
11869 /* masks could be asymmetric, so check both ways */
11870 return a == b || (a->cloneable & (1 << b->type) &&
11871 b->cloneable & (1 << a->type));
11872}
11873
11874static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11875 struct intel_crtc *crtc,
11876 struct intel_encoder *encoder)
11877{
11878 struct intel_encoder *source_encoder;
11879 struct drm_connector *connector;
11880 struct drm_connector_state *connector_state;
11881 int i;
11882
11883 for_each_connector_in_state(state, connector, connector_state, i) {
11884 if (connector_state->crtc != &crtc->base)
11885 continue;
11886
11887 source_encoder =
11888 to_intel_encoder(connector_state->best_encoder);
11889 if (!encoders_cloneable(encoder, source_encoder))
11890 return false;
11891 }
11892
11893 return true;
11894}
11895
11896static bool check_encoder_cloning(struct drm_atomic_state *state,
11897 struct intel_crtc *crtc)
11898{
11899 struct intel_encoder *encoder;
11900 struct drm_connector *connector;
11901 struct drm_connector_state *connector_state;
11902 int i;
11903
11904 for_each_connector_in_state(state, connector, connector_state, i) {
11905 if (connector_state->crtc != &crtc->base)
11906 continue;
11907
11908 encoder = to_intel_encoder(connector_state->best_encoder);
11909 if (!check_single_encoder_cloning(state, crtc, encoder))
11910 return false;
11911 }
11912
11913 return true;
11914}
11915
11916static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11917 struct drm_crtc_state *crtc_state)
11918{
cf5a15be 11919 struct drm_device *dev = crtc->dev;
ad421372 11920 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11922 struct intel_crtc_state *pipe_config =
11923 to_intel_crtc_state(crtc_state);
6d3a1ce7 11924 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 11925 int ret;
6d3a1ce7
ML
11926 bool mode_changed = needs_modeset(crtc_state);
11927
11928 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11929 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11930 return -EINVAL;
11931 }
11932
852eb00d
VS
11933 if (mode_changed && !crtc_state->active)
11934 intel_crtc->atomic.update_wm_post = true;
eddfcbcd 11935
ad421372
ML
11936 if (mode_changed && crtc_state->enable &&
11937 dev_priv->display.crtc_compute_clock &&
11938 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11939 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11940 pipe_config);
11941 if (ret)
11942 return ret;
11943 }
11944
e435d6e5 11945 ret = 0;
86c8bbbe
MR
11946 if (dev_priv->display.compute_pipe_wm) {
11947 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11948 if (ret)
11949 return ret;
11950 }
11951
e435d6e5
ML
11952 if (INTEL_INFO(dev)->gen >= 9) {
11953 if (mode_changed)
11954 ret = skl_update_scaler_crtc(pipe_config);
11955
11956 if (!ret)
11957 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11958 pipe_config);
11959 }
11960
11961 return ret;
6d3a1ce7
ML
11962}
11963
65b38e0d 11964static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11965 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11966 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11967 .atomic_begin = intel_begin_crtc_commit,
11968 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 11969 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
11970};
11971
d29b2f9d
ACO
11972static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11973{
11974 struct intel_connector *connector;
11975
11976 for_each_intel_connector(dev, connector) {
11977 if (connector->base.encoder) {
11978 connector->base.state->best_encoder =
11979 connector->base.encoder;
11980 connector->base.state->crtc =
11981 connector->base.encoder->crtc;
11982 } else {
11983 connector->base.state->best_encoder = NULL;
11984 connector->base.state->crtc = NULL;
11985 }
11986 }
11987}
11988
050f7aeb 11989static void
eba905b2 11990connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11991 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11992{
11993 int bpp = pipe_config->pipe_bpp;
11994
11995 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11996 connector->base.base.id,
c23cc417 11997 connector->base.name);
050f7aeb
DV
11998
11999 /* Don't use an invalid EDID bpc value */
12000 if (connector->base.display_info.bpc &&
12001 connector->base.display_info.bpc * 3 < bpp) {
12002 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12003 bpp, connector->base.display_info.bpc*3);
12004 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12005 }
12006
12007 /* Clamp bpp to 8 on screens without EDID 1.4 */
12008 if (connector->base.display_info.bpc == 0 && bpp > 24) {
12009 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12010 bpp);
12011 pipe_config->pipe_bpp = 24;
12012 }
12013}
12014
4e53c2e0 12015static int
050f7aeb 12016compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12017 struct intel_crtc_state *pipe_config)
4e53c2e0 12018{
050f7aeb 12019 struct drm_device *dev = crtc->base.dev;
1486017f 12020 struct drm_atomic_state *state;
da3ced29
ACO
12021 struct drm_connector *connector;
12022 struct drm_connector_state *connector_state;
1486017f 12023 int bpp, i;
4e53c2e0 12024
d328c9d7 12025 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 12026 bpp = 10*3;
d328c9d7
DV
12027 else if (INTEL_INFO(dev)->gen >= 5)
12028 bpp = 12*3;
12029 else
12030 bpp = 8*3;
12031
4e53c2e0 12032
4e53c2e0
DV
12033 pipe_config->pipe_bpp = bpp;
12034
1486017f
ACO
12035 state = pipe_config->base.state;
12036
4e53c2e0 12037 /* Clamp display bpp to EDID value */
da3ced29
ACO
12038 for_each_connector_in_state(state, connector, connector_state, i) {
12039 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12040 continue;
12041
da3ced29
ACO
12042 connected_sink_compute_bpp(to_intel_connector(connector),
12043 pipe_config);
4e53c2e0
DV
12044 }
12045
12046 return bpp;
12047}
12048
644db711
DV
12049static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12050{
12051 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12052 "type: 0x%x flags: 0x%x\n",
1342830c 12053 mode->crtc_clock,
644db711
DV
12054 mode->crtc_hdisplay, mode->crtc_hsync_start,
12055 mode->crtc_hsync_end, mode->crtc_htotal,
12056 mode->crtc_vdisplay, mode->crtc_vsync_start,
12057 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12058}
12059
c0b03411 12060static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12061 struct intel_crtc_state *pipe_config,
c0b03411
DV
12062 const char *context)
12063{
6a60cd87
CK
12064 struct drm_device *dev = crtc->base.dev;
12065 struct drm_plane *plane;
12066 struct intel_plane *intel_plane;
12067 struct intel_plane_state *state;
12068 struct drm_framebuffer *fb;
12069
12070 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12071 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
12072
12073 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12074 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12075 pipe_config->pipe_bpp, pipe_config->dither);
12076 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12077 pipe_config->has_pch_encoder,
12078 pipe_config->fdi_lanes,
12079 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12080 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12081 pipe_config->fdi_m_n.tu);
90a6b7b0 12082 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 12083 pipe_config->has_dp_encoder,
90a6b7b0 12084 pipe_config->lane_count,
eb14cb74
VS
12085 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12086 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12087 pipe_config->dp_m_n.tu);
b95af8be 12088
90a6b7b0 12089 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 12090 pipe_config->has_dp_encoder,
90a6b7b0 12091 pipe_config->lane_count,
b95af8be
VK
12092 pipe_config->dp_m2_n2.gmch_m,
12093 pipe_config->dp_m2_n2.gmch_n,
12094 pipe_config->dp_m2_n2.link_m,
12095 pipe_config->dp_m2_n2.link_n,
12096 pipe_config->dp_m2_n2.tu);
12097
55072d19
DV
12098 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12099 pipe_config->has_audio,
12100 pipe_config->has_infoframe);
12101
c0b03411 12102 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12103 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12104 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12105 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12106 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12107 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12108 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12109 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12110 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12111 crtc->num_scalers,
12112 pipe_config->scaler_state.scaler_users,
12113 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12114 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12115 pipe_config->gmch_pfit.control,
12116 pipe_config->gmch_pfit.pgm_ratios,
12117 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12118 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12119 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12120 pipe_config->pch_pfit.size,
12121 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12122 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12123 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12124
415ff0f6 12125 if (IS_BROXTON(dev)) {
05712c15 12126 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12127 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12128 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12129 pipe_config->ddi_pll_sel,
12130 pipe_config->dpll_hw_state.ebb0,
05712c15 12131 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12132 pipe_config->dpll_hw_state.pll0,
12133 pipe_config->dpll_hw_state.pll1,
12134 pipe_config->dpll_hw_state.pll2,
12135 pipe_config->dpll_hw_state.pll3,
12136 pipe_config->dpll_hw_state.pll6,
12137 pipe_config->dpll_hw_state.pll8,
05712c15 12138 pipe_config->dpll_hw_state.pll9,
c8453338 12139 pipe_config->dpll_hw_state.pll10,
415ff0f6 12140 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12141 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
415ff0f6
TU
12142 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12143 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12144 pipe_config->ddi_pll_sel,
12145 pipe_config->dpll_hw_state.ctrl1,
12146 pipe_config->dpll_hw_state.cfgcr1,
12147 pipe_config->dpll_hw_state.cfgcr2);
12148 } else if (HAS_DDI(dev)) {
00490c22 12149 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
415ff0f6 12150 pipe_config->ddi_pll_sel,
00490c22
ML
12151 pipe_config->dpll_hw_state.wrpll,
12152 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12153 } else {
12154 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12155 "fp0: 0x%x, fp1: 0x%x\n",
12156 pipe_config->dpll_hw_state.dpll,
12157 pipe_config->dpll_hw_state.dpll_md,
12158 pipe_config->dpll_hw_state.fp0,
12159 pipe_config->dpll_hw_state.fp1);
12160 }
12161
6a60cd87
CK
12162 DRM_DEBUG_KMS("planes on this crtc\n");
12163 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12164 intel_plane = to_intel_plane(plane);
12165 if (intel_plane->pipe != crtc->pipe)
12166 continue;
12167
12168 state = to_intel_plane_state(plane->state);
12169 fb = state->base.fb;
12170 if (!fb) {
12171 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12172 "disabled, scaler_id = %d\n",
12173 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12174 plane->base.id, intel_plane->pipe,
12175 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12176 drm_plane_index(plane), state->scaler_id);
12177 continue;
12178 }
12179
12180 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12181 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12182 plane->base.id, intel_plane->pipe,
12183 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12184 drm_plane_index(plane));
12185 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12186 fb->base.id, fb->width, fb->height, fb->pixel_format);
12187 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12188 state->scaler_id,
12189 state->src.x1 >> 16, state->src.y1 >> 16,
12190 drm_rect_width(&state->src) >> 16,
12191 drm_rect_height(&state->src) >> 16,
12192 state->dst.x1, state->dst.y1,
12193 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12194 }
c0b03411
DV
12195}
12196
5448a00d 12197static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12198{
5448a00d
ACO
12199 struct drm_device *dev = state->dev;
12200 struct intel_encoder *encoder;
da3ced29 12201 struct drm_connector *connector;
5448a00d 12202 struct drm_connector_state *connector_state;
00f0b378 12203 unsigned int used_ports = 0;
5448a00d 12204 int i;
00f0b378
VS
12205
12206 /*
12207 * Walk the connector list instead of the encoder
12208 * list to detect the problem on ddi platforms
12209 * where there's just one encoder per digital port.
12210 */
da3ced29 12211 for_each_connector_in_state(state, connector, connector_state, i) {
5448a00d 12212 if (!connector_state->best_encoder)
00f0b378
VS
12213 continue;
12214
5448a00d
ACO
12215 encoder = to_intel_encoder(connector_state->best_encoder);
12216
12217 WARN_ON(!connector_state->crtc);
00f0b378
VS
12218
12219 switch (encoder->type) {
12220 unsigned int port_mask;
12221 case INTEL_OUTPUT_UNKNOWN:
12222 if (WARN_ON(!HAS_DDI(dev)))
12223 break;
12224 case INTEL_OUTPUT_DISPLAYPORT:
12225 case INTEL_OUTPUT_HDMI:
12226 case INTEL_OUTPUT_EDP:
12227 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12228
12229 /* the same port mustn't appear more than once */
12230 if (used_ports & port_mask)
12231 return false;
12232
12233 used_ports |= port_mask;
12234 default:
12235 break;
12236 }
12237 }
12238
12239 return true;
12240}
12241
83a57153
ACO
12242static void
12243clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12244{
12245 struct drm_crtc_state tmp_state;
663a3640 12246 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
12247 struct intel_dpll_hw_state dpll_hw_state;
12248 enum intel_dpll_id shared_dpll;
8504c74c 12249 uint32_t ddi_pll_sel;
c4e2d043 12250 bool force_thru;
83a57153 12251
7546a384
ACO
12252 /* FIXME: before the switch to atomic started, a new pipe_config was
12253 * kzalloc'd. Code that depends on any field being zero should be
12254 * fixed, so that the crtc_state can be safely duplicated. For now,
12255 * only fields that are know to not cause problems are preserved. */
12256
83a57153 12257 tmp_state = crtc_state->base;
663a3640 12258 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12259 shared_dpll = crtc_state->shared_dpll;
12260 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12261 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12262 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12263
83a57153 12264 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12265
83a57153 12266 crtc_state->base = tmp_state;
663a3640 12267 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12268 crtc_state->shared_dpll = shared_dpll;
12269 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12270 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12271 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12272}
12273
548ee15b 12274static int
b8cecdf5 12275intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12276 struct intel_crtc_state *pipe_config)
ee7b9f93 12277{
b359283a 12278 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12279 struct intel_encoder *encoder;
da3ced29 12280 struct drm_connector *connector;
0b901879 12281 struct drm_connector_state *connector_state;
d328c9d7 12282 int base_bpp, ret = -EINVAL;
0b901879 12283 int i;
e29c22c0 12284 bool retry = true;
ee7b9f93 12285
83a57153 12286 clear_intel_crtc_state(pipe_config);
7758a113 12287
e143a21c
DV
12288 pipe_config->cpu_transcoder =
12289 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12290
2960bc9c
ID
12291 /*
12292 * Sanitize sync polarity flags based on requested ones. If neither
12293 * positive or negative polarity is requested, treat this as meaning
12294 * negative polarity.
12295 */
2d112de7 12296 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12297 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12298 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12299
2d112de7 12300 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12301 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12302 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12303
d328c9d7
DV
12304 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12305 pipe_config);
12306 if (base_bpp < 0)
4e53c2e0
DV
12307 goto fail;
12308
e41a56be
VS
12309 /*
12310 * Determine the real pipe dimensions. Note that stereo modes can
12311 * increase the actual pipe size due to the frame doubling and
12312 * insertion of additional space for blanks between the frame. This
12313 * is stored in the crtc timings. We use the requested mode to do this
12314 * computation to clearly distinguish it from the adjusted mode, which
12315 * can be changed by the connectors in the below retry loop.
12316 */
2d112de7 12317 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12318 &pipe_config->pipe_src_w,
12319 &pipe_config->pipe_src_h);
e41a56be 12320
e29c22c0 12321encoder_retry:
ef1b460d 12322 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12323 pipe_config->port_clock = 0;
ef1b460d 12324 pipe_config->pixel_multiplier = 1;
ff9a6750 12325
135c81b8 12326 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12327 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12328 CRTC_STEREO_DOUBLE);
135c81b8 12329
7758a113
DV
12330 /* Pass our mode to the connectors and the CRTC to give them a chance to
12331 * adjust it according to limitations or connector properties, and also
12332 * a chance to reject the mode entirely.
47f1c6c9 12333 */
da3ced29 12334 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12335 if (connector_state->crtc != crtc)
7758a113 12336 continue;
7ae89233 12337
0b901879
ACO
12338 encoder = to_intel_encoder(connector_state->best_encoder);
12339
efea6e8e
DV
12340 if (!(encoder->compute_config(encoder, pipe_config))) {
12341 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12342 goto fail;
12343 }
ee7b9f93 12344 }
47f1c6c9 12345
ff9a6750
DV
12346 /* Set default port clock if not overwritten by the encoder. Needs to be
12347 * done afterwards in case the encoder adjusts the mode. */
12348 if (!pipe_config->port_clock)
2d112de7 12349 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12350 * pipe_config->pixel_multiplier;
ff9a6750 12351
a43f6e0f 12352 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12353 if (ret < 0) {
7758a113
DV
12354 DRM_DEBUG_KMS("CRTC fixup failed\n");
12355 goto fail;
ee7b9f93 12356 }
e29c22c0
DV
12357
12358 if (ret == RETRY) {
12359 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12360 ret = -EINVAL;
12361 goto fail;
12362 }
12363
12364 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12365 retry = false;
12366 goto encoder_retry;
12367 }
12368
e8fa4270
DV
12369 /* Dithering seems to not pass-through bits correctly when it should, so
12370 * only enable it on 6bpc panels. */
12371 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12372 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12373 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12374
7758a113 12375fail:
548ee15b 12376 return ret;
ee7b9f93 12377}
47f1c6c9 12378
ea9d758d 12379static void
4740b0f2 12380intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12381{
0a9ab303
ACO
12382 struct drm_crtc *crtc;
12383 struct drm_crtc_state *crtc_state;
8a75d157 12384 int i;
ea9d758d 12385
7668851f 12386 /* Double check state. */
8a75d157 12387 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12388 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12389
12390 /* Update hwmode for vblank functions */
12391 if (crtc->state->active)
12392 crtc->hwmode = crtc->state->adjusted_mode;
12393 else
12394 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
12395
12396 /*
12397 * Update legacy state to satisfy fbc code. This can
12398 * be removed when fbc uses the atomic state.
12399 */
12400 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12401 struct drm_plane_state *plane_state = crtc->primary->state;
12402
12403 crtc->primary->fb = plane_state->fb;
12404 crtc->x = plane_state->src_x >> 16;
12405 crtc->y = plane_state->src_y >> 16;
12406 }
ea9d758d 12407 }
ea9d758d
DV
12408}
12409
3bd26263 12410static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12411{
3bd26263 12412 int diff;
f1f644dc
JB
12413
12414 if (clock1 == clock2)
12415 return true;
12416
12417 if (!clock1 || !clock2)
12418 return false;
12419
12420 diff = abs(clock1 - clock2);
12421
12422 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12423 return true;
12424
12425 return false;
12426}
12427
25c5b266
DV
12428#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12429 list_for_each_entry((intel_crtc), \
12430 &(dev)->mode_config.crtc_list, \
12431 base.head) \
0973f18f 12432 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12433
cfb23ed6
ML
12434static bool
12435intel_compare_m_n(unsigned int m, unsigned int n,
12436 unsigned int m2, unsigned int n2,
12437 bool exact)
12438{
12439 if (m == m2 && n == n2)
12440 return true;
12441
12442 if (exact || !m || !n || !m2 || !n2)
12443 return false;
12444
12445 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12446
12447 if (m > m2) {
12448 while (m > m2) {
12449 m2 <<= 1;
12450 n2 <<= 1;
12451 }
12452 } else if (m < m2) {
12453 while (m < m2) {
12454 m <<= 1;
12455 n <<= 1;
12456 }
12457 }
12458
12459 return m == m2 && n == n2;
12460}
12461
12462static bool
12463intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12464 struct intel_link_m_n *m2_n2,
12465 bool adjust)
12466{
12467 if (m_n->tu == m2_n2->tu &&
12468 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12469 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12470 intel_compare_m_n(m_n->link_m, m_n->link_n,
12471 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12472 if (adjust)
12473 *m2_n2 = *m_n;
12474
12475 return true;
12476 }
12477
12478 return false;
12479}
12480
0e8ffe1b 12481static bool
2fa2fe9a 12482intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12483 struct intel_crtc_state *current_config,
cfb23ed6
ML
12484 struct intel_crtc_state *pipe_config,
12485 bool adjust)
0e8ffe1b 12486{
cfb23ed6
ML
12487 bool ret = true;
12488
12489#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12490 do { \
12491 if (!adjust) \
12492 DRM_ERROR(fmt, ##__VA_ARGS__); \
12493 else \
12494 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12495 } while (0)
12496
66e985c0
DV
12497#define PIPE_CONF_CHECK_X(name) \
12498 if (current_config->name != pipe_config->name) { \
cfb23ed6 12499 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12500 "(expected 0x%08x, found 0x%08x)\n", \
12501 current_config->name, \
12502 pipe_config->name); \
cfb23ed6 12503 ret = false; \
66e985c0
DV
12504 }
12505
08a24034
DV
12506#define PIPE_CONF_CHECK_I(name) \
12507 if (current_config->name != pipe_config->name) { \
cfb23ed6 12508 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12509 "(expected %i, found %i)\n", \
12510 current_config->name, \
12511 pipe_config->name); \
cfb23ed6
ML
12512 ret = false; \
12513 }
12514
12515#define PIPE_CONF_CHECK_M_N(name) \
12516 if (!intel_compare_link_m_n(&current_config->name, \
12517 &pipe_config->name,\
12518 adjust)) { \
12519 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12520 "(expected tu %i gmch %i/%i link %i/%i, " \
12521 "found tu %i, gmch %i/%i link %i/%i)\n", \
12522 current_config->name.tu, \
12523 current_config->name.gmch_m, \
12524 current_config->name.gmch_n, \
12525 current_config->name.link_m, \
12526 current_config->name.link_n, \
12527 pipe_config->name.tu, \
12528 pipe_config->name.gmch_m, \
12529 pipe_config->name.gmch_n, \
12530 pipe_config->name.link_m, \
12531 pipe_config->name.link_n); \
12532 ret = false; \
12533 }
12534
12535#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12536 if (!intel_compare_link_m_n(&current_config->name, \
12537 &pipe_config->name, adjust) && \
12538 !intel_compare_link_m_n(&current_config->alt_name, \
12539 &pipe_config->name, adjust)) { \
12540 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12541 "(expected tu %i gmch %i/%i link %i/%i, " \
12542 "or tu %i gmch %i/%i link %i/%i, " \
12543 "found tu %i, gmch %i/%i link %i/%i)\n", \
12544 current_config->name.tu, \
12545 current_config->name.gmch_m, \
12546 current_config->name.gmch_n, \
12547 current_config->name.link_m, \
12548 current_config->name.link_n, \
12549 current_config->alt_name.tu, \
12550 current_config->alt_name.gmch_m, \
12551 current_config->alt_name.gmch_n, \
12552 current_config->alt_name.link_m, \
12553 current_config->alt_name.link_n, \
12554 pipe_config->name.tu, \
12555 pipe_config->name.gmch_m, \
12556 pipe_config->name.gmch_n, \
12557 pipe_config->name.link_m, \
12558 pipe_config->name.link_n); \
12559 ret = false; \
88adfff1
DV
12560 }
12561
b95af8be
VK
12562/* This is required for BDW+ where there is only one set of registers for
12563 * switching between high and low RR.
12564 * This macro can be used whenever a comparison has to be made between one
12565 * hw state and multiple sw state variables.
12566 */
12567#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12568 if ((current_config->name != pipe_config->name) && \
12569 (current_config->alt_name != pipe_config->name)) { \
cfb23ed6 12570 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
b95af8be
VK
12571 "(expected %i or %i, found %i)\n", \
12572 current_config->name, \
12573 current_config->alt_name, \
12574 pipe_config->name); \
cfb23ed6 12575 ret = false; \
b95af8be
VK
12576 }
12577
1bd1bd80
DV
12578#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12579 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12580 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12581 "(expected %i, found %i)\n", \
12582 current_config->name & (mask), \
12583 pipe_config->name & (mask)); \
cfb23ed6 12584 ret = false; \
1bd1bd80
DV
12585 }
12586
5e550656
VS
12587#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12588 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12589 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12590 "(expected %i, found %i)\n", \
12591 current_config->name, \
12592 pipe_config->name); \
cfb23ed6 12593 ret = false; \
5e550656
VS
12594 }
12595
bb760063
DV
12596#define PIPE_CONF_QUIRK(quirk) \
12597 ((current_config->quirks | pipe_config->quirks) & (quirk))
12598
eccb140b
DV
12599 PIPE_CONF_CHECK_I(cpu_transcoder);
12600
08a24034
DV
12601 PIPE_CONF_CHECK_I(has_pch_encoder);
12602 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12603 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12604
eb14cb74 12605 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12606 PIPE_CONF_CHECK_I(lane_count);
b95af8be
VK
12607
12608 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12609 PIPE_CONF_CHECK_M_N(dp_m_n);
12610
12611 PIPE_CONF_CHECK_I(has_drrs);
12612 if (current_config->has_drrs)
12613 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12614 } else
12615 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12616
a65347ba
JN
12617 PIPE_CONF_CHECK_I(has_dsi_encoder);
12618
2d112de7
ACO
12619 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12620 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12621 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12622 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12623 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12624 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12625
2d112de7
ACO
12626 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12627 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12628 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12629 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12630 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12631 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12632
c93f54cf 12633 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12634 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
12635 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12636 IS_VALLEYVIEW(dev))
12637 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12638 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12639
9ed109a7
DV
12640 PIPE_CONF_CHECK_I(has_audio);
12641
2d112de7 12642 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12643 DRM_MODE_FLAG_INTERLACE);
12644
bb760063 12645 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12646 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12647 DRM_MODE_FLAG_PHSYNC);
2d112de7 12648 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12649 DRM_MODE_FLAG_NHSYNC);
2d112de7 12650 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12651 DRM_MODE_FLAG_PVSYNC);
2d112de7 12652 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12653 DRM_MODE_FLAG_NVSYNC);
12654 }
045ac3b5 12655
333b8ca8 12656 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12657 /* pfit ratios are autocomputed by the hw on gen4+ */
12658 if (INTEL_INFO(dev)->gen < 4)
12659 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
333b8ca8 12660 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12661
bfd16b2a
ML
12662 if (!adjust) {
12663 PIPE_CONF_CHECK_I(pipe_src_w);
12664 PIPE_CONF_CHECK_I(pipe_src_h);
12665
12666 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12667 if (current_config->pch_pfit.enabled) {
12668 PIPE_CONF_CHECK_X(pch_pfit.pos);
12669 PIPE_CONF_CHECK_X(pch_pfit.size);
12670 }
2fa2fe9a 12671
7aefe2b5
ML
12672 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12673 }
a1b2278e 12674
e59150dc
JB
12675 /* BDW+ don't expose a synchronous way to read the state */
12676 if (IS_HASWELL(dev))
12677 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12678
282740f7
VS
12679 PIPE_CONF_CHECK_I(double_wide);
12680
26804afd
DV
12681 PIPE_CONF_CHECK_X(ddi_pll_sel);
12682
c0d43d62 12683 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 12684 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12685 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12686 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12687 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12688 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 12689 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
12690 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12691 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12692 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12693
42571aef
VS
12694 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12695 PIPE_CONF_CHECK_I(pipe_bpp);
12696
2d112de7 12697 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12698 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12699
66e985c0 12700#undef PIPE_CONF_CHECK_X
08a24034 12701#undef PIPE_CONF_CHECK_I
b95af8be 12702#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12703#undef PIPE_CONF_CHECK_FLAGS
5e550656 12704#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12705#undef PIPE_CONF_QUIRK
cfb23ed6 12706#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12707
cfb23ed6 12708 return ret;
0e8ffe1b
DV
12709}
12710
08db6652
DL
12711static void check_wm_state(struct drm_device *dev)
12712{
12713 struct drm_i915_private *dev_priv = dev->dev_private;
12714 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12715 struct intel_crtc *intel_crtc;
12716 int plane;
12717
12718 if (INTEL_INFO(dev)->gen < 9)
12719 return;
12720
12721 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12722 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12723
12724 for_each_intel_crtc(dev, intel_crtc) {
12725 struct skl_ddb_entry *hw_entry, *sw_entry;
12726 const enum pipe pipe = intel_crtc->pipe;
12727
12728 if (!intel_crtc->active)
12729 continue;
12730
12731 /* planes */
dd740780 12732 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12733 hw_entry = &hw_ddb.plane[pipe][plane];
12734 sw_entry = &sw_ddb->plane[pipe][plane];
12735
12736 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12737 continue;
12738
12739 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12740 "(expected (%u,%u), found (%u,%u))\n",
12741 pipe_name(pipe), plane + 1,
12742 sw_entry->start, sw_entry->end,
12743 hw_entry->start, hw_entry->end);
12744 }
12745
12746 /* cursor */
4969d33e
MR
12747 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12748 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652
DL
12749
12750 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12751 continue;
12752
12753 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12754 "(expected (%u,%u), found (%u,%u))\n",
12755 pipe_name(pipe),
12756 sw_entry->start, sw_entry->end,
12757 hw_entry->start, hw_entry->end);
12758 }
12759}
12760
91d1b4bd 12761static void
35dd3c64
ML
12762check_connector_state(struct drm_device *dev,
12763 struct drm_atomic_state *old_state)
8af6cf88 12764{
35dd3c64
ML
12765 struct drm_connector_state *old_conn_state;
12766 struct drm_connector *connector;
12767 int i;
8af6cf88 12768
35dd3c64
ML
12769 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12770 struct drm_encoder *encoder = connector->encoder;
12771 struct drm_connector_state *state = connector->state;
ad3c558f 12772
8af6cf88
DV
12773 /* This also checks the encoder/connector hw state with the
12774 * ->get_hw_state callbacks. */
35dd3c64 12775 intel_connector_check_state(to_intel_connector(connector));
8af6cf88 12776
ad3c558f 12777 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 12778 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 12779 }
91d1b4bd
DV
12780}
12781
12782static void
12783check_encoder_state(struct drm_device *dev)
12784{
12785 struct intel_encoder *encoder;
12786 struct intel_connector *connector;
8af6cf88 12787
b2784e15 12788 for_each_intel_encoder(dev, encoder) {
8af6cf88 12789 bool enabled = false;
4d20cd86 12790 enum pipe pipe;
8af6cf88
DV
12791
12792 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12793 encoder->base.base.id,
8e329a03 12794 encoder->base.name);
8af6cf88 12795
3a3371ff 12796 for_each_intel_connector(dev, connector) {
4d20cd86 12797 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
12798 continue;
12799 enabled = true;
ad3c558f
ML
12800
12801 I915_STATE_WARN(connector->base.state->crtc !=
12802 encoder->base.crtc,
12803 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 12804 }
0e32b39c 12805
e2c719b7 12806 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12807 "encoder's enabled state mismatch "
12808 "(expected %i, found %i)\n",
12809 !!encoder->base.crtc, enabled);
7c60d198
ML
12810
12811 if (!encoder->base.crtc) {
4d20cd86 12812 bool active;
7c60d198 12813
4d20cd86
ML
12814 active = encoder->get_hw_state(encoder, &pipe);
12815 I915_STATE_WARN(active,
12816 "encoder detached but still enabled on pipe %c.\n",
12817 pipe_name(pipe));
7c60d198 12818 }
8af6cf88 12819 }
91d1b4bd
DV
12820}
12821
12822static void
4d20cd86 12823check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
91d1b4bd 12824{
fbee40df 12825 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 12826 struct intel_encoder *encoder;
4d20cd86
ML
12827 struct drm_crtc_state *old_crtc_state;
12828 struct drm_crtc *crtc;
12829 int i;
8af6cf88 12830
4d20cd86
ML
12831 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12833 struct intel_crtc_state *pipe_config, *sw_config;
7b89b8de 12834 bool active;
8af6cf88 12835
bfd16b2a
ML
12836 if (!needs_modeset(crtc->state) &&
12837 !to_intel_crtc_state(crtc->state)->update_pipe)
4d20cd86 12838 continue;
045ac3b5 12839
4d20cd86
ML
12840 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12841 pipe_config = to_intel_crtc_state(old_crtc_state);
12842 memset(pipe_config, 0, sizeof(*pipe_config));
12843 pipe_config->base.crtc = crtc;
12844 pipe_config->base.state = old_state;
8af6cf88 12845
4d20cd86
ML
12846 DRM_DEBUG_KMS("[CRTC:%d]\n",
12847 crtc->base.id);
8af6cf88 12848
4d20cd86
ML
12849 active = dev_priv->display.get_pipe_config(intel_crtc,
12850 pipe_config);
d62cf62a 12851
b6b5d049 12852 /* hw state is inconsistent with the pipe quirk */
4d20cd86
ML
12853 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12854 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12855 active = crtc->state->active;
6c49f241 12856
4d20cd86 12857 I915_STATE_WARN(crtc->state->active != active,
0e8ffe1b 12858 "crtc active state doesn't match with hw state "
4d20cd86 12859 "(expected %i, found %i)\n", crtc->state->active, active);
0e8ffe1b 12860
4d20cd86 12861 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
53d9f4e9 12862 "transitional active state does not match atomic hw state "
4d20cd86
ML
12863 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12864
12865 for_each_encoder_on_crtc(dev, crtc, encoder) {
12866 enum pipe pipe;
12867
12868 active = encoder->get_hw_state(encoder, &pipe);
12869 I915_STATE_WARN(active != crtc->state->active,
12870 "[ENCODER:%i] active %i with crtc active %i\n",
12871 encoder->base.base.id, active, crtc->state->active);
12872
12873 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12874 "Encoder connected to wrong pipe %c\n",
12875 pipe_name(pipe));
12876
12877 if (active)
12878 encoder->get_config(encoder, pipe_config);
12879 }
53d9f4e9 12880
4d20cd86 12881 if (!crtc->state->active)
cfb23ed6
ML
12882 continue;
12883
4d20cd86
ML
12884 sw_config = to_intel_crtc_state(crtc->state);
12885 if (!intel_pipe_config_compare(dev, sw_config,
12886 pipe_config, false)) {
e2c719b7 12887 I915_STATE_WARN(1, "pipe state doesn't match!\n");
4d20cd86 12888 intel_dump_pipe_config(intel_crtc, pipe_config,
c0b03411 12889 "[hw state]");
4d20cd86 12890 intel_dump_pipe_config(intel_crtc, sw_config,
c0b03411
DV
12891 "[sw state]");
12892 }
8af6cf88
DV
12893 }
12894}
12895
91d1b4bd
DV
12896static void
12897check_shared_dpll_state(struct drm_device *dev)
12898{
fbee40df 12899 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12900 struct intel_crtc *crtc;
12901 struct intel_dpll_hw_state dpll_hw_state;
12902 int i;
5358901f
DV
12903
12904 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12905 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12906 int enabled_crtcs = 0, active_crtcs = 0;
12907 bool active;
12908
12909 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12910
12911 DRM_DEBUG_KMS("%s\n", pll->name);
12912
12913 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12914
e2c719b7 12915 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12916 "more active pll users than references: %i vs %i\n",
3e369b76 12917 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12918 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12919 "pll in active use but not on in sw tracking\n");
e2c719b7 12920 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12921 "pll in on but not on in use in sw tracking\n");
e2c719b7 12922 I915_STATE_WARN(pll->on != active,
5358901f
DV
12923 "pll on state mismatch (expected %i, found %i)\n",
12924 pll->on, active);
12925
d3fcc808 12926 for_each_intel_crtc(dev, crtc) {
83d65738 12927 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12928 enabled_crtcs++;
12929 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12930 active_crtcs++;
12931 }
e2c719b7 12932 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12933 "pll active crtcs mismatch (expected %i, found %i)\n",
12934 pll->active, active_crtcs);
e2c719b7 12935 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12936 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12937 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12938
e2c719b7 12939 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12940 sizeof(dpll_hw_state)),
12941 "pll hw state mismatch\n");
5358901f 12942 }
8af6cf88
DV
12943}
12944
ee165b1a
ML
12945static void
12946intel_modeset_check_state(struct drm_device *dev,
12947 struct drm_atomic_state *old_state)
91d1b4bd 12948{
08db6652 12949 check_wm_state(dev);
35dd3c64 12950 check_connector_state(dev, old_state);
91d1b4bd 12951 check_encoder_state(dev);
4d20cd86 12952 check_crtc_state(dev, old_state);
91d1b4bd
DV
12953 check_shared_dpll_state(dev);
12954}
12955
5cec258b 12956void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
12957 int dotclock)
12958{
12959 /*
12960 * FDI already provided one idea for the dotclock.
12961 * Yell if the encoder disagrees.
12962 */
2d112de7 12963 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 12964 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 12965 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12966}
12967
80715b2f
VS
12968static void update_scanline_offset(struct intel_crtc *crtc)
12969{
12970 struct drm_device *dev = crtc->base.dev;
12971
12972 /*
12973 * The scanline counter increments at the leading edge of hsync.
12974 *
12975 * On most platforms it starts counting from vtotal-1 on the
12976 * first active line. That means the scanline counter value is
12977 * always one less than what we would expect. Ie. just after
12978 * start of vblank, which also occurs at start of hsync (on the
12979 * last active line), the scanline counter will read vblank_start-1.
12980 *
12981 * On gen2 the scanline counter starts counting from 1 instead
12982 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12983 * to keep the value positive), instead of adding one.
12984 *
12985 * On HSW+ the behaviour of the scanline counter depends on the output
12986 * type. For DP ports it behaves like most other platforms, but on HDMI
12987 * there's an extra 1 line difference. So we need to add two instead of
12988 * one to the value.
12989 */
12990 if (IS_GEN2(dev)) {
124abe07 12991 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12992 int vtotal;
12993
124abe07
VS
12994 vtotal = adjusted_mode->crtc_vtotal;
12995 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
12996 vtotal /= 2;
12997
12998 crtc->scanline_offset = vtotal - 1;
12999 } else if (HAS_DDI(dev) &&
409ee761 13000 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13001 crtc->scanline_offset = 2;
13002 } else
13003 crtc->scanline_offset = 1;
13004}
13005
ad421372 13006static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13007{
225da59b 13008 struct drm_device *dev = state->dev;
ed6739ef 13009 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13010 struct intel_shared_dpll_config *shared_dpll = NULL;
ed6739ef 13011 struct intel_crtc *intel_crtc;
0a9ab303
ACO
13012 struct intel_crtc_state *intel_crtc_state;
13013 struct drm_crtc *crtc;
13014 struct drm_crtc_state *crtc_state;
0a9ab303 13015 int i;
ed6739ef
ACO
13016
13017 if (!dev_priv->display.crtc_compute_clock)
ad421372 13018 return;
ed6739ef 13019
0a9ab303 13020 for_each_crtc_in_state(state, crtc, crtc_state, i) {
ad421372
ML
13021 int dpll;
13022
0a9ab303 13023 intel_crtc = to_intel_crtc(crtc);
4978cc93 13024 intel_crtc_state = to_intel_crtc_state(crtc_state);
ad421372 13025 dpll = intel_crtc_state->shared_dpll;
0a9ab303 13026
ad421372 13027 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
225da59b
ACO
13028 continue;
13029
ad421372 13030 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
0a9ab303 13031
ad421372
ML
13032 if (!shared_dpll)
13033 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13034
ad421372
ML
13035 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13036 }
ed6739ef
ACO
13037}
13038
99d736a2
ML
13039/*
13040 * This implements the workaround described in the "notes" section of the mode
13041 * set sequence documentation. When going from no pipes or single pipe to
13042 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13043 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13044 */
13045static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13046{
13047 struct drm_crtc_state *crtc_state;
13048 struct intel_crtc *intel_crtc;
13049 struct drm_crtc *crtc;
13050 struct intel_crtc_state *first_crtc_state = NULL;
13051 struct intel_crtc_state *other_crtc_state = NULL;
13052 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13053 int i;
13054
13055 /* look at all crtc's that are going to be enabled in during modeset */
13056 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13057 intel_crtc = to_intel_crtc(crtc);
13058
13059 if (!crtc_state->active || !needs_modeset(crtc_state))
13060 continue;
13061
13062 if (first_crtc_state) {
13063 other_crtc_state = to_intel_crtc_state(crtc_state);
13064 break;
13065 } else {
13066 first_crtc_state = to_intel_crtc_state(crtc_state);
13067 first_pipe = intel_crtc->pipe;
13068 }
13069 }
13070
13071 /* No workaround needed? */
13072 if (!first_crtc_state)
13073 return 0;
13074
13075 /* w/a possibly needed, check how many crtc's are already enabled. */
13076 for_each_intel_crtc(state->dev, intel_crtc) {
13077 struct intel_crtc_state *pipe_config;
13078
13079 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13080 if (IS_ERR(pipe_config))
13081 return PTR_ERR(pipe_config);
13082
13083 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13084
13085 if (!pipe_config->base.active ||
13086 needs_modeset(&pipe_config->base))
13087 continue;
13088
13089 /* 2 or more enabled crtcs means no need for w/a */
13090 if (enabled_pipe != INVALID_PIPE)
13091 return 0;
13092
13093 enabled_pipe = intel_crtc->pipe;
13094 }
13095
13096 if (enabled_pipe != INVALID_PIPE)
13097 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13098 else if (other_crtc_state)
13099 other_crtc_state->hsw_workaround_pipe = first_pipe;
13100
13101 return 0;
13102}
13103
27c329ed
ML
13104static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13105{
13106 struct drm_crtc *crtc;
13107 struct drm_crtc_state *crtc_state;
13108 int ret = 0;
13109
13110 /* add all active pipes to the state */
13111 for_each_crtc(state->dev, crtc) {
13112 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13113 if (IS_ERR(crtc_state))
13114 return PTR_ERR(crtc_state);
13115
13116 if (!crtc_state->active || needs_modeset(crtc_state))
13117 continue;
13118
13119 crtc_state->mode_changed = true;
13120
13121 ret = drm_atomic_add_affected_connectors(state, crtc);
13122 if (ret)
13123 break;
13124
13125 ret = drm_atomic_add_affected_planes(state, crtc);
13126 if (ret)
13127 break;
13128 }
13129
13130 return ret;
13131}
13132
c347a676 13133static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd
ACO
13134{
13135 struct drm_device *dev = state->dev;
27c329ed 13136 struct drm_i915_private *dev_priv = dev->dev_private;
054518dd
ACO
13137 int ret;
13138
b359283a
ML
13139 if (!check_digital_port_conflicts(state)) {
13140 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13141 return -EINVAL;
13142 }
13143
054518dd
ACO
13144 /*
13145 * See if the config requires any additional preparation, e.g.
13146 * to adjust global state with pipes off. We need to do this
13147 * here so we can get the modeset_pipe updated config for the new
13148 * mode set on this crtc. For other crtcs we need to use the
13149 * adjusted_mode bits in the crtc directly.
13150 */
27c329ed
ML
13151 if (dev_priv->display.modeset_calc_cdclk) {
13152 unsigned int cdclk;
b432e5cf 13153
27c329ed
ML
13154 ret = dev_priv->display.modeset_calc_cdclk(state);
13155
13156 cdclk = to_intel_atomic_state(state)->cdclk;
13157 if (!ret && cdclk != dev_priv->cdclk_freq)
13158 ret = intel_modeset_all_pipes(state);
13159
13160 if (ret < 0)
054518dd 13161 return ret;
27c329ed
ML
13162 } else
13163 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
054518dd 13164
ad421372 13165 intel_modeset_clear_plls(state);
054518dd 13166
99d736a2 13167 if (IS_HASWELL(dev))
ad421372 13168 return haswell_mode_set_planes_workaround(state);
99d736a2 13169
ad421372 13170 return 0;
c347a676
ACO
13171}
13172
aa363136
MR
13173/*
13174 * Handle calculation of various watermark data at the end of the atomic check
13175 * phase. The code here should be run after the per-crtc and per-plane 'check'
13176 * handlers to ensure that all derived state has been updated.
13177 */
13178static void calc_watermark_data(struct drm_atomic_state *state)
13179{
13180 struct drm_device *dev = state->dev;
13181 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13182 struct drm_crtc *crtc;
13183 struct drm_crtc_state *cstate;
13184 struct drm_plane *plane;
13185 struct drm_plane_state *pstate;
13186
13187 /*
13188 * Calculate watermark configuration details now that derived
13189 * plane/crtc state is all properly updated.
13190 */
13191 drm_for_each_crtc(crtc, dev) {
13192 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13193 crtc->state;
13194
13195 if (cstate->active)
13196 intel_state->wm_config.num_pipes_active++;
13197 }
13198 drm_for_each_legacy_plane(plane, dev) {
13199 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13200 plane->state;
13201
13202 if (!to_intel_plane_state(pstate)->visible)
13203 continue;
13204
13205 intel_state->wm_config.sprites_enabled = true;
13206 if (pstate->crtc_w != pstate->src_w >> 16 ||
13207 pstate->crtc_h != pstate->src_h >> 16)
13208 intel_state->wm_config.sprites_scaled = true;
13209 }
13210}
13211
74c090b1
ML
13212/**
13213 * intel_atomic_check - validate state object
13214 * @dev: drm device
13215 * @state: state to validate
13216 */
13217static int intel_atomic_check(struct drm_device *dev,
13218 struct drm_atomic_state *state)
c347a676 13219{
aa363136 13220 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13221 struct drm_crtc *crtc;
13222 struct drm_crtc_state *crtc_state;
13223 int ret, i;
61333b60 13224 bool any_ms = false;
c347a676 13225
74c090b1 13226 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13227 if (ret)
13228 return ret;
13229
c347a676 13230 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13231 struct intel_crtc_state *pipe_config =
13232 to_intel_crtc_state(crtc_state);
1ed51de9 13233
ba8af3e5
ML
13234 memset(&to_intel_crtc(crtc)->atomic, 0,
13235 sizeof(struct intel_crtc_atomic_commit));
13236
1ed51de9
DV
13237 /* Catch I915_MODE_FLAG_INHERITED */
13238 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13239 crtc_state->mode_changed = true;
cfb23ed6 13240
61333b60
ML
13241 if (!crtc_state->enable) {
13242 if (needs_modeset(crtc_state))
13243 any_ms = true;
c347a676 13244 continue;
61333b60 13245 }
c347a676 13246
26495481 13247 if (!needs_modeset(crtc_state))
cfb23ed6
ML
13248 continue;
13249
26495481
DV
13250 /* FIXME: For only active_changed we shouldn't need to do any
13251 * state recomputation at all. */
13252
1ed51de9
DV
13253 ret = drm_atomic_add_affected_connectors(state, crtc);
13254 if (ret)
13255 return ret;
b359283a 13256
cfb23ed6 13257 ret = intel_modeset_pipe_config(crtc, pipe_config);
c347a676
ACO
13258 if (ret)
13259 return ret;
13260
73831236
JN
13261 if (i915.fastboot &&
13262 intel_pipe_config_compare(state->dev,
cfb23ed6 13263 to_intel_crtc_state(crtc->state),
1ed51de9 13264 pipe_config, true)) {
26495481 13265 crtc_state->mode_changed = false;
bfd16b2a 13266 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13267 }
13268
13269 if (needs_modeset(crtc_state)) {
13270 any_ms = true;
cfb23ed6
ML
13271
13272 ret = drm_atomic_add_affected_planes(state, crtc);
13273 if (ret)
13274 return ret;
13275 }
61333b60 13276
26495481
DV
13277 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13278 needs_modeset(crtc_state) ?
13279 "[modeset]" : "[fastset]");
c347a676
ACO
13280 }
13281
61333b60
ML
13282 if (any_ms) {
13283 ret = intel_modeset_checks(state);
13284
13285 if (ret)
13286 return ret;
27c329ed 13287 } else
aa363136 13288 intel_state->cdclk = to_i915(state->dev)->cdclk_freq;
76305b1a 13289
aa363136
MR
13290 ret = drm_atomic_helper_check_planes(state->dev, state);
13291 if (ret)
13292 return ret;
13293
13294 calc_watermark_data(state);
13295
13296 return 0;
054518dd
ACO
13297}
13298
5008e874
ML
13299static int intel_atomic_prepare_commit(struct drm_device *dev,
13300 struct drm_atomic_state *state,
13301 bool async)
13302{
7580d774
ML
13303 struct drm_i915_private *dev_priv = dev->dev_private;
13304 struct drm_plane_state *plane_state;
5008e874 13305 struct drm_crtc_state *crtc_state;
7580d774 13306 struct drm_plane *plane;
5008e874
ML
13307 struct drm_crtc *crtc;
13308 int i, ret;
13309
13310 if (async) {
13311 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13312 return -EINVAL;
13313 }
13314
13315 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13316 ret = intel_crtc_wait_for_pending_flips(crtc);
13317 if (ret)
13318 return ret;
7580d774
ML
13319
13320 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13321 flush_workqueue(dev_priv->wq);
5008e874
ML
13322 }
13323
f935675f
ML
13324 ret = mutex_lock_interruptible(&dev->struct_mutex);
13325 if (ret)
13326 return ret;
13327
5008e874 13328 ret = drm_atomic_helper_prepare_planes(dev, state);
7580d774
ML
13329 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13330 u32 reset_counter;
13331
13332 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13333 mutex_unlock(&dev->struct_mutex);
13334
13335 for_each_plane_in_state(state, plane, plane_state, i) {
13336 struct intel_plane_state *intel_plane_state =
13337 to_intel_plane_state(plane_state);
13338
13339 if (!intel_plane_state->wait_req)
13340 continue;
13341
13342 ret = __i915_wait_request(intel_plane_state->wait_req,
13343 reset_counter, true,
13344 NULL, NULL);
13345
13346 /* Swallow -EIO errors to allow updates during hw lockup. */
13347 if (ret == -EIO)
13348 ret = 0;
13349
13350 if (ret)
13351 break;
13352 }
13353
13354 if (!ret)
13355 return 0;
13356
13357 mutex_lock(&dev->struct_mutex);
13358 drm_atomic_helper_cleanup_planes(dev, state);
13359 }
5008e874 13360
f935675f 13361 mutex_unlock(&dev->struct_mutex);
5008e874
ML
13362 return ret;
13363}
13364
74c090b1
ML
13365/**
13366 * intel_atomic_commit - commit validated state object
13367 * @dev: DRM device
13368 * @state: the top-level driver state object
13369 * @async: asynchronous commit
13370 *
13371 * This function commits a top-level state object that has been validated
13372 * with drm_atomic_helper_check().
13373 *
13374 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13375 * we can only handle plane-related operations and do not yet support
13376 * asynchronous commit.
13377 *
13378 * RETURNS
13379 * Zero for success or -errno.
13380 */
13381static int intel_atomic_commit(struct drm_device *dev,
13382 struct drm_atomic_state *state,
13383 bool async)
a6778b3c 13384{
fbee40df 13385 struct drm_i915_private *dev_priv = dev->dev_private;
0a9ab303 13386 struct drm_crtc_state *crtc_state;
7580d774 13387 struct drm_crtc *crtc;
c0c36b94 13388 int ret = 0;
0a9ab303 13389 int i;
61333b60 13390 bool any_ms = false;
a6778b3c 13391
5008e874 13392 ret = intel_atomic_prepare_commit(dev, state, async);
7580d774
ML
13393 if (ret) {
13394 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
d4afb8cc 13395 return ret;
7580d774 13396 }
d4afb8cc 13397
1c5e19f8 13398 drm_atomic_helper_swap_state(dev, state);
aa363136 13399 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
1c5e19f8 13400
0a9ab303 13401 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a539205a
ML
13402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13403
61333b60
ML
13404 if (!needs_modeset(crtc->state))
13405 continue;
13406
13407 any_ms = true;
a539205a 13408 intel_pre_plane_update(intel_crtc);
460da916 13409
a539205a
ML
13410 if (crtc_state->active) {
13411 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13412 dev_priv->display.crtc_disable(crtc);
eddfcbcd
ML
13413 intel_crtc->active = false;
13414 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
13415
13416 /*
13417 * Underruns don't always raise
13418 * interrupts, so check manually.
13419 */
13420 intel_check_cpu_fifo_underruns(dev_priv);
13421 intel_check_pch_fifo_underruns(dev_priv);
a539205a 13422 }
b8cecdf5 13423 }
7758a113 13424
ea9d758d
DV
13425 /* Only after disabling all output pipelines that will be changed can we
13426 * update the the output configuration. */
4740b0f2 13427 intel_modeset_update_crtc_state(state);
f6e5b160 13428
4740b0f2
ML
13429 if (any_ms) {
13430 intel_shared_dpll_commit(state);
13431
13432 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
61333b60 13433 modeset_update_crtc_power_domains(state);
4740b0f2 13434 }
47fab737 13435
a6778b3c 13436 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 13437 for_each_crtc_in_state(state, crtc, crtc_state, i) {
f6ac4b2a
ML
13438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13439 bool modeset = needs_modeset(crtc->state);
bfd16b2a
ML
13440 bool update_pipe = !modeset &&
13441 to_intel_crtc_state(crtc->state)->update_pipe;
13442 unsigned long put_domains = 0;
f6ac4b2a 13443
9f836f90
PJ
13444 if (modeset)
13445 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13446
f6ac4b2a 13447 if (modeset && crtc->state->active) {
a539205a
ML
13448 update_scanline_offset(to_intel_crtc(crtc));
13449 dev_priv->display.crtc_enable(crtc);
13450 }
80715b2f 13451
bfd16b2a
ML
13452 if (update_pipe) {
13453 put_domains = modeset_get_crtc_power_domains(crtc);
13454
13455 /* make sure intel_modeset_check_state runs */
13456 any_ms = true;
13457 }
13458
f6ac4b2a
ML
13459 if (!modeset)
13460 intel_pre_plane_update(intel_crtc);
13461
6173ee28
ML
13462 if (crtc->state->active &&
13463 (crtc->state->planes_changed || update_pipe))
62852622 13464 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
bfd16b2a
ML
13465
13466 if (put_domains)
13467 modeset_put_power_domains(dev_priv, put_domains);
13468
f6ac4b2a 13469 intel_post_plane_update(intel_crtc);
9f836f90
PJ
13470
13471 if (modeset)
13472 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
80715b2f 13473 }
a6778b3c 13474
a6778b3c 13475 /* FIXME: add subpixel order */
83a57153 13476
74c090b1 13477 drm_atomic_helper_wait_for_vblanks(dev, state);
f935675f
ML
13478
13479 mutex_lock(&dev->struct_mutex);
d4afb8cc 13480 drm_atomic_helper_cleanup_planes(dev, state);
f935675f 13481 mutex_unlock(&dev->struct_mutex);
2bfb4627 13482
74c090b1 13483 if (any_ms)
ee165b1a
ML
13484 intel_modeset_check_state(dev, state);
13485
13486 drm_atomic_state_free(state);
f30da187 13487
74c090b1 13488 return 0;
7f27126e
JB
13489}
13490
c0c36b94
CW
13491void intel_crtc_restore_mode(struct drm_crtc *crtc)
13492{
83a57153
ACO
13493 struct drm_device *dev = crtc->dev;
13494 struct drm_atomic_state *state;
e694eb02 13495 struct drm_crtc_state *crtc_state;
2bfb4627 13496 int ret;
83a57153
ACO
13497
13498 state = drm_atomic_state_alloc(dev);
13499 if (!state) {
e694eb02 13500 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
83a57153
ACO
13501 crtc->base.id);
13502 return;
13503 }
13504
e694eb02 13505 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 13506
e694eb02
ML
13507retry:
13508 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13509 ret = PTR_ERR_OR_ZERO(crtc_state);
13510 if (!ret) {
13511 if (!crtc_state->active)
13512 goto out;
83a57153 13513
e694eb02 13514 crtc_state->mode_changed = true;
74c090b1 13515 ret = drm_atomic_commit(state);
83a57153
ACO
13516 }
13517
e694eb02
ML
13518 if (ret == -EDEADLK) {
13519 drm_atomic_state_clear(state);
13520 drm_modeset_backoff(state->acquire_ctx);
13521 goto retry;
4ed9fb37 13522 }
4be07317 13523
2bfb4627 13524 if (ret)
e694eb02 13525out:
2bfb4627 13526 drm_atomic_state_free(state);
c0c36b94
CW
13527}
13528
25c5b266
DV
13529#undef for_each_intel_crtc_masked
13530
f6e5b160 13531static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13532 .gamma_set = intel_crtc_gamma_set,
74c090b1 13533 .set_config = drm_atomic_helper_set_config,
f6e5b160
CW
13534 .destroy = intel_crtc_destroy,
13535 .page_flip = intel_crtc_page_flip,
1356837e
MR
13536 .atomic_duplicate_state = intel_crtc_duplicate_state,
13537 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13538};
13539
5358901f
DV
13540static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13541 struct intel_shared_dpll *pll,
13542 struct intel_dpll_hw_state *hw_state)
ee7b9f93 13543{
5358901f 13544 uint32_t val;
ee7b9f93 13545
f458ebbc 13546 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
13547 return false;
13548
5358901f 13549 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
13550 hw_state->dpll = val;
13551 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13552 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
13553
13554 return val & DPLL_VCO_ENABLE;
13555}
13556
15bdd4cf
DV
13557static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13558 struct intel_shared_dpll *pll)
13559{
3e369b76
ACO
13560 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13561 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
13562}
13563
e7b903d2
DV
13564static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13565 struct intel_shared_dpll *pll)
13566{
e7b903d2 13567 /* PCH refclock must be enabled first */
89eff4be 13568 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 13569
3e369b76 13570 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
13571
13572 /* Wait for the clocks to stabilize. */
13573 POSTING_READ(PCH_DPLL(pll->id));
13574 udelay(150);
13575
13576 /* The pixel multiplier can only be updated once the
13577 * DPLL is enabled and the clocks are stable.
13578 *
13579 * So write it again.
13580 */
3e369b76 13581 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 13582 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13583 udelay(200);
13584}
13585
13586static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13587 struct intel_shared_dpll *pll)
13588{
13589 struct drm_device *dev = dev_priv->dev;
13590 struct intel_crtc *crtc;
e7b903d2
DV
13591
13592 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 13593 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
13594 if (intel_crtc_to_shared_dpll(crtc) == pll)
13595 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
13596 }
13597
15bdd4cf
DV
13598 I915_WRITE(PCH_DPLL(pll->id), 0);
13599 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13600 udelay(200);
13601}
13602
46edb027
DV
13603static char *ibx_pch_dpll_names[] = {
13604 "PCH DPLL A",
13605 "PCH DPLL B",
13606};
13607
7c74ade1 13608static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 13609{
e7b903d2 13610 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
13611 int i;
13612
7c74ade1 13613 dev_priv->num_shared_dpll = 2;
ee7b9f93 13614
e72f9fbf 13615 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
13616 dev_priv->shared_dplls[i].id = i;
13617 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 13618 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
13619 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13620 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
13621 dev_priv->shared_dplls[i].get_hw_state =
13622 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
13623 }
13624}
13625
7c74ade1
DV
13626static void intel_shared_dpll_init(struct drm_device *dev)
13627{
e7b903d2 13628 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 13629
9cd86933
DV
13630 if (HAS_DDI(dev))
13631 intel_ddi_pll_init(dev);
13632 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
13633 ibx_pch_dpll_init(dev);
13634 else
13635 dev_priv->num_shared_dpll = 0;
13636
13637 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
13638}
13639
6beb8c23
MR
13640/**
13641 * intel_prepare_plane_fb - Prepare fb for usage on plane
13642 * @plane: drm plane to prepare for
13643 * @fb: framebuffer to prepare for presentation
13644 *
13645 * Prepares a framebuffer for usage on a display plane. Generally this
13646 * involves pinning the underlying object and updating the frontbuffer tracking
13647 * bits. Some older platforms need special physical address handling for
13648 * cursor planes.
13649 *
f935675f
ML
13650 * Must be called with struct_mutex held.
13651 *
6beb8c23
MR
13652 * Returns 0 on success, negative error code on failure.
13653 */
13654int
13655intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 13656 const struct drm_plane_state *new_state)
465c120c
MR
13657{
13658 struct drm_device *dev = plane->dev;
844f9111 13659 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 13660 struct intel_plane *intel_plane = to_intel_plane(plane);
6beb8c23 13661 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 13662 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
6beb8c23 13663 int ret = 0;
465c120c 13664
1ee49399 13665 if (!obj && !old_obj)
465c120c
MR
13666 return 0;
13667
5008e874
ML
13668 if (old_obj) {
13669 struct drm_crtc_state *crtc_state =
13670 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13671
13672 /* Big Hammer, we also need to ensure that any pending
13673 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13674 * current scanout is retired before unpinning the old
13675 * framebuffer. Note that we rely on userspace rendering
13676 * into the buffer attached to the pipe they are waiting
13677 * on. If not, userspace generates a GPU hang with IPEHR
13678 * point to the MI_WAIT_FOR_EVENT.
13679 *
13680 * This should only fail upon a hung GPU, in which case we
13681 * can safely continue.
13682 */
13683 if (needs_modeset(crtc_state))
13684 ret = i915_gem_object_wait_rendering(old_obj, true);
13685
13686 /* Swallow -EIO errors to allow updates during hw lockup. */
13687 if (ret && ret != -EIO)
f935675f 13688 return ret;
5008e874
ML
13689 }
13690
3c28ff22
AG
13691 /* For framebuffer backed by dmabuf, wait for fence */
13692 if (obj && obj->base.dma_buf) {
13693 ret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13694 false, true,
13695 MAX_SCHEDULE_TIMEOUT);
13696 if (ret == -ERESTARTSYS)
13697 return ret;
13698
13699 WARN_ON(ret < 0);
13700 }
13701
1ee49399
ML
13702 if (!obj) {
13703 ret = 0;
13704 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
13705 INTEL_INFO(dev)->cursor_needs_physical) {
13706 int align = IS_I830(dev) ? 16 * 1024 : 256;
13707 ret = i915_gem_object_attach_phys(obj, align);
13708 if (ret)
13709 DRM_DEBUG_KMS("failed to attach phys object\n");
13710 } else {
7580d774 13711 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
6beb8c23 13712 }
465c120c 13713
7580d774
ML
13714 if (ret == 0) {
13715 if (obj) {
13716 struct intel_plane_state *plane_state =
13717 to_intel_plane_state(new_state);
13718
13719 i915_gem_request_assign(&plane_state->wait_req,
13720 obj->last_write_req);
13721 }
13722
a9ff8714 13723 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774 13724 }
fdd508a6 13725
6beb8c23
MR
13726 return ret;
13727}
13728
38f3ce3a
MR
13729/**
13730 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13731 * @plane: drm plane to clean up for
13732 * @fb: old framebuffer that was on plane
13733 *
13734 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
13735 *
13736 * Must be called with struct_mutex held.
38f3ce3a
MR
13737 */
13738void
13739intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 13740 const struct drm_plane_state *old_state)
38f3ce3a
MR
13741{
13742 struct drm_device *dev = plane->dev;
1ee49399 13743 struct intel_plane *intel_plane = to_intel_plane(plane);
7580d774 13744 struct intel_plane_state *old_intel_state;
1ee49399
ML
13745 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13746 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 13747
7580d774
ML
13748 old_intel_state = to_intel_plane_state(old_state);
13749
1ee49399 13750 if (!obj && !old_obj)
38f3ce3a
MR
13751 return;
13752
1ee49399
ML
13753 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13754 !INTEL_INFO(dev)->cursor_needs_physical))
844f9111 13755 intel_unpin_fb_obj(old_state->fb, old_state);
1ee49399
ML
13756
13757 /* prepare_fb aborted? */
13758 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13759 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13760 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774
ML
13761
13762 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13763
465c120c
MR
13764}
13765
6156a456
CK
13766int
13767skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13768{
13769 int max_scale;
13770 struct drm_device *dev;
13771 struct drm_i915_private *dev_priv;
13772 int crtc_clock, cdclk;
13773
13774 if (!intel_crtc || !crtc_state)
13775 return DRM_PLANE_HELPER_NO_SCALING;
13776
13777 dev = intel_crtc->base.dev;
13778 dev_priv = dev->dev_private;
13779 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13780 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 13781
54bf1ce6 13782 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
13783 return DRM_PLANE_HELPER_NO_SCALING;
13784
13785 /*
13786 * skl max scale is lower of:
13787 * close to 3 but not 3, -1 is for that purpose
13788 * or
13789 * cdclk/crtc_clock
13790 */
13791 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13792
13793 return max_scale;
13794}
13795
465c120c 13796static int
3c692a41 13797intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13798 struct intel_crtc_state *crtc_state,
3c692a41
GP
13799 struct intel_plane_state *state)
13800{
2b875c22
MR
13801 struct drm_crtc *crtc = state->base.crtc;
13802 struct drm_framebuffer *fb = state->base.fb;
6156a456 13803 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13804 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13805 bool can_position = false;
465c120c 13806
061e4b8d
ML
13807 /* use scaler when colorkey is not required */
13808 if (INTEL_INFO(plane->dev)->gen >= 9 &&
818ed961 13809 state->ckey.flags == I915_SET_COLORKEY_NONE) {
061e4b8d
ML
13810 min_scale = 1;
13811 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
d8106366 13812 can_position = true;
6156a456 13813 }
d8106366 13814
061e4b8d
ML
13815 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13816 &state->dst, &state->clip,
da20eabd
ML
13817 min_scale, max_scale,
13818 can_position, true,
13819 &state->visible);
14af293f
GP
13820}
13821
13822static void
13823intel_commit_primary_plane(struct drm_plane *plane,
13824 struct intel_plane_state *state)
13825{
2b875c22
MR
13826 struct drm_crtc *crtc = state->base.crtc;
13827 struct drm_framebuffer *fb = state->base.fb;
13828 struct drm_device *dev = plane->dev;
14af293f 13829 struct drm_i915_private *dev_priv = dev->dev_private;
14af293f 13830
ea2c67bb 13831 crtc = crtc ? crtc : plane->crtc;
ccc759dc 13832
d4b08630
ML
13833 dev_priv->display.update_primary_plane(crtc, fb,
13834 state->src.x1 >> 16,
13835 state->src.y1 >> 16);
465c120c
MR
13836}
13837
a8ad0d8e
ML
13838static void
13839intel_disable_primary_plane(struct drm_plane *plane,
7fabf5ef 13840 struct drm_crtc *crtc)
a8ad0d8e
ML
13841{
13842 struct drm_device *dev = plane->dev;
13843 struct drm_i915_private *dev_priv = dev->dev_private;
13844
a8ad0d8e
ML
13845 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13846}
13847
613d2b27
ML
13848static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13849 struct drm_crtc_state *old_crtc_state)
3c692a41 13850{
32b7eeec 13851 struct drm_device *dev = crtc->dev;
3c692a41 13852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bfd16b2a
ML
13853 struct intel_crtc_state *old_intel_state =
13854 to_intel_crtc_state(old_crtc_state);
13855 bool modeset = needs_modeset(crtc->state);
3c692a41 13856
f015c551 13857 if (intel_crtc->atomic.update_wm_pre)
32b7eeec 13858 intel_update_watermarks(crtc);
3c692a41 13859
c34c9ee4 13860 /* Perform vblank evasion around commit operation */
62852622 13861 intel_pipe_update_start(intel_crtc);
0583236e 13862
bfd16b2a
ML
13863 if (modeset)
13864 return;
13865
13866 if (to_intel_crtc_state(crtc->state)->update_pipe)
13867 intel_update_pipe_config(intel_crtc, old_intel_state);
13868 else if (INTEL_INFO(dev)->gen >= 9)
0583236e 13869 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13870}
13871
613d2b27
ML
13872static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13873 struct drm_crtc_state *old_crtc_state)
32b7eeec 13874{
32b7eeec 13875 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13876
62852622 13877 intel_pipe_update_end(intel_crtc);
3c692a41
GP
13878}
13879
cf4c7c12 13880/**
4a3b8769
MR
13881 * intel_plane_destroy - destroy a plane
13882 * @plane: plane to destroy
cf4c7c12 13883 *
4a3b8769
MR
13884 * Common destruction function for all types of planes (primary, cursor,
13885 * sprite).
cf4c7c12 13886 */
4a3b8769 13887void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13888{
13889 struct intel_plane *intel_plane = to_intel_plane(plane);
13890 drm_plane_cleanup(plane);
13891 kfree(intel_plane);
13892}
13893
65a3fea0 13894const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13895 .update_plane = drm_atomic_helper_update_plane,
13896 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13897 .destroy = intel_plane_destroy,
c196e1d6 13898 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13899 .atomic_get_property = intel_plane_atomic_get_property,
13900 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13901 .atomic_duplicate_state = intel_plane_duplicate_state,
13902 .atomic_destroy_state = intel_plane_destroy_state,
13903
465c120c
MR
13904};
13905
13906static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13907 int pipe)
13908{
13909 struct intel_plane *primary;
8e7d688b 13910 struct intel_plane_state *state;
465c120c 13911 const uint32_t *intel_primary_formats;
45e3743a 13912 unsigned int num_formats;
465c120c
MR
13913
13914 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13915 if (primary == NULL)
13916 return NULL;
13917
8e7d688b
MR
13918 state = intel_create_plane_state(&primary->base);
13919 if (!state) {
ea2c67bb
MR
13920 kfree(primary);
13921 return NULL;
13922 }
8e7d688b 13923 primary->base.state = &state->base;
ea2c67bb 13924
465c120c
MR
13925 primary->can_scale = false;
13926 primary->max_downscale = 1;
6156a456
CK
13927 if (INTEL_INFO(dev)->gen >= 9) {
13928 primary->can_scale = true;
af99ceda 13929 state->scaler_id = -1;
6156a456 13930 }
465c120c
MR
13931 primary->pipe = pipe;
13932 primary->plane = pipe;
a9ff8714 13933 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179
MR
13934 primary->check_plane = intel_check_primary_plane;
13935 primary->commit_plane = intel_commit_primary_plane;
a8ad0d8e 13936 primary->disable_plane = intel_disable_primary_plane;
465c120c
MR
13937 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13938 primary->plane = !pipe;
13939
6c0fd451
DL
13940 if (INTEL_INFO(dev)->gen >= 9) {
13941 intel_primary_formats = skl_primary_formats;
13942 num_formats = ARRAY_SIZE(skl_primary_formats);
13943 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13944 intel_primary_formats = i965_primary_formats;
13945 num_formats = ARRAY_SIZE(i965_primary_formats);
6c0fd451
DL
13946 } else {
13947 intel_primary_formats = i8xx_primary_formats;
13948 num_formats = ARRAY_SIZE(i8xx_primary_formats);
465c120c
MR
13949 }
13950
13951 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13952 &intel_plane_funcs,
465c120c
MR
13953 intel_primary_formats, num_formats,
13954 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13955
3b7a5119
SJ
13956 if (INTEL_INFO(dev)->gen >= 4)
13957 intel_create_rotation_property(dev, primary);
48404c1e 13958
ea2c67bb
MR
13959 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13960
465c120c
MR
13961 return &primary->base;
13962}
13963
3b7a5119
SJ
13964void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13965{
13966 if (!dev->mode_config.rotation_property) {
13967 unsigned long flags = BIT(DRM_ROTATE_0) |
13968 BIT(DRM_ROTATE_180);
13969
13970 if (INTEL_INFO(dev)->gen >= 9)
13971 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13972
13973 dev->mode_config.rotation_property =
13974 drm_mode_create_rotation_property(dev, flags);
13975 }
13976 if (dev->mode_config.rotation_property)
13977 drm_object_attach_property(&plane->base.base,
13978 dev->mode_config.rotation_property,
13979 plane->base.state->rotation);
13980}
13981
3d7d6510 13982static int
852e787c 13983intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 13984 struct intel_crtc_state *crtc_state,
852e787c 13985 struct intel_plane_state *state)
3d7d6510 13986{
061e4b8d 13987 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 13988 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 13989 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
757f9a3e
GP
13990 unsigned stride;
13991 int ret;
3d7d6510 13992
061e4b8d
ML
13993 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13994 &state->dst, &state->clip,
3d7d6510
MR
13995 DRM_PLANE_HELPER_NO_SCALING,
13996 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13997 true, true, &state->visible);
757f9a3e
GP
13998 if (ret)
13999 return ret;
14000
757f9a3e
GP
14001 /* if we want to turn off the cursor ignore width and height */
14002 if (!obj)
da20eabd 14003 return 0;
757f9a3e 14004
757f9a3e 14005 /* Check for which cursor types we support */
061e4b8d 14006 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
14007 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14008 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14009 return -EINVAL;
14010 }
14011
ea2c67bb
MR
14012 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14013 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14014 DRM_DEBUG_KMS("buffer is too small\n");
14015 return -ENOMEM;
14016 }
14017
3a656b54 14018 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 14019 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 14020 return -EINVAL;
32b7eeec
MR
14021 }
14022
da20eabd 14023 return 0;
852e787c 14024}
3d7d6510 14025
a8ad0d8e
ML
14026static void
14027intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 14028 struct drm_crtc *crtc)
a8ad0d8e 14029{
a8ad0d8e
ML
14030 intel_crtc_update_cursor(crtc, false);
14031}
14032
f4a2cf29 14033static void
852e787c
GP
14034intel_commit_cursor_plane(struct drm_plane *plane,
14035 struct intel_plane_state *state)
14036{
2b875c22 14037 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
14038 struct drm_device *dev = plane->dev;
14039 struct intel_crtc *intel_crtc;
2b875c22 14040 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14041 uint32_t addr;
852e787c 14042
ea2c67bb
MR
14043 crtc = crtc ? crtc : plane->crtc;
14044 intel_crtc = to_intel_crtc(crtc);
14045
a912f12f
GP
14046 if (intel_crtc->cursor_bo == obj)
14047 goto update;
4ed91096 14048
f4a2cf29 14049 if (!obj)
a912f12f 14050 addr = 0;
f4a2cf29 14051 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14052 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14053 else
a912f12f 14054 addr = obj->phys_handle->busaddr;
852e787c 14055
a912f12f
GP
14056 intel_crtc->cursor_addr = addr;
14057 intel_crtc->cursor_bo = obj;
852e787c 14058
302d19ac 14059update:
62852622 14060 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
14061}
14062
3d7d6510
MR
14063static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14064 int pipe)
14065{
14066 struct intel_plane *cursor;
8e7d688b 14067 struct intel_plane_state *state;
3d7d6510
MR
14068
14069 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14070 if (cursor == NULL)
14071 return NULL;
14072
8e7d688b
MR
14073 state = intel_create_plane_state(&cursor->base);
14074 if (!state) {
ea2c67bb
MR
14075 kfree(cursor);
14076 return NULL;
14077 }
8e7d688b 14078 cursor->base.state = &state->base;
ea2c67bb 14079
3d7d6510
MR
14080 cursor->can_scale = false;
14081 cursor->max_downscale = 1;
14082 cursor->pipe = pipe;
14083 cursor->plane = pipe;
a9ff8714 14084 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179
MR
14085 cursor->check_plane = intel_check_cursor_plane;
14086 cursor->commit_plane = intel_commit_cursor_plane;
a8ad0d8e 14087 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
14088
14089 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 14090 &intel_plane_funcs,
3d7d6510
MR
14091 intel_cursor_formats,
14092 ARRAY_SIZE(intel_cursor_formats),
14093 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
14094
14095 if (INTEL_INFO(dev)->gen >= 4) {
14096 if (!dev->mode_config.rotation_property)
14097 dev->mode_config.rotation_property =
14098 drm_mode_create_rotation_property(dev,
14099 BIT(DRM_ROTATE_0) |
14100 BIT(DRM_ROTATE_180));
14101 if (dev->mode_config.rotation_property)
14102 drm_object_attach_property(&cursor->base.base,
14103 dev->mode_config.rotation_property,
8e7d688b 14104 state->base.rotation);
4398ad45
VS
14105 }
14106
af99ceda
CK
14107 if (INTEL_INFO(dev)->gen >=9)
14108 state->scaler_id = -1;
14109
ea2c67bb
MR
14110 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14111
3d7d6510
MR
14112 return &cursor->base;
14113}
14114
549e2bfb
CK
14115static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14116 struct intel_crtc_state *crtc_state)
14117{
14118 int i;
14119 struct intel_scaler *intel_scaler;
14120 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14121
14122 for (i = 0; i < intel_crtc->num_scalers; i++) {
14123 intel_scaler = &scaler_state->scalers[i];
14124 intel_scaler->in_use = 0;
549e2bfb
CK
14125 intel_scaler->mode = PS_SCALER_MODE_DYN;
14126 }
14127
14128 scaler_state->scaler_id = -1;
14129}
14130
b358d0a6 14131static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14132{
fbee40df 14133 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14134 struct intel_crtc *intel_crtc;
f5de6e07 14135 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14136 struct drm_plane *primary = NULL;
14137 struct drm_plane *cursor = NULL;
465c120c 14138 int i, ret;
79e53945 14139
955382f3 14140 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14141 if (intel_crtc == NULL)
14142 return;
14143
f5de6e07
ACO
14144 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14145 if (!crtc_state)
14146 goto fail;
550acefd
ACO
14147 intel_crtc->config = crtc_state;
14148 intel_crtc->base.state = &crtc_state->base;
07878248 14149 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14150
549e2bfb
CK
14151 /* initialize shared scalers */
14152 if (INTEL_INFO(dev)->gen >= 9) {
14153 if (pipe == PIPE_C)
14154 intel_crtc->num_scalers = 1;
14155 else
14156 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14157
14158 skl_init_scalers(dev, intel_crtc, crtc_state);
14159 }
14160
465c120c 14161 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14162 if (!primary)
14163 goto fail;
14164
14165 cursor = intel_cursor_plane_create(dev, pipe);
14166 if (!cursor)
14167 goto fail;
14168
465c120c 14169 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
14170 cursor, &intel_crtc_funcs);
14171 if (ret)
14172 goto fail;
79e53945
JB
14173
14174 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
14175 for (i = 0; i < 256; i++) {
14176 intel_crtc->lut_r[i] = i;
14177 intel_crtc->lut_g[i] = i;
14178 intel_crtc->lut_b[i] = i;
14179 }
14180
1f1c2e24
VS
14181 /*
14182 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14183 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14184 */
80824003
JB
14185 intel_crtc->pipe = pipe;
14186 intel_crtc->plane = pipe;
3a77c4c4 14187 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14188 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14189 intel_crtc->plane = !pipe;
80824003
JB
14190 }
14191
4b0e333e
CW
14192 intel_crtc->cursor_base = ~0;
14193 intel_crtc->cursor_cntl = ~0;
dc41c154 14194 intel_crtc->cursor_size = ~0;
8d7849db 14195
852eb00d
VS
14196 intel_crtc->wm.cxsr_allowed = true;
14197
22fd0fab
JB
14198 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14199 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14200 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14201 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14202
79e53945 14203 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
14204
14205 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14206 return;
14207
14208fail:
14209 if (primary)
14210 drm_plane_cleanup(primary);
14211 if (cursor)
14212 drm_plane_cleanup(cursor);
f5de6e07 14213 kfree(crtc_state);
3d7d6510 14214 kfree(intel_crtc);
79e53945
JB
14215}
14216
752aa88a
JB
14217enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14218{
14219 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14220 struct drm_device *dev = connector->base.dev;
752aa88a 14221
51fd371b 14222 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14223
d3babd3f 14224 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14225 return INVALID_PIPE;
14226
14227 return to_intel_crtc(encoder->crtc)->pipe;
14228}
14229
08d7b3d1 14230int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14231 struct drm_file *file)
08d7b3d1 14232{
08d7b3d1 14233 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14234 struct drm_crtc *drmmode_crtc;
c05422d5 14235 struct intel_crtc *crtc;
08d7b3d1 14236
7707e653 14237 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14238
7707e653 14239 if (!drmmode_crtc) {
08d7b3d1 14240 DRM_ERROR("no such CRTC id\n");
3f2c2057 14241 return -ENOENT;
08d7b3d1
CW
14242 }
14243
7707e653 14244 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14245 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14246
c05422d5 14247 return 0;
08d7b3d1
CW
14248}
14249
66a9278e 14250static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14251{
66a9278e
DV
14252 struct drm_device *dev = encoder->base.dev;
14253 struct intel_encoder *source_encoder;
79e53945 14254 int index_mask = 0;
79e53945
JB
14255 int entry = 0;
14256
b2784e15 14257 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14258 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14259 index_mask |= (1 << entry);
14260
79e53945
JB
14261 entry++;
14262 }
4ef69c7a 14263
79e53945
JB
14264 return index_mask;
14265}
14266
4d302442
CW
14267static bool has_edp_a(struct drm_device *dev)
14268{
14269 struct drm_i915_private *dev_priv = dev->dev_private;
14270
14271 if (!IS_MOBILE(dev))
14272 return false;
14273
14274 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14275 return false;
14276
e3589908 14277 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14278 return false;
14279
14280 return true;
14281}
14282
84b4e042
JB
14283static bool intel_crt_present(struct drm_device *dev)
14284{
14285 struct drm_i915_private *dev_priv = dev->dev_private;
14286
884497ed
DL
14287 if (INTEL_INFO(dev)->gen >= 9)
14288 return false;
14289
cf404ce4 14290 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14291 return false;
14292
14293 if (IS_CHERRYVIEW(dev))
14294 return false;
14295
65e472e4
VS
14296 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14297 return false;
14298
70ac54d0
VS
14299 /* DDI E can't be used if DDI A requires 4 lanes */
14300 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14301 return false;
14302
e4abb733 14303 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
14304 return false;
14305
14306 return true;
14307}
14308
79e53945
JB
14309static void intel_setup_outputs(struct drm_device *dev)
14310{
725e30ad 14311 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14312 struct intel_encoder *encoder;
cb0953d7 14313 bool dpd_is_edp = false;
79e53945 14314
c9093354 14315 intel_lvds_init(dev);
79e53945 14316
84b4e042 14317 if (intel_crt_present(dev))
79935fca 14318 intel_crt_init(dev);
cb0953d7 14319
c776eb2e
VK
14320 if (IS_BROXTON(dev)) {
14321 /*
14322 * FIXME: Broxton doesn't support port detection via the
14323 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14324 * detect the ports.
14325 */
14326 intel_ddi_init(dev, PORT_A);
14327 intel_ddi_init(dev, PORT_B);
14328 intel_ddi_init(dev, PORT_C);
14329 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14330 int found;
14331
de31facd
JB
14332 /*
14333 * Haswell uses DDI functions to detect digital outputs.
14334 * On SKL pre-D0 the strap isn't connected, so we assume
14335 * it's there.
14336 */
77179400 14337 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 14338 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 14339 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
14340 intel_ddi_init(dev, PORT_A);
14341
14342 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14343 * register */
14344 found = I915_READ(SFUSE_STRAP);
14345
14346 if (found & SFUSE_STRAP_DDIB_DETECTED)
14347 intel_ddi_init(dev, PORT_B);
14348 if (found & SFUSE_STRAP_DDIC_DETECTED)
14349 intel_ddi_init(dev, PORT_C);
14350 if (found & SFUSE_STRAP_DDID_DETECTED)
14351 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14352 /*
14353 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14354 */
ef11bdb3 14355 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
14356 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14357 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14358 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14359 intel_ddi_init(dev, PORT_E);
14360
0e72a5b5 14361 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14362 int found;
5d8a7752 14363 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14364
14365 if (has_edp_a(dev))
14366 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14367
dc0fa718 14368 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14369 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 14370 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 14371 if (!found)
e2debe91 14372 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14373 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14374 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14375 }
14376
dc0fa718 14377 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14378 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14379
dc0fa718 14380 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14381 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14382
5eb08b69 14383 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14384 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14385
270b3042 14386 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14387 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 14388 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
14389 /*
14390 * The DP_DETECTED bit is the latched state of the DDC
14391 * SDA pin at boot. However since eDP doesn't require DDC
14392 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14393 * eDP ports may have been muxed to an alternate function.
14394 * Thus we can't rely on the DP_DETECTED bit alone to detect
14395 * eDP ports. Consult the VBT as well as DP_DETECTED to
14396 * detect eDP ports.
14397 */
e66eb81d 14398 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
d2182a66 14399 !intel_dp_is_edp(dev, PORT_B))
e66eb81d
VS
14400 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14401 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
e17ac6db 14402 intel_dp_is_edp(dev, PORT_B))
e66eb81d 14403 intel_dp_init(dev, VLV_DP_B, PORT_B);
585a94b8 14404
e66eb81d 14405 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
d2182a66 14406 !intel_dp_is_edp(dev, PORT_C))
e66eb81d
VS
14407 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14408 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
e17ac6db 14409 intel_dp_is_edp(dev, PORT_C))
e66eb81d 14410 intel_dp_init(dev, VLV_DP_C, PORT_C);
19c03924 14411
9418c1f1 14412 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14413 /* eDP not supported on port D, so don't check VBT */
e66eb81d
VS
14414 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14415 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14416 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14417 intel_dp_init(dev, CHV_DP_D, PORT_D);
9418c1f1
VS
14418 }
14419
3cfca973 14420 intel_dsi_init(dev);
09da55dc 14421 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14422 bool found = false;
7d57382e 14423
e2debe91 14424 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14425 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 14426 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 14427 if (!found && IS_G4X(dev)) {
b01f2c3a 14428 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14429 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14430 }
27185ae1 14431
3fec3d2f 14432 if (!found && IS_G4X(dev))
ab9d7c30 14433 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14434 }
13520b05
KH
14435
14436 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14437
e2debe91 14438 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14439 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 14440 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 14441 }
27185ae1 14442
e2debe91 14443 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14444
3fec3d2f 14445 if (IS_G4X(dev)) {
b01f2c3a 14446 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14447 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14448 }
3fec3d2f 14449 if (IS_G4X(dev))
ab9d7c30 14450 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14451 }
27185ae1 14452
3fec3d2f 14453 if (IS_G4X(dev) &&
e7281eab 14454 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14455 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14456 } else if (IS_GEN2(dev))
79e53945
JB
14457 intel_dvo_init(dev);
14458
103a196f 14459 if (SUPPORTS_TV(dev))
79e53945
JB
14460 intel_tv_init(dev);
14461
0bc12bcb 14462 intel_psr_init(dev);
7c8f8a70 14463
b2784e15 14464 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14465 encoder->base.possible_crtcs = encoder->crtc_mask;
14466 encoder->base.possible_clones =
66a9278e 14467 intel_encoder_clones(encoder);
79e53945 14468 }
47356eb6 14469
dde86e2d 14470 intel_init_pch_refclk(dev);
270b3042
DV
14471
14472 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14473}
14474
14475static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14476{
60a5ca01 14477 struct drm_device *dev = fb->dev;
79e53945 14478 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14479
ef2d633e 14480 drm_framebuffer_cleanup(fb);
60a5ca01 14481 mutex_lock(&dev->struct_mutex);
ef2d633e 14482 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14483 drm_gem_object_unreference(&intel_fb->obj->base);
14484 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14485 kfree(intel_fb);
14486}
14487
14488static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14489 struct drm_file *file,
79e53945
JB
14490 unsigned int *handle)
14491{
14492 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14493 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14494
cc917ab4
CW
14495 if (obj->userptr.mm) {
14496 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14497 return -EINVAL;
14498 }
14499
05394f39 14500 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14501}
14502
86c98588
RV
14503static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14504 struct drm_file *file,
14505 unsigned flags, unsigned color,
14506 struct drm_clip_rect *clips,
14507 unsigned num_clips)
14508{
14509 struct drm_device *dev = fb->dev;
14510 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14511 struct drm_i915_gem_object *obj = intel_fb->obj;
14512
14513 mutex_lock(&dev->struct_mutex);
74b4ea1e 14514 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14515 mutex_unlock(&dev->struct_mutex);
14516
14517 return 0;
14518}
14519
79e53945
JB
14520static const struct drm_framebuffer_funcs intel_fb_funcs = {
14521 .destroy = intel_user_framebuffer_destroy,
14522 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14523 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14524};
14525
b321803d
DL
14526static
14527u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14528 uint32_t pixel_format)
14529{
14530 u32 gen = INTEL_INFO(dev)->gen;
14531
14532 if (gen >= 9) {
14533 /* "The stride in bytes must not exceed the of the size of 8K
14534 * pixels and 32K bytes."
14535 */
14536 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14537 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14538 return 32*1024;
14539 } else if (gen >= 4) {
14540 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14541 return 16*1024;
14542 else
14543 return 32*1024;
14544 } else if (gen >= 3) {
14545 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14546 return 8*1024;
14547 else
14548 return 16*1024;
14549 } else {
14550 /* XXX DSPC is limited to 4k tiled */
14551 return 8*1024;
14552 }
14553}
14554
b5ea642a
DV
14555static int intel_framebuffer_init(struct drm_device *dev,
14556 struct intel_framebuffer *intel_fb,
14557 struct drm_mode_fb_cmd2 *mode_cmd,
14558 struct drm_i915_gem_object *obj)
79e53945 14559{
6761dd31 14560 unsigned int aligned_height;
79e53945 14561 int ret;
b321803d 14562 u32 pitch_limit, stride_alignment;
79e53945 14563
dd4916c5
DV
14564 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14565
2a80eada
DV
14566 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14567 /* Enforce that fb modifier and tiling mode match, but only for
14568 * X-tiled. This is needed for FBC. */
14569 if (!!(obj->tiling_mode == I915_TILING_X) !=
14570 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14571 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14572 return -EINVAL;
14573 }
14574 } else {
14575 if (obj->tiling_mode == I915_TILING_X)
14576 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14577 else if (obj->tiling_mode == I915_TILING_Y) {
14578 DRM_DEBUG("No Y tiling for legacy addfb\n");
14579 return -EINVAL;
14580 }
14581 }
14582
9a8f0a12
TU
14583 /* Passed in modifier sanity checking. */
14584 switch (mode_cmd->modifier[0]) {
14585 case I915_FORMAT_MOD_Y_TILED:
14586 case I915_FORMAT_MOD_Yf_TILED:
14587 if (INTEL_INFO(dev)->gen < 9) {
14588 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14589 mode_cmd->modifier[0]);
14590 return -EINVAL;
14591 }
14592 case DRM_FORMAT_MOD_NONE:
14593 case I915_FORMAT_MOD_X_TILED:
14594 break;
14595 default:
c0f40428
JB
14596 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14597 mode_cmd->modifier[0]);
57cd6508 14598 return -EINVAL;
c16ed4be 14599 }
57cd6508 14600
b321803d
DL
14601 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14602 mode_cmd->pixel_format);
14603 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14604 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14605 mode_cmd->pitches[0], stride_alignment);
57cd6508 14606 return -EINVAL;
c16ed4be 14607 }
57cd6508 14608
b321803d
DL
14609 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14610 mode_cmd->pixel_format);
a35cdaa0 14611 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14612 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14613 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14614 "tiled" : "linear",
a35cdaa0 14615 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14616 return -EINVAL;
c16ed4be 14617 }
5d7bd705 14618
2a80eada 14619 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14620 mode_cmd->pitches[0] != obj->stride) {
14621 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14622 mode_cmd->pitches[0], obj->stride);
5d7bd705 14623 return -EINVAL;
c16ed4be 14624 }
5d7bd705 14625
57779d06 14626 /* Reject formats not supported by any plane early. */
308e5bcb 14627 switch (mode_cmd->pixel_format) {
57779d06 14628 case DRM_FORMAT_C8:
04b3924d
VS
14629 case DRM_FORMAT_RGB565:
14630 case DRM_FORMAT_XRGB8888:
14631 case DRM_FORMAT_ARGB8888:
57779d06
VS
14632 break;
14633 case DRM_FORMAT_XRGB1555:
c16ed4be 14634 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14635 DRM_DEBUG("unsupported pixel format: %s\n",
14636 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14637 return -EINVAL;
c16ed4be 14638 }
57779d06 14639 break;
57779d06 14640 case DRM_FORMAT_ABGR8888:
6c0fd451
DL
14641 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14642 DRM_DEBUG("unsupported pixel format: %s\n",
14643 drm_get_format_name(mode_cmd->pixel_format));
14644 return -EINVAL;
14645 }
14646 break;
14647 case DRM_FORMAT_XBGR8888:
04b3924d 14648 case DRM_FORMAT_XRGB2101010:
57779d06 14649 case DRM_FORMAT_XBGR2101010:
c16ed4be 14650 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14651 DRM_DEBUG("unsupported pixel format: %s\n",
14652 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14653 return -EINVAL;
c16ed4be 14654 }
b5626747 14655 break;
7531208b
DL
14656 case DRM_FORMAT_ABGR2101010:
14657 if (!IS_VALLEYVIEW(dev)) {
14658 DRM_DEBUG("unsupported pixel format: %s\n",
14659 drm_get_format_name(mode_cmd->pixel_format));
14660 return -EINVAL;
14661 }
14662 break;
04b3924d
VS
14663 case DRM_FORMAT_YUYV:
14664 case DRM_FORMAT_UYVY:
14665 case DRM_FORMAT_YVYU:
14666 case DRM_FORMAT_VYUY:
c16ed4be 14667 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14668 DRM_DEBUG("unsupported pixel format: %s\n",
14669 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14670 return -EINVAL;
c16ed4be 14671 }
57cd6508
CW
14672 break;
14673 default:
4ee62c76
VS
14674 DRM_DEBUG("unsupported pixel format: %s\n",
14675 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14676 return -EINVAL;
14677 }
14678
90f9a336
VS
14679 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14680 if (mode_cmd->offsets[0] != 0)
14681 return -EINVAL;
14682
ec2c981e 14683 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14684 mode_cmd->pixel_format,
14685 mode_cmd->modifier[0]);
53155c0a
DV
14686 /* FIXME drm helper for size checks (especially planar formats)? */
14687 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14688 return -EINVAL;
14689
c7d73f6a
DV
14690 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14691 intel_fb->obj = obj;
80075d49 14692 intel_fb->obj->framebuffer_references++;
c7d73f6a 14693
79e53945
JB
14694 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14695 if (ret) {
14696 DRM_ERROR("framebuffer init failed %d\n", ret);
14697 return ret;
14698 }
14699
79e53945
JB
14700 return 0;
14701}
14702
79e53945
JB
14703static struct drm_framebuffer *
14704intel_user_framebuffer_create(struct drm_device *dev,
14705 struct drm_file *filp,
76dc3769 14706 struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 14707{
dcb1394e 14708 struct drm_framebuffer *fb;
05394f39 14709 struct drm_i915_gem_object *obj;
76dc3769 14710 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 14711
308e5bcb 14712 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
76dc3769 14713 mode_cmd.handles[0]));
c8725226 14714 if (&obj->base == NULL)
cce13ff7 14715 return ERR_PTR(-ENOENT);
79e53945 14716
92907cbb 14717 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e
LW
14718 if (IS_ERR(fb))
14719 drm_gem_object_unreference_unlocked(&obj->base);
14720
14721 return fb;
79e53945
JB
14722}
14723
0695726e 14724#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 14725static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14726{
14727}
14728#endif
14729
79e53945 14730static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14731 .fb_create = intel_user_framebuffer_create,
0632fef6 14732 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14733 .atomic_check = intel_atomic_check,
14734 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14735 .atomic_state_alloc = intel_atomic_state_alloc,
14736 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14737};
14738
e70236a8
JB
14739/* Set up chip specific display functions */
14740static void intel_init_display(struct drm_device *dev)
14741{
14742 struct drm_i915_private *dev_priv = dev->dev_private;
14743
ee9300bb
DV
14744 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14745 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14746 else if (IS_CHERRYVIEW(dev))
14747 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14748 else if (IS_VALLEYVIEW(dev))
14749 dev_priv->display.find_dpll = vlv_find_best_dpll;
14750 else if (IS_PINEVIEW(dev))
14751 dev_priv->display.find_dpll = pnv_find_best_dpll;
14752 else
14753 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14754
bc8d7dff
DL
14755 if (INTEL_INFO(dev)->gen >= 9) {
14756 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14757 dev_priv->display.get_initial_plane_config =
14758 skylake_get_initial_plane_config;
bc8d7dff
DL
14759 dev_priv->display.crtc_compute_clock =
14760 haswell_crtc_compute_clock;
14761 dev_priv->display.crtc_enable = haswell_crtc_enable;
14762 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14763 dev_priv->display.update_primary_plane =
14764 skylake_update_primary_plane;
14765 } else if (HAS_DDI(dev)) {
0e8ffe1b 14766 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14767 dev_priv->display.get_initial_plane_config =
14768 ironlake_get_initial_plane_config;
797d0259
ACO
14769 dev_priv->display.crtc_compute_clock =
14770 haswell_crtc_compute_clock;
4f771f10
PZ
14771 dev_priv->display.crtc_enable = haswell_crtc_enable;
14772 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14773 dev_priv->display.update_primary_plane =
14774 ironlake_update_primary_plane;
09b4ddf9 14775 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14776 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14777 dev_priv->display.get_initial_plane_config =
14778 ironlake_get_initial_plane_config;
3fb37703
ACO
14779 dev_priv->display.crtc_compute_clock =
14780 ironlake_crtc_compute_clock;
76e5a89c
DV
14781 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14782 dev_priv->display.crtc_disable = ironlake_crtc_disable;
262ca2b0
MR
14783 dev_priv->display.update_primary_plane =
14784 ironlake_update_primary_plane;
89b667f8
JB
14785 } else if (IS_VALLEYVIEW(dev)) {
14786 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14787 dev_priv->display.get_initial_plane_config =
14788 i9xx_get_initial_plane_config;
d6dfee7a 14789 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14790 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14791 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14792 dev_priv->display.update_primary_plane =
14793 i9xx_update_primary_plane;
f564048e 14794 } else {
0e8ffe1b 14795 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14796 dev_priv->display.get_initial_plane_config =
14797 i9xx_get_initial_plane_config;
d6dfee7a 14798 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14799 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14800 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14801 dev_priv->display.update_primary_plane =
14802 i9xx_update_primary_plane;
f564048e 14803 }
e70236a8 14804
e70236a8 14805 /* Returns the core display clock speed */
ef11bdb3 14806 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1652d19e
VS
14807 dev_priv->display.get_display_clock_speed =
14808 skylake_get_display_clock_speed;
acd3f3d3
BP
14809 else if (IS_BROXTON(dev))
14810 dev_priv->display.get_display_clock_speed =
14811 broxton_get_display_clock_speed;
1652d19e
VS
14812 else if (IS_BROADWELL(dev))
14813 dev_priv->display.get_display_clock_speed =
14814 broadwell_get_display_clock_speed;
14815 else if (IS_HASWELL(dev))
14816 dev_priv->display.get_display_clock_speed =
14817 haswell_get_display_clock_speed;
14818 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14819 dev_priv->display.get_display_clock_speed =
14820 valleyview_get_display_clock_speed;
b37a6434
VS
14821 else if (IS_GEN5(dev))
14822 dev_priv->display.get_display_clock_speed =
14823 ilk_get_display_clock_speed;
a7c66cd8 14824 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14825 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14826 dev_priv->display.get_display_clock_speed =
14827 i945_get_display_clock_speed;
34edce2f
VS
14828 else if (IS_GM45(dev))
14829 dev_priv->display.get_display_clock_speed =
14830 gm45_get_display_clock_speed;
14831 else if (IS_CRESTLINE(dev))
14832 dev_priv->display.get_display_clock_speed =
14833 i965gm_get_display_clock_speed;
14834 else if (IS_PINEVIEW(dev))
14835 dev_priv->display.get_display_clock_speed =
14836 pnv_get_display_clock_speed;
14837 else if (IS_G33(dev) || IS_G4X(dev))
14838 dev_priv->display.get_display_clock_speed =
14839 g33_get_display_clock_speed;
e70236a8
JB
14840 else if (IS_I915G(dev))
14841 dev_priv->display.get_display_clock_speed =
14842 i915_get_display_clock_speed;
257a7ffc 14843 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14844 dev_priv->display.get_display_clock_speed =
14845 i9xx_misc_get_display_clock_speed;
14846 else if (IS_I915GM(dev))
14847 dev_priv->display.get_display_clock_speed =
14848 i915gm_get_display_clock_speed;
14849 else if (IS_I865G(dev))
14850 dev_priv->display.get_display_clock_speed =
14851 i865_get_display_clock_speed;
f0f8a9ce 14852 else if (IS_I85X(dev))
e70236a8 14853 dev_priv->display.get_display_clock_speed =
1b1d2716 14854 i85x_get_display_clock_speed;
623e01e5
VS
14855 else { /* 830 */
14856 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14857 dev_priv->display.get_display_clock_speed =
14858 i830_get_display_clock_speed;
623e01e5 14859 }
e70236a8 14860
7c10a2b5 14861 if (IS_GEN5(dev)) {
3bb11b53 14862 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14863 } else if (IS_GEN6(dev)) {
14864 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14865 } else if (IS_IVYBRIDGE(dev)) {
14866 /* FIXME: detect B0+ stepping and use auto training */
14867 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14868 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14869 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
27c329ed
ML
14870 if (IS_BROADWELL(dev)) {
14871 dev_priv->display.modeset_commit_cdclk =
14872 broadwell_modeset_commit_cdclk;
14873 dev_priv->display.modeset_calc_cdclk =
14874 broadwell_modeset_calc_cdclk;
14875 }
30a970c6 14876 } else if (IS_VALLEYVIEW(dev)) {
27c329ed
ML
14877 dev_priv->display.modeset_commit_cdclk =
14878 valleyview_modeset_commit_cdclk;
14879 dev_priv->display.modeset_calc_cdclk =
14880 valleyview_modeset_calc_cdclk;
f8437dd1 14881 } else if (IS_BROXTON(dev)) {
27c329ed
ML
14882 dev_priv->display.modeset_commit_cdclk =
14883 broxton_modeset_commit_cdclk;
14884 dev_priv->display.modeset_calc_cdclk =
14885 broxton_modeset_calc_cdclk;
e70236a8 14886 }
8c9f3aaf 14887
8c9f3aaf
JB
14888 switch (INTEL_INFO(dev)->gen) {
14889 case 2:
14890 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14891 break;
14892
14893 case 3:
14894 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14895 break;
14896
14897 case 4:
14898 case 5:
14899 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14900 break;
14901
14902 case 6:
14903 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14904 break;
7c9017e5 14905 case 7:
4e0bbc31 14906 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14907 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14908 break;
830c81db 14909 case 9:
ba343e02
TU
14910 /* Drop through - unsupported since execlist only. */
14911 default:
14912 /* Default just returns -ENODEV to indicate unsupported */
14913 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14914 }
7bd688cd 14915
e39b999a 14916 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14917}
14918
b690e96c
JB
14919/*
14920 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14921 * resume, or other times. This quirk makes sure that's the case for
14922 * affected systems.
14923 */
0206e353 14924static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14925{
14926 struct drm_i915_private *dev_priv = dev->dev_private;
14927
14928 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14929 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14930}
14931
b6b5d049
VS
14932static void quirk_pipeb_force(struct drm_device *dev)
14933{
14934 struct drm_i915_private *dev_priv = dev->dev_private;
14935
14936 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14937 DRM_INFO("applying pipe b force quirk\n");
14938}
14939
435793df
KP
14940/*
14941 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14942 */
14943static void quirk_ssc_force_disable(struct drm_device *dev)
14944{
14945 struct drm_i915_private *dev_priv = dev->dev_private;
14946 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14947 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14948}
14949
4dca20ef 14950/*
5a15ab5b
CE
14951 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14952 * brightness value
4dca20ef
CE
14953 */
14954static void quirk_invert_brightness(struct drm_device *dev)
14955{
14956 struct drm_i915_private *dev_priv = dev->dev_private;
14957 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14958 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14959}
14960
9c72cc6f
SD
14961/* Some VBT's incorrectly indicate no backlight is present */
14962static void quirk_backlight_present(struct drm_device *dev)
14963{
14964 struct drm_i915_private *dev_priv = dev->dev_private;
14965 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14966 DRM_INFO("applying backlight present quirk\n");
14967}
14968
b690e96c
JB
14969struct intel_quirk {
14970 int device;
14971 int subsystem_vendor;
14972 int subsystem_device;
14973 void (*hook)(struct drm_device *dev);
14974};
14975
5f85f176
EE
14976/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14977struct intel_dmi_quirk {
14978 void (*hook)(struct drm_device *dev);
14979 const struct dmi_system_id (*dmi_id_list)[];
14980};
14981
14982static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14983{
14984 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14985 return 1;
14986}
14987
14988static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14989 {
14990 .dmi_id_list = &(const struct dmi_system_id[]) {
14991 {
14992 .callback = intel_dmi_reverse_brightness,
14993 .ident = "NCR Corporation",
14994 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14995 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14996 },
14997 },
14998 { } /* terminating entry */
14999 },
15000 .hook = quirk_invert_brightness,
15001 },
15002};
15003
c43b5634 15004static struct intel_quirk intel_quirks[] = {
b690e96c
JB
15005 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15006 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15007
b690e96c
JB
15008 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15009 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15010
5f080c0f
VS
15011 /* 830 needs to leave pipe A & dpll A up */
15012 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15013
b6b5d049
VS
15014 /* 830 needs to leave pipe B & dpll B up */
15015 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15016
435793df
KP
15017 /* Lenovo U160 cannot use SSC on LVDS */
15018 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15019
15020 /* Sony Vaio Y cannot use SSC on LVDS */
15021 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15022
be505f64
AH
15023 /* Acer Aspire 5734Z must invert backlight brightness */
15024 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15025
15026 /* Acer/eMachines G725 */
15027 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15028
15029 /* Acer/eMachines e725 */
15030 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15031
15032 /* Acer/Packard Bell NCL20 */
15033 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15034
15035 /* Acer Aspire 4736Z */
15036 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15037
15038 /* Acer Aspire 5336 */
15039 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15040
15041 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15042 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15043
dfb3d47b
SD
15044 /* Acer C720 Chromebook (Core i3 4005U) */
15045 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15046
b2a9601c 15047 /* Apple Macbook 2,1 (Core 2 T7400) */
15048 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15049
1b9448b0
JN
15050 /* Apple Macbook 4,1 */
15051 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15052
d4967d8c
SD
15053 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15054 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15055
15056 /* HP Chromebook 14 (Celeron 2955U) */
15057 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15058
15059 /* Dell Chromebook 11 */
15060 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
15061
15062 /* Dell Chromebook 11 (2015 version) */
15063 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15064};
15065
15066static void intel_init_quirks(struct drm_device *dev)
15067{
15068 struct pci_dev *d = dev->pdev;
15069 int i;
15070
15071 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15072 struct intel_quirk *q = &intel_quirks[i];
15073
15074 if (d->device == q->device &&
15075 (d->subsystem_vendor == q->subsystem_vendor ||
15076 q->subsystem_vendor == PCI_ANY_ID) &&
15077 (d->subsystem_device == q->subsystem_device ||
15078 q->subsystem_device == PCI_ANY_ID))
15079 q->hook(dev);
15080 }
5f85f176
EE
15081 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15082 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15083 intel_dmi_quirks[i].hook(dev);
15084 }
b690e96c
JB
15085}
15086
9cce37f4
JB
15087/* Disable the VGA plane that we never use */
15088static void i915_disable_vga(struct drm_device *dev)
15089{
15090 struct drm_i915_private *dev_priv = dev->dev_private;
15091 u8 sr1;
f0f59a00 15092 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15093
2b37c616 15094 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15095 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15096 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15097 sr1 = inb(VGA_SR_DATA);
15098 outb(sr1 | 1<<5, VGA_SR_DATA);
15099 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15100 udelay(300);
15101
01f5a626 15102 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15103 POSTING_READ(vga_reg);
15104}
15105
f817586c
DV
15106void intel_modeset_init_hw(struct drm_device *dev)
15107{
b6283055 15108 intel_update_cdclk(dev);
a8f78b58 15109 intel_prepare_ddi(dev);
f817586c 15110 intel_init_clock_gating(dev);
8090c6b9 15111 intel_enable_gt_powersave(dev);
f817586c
DV
15112}
15113
79e53945
JB
15114void intel_modeset_init(struct drm_device *dev)
15115{
652c393a 15116 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 15117 int sprite, ret;
8cc87b75 15118 enum pipe pipe;
46f297fb 15119 struct intel_crtc *crtc;
79e53945
JB
15120
15121 drm_mode_config_init(dev);
15122
15123 dev->mode_config.min_width = 0;
15124 dev->mode_config.min_height = 0;
15125
019d96cb
DA
15126 dev->mode_config.preferred_depth = 24;
15127 dev->mode_config.prefer_shadow = 1;
15128
25bab385
TU
15129 dev->mode_config.allow_fb_modifiers = true;
15130
e6ecefaa 15131 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15132
b690e96c
JB
15133 intel_init_quirks(dev);
15134
1fa61106
ED
15135 intel_init_pm(dev);
15136
e3c74757
BW
15137 if (INTEL_INFO(dev)->num_pipes == 0)
15138 return;
15139
69f92f67
LW
15140 /*
15141 * There may be no VBT; and if the BIOS enabled SSC we can
15142 * just keep using it to avoid unnecessary flicker. Whereas if the
15143 * BIOS isn't using it, don't assume it will work even if the VBT
15144 * indicates as much.
15145 */
15146 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15147 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15148 DREF_SSC1_ENABLE);
15149
15150 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15151 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15152 bios_lvds_use_ssc ? "en" : "dis",
15153 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15154 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15155 }
15156 }
15157
e70236a8 15158 intel_init_display(dev);
7c10a2b5 15159 intel_init_audio(dev);
e70236a8 15160
a6c45cf0
CW
15161 if (IS_GEN2(dev)) {
15162 dev->mode_config.max_width = 2048;
15163 dev->mode_config.max_height = 2048;
15164 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15165 dev->mode_config.max_width = 4096;
15166 dev->mode_config.max_height = 4096;
79e53945 15167 } else {
a6c45cf0
CW
15168 dev->mode_config.max_width = 8192;
15169 dev->mode_config.max_height = 8192;
79e53945 15170 }
068be561 15171
dc41c154
VS
15172 if (IS_845G(dev) || IS_I865G(dev)) {
15173 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15174 dev->mode_config.cursor_height = 1023;
15175 } else if (IS_GEN2(dev)) {
068be561
DL
15176 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15177 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15178 } else {
15179 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15180 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15181 }
15182
5d4545ae 15183 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 15184
28c97730 15185 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15186 INTEL_INFO(dev)->num_pipes,
15187 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15188
055e393f 15189 for_each_pipe(dev_priv, pipe) {
8cc87b75 15190 intel_crtc_init(dev, pipe);
3bdcfc0c 15191 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15192 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15193 if (ret)
06da8da2 15194 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15195 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15196 }
79e53945
JB
15197 }
15198
bfa7df01
VS
15199 intel_update_czclk(dev_priv);
15200 intel_update_cdclk(dev);
15201
e72f9fbf 15202 intel_shared_dpll_init(dev);
ee7b9f93 15203
9cce37f4
JB
15204 /* Just disable it once at startup */
15205 i915_disable_vga(dev);
79e53945 15206 intel_setup_outputs(dev);
11be49eb 15207
6e9f798d 15208 drm_modeset_lock_all(dev);
043e9bda 15209 intel_modeset_setup_hw_state(dev);
6e9f798d 15210 drm_modeset_unlock_all(dev);
46f297fb 15211
d3fcc808 15212 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
15213 struct intel_initial_plane_config plane_config = {};
15214
46f297fb
JB
15215 if (!crtc->active)
15216 continue;
15217
46f297fb 15218 /*
46f297fb
JB
15219 * Note that reserving the BIOS fb up front prevents us
15220 * from stuffing other stolen allocations like the ring
15221 * on top. This prevents some ugliness at boot time, and
15222 * can even allow for smooth boot transitions if the BIOS
15223 * fb is large enough for the active pipe configuration.
15224 */
eeebeac5
ML
15225 dev_priv->display.get_initial_plane_config(crtc,
15226 &plane_config);
15227
15228 /*
15229 * If the fb is shared between multiple heads, we'll
15230 * just get the first one.
15231 */
15232 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 15233 }
2c7111db
CW
15234}
15235
7fad798e
DV
15236static void intel_enable_pipe_a(struct drm_device *dev)
15237{
15238 struct intel_connector *connector;
15239 struct drm_connector *crt = NULL;
15240 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15241 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15242
15243 /* We can't just switch on the pipe A, we need to set things up with a
15244 * proper mode and output configuration. As a gross hack, enable pipe A
15245 * by enabling the load detect pipe once. */
3a3371ff 15246 for_each_intel_connector(dev, connector) {
7fad798e
DV
15247 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15248 crt = &connector->base;
15249 break;
15250 }
15251 }
15252
15253 if (!crt)
15254 return;
15255
208bf9fd 15256 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15257 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15258}
15259
fa555837
DV
15260static bool
15261intel_check_plane_mapping(struct intel_crtc *crtc)
15262{
7eb552ae
BW
15263 struct drm_device *dev = crtc->base.dev;
15264 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 15265 u32 val;
fa555837 15266
7eb552ae 15267 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15268 return true;
15269
649636ef 15270 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
15271
15272 if ((val & DISPLAY_PLANE_ENABLE) &&
15273 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15274 return false;
15275
15276 return true;
15277}
15278
02e93c35
VS
15279static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15280{
15281 struct drm_device *dev = crtc->base.dev;
15282 struct intel_encoder *encoder;
15283
15284 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15285 return true;
15286
15287 return false;
15288}
15289
24929352
DV
15290static void intel_sanitize_crtc(struct intel_crtc *crtc)
15291{
15292 struct drm_device *dev = crtc->base.dev;
15293 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15294 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
24929352 15295
24929352 15296 /* Clear any frame start delays used for debugging left by the BIOS */
24929352
DV
15297 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15298
d3eaf884 15299 /* restore vblank interrupts to correct state */
9625604c 15300 drm_crtc_vblank_reset(&crtc->base);
d297e103 15301 if (crtc->active) {
f9cd7b88
VS
15302 struct intel_plane *plane;
15303
9625604c 15304 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
15305
15306 /* Disable everything but the primary plane */
15307 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15308 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15309 continue;
15310
15311 plane->disable_plane(&plane->base, &crtc->base);
15312 }
9625604c 15313 }
d3eaf884 15314
24929352 15315 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15316 * disable the crtc (and hence change the state) if it is wrong. Note
15317 * that gen4+ has a fixed plane -> pipe mapping. */
15318 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15319 bool plane;
15320
24929352
DV
15321 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15322 crtc->base.base.id);
15323
15324 /* Pipe has the wrong plane attached and the plane is active.
15325 * Temporarily change the plane mapping and disable everything
15326 * ... */
15327 plane = crtc->plane;
b70709a6 15328 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15329 crtc->plane = !plane;
b17d48e2 15330 intel_crtc_disable_noatomic(&crtc->base);
24929352 15331 crtc->plane = plane;
24929352 15332 }
24929352 15333
7fad798e
DV
15334 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15335 crtc->pipe == PIPE_A && !crtc->active) {
15336 /* BIOS forgot to enable pipe A, this mostly happens after
15337 * resume. Force-enable the pipe to fix this, the update_dpms
15338 * call below we restore the pipe to the right state, but leave
15339 * the required bits on. */
15340 intel_enable_pipe_a(dev);
15341 }
15342
24929352
DV
15343 /* Adjust the state of the output pipe according to whether we
15344 * have active connectors/encoders. */
02e93c35 15345 if (!intel_crtc_has_encoders(crtc))
b17d48e2 15346 intel_crtc_disable_noatomic(&crtc->base);
24929352 15347
53d9f4e9 15348 if (crtc->active != crtc->base.state->active) {
02e93c35 15349 struct intel_encoder *encoder;
24929352
DV
15350
15351 /* This can happen either due to bugs in the get_hw_state
b17d48e2
ML
15352 * functions or because of calls to intel_crtc_disable_noatomic,
15353 * or because the pipe is force-enabled due to the
24929352
DV
15354 * pipe A quirk. */
15355 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15356 crtc->base.base.id,
83d65738 15357 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
15358 crtc->active ? "enabled" : "disabled");
15359
4be40c98 15360 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
49d6fa21 15361 crtc->base.state->active = crtc->active;
24929352
DV
15362 crtc->base.enabled = crtc->active;
15363
15364 /* Because we only establish the connector -> encoder ->
15365 * crtc links if something is active, this means the
15366 * crtc is now deactivated. Break the links. connector
15367 * -> encoder links are only establish when things are
15368 * actually up, hence no need to break them. */
15369 WARN_ON(crtc->active);
15370
2d406bb0 15371 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
24929352 15372 encoder->base.crtc = NULL;
24929352 15373 }
c5ab3bc0 15374
a3ed6aad 15375 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15376 /*
15377 * We start out with underrun reporting disabled to avoid races.
15378 * For correct bookkeeping mark this on active crtcs.
15379 *
c5ab3bc0
DV
15380 * Also on gmch platforms we dont have any hardware bits to
15381 * disable the underrun reporting. Which means we need to start
15382 * out with underrun reporting disabled also on inactive pipes,
15383 * since otherwise we'll complain about the garbage we read when
15384 * e.g. coming up after runtime pm.
15385 *
4cc31489
DV
15386 * No protection against concurrent access is required - at
15387 * worst a fifo underrun happens which also sets this to false.
15388 */
15389 crtc->cpu_fifo_underrun_disabled = true;
15390 crtc->pch_fifo_underrun_disabled = true;
15391 }
24929352
DV
15392}
15393
15394static void intel_sanitize_encoder(struct intel_encoder *encoder)
15395{
15396 struct intel_connector *connector;
15397 struct drm_device *dev = encoder->base.dev;
873ffe69 15398 bool active = false;
24929352
DV
15399
15400 /* We need to check both for a crtc link (meaning that the
15401 * encoder is active and trying to read from a pipe) and the
15402 * pipe itself being active. */
15403 bool has_active_crtc = encoder->base.crtc &&
15404 to_intel_crtc(encoder->base.crtc)->active;
15405
873ffe69
ML
15406 for_each_intel_connector(dev, connector) {
15407 if (connector->base.encoder != &encoder->base)
15408 continue;
15409
15410 active = true;
15411 break;
15412 }
15413
15414 if (active && !has_active_crtc) {
24929352
DV
15415 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15416 encoder->base.base.id,
8e329a03 15417 encoder->base.name);
24929352
DV
15418
15419 /* Connector is active, but has no active pipe. This is
15420 * fallout from our resume register restoring. Disable
15421 * the encoder manually again. */
15422 if (encoder->base.crtc) {
15423 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15424 encoder->base.base.id,
8e329a03 15425 encoder->base.name);
24929352 15426 encoder->disable(encoder);
a62d1497
VS
15427 if (encoder->post_disable)
15428 encoder->post_disable(encoder);
24929352 15429 }
7f1950fb 15430 encoder->base.crtc = NULL;
24929352
DV
15431
15432 /* Inconsistent output/port/pipe state happens presumably due to
15433 * a bug in one of the get_hw_state functions. Or someplace else
15434 * in our code, like the register restore mess on resume. Clamp
15435 * things to off as a safer default. */
3a3371ff 15436 for_each_intel_connector(dev, connector) {
24929352
DV
15437 if (connector->encoder != encoder)
15438 continue;
7f1950fb
EE
15439 connector->base.dpms = DRM_MODE_DPMS_OFF;
15440 connector->base.encoder = NULL;
24929352
DV
15441 }
15442 }
15443 /* Enabled encoders without active connectors will be fixed in
15444 * the crtc fixup. */
15445}
15446
04098753 15447void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15448{
15449 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15450 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15451
04098753
ID
15452 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15453 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15454 i915_disable_vga(dev);
15455 }
15456}
15457
15458void i915_redisable_vga(struct drm_device *dev)
15459{
15460 struct drm_i915_private *dev_priv = dev->dev_private;
15461
8dc8a27c
PZ
15462 /* This function can be called both from intel_modeset_setup_hw_state or
15463 * at a very early point in our resume sequence, where the power well
15464 * structures are not yet restored. Since this function is at a very
15465 * paranoid "someone might have enabled VGA while we were not looking"
15466 * level, just check if the power well is enabled instead of trying to
15467 * follow the "don't touch the power well if we don't need it" policy
15468 * the rest of the driver uses. */
f458ebbc 15469 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15470 return;
15471
04098753 15472 i915_redisable_vga_power_on(dev);
0fde901f
KM
15473}
15474
f9cd7b88 15475static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 15476{
f9cd7b88 15477 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 15478
f9cd7b88 15479 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
15480}
15481
f9cd7b88
VS
15482/* FIXME read out full plane state for all planes */
15483static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 15484{
b26d3ea3 15485 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 15486 struct intel_plane_state *plane_state =
b26d3ea3 15487 to_intel_plane_state(primary->state);
d032ffa0 15488
19b8d387 15489 plane_state->visible = crtc->active &&
b26d3ea3
ML
15490 primary_get_hw_state(to_intel_plane(primary));
15491
15492 if (plane_state->visible)
15493 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
15494}
15495
30e984df 15496static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15497{
15498 struct drm_i915_private *dev_priv = dev->dev_private;
15499 enum pipe pipe;
24929352
DV
15500 struct intel_crtc *crtc;
15501 struct intel_encoder *encoder;
15502 struct intel_connector *connector;
5358901f 15503 int i;
24929352 15504
d3fcc808 15505 for_each_intel_crtc(dev, crtc) {
b06f8b0d 15506 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
6e3c9717 15507 memset(crtc->config, 0, sizeof(*crtc->config));
f7217905 15508 crtc->config->base.crtc = &crtc->base;
3b117c8f 15509
0e8ffe1b 15510 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 15511 crtc->config);
24929352 15512
49d6fa21 15513 crtc->base.state->active = crtc->active;
24929352 15514 crtc->base.enabled = crtc->active;
b70709a6 15515
f9cd7b88 15516 readout_plane_state(crtc);
24929352
DV
15517
15518 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15519 crtc->base.base.id,
15520 crtc->active ? "enabled" : "disabled");
15521 }
15522
5358901f
DV
15523 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15524 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15525
3e369b76
ACO
15526 pll->on = pll->get_hw_state(dev_priv, pll,
15527 &pll->config.hw_state);
5358901f 15528 pll->active = 0;
3e369b76 15529 pll->config.crtc_mask = 0;
d3fcc808 15530 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 15531 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 15532 pll->active++;
3e369b76 15533 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15534 }
5358901f 15535 }
5358901f 15536
1e6f2ddc 15537 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15538 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15539
3e369b76 15540 if (pll->config.crtc_mask)
bd2bb1b9 15541 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15542 }
15543
b2784e15 15544 for_each_intel_encoder(dev, encoder) {
24929352
DV
15545 pipe = 0;
15546
15547 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15548 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15549 encoder->base.crtc = &crtc->base;
6e3c9717 15550 encoder->get_config(encoder, crtc->config);
24929352
DV
15551 } else {
15552 encoder->base.crtc = NULL;
15553 }
15554
6f2bcceb 15555 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15556 encoder->base.base.id,
8e329a03 15557 encoder->base.name,
24929352 15558 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15559 pipe_name(pipe));
24929352
DV
15560 }
15561
3a3371ff 15562 for_each_intel_connector(dev, connector) {
24929352
DV
15563 if (connector->get_hw_state(connector)) {
15564 connector->base.dpms = DRM_MODE_DPMS_ON;
24929352
DV
15565 connector->base.encoder = &connector->encoder->base;
15566 } else {
15567 connector->base.dpms = DRM_MODE_DPMS_OFF;
15568 connector->base.encoder = NULL;
15569 }
15570 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15571 connector->base.base.id,
c23cc417 15572 connector->base.name,
24929352
DV
15573 connector->base.encoder ? "enabled" : "disabled");
15574 }
7f4c6284
VS
15575
15576 for_each_intel_crtc(dev, crtc) {
15577 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15578
15579 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15580 if (crtc->base.state->active) {
15581 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15582 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15583 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15584
15585 /*
15586 * The initial mode needs to be set in order to keep
15587 * the atomic core happy. It wants a valid mode if the
15588 * crtc's enabled, so we do the above call.
15589 *
15590 * At this point some state updated by the connectors
15591 * in their ->detect() callback has not run yet, so
15592 * no recalculation can be done yet.
15593 *
15594 * Even if we could do a recalculation and modeset
15595 * right now it would cause a double modeset if
15596 * fbdev or userspace chooses a different initial mode.
15597 *
15598 * If that happens, someone indicated they wanted a
15599 * mode change, which means it's safe to do a full
15600 * recalculation.
15601 */
15602 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
15603
15604 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15605 update_scanline_offset(crtc);
7f4c6284
VS
15606 }
15607 }
30e984df
DV
15608}
15609
043e9bda
ML
15610/* Scan out the current hw modeset state,
15611 * and sanitizes it to the current state
15612 */
15613static void
15614intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
15615{
15616 struct drm_i915_private *dev_priv = dev->dev_private;
15617 enum pipe pipe;
30e984df
DV
15618 struct intel_crtc *crtc;
15619 struct intel_encoder *encoder;
35c95375 15620 int i;
30e984df
DV
15621
15622 intel_modeset_readout_hw_state(dev);
24929352
DV
15623
15624 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15625 for_each_intel_encoder(dev, encoder) {
24929352
DV
15626 intel_sanitize_encoder(encoder);
15627 }
15628
055e393f 15629 for_each_pipe(dev_priv, pipe) {
24929352
DV
15630 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15631 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15632 intel_dump_pipe_config(crtc, crtc->config,
15633 "[setup_hw_state]");
24929352 15634 }
9a935856 15635
d29b2f9d
ACO
15636 intel_modeset_update_connector_atomic_state(dev);
15637
35c95375
DV
15638 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15639 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15640
15641 if (!pll->on || pll->active)
15642 continue;
15643
15644 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15645
15646 pll->disable(dev_priv, pll);
15647 pll->on = false;
15648 }
15649
26e1fe4f 15650 if (IS_VALLEYVIEW(dev))
6eb1a681
VS
15651 vlv_wm_get_hw_state(dev);
15652 else if (IS_GEN9(dev))
3078999f
PB
15653 skl_wm_get_hw_state(dev);
15654 else if (HAS_PCH_SPLIT(dev))
243e6a44 15655 ilk_wm_get_hw_state(dev);
292b990e
ML
15656
15657 for_each_intel_crtc(dev, crtc) {
15658 unsigned long put_domains;
15659
15660 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15661 if (WARN_ON(put_domains))
15662 modeset_put_power_domains(dev_priv, put_domains);
15663 }
15664 intel_display_set_init_power(dev_priv, false);
043e9bda 15665}
7d0bc1ea 15666
043e9bda
ML
15667void intel_display_resume(struct drm_device *dev)
15668{
15669 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15670 struct intel_connector *conn;
15671 struct intel_plane *plane;
15672 struct drm_crtc *crtc;
15673 int ret;
f30da187 15674
043e9bda
ML
15675 if (!state)
15676 return;
15677
15678 state->acquire_ctx = dev->mode_config.acquire_ctx;
15679
15680 /* preserve complete old state, including dpll */
15681 intel_atomic_get_shared_dpll_state(state);
15682
15683 for_each_crtc(dev, crtc) {
15684 struct drm_crtc_state *crtc_state =
15685 drm_atomic_get_crtc_state(state, crtc);
15686
15687 ret = PTR_ERR_OR_ZERO(crtc_state);
15688 if (ret)
15689 goto err;
15690
15691 /* force a restore */
15692 crtc_state->mode_changed = true;
45e2b5f6 15693 }
8af6cf88 15694
043e9bda
ML
15695 for_each_intel_plane(dev, plane) {
15696 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15697 if (ret)
15698 goto err;
15699 }
15700
15701 for_each_intel_connector(dev, conn) {
15702 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15703 if (ret)
15704 goto err;
15705 }
15706
15707 intel_modeset_setup_hw_state(dev);
15708
15709 i915_redisable_vga(dev);
74c090b1 15710 ret = drm_atomic_commit(state);
043e9bda
ML
15711 if (!ret)
15712 return;
15713
15714err:
15715 DRM_ERROR("Restoring old state failed with %i\n", ret);
15716 drm_atomic_state_free(state);
2c7111db
CW
15717}
15718
15719void intel_modeset_gem_init(struct drm_device *dev)
15720{
484b41dd 15721 struct drm_crtc *c;
2ff8fde1 15722 struct drm_i915_gem_object *obj;
e0d6149b 15723 int ret;
484b41dd 15724
ae48434c
ID
15725 mutex_lock(&dev->struct_mutex);
15726 intel_init_gt_powersave(dev);
15727 mutex_unlock(&dev->struct_mutex);
15728
1833b134 15729 intel_modeset_init_hw(dev);
02e792fb
DV
15730
15731 intel_setup_overlay(dev);
484b41dd
JB
15732
15733 /*
15734 * Make sure any fbs we allocated at startup are properly
15735 * pinned & fenced. When we do the allocation it's too early
15736 * for this.
15737 */
70e1e0ec 15738 for_each_crtc(dev, c) {
2ff8fde1
MR
15739 obj = intel_fb_obj(c->primary->fb);
15740 if (obj == NULL)
484b41dd
JB
15741 continue;
15742
e0d6149b
TU
15743 mutex_lock(&dev->struct_mutex);
15744 ret = intel_pin_and_fence_fb_obj(c->primary,
15745 c->primary->fb,
7580d774 15746 c->primary->state);
e0d6149b
TU
15747 mutex_unlock(&dev->struct_mutex);
15748 if (ret) {
484b41dd
JB
15749 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15750 to_intel_crtc(c)->pipe);
66e514c1
DA
15751 drm_framebuffer_unreference(c->primary->fb);
15752 c->primary->fb = NULL;
36750f28 15753 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 15754 update_state_fb(c->primary);
36750f28 15755 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
15756 }
15757 }
0962c3c9
VS
15758
15759 intel_backlight_register(dev);
79e53945
JB
15760}
15761
4932e2c3
ID
15762void intel_connector_unregister(struct intel_connector *intel_connector)
15763{
15764 struct drm_connector *connector = &intel_connector->base;
15765
15766 intel_panel_destroy_backlight(connector);
34ea3d38 15767 drm_connector_unregister(connector);
4932e2c3
ID
15768}
15769
79e53945
JB
15770void intel_modeset_cleanup(struct drm_device *dev)
15771{
652c393a 15772 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 15773 struct drm_connector *connector;
652c393a 15774
2eb5252e
ID
15775 intel_disable_gt_powersave(dev);
15776
0962c3c9
VS
15777 intel_backlight_unregister(dev);
15778
fd0c0642
DV
15779 /*
15780 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15781 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15782 * experience fancy races otherwise.
15783 */
2aeb7d3a 15784 intel_irq_uninstall(dev_priv);
eb21b92b 15785
fd0c0642
DV
15786 /*
15787 * Due to the hpd irq storm handling the hotplug work can re-arm the
15788 * poll handlers. Hence disable polling after hpd handling is shut down.
15789 */
f87ea761 15790 drm_kms_helper_poll_fini(dev);
fd0c0642 15791
723bfd70
JB
15792 intel_unregister_dsm_handler();
15793
7733b49b 15794 intel_fbc_disable(dev_priv);
69341a5e 15795
1630fe75
CW
15796 /* flush any delayed tasks or pending work */
15797 flush_scheduled_work();
15798
db31af1d
JN
15799 /* destroy the backlight and sysfs files before encoders/connectors */
15800 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15801 struct intel_connector *intel_connector;
15802
15803 intel_connector = to_intel_connector(connector);
15804 intel_connector->unregister(intel_connector);
db31af1d 15805 }
d9255d57 15806
79e53945 15807 drm_mode_config_cleanup(dev);
4d7bb011
DV
15808
15809 intel_cleanup_overlay(dev);
ae48434c
ID
15810
15811 mutex_lock(&dev->struct_mutex);
15812 intel_cleanup_gt_powersave(dev);
15813 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15814}
15815
f1c79df3
ZW
15816/*
15817 * Return which encoder is currently attached for connector.
15818 */
df0e9248 15819struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15820{
df0e9248
CW
15821 return &intel_attached_encoder(connector)->base;
15822}
f1c79df3 15823
df0e9248
CW
15824void intel_connector_attach_encoder(struct intel_connector *connector,
15825 struct intel_encoder *encoder)
15826{
15827 connector->encoder = encoder;
15828 drm_mode_connector_attach_encoder(&connector->base,
15829 &encoder->base);
79e53945 15830}
28d52043
DA
15831
15832/*
15833 * set vga decode state - true == enable VGA decode
15834 */
15835int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15836{
15837 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15838 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15839 u16 gmch_ctrl;
15840
75fa041d
CW
15841 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15842 DRM_ERROR("failed to read control word\n");
15843 return -EIO;
15844 }
15845
c0cc8a55
CW
15846 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15847 return 0;
15848
28d52043
DA
15849 if (state)
15850 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15851 else
15852 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15853
15854 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15855 DRM_ERROR("failed to write control word\n");
15856 return -EIO;
15857 }
15858
28d52043
DA
15859 return 0;
15860}
c4a1d9e4 15861
c4a1d9e4 15862struct intel_display_error_state {
ff57f1b0
PZ
15863
15864 u32 power_well_driver;
15865
63b66e5b
CW
15866 int num_transcoders;
15867
c4a1d9e4
CW
15868 struct intel_cursor_error_state {
15869 u32 control;
15870 u32 position;
15871 u32 base;
15872 u32 size;
52331309 15873 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15874
15875 struct intel_pipe_error_state {
ddf9c536 15876 bool power_domain_on;
c4a1d9e4 15877 u32 source;
f301b1e1 15878 u32 stat;
52331309 15879 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15880
15881 struct intel_plane_error_state {
15882 u32 control;
15883 u32 stride;
15884 u32 size;
15885 u32 pos;
15886 u32 addr;
15887 u32 surface;
15888 u32 tile_offset;
52331309 15889 } plane[I915_MAX_PIPES];
63b66e5b
CW
15890
15891 struct intel_transcoder_error_state {
ddf9c536 15892 bool power_domain_on;
63b66e5b
CW
15893 enum transcoder cpu_transcoder;
15894
15895 u32 conf;
15896
15897 u32 htotal;
15898 u32 hblank;
15899 u32 hsync;
15900 u32 vtotal;
15901 u32 vblank;
15902 u32 vsync;
15903 } transcoder[4];
c4a1d9e4
CW
15904};
15905
15906struct intel_display_error_state *
15907intel_display_capture_error_state(struct drm_device *dev)
15908{
fbee40df 15909 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15910 struct intel_display_error_state *error;
63b66e5b
CW
15911 int transcoders[] = {
15912 TRANSCODER_A,
15913 TRANSCODER_B,
15914 TRANSCODER_C,
15915 TRANSCODER_EDP,
15916 };
c4a1d9e4
CW
15917 int i;
15918
63b66e5b
CW
15919 if (INTEL_INFO(dev)->num_pipes == 0)
15920 return NULL;
15921
9d1cb914 15922 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15923 if (error == NULL)
15924 return NULL;
15925
190be112 15926 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15927 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15928
055e393f 15929 for_each_pipe(dev_priv, i) {
ddf9c536 15930 error->pipe[i].power_domain_on =
f458ebbc
DV
15931 __intel_display_power_is_enabled(dev_priv,
15932 POWER_DOMAIN_PIPE(i));
ddf9c536 15933 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15934 continue;
15935
5efb3e28
VS
15936 error->cursor[i].control = I915_READ(CURCNTR(i));
15937 error->cursor[i].position = I915_READ(CURPOS(i));
15938 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15939
15940 error->plane[i].control = I915_READ(DSPCNTR(i));
15941 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15942 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15943 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15944 error->plane[i].pos = I915_READ(DSPPOS(i));
15945 }
ca291363
PZ
15946 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15947 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15948 if (INTEL_INFO(dev)->gen >= 4) {
15949 error->plane[i].surface = I915_READ(DSPSURF(i));
15950 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15951 }
15952
c4a1d9e4 15953 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15954
3abfce77 15955 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15956 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15957 }
15958
15959 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15960 if (HAS_DDI(dev_priv->dev))
15961 error->num_transcoders++; /* Account for eDP. */
15962
15963 for (i = 0; i < error->num_transcoders; i++) {
15964 enum transcoder cpu_transcoder = transcoders[i];
15965
ddf9c536 15966 error->transcoder[i].power_domain_on =
f458ebbc 15967 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15968 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15969 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15970 continue;
15971
63b66e5b
CW
15972 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15973
15974 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15975 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15976 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15977 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15978 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15979 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15980 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15981 }
15982
15983 return error;
15984}
15985
edc3d884
MK
15986#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15987
c4a1d9e4 15988void
edc3d884 15989intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15990 struct drm_device *dev,
15991 struct intel_display_error_state *error)
15992{
055e393f 15993 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15994 int i;
15995
63b66e5b
CW
15996 if (!error)
15997 return;
15998
edc3d884 15999 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 16000 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 16001 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 16002 error->power_well_driver);
055e393f 16003 for_each_pipe(dev_priv, i) {
edc3d884 16004 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
16005 err_printf(m, " Power: %s\n",
16006 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 16007 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 16008 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
16009
16010 err_printf(m, "Plane [%d]:\n", i);
16011 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16012 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 16013 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
16014 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16015 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 16016 }
4b71a570 16017 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 16018 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 16019 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
16020 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16021 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
16022 }
16023
edc3d884
MK
16024 err_printf(m, "Cursor [%d]:\n", i);
16025 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16026 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16027 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 16028 }
63b66e5b
CW
16029
16030 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 16031 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 16032 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
16033 err_printf(m, " Power: %s\n",
16034 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
16035 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16036 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16037 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16038 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16039 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16040 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16041 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16042 }
c4a1d9e4 16043}
e2fcdaa9
VS
16044
16045void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
16046{
16047 struct intel_crtc *crtc;
16048
16049 for_each_intel_crtc(dev, crtc) {
16050 struct intel_unpin_work *work;
e2fcdaa9 16051
5e2d7afc 16052 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
16053
16054 work = crtc->unpin_work;
16055
16056 if (work && work->event &&
16057 work->event->base.file_priv == file) {
16058 kfree(work->event);
16059 work->event = NULL;
16060 }
16061
5e2d7afc 16062 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
16063 }
16064}
This page took 3.335337 seconds and 5 git commands to generate.