drm/i915: Add initial_ prefix to bios fb takeover code
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c
MR
48/* Primary plane formats supported by all gen */
49#define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55/* Primary plane formats for gen <= 3 */
56static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60};
61
62/* Primary plane formats for gen >= 4 */
63static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71};
72
3d7d6510
MR
73/* Cursor formats */
74static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76};
77
6b383a7f 78static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 79
f1f644dc 80static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 81 struct intel_crtc_state *pipe_config);
18442d08 82static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 83 struct intel_crtc_state *pipe_config);
f1f644dc 84
e7457a9a
DL
85static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
87static int intel_framebuffer_init(struct drm_device *dev,
88 struct intel_framebuffer *ifb,
89 struct drm_mode_fb_cmd2 *mode_cmd,
90 struct drm_i915_gem_object *obj);
5b18e57c
DV
91static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
92static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 93static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
94 struct intel_link_m_n *m_n,
95 struct intel_link_m_n *m2_n2);
29407aab 96static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
97static void haswell_set_pipeconf(struct drm_crtc *crtc);
98static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 99static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 100 const struct intel_crtc_state *pipe_config);
d288f65f 101static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 102 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
103static void intel_begin_crtc_commit(struct drm_crtc *crtc);
104static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 105
0e32b39c
DA
106static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
107{
108 if (!connector->mst_port)
109 return connector->encoder;
110 else
111 return &connector->mst_port->mst_encoders[pipe]->base;
112}
113
79e53945 114typedef struct {
0206e353 115 int min, max;
79e53945
JB
116} intel_range_t;
117
118typedef struct {
0206e353
AJ
119 int dot_limit;
120 int p2_slow, p2_fast;
79e53945
JB
121} intel_p2_t;
122
d4906093
ML
123typedef struct intel_limit intel_limit_t;
124struct intel_limit {
0206e353
AJ
125 intel_range_t dot, vco, n, m, m1, m2, p, p1;
126 intel_p2_t p2;
d4906093 127};
79e53945 128
d2acd215
DV
129int
130intel_pch_rawclk(struct drm_device *dev)
131{
132 struct drm_i915_private *dev_priv = dev->dev_private;
133
134 WARN_ON(!HAS_PCH_SPLIT(dev));
135
136 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
137}
138
021357ac
CW
139static inline u32 /* units of 100MHz */
140intel_fdi_link_freq(struct drm_device *dev)
141{
8b99e68c
CW
142 if (IS_GEN5(dev)) {
143 struct drm_i915_private *dev_priv = dev->dev_private;
144 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
145 } else
146 return 27;
021357ac
CW
147}
148
5d536e28 149static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 150 .dot = { .min = 25000, .max = 350000 },
9c333719 151 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 152 .n = { .min = 2, .max = 16 },
0206e353
AJ
153 .m = { .min = 96, .max = 140 },
154 .m1 = { .min = 18, .max = 26 },
155 .m2 = { .min = 6, .max = 16 },
156 .p = { .min = 4, .max = 128 },
157 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
158 .p2 = { .dot_limit = 165000,
159 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
160};
161
5d536e28
DV
162static const intel_limit_t intel_limits_i8xx_dvo = {
163 .dot = { .min = 25000, .max = 350000 },
9c333719 164 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 165 .n = { .min = 2, .max = 16 },
5d536e28
DV
166 .m = { .min = 96, .max = 140 },
167 .m1 = { .min = 18, .max = 26 },
168 .m2 = { .min = 6, .max = 16 },
169 .p = { .min = 4, .max = 128 },
170 .p1 = { .min = 2, .max = 33 },
171 .p2 = { .dot_limit = 165000,
172 .p2_slow = 4, .p2_fast = 4 },
173};
174
e4b36699 175static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 176 .dot = { .min = 25000, .max = 350000 },
9c333719 177 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 178 .n = { .min = 2, .max = 16 },
0206e353
AJ
179 .m = { .min = 96, .max = 140 },
180 .m1 = { .min = 18, .max = 26 },
181 .m2 = { .min = 6, .max = 16 },
182 .p = { .min = 4, .max = 128 },
183 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
184 .p2 = { .dot_limit = 165000,
185 .p2_slow = 14, .p2_fast = 7 },
e4b36699 186};
273e27ca 187
e4b36699 188static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
189 .dot = { .min = 20000, .max = 400000 },
190 .vco = { .min = 1400000, .max = 2800000 },
191 .n = { .min = 1, .max = 6 },
192 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
193 .m1 = { .min = 8, .max = 18 },
194 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
195 .p = { .min = 5, .max = 80 },
196 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
197 .p2 = { .dot_limit = 200000,
198 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
199};
200
201static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
202 .dot = { .min = 20000, .max = 400000 },
203 .vco = { .min = 1400000, .max = 2800000 },
204 .n = { .min = 1, .max = 6 },
205 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
206 .m1 = { .min = 8, .max = 18 },
207 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
208 .p = { .min = 7, .max = 98 },
209 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
210 .p2 = { .dot_limit = 112000,
211 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
212};
213
273e27ca 214
e4b36699 215static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
216 .dot = { .min = 25000, .max = 270000 },
217 .vco = { .min = 1750000, .max = 3500000},
218 .n = { .min = 1, .max = 4 },
219 .m = { .min = 104, .max = 138 },
220 .m1 = { .min = 17, .max = 23 },
221 .m2 = { .min = 5, .max = 11 },
222 .p = { .min = 10, .max = 30 },
223 .p1 = { .min = 1, .max = 3},
224 .p2 = { .dot_limit = 270000,
225 .p2_slow = 10,
226 .p2_fast = 10
044c7c41 227 },
e4b36699
KP
228};
229
230static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
231 .dot = { .min = 22000, .max = 400000 },
232 .vco = { .min = 1750000, .max = 3500000},
233 .n = { .min = 1, .max = 4 },
234 .m = { .min = 104, .max = 138 },
235 .m1 = { .min = 16, .max = 23 },
236 .m2 = { .min = 5, .max = 11 },
237 .p = { .min = 5, .max = 80 },
238 .p1 = { .min = 1, .max = 8},
239 .p2 = { .dot_limit = 165000,
240 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
241};
242
243static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
244 .dot = { .min = 20000, .max = 115000 },
245 .vco = { .min = 1750000, .max = 3500000 },
246 .n = { .min = 1, .max = 3 },
247 .m = { .min = 104, .max = 138 },
248 .m1 = { .min = 17, .max = 23 },
249 .m2 = { .min = 5, .max = 11 },
250 .p = { .min = 28, .max = 112 },
251 .p1 = { .min = 2, .max = 8 },
252 .p2 = { .dot_limit = 0,
253 .p2_slow = 14, .p2_fast = 14
044c7c41 254 },
e4b36699
KP
255};
256
257static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
258 .dot = { .min = 80000, .max = 224000 },
259 .vco = { .min = 1750000, .max = 3500000 },
260 .n = { .min = 1, .max = 3 },
261 .m = { .min = 104, .max = 138 },
262 .m1 = { .min = 17, .max = 23 },
263 .m2 = { .min = 5, .max = 11 },
264 .p = { .min = 14, .max = 42 },
265 .p1 = { .min = 2, .max = 6 },
266 .p2 = { .dot_limit = 0,
267 .p2_slow = 7, .p2_fast = 7
044c7c41 268 },
e4b36699
KP
269};
270
f2b115e6 271static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
272 .dot = { .min = 20000, .max = 400000},
273 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 274 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
275 .n = { .min = 3, .max = 6 },
276 .m = { .min = 2, .max = 256 },
273e27ca 277 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
282 .p2 = { .dot_limit = 200000,
283 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
284};
285
f2b115e6 286static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
287 .dot = { .min = 20000, .max = 400000 },
288 .vco = { .min = 1700000, .max = 3500000 },
289 .n = { .min = 3, .max = 6 },
290 .m = { .min = 2, .max = 256 },
291 .m1 = { .min = 0, .max = 0 },
292 .m2 = { .min = 0, .max = 254 },
293 .p = { .min = 7, .max = 112 },
294 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
295 .p2 = { .dot_limit = 112000,
296 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
297};
298
273e27ca
EA
299/* Ironlake / Sandybridge
300 *
301 * We calculate clock using (register_value + 2) for N/M1/M2, so here
302 * the range value for them is (actual_value - 2).
303 */
b91ad0ec 304static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 5 },
308 .m = { .min = 79, .max = 127 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 5, .max = 80 },
312 .p1 = { .min = 1, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
315};
316
b91ad0ec 317static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 3 },
321 .m = { .min = 79, .max = 118 },
322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 },
325 .p1 = { .min = 2, .max = 8 },
326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
328};
329
330static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
331 .dot = { .min = 25000, .max = 350000 },
332 .vco = { .min = 1760000, .max = 3510000 },
333 .n = { .min = 1, .max = 3 },
334 .m = { .min = 79, .max = 127 },
335 .m1 = { .min = 12, .max = 22 },
336 .m2 = { .min = 5, .max = 9 },
337 .p = { .min = 14, .max = 56 },
338 .p1 = { .min = 2, .max = 8 },
339 .p2 = { .dot_limit = 225000,
340 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
341};
342
273e27ca 343/* LVDS 100mhz refclk limits. */
b91ad0ec 344static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
345 .dot = { .min = 25000, .max = 350000 },
346 .vco = { .min = 1760000, .max = 3510000 },
347 .n = { .min = 1, .max = 2 },
348 .m = { .min = 79, .max = 126 },
349 .m1 = { .min = 12, .max = 22 },
350 .m2 = { .min = 5, .max = 9 },
351 .p = { .min = 28, .max = 112 },
0206e353 352 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
353 .p2 = { .dot_limit = 225000,
354 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
355};
356
357static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
358 .dot = { .min = 25000, .max = 350000 },
359 .vco = { .min = 1760000, .max = 3510000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 79, .max = 126 },
362 .m1 = { .min = 12, .max = 22 },
363 .m2 = { .min = 5, .max = 9 },
364 .p = { .min = 14, .max = 42 },
0206e353 365 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
366 .p2 = { .dot_limit = 225000,
367 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
368};
369
dc730512 370static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
371 /*
372 * These are the data rate limits (measured in fast clocks)
373 * since those are the strictest limits we have. The fast
374 * clock and actual rate limits are more relaxed, so checking
375 * them would make no difference.
376 */
377 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 378 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 379 .n = { .min = 1, .max = 7 },
a0c4da24
JB
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
b99ab663 382 .p1 = { .min = 2, .max = 3 },
5fdc9c49 383 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
384};
385
ef9348c8
CML
386static const intel_limit_t intel_limits_chv = {
387 /*
388 * These are the data rate limits (measured in fast clocks)
389 * since those are the strictest limits we have. The fast
390 * clock and actual rate limits are more relaxed, so checking
391 * them would make no difference.
392 */
393 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 394 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
395 .n = { .min = 1, .max = 1 },
396 .m1 = { .min = 2, .max = 2 },
397 .m2 = { .min = 24 << 22, .max = 175 << 22 },
398 .p1 = { .min = 2, .max = 4 },
399 .p2 = { .p2_slow = 1, .p2_fast = 14 },
400};
401
6b4bf1c4
VS
402static void vlv_clock(int refclk, intel_clock_t *clock)
403{
404 clock->m = clock->m1 * clock->m2;
405 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
406 if (WARN_ON(clock->n == 0 || clock->p == 0))
407 return;
fb03ac01
VS
408 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
409 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
410}
411
e0638cdf
PZ
412/**
413 * Returns whether any output on the specified pipe is of the specified type
414 */
4093561b 415bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 416{
409ee761 417 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
418 struct intel_encoder *encoder;
419
409ee761 420 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
421 if (encoder->type == type)
422 return true;
423
424 return false;
425}
426
d0737e1d
ACO
427/**
428 * Returns whether any output on the specified pipe will have the specified
429 * type after a staged modeset is complete, i.e., the same as
430 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
431 * encoder->crtc.
432 */
433static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
434{
435 struct drm_device *dev = crtc->base.dev;
436 struct intel_encoder *encoder;
437
438 for_each_intel_encoder(dev, encoder)
439 if (encoder->new_crtc == crtc && encoder->type == type)
440 return true;
441
442 return false;
443}
444
409ee761 445static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 446 int refclk)
2c07245f 447{
409ee761 448 struct drm_device *dev = crtc->base.dev;
2c07245f 449 const intel_limit_t *limit;
b91ad0ec 450
d0737e1d 451 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 452 if (intel_is_dual_link_lvds(dev)) {
1b894b59 453 if (refclk == 100000)
b91ad0ec
ZW
454 limit = &intel_limits_ironlake_dual_lvds_100m;
455 else
456 limit = &intel_limits_ironlake_dual_lvds;
457 } else {
1b894b59 458 if (refclk == 100000)
b91ad0ec
ZW
459 limit = &intel_limits_ironlake_single_lvds_100m;
460 else
461 limit = &intel_limits_ironlake_single_lvds;
462 }
c6bb3538 463 } else
b91ad0ec 464 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
465
466 return limit;
467}
468
409ee761 469static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 470{
409ee761 471 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
472 const intel_limit_t *limit;
473
d0737e1d 474 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 475 if (intel_is_dual_link_lvds(dev))
e4b36699 476 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 477 else
e4b36699 478 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
479 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
480 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 481 limit = &intel_limits_g4x_hdmi;
d0737e1d 482 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 483 limit = &intel_limits_g4x_sdvo;
044c7c41 484 } else /* The option is for other outputs */
e4b36699 485 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
486
487 return limit;
488}
489
409ee761 490static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 491{
409ee761 492 struct drm_device *dev = crtc->base.dev;
79e53945
JB
493 const intel_limit_t *limit;
494
bad720ff 495 if (HAS_PCH_SPLIT(dev))
1b894b59 496 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 497 else if (IS_G4X(dev)) {
044c7c41 498 limit = intel_g4x_limit(crtc);
f2b115e6 499 } else if (IS_PINEVIEW(dev)) {
d0737e1d 500 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 501 limit = &intel_limits_pineview_lvds;
2177832f 502 else
f2b115e6 503 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
504 } else if (IS_CHERRYVIEW(dev)) {
505 limit = &intel_limits_chv;
a0c4da24 506 } else if (IS_VALLEYVIEW(dev)) {
dc730512 507 limit = &intel_limits_vlv;
a6c45cf0 508 } else if (!IS_GEN2(dev)) {
d0737e1d 509 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
510 limit = &intel_limits_i9xx_lvds;
511 else
512 limit = &intel_limits_i9xx_sdvo;
79e53945 513 } else {
d0737e1d 514 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 515 limit = &intel_limits_i8xx_lvds;
d0737e1d 516 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 517 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
518 else
519 limit = &intel_limits_i8xx_dac;
79e53945
JB
520 }
521 return limit;
522}
523
f2b115e6
AJ
524/* m1 is reserved as 0 in Pineview, n is a ring counter */
525static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 526{
2177832f
SL
527 clock->m = clock->m2 + 2;
528 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
529 if (WARN_ON(clock->n == 0 || clock->p == 0))
530 return;
fb03ac01
VS
531 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
532 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
533}
534
7429e9d4
DV
535static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
536{
537 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
538}
539
ac58c3f0 540static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 541{
7429e9d4 542 clock->m = i9xx_dpll_compute_m(clock);
79e53945 543 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
544 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
545 return;
fb03ac01
VS
546 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
547 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
548}
549
ef9348c8
CML
550static void chv_clock(int refclk, intel_clock_t *clock)
551{
552 clock->m = clock->m1 * clock->m2;
553 clock->p = clock->p1 * clock->p2;
554 if (WARN_ON(clock->n == 0 || clock->p == 0))
555 return;
556 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
557 clock->n << 22);
558 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
559}
560
7c04d1d9 561#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
562/**
563 * Returns whether the given set of divisors are valid for a given refclk with
564 * the given connectors.
565 */
566
1b894b59
CW
567static bool intel_PLL_is_valid(struct drm_device *dev,
568 const intel_limit_t *limit,
569 const intel_clock_t *clock)
79e53945 570{
f01b7962
VS
571 if (clock->n < limit->n.min || limit->n.max < clock->n)
572 INTELPllInvalid("n out of range\n");
79e53945 573 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 574 INTELPllInvalid("p1 out of range\n");
79e53945 575 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 576 INTELPllInvalid("m2 out of range\n");
79e53945 577 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 578 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
579
580 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
581 if (clock->m1 <= clock->m2)
582 INTELPllInvalid("m1 <= m2\n");
583
584 if (!IS_VALLEYVIEW(dev)) {
585 if (clock->p < limit->p.min || limit->p.max < clock->p)
586 INTELPllInvalid("p out of range\n");
587 if (clock->m < limit->m.min || limit->m.max < clock->m)
588 INTELPllInvalid("m out of range\n");
589 }
590
79e53945 591 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 592 INTELPllInvalid("vco out of range\n");
79e53945
JB
593 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
594 * connector, etc., rather than just a single range.
595 */
596 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 597 INTELPllInvalid("dot out of range\n");
79e53945
JB
598
599 return true;
600}
601
d4906093 602static bool
a919ff14 603i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
604 int target, int refclk, intel_clock_t *match_clock,
605 intel_clock_t *best_clock)
79e53945 606{
a919ff14 607 struct drm_device *dev = crtc->base.dev;
79e53945 608 intel_clock_t clock;
79e53945
JB
609 int err = target;
610
d0737e1d 611 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 612 /*
a210b028
DV
613 * For LVDS just rely on its current settings for dual-channel.
614 * We haven't figured out how to reliably set up different
615 * single/dual channel state, if we even can.
79e53945 616 */
1974cad0 617 if (intel_is_dual_link_lvds(dev))
79e53945
JB
618 clock.p2 = limit->p2.p2_fast;
619 else
620 clock.p2 = limit->p2.p2_slow;
621 } else {
622 if (target < limit->p2.dot_limit)
623 clock.p2 = limit->p2.p2_slow;
624 else
625 clock.p2 = limit->p2.p2_fast;
626 }
627
0206e353 628 memset(best_clock, 0, sizeof(*best_clock));
79e53945 629
42158660
ZY
630 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631 clock.m1++) {
632 for (clock.m2 = limit->m2.min;
633 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 634 if (clock.m2 >= clock.m1)
42158660
ZY
635 break;
636 for (clock.n = limit->n.min;
637 clock.n <= limit->n.max; clock.n++) {
638 for (clock.p1 = limit->p1.min;
639 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
640 int this_err;
641
ac58c3f0
DV
642 i9xx_clock(refclk, &clock);
643 if (!intel_PLL_is_valid(dev, limit,
644 &clock))
645 continue;
646 if (match_clock &&
647 clock.p != match_clock->p)
648 continue;
649
650 this_err = abs(clock.dot - target);
651 if (this_err < err) {
652 *best_clock = clock;
653 err = this_err;
654 }
655 }
656 }
657 }
658 }
659
660 return (err != target);
661}
662
663static bool
a919ff14 664pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
665 int target, int refclk, intel_clock_t *match_clock,
666 intel_clock_t *best_clock)
79e53945 667{
a919ff14 668 struct drm_device *dev = crtc->base.dev;
79e53945 669 intel_clock_t clock;
79e53945
JB
670 int err = target;
671
d0737e1d 672 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 673 /*
a210b028
DV
674 * For LVDS just rely on its current settings for dual-channel.
675 * We haven't figured out how to reliably set up different
676 * single/dual channel state, if we even can.
79e53945 677 */
1974cad0 678 if (intel_is_dual_link_lvds(dev))
79e53945
JB
679 clock.p2 = limit->p2.p2_fast;
680 else
681 clock.p2 = limit->p2.p2_slow;
682 } else {
683 if (target < limit->p2.dot_limit)
684 clock.p2 = limit->p2.p2_slow;
685 else
686 clock.p2 = limit->p2.p2_fast;
687 }
688
0206e353 689 memset(best_clock, 0, sizeof(*best_clock));
79e53945 690
42158660
ZY
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692 clock.m1++) {
693 for (clock.m2 = limit->m2.min;
694 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
699 int this_err;
700
ac58c3f0 701 pineview_clock(refclk, &clock);
1b894b59
CW
702 if (!intel_PLL_is_valid(dev, limit,
703 &clock))
79e53945 704 continue;
cec2f356
SP
705 if (match_clock &&
706 clock.p != match_clock->p)
707 continue;
79e53945
JB
708
709 this_err = abs(clock.dot - target);
710 if (this_err < err) {
711 *best_clock = clock;
712 err = this_err;
713 }
714 }
715 }
716 }
717 }
718
719 return (err != target);
720}
721
d4906093 722static bool
a919ff14 723g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
724 int target, int refclk, intel_clock_t *match_clock,
725 intel_clock_t *best_clock)
d4906093 726{
a919ff14 727 struct drm_device *dev = crtc->base.dev;
d4906093
ML
728 intel_clock_t clock;
729 int max_n;
730 bool found;
6ba770dc
AJ
731 /* approximately equals target * 0.00585 */
732 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
733 found = false;
734
d0737e1d 735 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 736 if (intel_is_dual_link_lvds(dev))
d4906093
ML
737 clock.p2 = limit->p2.p2_fast;
738 else
739 clock.p2 = limit->p2.p2_slow;
740 } else {
741 if (target < limit->p2.dot_limit)
742 clock.p2 = limit->p2.p2_slow;
743 else
744 clock.p2 = limit->p2.p2_fast;
745 }
746
747 memset(best_clock, 0, sizeof(*best_clock));
748 max_n = limit->n.max;
f77f13e2 749 /* based on hardware requirement, prefer smaller n to precision */
d4906093 750 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 751 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
752 for (clock.m1 = limit->m1.max;
753 clock.m1 >= limit->m1.min; clock.m1--) {
754 for (clock.m2 = limit->m2.max;
755 clock.m2 >= limit->m2.min; clock.m2--) {
756 for (clock.p1 = limit->p1.max;
757 clock.p1 >= limit->p1.min; clock.p1--) {
758 int this_err;
759
ac58c3f0 760 i9xx_clock(refclk, &clock);
1b894b59
CW
761 if (!intel_PLL_is_valid(dev, limit,
762 &clock))
d4906093 763 continue;
1b894b59
CW
764
765 this_err = abs(clock.dot - target);
d4906093
ML
766 if (this_err < err_most) {
767 *best_clock = clock;
768 err_most = this_err;
769 max_n = clock.n;
770 found = true;
771 }
772 }
773 }
774 }
775 }
2c07245f
ZW
776 return found;
777}
778
d5dd62bd
ID
779/*
780 * Check if the calculated PLL configuration is more optimal compared to the
781 * best configuration and error found so far. Return the calculated error.
782 */
783static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
784 const intel_clock_t *calculated_clock,
785 const intel_clock_t *best_clock,
786 unsigned int best_error_ppm,
787 unsigned int *error_ppm)
788{
9ca3ba01
ID
789 /*
790 * For CHV ignore the error and consider only the P value.
791 * Prefer a bigger P value based on HW requirements.
792 */
793 if (IS_CHERRYVIEW(dev)) {
794 *error_ppm = 0;
795
796 return calculated_clock->p > best_clock->p;
797 }
798
24be4e46
ID
799 if (WARN_ON_ONCE(!target_freq))
800 return false;
801
d5dd62bd
ID
802 *error_ppm = div_u64(1000000ULL *
803 abs(target_freq - calculated_clock->dot),
804 target_freq);
805 /*
806 * Prefer a better P value over a better (smaller) error if the error
807 * is small. Ensure this preference for future configurations too by
808 * setting the error to 0.
809 */
810 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
811 *error_ppm = 0;
812
813 return true;
814 }
815
816 return *error_ppm + 10 < best_error_ppm;
817}
818
a0c4da24 819static bool
a919ff14 820vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
821 int target, int refclk, intel_clock_t *match_clock,
822 intel_clock_t *best_clock)
a0c4da24 823{
a919ff14 824 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 825 intel_clock_t clock;
69e4f900 826 unsigned int bestppm = 1000000;
27e639bf
VS
827 /* min update 19.2 MHz */
828 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 829 bool found = false;
a0c4da24 830
6b4bf1c4
VS
831 target *= 5; /* fast clock */
832
833 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
834
835 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 836 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 838 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 839 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 840 clock.p = clock.p1 * clock.p2;
a0c4da24 841 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 842 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 843 unsigned int ppm;
69e4f900 844
6b4bf1c4
VS
845 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
846 refclk * clock.m1);
847
848 vlv_clock(refclk, &clock);
43b0ac53 849
f01b7962
VS
850 if (!intel_PLL_is_valid(dev, limit,
851 &clock))
43b0ac53
VS
852 continue;
853
d5dd62bd
ID
854 if (!vlv_PLL_is_optimal(dev, target,
855 &clock,
856 best_clock,
857 bestppm, &ppm))
858 continue;
6b4bf1c4 859
d5dd62bd
ID
860 *best_clock = clock;
861 bestppm = ppm;
862 found = true;
a0c4da24
JB
863 }
864 }
865 }
866 }
a0c4da24 867
49e497ef 868 return found;
a0c4da24 869}
a4fc5ed6 870
ef9348c8 871static bool
a919ff14 872chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875{
a919ff14 876 struct drm_device *dev = crtc->base.dev;
9ca3ba01 877 unsigned int best_error_ppm;
ef9348c8
CML
878 intel_clock_t clock;
879 uint64_t m2;
880 int found = false;
881
882 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 883 best_error_ppm = 1000000;
ef9348c8
CML
884
885 /*
886 * Based on hardware doc, the n always set to 1, and m1 always
887 * set to 2. If requires to support 200Mhz refclk, we need to
888 * revisit this because n may not 1 anymore.
889 */
890 clock.n = 1, clock.m1 = 2;
891 target *= 5; /* fast clock */
892
893 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
894 for (clock.p2 = limit->p2.p2_fast;
895 clock.p2 >= limit->p2.p2_slow;
896 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 897 unsigned int error_ppm;
ef9348c8
CML
898
899 clock.p = clock.p1 * clock.p2;
900
901 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
902 clock.n) << 22, refclk * clock.m1);
903
904 if (m2 > INT_MAX/clock.m1)
905 continue;
906
907 clock.m2 = m2;
908
909 chv_clock(refclk, &clock);
910
911 if (!intel_PLL_is_valid(dev, limit, &clock))
912 continue;
913
9ca3ba01
ID
914 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
915 best_error_ppm, &error_ppm))
916 continue;
917
918 *best_clock = clock;
919 best_error_ppm = error_ppm;
920 found = true;
ef9348c8
CML
921 }
922 }
923
924 return found;
925}
926
20ddf665
VS
927bool intel_crtc_active(struct drm_crtc *crtc)
928{
929 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
930
931 /* Be paranoid as we can arrive here with only partial
932 * state retrieved from the hardware during setup.
933 *
241bfc38 934 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
935 * as Haswell has gained clock readout/fastboot support.
936 *
66e514c1 937 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 938 * properly reconstruct framebuffers.
c3d1f436
MR
939 *
940 * FIXME: The intel_crtc->active here should be switched to
941 * crtc->state->active once we have proper CRTC states wired up
942 * for atomic.
20ddf665 943 */
c3d1f436 944 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 945 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
946}
947
a5c961d1
PZ
948enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
949 enum pipe pipe)
950{
951 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
952 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
953
6e3c9717 954 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
955}
956
fbf49ea2
VS
957static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
958{
959 struct drm_i915_private *dev_priv = dev->dev_private;
960 u32 reg = PIPEDSL(pipe);
961 u32 line1, line2;
962 u32 line_mask;
963
964 if (IS_GEN2(dev))
965 line_mask = DSL_LINEMASK_GEN2;
966 else
967 line_mask = DSL_LINEMASK_GEN3;
968
969 line1 = I915_READ(reg) & line_mask;
970 mdelay(5);
971 line2 = I915_READ(reg) & line_mask;
972
973 return line1 == line2;
974}
975
ab7ad7f6
KP
976/*
977 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 978 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
979 *
980 * After disabling a pipe, we can't wait for vblank in the usual way,
981 * spinning on the vblank interrupt status bit, since we won't actually
982 * see an interrupt when the pipe is disabled.
983 *
ab7ad7f6
KP
984 * On Gen4 and above:
985 * wait for the pipe register state bit to turn off
986 *
987 * Otherwise:
988 * wait for the display line value to settle (it usually
989 * ends up stopping at the start of the next frame).
58e10eb9 990 *
9d0498a2 991 */
575f7ab7 992static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 993{
575f7ab7 994 struct drm_device *dev = crtc->base.dev;
9d0498a2 995 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 996 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 997 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
998
999 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1000 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1001
1002 /* Wait for the Pipe State to go off */
58e10eb9
CW
1003 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1004 100))
284637d9 1005 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1006 } else {
ab7ad7f6 1007 /* Wait for the display line to settle */
fbf49ea2 1008 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1009 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1010 }
79e53945
JB
1011}
1012
b0ea7d37
DL
1013/*
1014 * ibx_digital_port_connected - is the specified port connected?
1015 * @dev_priv: i915 private structure
1016 * @port: the port to test
1017 *
1018 * Returns true if @port is connected, false otherwise.
1019 */
1020bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1021 struct intel_digital_port *port)
1022{
1023 u32 bit;
1024
c36346e3 1025 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1026 switch (port->port) {
c36346e3
DL
1027 case PORT_B:
1028 bit = SDE_PORTB_HOTPLUG;
1029 break;
1030 case PORT_C:
1031 bit = SDE_PORTC_HOTPLUG;
1032 break;
1033 case PORT_D:
1034 bit = SDE_PORTD_HOTPLUG;
1035 break;
1036 default:
1037 return true;
1038 }
1039 } else {
eba905b2 1040 switch (port->port) {
c36346e3
DL
1041 case PORT_B:
1042 bit = SDE_PORTB_HOTPLUG_CPT;
1043 break;
1044 case PORT_C:
1045 bit = SDE_PORTC_HOTPLUG_CPT;
1046 break;
1047 case PORT_D:
1048 bit = SDE_PORTD_HOTPLUG_CPT;
1049 break;
1050 default:
1051 return true;
1052 }
b0ea7d37
DL
1053 }
1054
1055 return I915_READ(SDEISR) & bit;
1056}
1057
b24e7179
JB
1058static const char *state_string(bool enabled)
1059{
1060 return enabled ? "on" : "off";
1061}
1062
1063/* Only for pre-ILK configs */
55607e8a
DV
1064void assert_pll(struct drm_i915_private *dev_priv,
1065 enum pipe pipe, bool state)
b24e7179
JB
1066{
1067 int reg;
1068 u32 val;
1069 bool cur_state;
1070
1071 reg = DPLL(pipe);
1072 val = I915_READ(reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1074 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1075 "PLL state assertion failure (expected %s, current %s)\n",
1076 state_string(state), state_string(cur_state));
1077}
b24e7179 1078
23538ef1
JN
1079/* XXX: the dsi pll is shared between MIPI DSI ports */
1080static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1081{
1082 u32 val;
1083 bool cur_state;
1084
1085 mutex_lock(&dev_priv->dpio_lock);
1086 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1087 mutex_unlock(&dev_priv->dpio_lock);
1088
1089 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1090 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1091 "DSI PLL state assertion failure (expected %s, current %s)\n",
1092 state_string(state), state_string(cur_state));
1093}
1094#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1095#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1096
55607e8a 1097struct intel_shared_dpll *
e2b78267
DV
1098intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1099{
1100 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1101
6e3c9717 1102 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1103 return NULL;
1104
6e3c9717 1105 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1106}
1107
040484af 1108/* For ILK+ */
55607e8a
DV
1109void assert_shared_dpll(struct drm_i915_private *dev_priv,
1110 struct intel_shared_dpll *pll,
1111 bool state)
040484af 1112{
040484af 1113 bool cur_state;
5358901f 1114 struct intel_dpll_hw_state hw_state;
040484af 1115
92b27b08 1116 if (WARN (!pll,
46edb027 1117 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1118 return;
ee7b9f93 1119
5358901f 1120 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1121 I915_STATE_WARN(cur_state != state,
5358901f
DV
1122 "%s assertion failure (expected %s, current %s)\n",
1123 pll->name, state_string(state), state_string(cur_state));
040484af 1124}
040484af
JB
1125
1126static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1127 enum pipe pipe, bool state)
1128{
1129 int reg;
1130 u32 val;
1131 bool cur_state;
ad80a810
PZ
1132 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1133 pipe);
040484af 1134
affa9354
PZ
1135 if (HAS_DDI(dev_priv->dev)) {
1136 /* DDI does not have a specific FDI_TX register */
ad80a810 1137 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1138 val = I915_READ(reg);
ad80a810 1139 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1140 } else {
1141 reg = FDI_TX_CTL(pipe);
1142 val = I915_READ(reg);
1143 cur_state = !!(val & FDI_TX_ENABLE);
1144 }
e2c719b7 1145 I915_STATE_WARN(cur_state != state,
040484af
JB
1146 "FDI TX state assertion failure (expected %s, current %s)\n",
1147 state_string(state), state_string(cur_state));
1148}
1149#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1150#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1151
1152static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1153 enum pipe pipe, bool state)
1154{
1155 int reg;
1156 u32 val;
1157 bool cur_state;
1158
d63fa0dc
PZ
1159 reg = FDI_RX_CTL(pipe);
1160 val = I915_READ(reg);
1161 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1162 I915_STATE_WARN(cur_state != state,
040484af
JB
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1165}
1166#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171{
1172 int reg;
1173 u32 val;
1174
1175 /* ILK FDI PLL is always enabled */
3d13ef2e 1176 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1177 return;
1178
bf507ef7 1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1180 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1181 return;
1182
040484af
JB
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
e2c719b7 1185 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1186}
1187
55607e8a
DV
1188void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1189 enum pipe pipe, bool state)
040484af
JB
1190{
1191 int reg;
1192 u32 val;
55607e8a 1193 bool cur_state;
040484af
JB
1194
1195 reg = FDI_RX_CTL(pipe);
1196 val = I915_READ(reg);
55607e8a 1197 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1198 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1199 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1200 state_string(state), state_string(cur_state));
040484af
JB
1201}
1202
b680c37a
DV
1203void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
ea0760cf 1205{
bedd4dba
JN
1206 struct drm_device *dev = dev_priv->dev;
1207 int pp_reg;
ea0760cf
JB
1208 u32 val;
1209 enum pipe panel_pipe = PIPE_A;
0de3b485 1210 bool locked = true;
ea0760cf 1211
bedd4dba
JN
1212 if (WARN_ON(HAS_DDI(dev)))
1213 return;
1214
1215 if (HAS_PCH_SPLIT(dev)) {
1216 u32 port_sel;
1217
ea0760cf 1218 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1219 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1220
1221 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1222 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1223 panel_pipe = PIPE_B;
1224 /* XXX: else fix for eDP */
1225 } else if (IS_VALLEYVIEW(dev)) {
1226 /* presumably write lock depends on pipe, not port select */
1227 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1228 panel_pipe = pipe;
ea0760cf
JB
1229 } else {
1230 pp_reg = PP_CONTROL;
bedd4dba
JN
1231 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1232 panel_pipe = PIPE_B;
ea0760cf
JB
1233 }
1234
1235 val = I915_READ(pp_reg);
1236 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1237 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1238 locked = false;
1239
e2c719b7 1240 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1241 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1242 pipe_name(pipe));
ea0760cf
JB
1243}
1244
93ce0ba6
JN
1245static void assert_cursor(struct drm_i915_private *dev_priv,
1246 enum pipe pipe, bool state)
1247{
1248 struct drm_device *dev = dev_priv->dev;
1249 bool cur_state;
1250
d9d82081 1251 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1252 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1253 else
5efb3e28 1254 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1255
e2c719b7 1256 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1257 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1258 pipe_name(pipe), state_string(state), state_string(cur_state));
1259}
1260#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1261#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1262
b840d907
JB
1263void assert_pipe(struct drm_i915_private *dev_priv,
1264 enum pipe pipe, bool state)
b24e7179
JB
1265{
1266 int reg;
1267 u32 val;
63d7bbe9 1268 bool cur_state;
702e7a56
PZ
1269 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1270 pipe);
b24e7179 1271
b6b5d049
VS
1272 /* if we need the pipe quirk it must be always on */
1273 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1274 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1275 state = true;
1276
f458ebbc 1277 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1278 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1279 cur_state = false;
1280 } else {
1281 reg = PIPECONF(cpu_transcoder);
1282 val = I915_READ(reg);
1283 cur_state = !!(val & PIPECONF_ENABLE);
1284 }
1285
e2c719b7 1286 I915_STATE_WARN(cur_state != state,
63d7bbe9 1287 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1288 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1289}
1290
931872fc
CW
1291static void assert_plane(struct drm_i915_private *dev_priv,
1292 enum plane plane, bool state)
b24e7179
JB
1293{
1294 int reg;
1295 u32 val;
931872fc 1296 bool cur_state;
b24e7179
JB
1297
1298 reg = DSPCNTR(plane);
1299 val = I915_READ(reg);
931872fc 1300 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1301 I915_STATE_WARN(cur_state != state,
931872fc
CW
1302 "plane %c assertion failure (expected %s, current %s)\n",
1303 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1304}
1305
931872fc
CW
1306#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1307#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1308
b24e7179
JB
1309static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1310 enum pipe pipe)
1311{
653e1026 1312 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1313 int reg, i;
1314 u32 val;
1315 int cur_pipe;
1316
653e1026
VS
1317 /* Primary planes are fixed to pipes on gen4+ */
1318 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1319 reg = DSPCNTR(pipe);
1320 val = I915_READ(reg);
e2c719b7 1321 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1322 "plane %c assertion failure, should be disabled but not\n",
1323 plane_name(pipe));
19ec1358 1324 return;
28c05794 1325 }
19ec1358 1326
b24e7179 1327 /* Need to check both planes against the pipe */
055e393f 1328 for_each_pipe(dev_priv, i) {
b24e7179
JB
1329 reg = DSPCNTR(i);
1330 val = I915_READ(reg);
1331 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1332 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1333 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1334 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1335 plane_name(i), pipe_name(pipe));
b24e7179
JB
1336 }
1337}
1338
19332d7a
JB
1339static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1340 enum pipe pipe)
1341{
20674eef 1342 struct drm_device *dev = dev_priv->dev;
1fe47785 1343 int reg, sprite;
19332d7a
JB
1344 u32 val;
1345
7feb8b88 1346 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1347 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1348 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1349 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1350 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1351 sprite, pipe_name(pipe));
1352 }
1353 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1354 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1355 reg = SPCNTR(pipe, sprite);
20674eef 1356 val = I915_READ(reg);
e2c719b7 1357 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1358 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1359 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1360 }
1361 } else if (INTEL_INFO(dev)->gen >= 7) {
1362 reg = SPRCTL(pipe);
19332d7a 1363 val = I915_READ(reg);
e2c719b7 1364 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1365 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1366 plane_name(pipe), pipe_name(pipe));
1367 } else if (INTEL_INFO(dev)->gen >= 5) {
1368 reg = DVSCNTR(pipe);
19332d7a 1369 val = I915_READ(reg);
e2c719b7 1370 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1371 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1372 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1373 }
1374}
1375
08c71e5e
VS
1376static void assert_vblank_disabled(struct drm_crtc *crtc)
1377{
e2c719b7 1378 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1379 drm_crtc_vblank_put(crtc);
1380}
1381
89eff4be 1382static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1383{
1384 u32 val;
1385 bool enabled;
1386
e2c719b7 1387 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1388
92f2584a
JB
1389 val = I915_READ(PCH_DREF_CONTROL);
1390 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1391 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1392 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1393}
1394
ab9412ba
DV
1395static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe)
92f2584a
JB
1397{
1398 int reg;
1399 u32 val;
1400 bool enabled;
1401
ab9412ba 1402 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1403 val = I915_READ(reg);
1404 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1405 I915_STATE_WARN(enabled,
9db4a9c7
JB
1406 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1407 pipe_name(pipe));
92f2584a
JB
1408}
1409
4e634389
KP
1410static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1412{
1413 if ((val & DP_PORT_EN) == 0)
1414 return false;
1415
1416 if (HAS_PCH_CPT(dev_priv->dev)) {
1417 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1418 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1419 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1420 return false;
44f37d1f
CML
1421 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1422 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1423 return false;
f0575e92
KP
1424 } else {
1425 if ((val & DP_PIPE_MASK) != (pipe << 30))
1426 return false;
1427 }
1428 return true;
1429}
1430
1519b995
KP
1431static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1432 enum pipe pipe, u32 val)
1433{
dc0fa718 1434 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1435 return false;
1436
1437 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1438 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1439 return false;
44f37d1f
CML
1440 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1441 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1442 return false;
1519b995 1443 } else {
dc0fa718 1444 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1445 return false;
1446 }
1447 return true;
1448}
1449
1450static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, u32 val)
1452{
1453 if ((val & LVDS_PORT_EN) == 0)
1454 return false;
1455
1456 if (HAS_PCH_CPT(dev_priv->dev)) {
1457 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458 return false;
1459 } else {
1460 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1461 return false;
1462 }
1463 return true;
1464}
1465
1466static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe, u32 val)
1468{
1469 if ((val & ADPA_DAC_ENABLE) == 0)
1470 return false;
1471 if (HAS_PCH_CPT(dev_priv->dev)) {
1472 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1473 return false;
1474 } else {
1475 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1476 return false;
1477 }
1478 return true;
1479}
1480
291906f1 1481static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1482 enum pipe pipe, int reg, u32 port_sel)
291906f1 1483{
47a05eca 1484 u32 val = I915_READ(reg);
e2c719b7 1485 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1486 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1487 reg, pipe_name(pipe));
de9a35ab 1488
e2c719b7 1489 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1490 && (val & DP_PIPEB_SELECT),
de9a35ab 1491 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1492}
1493
1494static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1495 enum pipe pipe, int reg)
1496{
47a05eca 1497 u32 val = I915_READ(reg);
e2c719b7 1498 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1499 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1500 reg, pipe_name(pipe));
de9a35ab 1501
e2c719b7 1502 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1503 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1504 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1505}
1506
1507static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1508 enum pipe pipe)
1509{
1510 int reg;
1511 u32 val;
291906f1 1512
f0575e92
KP
1513 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1514 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1515 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1516
1517 reg = PCH_ADPA;
1518 val = I915_READ(reg);
e2c719b7 1519 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1520 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1521 pipe_name(pipe));
291906f1
JB
1522
1523 reg = PCH_LVDS;
1524 val = I915_READ(reg);
e2c719b7 1525 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1526 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1527 pipe_name(pipe));
291906f1 1528
e2debe91
PZ
1529 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1530 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1531 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1532}
1533
40e9cf64
JB
1534static void intel_init_dpio(struct drm_device *dev)
1535{
1536 struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538 if (!IS_VALLEYVIEW(dev))
1539 return;
1540
a09caddd
CML
1541 /*
1542 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1543 * CHV x1 PHY (DP/HDMI D)
1544 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1545 */
1546 if (IS_CHERRYVIEW(dev)) {
1547 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1548 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1549 } else {
1550 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1551 }
5382f5f3
JB
1552}
1553
d288f65f 1554static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1555 const struct intel_crtc_state *pipe_config)
87442f73 1556{
426115cf
DV
1557 struct drm_device *dev = crtc->base.dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 int reg = DPLL(crtc->pipe);
d288f65f 1560 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1561
426115cf 1562 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1563
1564 /* No really, not for ILK+ */
1565 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1566
1567 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1568 if (IS_MOBILE(dev_priv->dev))
426115cf 1569 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1570
426115cf
DV
1571 I915_WRITE(reg, dpll);
1572 POSTING_READ(reg);
1573 udelay(150);
1574
1575 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1577
d288f65f 1578 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1579 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1580
1581 /* We do this three times for luck */
426115cf 1582 I915_WRITE(reg, dpll);
87442f73
DV
1583 POSTING_READ(reg);
1584 udelay(150); /* wait for warmup */
426115cf 1585 I915_WRITE(reg, dpll);
87442f73
DV
1586 POSTING_READ(reg);
1587 udelay(150); /* wait for warmup */
426115cf 1588 I915_WRITE(reg, dpll);
87442f73
DV
1589 POSTING_READ(reg);
1590 udelay(150); /* wait for warmup */
1591}
1592
d288f65f 1593static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1594 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1595{
1596 struct drm_device *dev = crtc->base.dev;
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598 int pipe = crtc->pipe;
1599 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1600 u32 tmp;
1601
1602 assert_pipe_disabled(dev_priv, crtc->pipe);
1603
1604 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1605
1606 mutex_lock(&dev_priv->dpio_lock);
1607
1608 /* Enable back the 10bit clock to display controller */
1609 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1610 tmp |= DPIO_DCLKP_EN;
1611 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1612
1613 /*
1614 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1615 */
1616 udelay(1);
1617
1618 /* Enable PLL */
d288f65f 1619 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1620
1621 /* Check PLL is locked */
a11b0703 1622 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1623 DRM_ERROR("PLL %d failed to lock\n", pipe);
1624
a11b0703 1625 /* not sure when this should be written */
d288f65f 1626 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1627 POSTING_READ(DPLL_MD(pipe));
1628
9d556c99
CML
1629 mutex_unlock(&dev_priv->dpio_lock);
1630}
1631
1c4e0274
VS
1632static int intel_num_dvo_pipes(struct drm_device *dev)
1633{
1634 struct intel_crtc *crtc;
1635 int count = 0;
1636
1637 for_each_intel_crtc(dev, crtc)
1638 count += crtc->active &&
409ee761 1639 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1640
1641 return count;
1642}
1643
66e3d5c0 1644static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1645{
66e3d5c0
DV
1646 struct drm_device *dev = crtc->base.dev;
1647 struct drm_i915_private *dev_priv = dev->dev_private;
1648 int reg = DPLL(crtc->pipe);
6e3c9717 1649 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1650
66e3d5c0 1651 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1652
63d7bbe9 1653 /* No really, not for ILK+ */
3d13ef2e 1654 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1655
1656 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1657 if (IS_MOBILE(dev) && !IS_I830(dev))
1658 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1659
1c4e0274
VS
1660 /* Enable DVO 2x clock on both PLLs if necessary */
1661 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1662 /*
1663 * It appears to be important that we don't enable this
1664 * for the current pipe before otherwise configuring the
1665 * PLL. No idea how this should be handled if multiple
1666 * DVO outputs are enabled simultaneosly.
1667 */
1668 dpll |= DPLL_DVO_2X_MODE;
1669 I915_WRITE(DPLL(!crtc->pipe),
1670 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1671 }
66e3d5c0
DV
1672
1673 /* Wait for the clocks to stabilize. */
1674 POSTING_READ(reg);
1675 udelay(150);
1676
1677 if (INTEL_INFO(dev)->gen >= 4) {
1678 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1679 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1680 } else {
1681 /* The pixel multiplier can only be updated once the
1682 * DPLL is enabled and the clocks are stable.
1683 *
1684 * So write it again.
1685 */
1686 I915_WRITE(reg, dpll);
1687 }
63d7bbe9
JB
1688
1689 /* We do this three times for luck */
66e3d5c0 1690 I915_WRITE(reg, dpll);
63d7bbe9
JB
1691 POSTING_READ(reg);
1692 udelay(150); /* wait for warmup */
66e3d5c0 1693 I915_WRITE(reg, dpll);
63d7bbe9
JB
1694 POSTING_READ(reg);
1695 udelay(150); /* wait for warmup */
66e3d5c0 1696 I915_WRITE(reg, dpll);
63d7bbe9
JB
1697 POSTING_READ(reg);
1698 udelay(150); /* wait for warmup */
1699}
1700
1701/**
50b44a44 1702 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1703 * @dev_priv: i915 private structure
1704 * @pipe: pipe PLL to disable
1705 *
1706 * Disable the PLL for @pipe, making sure the pipe is off first.
1707 *
1708 * Note! This is for pre-ILK only.
1709 */
1c4e0274 1710static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1711{
1c4e0274
VS
1712 struct drm_device *dev = crtc->base.dev;
1713 struct drm_i915_private *dev_priv = dev->dev_private;
1714 enum pipe pipe = crtc->pipe;
1715
1716 /* Disable DVO 2x clock on both PLLs if necessary */
1717 if (IS_I830(dev) &&
409ee761 1718 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1719 intel_num_dvo_pipes(dev) == 1) {
1720 I915_WRITE(DPLL(PIPE_B),
1721 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1722 I915_WRITE(DPLL(PIPE_A),
1723 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1724 }
1725
b6b5d049
VS
1726 /* Don't disable pipe or pipe PLLs if needed */
1727 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1728 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1729 return;
1730
1731 /* Make sure the pipe isn't still relying on us */
1732 assert_pipe_disabled(dev_priv, pipe);
1733
50b44a44
DV
1734 I915_WRITE(DPLL(pipe), 0);
1735 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1736}
1737
f6071166
JB
1738static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1739{
1740 u32 val = 0;
1741
1742 /* Make sure the pipe isn't still relying on us */
1743 assert_pipe_disabled(dev_priv, pipe);
1744
e5cbfbfb
ID
1745 /*
1746 * Leave integrated clock source and reference clock enabled for pipe B.
1747 * The latter is needed for VGA hotplug / manual detection.
1748 */
f6071166 1749 if (pipe == PIPE_B)
e5cbfbfb 1750 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1751 I915_WRITE(DPLL(pipe), val);
1752 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1753
1754}
1755
1756static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1757{
d752048d 1758 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1759 u32 val;
1760
a11b0703
VS
1761 /* Make sure the pipe isn't still relying on us */
1762 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1763
a11b0703 1764 /* Set PLL en = 0 */
d17ec4ce 1765 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1766 if (pipe != PIPE_A)
1767 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1768 I915_WRITE(DPLL(pipe), val);
1769 POSTING_READ(DPLL(pipe));
d752048d
VS
1770
1771 mutex_lock(&dev_priv->dpio_lock);
1772
1773 /* Disable 10bit clock to display controller */
1774 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1775 val &= ~DPIO_DCLKP_EN;
1776 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1777
61407f6d
VS
1778 /* disable left/right clock distribution */
1779 if (pipe != PIPE_B) {
1780 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1781 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1782 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1783 } else {
1784 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1785 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1786 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1787 }
1788
d752048d 1789 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1790}
1791
e4607fcf
CML
1792void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1793 struct intel_digital_port *dport)
89b667f8
JB
1794{
1795 u32 port_mask;
00fc31b7 1796 int dpll_reg;
89b667f8 1797
e4607fcf
CML
1798 switch (dport->port) {
1799 case PORT_B:
89b667f8 1800 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1801 dpll_reg = DPLL(0);
e4607fcf
CML
1802 break;
1803 case PORT_C:
89b667f8 1804 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1805 dpll_reg = DPLL(0);
1806 break;
1807 case PORT_D:
1808 port_mask = DPLL_PORTD_READY_MASK;
1809 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1810 break;
1811 default:
1812 BUG();
1813 }
89b667f8 1814
00fc31b7 1815 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1816 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1817 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1818}
1819
b14b1055
DV
1820static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1821{
1822 struct drm_device *dev = crtc->base.dev;
1823 struct drm_i915_private *dev_priv = dev->dev_private;
1824 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1825
be19f0ff
CW
1826 if (WARN_ON(pll == NULL))
1827 return;
1828
3e369b76 1829 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1830 if (pll->active == 0) {
1831 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1832 WARN_ON(pll->on);
1833 assert_shared_dpll_disabled(dev_priv, pll);
1834
1835 pll->mode_set(dev_priv, pll);
1836 }
1837}
1838
92f2584a 1839/**
85b3894f 1840 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1841 * @dev_priv: i915 private structure
1842 * @pipe: pipe PLL to enable
1843 *
1844 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1845 * drives the transcoder clock.
1846 */
85b3894f 1847static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1848{
3d13ef2e
DL
1849 struct drm_device *dev = crtc->base.dev;
1850 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1851 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1852
87a875bb 1853 if (WARN_ON(pll == NULL))
48da64a8
CW
1854 return;
1855
3e369b76 1856 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1857 return;
ee7b9f93 1858
74dd6928 1859 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1860 pll->name, pll->active, pll->on,
e2b78267 1861 crtc->base.base.id);
92f2584a 1862
cdbd2316
DV
1863 if (pll->active++) {
1864 WARN_ON(!pll->on);
e9d6944e 1865 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1866 return;
1867 }
f4a091c7 1868 WARN_ON(pll->on);
ee7b9f93 1869
bd2bb1b9
PZ
1870 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1871
46edb027 1872 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1873 pll->enable(dev_priv, pll);
ee7b9f93 1874 pll->on = true;
92f2584a
JB
1875}
1876
f6daaec2 1877static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1878{
3d13ef2e
DL
1879 struct drm_device *dev = crtc->base.dev;
1880 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1881 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1882
92f2584a 1883 /* PCH only available on ILK+ */
3d13ef2e 1884 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1885 if (WARN_ON(pll == NULL))
ee7b9f93 1886 return;
92f2584a 1887
3e369b76 1888 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1889 return;
7a419866 1890
46edb027
DV
1891 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1892 pll->name, pll->active, pll->on,
e2b78267 1893 crtc->base.base.id);
7a419866 1894
48da64a8 1895 if (WARN_ON(pll->active == 0)) {
e9d6944e 1896 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1897 return;
1898 }
1899
e9d6944e 1900 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1901 WARN_ON(!pll->on);
cdbd2316 1902 if (--pll->active)
7a419866 1903 return;
ee7b9f93 1904
46edb027 1905 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1906 pll->disable(dev_priv, pll);
ee7b9f93 1907 pll->on = false;
bd2bb1b9
PZ
1908
1909 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1910}
1911
b8a4f404
PZ
1912static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1913 enum pipe pipe)
040484af 1914{
23670b32 1915 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1916 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1918 uint32_t reg, val, pipeconf_val;
040484af
JB
1919
1920 /* PCH only available on ILK+ */
55522f37 1921 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1922
1923 /* Make sure PCH DPLL is enabled */
e72f9fbf 1924 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1925 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1926
1927 /* FDI must be feeding us bits for PCH ports */
1928 assert_fdi_tx_enabled(dev_priv, pipe);
1929 assert_fdi_rx_enabled(dev_priv, pipe);
1930
23670b32
DV
1931 if (HAS_PCH_CPT(dev)) {
1932 /* Workaround: Set the timing override bit before enabling the
1933 * pch transcoder. */
1934 reg = TRANS_CHICKEN2(pipe);
1935 val = I915_READ(reg);
1936 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1937 I915_WRITE(reg, val);
59c859d6 1938 }
23670b32 1939
ab9412ba 1940 reg = PCH_TRANSCONF(pipe);
040484af 1941 val = I915_READ(reg);
5f7f726d 1942 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1943
1944 if (HAS_PCH_IBX(dev_priv->dev)) {
1945 /*
1946 * make the BPC in transcoder be consistent with
1947 * that in pipeconf reg.
1948 */
dfd07d72
DV
1949 val &= ~PIPECONF_BPC_MASK;
1950 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1951 }
5f7f726d
PZ
1952
1953 val &= ~TRANS_INTERLACE_MASK;
1954 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1955 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1956 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1957 val |= TRANS_LEGACY_INTERLACED_ILK;
1958 else
1959 val |= TRANS_INTERLACED;
5f7f726d
PZ
1960 else
1961 val |= TRANS_PROGRESSIVE;
1962
040484af
JB
1963 I915_WRITE(reg, val | TRANS_ENABLE);
1964 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1965 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1966}
1967
8fb033d7 1968static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1969 enum transcoder cpu_transcoder)
040484af 1970{
8fb033d7 1971 u32 val, pipeconf_val;
8fb033d7
PZ
1972
1973 /* PCH only available on ILK+ */
55522f37 1974 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1975
8fb033d7 1976 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1977 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1978 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1979
223a6fdf
PZ
1980 /* Workaround: set timing override bit. */
1981 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1982 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1983 I915_WRITE(_TRANSA_CHICKEN2, val);
1984
25f3ef11 1985 val = TRANS_ENABLE;
937bb610 1986 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1987
9a76b1c6
PZ
1988 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1989 PIPECONF_INTERLACED_ILK)
a35f2679 1990 val |= TRANS_INTERLACED;
8fb033d7
PZ
1991 else
1992 val |= TRANS_PROGRESSIVE;
1993
ab9412ba
DV
1994 I915_WRITE(LPT_TRANSCONF, val);
1995 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1996 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1997}
1998
b8a4f404
PZ
1999static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2000 enum pipe pipe)
040484af 2001{
23670b32
DV
2002 struct drm_device *dev = dev_priv->dev;
2003 uint32_t reg, val;
040484af
JB
2004
2005 /* FDI relies on the transcoder */
2006 assert_fdi_tx_disabled(dev_priv, pipe);
2007 assert_fdi_rx_disabled(dev_priv, pipe);
2008
291906f1
JB
2009 /* Ports must be off as well */
2010 assert_pch_ports_disabled(dev_priv, pipe);
2011
ab9412ba 2012 reg = PCH_TRANSCONF(pipe);
040484af
JB
2013 val = I915_READ(reg);
2014 val &= ~TRANS_ENABLE;
2015 I915_WRITE(reg, val);
2016 /* wait for PCH transcoder off, transcoder state */
2017 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2018 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2019
2020 if (!HAS_PCH_IBX(dev)) {
2021 /* Workaround: Clear the timing override chicken bit again. */
2022 reg = TRANS_CHICKEN2(pipe);
2023 val = I915_READ(reg);
2024 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2025 I915_WRITE(reg, val);
2026 }
040484af
JB
2027}
2028
ab4d966c 2029static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2030{
8fb033d7
PZ
2031 u32 val;
2032
ab9412ba 2033 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2034 val &= ~TRANS_ENABLE;
ab9412ba 2035 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2036 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2037 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2038 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2039
2040 /* Workaround: clear timing override bit. */
2041 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2042 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2043 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2044}
2045
b24e7179 2046/**
309cfea8 2047 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2048 * @crtc: crtc responsible for the pipe
b24e7179 2049 *
0372264a 2050 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2051 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2052 */
e1fdc473 2053static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2054{
0372264a
PZ
2055 struct drm_device *dev = crtc->base.dev;
2056 struct drm_i915_private *dev_priv = dev->dev_private;
2057 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2058 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2059 pipe);
1a240d4d 2060 enum pipe pch_transcoder;
b24e7179
JB
2061 int reg;
2062 u32 val;
2063
58c6eaa2 2064 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2065 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2066 assert_sprites_disabled(dev_priv, pipe);
2067
681e5811 2068 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2069 pch_transcoder = TRANSCODER_A;
2070 else
2071 pch_transcoder = pipe;
2072
b24e7179
JB
2073 /*
2074 * A pipe without a PLL won't actually be able to drive bits from
2075 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2076 * need the check.
2077 */
2078 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2079 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2080 assert_dsi_pll_enabled(dev_priv);
2081 else
2082 assert_pll_enabled(dev_priv, pipe);
040484af 2083 else {
6e3c9717 2084 if (crtc->config->has_pch_encoder) {
040484af 2085 /* if driving the PCH, we need FDI enabled */
cc391bbb 2086 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2087 assert_fdi_tx_pll_enabled(dev_priv,
2088 (enum pipe) cpu_transcoder);
040484af
JB
2089 }
2090 /* FIXME: assert CPU port conditions for SNB+ */
2091 }
b24e7179 2092
702e7a56 2093 reg = PIPECONF(cpu_transcoder);
b24e7179 2094 val = I915_READ(reg);
7ad25d48 2095 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2096 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2097 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2098 return;
7ad25d48 2099 }
00d70b15
CW
2100
2101 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2102 POSTING_READ(reg);
b24e7179
JB
2103}
2104
2105/**
309cfea8 2106 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2107 * @crtc: crtc whose pipes is to be disabled
b24e7179 2108 *
575f7ab7
VS
2109 * Disable the pipe of @crtc, making sure that various hardware
2110 * specific requirements are met, if applicable, e.g. plane
2111 * disabled, panel fitter off, etc.
b24e7179
JB
2112 *
2113 * Will wait until the pipe has shut down before returning.
2114 */
575f7ab7 2115static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2116{
575f7ab7 2117 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2118 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2119 enum pipe pipe = crtc->pipe;
b24e7179
JB
2120 int reg;
2121 u32 val;
2122
2123 /*
2124 * Make sure planes won't keep trying to pump pixels to us,
2125 * or we might hang the display.
2126 */
2127 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2128 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2129 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2130
702e7a56 2131 reg = PIPECONF(cpu_transcoder);
b24e7179 2132 val = I915_READ(reg);
00d70b15
CW
2133 if ((val & PIPECONF_ENABLE) == 0)
2134 return;
2135
67adc644
VS
2136 /*
2137 * Double wide has implications for planes
2138 * so best keep it disabled when not needed.
2139 */
6e3c9717 2140 if (crtc->config->double_wide)
67adc644
VS
2141 val &= ~PIPECONF_DOUBLE_WIDE;
2142
2143 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2144 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2145 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2146 val &= ~PIPECONF_ENABLE;
2147
2148 I915_WRITE(reg, val);
2149 if ((val & PIPECONF_ENABLE) == 0)
2150 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2151}
2152
d74362c9
KP
2153/*
2154 * Plane regs are double buffered, going from enabled->disabled needs a
2155 * trigger in order to latch. The display address reg provides this.
2156 */
1dba99f4
VS
2157void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2158 enum plane plane)
d74362c9 2159{
3d13ef2e
DL
2160 struct drm_device *dev = dev_priv->dev;
2161 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2162
2163 I915_WRITE(reg, I915_READ(reg));
2164 POSTING_READ(reg);
d74362c9
KP
2165}
2166
b24e7179 2167/**
262ca2b0 2168 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2169 * @plane: plane to be enabled
2170 * @crtc: crtc for the plane
b24e7179 2171 *
fdd508a6 2172 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2173 */
fdd508a6
VS
2174static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2175 struct drm_crtc *crtc)
b24e7179 2176{
fdd508a6
VS
2177 struct drm_device *dev = plane->dev;
2178 struct drm_i915_private *dev_priv = dev->dev_private;
2179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2180
2181 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2182 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2183
98ec7739
VS
2184 if (intel_crtc->primary_enabled)
2185 return;
0037f71c 2186
4c445e0e 2187 intel_crtc->primary_enabled = true;
939c2fe8 2188
fdd508a6
VS
2189 dev_priv->display.update_primary_plane(crtc, plane->fb,
2190 crtc->x, crtc->y);
33c3b0d1
VS
2191
2192 /*
2193 * BDW signals flip done immediately if the plane
2194 * is disabled, even if the plane enable is already
2195 * armed to occur at the next vblank :(
2196 */
2197 if (IS_BROADWELL(dev))
2198 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2199}
2200
b24e7179 2201/**
262ca2b0 2202 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2203 * @plane: plane to be disabled
2204 * @crtc: crtc for the plane
b24e7179 2205 *
fdd508a6 2206 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2207 */
fdd508a6
VS
2208static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2209 struct drm_crtc *crtc)
b24e7179 2210{
fdd508a6
VS
2211 struct drm_device *dev = plane->dev;
2212 struct drm_i915_private *dev_priv = dev->dev_private;
2213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2214
32b7eeec
MR
2215 if (WARN_ON(!intel_crtc->active))
2216 return;
b24e7179 2217
98ec7739
VS
2218 if (!intel_crtc->primary_enabled)
2219 return;
0037f71c 2220
4c445e0e 2221 intel_crtc->primary_enabled = false;
939c2fe8 2222
fdd508a6
VS
2223 dev_priv->display.update_primary_plane(crtc, plane->fb,
2224 crtc->x, crtc->y);
b24e7179
JB
2225}
2226
693db184
CW
2227static bool need_vtd_wa(struct drm_device *dev)
2228{
2229#ifdef CONFIG_INTEL_IOMMU
2230 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2231 return true;
2232#endif
2233 return false;
2234}
2235
50470bb0 2236unsigned int
6761dd31
TU
2237intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2238 uint64_t fb_format_modifier)
a57ce0b2 2239{
6761dd31
TU
2240 unsigned int tile_height;
2241 uint32_t pixel_bytes;
a57ce0b2 2242
b5d0e9bf
DL
2243 switch (fb_format_modifier) {
2244 case DRM_FORMAT_MOD_NONE:
2245 tile_height = 1;
2246 break;
2247 case I915_FORMAT_MOD_X_TILED:
2248 tile_height = IS_GEN2(dev) ? 16 : 8;
2249 break;
2250 case I915_FORMAT_MOD_Y_TILED:
2251 tile_height = 32;
2252 break;
2253 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2254 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2255 switch (pixel_bytes) {
b5d0e9bf 2256 default:
6761dd31 2257 case 1:
b5d0e9bf
DL
2258 tile_height = 64;
2259 break;
6761dd31
TU
2260 case 2:
2261 case 4:
b5d0e9bf
DL
2262 tile_height = 32;
2263 break;
6761dd31 2264 case 8:
b5d0e9bf
DL
2265 tile_height = 16;
2266 break;
6761dd31 2267 case 16:
b5d0e9bf
DL
2268 WARN_ONCE(1,
2269 "128-bit pixels are not supported for display!");
2270 tile_height = 16;
2271 break;
2272 }
2273 break;
2274 default:
2275 MISSING_CASE(fb_format_modifier);
2276 tile_height = 1;
2277 break;
2278 }
091df6cb 2279
6761dd31
TU
2280 return tile_height;
2281}
2282
2283unsigned int
2284intel_fb_align_height(struct drm_device *dev, unsigned int height,
2285 uint32_t pixel_format, uint64_t fb_format_modifier)
2286{
2287 return ALIGN(height, intel_tile_height(dev, pixel_format,
2288 fb_format_modifier));
a57ce0b2
JB
2289}
2290
f64b98cd
TU
2291static int
2292intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2293 const struct drm_plane_state *plane_state)
2294{
50470bb0
TU
2295 struct intel_rotation_info *info = &view->rotation_info;
2296 static const struct i915_ggtt_view rotated_view =
2297 { .type = I915_GGTT_VIEW_ROTATED };
2298
f64b98cd
TU
2299 *view = i915_ggtt_view_normal;
2300
50470bb0
TU
2301 if (!plane_state)
2302 return 0;
2303
121920fa 2304 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2305 return 0;
2306
2307 *view = rotated_view;
2308
2309 info->height = fb->height;
2310 info->pixel_format = fb->pixel_format;
2311 info->pitch = fb->pitches[0];
2312 info->fb_modifier = fb->modifier[0];
2313
2314 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2315 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2316 DRM_DEBUG_KMS(
2317 "Y or Yf tiling is needed for 90/270 rotation!\n");
2318 return -EINVAL;
2319 }
2320
f64b98cd
TU
2321 return 0;
2322}
2323
127bd2ac 2324int
850c4cdc
TU
2325intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2326 struct drm_framebuffer *fb,
82bc3b2d 2327 const struct drm_plane_state *plane_state,
a4872ba6 2328 struct intel_engine_cs *pipelined)
6b95a207 2329{
850c4cdc 2330 struct drm_device *dev = fb->dev;
ce453d81 2331 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2332 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2333 struct i915_ggtt_view view;
6b95a207
KH
2334 u32 alignment;
2335 int ret;
2336
ebcdd39e
MR
2337 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2338
7b911adc
TU
2339 switch (fb->modifier[0]) {
2340 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2341 if (INTEL_INFO(dev)->gen >= 9)
2342 alignment = 256 * 1024;
2343 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2344 alignment = 128 * 1024;
a6c45cf0 2345 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2346 alignment = 4 * 1024;
2347 else
2348 alignment = 64 * 1024;
6b95a207 2349 break;
7b911adc 2350 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2351 if (INTEL_INFO(dev)->gen >= 9)
2352 alignment = 256 * 1024;
2353 else {
2354 /* pin() will align the object as required by fence */
2355 alignment = 0;
2356 }
6b95a207 2357 break;
7b911adc 2358 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2359 case I915_FORMAT_MOD_Yf_TILED:
2360 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361 "Y tiling bo slipped through, driver bug!\n"))
2362 return -EINVAL;
2363 alignment = 1 * 1024 * 1024;
2364 break;
6b95a207 2365 default:
7b911adc
TU
2366 MISSING_CASE(fb->modifier[0]);
2367 return -EINVAL;
6b95a207
KH
2368 }
2369
f64b98cd
TU
2370 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371 if (ret)
2372 return ret;
2373
693db184
CW
2374 /* Note that the w/a also requires 64 PTE of padding following the
2375 * bo. We currently fill all unused PTE with the shadow page and so
2376 * we should always have valid PTE following the scanout preventing
2377 * the VT-d warning.
2378 */
2379 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380 alignment = 256 * 1024;
2381
d6dd6843
PZ
2382 /*
2383 * Global gtt pte registers are special registers which actually forward
2384 * writes to a chunk of system memory. Which means that there is no risk
2385 * that the register values disappear as soon as we call
2386 * intel_runtime_pm_put(), so it is correct to wrap only the
2387 * pin/unpin/fence and not more.
2388 */
2389 intel_runtime_pm_get(dev_priv);
2390
ce453d81 2391 dev_priv->mm.interruptible = false;
e6617330 2392 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
f64b98cd 2393 &view);
48b956c5 2394 if (ret)
ce453d81 2395 goto err_interruptible;
6b95a207
KH
2396
2397 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398 * fence, whereas 965+ only requires a fence if using
2399 * framebuffer compression. For simplicity, we always install
2400 * a fence as the cost is not that onerous.
2401 */
06d98131 2402 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2403 if (ret)
2404 goto err_unpin;
1690e1eb 2405
9a5a53b3 2406 i915_gem_object_pin_fence(obj);
6b95a207 2407
ce453d81 2408 dev_priv->mm.interruptible = true;
d6dd6843 2409 intel_runtime_pm_put(dev_priv);
6b95a207 2410 return 0;
48b956c5
CW
2411
2412err_unpin:
f64b98cd 2413 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2414err_interruptible:
2415 dev_priv->mm.interruptible = true;
d6dd6843 2416 intel_runtime_pm_put(dev_priv);
48b956c5 2417 return ret;
6b95a207
KH
2418}
2419
82bc3b2d
TU
2420static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2421 const struct drm_plane_state *plane_state)
1690e1eb 2422{
82bc3b2d 2423 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2424 struct i915_ggtt_view view;
2425 int ret;
82bc3b2d 2426
ebcdd39e
MR
2427 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2428
f64b98cd
TU
2429 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2430 WARN_ONCE(ret, "Couldn't get view from plane state!");
2431
1690e1eb 2432 i915_gem_object_unpin_fence(obj);
f64b98cd 2433 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2434}
2435
c2c75131
DV
2436/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2437 * is assumed to be a power-of-two. */
bc752862
CW
2438unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2439 unsigned int tiling_mode,
2440 unsigned int cpp,
2441 unsigned int pitch)
c2c75131 2442{
bc752862
CW
2443 if (tiling_mode != I915_TILING_NONE) {
2444 unsigned int tile_rows, tiles;
c2c75131 2445
bc752862
CW
2446 tile_rows = *y / 8;
2447 *y %= 8;
c2c75131 2448
bc752862
CW
2449 tiles = *x / (512/cpp);
2450 *x %= 512/cpp;
2451
2452 return tile_rows * pitch * 8 + tiles * 4096;
2453 } else {
2454 unsigned int offset;
2455
2456 offset = *y * pitch + *x * cpp;
2457 *y = 0;
2458 *x = (offset & 4095) / cpp;
2459 return offset & -4096;
2460 }
c2c75131
DV
2461}
2462
b35d63fa 2463static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2464{
2465 switch (format) {
2466 case DISPPLANE_8BPP:
2467 return DRM_FORMAT_C8;
2468 case DISPPLANE_BGRX555:
2469 return DRM_FORMAT_XRGB1555;
2470 case DISPPLANE_BGRX565:
2471 return DRM_FORMAT_RGB565;
2472 default:
2473 case DISPPLANE_BGRX888:
2474 return DRM_FORMAT_XRGB8888;
2475 case DISPPLANE_RGBX888:
2476 return DRM_FORMAT_XBGR8888;
2477 case DISPPLANE_BGRX101010:
2478 return DRM_FORMAT_XRGB2101010;
2479 case DISPPLANE_RGBX101010:
2480 return DRM_FORMAT_XBGR2101010;
2481 }
2482}
2483
bc8d7dff
DL
2484static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2485{
2486 switch (format) {
2487 case PLANE_CTL_FORMAT_RGB_565:
2488 return DRM_FORMAT_RGB565;
2489 default:
2490 case PLANE_CTL_FORMAT_XRGB_8888:
2491 if (rgb_order) {
2492 if (alpha)
2493 return DRM_FORMAT_ABGR8888;
2494 else
2495 return DRM_FORMAT_XBGR8888;
2496 } else {
2497 if (alpha)
2498 return DRM_FORMAT_ARGB8888;
2499 else
2500 return DRM_FORMAT_XRGB8888;
2501 }
2502 case PLANE_CTL_FORMAT_XRGB_2101010:
2503 if (rgb_order)
2504 return DRM_FORMAT_XBGR2101010;
2505 else
2506 return DRM_FORMAT_XRGB2101010;
2507 }
2508}
2509
5724dbd1 2510static bool
f6936e29
DV
2511intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2512 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2513{
2514 struct drm_device *dev = crtc->base.dev;
2515 struct drm_i915_gem_object *obj = NULL;
2516 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2517 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2518 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2519 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2520 PAGE_SIZE);
2521
2522 size_aligned -= base_aligned;
46f297fb 2523
ff2652ea
CW
2524 if (plane_config->size == 0)
2525 return false;
2526
f37b5c2b
DV
2527 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2528 base_aligned,
2529 base_aligned,
2530 size_aligned);
46f297fb 2531 if (!obj)
484b41dd 2532 return false;
46f297fb 2533
49af449b
DL
2534 obj->tiling_mode = plane_config->tiling;
2535 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2536 obj->stride = fb->pitches[0];
46f297fb 2537
6bf129df
DL
2538 mode_cmd.pixel_format = fb->pixel_format;
2539 mode_cmd.width = fb->width;
2540 mode_cmd.height = fb->height;
2541 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2542 mode_cmd.modifier[0] = fb->modifier[0];
2543 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2544
2545 mutex_lock(&dev->struct_mutex);
2546
6bf129df 2547 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2548 &mode_cmd, obj)) {
46f297fb
JB
2549 DRM_DEBUG_KMS("intel fb init failed\n");
2550 goto out_unref_obj;
2551 }
2552
a071fa00 2553 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2554 mutex_unlock(&dev->struct_mutex);
484b41dd 2555
f6936e29 2556 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2557 return true;
46f297fb
JB
2558
2559out_unref_obj:
2560 drm_gem_object_unreference(&obj->base);
2561 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2562 return false;
2563}
2564
afd65eb4
MR
2565/* Update plane->state->fb to match plane->fb after driver-internal updates */
2566static void
2567update_state_fb(struct drm_plane *plane)
2568{
2569 if (plane->fb == plane->state->fb)
2570 return;
2571
2572 if (plane->state->fb)
2573 drm_framebuffer_unreference(plane->state->fb);
2574 plane->state->fb = plane->fb;
2575 if (plane->state->fb)
2576 drm_framebuffer_reference(plane->state->fb);
2577}
2578
5724dbd1 2579static void
f6936e29
DV
2580intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2581 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2582{
2583 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2584 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2585 struct drm_crtc *c;
2586 struct intel_crtc *i;
2ff8fde1 2587 struct drm_i915_gem_object *obj;
484b41dd 2588
2d14030b 2589 if (!plane_config->fb)
484b41dd
JB
2590 return;
2591
f6936e29 2592 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
fb9981aa
DL
2593 struct drm_plane *primary = intel_crtc->base.primary;
2594
2595 primary->fb = &plane_config->fb->base;
2596 primary->state->crtc = &intel_crtc->base;
5097f8c7 2597 primary->crtc = &intel_crtc->base;
fb9981aa
DL
2598 update_state_fb(primary);
2599
484b41dd 2600 return;
f55548b5 2601 }
484b41dd 2602
2d14030b 2603 kfree(plane_config->fb);
484b41dd
JB
2604
2605 /*
2606 * Failed to alloc the obj, check to see if we should share
2607 * an fb with another CRTC instead
2608 */
70e1e0ec 2609 for_each_crtc(dev, c) {
484b41dd
JB
2610 i = to_intel_crtc(c);
2611
2612 if (c == &intel_crtc->base)
2613 continue;
2614
2ff8fde1
MR
2615 if (!i->active)
2616 continue;
2617
2618 obj = intel_fb_obj(c->primary->fb);
2619 if (obj == NULL)
484b41dd
JB
2620 continue;
2621
2ff8fde1 2622 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
fb9981aa
DL
2623 struct drm_plane *primary = intel_crtc->base.primary;
2624
d9ceb816
JB
2625 if (obj->tiling_mode != I915_TILING_NONE)
2626 dev_priv->preserve_bios_swizzle = true;
2627
66e514c1 2628 drm_framebuffer_reference(c->primary->fb);
fb9981aa
DL
2629 primary->fb = c->primary->fb;
2630 primary->state->crtc = &intel_crtc->base;
5097f8c7 2631 primary->crtc = &intel_crtc->base;
5ba76c41 2632 update_state_fb(intel_crtc->base.primary);
2ff8fde1 2633 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2634 break;
2635 }
2636 }
46f297fb
JB
2637}
2638
29b9bde6
DV
2639static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2640 struct drm_framebuffer *fb,
2641 int x, int y)
81255565
JB
2642{
2643 struct drm_device *dev = crtc->dev;
2644 struct drm_i915_private *dev_priv = dev->dev_private;
2645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2646 struct drm_i915_gem_object *obj;
81255565 2647 int plane = intel_crtc->plane;
e506a0c6 2648 unsigned long linear_offset;
81255565 2649 u32 dspcntr;
f45651ba 2650 u32 reg = DSPCNTR(plane);
48404c1e 2651 int pixel_size;
f45651ba 2652
fdd508a6
VS
2653 if (!intel_crtc->primary_enabled) {
2654 I915_WRITE(reg, 0);
2655 if (INTEL_INFO(dev)->gen >= 4)
2656 I915_WRITE(DSPSURF(plane), 0);
2657 else
2658 I915_WRITE(DSPADDR(plane), 0);
2659 POSTING_READ(reg);
2660 return;
2661 }
2662
c9ba6fad
VS
2663 obj = intel_fb_obj(fb);
2664 if (WARN_ON(obj == NULL))
2665 return;
2666
2667 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2668
f45651ba
VS
2669 dspcntr = DISPPLANE_GAMMA_ENABLE;
2670
fdd508a6 2671 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2672
2673 if (INTEL_INFO(dev)->gen < 4) {
2674 if (intel_crtc->pipe == PIPE_B)
2675 dspcntr |= DISPPLANE_SEL_PIPE_B;
2676
2677 /* pipesrc and dspsize control the size that is scaled from,
2678 * which should always be the user's requested size.
2679 */
2680 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2681 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2682 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2683 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2684 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2685 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2686 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2687 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2688 I915_WRITE(PRIMPOS(plane), 0);
2689 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2690 }
81255565 2691
57779d06
VS
2692 switch (fb->pixel_format) {
2693 case DRM_FORMAT_C8:
81255565
JB
2694 dspcntr |= DISPPLANE_8BPP;
2695 break;
57779d06
VS
2696 case DRM_FORMAT_XRGB1555:
2697 case DRM_FORMAT_ARGB1555:
2698 dspcntr |= DISPPLANE_BGRX555;
81255565 2699 break;
57779d06
VS
2700 case DRM_FORMAT_RGB565:
2701 dspcntr |= DISPPLANE_BGRX565;
2702 break;
2703 case DRM_FORMAT_XRGB8888:
2704 case DRM_FORMAT_ARGB8888:
2705 dspcntr |= DISPPLANE_BGRX888;
2706 break;
2707 case DRM_FORMAT_XBGR8888:
2708 case DRM_FORMAT_ABGR8888:
2709 dspcntr |= DISPPLANE_RGBX888;
2710 break;
2711 case DRM_FORMAT_XRGB2101010:
2712 case DRM_FORMAT_ARGB2101010:
2713 dspcntr |= DISPPLANE_BGRX101010;
2714 break;
2715 case DRM_FORMAT_XBGR2101010:
2716 case DRM_FORMAT_ABGR2101010:
2717 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2718 break;
2719 default:
baba133a 2720 BUG();
81255565 2721 }
57779d06 2722
f45651ba
VS
2723 if (INTEL_INFO(dev)->gen >= 4 &&
2724 obj->tiling_mode != I915_TILING_NONE)
2725 dspcntr |= DISPPLANE_TILED;
81255565 2726
de1aa629
VS
2727 if (IS_G4X(dev))
2728 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2729
b9897127 2730 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2731
c2c75131
DV
2732 if (INTEL_INFO(dev)->gen >= 4) {
2733 intel_crtc->dspaddr_offset =
bc752862 2734 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2735 pixel_size,
bc752862 2736 fb->pitches[0]);
c2c75131
DV
2737 linear_offset -= intel_crtc->dspaddr_offset;
2738 } else {
e506a0c6 2739 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2740 }
e506a0c6 2741
8e7d688b 2742 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2743 dspcntr |= DISPPLANE_ROTATE_180;
2744
6e3c9717
ACO
2745 x += (intel_crtc->config->pipe_src_w - 1);
2746 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2747
2748 /* Finding the last pixel of the last line of the display
2749 data and adding to linear_offset*/
2750 linear_offset +=
6e3c9717
ACO
2751 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2752 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2753 }
2754
2755 I915_WRITE(reg, dspcntr);
2756
01f2c773 2757 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2758 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2759 I915_WRITE(DSPSURF(plane),
2760 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2761 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2762 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2763 } else
f343c5f6 2764 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2765 POSTING_READ(reg);
17638cd6
JB
2766}
2767
29b9bde6
DV
2768static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2769 struct drm_framebuffer *fb,
2770 int x, int y)
17638cd6
JB
2771{
2772 struct drm_device *dev = crtc->dev;
2773 struct drm_i915_private *dev_priv = dev->dev_private;
2774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2775 struct drm_i915_gem_object *obj;
17638cd6 2776 int plane = intel_crtc->plane;
e506a0c6 2777 unsigned long linear_offset;
17638cd6 2778 u32 dspcntr;
f45651ba 2779 u32 reg = DSPCNTR(plane);
48404c1e 2780 int pixel_size;
f45651ba 2781
fdd508a6
VS
2782 if (!intel_crtc->primary_enabled) {
2783 I915_WRITE(reg, 0);
2784 I915_WRITE(DSPSURF(plane), 0);
2785 POSTING_READ(reg);
2786 return;
2787 }
2788
c9ba6fad
VS
2789 obj = intel_fb_obj(fb);
2790 if (WARN_ON(obj == NULL))
2791 return;
2792
2793 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2794
f45651ba
VS
2795 dspcntr = DISPPLANE_GAMMA_ENABLE;
2796
fdd508a6 2797 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2798
2799 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2800 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2801
57779d06
VS
2802 switch (fb->pixel_format) {
2803 case DRM_FORMAT_C8:
17638cd6
JB
2804 dspcntr |= DISPPLANE_8BPP;
2805 break;
57779d06
VS
2806 case DRM_FORMAT_RGB565:
2807 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2808 break;
57779d06
VS
2809 case DRM_FORMAT_XRGB8888:
2810 case DRM_FORMAT_ARGB8888:
2811 dspcntr |= DISPPLANE_BGRX888;
2812 break;
2813 case DRM_FORMAT_XBGR8888:
2814 case DRM_FORMAT_ABGR8888:
2815 dspcntr |= DISPPLANE_RGBX888;
2816 break;
2817 case DRM_FORMAT_XRGB2101010:
2818 case DRM_FORMAT_ARGB2101010:
2819 dspcntr |= DISPPLANE_BGRX101010;
2820 break;
2821 case DRM_FORMAT_XBGR2101010:
2822 case DRM_FORMAT_ABGR2101010:
2823 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2824 break;
2825 default:
baba133a 2826 BUG();
17638cd6
JB
2827 }
2828
2829 if (obj->tiling_mode != I915_TILING_NONE)
2830 dspcntr |= DISPPLANE_TILED;
17638cd6 2831
f45651ba 2832 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2833 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2834
b9897127 2835 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2836 intel_crtc->dspaddr_offset =
bc752862 2837 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2838 pixel_size,
bc752862 2839 fb->pitches[0]);
c2c75131 2840 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2841 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2842 dspcntr |= DISPPLANE_ROTATE_180;
2843
2844 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2845 x += (intel_crtc->config->pipe_src_w - 1);
2846 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2847
2848 /* Finding the last pixel of the last line of the display
2849 data and adding to linear_offset*/
2850 linear_offset +=
6e3c9717
ACO
2851 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2852 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2853 }
2854 }
2855
2856 I915_WRITE(reg, dspcntr);
17638cd6 2857
01f2c773 2858 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2859 I915_WRITE(DSPSURF(plane),
2860 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2861 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2862 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2863 } else {
2864 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2865 I915_WRITE(DSPLINOFF(plane), linear_offset);
2866 }
17638cd6 2867 POSTING_READ(reg);
17638cd6
JB
2868}
2869
b321803d
DL
2870u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2871 uint32_t pixel_format)
2872{
2873 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2874
2875 /*
2876 * The stride is either expressed as a multiple of 64 bytes
2877 * chunks for linear buffers or in number of tiles for tiled
2878 * buffers.
2879 */
2880 switch (fb_modifier) {
2881 case DRM_FORMAT_MOD_NONE:
2882 return 64;
2883 case I915_FORMAT_MOD_X_TILED:
2884 if (INTEL_INFO(dev)->gen == 2)
2885 return 128;
2886 return 512;
2887 case I915_FORMAT_MOD_Y_TILED:
2888 /* No need to check for old gens and Y tiling since this is
2889 * about the display engine and those will be blocked before
2890 * we get here.
2891 */
2892 return 128;
2893 case I915_FORMAT_MOD_Yf_TILED:
2894 if (bits_per_pixel == 8)
2895 return 64;
2896 else
2897 return 128;
2898 default:
2899 MISSING_CASE(fb_modifier);
2900 return 64;
2901 }
2902}
2903
121920fa
TU
2904unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2905 struct drm_i915_gem_object *obj)
2906{
2907 enum i915_ggtt_view_type view = I915_GGTT_VIEW_NORMAL;
2908
2909 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2910 view = I915_GGTT_VIEW_ROTATED;
2911
2912 return i915_gem_obj_ggtt_offset_view(obj, view);
2913}
2914
70d21f0e
DL
2915static void skylake_update_primary_plane(struct drm_crtc *crtc,
2916 struct drm_framebuffer *fb,
2917 int x, int y)
2918{
2919 struct drm_device *dev = crtc->dev;
2920 struct drm_i915_private *dev_priv = dev->dev_private;
2921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
70d21f0e
DL
2922 struct drm_i915_gem_object *obj;
2923 int pipe = intel_crtc->pipe;
b321803d 2924 u32 plane_ctl, stride_div;
121920fa 2925 unsigned long surf_addr;
70d21f0e
DL
2926
2927 if (!intel_crtc->primary_enabled) {
2928 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2929 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2930 POSTING_READ(PLANE_CTL(pipe, 0));
2931 return;
2932 }
2933
2934 plane_ctl = PLANE_CTL_ENABLE |
2935 PLANE_CTL_PIPE_GAMMA_ENABLE |
2936 PLANE_CTL_PIPE_CSC_ENABLE;
2937
2938 switch (fb->pixel_format) {
2939 case DRM_FORMAT_RGB565:
2940 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2941 break;
2942 case DRM_FORMAT_XRGB8888:
2943 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2944 break;
f75fb42a
JN
2945 case DRM_FORMAT_ARGB8888:
2946 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2947 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2948 break;
70d21f0e
DL
2949 case DRM_FORMAT_XBGR8888:
2950 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2951 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2952 break;
f75fb42a
JN
2953 case DRM_FORMAT_ABGR8888:
2954 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2955 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2956 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2957 break;
70d21f0e
DL
2958 case DRM_FORMAT_XRGB2101010:
2959 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2960 break;
2961 case DRM_FORMAT_XBGR2101010:
2962 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2963 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2964 break;
2965 default:
2966 BUG();
2967 }
2968
30af77c4
DV
2969 switch (fb->modifier[0]) {
2970 case DRM_FORMAT_MOD_NONE:
70d21f0e 2971 break;
30af77c4 2972 case I915_FORMAT_MOD_X_TILED:
70d21f0e 2973 plane_ctl |= PLANE_CTL_TILED_X;
b321803d
DL
2974 break;
2975 case I915_FORMAT_MOD_Y_TILED:
2976 plane_ctl |= PLANE_CTL_TILED_Y;
2977 break;
2978 case I915_FORMAT_MOD_Yf_TILED:
2979 plane_ctl |= PLANE_CTL_TILED_YF;
70d21f0e
DL
2980 break;
2981 default:
b321803d 2982 MISSING_CASE(fb->modifier[0]);
70d21f0e
DL
2983 }
2984
2985 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
8e7d688b 2986 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
1447dde0 2987 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e 2988
b321803d
DL
2989 obj = intel_fb_obj(fb);
2990 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2991 fb->pixel_format);
121920fa 2992 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
b321803d 2993
70d21f0e 2994 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
70d21f0e
DL
2995 I915_WRITE(PLANE_POS(pipe, 0), 0);
2996 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2997 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2998 (intel_crtc->config->pipe_src_h - 1) << 16 |
2999 (intel_crtc->config->pipe_src_w - 1));
b321803d 3000 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
121920fa 3001 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3002
3003 POSTING_READ(PLANE_SURF(pipe, 0));
3004}
3005
17638cd6
JB
3006/* Assume fb object is pinned & idle & fenced and just update base pointers */
3007static int
3008intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3009 int x, int y, enum mode_set_atomic state)
3010{
3011 struct drm_device *dev = crtc->dev;
3012 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3013
6b8e6ed0
CW
3014 if (dev_priv->display.disable_fbc)
3015 dev_priv->display.disable_fbc(dev);
81255565 3016
29b9bde6
DV
3017 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3018
3019 return 0;
81255565
JB
3020}
3021
7514747d 3022static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3023{
96a02917
VS
3024 struct drm_crtc *crtc;
3025
70e1e0ec 3026 for_each_crtc(dev, crtc) {
96a02917
VS
3027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3028 enum plane plane = intel_crtc->plane;
3029
3030 intel_prepare_page_flip(dev, plane);
3031 intel_finish_page_flip_plane(dev, plane);
3032 }
7514747d
VS
3033}
3034
3035static void intel_update_primary_planes(struct drm_device *dev)
3036{
3037 struct drm_i915_private *dev_priv = dev->dev_private;
3038 struct drm_crtc *crtc;
96a02917 3039
70e1e0ec 3040 for_each_crtc(dev, crtc) {
96a02917
VS
3041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3042
51fd371b 3043 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3044 /*
3045 * FIXME: Once we have proper support for primary planes (and
3046 * disabling them without disabling the entire crtc) allow again
66e514c1 3047 * a NULL crtc->primary->fb.
947fdaad 3048 */
f4510a27 3049 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3050 dev_priv->display.update_primary_plane(crtc,
66e514c1 3051 crtc->primary->fb,
262ca2b0
MR
3052 crtc->x,
3053 crtc->y);
51fd371b 3054 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3055 }
3056}
3057
7514747d
VS
3058void intel_prepare_reset(struct drm_device *dev)
3059{
f98ce92f
VS
3060 struct drm_i915_private *dev_priv = to_i915(dev);
3061 struct intel_crtc *crtc;
3062
7514747d
VS
3063 /* no reset support for gen2 */
3064 if (IS_GEN2(dev))
3065 return;
3066
3067 /* reset doesn't touch the display */
3068 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3069 return;
3070
3071 drm_modeset_lock_all(dev);
f98ce92f
VS
3072
3073 /*
3074 * Disabling the crtcs gracefully seems nicer. Also the
3075 * g33 docs say we should at least disable all the planes.
3076 */
3077 for_each_intel_crtc(dev, crtc) {
3078 if (crtc->active)
3079 dev_priv->display.crtc_disable(&crtc->base);
3080 }
7514747d
VS
3081}
3082
3083void intel_finish_reset(struct drm_device *dev)
3084{
3085 struct drm_i915_private *dev_priv = to_i915(dev);
3086
3087 /*
3088 * Flips in the rings will be nuked by the reset,
3089 * so complete all pending flips so that user space
3090 * will get its events and not get stuck.
3091 */
3092 intel_complete_page_flips(dev);
3093
3094 /* no reset support for gen2 */
3095 if (IS_GEN2(dev))
3096 return;
3097
3098 /* reset doesn't touch the display */
3099 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3100 /*
3101 * Flips in the rings have been nuked by the reset,
3102 * so update the base address of all primary
3103 * planes to the the last fb to make sure we're
3104 * showing the correct fb after a reset.
3105 */
3106 intel_update_primary_planes(dev);
3107 return;
3108 }
3109
3110 /*
3111 * The display has been reset as well,
3112 * so need a full re-initialization.
3113 */
3114 intel_runtime_pm_disable_interrupts(dev_priv);
3115 intel_runtime_pm_enable_interrupts(dev_priv);
3116
3117 intel_modeset_init_hw(dev);
3118
3119 spin_lock_irq(&dev_priv->irq_lock);
3120 if (dev_priv->display.hpd_irq_setup)
3121 dev_priv->display.hpd_irq_setup(dev);
3122 spin_unlock_irq(&dev_priv->irq_lock);
3123
3124 intel_modeset_setup_hw_state(dev, true);
3125
3126 intel_hpd_init(dev_priv);
3127
3128 drm_modeset_unlock_all(dev);
3129}
3130
14667a4b
CW
3131static int
3132intel_finish_fb(struct drm_framebuffer *old_fb)
3133{
2ff8fde1 3134 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
3135 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3136 bool was_interruptible = dev_priv->mm.interruptible;
3137 int ret;
3138
14667a4b
CW
3139 /* Big Hammer, we also need to ensure that any pending
3140 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3141 * current scanout is retired before unpinning the old
3142 * framebuffer.
3143 *
3144 * This should only fail upon a hung GPU, in which case we
3145 * can safely continue.
3146 */
3147 dev_priv->mm.interruptible = false;
3148 ret = i915_gem_object_finish_gpu(obj);
3149 dev_priv->mm.interruptible = was_interruptible;
3150
3151 return ret;
3152}
3153
7d5e3799
CW
3154static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3155{
3156 struct drm_device *dev = crtc->dev;
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3159 bool pending;
3160
3161 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3162 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3163 return false;
3164
5e2d7afc 3165 spin_lock_irq(&dev->event_lock);
7d5e3799 3166 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3167 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3168
3169 return pending;
3170}
3171
e30e8f75
GP
3172static void intel_update_pipe_size(struct intel_crtc *crtc)
3173{
3174 struct drm_device *dev = crtc->base.dev;
3175 struct drm_i915_private *dev_priv = dev->dev_private;
3176 const struct drm_display_mode *adjusted_mode;
3177
3178 if (!i915.fastboot)
3179 return;
3180
3181 /*
3182 * Update pipe size and adjust fitter if needed: the reason for this is
3183 * that in compute_mode_changes we check the native mode (not the pfit
3184 * mode) to see if we can flip rather than do a full mode set. In the
3185 * fastboot case, we'll flip, but if we don't update the pipesrc and
3186 * pfit state, we'll end up with a big fb scanned out into the wrong
3187 * sized surface.
3188 *
3189 * To fix this properly, we need to hoist the checks up into
3190 * compute_mode_changes (or above), check the actual pfit state and
3191 * whether the platform allows pfit disable with pipe active, and only
3192 * then update the pipesrc and pfit state, even on the flip path.
3193 */
3194
6e3c9717 3195 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3196
3197 I915_WRITE(PIPESRC(crtc->pipe),
3198 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3199 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3200 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3201 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3202 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3203 I915_WRITE(PF_CTL(crtc->pipe), 0);
3204 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3205 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3206 }
6e3c9717
ACO
3207 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3208 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3209}
3210
5e84e1a4
ZW
3211static void intel_fdi_normal_train(struct drm_crtc *crtc)
3212{
3213 struct drm_device *dev = crtc->dev;
3214 struct drm_i915_private *dev_priv = dev->dev_private;
3215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3216 int pipe = intel_crtc->pipe;
3217 u32 reg, temp;
3218
3219 /* enable normal train */
3220 reg = FDI_TX_CTL(pipe);
3221 temp = I915_READ(reg);
61e499bf 3222 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3223 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3224 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3225 } else {
3226 temp &= ~FDI_LINK_TRAIN_NONE;
3227 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3228 }
5e84e1a4
ZW
3229 I915_WRITE(reg, temp);
3230
3231 reg = FDI_RX_CTL(pipe);
3232 temp = I915_READ(reg);
3233 if (HAS_PCH_CPT(dev)) {
3234 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3235 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3236 } else {
3237 temp &= ~FDI_LINK_TRAIN_NONE;
3238 temp |= FDI_LINK_TRAIN_NONE;
3239 }
3240 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3241
3242 /* wait one idle pattern time */
3243 POSTING_READ(reg);
3244 udelay(1000);
357555c0
JB
3245
3246 /* IVB wants error correction enabled */
3247 if (IS_IVYBRIDGE(dev))
3248 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3249 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3250}
3251
8db9d77b
ZW
3252/* The FDI link training functions for ILK/Ibexpeak. */
3253static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3254{
3255 struct drm_device *dev = crtc->dev;
3256 struct drm_i915_private *dev_priv = dev->dev_private;
3257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3258 int pipe = intel_crtc->pipe;
5eddb70b 3259 u32 reg, temp, tries;
8db9d77b 3260
1c8562f6 3261 /* FDI needs bits from pipe first */
0fc932b8 3262 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3263
e1a44743
AJ
3264 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3265 for train result */
5eddb70b
CW
3266 reg = FDI_RX_IMR(pipe);
3267 temp = I915_READ(reg);
e1a44743
AJ
3268 temp &= ~FDI_RX_SYMBOL_LOCK;
3269 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3270 I915_WRITE(reg, temp);
3271 I915_READ(reg);
e1a44743
AJ
3272 udelay(150);
3273
8db9d77b 3274 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3275 reg = FDI_TX_CTL(pipe);
3276 temp = I915_READ(reg);
627eb5a3 3277 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3278 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3279 temp &= ~FDI_LINK_TRAIN_NONE;
3280 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3281 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3282
5eddb70b
CW
3283 reg = FDI_RX_CTL(pipe);
3284 temp = I915_READ(reg);
8db9d77b
ZW
3285 temp &= ~FDI_LINK_TRAIN_NONE;
3286 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3287 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3288
3289 POSTING_READ(reg);
8db9d77b
ZW
3290 udelay(150);
3291
5b2adf89 3292 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3293 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3294 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3295 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3296
5eddb70b 3297 reg = FDI_RX_IIR(pipe);
e1a44743 3298 for (tries = 0; tries < 5; tries++) {
5eddb70b 3299 temp = I915_READ(reg);
8db9d77b
ZW
3300 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3301
3302 if ((temp & FDI_RX_BIT_LOCK)) {
3303 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3304 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3305 break;
3306 }
8db9d77b 3307 }
e1a44743 3308 if (tries == 5)
5eddb70b 3309 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3310
3311 /* Train 2 */
5eddb70b
CW
3312 reg = FDI_TX_CTL(pipe);
3313 temp = I915_READ(reg);
8db9d77b
ZW
3314 temp &= ~FDI_LINK_TRAIN_NONE;
3315 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3316 I915_WRITE(reg, temp);
8db9d77b 3317
5eddb70b
CW
3318 reg = FDI_RX_CTL(pipe);
3319 temp = I915_READ(reg);
8db9d77b
ZW
3320 temp &= ~FDI_LINK_TRAIN_NONE;
3321 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3322 I915_WRITE(reg, temp);
8db9d77b 3323
5eddb70b
CW
3324 POSTING_READ(reg);
3325 udelay(150);
8db9d77b 3326
5eddb70b 3327 reg = FDI_RX_IIR(pipe);
e1a44743 3328 for (tries = 0; tries < 5; tries++) {
5eddb70b 3329 temp = I915_READ(reg);
8db9d77b
ZW
3330 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3331
3332 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3333 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3334 DRM_DEBUG_KMS("FDI train 2 done.\n");
3335 break;
3336 }
8db9d77b 3337 }
e1a44743 3338 if (tries == 5)
5eddb70b 3339 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3340
3341 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3342
8db9d77b
ZW
3343}
3344
0206e353 3345static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3346 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3347 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3348 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3349 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3350};
3351
3352/* The FDI link training functions for SNB/Cougarpoint. */
3353static void gen6_fdi_link_train(struct drm_crtc *crtc)
3354{
3355 struct drm_device *dev = crtc->dev;
3356 struct drm_i915_private *dev_priv = dev->dev_private;
3357 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3358 int pipe = intel_crtc->pipe;
fa37d39e 3359 u32 reg, temp, i, retry;
8db9d77b 3360
e1a44743
AJ
3361 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3362 for train result */
5eddb70b
CW
3363 reg = FDI_RX_IMR(pipe);
3364 temp = I915_READ(reg);
e1a44743
AJ
3365 temp &= ~FDI_RX_SYMBOL_LOCK;
3366 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3367 I915_WRITE(reg, temp);
3368
3369 POSTING_READ(reg);
e1a44743
AJ
3370 udelay(150);
3371
8db9d77b 3372 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3373 reg = FDI_TX_CTL(pipe);
3374 temp = I915_READ(reg);
627eb5a3 3375 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3376 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3377 temp &= ~FDI_LINK_TRAIN_NONE;
3378 temp |= FDI_LINK_TRAIN_PATTERN_1;
3379 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3380 /* SNB-B */
3381 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3382 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3383
d74cf324
DV
3384 I915_WRITE(FDI_RX_MISC(pipe),
3385 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3386
5eddb70b
CW
3387 reg = FDI_RX_CTL(pipe);
3388 temp = I915_READ(reg);
8db9d77b
ZW
3389 if (HAS_PCH_CPT(dev)) {
3390 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3391 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3392 } else {
3393 temp &= ~FDI_LINK_TRAIN_NONE;
3394 temp |= FDI_LINK_TRAIN_PATTERN_1;
3395 }
5eddb70b
CW
3396 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3397
3398 POSTING_READ(reg);
8db9d77b
ZW
3399 udelay(150);
3400
0206e353 3401 for (i = 0; i < 4; i++) {
5eddb70b
CW
3402 reg = FDI_TX_CTL(pipe);
3403 temp = I915_READ(reg);
8db9d77b
ZW
3404 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3405 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3406 I915_WRITE(reg, temp);
3407
3408 POSTING_READ(reg);
8db9d77b
ZW
3409 udelay(500);
3410
fa37d39e
SP
3411 for (retry = 0; retry < 5; retry++) {
3412 reg = FDI_RX_IIR(pipe);
3413 temp = I915_READ(reg);
3414 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3415 if (temp & FDI_RX_BIT_LOCK) {
3416 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3417 DRM_DEBUG_KMS("FDI train 1 done.\n");
3418 break;
3419 }
3420 udelay(50);
8db9d77b 3421 }
fa37d39e
SP
3422 if (retry < 5)
3423 break;
8db9d77b
ZW
3424 }
3425 if (i == 4)
5eddb70b 3426 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3427
3428 /* Train 2 */
5eddb70b
CW
3429 reg = FDI_TX_CTL(pipe);
3430 temp = I915_READ(reg);
8db9d77b
ZW
3431 temp &= ~FDI_LINK_TRAIN_NONE;
3432 temp |= FDI_LINK_TRAIN_PATTERN_2;
3433 if (IS_GEN6(dev)) {
3434 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3435 /* SNB-B */
3436 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3437 }
5eddb70b 3438 I915_WRITE(reg, temp);
8db9d77b 3439
5eddb70b
CW
3440 reg = FDI_RX_CTL(pipe);
3441 temp = I915_READ(reg);
8db9d77b
ZW
3442 if (HAS_PCH_CPT(dev)) {
3443 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3444 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3445 } else {
3446 temp &= ~FDI_LINK_TRAIN_NONE;
3447 temp |= FDI_LINK_TRAIN_PATTERN_2;
3448 }
5eddb70b
CW
3449 I915_WRITE(reg, temp);
3450
3451 POSTING_READ(reg);
8db9d77b
ZW
3452 udelay(150);
3453
0206e353 3454 for (i = 0; i < 4; i++) {
5eddb70b
CW
3455 reg = FDI_TX_CTL(pipe);
3456 temp = I915_READ(reg);
8db9d77b
ZW
3457 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3458 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3459 I915_WRITE(reg, temp);
3460
3461 POSTING_READ(reg);
8db9d77b
ZW
3462 udelay(500);
3463
fa37d39e
SP
3464 for (retry = 0; retry < 5; retry++) {
3465 reg = FDI_RX_IIR(pipe);
3466 temp = I915_READ(reg);
3467 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3468 if (temp & FDI_RX_SYMBOL_LOCK) {
3469 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3470 DRM_DEBUG_KMS("FDI train 2 done.\n");
3471 break;
3472 }
3473 udelay(50);
8db9d77b 3474 }
fa37d39e
SP
3475 if (retry < 5)
3476 break;
8db9d77b
ZW
3477 }
3478 if (i == 4)
5eddb70b 3479 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3480
3481 DRM_DEBUG_KMS("FDI train done.\n");
3482}
3483
357555c0
JB
3484/* Manual link training for Ivy Bridge A0 parts */
3485static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3486{
3487 struct drm_device *dev = crtc->dev;
3488 struct drm_i915_private *dev_priv = dev->dev_private;
3489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3490 int pipe = intel_crtc->pipe;
139ccd3f 3491 u32 reg, temp, i, j;
357555c0
JB
3492
3493 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3494 for train result */
3495 reg = FDI_RX_IMR(pipe);
3496 temp = I915_READ(reg);
3497 temp &= ~FDI_RX_SYMBOL_LOCK;
3498 temp &= ~FDI_RX_BIT_LOCK;
3499 I915_WRITE(reg, temp);
3500
3501 POSTING_READ(reg);
3502 udelay(150);
3503
01a415fd
DV
3504 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3505 I915_READ(FDI_RX_IIR(pipe)));
3506
139ccd3f
JB
3507 /* Try each vswing and preemphasis setting twice before moving on */
3508 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3509 /* disable first in case we need to retry */
3510 reg = FDI_TX_CTL(pipe);
3511 temp = I915_READ(reg);
3512 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3513 temp &= ~FDI_TX_ENABLE;
3514 I915_WRITE(reg, temp);
357555c0 3515
139ccd3f
JB
3516 reg = FDI_RX_CTL(pipe);
3517 temp = I915_READ(reg);
3518 temp &= ~FDI_LINK_TRAIN_AUTO;
3519 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3520 temp &= ~FDI_RX_ENABLE;
3521 I915_WRITE(reg, temp);
357555c0 3522
139ccd3f 3523 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3524 reg = FDI_TX_CTL(pipe);
3525 temp = I915_READ(reg);
139ccd3f 3526 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3527 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3528 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3529 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3530 temp |= snb_b_fdi_train_param[j/2];
3531 temp |= FDI_COMPOSITE_SYNC;
3532 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3533
139ccd3f
JB
3534 I915_WRITE(FDI_RX_MISC(pipe),
3535 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3536
139ccd3f 3537 reg = FDI_RX_CTL(pipe);
357555c0 3538 temp = I915_READ(reg);
139ccd3f
JB
3539 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3540 temp |= FDI_COMPOSITE_SYNC;
3541 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3542
139ccd3f
JB
3543 POSTING_READ(reg);
3544 udelay(1); /* should be 0.5us */
357555c0 3545
139ccd3f
JB
3546 for (i = 0; i < 4; i++) {
3547 reg = FDI_RX_IIR(pipe);
3548 temp = I915_READ(reg);
3549 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3550
139ccd3f
JB
3551 if (temp & FDI_RX_BIT_LOCK ||
3552 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3553 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3554 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3555 i);
3556 break;
3557 }
3558 udelay(1); /* should be 0.5us */
3559 }
3560 if (i == 4) {
3561 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3562 continue;
3563 }
357555c0 3564
139ccd3f 3565 /* Train 2 */
357555c0
JB
3566 reg = FDI_TX_CTL(pipe);
3567 temp = I915_READ(reg);
139ccd3f
JB
3568 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3569 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3570 I915_WRITE(reg, temp);
3571
3572 reg = FDI_RX_CTL(pipe);
3573 temp = I915_READ(reg);
3574 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3575 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3576 I915_WRITE(reg, temp);
3577
3578 POSTING_READ(reg);
139ccd3f 3579 udelay(2); /* should be 1.5us */
357555c0 3580
139ccd3f
JB
3581 for (i = 0; i < 4; i++) {
3582 reg = FDI_RX_IIR(pipe);
3583 temp = I915_READ(reg);
3584 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3585
139ccd3f
JB
3586 if (temp & FDI_RX_SYMBOL_LOCK ||
3587 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3588 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3589 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3590 i);
3591 goto train_done;
3592 }
3593 udelay(2); /* should be 1.5us */
357555c0 3594 }
139ccd3f
JB
3595 if (i == 4)
3596 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3597 }
357555c0 3598
139ccd3f 3599train_done:
357555c0
JB
3600 DRM_DEBUG_KMS("FDI train done.\n");
3601}
3602
88cefb6c 3603static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3604{
88cefb6c 3605 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3606 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3607 int pipe = intel_crtc->pipe;
5eddb70b 3608 u32 reg, temp;
79e53945 3609
c64e311e 3610
c98e9dcf 3611 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3612 reg = FDI_RX_CTL(pipe);
3613 temp = I915_READ(reg);
627eb5a3 3614 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3615 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3616 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3617 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3618
3619 POSTING_READ(reg);
c98e9dcf
JB
3620 udelay(200);
3621
3622 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3623 temp = I915_READ(reg);
3624 I915_WRITE(reg, temp | FDI_PCDCLK);
3625
3626 POSTING_READ(reg);
c98e9dcf
JB
3627 udelay(200);
3628
20749730
PZ
3629 /* Enable CPU FDI TX PLL, always on for Ironlake */
3630 reg = FDI_TX_CTL(pipe);
3631 temp = I915_READ(reg);
3632 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3633 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3634
20749730
PZ
3635 POSTING_READ(reg);
3636 udelay(100);
6be4a607 3637 }
0e23b99d
JB
3638}
3639
88cefb6c
DV
3640static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3641{
3642 struct drm_device *dev = intel_crtc->base.dev;
3643 struct drm_i915_private *dev_priv = dev->dev_private;
3644 int pipe = intel_crtc->pipe;
3645 u32 reg, temp;
3646
3647 /* Switch from PCDclk to Rawclk */
3648 reg = FDI_RX_CTL(pipe);
3649 temp = I915_READ(reg);
3650 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3651
3652 /* Disable CPU FDI TX PLL */
3653 reg = FDI_TX_CTL(pipe);
3654 temp = I915_READ(reg);
3655 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3656
3657 POSTING_READ(reg);
3658 udelay(100);
3659
3660 reg = FDI_RX_CTL(pipe);
3661 temp = I915_READ(reg);
3662 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3663
3664 /* Wait for the clocks to turn off. */
3665 POSTING_READ(reg);
3666 udelay(100);
3667}
3668
0fc932b8
JB
3669static void ironlake_fdi_disable(struct drm_crtc *crtc)
3670{
3671 struct drm_device *dev = crtc->dev;
3672 struct drm_i915_private *dev_priv = dev->dev_private;
3673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3674 int pipe = intel_crtc->pipe;
3675 u32 reg, temp;
3676
3677 /* disable CPU FDI tx and PCH FDI rx */
3678 reg = FDI_TX_CTL(pipe);
3679 temp = I915_READ(reg);
3680 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3681 POSTING_READ(reg);
3682
3683 reg = FDI_RX_CTL(pipe);
3684 temp = I915_READ(reg);
3685 temp &= ~(0x7 << 16);
dfd07d72 3686 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3687 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3688
3689 POSTING_READ(reg);
3690 udelay(100);
3691
3692 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3693 if (HAS_PCH_IBX(dev))
6f06ce18 3694 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3695
3696 /* still set train pattern 1 */
3697 reg = FDI_TX_CTL(pipe);
3698 temp = I915_READ(reg);
3699 temp &= ~FDI_LINK_TRAIN_NONE;
3700 temp |= FDI_LINK_TRAIN_PATTERN_1;
3701 I915_WRITE(reg, temp);
3702
3703 reg = FDI_RX_CTL(pipe);
3704 temp = I915_READ(reg);
3705 if (HAS_PCH_CPT(dev)) {
3706 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3707 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3708 } else {
3709 temp &= ~FDI_LINK_TRAIN_NONE;
3710 temp |= FDI_LINK_TRAIN_PATTERN_1;
3711 }
3712 /* BPC in FDI rx is consistent with that in PIPECONF */
3713 temp &= ~(0x07 << 16);
dfd07d72 3714 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3715 I915_WRITE(reg, temp);
3716
3717 POSTING_READ(reg);
3718 udelay(100);
3719}
3720
5dce5b93
CW
3721bool intel_has_pending_fb_unpin(struct drm_device *dev)
3722{
3723 struct intel_crtc *crtc;
3724
3725 /* Note that we don't need to be called with mode_config.lock here
3726 * as our list of CRTC objects is static for the lifetime of the
3727 * device and so cannot disappear as we iterate. Similarly, we can
3728 * happily treat the predicates as racy, atomic checks as userspace
3729 * cannot claim and pin a new fb without at least acquring the
3730 * struct_mutex and so serialising with us.
3731 */
d3fcc808 3732 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3733 if (atomic_read(&crtc->unpin_work_count) == 0)
3734 continue;
3735
3736 if (crtc->unpin_work)
3737 intel_wait_for_vblank(dev, crtc->pipe);
3738
3739 return true;
3740 }
3741
3742 return false;
3743}
3744
d6bbafa1
CW
3745static void page_flip_completed(struct intel_crtc *intel_crtc)
3746{
3747 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3748 struct intel_unpin_work *work = intel_crtc->unpin_work;
3749
3750 /* ensure that the unpin work is consistent wrt ->pending. */
3751 smp_rmb();
3752 intel_crtc->unpin_work = NULL;
3753
3754 if (work->event)
3755 drm_send_vblank_event(intel_crtc->base.dev,
3756 intel_crtc->pipe,
3757 work->event);
3758
3759 drm_crtc_vblank_put(&intel_crtc->base);
3760
3761 wake_up_all(&dev_priv->pending_flip_queue);
3762 queue_work(dev_priv->wq, &work->work);
3763
3764 trace_i915_flip_complete(intel_crtc->plane,
3765 work->pending_flip_obj);
3766}
3767
46a55d30 3768void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3769{
0f91128d 3770 struct drm_device *dev = crtc->dev;
5bb61643 3771 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3772
2c10d571 3773 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3774 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3775 !intel_crtc_has_pending_flip(crtc),
3776 60*HZ) == 0)) {
3777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3778
5e2d7afc 3779 spin_lock_irq(&dev->event_lock);
9c787942
CW
3780 if (intel_crtc->unpin_work) {
3781 WARN_ONCE(1, "Removing stuck page flip\n");
3782 page_flip_completed(intel_crtc);
3783 }
5e2d7afc 3784 spin_unlock_irq(&dev->event_lock);
9c787942 3785 }
5bb61643 3786
975d568a
CW
3787 if (crtc->primary->fb) {
3788 mutex_lock(&dev->struct_mutex);
3789 intel_finish_fb(crtc->primary->fb);
3790 mutex_unlock(&dev->struct_mutex);
3791 }
e6c3a2a6
CW
3792}
3793
e615efe4
ED
3794/* Program iCLKIP clock to the desired frequency */
3795static void lpt_program_iclkip(struct drm_crtc *crtc)
3796{
3797 struct drm_device *dev = crtc->dev;
3798 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3799 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3800 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3801 u32 temp;
3802
09153000
DV
3803 mutex_lock(&dev_priv->dpio_lock);
3804
e615efe4
ED
3805 /* It is necessary to ungate the pixclk gate prior to programming
3806 * the divisors, and gate it back when it is done.
3807 */
3808 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3809
3810 /* Disable SSCCTL */
3811 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3812 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3813 SBI_SSCCTL_DISABLE,
3814 SBI_ICLK);
e615efe4
ED
3815
3816 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3817 if (clock == 20000) {
e615efe4
ED
3818 auxdiv = 1;
3819 divsel = 0x41;
3820 phaseinc = 0x20;
3821 } else {
3822 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3823 * but the adjusted_mode->crtc_clock in in KHz. To get the
3824 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3825 * convert the virtual clock precision to KHz here for higher
3826 * precision.
3827 */
3828 u32 iclk_virtual_root_freq = 172800 * 1000;
3829 u32 iclk_pi_range = 64;
3830 u32 desired_divisor, msb_divisor_value, pi_value;
3831
12d7ceed 3832 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3833 msb_divisor_value = desired_divisor / iclk_pi_range;
3834 pi_value = desired_divisor % iclk_pi_range;
3835
3836 auxdiv = 0;
3837 divsel = msb_divisor_value - 2;
3838 phaseinc = pi_value;
3839 }
3840
3841 /* This should not happen with any sane values */
3842 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3843 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3844 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3845 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3846
3847 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3848 clock,
e615efe4
ED
3849 auxdiv,
3850 divsel,
3851 phasedir,
3852 phaseinc);
3853
3854 /* Program SSCDIVINTPHASE6 */
988d6ee8 3855 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3856 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3857 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3858 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3859 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3860 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3861 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3862 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3863
3864 /* Program SSCAUXDIV */
988d6ee8 3865 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3866 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3867 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3868 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3869
3870 /* Enable modulator and associated divider */
988d6ee8 3871 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3872 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3873 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3874
3875 /* Wait for initialization time */
3876 udelay(24);
3877
3878 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3879
3880 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3881}
3882
275f01b2
DV
3883static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3884 enum pipe pch_transcoder)
3885{
3886 struct drm_device *dev = crtc->base.dev;
3887 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3888 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3889
3890 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3891 I915_READ(HTOTAL(cpu_transcoder)));
3892 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3893 I915_READ(HBLANK(cpu_transcoder)));
3894 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3895 I915_READ(HSYNC(cpu_transcoder)));
3896
3897 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3898 I915_READ(VTOTAL(cpu_transcoder)));
3899 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3900 I915_READ(VBLANK(cpu_transcoder)));
3901 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3902 I915_READ(VSYNC(cpu_transcoder)));
3903 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3904 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3905}
3906
003632d9 3907static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
3908{
3909 struct drm_i915_private *dev_priv = dev->dev_private;
3910 uint32_t temp;
3911
3912 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 3913 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
3914 return;
3915
3916 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3917 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3918
003632d9
ACO
3919 temp &= ~FDI_BC_BIFURCATION_SELECT;
3920 if (enable)
3921 temp |= FDI_BC_BIFURCATION_SELECT;
3922
3923 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
3924 I915_WRITE(SOUTH_CHICKEN1, temp);
3925 POSTING_READ(SOUTH_CHICKEN1);
3926}
3927
3928static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3929{
3930 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
3931
3932 switch (intel_crtc->pipe) {
3933 case PIPE_A:
3934 break;
3935 case PIPE_B:
6e3c9717 3936 if (intel_crtc->config->fdi_lanes > 2)
003632d9 3937 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 3938 else
003632d9 3939 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
3940
3941 break;
3942 case PIPE_C:
003632d9 3943 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
3944
3945 break;
3946 default:
3947 BUG();
3948 }
3949}
3950
f67a559d
JB
3951/*
3952 * Enable PCH resources required for PCH ports:
3953 * - PCH PLLs
3954 * - FDI training & RX/TX
3955 * - update transcoder timings
3956 * - DP transcoding bits
3957 * - transcoder
3958 */
3959static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3960{
3961 struct drm_device *dev = crtc->dev;
3962 struct drm_i915_private *dev_priv = dev->dev_private;
3963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3964 int pipe = intel_crtc->pipe;
ee7b9f93 3965 u32 reg, temp;
2c07245f 3966
ab9412ba 3967 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3968
1fbc0d78
DV
3969 if (IS_IVYBRIDGE(dev))
3970 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3971
cd986abb
DV
3972 /* Write the TU size bits before fdi link training, so that error
3973 * detection works. */
3974 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3975 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3976
c98e9dcf 3977 /* For PCH output, training FDI link */
674cf967 3978 dev_priv->display.fdi_link_train(crtc);
2c07245f 3979
3ad8a208
DV
3980 /* We need to program the right clock selection before writing the pixel
3981 * mutliplier into the DPLL. */
303b81e0 3982 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3983 u32 sel;
4b645f14 3984
c98e9dcf 3985 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3986 temp |= TRANS_DPLL_ENABLE(pipe);
3987 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3988 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3989 temp |= sel;
3990 else
3991 temp &= ~sel;
c98e9dcf 3992 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3993 }
5eddb70b 3994
3ad8a208
DV
3995 /* XXX: pch pll's can be enabled any time before we enable the PCH
3996 * transcoder, and we actually should do this to not upset any PCH
3997 * transcoder that already use the clock when we share it.
3998 *
3999 * Note that enable_shared_dpll tries to do the right thing, but
4000 * get_shared_dpll unconditionally resets the pll - we need that to have
4001 * the right LVDS enable sequence. */
85b3894f 4002 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4003
d9b6cb56
JB
4004 /* set transcoder timing, panel must allow it */
4005 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4006 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4007
303b81e0 4008 intel_fdi_normal_train(crtc);
5e84e1a4 4009
c98e9dcf 4010 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4011 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4012 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4013 reg = TRANS_DP_CTL(pipe);
4014 temp = I915_READ(reg);
4015 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4016 TRANS_DP_SYNC_MASK |
4017 TRANS_DP_BPC_MASK);
5eddb70b
CW
4018 temp |= (TRANS_DP_OUTPUT_ENABLE |
4019 TRANS_DP_ENH_FRAMING);
9325c9f0 4020 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4021
4022 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4023 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4024 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4025 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4026
4027 switch (intel_trans_dp_port_sel(crtc)) {
4028 case PCH_DP_B:
5eddb70b 4029 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4030 break;
4031 case PCH_DP_C:
5eddb70b 4032 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4033 break;
4034 case PCH_DP_D:
5eddb70b 4035 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4036 break;
4037 default:
e95d41e1 4038 BUG();
32f9d658 4039 }
2c07245f 4040
5eddb70b 4041 I915_WRITE(reg, temp);
6be4a607 4042 }
b52eb4dc 4043
b8a4f404 4044 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4045}
4046
1507e5bd
PZ
4047static void lpt_pch_enable(struct drm_crtc *crtc)
4048{
4049 struct drm_device *dev = crtc->dev;
4050 struct drm_i915_private *dev_priv = dev->dev_private;
4051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4052 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4053
ab9412ba 4054 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4055
8c52b5e8 4056 lpt_program_iclkip(crtc);
1507e5bd 4057
0540e488 4058 /* Set transcoder timing. */
275f01b2 4059 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4060
937bb610 4061 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4062}
4063
716c2e55 4064void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 4065{
e2b78267 4066 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
4067
4068 if (pll == NULL)
4069 return;
4070
3e369b76 4071 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 4072 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
4073 return;
4074 }
4075
3e369b76
ACO
4076 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4077 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
4078 WARN_ON(pll->on);
4079 WARN_ON(pll->active);
4080 }
4081
6e3c9717 4082 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
4083}
4084
190f68c5
ACO
4085struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4086 struct intel_crtc_state *crtc_state)
ee7b9f93 4087{
e2b78267 4088 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4089 struct intel_shared_dpll *pll;
e2b78267 4090 enum intel_dpll_id i;
ee7b9f93 4091
98b6bd99
DV
4092 if (HAS_PCH_IBX(dev_priv->dev)) {
4093 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4094 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4095 pll = &dev_priv->shared_dplls[i];
98b6bd99 4096
46edb027
DV
4097 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4098 crtc->base.base.id, pll->name);
98b6bd99 4099
8bd31e67 4100 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 4101
98b6bd99
DV
4102 goto found;
4103 }
4104
e72f9fbf
DV
4105 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4106 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4107
4108 /* Only want to check enabled timings first */
8bd31e67 4109 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
4110 continue;
4111
190f68c5 4112 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
4113 &pll->new_config->hw_state,
4114 sizeof(pll->new_config->hw_state)) == 0) {
4115 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4116 crtc->base.base.id, pll->name,
8bd31e67
ACO
4117 pll->new_config->crtc_mask,
4118 pll->active);
ee7b9f93
JB
4119 goto found;
4120 }
4121 }
4122
4123 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4124 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4125 pll = &dev_priv->shared_dplls[i];
8bd31e67 4126 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
4127 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4128 crtc->base.base.id, pll->name);
ee7b9f93
JB
4129 goto found;
4130 }
4131 }
4132
4133 return NULL;
4134
4135found:
8bd31e67 4136 if (pll->new_config->crtc_mask == 0)
190f68c5 4137 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 4138
190f68c5 4139 crtc_state->shared_dpll = i;
46edb027
DV
4140 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4141 pipe_name(crtc->pipe));
ee7b9f93 4142
8bd31e67 4143 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 4144
ee7b9f93
JB
4145 return pll;
4146}
4147
8bd31e67
ACO
4148/**
4149 * intel_shared_dpll_start_config - start a new PLL staged config
4150 * @dev_priv: DRM device
4151 * @clear_pipes: mask of pipes that will have their PLLs freed
4152 *
4153 * Starts a new PLL staged config, copying the current config but
4154 * releasing the references of pipes specified in clear_pipes.
4155 */
4156static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4157 unsigned clear_pipes)
4158{
4159 struct intel_shared_dpll *pll;
4160 enum intel_dpll_id i;
4161
4162 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4163 pll = &dev_priv->shared_dplls[i];
4164
4165 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4166 GFP_KERNEL);
4167 if (!pll->new_config)
4168 goto cleanup;
4169
4170 pll->new_config->crtc_mask &= ~clear_pipes;
4171 }
4172
4173 return 0;
4174
4175cleanup:
4176 while (--i >= 0) {
4177 pll = &dev_priv->shared_dplls[i];
f354d733 4178 kfree(pll->new_config);
8bd31e67
ACO
4179 pll->new_config = NULL;
4180 }
4181
4182 return -ENOMEM;
4183}
4184
4185static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4186{
4187 struct intel_shared_dpll *pll;
4188 enum intel_dpll_id i;
4189
4190 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4191 pll = &dev_priv->shared_dplls[i];
4192
4193 WARN_ON(pll->new_config == &pll->config);
4194
4195 pll->config = *pll->new_config;
4196 kfree(pll->new_config);
4197 pll->new_config = NULL;
4198 }
4199}
4200
4201static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4202{
4203 struct intel_shared_dpll *pll;
4204 enum intel_dpll_id i;
4205
4206 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4207 pll = &dev_priv->shared_dplls[i];
4208
4209 WARN_ON(pll->new_config == &pll->config);
4210
4211 kfree(pll->new_config);
4212 pll->new_config = NULL;
4213 }
4214}
4215
a1520318 4216static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4217{
4218 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4219 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4220 u32 temp;
4221
4222 temp = I915_READ(dslreg);
4223 udelay(500);
4224 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4225 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4226 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4227 }
4228}
4229
bd2e244f
JB
4230static void skylake_pfit_enable(struct intel_crtc *crtc)
4231{
4232 struct drm_device *dev = crtc->base.dev;
4233 struct drm_i915_private *dev_priv = dev->dev_private;
4234 int pipe = crtc->pipe;
4235
6e3c9717 4236 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4237 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4238 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4239 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4240 }
4241}
4242
b074cec8
JB
4243static void ironlake_pfit_enable(struct intel_crtc *crtc)
4244{
4245 struct drm_device *dev = crtc->base.dev;
4246 struct drm_i915_private *dev_priv = dev->dev_private;
4247 int pipe = crtc->pipe;
4248
6e3c9717 4249 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4250 /* Force use of hard-coded filter coefficients
4251 * as some pre-programmed values are broken,
4252 * e.g. x201.
4253 */
4254 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4255 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4256 PF_PIPE_SEL_IVB(pipe));
4257 else
4258 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4259 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4260 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4261 }
4262}
4263
4a3b8769 4264static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4265{
4266 struct drm_device *dev = crtc->dev;
4267 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4268 struct drm_plane *plane;
bb53d4ae
VS
4269 struct intel_plane *intel_plane;
4270
af2b653b
MR
4271 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4272 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4273 if (intel_plane->pipe == pipe)
4274 intel_plane_restore(&intel_plane->base);
af2b653b 4275 }
bb53d4ae
VS
4276}
4277
0d703d4e
MR
4278/*
4279 * Disable a plane internally without actually modifying the plane's state.
4280 * This will allow us to easily restore the plane later by just reprogramming
4281 * its state.
4282 */
4283static void disable_plane_internal(struct drm_plane *plane)
4284{
4285 struct intel_plane *intel_plane = to_intel_plane(plane);
4286 struct drm_plane_state *state =
4287 plane->funcs->atomic_duplicate_state(plane);
4288 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4289
4290 intel_state->visible = false;
4291 intel_plane->commit_plane(plane, intel_state);
4292
4293 intel_plane_destroy_state(plane, state);
4294}
4295
4a3b8769 4296static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4297{
4298 struct drm_device *dev = crtc->dev;
4299 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4300 struct drm_plane *plane;
bb53d4ae
VS
4301 struct intel_plane *intel_plane;
4302
af2b653b
MR
4303 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4304 intel_plane = to_intel_plane(plane);
0d703d4e
MR
4305 if (plane->fb && intel_plane->pipe == pipe)
4306 disable_plane_internal(plane);
af2b653b 4307 }
bb53d4ae
VS
4308}
4309
20bc8673 4310void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4311{
cea165c3
VS
4312 struct drm_device *dev = crtc->base.dev;
4313 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4314
6e3c9717 4315 if (!crtc->config->ips_enabled)
d77e4531
PZ
4316 return;
4317
cea165c3
VS
4318 /* We can only enable IPS after we enable a plane and wait for a vblank */
4319 intel_wait_for_vblank(dev, crtc->pipe);
4320
d77e4531 4321 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4322 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4323 mutex_lock(&dev_priv->rps.hw_lock);
4324 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4325 mutex_unlock(&dev_priv->rps.hw_lock);
4326 /* Quoting Art Runyan: "its not safe to expect any particular
4327 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4328 * mailbox." Moreover, the mailbox may return a bogus state,
4329 * so we need to just enable it and continue on.
2a114cc1
BW
4330 */
4331 } else {
4332 I915_WRITE(IPS_CTL, IPS_ENABLE);
4333 /* The bit only becomes 1 in the next vblank, so this wait here
4334 * is essentially intel_wait_for_vblank. If we don't have this
4335 * and don't wait for vblanks until the end of crtc_enable, then
4336 * the HW state readout code will complain that the expected
4337 * IPS_CTL value is not the one we read. */
4338 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4339 DRM_ERROR("Timed out waiting for IPS enable\n");
4340 }
d77e4531
PZ
4341}
4342
20bc8673 4343void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4344{
4345 struct drm_device *dev = crtc->base.dev;
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347
6e3c9717 4348 if (!crtc->config->ips_enabled)
d77e4531
PZ
4349 return;
4350
4351 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4352 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4353 mutex_lock(&dev_priv->rps.hw_lock);
4354 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4355 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4356 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4357 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4358 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4359 } else {
2a114cc1 4360 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4361 POSTING_READ(IPS_CTL);
4362 }
d77e4531
PZ
4363
4364 /* We need to wait for a vblank before we can disable the plane. */
4365 intel_wait_for_vblank(dev, crtc->pipe);
4366}
4367
4368/** Loads the palette/gamma unit for the CRTC with the prepared values */
4369static void intel_crtc_load_lut(struct drm_crtc *crtc)
4370{
4371 struct drm_device *dev = crtc->dev;
4372 struct drm_i915_private *dev_priv = dev->dev_private;
4373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4374 enum pipe pipe = intel_crtc->pipe;
4375 int palreg = PALETTE(pipe);
4376 int i;
4377 bool reenable_ips = false;
4378
4379 /* The clocks have to be on to load the palette. */
83d65738 4380 if (!crtc->state->enable || !intel_crtc->active)
d77e4531
PZ
4381 return;
4382
4383 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4384 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4385 assert_dsi_pll_enabled(dev_priv);
4386 else
4387 assert_pll_enabled(dev_priv, pipe);
4388 }
4389
4390 /* use legacy palette for Ironlake */
7a1db49a 4391 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4392 palreg = LGC_PALETTE(pipe);
4393
4394 /* Workaround : Do not read or write the pipe palette/gamma data while
4395 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4396 */
6e3c9717 4397 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4398 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4399 GAMMA_MODE_MODE_SPLIT)) {
4400 hsw_disable_ips(intel_crtc);
4401 reenable_ips = true;
4402 }
4403
4404 for (i = 0; i < 256; i++) {
4405 I915_WRITE(palreg + 4 * i,
4406 (intel_crtc->lut_r[i] << 16) |
4407 (intel_crtc->lut_g[i] << 8) |
4408 intel_crtc->lut_b[i]);
4409 }
4410
4411 if (reenable_ips)
4412 hsw_enable_ips(intel_crtc);
4413}
4414
d3eedb1a
VS
4415static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4416{
4417 if (!enable && intel_crtc->overlay) {
4418 struct drm_device *dev = intel_crtc->base.dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420
4421 mutex_lock(&dev->struct_mutex);
4422 dev_priv->mm.interruptible = false;
4423 (void) intel_overlay_switch_off(intel_crtc->overlay);
4424 dev_priv->mm.interruptible = true;
4425 mutex_unlock(&dev->struct_mutex);
4426 }
4427
4428 /* Let userspace switch the overlay on again. In most cases userspace
4429 * has to recompute where to put it anyway.
4430 */
4431}
4432
d3eedb1a 4433static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4434{
4435 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4436 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4437 int pipe = intel_crtc->pipe;
a5c4d7bc 4438
fdd508a6 4439 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4440 intel_enable_sprite_planes(crtc);
a5c4d7bc 4441 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4442 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4443
4444 hsw_enable_ips(intel_crtc);
4445
4446 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4447 intel_fbc_update(dev);
a5c4d7bc 4448 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4449
4450 /*
4451 * FIXME: Once we grow proper nuclear flip support out of this we need
4452 * to compute the mask of flip planes precisely. For the time being
4453 * consider this a flip from a NULL plane.
4454 */
4455 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4456}
4457
d3eedb1a 4458static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4459{
4460 struct drm_device *dev = crtc->dev;
4461 struct drm_i915_private *dev_priv = dev->dev_private;
4462 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4463 int pipe = intel_crtc->pipe;
a5c4d7bc
VS
4464
4465 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc 4466
e35fef21 4467 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4468 intel_fbc_disable(dev);
a5c4d7bc
VS
4469
4470 hsw_disable_ips(intel_crtc);
4471
d3eedb1a 4472 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4473 intel_crtc_update_cursor(crtc, false);
4a3b8769 4474 intel_disable_sprite_planes(crtc);
fdd508a6 4475 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4476
f99d7069
DV
4477 /*
4478 * FIXME: Once we grow proper nuclear flip support out of this we need
4479 * to compute the mask of flip planes precisely. For the time being
4480 * consider this a flip to a NULL plane.
4481 */
4482 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4483}
4484
f67a559d
JB
4485static void ironlake_crtc_enable(struct drm_crtc *crtc)
4486{
4487 struct drm_device *dev = crtc->dev;
4488 struct drm_i915_private *dev_priv = dev->dev_private;
4489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4490 struct intel_encoder *encoder;
f67a559d 4491 int pipe = intel_crtc->pipe;
f67a559d 4492
83d65738 4493 WARN_ON(!crtc->state->enable);
08a48469 4494
f67a559d
JB
4495 if (intel_crtc->active)
4496 return;
4497
6e3c9717 4498 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4499 intel_prepare_shared_dpll(intel_crtc);
4500
6e3c9717 4501 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4502 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4503
4504 intel_set_pipe_timings(intel_crtc);
4505
6e3c9717 4506 if (intel_crtc->config->has_pch_encoder) {
29407aab 4507 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4508 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4509 }
4510
4511 ironlake_set_pipeconf(crtc);
4512
f67a559d 4513 intel_crtc->active = true;
8664281b 4514
a72e4c9f
DV
4515 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4516 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4517
f6736a1a 4518 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4519 if (encoder->pre_enable)
4520 encoder->pre_enable(encoder);
f67a559d 4521
6e3c9717 4522 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4523 /* Note: FDI PLL enabling _must_ be done before we enable the
4524 * cpu pipes, hence this is separate from all the other fdi/pch
4525 * enabling. */
88cefb6c 4526 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4527 } else {
4528 assert_fdi_tx_disabled(dev_priv, pipe);
4529 assert_fdi_rx_disabled(dev_priv, pipe);
4530 }
f67a559d 4531
b074cec8 4532 ironlake_pfit_enable(intel_crtc);
f67a559d 4533
9c54c0dd
JB
4534 /*
4535 * On ILK+ LUT must be loaded before the pipe is running but with
4536 * clocks enabled
4537 */
4538 intel_crtc_load_lut(crtc);
4539
f37fcc2a 4540 intel_update_watermarks(crtc);
e1fdc473 4541 intel_enable_pipe(intel_crtc);
f67a559d 4542
6e3c9717 4543 if (intel_crtc->config->has_pch_encoder)
f67a559d 4544 ironlake_pch_enable(crtc);
c98e9dcf 4545
f9b61ff6
DV
4546 assert_vblank_disabled(crtc);
4547 drm_crtc_vblank_on(crtc);
4548
fa5c73b1
DV
4549 for_each_encoder_on_crtc(dev, crtc, encoder)
4550 encoder->enable(encoder);
61b77ddd
DV
4551
4552 if (HAS_PCH_CPT(dev))
a1520318 4553 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4554
d3eedb1a 4555 intel_crtc_enable_planes(crtc);
6be4a607
JB
4556}
4557
42db64ef
PZ
4558/* IPS only exists on ULT machines and is tied to pipe A. */
4559static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4560{
f5adf94e 4561 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4562}
4563
e4916946
PZ
4564/*
4565 * This implements the workaround described in the "notes" section of the mode
4566 * set sequence documentation. When going from no pipes or single pipe to
4567 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4568 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4569 */
4570static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4571{
4572 struct drm_device *dev = crtc->base.dev;
4573 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4574
4575 /* We want to get the other_active_crtc only if there's only 1 other
4576 * active crtc. */
d3fcc808 4577 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4578 if (!crtc_it->active || crtc_it == crtc)
4579 continue;
4580
4581 if (other_active_crtc)
4582 return;
4583
4584 other_active_crtc = crtc_it;
4585 }
4586 if (!other_active_crtc)
4587 return;
4588
4589 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4590 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4591}
4592
4f771f10
PZ
4593static void haswell_crtc_enable(struct drm_crtc *crtc)
4594{
4595 struct drm_device *dev = crtc->dev;
4596 struct drm_i915_private *dev_priv = dev->dev_private;
4597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4598 struct intel_encoder *encoder;
4599 int pipe = intel_crtc->pipe;
4f771f10 4600
83d65738 4601 WARN_ON(!crtc->state->enable);
4f771f10
PZ
4602
4603 if (intel_crtc->active)
4604 return;
4605
df8ad70c
DV
4606 if (intel_crtc_to_shared_dpll(intel_crtc))
4607 intel_enable_shared_dpll(intel_crtc);
4608
6e3c9717 4609 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4610 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4611
4612 intel_set_pipe_timings(intel_crtc);
4613
6e3c9717
ACO
4614 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4615 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4616 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4617 }
4618
6e3c9717 4619 if (intel_crtc->config->has_pch_encoder) {
229fca97 4620 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4621 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4622 }
4623
4624 haswell_set_pipeconf(crtc);
4625
4626 intel_set_pipe_csc(crtc);
4627
4f771f10 4628 intel_crtc->active = true;
8664281b 4629
a72e4c9f 4630 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4631 for_each_encoder_on_crtc(dev, crtc, encoder)
4632 if (encoder->pre_enable)
4633 encoder->pre_enable(encoder);
4634
6e3c9717 4635 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4636 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4637 true);
4fe9467d
ID
4638 dev_priv->display.fdi_link_train(crtc);
4639 }
4640
1f544388 4641 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4642
bd2e244f
JB
4643 if (IS_SKYLAKE(dev))
4644 skylake_pfit_enable(intel_crtc);
4645 else
4646 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4647
4648 /*
4649 * On ILK+ LUT must be loaded before the pipe is running but with
4650 * clocks enabled
4651 */
4652 intel_crtc_load_lut(crtc);
4653
1f544388 4654 intel_ddi_set_pipe_settings(crtc);
8228c251 4655 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4656
f37fcc2a 4657 intel_update_watermarks(crtc);
e1fdc473 4658 intel_enable_pipe(intel_crtc);
42db64ef 4659
6e3c9717 4660 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4661 lpt_pch_enable(crtc);
4f771f10 4662
6e3c9717 4663 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4664 intel_ddi_set_vc_payload_alloc(crtc, true);
4665
f9b61ff6
DV
4666 assert_vblank_disabled(crtc);
4667 drm_crtc_vblank_on(crtc);
4668
8807e55b 4669 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4670 encoder->enable(encoder);
8807e55b
JN
4671 intel_opregion_notify_encoder(encoder, true);
4672 }
4f771f10 4673
e4916946
PZ
4674 /* If we change the relative order between pipe/planes enabling, we need
4675 * to change the workaround. */
4676 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4677 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4678}
4679
bd2e244f
JB
4680static void skylake_pfit_disable(struct intel_crtc *crtc)
4681{
4682 struct drm_device *dev = crtc->base.dev;
4683 struct drm_i915_private *dev_priv = dev->dev_private;
4684 int pipe = crtc->pipe;
4685
4686 /* To avoid upsetting the power well on haswell only disable the pfit if
4687 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4688 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4689 I915_WRITE(PS_CTL(pipe), 0);
4690 I915_WRITE(PS_WIN_POS(pipe), 0);
4691 I915_WRITE(PS_WIN_SZ(pipe), 0);
4692 }
4693}
4694
3f8dce3a
DV
4695static void ironlake_pfit_disable(struct intel_crtc *crtc)
4696{
4697 struct drm_device *dev = crtc->base.dev;
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699 int pipe = crtc->pipe;
4700
4701 /* To avoid upsetting the power well on haswell only disable the pfit if
4702 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4703 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4704 I915_WRITE(PF_CTL(pipe), 0);
4705 I915_WRITE(PF_WIN_POS(pipe), 0);
4706 I915_WRITE(PF_WIN_SZ(pipe), 0);
4707 }
4708}
4709
6be4a607
JB
4710static void ironlake_crtc_disable(struct drm_crtc *crtc)
4711{
4712 struct drm_device *dev = crtc->dev;
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4715 struct intel_encoder *encoder;
6be4a607 4716 int pipe = intel_crtc->pipe;
5eddb70b 4717 u32 reg, temp;
b52eb4dc 4718
f7abfe8b
CW
4719 if (!intel_crtc->active)
4720 return;
4721
d3eedb1a 4722 intel_crtc_disable_planes(crtc);
a5c4d7bc 4723
ea9d758d
DV
4724 for_each_encoder_on_crtc(dev, crtc, encoder)
4725 encoder->disable(encoder);
4726
f9b61ff6
DV
4727 drm_crtc_vblank_off(crtc);
4728 assert_vblank_disabled(crtc);
4729
6e3c9717 4730 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4731 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4732
575f7ab7 4733 intel_disable_pipe(intel_crtc);
32f9d658 4734
3f8dce3a 4735 ironlake_pfit_disable(intel_crtc);
2c07245f 4736
bf49ec8c
DV
4737 for_each_encoder_on_crtc(dev, crtc, encoder)
4738 if (encoder->post_disable)
4739 encoder->post_disable(encoder);
2c07245f 4740
6e3c9717 4741 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4742 ironlake_fdi_disable(crtc);
913d8d11 4743
d925c59a 4744 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4745
d925c59a
DV
4746 if (HAS_PCH_CPT(dev)) {
4747 /* disable TRANS_DP_CTL */
4748 reg = TRANS_DP_CTL(pipe);
4749 temp = I915_READ(reg);
4750 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4751 TRANS_DP_PORT_SEL_MASK);
4752 temp |= TRANS_DP_PORT_SEL_NONE;
4753 I915_WRITE(reg, temp);
4754
4755 /* disable DPLL_SEL */
4756 temp = I915_READ(PCH_DPLL_SEL);
11887397 4757 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4758 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4759 }
e3421a18 4760
d925c59a 4761 /* disable PCH DPLL */
e72f9fbf 4762 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4763
d925c59a
DV
4764 ironlake_fdi_pll_disable(intel_crtc);
4765 }
6b383a7f 4766
f7abfe8b 4767 intel_crtc->active = false;
46ba614c 4768 intel_update_watermarks(crtc);
d1ebd816
BW
4769
4770 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4771 intel_fbc_update(dev);
d1ebd816 4772 mutex_unlock(&dev->struct_mutex);
6be4a607 4773}
1b3c7a47 4774
4f771f10 4775static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4776{
4f771f10
PZ
4777 struct drm_device *dev = crtc->dev;
4778 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4780 struct intel_encoder *encoder;
6e3c9717 4781 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4782
4f771f10
PZ
4783 if (!intel_crtc->active)
4784 return;
4785
d3eedb1a 4786 intel_crtc_disable_planes(crtc);
dda9a66a 4787
8807e55b
JN
4788 for_each_encoder_on_crtc(dev, crtc, encoder) {
4789 intel_opregion_notify_encoder(encoder, false);
4f771f10 4790 encoder->disable(encoder);
8807e55b 4791 }
4f771f10 4792
f9b61ff6
DV
4793 drm_crtc_vblank_off(crtc);
4794 assert_vblank_disabled(crtc);
4795
6e3c9717 4796 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4797 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4798 false);
575f7ab7 4799 intel_disable_pipe(intel_crtc);
4f771f10 4800
6e3c9717 4801 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4802 intel_ddi_set_vc_payload_alloc(crtc, false);
4803
ad80a810 4804 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4805
bd2e244f
JB
4806 if (IS_SKYLAKE(dev))
4807 skylake_pfit_disable(intel_crtc);
4808 else
4809 ironlake_pfit_disable(intel_crtc);
4f771f10 4810
1f544388 4811 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4812
6e3c9717 4813 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4814 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4815 intel_ddi_fdi_disable(crtc);
83616634 4816 }
4f771f10 4817
97b040aa
ID
4818 for_each_encoder_on_crtc(dev, crtc, encoder)
4819 if (encoder->post_disable)
4820 encoder->post_disable(encoder);
4821
4f771f10 4822 intel_crtc->active = false;
46ba614c 4823 intel_update_watermarks(crtc);
4f771f10
PZ
4824
4825 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4826 intel_fbc_update(dev);
4f771f10 4827 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4828
4829 if (intel_crtc_to_shared_dpll(intel_crtc))
4830 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4831}
4832
ee7b9f93
JB
4833static void ironlake_crtc_off(struct drm_crtc *crtc)
4834{
4835 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4836 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4837}
4838
6441ab5f 4839
2dd24552
JB
4840static void i9xx_pfit_enable(struct intel_crtc *crtc)
4841{
4842 struct drm_device *dev = crtc->base.dev;
4843 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4844 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4845
681a8504 4846 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4847 return;
4848
2dd24552 4849 /*
c0b03411
DV
4850 * The panel fitter should only be adjusted whilst the pipe is disabled,
4851 * according to register description and PRM.
2dd24552 4852 */
c0b03411
DV
4853 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4854 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4855
b074cec8
JB
4856 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4857 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4858
4859 /* Border color in case we don't scale up to the full screen. Black by
4860 * default, change to something else for debugging. */
4861 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4862}
4863
d05410f9
DA
4864static enum intel_display_power_domain port_to_power_domain(enum port port)
4865{
4866 switch (port) {
4867 case PORT_A:
4868 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4869 case PORT_B:
4870 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4871 case PORT_C:
4872 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4873 case PORT_D:
4874 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4875 default:
4876 WARN_ON_ONCE(1);
4877 return POWER_DOMAIN_PORT_OTHER;
4878 }
4879}
4880
77d22dca
ID
4881#define for_each_power_domain(domain, mask) \
4882 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4883 if ((1 << (domain)) & (mask))
4884
319be8ae
ID
4885enum intel_display_power_domain
4886intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4887{
4888 struct drm_device *dev = intel_encoder->base.dev;
4889 struct intel_digital_port *intel_dig_port;
4890
4891 switch (intel_encoder->type) {
4892 case INTEL_OUTPUT_UNKNOWN:
4893 /* Only DDI platforms should ever use this output type */
4894 WARN_ON_ONCE(!HAS_DDI(dev));
4895 case INTEL_OUTPUT_DISPLAYPORT:
4896 case INTEL_OUTPUT_HDMI:
4897 case INTEL_OUTPUT_EDP:
4898 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4899 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4900 case INTEL_OUTPUT_DP_MST:
4901 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4902 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4903 case INTEL_OUTPUT_ANALOG:
4904 return POWER_DOMAIN_PORT_CRT;
4905 case INTEL_OUTPUT_DSI:
4906 return POWER_DOMAIN_PORT_DSI;
4907 default:
4908 return POWER_DOMAIN_PORT_OTHER;
4909 }
4910}
4911
4912static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4913{
319be8ae
ID
4914 struct drm_device *dev = crtc->dev;
4915 struct intel_encoder *intel_encoder;
4916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4917 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4918 unsigned long mask;
4919 enum transcoder transcoder;
4920
4921 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4922
4923 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4924 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4925 if (intel_crtc->config->pch_pfit.enabled ||
4926 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4927 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4928
319be8ae
ID
4929 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4930 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4931
77d22dca
ID
4932 return mask;
4933}
4934
77d22dca
ID
4935static void modeset_update_crtc_power_domains(struct drm_device *dev)
4936{
4937 struct drm_i915_private *dev_priv = dev->dev_private;
4938 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4939 struct intel_crtc *crtc;
4940
4941 /*
4942 * First get all needed power domains, then put all unneeded, to avoid
4943 * any unnecessary toggling of the power wells.
4944 */
d3fcc808 4945 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4946 enum intel_display_power_domain domain;
4947
83d65738 4948 if (!crtc->base.state->enable)
77d22dca
ID
4949 continue;
4950
319be8ae 4951 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4952
4953 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4954 intel_display_power_get(dev_priv, domain);
4955 }
4956
50f6e502
VS
4957 if (dev_priv->display.modeset_global_resources)
4958 dev_priv->display.modeset_global_resources(dev);
4959
d3fcc808 4960 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4961 enum intel_display_power_domain domain;
4962
4963 for_each_power_domain(domain, crtc->enabled_power_domains)
4964 intel_display_power_put(dev_priv, domain);
4965
4966 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4967 }
4968
4969 intel_display_set_init_power(dev_priv, false);
4970}
4971
dfcab17e 4972/* returns HPLL frequency in kHz */
f8bf63fd 4973static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4974{
586f49dc 4975 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4976
586f49dc
JB
4977 /* Obtain SKU information */
4978 mutex_lock(&dev_priv->dpio_lock);
4979 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4980 CCK_FUSE_HPLL_FREQ_MASK;
4981 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4982
dfcab17e 4983 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4984}
4985
f8bf63fd
VS
4986static void vlv_update_cdclk(struct drm_device *dev)
4987{
4988 struct drm_i915_private *dev_priv = dev->dev_private;
4989
4990 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4991 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4992 dev_priv->vlv_cdclk_freq);
4993
4994 /*
4995 * Program the gmbus_freq based on the cdclk frequency.
4996 * BSpec erroneously claims we should aim for 4MHz, but
4997 * in fact 1MHz is the correct frequency.
4998 */
6be1e3d3 4999 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
5000}
5001
30a970c6
JB
5002/* Adjust CDclk dividers to allow high res or save power if possible */
5003static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5004{
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006 u32 val, cmd;
5007
d197b7d3 5008 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 5009
dfcab17e 5010 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5011 cmd = 2;
dfcab17e 5012 else if (cdclk == 266667)
30a970c6
JB
5013 cmd = 1;
5014 else
5015 cmd = 0;
5016
5017 mutex_lock(&dev_priv->rps.hw_lock);
5018 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5019 val &= ~DSPFREQGUAR_MASK;
5020 val |= (cmd << DSPFREQGUAR_SHIFT);
5021 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5022 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5023 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5024 50)) {
5025 DRM_ERROR("timed out waiting for CDclk change\n");
5026 }
5027 mutex_unlock(&dev_priv->rps.hw_lock);
5028
dfcab17e 5029 if (cdclk == 400000) {
6bcda4f0 5030 u32 divider;
30a970c6 5031
6bcda4f0 5032 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
5033
5034 mutex_lock(&dev_priv->dpio_lock);
5035 /* adjust cdclk divider */
5036 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5037 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5038 val |= divider;
5039 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5040
5041 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5042 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5043 50))
5044 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5045 mutex_unlock(&dev_priv->dpio_lock);
5046 }
5047
5048 mutex_lock(&dev_priv->dpio_lock);
5049 /* adjust self-refresh exit latency value */
5050 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5051 val &= ~0x7f;
5052
5053 /*
5054 * For high bandwidth configs, we set a higher latency in the bunit
5055 * so that the core display fetch happens in time to avoid underruns.
5056 */
dfcab17e 5057 if (cdclk == 400000)
30a970c6
JB
5058 val |= 4500 / 250; /* 4.5 usec */
5059 else
5060 val |= 3000 / 250; /* 3.0 usec */
5061 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5062 mutex_unlock(&dev_priv->dpio_lock);
5063
f8bf63fd 5064 vlv_update_cdclk(dev);
30a970c6
JB
5065}
5066
383c5a6a
VS
5067static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5068{
5069 struct drm_i915_private *dev_priv = dev->dev_private;
5070 u32 val, cmd;
5071
5072 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5073
5074 switch (cdclk) {
383c5a6a
VS
5075 case 333333:
5076 case 320000:
383c5a6a 5077 case 266667:
383c5a6a 5078 case 200000:
383c5a6a
VS
5079 break;
5080 default:
5f77eeb0 5081 MISSING_CASE(cdclk);
383c5a6a
VS
5082 return;
5083 }
5084
9d0d3fda
VS
5085 /*
5086 * Specs are full of misinformation, but testing on actual
5087 * hardware has shown that we just need to write the desired
5088 * CCK divider into the Punit register.
5089 */
5090 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5091
383c5a6a
VS
5092 mutex_lock(&dev_priv->rps.hw_lock);
5093 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5094 val &= ~DSPFREQGUAR_MASK_CHV;
5095 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5096 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5097 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5098 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5099 50)) {
5100 DRM_ERROR("timed out waiting for CDclk change\n");
5101 }
5102 mutex_unlock(&dev_priv->rps.hw_lock);
5103
5104 vlv_update_cdclk(dev);
5105}
5106
30a970c6
JB
5107static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5108 int max_pixclk)
5109{
6bcda4f0 5110 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5111 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5112
30a970c6
JB
5113 /*
5114 * Really only a few cases to deal with, as only 4 CDclks are supported:
5115 * 200MHz
5116 * 267MHz
29dc7ef3 5117 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5118 * 400MHz (VLV only)
5119 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5120 * of the lower bin and adjust if needed.
e37c67a1
VS
5121 *
5122 * We seem to get an unstable or solid color picture at 200MHz.
5123 * Not sure what's wrong. For now use 200MHz only when all pipes
5124 * are off.
30a970c6 5125 */
6cca3195
VS
5126 if (!IS_CHERRYVIEW(dev_priv) &&
5127 max_pixclk > freq_320*limit/100)
dfcab17e 5128 return 400000;
6cca3195 5129 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5130 return freq_320;
e37c67a1 5131 else if (max_pixclk > 0)
dfcab17e 5132 return 266667;
e37c67a1
VS
5133 else
5134 return 200000;
30a970c6
JB
5135}
5136
2f2d7aa1
VS
5137/* compute the max pixel clock for new configuration */
5138static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
5139{
5140 struct drm_device *dev = dev_priv->dev;
5141 struct intel_crtc *intel_crtc;
5142 int max_pixclk = 0;
5143
d3fcc808 5144 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 5145 if (intel_crtc->new_enabled)
30a970c6 5146 max_pixclk = max(max_pixclk,
2d112de7 5147 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
5148 }
5149
5150 return max_pixclk;
5151}
5152
5153static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 5154 unsigned *prepare_pipes)
30a970c6
JB
5155{
5156 struct drm_i915_private *dev_priv = dev->dev_private;
5157 struct intel_crtc *intel_crtc;
2f2d7aa1 5158 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 5159
d60c4473
ID
5160 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5161 dev_priv->vlv_cdclk_freq)
30a970c6
JB
5162 return;
5163
2f2d7aa1 5164 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 5165 for_each_intel_crtc(dev, intel_crtc)
83d65738 5166 if (intel_crtc->base.state->enable)
30a970c6
JB
5167 *prepare_pipes |= (1 << intel_crtc->pipe);
5168}
5169
1e69cd74
VS
5170static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5171{
5172 unsigned int credits, default_credits;
5173
5174 if (IS_CHERRYVIEW(dev_priv))
5175 default_credits = PFI_CREDIT(12);
5176 else
5177 default_credits = PFI_CREDIT(8);
5178
5179 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5180 /* CHV suggested value is 31 or 63 */
5181 if (IS_CHERRYVIEW(dev_priv))
5182 credits = PFI_CREDIT_31;
5183 else
5184 credits = PFI_CREDIT(15);
5185 } else {
5186 credits = default_credits;
5187 }
5188
5189 /*
5190 * WA - write default credits before re-programming
5191 * FIXME: should we also set the resend bit here?
5192 */
5193 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5194 default_credits);
5195
5196 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5197 credits | PFI_CREDIT_RESEND);
5198
5199 /*
5200 * FIXME is this guaranteed to clear
5201 * immediately or should we poll for it?
5202 */
5203 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5204}
5205
30a970c6
JB
5206static void valleyview_modeset_global_resources(struct drm_device *dev)
5207{
5208 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 5209 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
5210 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5211
383c5a6a 5212 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
5213 /*
5214 * FIXME: We can end up here with all power domains off, yet
5215 * with a CDCLK frequency other than the minimum. To account
5216 * for this take the PIPE-A power domain, which covers the HW
5217 * blocks needed for the following programming. This can be
5218 * removed once it's guaranteed that we get here either with
5219 * the minimum CDCLK set, or the required power domains
5220 * enabled.
5221 */
5222 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5223
383c5a6a
VS
5224 if (IS_CHERRYVIEW(dev))
5225 cherryview_set_cdclk(dev, req_cdclk);
5226 else
5227 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 5228
1e69cd74
VS
5229 vlv_program_pfi_credits(dev_priv);
5230
738c05c0 5231 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5232 }
30a970c6
JB
5233}
5234
89b667f8
JB
5235static void valleyview_crtc_enable(struct drm_crtc *crtc)
5236{
5237 struct drm_device *dev = crtc->dev;
a72e4c9f 5238 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240 struct intel_encoder *encoder;
5241 int pipe = intel_crtc->pipe;
23538ef1 5242 bool is_dsi;
89b667f8 5243
83d65738 5244 WARN_ON(!crtc->state->enable);
89b667f8
JB
5245
5246 if (intel_crtc->active)
5247 return;
5248
409ee761 5249 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5250
1ae0d137
VS
5251 if (!is_dsi) {
5252 if (IS_CHERRYVIEW(dev))
6e3c9717 5253 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5254 else
6e3c9717 5255 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5256 }
5b18e57c 5257
6e3c9717 5258 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5259 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5260
5261 intel_set_pipe_timings(intel_crtc);
5262
c14b0485
VS
5263 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265
5266 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5267 I915_WRITE(CHV_CANVAS(pipe), 0);
5268 }
5269
5b18e57c
DV
5270 i9xx_set_pipeconf(intel_crtc);
5271
89b667f8 5272 intel_crtc->active = true;
89b667f8 5273
a72e4c9f 5274 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5275
89b667f8
JB
5276 for_each_encoder_on_crtc(dev, crtc, encoder)
5277 if (encoder->pre_pll_enable)
5278 encoder->pre_pll_enable(encoder);
5279
9d556c99
CML
5280 if (!is_dsi) {
5281 if (IS_CHERRYVIEW(dev))
6e3c9717 5282 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5283 else
6e3c9717 5284 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5285 }
89b667f8
JB
5286
5287 for_each_encoder_on_crtc(dev, crtc, encoder)
5288 if (encoder->pre_enable)
5289 encoder->pre_enable(encoder);
5290
2dd24552
JB
5291 i9xx_pfit_enable(intel_crtc);
5292
63cbb074
VS
5293 intel_crtc_load_lut(crtc);
5294
f37fcc2a 5295 intel_update_watermarks(crtc);
e1fdc473 5296 intel_enable_pipe(intel_crtc);
be6a6f8e 5297
4b3a9526
VS
5298 assert_vblank_disabled(crtc);
5299 drm_crtc_vblank_on(crtc);
5300
f9b61ff6
DV
5301 for_each_encoder_on_crtc(dev, crtc, encoder)
5302 encoder->enable(encoder);
5303
9ab0460b 5304 intel_crtc_enable_planes(crtc);
d40d9187 5305
56b80e1f 5306 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5307 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5308}
5309
f13c2ef3
DV
5310static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5311{
5312 struct drm_device *dev = crtc->base.dev;
5313 struct drm_i915_private *dev_priv = dev->dev_private;
5314
6e3c9717
ACO
5315 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5316 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5317}
5318
0b8765c6 5319static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5320{
5321 struct drm_device *dev = crtc->dev;
a72e4c9f 5322 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5324 struct intel_encoder *encoder;
79e53945 5325 int pipe = intel_crtc->pipe;
79e53945 5326
83d65738 5327 WARN_ON(!crtc->state->enable);
08a48469 5328
f7abfe8b
CW
5329 if (intel_crtc->active)
5330 return;
5331
f13c2ef3
DV
5332 i9xx_set_pll_dividers(intel_crtc);
5333
6e3c9717 5334 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5335 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5336
5337 intel_set_pipe_timings(intel_crtc);
5338
5b18e57c
DV
5339 i9xx_set_pipeconf(intel_crtc);
5340
f7abfe8b 5341 intel_crtc->active = true;
6b383a7f 5342
4a3436e8 5343 if (!IS_GEN2(dev))
a72e4c9f 5344 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5345
9d6d9f19
MK
5346 for_each_encoder_on_crtc(dev, crtc, encoder)
5347 if (encoder->pre_enable)
5348 encoder->pre_enable(encoder);
5349
f6736a1a
DV
5350 i9xx_enable_pll(intel_crtc);
5351
2dd24552
JB
5352 i9xx_pfit_enable(intel_crtc);
5353
63cbb074
VS
5354 intel_crtc_load_lut(crtc);
5355
f37fcc2a 5356 intel_update_watermarks(crtc);
e1fdc473 5357 intel_enable_pipe(intel_crtc);
be6a6f8e 5358
4b3a9526
VS
5359 assert_vblank_disabled(crtc);
5360 drm_crtc_vblank_on(crtc);
5361
f9b61ff6
DV
5362 for_each_encoder_on_crtc(dev, crtc, encoder)
5363 encoder->enable(encoder);
5364
9ab0460b 5365 intel_crtc_enable_planes(crtc);
d40d9187 5366
4a3436e8
VS
5367 /*
5368 * Gen2 reports pipe underruns whenever all planes are disabled.
5369 * So don't enable underrun reporting before at least some planes
5370 * are enabled.
5371 * FIXME: Need to fix the logic to work when we turn off all planes
5372 * but leave the pipe running.
5373 */
5374 if (IS_GEN2(dev))
a72e4c9f 5375 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5376
56b80e1f 5377 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5378 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5379}
79e53945 5380
87476d63
DV
5381static void i9xx_pfit_disable(struct intel_crtc *crtc)
5382{
5383 struct drm_device *dev = crtc->base.dev;
5384 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5385
6e3c9717 5386 if (!crtc->config->gmch_pfit.control)
328d8e82 5387 return;
87476d63 5388
328d8e82 5389 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5390
328d8e82
DV
5391 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5392 I915_READ(PFIT_CONTROL));
5393 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5394}
5395
0b8765c6
JB
5396static void i9xx_crtc_disable(struct drm_crtc *crtc)
5397{
5398 struct drm_device *dev = crtc->dev;
5399 struct drm_i915_private *dev_priv = dev->dev_private;
5400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5401 struct intel_encoder *encoder;
0b8765c6 5402 int pipe = intel_crtc->pipe;
ef9c3aee 5403
f7abfe8b
CW
5404 if (!intel_crtc->active)
5405 return;
5406
4a3436e8
VS
5407 /*
5408 * Gen2 reports pipe underruns whenever all planes are disabled.
5409 * So diasble underrun reporting before all the planes get disabled.
5410 * FIXME: Need to fix the logic to work when we turn off all planes
5411 * but leave the pipe running.
5412 */
5413 if (IS_GEN2(dev))
a72e4c9f 5414 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5415
564ed191
ID
5416 /*
5417 * Vblank time updates from the shadow to live plane control register
5418 * are blocked if the memory self-refresh mode is active at that
5419 * moment. So to make sure the plane gets truly disabled, disable
5420 * first the self-refresh mode. The self-refresh enable bit in turn
5421 * will be checked/applied by the HW only at the next frame start
5422 * event which is after the vblank start event, so we need to have a
5423 * wait-for-vblank between disabling the plane and the pipe.
5424 */
5425 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5426 intel_crtc_disable_planes(crtc);
5427
6304cd91
VS
5428 /*
5429 * On gen2 planes are double buffered but the pipe isn't, so we must
5430 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5431 * We also need to wait on all gmch platforms because of the
5432 * self-refresh mode constraint explained above.
6304cd91 5433 */
564ed191 5434 intel_wait_for_vblank(dev, pipe);
6304cd91 5435
4b3a9526
VS
5436 for_each_encoder_on_crtc(dev, crtc, encoder)
5437 encoder->disable(encoder);
5438
f9b61ff6
DV
5439 drm_crtc_vblank_off(crtc);
5440 assert_vblank_disabled(crtc);
5441
575f7ab7 5442 intel_disable_pipe(intel_crtc);
24a1f16d 5443
87476d63 5444 i9xx_pfit_disable(intel_crtc);
24a1f16d 5445
89b667f8
JB
5446 for_each_encoder_on_crtc(dev, crtc, encoder)
5447 if (encoder->post_disable)
5448 encoder->post_disable(encoder);
5449
409ee761 5450 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5451 if (IS_CHERRYVIEW(dev))
5452 chv_disable_pll(dev_priv, pipe);
5453 else if (IS_VALLEYVIEW(dev))
5454 vlv_disable_pll(dev_priv, pipe);
5455 else
1c4e0274 5456 i9xx_disable_pll(intel_crtc);
076ed3b2 5457 }
0b8765c6 5458
4a3436e8 5459 if (!IS_GEN2(dev))
a72e4c9f 5460 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5461
f7abfe8b 5462 intel_crtc->active = false;
46ba614c 5463 intel_update_watermarks(crtc);
f37fcc2a 5464
efa9624e 5465 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5466 intel_fbc_update(dev);
efa9624e 5467 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5468}
5469
ee7b9f93
JB
5470static void i9xx_crtc_off(struct drm_crtc *crtc)
5471{
5472}
5473
b04c5bd6
BF
5474/* Master function to enable/disable CRTC and corresponding power wells */
5475void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5476{
5477 struct drm_device *dev = crtc->dev;
5478 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5479 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5480 enum intel_display_power_domain domain;
5481 unsigned long domains;
976f8a20 5482
0e572fe7
DV
5483 if (enable) {
5484 if (!intel_crtc->active) {
e1e9fb84
DV
5485 domains = get_crtc_power_domains(crtc);
5486 for_each_power_domain(domain, domains)
5487 intel_display_power_get(dev_priv, domain);
5488 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5489
5490 dev_priv->display.crtc_enable(crtc);
5491 }
5492 } else {
5493 if (intel_crtc->active) {
5494 dev_priv->display.crtc_disable(crtc);
5495
e1e9fb84
DV
5496 domains = intel_crtc->enabled_power_domains;
5497 for_each_power_domain(domain, domains)
5498 intel_display_power_put(dev_priv, domain);
5499 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5500 }
5501 }
b04c5bd6
BF
5502}
5503
5504/**
5505 * Sets the power management mode of the pipe and plane.
5506 */
5507void intel_crtc_update_dpms(struct drm_crtc *crtc)
5508{
5509 struct drm_device *dev = crtc->dev;
5510 struct intel_encoder *intel_encoder;
5511 bool enable = false;
5512
5513 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5514 enable |= intel_encoder->connectors_active;
5515
5516 intel_crtc_control(crtc, enable);
976f8a20
DV
5517}
5518
cdd59983
CW
5519static void intel_crtc_disable(struct drm_crtc *crtc)
5520{
cdd59983 5521 struct drm_device *dev = crtc->dev;
976f8a20 5522 struct drm_connector *connector;
ee7b9f93 5523 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5524
976f8a20 5525 /* crtc should still be enabled when we disable it. */
83d65738 5526 WARN_ON(!crtc->state->enable);
976f8a20
DV
5527
5528 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5529 dev_priv->display.off(crtc);
5530
455a6808 5531 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5532
5533 /* Update computed state. */
5534 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5535 if (!connector->encoder || !connector->encoder->crtc)
5536 continue;
5537
5538 if (connector->encoder->crtc != crtc)
5539 continue;
5540
5541 connector->dpms = DRM_MODE_DPMS_OFF;
5542 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5543 }
5544}
5545
ea5b213a 5546void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5547{
4ef69c7a 5548 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5549
ea5b213a
CW
5550 drm_encoder_cleanup(encoder);
5551 kfree(intel_encoder);
7e7d76c3
JB
5552}
5553
9237329d 5554/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5555 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5556 * state of the entire output pipe. */
9237329d 5557static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5558{
5ab432ef
DV
5559 if (mode == DRM_MODE_DPMS_ON) {
5560 encoder->connectors_active = true;
5561
b2cabb0e 5562 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5563 } else {
5564 encoder->connectors_active = false;
5565
b2cabb0e 5566 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5567 }
79e53945
JB
5568}
5569
0a91ca29
DV
5570/* Cross check the actual hw state with our own modeset state tracking (and it's
5571 * internal consistency). */
b980514c 5572static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5573{
0a91ca29
DV
5574 if (connector->get_hw_state(connector)) {
5575 struct intel_encoder *encoder = connector->encoder;
5576 struct drm_crtc *crtc;
5577 bool encoder_enabled;
5578 enum pipe pipe;
5579
5580 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5581 connector->base.base.id,
c23cc417 5582 connector->base.name);
0a91ca29 5583
0e32b39c
DA
5584 /* there is no real hw state for MST connectors */
5585 if (connector->mst_port)
5586 return;
5587
e2c719b7 5588 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5589 "wrong connector dpms state\n");
e2c719b7 5590 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5591 "active connector not linked to encoder\n");
0a91ca29 5592
36cd7444 5593 if (encoder) {
e2c719b7 5594 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5595 "encoder->connectors_active not set\n");
5596
5597 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5598 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5599 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5600 return;
0a91ca29 5601
36cd7444 5602 crtc = encoder->base.crtc;
0a91ca29 5603
83d65738
MR
5604 I915_STATE_WARN(!crtc->state->enable,
5605 "crtc not enabled\n");
e2c719b7
RC
5606 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5607 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5608 "encoder active on the wrong pipe\n");
5609 }
0a91ca29 5610 }
79e53945
JB
5611}
5612
5ab432ef
DV
5613/* Even simpler default implementation, if there's really no special case to
5614 * consider. */
5615void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5616{
5ab432ef
DV
5617 /* All the simple cases only support two dpms states. */
5618 if (mode != DRM_MODE_DPMS_ON)
5619 mode = DRM_MODE_DPMS_OFF;
d4270e57 5620
5ab432ef
DV
5621 if (mode == connector->dpms)
5622 return;
5623
5624 connector->dpms = mode;
5625
5626 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5627 if (connector->encoder)
5628 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5629
b980514c 5630 intel_modeset_check_state(connector->dev);
79e53945
JB
5631}
5632
f0947c37
DV
5633/* Simple connector->get_hw_state implementation for encoders that support only
5634 * one connector and no cloning and hence the encoder state determines the state
5635 * of the connector. */
5636bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5637{
24929352 5638 enum pipe pipe = 0;
f0947c37 5639 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5640
f0947c37 5641 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5642}
5643
d272ddfa
VS
5644static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5645{
5646 struct intel_crtc *crtc =
5647 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5648
5649 if (crtc->base.state->enable &&
5650 crtc->config->has_pch_encoder)
5651 return crtc->config->fdi_lanes;
5652
5653 return 0;
5654}
5655
1857e1da 5656static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5657 struct intel_crtc_state *pipe_config)
1857e1da 5658{
1857e1da
DV
5659 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5660 pipe_name(pipe), pipe_config->fdi_lanes);
5661 if (pipe_config->fdi_lanes > 4) {
5662 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5663 pipe_name(pipe), pipe_config->fdi_lanes);
5664 return false;
5665 }
5666
bafb6553 5667 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5668 if (pipe_config->fdi_lanes > 2) {
5669 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5670 pipe_config->fdi_lanes);
5671 return false;
5672 } else {
5673 return true;
5674 }
5675 }
5676
5677 if (INTEL_INFO(dev)->num_pipes == 2)
5678 return true;
5679
5680 /* Ivybridge 3 pipe is really complicated */
5681 switch (pipe) {
5682 case PIPE_A:
5683 return true;
5684 case PIPE_B:
d272ddfa
VS
5685 if (pipe_config->fdi_lanes > 2 &&
5686 pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
1857e1da
DV
5687 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5688 pipe_name(pipe), pipe_config->fdi_lanes);
5689 return false;
5690 }
5691 return true;
5692 case PIPE_C:
251cc67c
VS
5693 if (pipe_config->fdi_lanes > 2) {
5694 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5695 pipe_name(pipe), pipe_config->fdi_lanes);
5696 return false;
5697 }
d272ddfa 5698 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
1857e1da
DV
5699 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5700 return false;
5701 }
5702 return true;
5703 default:
5704 BUG();
5705 }
5706}
5707
e29c22c0
DV
5708#define RETRY 1
5709static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5710 struct intel_crtc_state *pipe_config)
877d48d5 5711{
1857e1da 5712 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5713 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5714 int lane, link_bw, fdi_dotclock;
e29c22c0 5715 bool setup_ok, needs_recompute = false;
877d48d5 5716
e29c22c0 5717retry:
877d48d5
DV
5718 /* FDI is a binary signal running at ~2.7GHz, encoding
5719 * each output octet as 10 bits. The actual frequency
5720 * is stored as a divider into a 100MHz clock, and the
5721 * mode pixel clock is stored in units of 1KHz.
5722 * Hence the bw of each lane in terms of the mode signal
5723 * is:
5724 */
5725 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5726
241bfc38 5727 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5728
2bd89a07 5729 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5730 pipe_config->pipe_bpp);
5731
5732 pipe_config->fdi_lanes = lane;
5733
2bd89a07 5734 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5735 link_bw, &pipe_config->fdi_m_n);
1857e1da 5736
e29c22c0
DV
5737 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5738 intel_crtc->pipe, pipe_config);
5739 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5740 pipe_config->pipe_bpp -= 2*3;
5741 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5742 pipe_config->pipe_bpp);
5743 needs_recompute = true;
5744 pipe_config->bw_constrained = true;
5745
5746 goto retry;
5747 }
5748
5749 if (needs_recompute)
5750 return RETRY;
5751
5752 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5753}
5754
42db64ef 5755static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5756 struct intel_crtc_state *pipe_config)
42db64ef 5757{
d330a953 5758 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5759 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5760 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5761}
5762
a43f6e0f 5763static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5764 struct intel_crtc_state *pipe_config)
79e53945 5765{
a43f6e0f 5766 struct drm_device *dev = crtc->base.dev;
8bd31e67 5767 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5768 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5769
ad3a4479 5770 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5771 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5772 int clock_limit =
5773 dev_priv->display.get_display_clock_speed(dev);
5774
5775 /*
5776 * Enable pixel doubling when the dot clock
5777 * is > 90% of the (display) core speed.
5778 *
b397c96b
VS
5779 * GDG double wide on either pipe,
5780 * otherwise pipe A only.
cf532bb2 5781 */
b397c96b 5782 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5783 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5784 clock_limit *= 2;
cf532bb2 5785 pipe_config->double_wide = true;
ad3a4479
VS
5786 }
5787
241bfc38 5788 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5789 return -EINVAL;
2c07245f 5790 }
89749350 5791
1d1d0e27
VS
5792 /*
5793 * Pipe horizontal size must be even in:
5794 * - DVO ganged mode
5795 * - LVDS dual channel mode
5796 * - Double wide pipe
5797 */
b4f2bf4c 5798 if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5799 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5800 pipe_config->pipe_src_w &= ~1;
5801
8693a824
DL
5802 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5803 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5804 */
5805 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5806 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5807 return -EINVAL;
44f46b42 5808
bd080ee5 5809 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5810 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5811 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5812 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5813 * for lvds. */
5814 pipe_config->pipe_bpp = 8*3;
5815 }
5816
f5adf94e 5817 if (HAS_IPS(dev))
a43f6e0f
DV
5818 hsw_compute_ips_config(crtc, pipe_config);
5819
877d48d5 5820 if (pipe_config->has_pch_encoder)
a43f6e0f 5821 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5822
e29c22c0 5823 return 0;
79e53945
JB
5824}
5825
25eb05fc
JB
5826static int valleyview_get_display_clock_speed(struct drm_device *dev)
5827{
d197b7d3 5828 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5829 u32 val;
5830 int divider;
5831
6bcda4f0
VS
5832 if (dev_priv->hpll_freq == 0)
5833 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5834
d197b7d3
VS
5835 mutex_lock(&dev_priv->dpio_lock);
5836 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5837 mutex_unlock(&dev_priv->dpio_lock);
5838
5839 divider = val & DISPLAY_FREQUENCY_VALUES;
5840
7d007f40
VS
5841 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5842 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5843 "cdclk change in progress\n");
5844
6bcda4f0 5845 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5846}
5847
e70236a8
JB
5848static int i945_get_display_clock_speed(struct drm_device *dev)
5849{
5850 return 400000;
5851}
79e53945 5852
e70236a8 5853static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5854{
e70236a8
JB
5855 return 333000;
5856}
79e53945 5857
e70236a8
JB
5858static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5859{
5860 return 200000;
5861}
79e53945 5862
257a7ffc
DV
5863static int pnv_get_display_clock_speed(struct drm_device *dev)
5864{
5865 u16 gcfgc = 0;
5866
5867 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5868
5869 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5870 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5871 return 267000;
5872 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5873 return 333000;
5874 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5875 return 444000;
5876 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5877 return 200000;
5878 default:
5879 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5880 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5881 return 133000;
5882 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5883 return 167000;
5884 }
5885}
5886
e70236a8
JB
5887static int i915gm_get_display_clock_speed(struct drm_device *dev)
5888{
5889 u16 gcfgc = 0;
79e53945 5890
e70236a8
JB
5891 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5892
5893 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5894 return 133000;
5895 else {
5896 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5897 case GC_DISPLAY_CLOCK_333_MHZ:
5898 return 333000;
5899 default:
5900 case GC_DISPLAY_CLOCK_190_200_MHZ:
5901 return 190000;
79e53945 5902 }
e70236a8
JB
5903 }
5904}
5905
5906static int i865_get_display_clock_speed(struct drm_device *dev)
5907{
5908 return 266000;
5909}
5910
5911static int i855_get_display_clock_speed(struct drm_device *dev)
5912{
5913 u16 hpllcc = 0;
5914 /* Assume that the hardware is in the high speed state. This
5915 * should be the default.
5916 */
5917 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5918 case GC_CLOCK_133_200:
5919 case GC_CLOCK_100_200:
5920 return 200000;
5921 case GC_CLOCK_166_250:
5922 return 250000;
5923 case GC_CLOCK_100_133:
79e53945 5924 return 133000;
e70236a8 5925 }
79e53945 5926
e70236a8
JB
5927 /* Shouldn't happen */
5928 return 0;
5929}
79e53945 5930
e70236a8
JB
5931static int i830_get_display_clock_speed(struct drm_device *dev)
5932{
5933 return 133000;
79e53945
JB
5934}
5935
2c07245f 5936static void
a65851af 5937intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5938{
a65851af
VS
5939 while (*num > DATA_LINK_M_N_MASK ||
5940 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5941 *num >>= 1;
5942 *den >>= 1;
5943 }
5944}
5945
a65851af
VS
5946static void compute_m_n(unsigned int m, unsigned int n,
5947 uint32_t *ret_m, uint32_t *ret_n)
5948{
5949 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5950 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5951 intel_reduce_m_n_ratio(ret_m, ret_n);
5952}
5953
e69d0bc1
DV
5954void
5955intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5956 int pixel_clock, int link_clock,
5957 struct intel_link_m_n *m_n)
2c07245f 5958{
e69d0bc1 5959 m_n->tu = 64;
a65851af
VS
5960
5961 compute_m_n(bits_per_pixel * pixel_clock,
5962 link_clock * nlanes * 8,
5963 &m_n->gmch_m, &m_n->gmch_n);
5964
5965 compute_m_n(pixel_clock, link_clock,
5966 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5967}
5968
a7615030
CW
5969static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5970{
d330a953
JN
5971 if (i915.panel_use_ssc >= 0)
5972 return i915.panel_use_ssc != 0;
41aa3448 5973 return dev_priv->vbt.lvds_use_ssc
435793df 5974 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5975}
5976
409ee761 5977static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5978{
409ee761 5979 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5980 struct drm_i915_private *dev_priv = dev->dev_private;
5981 int refclk;
5982
a0c4da24 5983 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5984 refclk = 100000;
d0737e1d 5985 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5986 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5987 refclk = dev_priv->vbt.lvds_ssc_freq;
5988 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5989 } else if (!IS_GEN2(dev)) {
5990 refclk = 96000;
5991 } else {
5992 refclk = 48000;
5993 }
5994
5995 return refclk;
5996}
5997
7429e9d4 5998static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5999{
7df00d7a 6000 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 6001}
f47709a9 6002
7429e9d4
DV
6003static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6004{
6005 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
6006}
6007
f47709a9 6008static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 6009 struct intel_crtc_state *crtc_state,
a7516a05
JB
6010 intel_clock_t *reduced_clock)
6011{
f47709a9 6012 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
6013 u32 fp, fp2 = 0;
6014
6015 if (IS_PINEVIEW(dev)) {
190f68c5 6016 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6017 if (reduced_clock)
7429e9d4 6018 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 6019 } else {
190f68c5 6020 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6021 if (reduced_clock)
7429e9d4 6022 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
6023 }
6024
190f68c5 6025 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 6026
f47709a9 6027 crtc->lowfreq_avail = false;
e1f234bd 6028 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
ab585dea 6029 reduced_clock) {
190f68c5 6030 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 6031 crtc->lowfreq_avail = true;
a7516a05 6032 } else {
190f68c5 6033 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
6034 }
6035}
6036
5e69f97f
CML
6037static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6038 pipe)
89b667f8
JB
6039{
6040 u32 reg_val;
6041
6042 /*
6043 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6044 * and set it to a reasonable value instead.
6045 */
ab3c759a 6046 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
6047 reg_val &= 0xffffff00;
6048 reg_val |= 0x00000030;
ab3c759a 6049 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6050
ab3c759a 6051 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6052 reg_val &= 0x8cffffff;
6053 reg_val = 0x8c000000;
ab3c759a 6054 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 6055
ab3c759a 6056 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 6057 reg_val &= 0xffffff00;
ab3c759a 6058 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6059
ab3c759a 6060 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6061 reg_val &= 0x00ffffff;
6062 reg_val |= 0xb0000000;
ab3c759a 6063 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
6064}
6065
b551842d
DV
6066static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6067 struct intel_link_m_n *m_n)
6068{
6069 struct drm_device *dev = crtc->base.dev;
6070 struct drm_i915_private *dev_priv = dev->dev_private;
6071 int pipe = crtc->pipe;
6072
e3b95f1e
DV
6073 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6074 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6075 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6076 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
6077}
6078
6079static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
6080 struct intel_link_m_n *m_n,
6081 struct intel_link_m_n *m2_n2)
b551842d
DV
6082{
6083 struct drm_device *dev = crtc->base.dev;
6084 struct drm_i915_private *dev_priv = dev->dev_private;
6085 int pipe = crtc->pipe;
6e3c9717 6086 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
6087
6088 if (INTEL_INFO(dev)->gen >= 5) {
6089 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6090 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6091 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6092 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
6093 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6094 * for gen < 8) and if DRRS is supported (to make sure the
6095 * registers are not unnecessarily accessed).
6096 */
44395bfe 6097 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 6098 crtc->config->has_drrs) {
f769cd24
VK
6099 I915_WRITE(PIPE_DATA_M2(transcoder),
6100 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6101 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6102 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6103 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6104 }
b551842d 6105 } else {
e3b95f1e
DV
6106 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6107 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6108 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6109 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
6110 }
6111}
6112
fe3cd48d 6113void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 6114{
fe3cd48d
R
6115 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6116
6117 if (m_n == M1_N1) {
6118 dp_m_n = &crtc->config->dp_m_n;
6119 dp_m2_n2 = &crtc->config->dp_m2_n2;
6120 } else if (m_n == M2_N2) {
6121
6122 /*
6123 * M2_N2 registers are not supported. Hence m2_n2 divider value
6124 * needs to be programmed into M1_N1.
6125 */
6126 dp_m_n = &crtc->config->dp_m2_n2;
6127 } else {
6128 DRM_ERROR("Unsupported divider value\n");
6129 return;
6130 }
6131
6e3c9717
ACO
6132 if (crtc->config->has_pch_encoder)
6133 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 6134 else
fe3cd48d 6135 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
6136}
6137
d288f65f 6138static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 6139 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
6140{
6141 u32 dpll, dpll_md;
6142
6143 /*
6144 * Enable DPIO clock input. We should never disable the reference
6145 * clock for pipe B, since VGA hotplug / manual detection depends
6146 * on it.
6147 */
6148 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6149 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6150 /* We should never disable this, set it here for state tracking */
6151 if (crtc->pipe == PIPE_B)
6152 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6153 dpll |= DPLL_VCO_ENABLE;
d288f65f 6154 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 6155
d288f65f 6156 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 6157 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 6158 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
6159}
6160
d288f65f 6161static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6162 const struct intel_crtc_state *pipe_config)
a0c4da24 6163{
f47709a9 6164 struct drm_device *dev = crtc->base.dev;
a0c4da24 6165 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 6166 int pipe = crtc->pipe;
bdd4b6a6 6167 u32 mdiv;
a0c4da24 6168 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 6169 u32 coreclk, reg_val;
a0c4da24 6170
09153000
DV
6171 mutex_lock(&dev_priv->dpio_lock);
6172
d288f65f
VS
6173 bestn = pipe_config->dpll.n;
6174 bestm1 = pipe_config->dpll.m1;
6175 bestm2 = pipe_config->dpll.m2;
6176 bestp1 = pipe_config->dpll.p1;
6177 bestp2 = pipe_config->dpll.p2;
a0c4da24 6178
89b667f8
JB
6179 /* See eDP HDMI DPIO driver vbios notes doc */
6180
6181 /* PLL B needs special handling */
bdd4b6a6 6182 if (pipe == PIPE_B)
5e69f97f 6183 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
6184
6185 /* Set up Tx target for periodic Rcomp update */
ab3c759a 6186 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
6187
6188 /* Disable target IRef on PLL */
ab3c759a 6189 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 6190 reg_val &= 0x00ffffff;
ab3c759a 6191 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
6192
6193 /* Disable fast lock */
ab3c759a 6194 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
6195
6196 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
6197 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6198 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6199 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 6200 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
6201
6202 /*
6203 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6204 * but we don't support that).
6205 * Note: don't use the DAC post divider as it seems unstable.
6206 */
6207 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 6208 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6209
a0c4da24 6210 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 6211 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6212
89b667f8 6213 /* Set HBR and RBR LPF coefficients */
d288f65f 6214 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
6215 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6216 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 6217 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 6218 0x009f0003);
89b667f8 6219 else
ab3c759a 6220 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
6221 0x00d0000f);
6222
681a8504 6223 if (pipe_config->has_dp_encoder) {
89b667f8 6224 /* Use SSC source */
bdd4b6a6 6225 if (pipe == PIPE_A)
ab3c759a 6226 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6227 0x0df40000);
6228 else
ab3c759a 6229 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6230 0x0df70000);
6231 } else { /* HDMI or VGA */
6232 /* Use bend source */
bdd4b6a6 6233 if (pipe == PIPE_A)
ab3c759a 6234 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6235 0x0df70000);
6236 else
ab3c759a 6237 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6238 0x0df40000);
6239 }
a0c4da24 6240
ab3c759a 6241 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6242 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6243 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6244 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6245 coreclk |= 0x01000000;
ab3c759a 6246 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6247
ab3c759a 6248 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6249 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6250}
6251
d288f65f 6252static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 6253 struct intel_crtc_state *pipe_config)
1ae0d137 6254{
d288f65f 6255 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6256 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6257 DPLL_VCO_ENABLE;
6258 if (crtc->pipe != PIPE_A)
d288f65f 6259 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6260
d288f65f
VS
6261 pipe_config->dpll_hw_state.dpll_md =
6262 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6263}
6264
d288f65f 6265static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6266 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6267{
6268 struct drm_device *dev = crtc->base.dev;
6269 struct drm_i915_private *dev_priv = dev->dev_private;
6270 int pipe = crtc->pipe;
6271 int dpll_reg = DPLL(crtc->pipe);
6272 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 6273 u32 loopfilter, tribuf_calcntr;
9d556c99 6274 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 6275 u32 dpio_val;
9cbe40c1 6276 int vco;
9d556c99 6277
d288f65f
VS
6278 bestn = pipe_config->dpll.n;
6279 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6280 bestm1 = pipe_config->dpll.m1;
6281 bestm2 = pipe_config->dpll.m2 >> 22;
6282 bestp1 = pipe_config->dpll.p1;
6283 bestp2 = pipe_config->dpll.p2;
9cbe40c1 6284 vco = pipe_config->dpll.vco;
a945ce7e 6285 dpio_val = 0;
9cbe40c1 6286 loopfilter = 0;
9d556c99
CML
6287
6288 /*
6289 * Enable Refclk and SSC
6290 */
a11b0703 6291 I915_WRITE(dpll_reg,
d288f65f 6292 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6293
6294 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6295
9d556c99
CML
6296 /* p1 and p2 divider */
6297 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6298 5 << DPIO_CHV_S1_DIV_SHIFT |
6299 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6300 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6301 1 << DPIO_CHV_K_DIV_SHIFT);
6302
6303 /* Feedback post-divider - m2 */
6304 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6305
6306 /* Feedback refclk divider - n and m1 */
6307 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6308 DPIO_CHV_M1_DIV_BY_2 |
6309 1 << DPIO_CHV_N_DIV_SHIFT);
6310
6311 /* M2 fraction division */
a945ce7e
VP
6312 if (bestm2_frac)
6313 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
6314
6315 /* M2 fraction division enable */
a945ce7e
VP
6316 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6317 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6318 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6319 if (bestm2_frac)
6320 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6321 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 6322
de3a0fde
VP
6323 /* Program digital lock detect threshold */
6324 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6325 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6326 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6327 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6328 if (!bestm2_frac)
6329 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6330 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6331
9d556c99 6332 /* Loop filter */
9cbe40c1
VP
6333 if (vco == 5400000) {
6334 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6335 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6336 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6337 tribuf_calcntr = 0x9;
6338 } else if (vco <= 6200000) {
6339 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6340 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6341 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6342 tribuf_calcntr = 0x9;
6343 } else if (vco <= 6480000) {
6344 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6345 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6346 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6347 tribuf_calcntr = 0x8;
6348 } else {
6349 /* Not supported. Apply the same limits as in the max case */
6350 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6351 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6352 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6353 tribuf_calcntr = 0;
6354 }
9d556c99
CML
6355 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6356
968040b2 6357 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
6358 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6359 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6360 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6361
9d556c99
CML
6362 /* AFC Recal */
6363 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6364 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6365 DPIO_AFC_RECAL);
6366
6367 mutex_unlock(&dev_priv->dpio_lock);
6368}
6369
d288f65f
VS
6370/**
6371 * vlv_force_pll_on - forcibly enable just the PLL
6372 * @dev_priv: i915 private structure
6373 * @pipe: pipe PLL to enable
6374 * @dpll: PLL configuration
6375 *
6376 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6377 * in cases where we need the PLL enabled even when @pipe is not going to
6378 * be enabled.
6379 */
6380void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6381 const struct dpll *dpll)
6382{
6383 struct intel_crtc *crtc =
6384 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6385 struct intel_crtc_state pipe_config = {
d288f65f
VS
6386 .pixel_multiplier = 1,
6387 .dpll = *dpll,
6388 };
6389
6390 if (IS_CHERRYVIEW(dev)) {
6391 chv_update_pll(crtc, &pipe_config);
6392 chv_prepare_pll(crtc, &pipe_config);
6393 chv_enable_pll(crtc, &pipe_config);
6394 } else {
6395 vlv_update_pll(crtc, &pipe_config);
6396 vlv_prepare_pll(crtc, &pipe_config);
6397 vlv_enable_pll(crtc, &pipe_config);
6398 }
6399}
6400
6401/**
6402 * vlv_force_pll_off - forcibly disable just the PLL
6403 * @dev_priv: i915 private structure
6404 * @pipe: pipe PLL to disable
6405 *
6406 * Disable the PLL for @pipe. To be used in cases where we need
6407 * the PLL enabled even when @pipe is not going to be enabled.
6408 */
6409void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6410{
6411 if (IS_CHERRYVIEW(dev))
6412 chv_disable_pll(to_i915(dev), pipe);
6413 else
6414 vlv_disable_pll(to_i915(dev), pipe);
6415}
6416
f47709a9 6417static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6418 struct intel_crtc_state *crtc_state,
f47709a9 6419 intel_clock_t *reduced_clock,
eb1cbe48
DV
6420 int num_connectors)
6421{
f47709a9 6422 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6423 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6424 u32 dpll;
6425 bool is_sdvo;
190f68c5 6426 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6427
190f68c5 6428 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6429
d0737e1d
ACO
6430 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6431 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6432
6433 dpll = DPLL_VGA_MODE_DIS;
6434
d0737e1d 6435 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6436 dpll |= DPLLB_MODE_LVDS;
6437 else
6438 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6439
ef1b460d 6440 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6441 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6442 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6443 }
198a037f
DV
6444
6445 if (is_sdvo)
4a33e48d 6446 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6447
190f68c5 6448 if (crtc_state->has_dp_encoder)
4a33e48d 6449 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6450
6451 /* compute bitmask from p1 value */
6452 if (IS_PINEVIEW(dev))
6453 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6454 else {
6455 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6456 if (IS_G4X(dev) && reduced_clock)
6457 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6458 }
6459 switch (clock->p2) {
6460 case 5:
6461 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6462 break;
6463 case 7:
6464 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6465 break;
6466 case 10:
6467 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6468 break;
6469 case 14:
6470 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6471 break;
6472 }
6473 if (INTEL_INFO(dev)->gen >= 4)
6474 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6475
190f68c5 6476 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6477 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6478 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6479 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6480 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6481 else
6482 dpll |= PLL_REF_INPUT_DREFCLK;
6483
6484 dpll |= DPLL_VCO_ENABLE;
190f68c5 6485 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6486
eb1cbe48 6487 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6488 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6489 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6490 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6491 }
6492}
6493
f47709a9 6494static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6495 struct intel_crtc_state *crtc_state,
f47709a9 6496 intel_clock_t *reduced_clock,
eb1cbe48
DV
6497 int num_connectors)
6498{
f47709a9 6499 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6500 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6501 u32 dpll;
190f68c5 6502 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6503
190f68c5 6504 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6505
eb1cbe48
DV
6506 dpll = DPLL_VGA_MODE_DIS;
6507
d0737e1d 6508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6509 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6510 } else {
6511 if (clock->p1 == 2)
6512 dpll |= PLL_P1_DIVIDE_BY_TWO;
6513 else
6514 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6515 if (clock->p2 == 4)
6516 dpll |= PLL_P2_DIVIDE_BY_4;
6517 }
6518
d0737e1d 6519 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6520 dpll |= DPLL_DVO_2X_MODE;
6521
d0737e1d 6522 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6523 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6524 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6525 else
6526 dpll |= PLL_REF_INPUT_DREFCLK;
6527
6528 dpll |= DPLL_VCO_ENABLE;
190f68c5 6529 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6530}
6531
8a654f3b 6532static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6533{
6534 struct drm_device *dev = intel_crtc->base.dev;
6535 struct drm_i915_private *dev_priv = dev->dev_private;
6536 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6537 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6538 struct drm_display_mode *adjusted_mode =
6e3c9717 6539 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6540 uint32_t crtc_vtotal, crtc_vblank_end;
6541 int vsyncshift = 0;
4d8a62ea
DV
6542
6543 /* We need to be careful not to changed the adjusted mode, for otherwise
6544 * the hw state checker will get angry at the mismatch. */
6545 crtc_vtotal = adjusted_mode->crtc_vtotal;
6546 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6547
609aeaca 6548 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6549 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6550 crtc_vtotal -= 1;
6551 crtc_vblank_end -= 1;
609aeaca 6552
409ee761 6553 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6554 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6555 else
6556 vsyncshift = adjusted_mode->crtc_hsync_start -
6557 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6558 if (vsyncshift < 0)
6559 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6560 }
6561
6562 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6563 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6564
fe2b8f9d 6565 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6566 (adjusted_mode->crtc_hdisplay - 1) |
6567 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6568 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6569 (adjusted_mode->crtc_hblank_start - 1) |
6570 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6571 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6572 (adjusted_mode->crtc_hsync_start - 1) |
6573 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6574
fe2b8f9d 6575 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6576 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6577 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6578 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6579 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6580 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6581 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6582 (adjusted_mode->crtc_vsync_start - 1) |
6583 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6584
b5e508d4
PZ
6585 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6586 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6587 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6588 * bits. */
6589 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6590 (pipe == PIPE_B || pipe == PIPE_C))
6591 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6592
b0e77b9c
PZ
6593 /* pipesrc controls the size that is scaled from, which should
6594 * always be the user's requested size.
6595 */
6596 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6597 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6598 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6599}
6600
1bd1bd80 6601static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6602 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6603{
6604 struct drm_device *dev = crtc->base.dev;
6605 struct drm_i915_private *dev_priv = dev->dev_private;
6606 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6607 uint32_t tmp;
6608
6609 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6610 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6611 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6612 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6613 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6614 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6615 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6616 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6617 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6618
6619 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6620 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6621 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6622 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6623 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6624 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6625 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6626 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6627 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6628
6629 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6630 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6631 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6632 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6633 }
6634
6635 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6636 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6637 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6638
2d112de7
ACO
6639 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6640 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6641}
6642
f6a83288 6643void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6644 struct intel_crtc_state *pipe_config)
babea61d 6645{
2d112de7
ACO
6646 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6647 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6648 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6649 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6650
2d112de7
ACO
6651 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6652 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6653 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6654 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6655
2d112de7 6656 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6657
2d112de7
ACO
6658 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6659 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6660}
6661
84b046f3
DV
6662static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6663{
6664 struct drm_device *dev = intel_crtc->base.dev;
6665 struct drm_i915_private *dev_priv = dev->dev_private;
6666 uint32_t pipeconf;
6667
9f11a9e4 6668 pipeconf = 0;
84b046f3 6669
b6b5d049
VS
6670 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6671 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6672 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6673
6e3c9717 6674 if (intel_crtc->config->double_wide)
cf532bb2 6675 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6676
ff9ce46e
DV
6677 /* only g4x and later have fancy bpc/dither controls */
6678 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6679 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6680 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6681 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6682 PIPECONF_DITHER_TYPE_SP;
84b046f3 6683
6e3c9717 6684 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6685 case 18:
6686 pipeconf |= PIPECONF_6BPC;
6687 break;
6688 case 24:
6689 pipeconf |= PIPECONF_8BPC;
6690 break;
6691 case 30:
6692 pipeconf |= PIPECONF_10BPC;
6693 break;
6694 default:
6695 /* Case prevented by intel_choose_pipe_bpp_dither. */
6696 BUG();
84b046f3
DV
6697 }
6698 }
6699
6700 if (HAS_PIPE_CXSR(dev)) {
6701 if (intel_crtc->lowfreq_avail) {
6702 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6703 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6704 } else {
6705 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6706 }
6707 }
6708
6e3c9717 6709 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6710 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6711 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6712 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6713 else
6714 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6715 } else
84b046f3
DV
6716 pipeconf |= PIPECONF_PROGRESSIVE;
6717
6e3c9717 6718 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6719 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6720
84b046f3
DV
6721 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6722 POSTING_READ(PIPECONF(intel_crtc->pipe));
6723}
6724
190f68c5
ACO
6725static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6726 struct intel_crtc_state *crtc_state)
79e53945 6727{
c7653199 6728 struct drm_device *dev = crtc->base.dev;
79e53945 6729 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6730 int refclk, num_connectors = 0;
652c393a 6731 intel_clock_t clock, reduced_clock;
a16af721 6732 bool ok, has_reduced_clock = false;
e9fd1c02 6733 bool is_lvds = false, is_dsi = false;
5eddb70b 6734 struct intel_encoder *encoder;
d4906093 6735 const intel_limit_t *limit;
79e53945 6736
d0737e1d
ACO
6737 for_each_intel_encoder(dev, encoder) {
6738 if (encoder->new_crtc != crtc)
6739 continue;
6740
5eddb70b 6741 switch (encoder->type) {
79e53945
JB
6742 case INTEL_OUTPUT_LVDS:
6743 is_lvds = true;
6744 break;
e9fd1c02
JN
6745 case INTEL_OUTPUT_DSI:
6746 is_dsi = true;
6747 break;
6847d71b
PZ
6748 default:
6749 break;
79e53945 6750 }
43565a06 6751
c751ce4f 6752 num_connectors++;
79e53945
JB
6753 }
6754
f2335330 6755 if (is_dsi)
5b18e57c 6756 return 0;
f2335330 6757
190f68c5 6758 if (!crtc_state->clock_set) {
409ee761 6759 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6760
e9fd1c02
JN
6761 /*
6762 * Returns a set of divisors for the desired target clock with
6763 * the given refclk, or FALSE. The returned values represent
6764 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6765 * 2) / p1 / p2.
6766 */
409ee761 6767 limit = intel_limit(crtc, refclk);
c7653199 6768 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6769 crtc_state->port_clock,
e9fd1c02 6770 refclk, NULL, &clock);
f2335330 6771 if (!ok) {
e9fd1c02
JN
6772 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6773 return -EINVAL;
6774 }
79e53945 6775
f2335330
JN
6776 if (is_lvds && dev_priv->lvds_downclock_avail) {
6777 /*
6778 * Ensure we match the reduced clock's P to the target
6779 * clock. If the clocks don't match, we can't switch
6780 * the display clock by using the FP0/FP1. In such case
6781 * we will disable the LVDS downclock feature.
6782 */
6783 has_reduced_clock =
c7653199 6784 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6785 dev_priv->lvds_downclock,
6786 refclk, &clock,
6787 &reduced_clock);
6788 }
6789 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6790 crtc_state->dpll.n = clock.n;
6791 crtc_state->dpll.m1 = clock.m1;
6792 crtc_state->dpll.m2 = clock.m2;
6793 crtc_state->dpll.p1 = clock.p1;
6794 crtc_state->dpll.p2 = clock.p2;
f47709a9 6795 }
7026d4ac 6796
e9fd1c02 6797 if (IS_GEN2(dev)) {
190f68c5 6798 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6799 has_reduced_clock ? &reduced_clock : NULL,
6800 num_connectors);
9d556c99 6801 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6802 chv_update_pll(crtc, crtc_state);
e9fd1c02 6803 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6804 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6805 } else {
190f68c5 6806 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6807 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6808 num_connectors);
e9fd1c02 6809 }
79e53945 6810
c8f7a0db 6811 return 0;
f564048e
EA
6812}
6813
2fa2fe9a 6814static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6815 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6816{
6817 struct drm_device *dev = crtc->base.dev;
6818 struct drm_i915_private *dev_priv = dev->dev_private;
6819 uint32_t tmp;
6820
dc9e7dec
VS
6821 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6822 return;
6823
2fa2fe9a 6824 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6825 if (!(tmp & PFIT_ENABLE))
6826 return;
2fa2fe9a 6827
06922821 6828 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6829 if (INTEL_INFO(dev)->gen < 4) {
6830 if (crtc->pipe != PIPE_B)
6831 return;
2fa2fe9a
DV
6832 } else {
6833 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6834 return;
6835 }
6836
06922821 6837 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6838 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6839 if (INTEL_INFO(dev)->gen < 5)
6840 pipe_config->gmch_pfit.lvds_border_bits =
6841 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6842}
6843
acbec814 6844static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6845 struct intel_crtc_state *pipe_config)
acbec814
JB
6846{
6847 struct drm_device *dev = crtc->base.dev;
6848 struct drm_i915_private *dev_priv = dev->dev_private;
6849 int pipe = pipe_config->cpu_transcoder;
6850 intel_clock_t clock;
6851 u32 mdiv;
662c6ecb 6852 int refclk = 100000;
acbec814 6853
f573de5a
SK
6854 /* In case of MIPI DPLL will not even be used */
6855 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6856 return;
6857
acbec814 6858 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6859 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6860 mutex_unlock(&dev_priv->dpio_lock);
6861
6862 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6863 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6864 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6865 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6866 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6867
f646628b 6868 vlv_clock(refclk, &clock);
acbec814 6869
f646628b
VS
6870 /* clock.dot is the fast clock */
6871 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6872}
6873
5724dbd1
DL
6874static void
6875i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6876 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6877{
6878 struct drm_device *dev = crtc->base.dev;
6879 struct drm_i915_private *dev_priv = dev->dev_private;
6880 u32 val, base, offset;
6881 int pipe = crtc->pipe, plane = crtc->plane;
6882 int fourcc, pixel_format;
6761dd31 6883 unsigned int aligned_height;
b113d5ee 6884 struct drm_framebuffer *fb;
1b842c89 6885 struct intel_framebuffer *intel_fb;
1ad292b5 6886
42a7b088
DL
6887 val = I915_READ(DSPCNTR(plane));
6888 if (!(val & DISPLAY_PLANE_ENABLE))
6889 return;
6890
d9806c9f 6891 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 6892 if (!intel_fb) {
1ad292b5
JB
6893 DRM_DEBUG_KMS("failed to alloc fb\n");
6894 return;
6895 }
6896
1b842c89
DL
6897 fb = &intel_fb->base;
6898
18c5247e
DV
6899 if (INTEL_INFO(dev)->gen >= 4) {
6900 if (val & DISPPLANE_TILED) {
49af449b 6901 plane_config->tiling = I915_TILING_X;
18c5247e
DV
6902 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6903 }
6904 }
1ad292b5
JB
6905
6906 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6907 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6908 fb->pixel_format = fourcc;
6909 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6910
6911 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6912 if (plane_config->tiling)
1ad292b5
JB
6913 offset = I915_READ(DSPTILEOFF(plane));
6914 else
6915 offset = I915_READ(DSPLINOFF(plane));
6916 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6917 } else {
6918 base = I915_READ(DSPADDR(plane));
6919 }
6920 plane_config->base = base;
6921
6922 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6923 fb->width = ((val >> 16) & 0xfff) + 1;
6924 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6925
6926 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6927 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6928
b113d5ee 6929 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
6930 fb->pixel_format,
6931 fb->modifier[0]);
1ad292b5 6932
f37b5c2b 6933 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 6934
2844a921
DL
6935 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6936 pipe_name(pipe), plane, fb->width, fb->height,
6937 fb->bits_per_pixel, base, fb->pitches[0],
6938 plane_config->size);
1ad292b5 6939
2d14030b 6940 plane_config->fb = intel_fb;
1ad292b5
JB
6941}
6942
70b23a98 6943static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6944 struct intel_crtc_state *pipe_config)
70b23a98
VS
6945{
6946 struct drm_device *dev = crtc->base.dev;
6947 struct drm_i915_private *dev_priv = dev->dev_private;
6948 int pipe = pipe_config->cpu_transcoder;
6949 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6950 intel_clock_t clock;
6951 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6952 int refclk = 100000;
6953
6954 mutex_lock(&dev_priv->dpio_lock);
6955 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6956 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6957 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6958 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6959 mutex_unlock(&dev_priv->dpio_lock);
6960
6961 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6962 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6963 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6964 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6965 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6966
6967 chv_clock(refclk, &clock);
6968
6969 /* clock.dot is the fast clock */
6970 pipe_config->port_clock = clock.dot / 5;
6971}
6972
0e8ffe1b 6973static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6974 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6975{
6976 struct drm_device *dev = crtc->base.dev;
6977 struct drm_i915_private *dev_priv = dev->dev_private;
6978 uint32_t tmp;
6979
f458ebbc
DV
6980 if (!intel_display_power_is_enabled(dev_priv,
6981 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6982 return false;
6983
e143a21c 6984 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6985 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6986
0e8ffe1b
DV
6987 tmp = I915_READ(PIPECONF(crtc->pipe));
6988 if (!(tmp & PIPECONF_ENABLE))
6989 return false;
6990
42571aef
VS
6991 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6992 switch (tmp & PIPECONF_BPC_MASK) {
6993 case PIPECONF_6BPC:
6994 pipe_config->pipe_bpp = 18;
6995 break;
6996 case PIPECONF_8BPC:
6997 pipe_config->pipe_bpp = 24;
6998 break;
6999 case PIPECONF_10BPC:
7000 pipe_config->pipe_bpp = 30;
7001 break;
7002 default:
7003 break;
7004 }
7005 }
7006
b5a9fa09
DV
7007 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7008 pipe_config->limited_color_range = true;
7009
282740f7
VS
7010 if (INTEL_INFO(dev)->gen < 4)
7011 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7012
1bd1bd80
DV
7013 intel_get_pipe_timings(crtc, pipe_config);
7014
2fa2fe9a
DV
7015 i9xx_get_pfit_config(crtc, pipe_config);
7016
6c49f241
DV
7017 if (INTEL_INFO(dev)->gen >= 4) {
7018 tmp = I915_READ(DPLL_MD(crtc->pipe));
7019 pipe_config->pixel_multiplier =
7020 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7021 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 7022 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
7023 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7024 tmp = I915_READ(DPLL(crtc->pipe));
7025 pipe_config->pixel_multiplier =
7026 ((tmp & SDVO_MULTIPLIER_MASK)
7027 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7028 } else {
7029 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7030 * port and will be fixed up in the encoder->get_config
7031 * function. */
7032 pipe_config->pixel_multiplier = 1;
7033 }
8bcc2795
DV
7034 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7035 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
7036 /*
7037 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7038 * on 830. Filter it out here so that we don't
7039 * report errors due to that.
7040 */
7041 if (IS_I830(dev))
7042 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7043
8bcc2795
DV
7044 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7045 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
7046 } else {
7047 /* Mask out read-only status bits. */
7048 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7049 DPLL_PORTC_READY_MASK |
7050 DPLL_PORTB_READY_MASK);
8bcc2795 7051 }
6c49f241 7052
70b23a98
VS
7053 if (IS_CHERRYVIEW(dev))
7054 chv_crtc_clock_get(crtc, pipe_config);
7055 else if (IS_VALLEYVIEW(dev))
acbec814
JB
7056 vlv_crtc_clock_get(crtc, pipe_config);
7057 else
7058 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 7059
0e8ffe1b
DV
7060 return true;
7061}
7062
dde86e2d 7063static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
7064{
7065 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 7066 struct intel_encoder *encoder;
74cfd7ac 7067 u32 val, final;
13d83a67 7068 bool has_lvds = false;
199e5d79 7069 bool has_cpu_edp = false;
199e5d79 7070 bool has_panel = false;
99eb6a01
KP
7071 bool has_ck505 = false;
7072 bool can_ssc = false;
13d83a67
JB
7073
7074 /* We need to take the global config into account */
b2784e15 7075 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
7076 switch (encoder->type) {
7077 case INTEL_OUTPUT_LVDS:
7078 has_panel = true;
7079 has_lvds = true;
7080 break;
7081 case INTEL_OUTPUT_EDP:
7082 has_panel = true;
2de6905f 7083 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
7084 has_cpu_edp = true;
7085 break;
6847d71b
PZ
7086 default:
7087 break;
13d83a67
JB
7088 }
7089 }
7090
99eb6a01 7091 if (HAS_PCH_IBX(dev)) {
41aa3448 7092 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
7093 can_ssc = has_ck505;
7094 } else {
7095 has_ck505 = false;
7096 can_ssc = true;
7097 }
7098
2de6905f
ID
7099 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7100 has_panel, has_lvds, has_ck505);
13d83a67
JB
7101
7102 /* Ironlake: try to setup display ref clock before DPLL
7103 * enabling. This is only under driver's control after
7104 * PCH B stepping, previous chipset stepping should be
7105 * ignoring this setting.
7106 */
74cfd7ac
CW
7107 val = I915_READ(PCH_DREF_CONTROL);
7108
7109 /* As we must carefully and slowly disable/enable each source in turn,
7110 * compute the final state we want first and check if we need to
7111 * make any changes at all.
7112 */
7113 final = val;
7114 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7115 if (has_ck505)
7116 final |= DREF_NONSPREAD_CK505_ENABLE;
7117 else
7118 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7119
7120 final &= ~DREF_SSC_SOURCE_MASK;
7121 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7122 final &= ~DREF_SSC1_ENABLE;
7123
7124 if (has_panel) {
7125 final |= DREF_SSC_SOURCE_ENABLE;
7126
7127 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7128 final |= DREF_SSC1_ENABLE;
7129
7130 if (has_cpu_edp) {
7131 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7132 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7133 else
7134 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7135 } else
7136 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7137 } else {
7138 final |= DREF_SSC_SOURCE_DISABLE;
7139 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7140 }
7141
7142 if (final == val)
7143 return;
7144
13d83a67 7145 /* Always enable nonspread source */
74cfd7ac 7146 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 7147
99eb6a01 7148 if (has_ck505)
74cfd7ac 7149 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 7150 else
74cfd7ac 7151 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 7152
199e5d79 7153 if (has_panel) {
74cfd7ac
CW
7154 val &= ~DREF_SSC_SOURCE_MASK;
7155 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 7156
199e5d79 7157 /* SSC must be turned on before enabling the CPU output */
99eb6a01 7158 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7159 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 7160 val |= DREF_SSC1_ENABLE;
e77166b5 7161 } else
74cfd7ac 7162 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
7163
7164 /* Get SSC going before enabling the outputs */
74cfd7ac 7165 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7166 POSTING_READ(PCH_DREF_CONTROL);
7167 udelay(200);
7168
74cfd7ac 7169 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
7170
7171 /* Enable CPU source on CPU attached eDP */
199e5d79 7172 if (has_cpu_edp) {
99eb6a01 7173 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7174 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 7175 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 7176 } else
74cfd7ac 7177 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 7178 } else
74cfd7ac 7179 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7180
74cfd7ac 7181 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7182 POSTING_READ(PCH_DREF_CONTROL);
7183 udelay(200);
7184 } else {
7185 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7186
74cfd7ac 7187 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
7188
7189 /* Turn off CPU output */
74cfd7ac 7190 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7191
74cfd7ac 7192 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7193 POSTING_READ(PCH_DREF_CONTROL);
7194 udelay(200);
7195
7196 /* Turn off the SSC source */
74cfd7ac
CW
7197 val &= ~DREF_SSC_SOURCE_MASK;
7198 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
7199
7200 /* Turn off SSC1 */
74cfd7ac 7201 val &= ~DREF_SSC1_ENABLE;
199e5d79 7202
74cfd7ac 7203 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
7204 POSTING_READ(PCH_DREF_CONTROL);
7205 udelay(200);
7206 }
74cfd7ac
CW
7207
7208 BUG_ON(val != final);
13d83a67
JB
7209}
7210
f31f2d55 7211static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 7212{
f31f2d55 7213 uint32_t tmp;
dde86e2d 7214
0ff066a9
PZ
7215 tmp = I915_READ(SOUTH_CHICKEN2);
7216 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7217 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7218
0ff066a9
PZ
7219 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7220 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7221 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 7222
0ff066a9
PZ
7223 tmp = I915_READ(SOUTH_CHICKEN2);
7224 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7225 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7226
0ff066a9
PZ
7227 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7228 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7229 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
7230}
7231
7232/* WaMPhyProgramming:hsw */
7233static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7234{
7235 uint32_t tmp;
dde86e2d
PZ
7236
7237 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7238 tmp &= ~(0xFF << 24);
7239 tmp |= (0x12 << 24);
7240 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7241
dde86e2d
PZ
7242 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7243 tmp |= (1 << 11);
7244 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7245
7246 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7247 tmp |= (1 << 11);
7248 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7249
dde86e2d
PZ
7250 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7251 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7252 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7253
7254 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7255 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7256 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7257
0ff066a9
PZ
7258 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7259 tmp &= ~(7 << 13);
7260 tmp |= (5 << 13);
7261 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 7262
0ff066a9
PZ
7263 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7264 tmp &= ~(7 << 13);
7265 tmp |= (5 << 13);
7266 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
7267
7268 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7269 tmp &= ~0xFF;
7270 tmp |= 0x1C;
7271 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7272
7273 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7274 tmp &= ~0xFF;
7275 tmp |= 0x1C;
7276 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7277
7278 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7279 tmp &= ~(0xFF << 16);
7280 tmp |= (0x1C << 16);
7281 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7282
7283 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7284 tmp &= ~(0xFF << 16);
7285 tmp |= (0x1C << 16);
7286 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7287
0ff066a9
PZ
7288 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7289 tmp |= (1 << 27);
7290 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 7291
0ff066a9
PZ
7292 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7293 tmp |= (1 << 27);
7294 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7295
0ff066a9
PZ
7296 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7297 tmp &= ~(0xF << 28);
7298 tmp |= (4 << 28);
7299 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7300
0ff066a9
PZ
7301 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7302 tmp &= ~(0xF << 28);
7303 tmp |= (4 << 28);
7304 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7305}
7306
2fa86a1f
PZ
7307/* Implements 3 different sequences from BSpec chapter "Display iCLK
7308 * Programming" based on the parameters passed:
7309 * - Sequence to enable CLKOUT_DP
7310 * - Sequence to enable CLKOUT_DP without spread
7311 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7312 */
7313static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7314 bool with_fdi)
f31f2d55
PZ
7315{
7316 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7317 uint32_t reg, tmp;
7318
7319 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7320 with_spread = true;
7321 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7322 with_fdi, "LP PCH doesn't have FDI\n"))
7323 with_fdi = false;
f31f2d55
PZ
7324
7325 mutex_lock(&dev_priv->dpio_lock);
7326
7327 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7328 tmp &= ~SBI_SSCCTL_DISABLE;
7329 tmp |= SBI_SSCCTL_PATHALT;
7330 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7331
7332 udelay(24);
7333
2fa86a1f
PZ
7334 if (with_spread) {
7335 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7336 tmp &= ~SBI_SSCCTL_PATHALT;
7337 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7338
2fa86a1f
PZ
7339 if (with_fdi) {
7340 lpt_reset_fdi_mphy(dev_priv);
7341 lpt_program_fdi_mphy(dev_priv);
7342 }
7343 }
dde86e2d 7344
2fa86a1f
PZ
7345 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7346 SBI_GEN0 : SBI_DBUFF0;
7347 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7348 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7349 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7350
7351 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7352}
7353
47701c3b
PZ
7354/* Sequence to disable CLKOUT_DP */
7355static void lpt_disable_clkout_dp(struct drm_device *dev)
7356{
7357 struct drm_i915_private *dev_priv = dev->dev_private;
7358 uint32_t reg, tmp;
7359
7360 mutex_lock(&dev_priv->dpio_lock);
7361
7362 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7363 SBI_GEN0 : SBI_DBUFF0;
7364 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7365 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7366 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7367
7368 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7369 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7370 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7371 tmp |= SBI_SSCCTL_PATHALT;
7372 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7373 udelay(32);
7374 }
7375 tmp |= SBI_SSCCTL_DISABLE;
7376 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7377 }
7378
7379 mutex_unlock(&dev_priv->dpio_lock);
7380}
7381
bf8fa3d3
PZ
7382static void lpt_init_pch_refclk(struct drm_device *dev)
7383{
bf8fa3d3
PZ
7384 struct intel_encoder *encoder;
7385 bool has_vga = false;
7386
b2784e15 7387 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7388 switch (encoder->type) {
7389 case INTEL_OUTPUT_ANALOG:
7390 has_vga = true;
7391 break;
6847d71b
PZ
7392 default:
7393 break;
bf8fa3d3
PZ
7394 }
7395 }
7396
47701c3b
PZ
7397 if (has_vga)
7398 lpt_enable_clkout_dp(dev, true, true);
7399 else
7400 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7401}
7402
dde86e2d
PZ
7403/*
7404 * Initialize reference clocks when the driver loads
7405 */
7406void intel_init_pch_refclk(struct drm_device *dev)
7407{
7408 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7409 ironlake_init_pch_refclk(dev);
7410 else if (HAS_PCH_LPT(dev))
7411 lpt_init_pch_refclk(dev);
7412}
7413
d9d444cb
JB
7414static int ironlake_get_refclk(struct drm_crtc *crtc)
7415{
7416 struct drm_device *dev = crtc->dev;
7417 struct drm_i915_private *dev_priv = dev->dev_private;
7418 struct intel_encoder *encoder;
d9d444cb
JB
7419 int num_connectors = 0;
7420 bool is_lvds = false;
7421
d0737e1d
ACO
7422 for_each_intel_encoder(dev, encoder) {
7423 if (encoder->new_crtc != to_intel_crtc(crtc))
7424 continue;
7425
d9d444cb
JB
7426 switch (encoder->type) {
7427 case INTEL_OUTPUT_LVDS:
7428 is_lvds = true;
7429 break;
6847d71b
PZ
7430 default:
7431 break;
d9d444cb
JB
7432 }
7433 num_connectors++;
7434 }
7435
7436 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7437 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7438 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7439 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7440 }
7441
7442 return 120000;
7443}
7444
6ff93609 7445static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7446{
c8203565 7447 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7449 int pipe = intel_crtc->pipe;
c8203565
PZ
7450 uint32_t val;
7451
78114071 7452 val = 0;
c8203565 7453
6e3c9717 7454 switch (intel_crtc->config->pipe_bpp) {
c8203565 7455 case 18:
dfd07d72 7456 val |= PIPECONF_6BPC;
c8203565
PZ
7457 break;
7458 case 24:
dfd07d72 7459 val |= PIPECONF_8BPC;
c8203565
PZ
7460 break;
7461 case 30:
dfd07d72 7462 val |= PIPECONF_10BPC;
c8203565
PZ
7463 break;
7464 case 36:
dfd07d72 7465 val |= PIPECONF_12BPC;
c8203565
PZ
7466 break;
7467 default:
cc769b62
PZ
7468 /* Case prevented by intel_choose_pipe_bpp_dither. */
7469 BUG();
c8203565
PZ
7470 }
7471
6e3c9717 7472 if (intel_crtc->config->dither)
c8203565
PZ
7473 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7474
6e3c9717 7475 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7476 val |= PIPECONF_INTERLACED_ILK;
7477 else
7478 val |= PIPECONF_PROGRESSIVE;
7479
6e3c9717 7480 if (intel_crtc->config->limited_color_range)
3685a8f3 7481 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7482
c8203565
PZ
7483 I915_WRITE(PIPECONF(pipe), val);
7484 POSTING_READ(PIPECONF(pipe));
7485}
7486
86d3efce
VS
7487/*
7488 * Set up the pipe CSC unit.
7489 *
7490 * Currently only full range RGB to limited range RGB conversion
7491 * is supported, but eventually this should handle various
7492 * RGB<->YCbCr scenarios as well.
7493 */
50f3b016 7494static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7495{
7496 struct drm_device *dev = crtc->dev;
7497 struct drm_i915_private *dev_priv = dev->dev_private;
7498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7499 int pipe = intel_crtc->pipe;
7500 uint16_t coeff = 0x7800; /* 1.0 */
7501
7502 /*
7503 * TODO: Check what kind of values actually come out of the pipe
7504 * with these coeff/postoff values and adjust to get the best
7505 * accuracy. Perhaps we even need to take the bpc value into
7506 * consideration.
7507 */
7508
6e3c9717 7509 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7510 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7511
7512 /*
7513 * GY/GU and RY/RU should be the other way around according
7514 * to BSpec, but reality doesn't agree. Just set them up in
7515 * a way that results in the correct picture.
7516 */
7517 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7518 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7519
7520 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7521 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7522
7523 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7524 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7525
7526 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7527 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7528 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7529
7530 if (INTEL_INFO(dev)->gen > 6) {
7531 uint16_t postoff = 0;
7532
6e3c9717 7533 if (intel_crtc->config->limited_color_range)
32cf0cb0 7534 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7535
7536 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7537 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7538 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7539
7540 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7541 } else {
7542 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7543
6e3c9717 7544 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7545 mode |= CSC_BLACK_SCREEN_OFFSET;
7546
7547 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7548 }
7549}
7550
6ff93609 7551static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7552{
756f85cf
PZ
7553 struct drm_device *dev = crtc->dev;
7554 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7556 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7557 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7558 uint32_t val;
7559
3eff4faa 7560 val = 0;
ee2b0b38 7561
6e3c9717 7562 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7563 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7564
6e3c9717 7565 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7566 val |= PIPECONF_INTERLACED_ILK;
7567 else
7568 val |= PIPECONF_PROGRESSIVE;
7569
702e7a56
PZ
7570 I915_WRITE(PIPECONF(cpu_transcoder), val);
7571 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7572
7573 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7574 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7575
3cdf122c 7576 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7577 val = 0;
7578
6e3c9717 7579 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7580 case 18:
7581 val |= PIPEMISC_DITHER_6_BPC;
7582 break;
7583 case 24:
7584 val |= PIPEMISC_DITHER_8_BPC;
7585 break;
7586 case 30:
7587 val |= PIPEMISC_DITHER_10_BPC;
7588 break;
7589 case 36:
7590 val |= PIPEMISC_DITHER_12_BPC;
7591 break;
7592 default:
7593 /* Case prevented by pipe_config_set_bpp. */
7594 BUG();
7595 }
7596
6e3c9717 7597 if (intel_crtc->config->dither)
756f85cf
PZ
7598 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7599
7600 I915_WRITE(PIPEMISC(pipe), val);
7601 }
ee2b0b38
PZ
7602}
7603
6591c6e4 7604static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7605 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7606 intel_clock_t *clock,
7607 bool *has_reduced_clock,
7608 intel_clock_t *reduced_clock)
7609{
7610 struct drm_device *dev = crtc->dev;
7611 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7613 int refclk;
d4906093 7614 const intel_limit_t *limit;
a16af721 7615 bool ret, is_lvds = false;
79e53945 7616
d0737e1d 7617 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7618
d9d444cb 7619 refclk = ironlake_get_refclk(crtc);
79e53945 7620
d4906093
ML
7621 /*
7622 * Returns a set of divisors for the desired target clock with the given
7623 * refclk, or FALSE. The returned values represent the clock equation:
7624 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7625 */
409ee761 7626 limit = intel_limit(intel_crtc, refclk);
a919ff14 7627 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7628 crtc_state->port_clock,
ee9300bb 7629 refclk, NULL, clock);
6591c6e4
PZ
7630 if (!ret)
7631 return false;
cda4b7d3 7632
ddc9003c 7633 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7634 /*
7635 * Ensure we match the reduced clock's P to the target clock.
7636 * If the clocks don't match, we can't switch the display clock
7637 * by using the FP0/FP1. In such case we will disable the LVDS
7638 * downclock feature.
7639 */
ee9300bb 7640 *has_reduced_clock =
a919ff14 7641 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7642 dev_priv->lvds_downclock,
7643 refclk, clock,
7644 reduced_clock);
652c393a 7645 }
61e9653f 7646
6591c6e4
PZ
7647 return true;
7648}
7649
d4b1931c
PZ
7650int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7651{
7652 /*
7653 * Account for spread spectrum to avoid
7654 * oversubscribing the link. Max center spread
7655 * is 2.5%; use 5% for safety's sake.
7656 */
7657 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7658 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7659}
7660
7429e9d4 7661static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7662{
7429e9d4 7663 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7664}
7665
de13a2e3 7666static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7667 struct intel_crtc_state *crtc_state,
7429e9d4 7668 u32 *fp,
9a7c7890 7669 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7670{
de13a2e3 7671 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7672 struct drm_device *dev = crtc->dev;
7673 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7674 struct intel_encoder *intel_encoder;
7675 uint32_t dpll;
6cc5f341 7676 int factor, num_connectors = 0;
09ede541 7677 bool is_lvds = false, is_sdvo = false;
79e53945 7678
d0737e1d
ACO
7679 for_each_intel_encoder(dev, intel_encoder) {
7680 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7681 continue;
7682
de13a2e3 7683 switch (intel_encoder->type) {
79e53945
JB
7684 case INTEL_OUTPUT_LVDS:
7685 is_lvds = true;
7686 break;
7687 case INTEL_OUTPUT_SDVO:
7d57382e 7688 case INTEL_OUTPUT_HDMI:
79e53945 7689 is_sdvo = true;
79e53945 7690 break;
6847d71b
PZ
7691 default:
7692 break;
79e53945 7693 }
43565a06 7694
c751ce4f 7695 num_connectors++;
79e53945 7696 }
79e53945 7697
c1858123 7698 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7699 factor = 21;
7700 if (is_lvds) {
7701 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7702 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7703 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7704 factor = 25;
190f68c5 7705 } else if (crtc_state->sdvo_tv_clock)
8febb297 7706 factor = 20;
c1858123 7707
190f68c5 7708 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7709 *fp |= FP_CB_TUNE;
2c07245f 7710
9a7c7890
DV
7711 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7712 *fp2 |= FP_CB_TUNE;
7713
5eddb70b 7714 dpll = 0;
2c07245f 7715
a07d6787
EA
7716 if (is_lvds)
7717 dpll |= DPLLB_MODE_LVDS;
7718 else
7719 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7720
190f68c5 7721 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7722 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7723
7724 if (is_sdvo)
4a33e48d 7725 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7726 if (crtc_state->has_dp_encoder)
4a33e48d 7727 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7728
a07d6787 7729 /* compute bitmask from p1 value */
190f68c5 7730 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7731 /* also FPA1 */
190f68c5 7732 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7733
190f68c5 7734 switch (crtc_state->dpll.p2) {
a07d6787
EA
7735 case 5:
7736 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7737 break;
7738 case 7:
7739 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7740 break;
7741 case 10:
7742 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7743 break;
7744 case 14:
7745 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7746 break;
79e53945
JB
7747 }
7748
b4c09f3b 7749 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7750 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7751 else
7752 dpll |= PLL_REF_INPUT_DREFCLK;
7753
959e16d6 7754 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7755}
7756
190f68c5
ACO
7757static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7758 struct intel_crtc_state *crtc_state)
de13a2e3 7759{
c7653199 7760 struct drm_device *dev = crtc->base.dev;
de13a2e3 7761 intel_clock_t clock, reduced_clock;
cbbab5bd 7762 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7763 bool ok, has_reduced_clock = false;
8b47047b 7764 bool is_lvds = false;
e2b78267 7765 struct intel_shared_dpll *pll;
de13a2e3 7766
409ee761 7767 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7768
5dc5298b
PZ
7769 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7770 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7771
190f68c5 7772 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7773 &has_reduced_clock, &reduced_clock);
190f68c5 7774 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7775 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7776 return -EINVAL;
79e53945 7777 }
f47709a9 7778 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7779 if (!crtc_state->clock_set) {
7780 crtc_state->dpll.n = clock.n;
7781 crtc_state->dpll.m1 = clock.m1;
7782 crtc_state->dpll.m2 = clock.m2;
7783 crtc_state->dpll.p1 = clock.p1;
7784 crtc_state->dpll.p2 = clock.p2;
f47709a9 7785 }
79e53945 7786
5dc5298b 7787 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7788 if (crtc_state->has_pch_encoder) {
7789 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7790 if (has_reduced_clock)
7429e9d4 7791 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7792
190f68c5 7793 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7794 &fp, &reduced_clock,
7795 has_reduced_clock ? &fp2 : NULL);
7796
190f68c5
ACO
7797 crtc_state->dpll_hw_state.dpll = dpll;
7798 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7799 if (has_reduced_clock)
190f68c5 7800 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7801 else
190f68c5 7802 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7803
190f68c5 7804 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7805 if (pll == NULL) {
84f44ce7 7806 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7807 pipe_name(crtc->pipe));
4b645f14
JB
7808 return -EINVAL;
7809 }
3fb37703 7810 }
79e53945 7811
ab585dea 7812 if (is_lvds && has_reduced_clock)
c7653199 7813 crtc->lowfreq_avail = true;
bcd644e0 7814 else
c7653199 7815 crtc->lowfreq_avail = false;
e2b78267 7816
c8f7a0db 7817 return 0;
79e53945
JB
7818}
7819
eb14cb74
VS
7820static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7821 struct intel_link_m_n *m_n)
7822{
7823 struct drm_device *dev = crtc->base.dev;
7824 struct drm_i915_private *dev_priv = dev->dev_private;
7825 enum pipe pipe = crtc->pipe;
7826
7827 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7828 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7829 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7830 & ~TU_SIZE_MASK;
7831 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7832 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7833 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7834}
7835
7836static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7837 enum transcoder transcoder,
b95af8be
VK
7838 struct intel_link_m_n *m_n,
7839 struct intel_link_m_n *m2_n2)
72419203
DV
7840{
7841 struct drm_device *dev = crtc->base.dev;
7842 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7843 enum pipe pipe = crtc->pipe;
72419203 7844
eb14cb74
VS
7845 if (INTEL_INFO(dev)->gen >= 5) {
7846 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7847 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7848 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7849 & ~TU_SIZE_MASK;
7850 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7851 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7852 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7853 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7854 * gen < 8) and if DRRS is supported (to make sure the
7855 * registers are not unnecessarily read).
7856 */
7857 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7858 crtc->config->has_drrs) {
b95af8be
VK
7859 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7860 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7861 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7862 & ~TU_SIZE_MASK;
7863 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7864 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7865 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7866 }
eb14cb74
VS
7867 } else {
7868 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7869 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7870 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7871 & ~TU_SIZE_MASK;
7872 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7873 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7874 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7875 }
7876}
7877
7878void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7879 struct intel_crtc_state *pipe_config)
eb14cb74 7880{
681a8504 7881 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7882 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7883 else
7884 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7885 &pipe_config->dp_m_n,
7886 &pipe_config->dp_m2_n2);
eb14cb74 7887}
72419203 7888
eb14cb74 7889static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7890 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7891{
7892 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7893 &pipe_config->fdi_m_n, NULL);
72419203
DV
7894}
7895
bd2e244f 7896static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7897 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7898{
7899 struct drm_device *dev = crtc->base.dev;
7900 struct drm_i915_private *dev_priv = dev->dev_private;
7901 uint32_t tmp;
7902
7903 tmp = I915_READ(PS_CTL(crtc->pipe));
7904
7905 if (tmp & PS_ENABLE) {
7906 pipe_config->pch_pfit.enabled = true;
7907 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7908 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7909 }
7910}
7911
5724dbd1
DL
7912static void
7913skylake_get_initial_plane_config(struct intel_crtc *crtc,
7914 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7915{
7916 struct drm_device *dev = crtc->base.dev;
7917 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 7918 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
7919 int pipe = crtc->pipe;
7920 int fourcc, pixel_format;
6761dd31 7921 unsigned int aligned_height;
bc8d7dff 7922 struct drm_framebuffer *fb;
1b842c89 7923 struct intel_framebuffer *intel_fb;
bc8d7dff 7924
d9806c9f 7925 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7926 if (!intel_fb) {
bc8d7dff
DL
7927 DRM_DEBUG_KMS("failed to alloc fb\n");
7928 return;
7929 }
7930
1b842c89
DL
7931 fb = &intel_fb->base;
7932
bc8d7dff 7933 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
7934 if (!(val & PLANE_CTL_ENABLE))
7935 goto error;
7936
bc8d7dff
DL
7937 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7938 fourcc = skl_format_to_fourcc(pixel_format,
7939 val & PLANE_CTL_ORDER_RGBX,
7940 val & PLANE_CTL_ALPHA_MASK);
7941 fb->pixel_format = fourcc;
7942 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7943
40f46283
DL
7944 tiling = val & PLANE_CTL_TILED_MASK;
7945 switch (tiling) {
7946 case PLANE_CTL_TILED_LINEAR:
7947 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7948 break;
7949 case PLANE_CTL_TILED_X:
7950 plane_config->tiling = I915_TILING_X;
7951 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7952 break;
7953 case PLANE_CTL_TILED_Y:
7954 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7955 break;
7956 case PLANE_CTL_TILED_YF:
7957 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7958 break;
7959 default:
7960 MISSING_CASE(tiling);
7961 goto error;
7962 }
7963
bc8d7dff
DL
7964 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7965 plane_config->base = base;
7966
7967 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7968
7969 val = I915_READ(PLANE_SIZE(pipe, 0));
7970 fb->height = ((val >> 16) & 0xfff) + 1;
7971 fb->width = ((val >> 0) & 0x1fff) + 1;
7972
7973 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
7974 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7975 fb->pixel_format);
bc8d7dff
DL
7976 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7977
7978 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7979 fb->pixel_format,
7980 fb->modifier[0]);
bc8d7dff 7981
f37b5c2b 7982 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
7983
7984 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7985 pipe_name(pipe), fb->width, fb->height,
7986 fb->bits_per_pixel, base, fb->pitches[0],
7987 plane_config->size);
7988
2d14030b 7989 plane_config->fb = intel_fb;
bc8d7dff
DL
7990 return;
7991
7992error:
7993 kfree(fb);
7994}
7995
2fa2fe9a 7996static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7997 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7998{
7999 struct drm_device *dev = crtc->base.dev;
8000 struct drm_i915_private *dev_priv = dev->dev_private;
8001 uint32_t tmp;
8002
8003 tmp = I915_READ(PF_CTL(crtc->pipe));
8004
8005 if (tmp & PF_ENABLE) {
fd4daa9c 8006 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
8007 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8008 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
8009
8010 /* We currently do not free assignements of panel fitters on
8011 * ivb/hsw (since we don't use the higher upscaling modes which
8012 * differentiates them) so just WARN about this case for now. */
8013 if (IS_GEN7(dev)) {
8014 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8015 PF_PIPE_SEL_IVB(crtc->pipe));
8016 }
2fa2fe9a 8017 }
79e53945
JB
8018}
8019
5724dbd1
DL
8020static void
8021ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8022 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
8023{
8024 struct drm_device *dev = crtc->base.dev;
8025 struct drm_i915_private *dev_priv = dev->dev_private;
8026 u32 val, base, offset;
aeee5a49 8027 int pipe = crtc->pipe;
4c6baa59 8028 int fourcc, pixel_format;
6761dd31 8029 unsigned int aligned_height;
b113d5ee 8030 struct drm_framebuffer *fb;
1b842c89 8031 struct intel_framebuffer *intel_fb;
4c6baa59 8032
42a7b088
DL
8033 val = I915_READ(DSPCNTR(pipe));
8034 if (!(val & DISPLAY_PLANE_ENABLE))
8035 return;
8036
d9806c9f 8037 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8038 if (!intel_fb) {
4c6baa59
JB
8039 DRM_DEBUG_KMS("failed to alloc fb\n");
8040 return;
8041 }
8042
1b842c89
DL
8043 fb = &intel_fb->base;
8044
18c5247e
DV
8045 if (INTEL_INFO(dev)->gen >= 4) {
8046 if (val & DISPPLANE_TILED) {
49af449b 8047 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8048 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8049 }
8050 }
4c6baa59
JB
8051
8052 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8053 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8054 fb->pixel_format = fourcc;
8055 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 8056
aeee5a49 8057 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 8058 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 8059 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 8060 } else {
49af449b 8061 if (plane_config->tiling)
aeee5a49 8062 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 8063 else
aeee5a49 8064 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
8065 }
8066 plane_config->base = base;
8067
8068 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8069 fb->width = ((val >> 16) & 0xfff) + 1;
8070 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
8071
8072 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8073 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 8074
b113d5ee 8075 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8076 fb->pixel_format,
8077 fb->modifier[0]);
4c6baa59 8078
f37b5c2b 8079 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 8080
2844a921
DL
8081 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8082 pipe_name(pipe), fb->width, fb->height,
8083 fb->bits_per_pixel, base, fb->pitches[0],
8084 plane_config->size);
b113d5ee 8085
2d14030b 8086 plane_config->fb = intel_fb;
4c6baa59
JB
8087}
8088
0e8ffe1b 8089static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8090 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8091{
8092 struct drm_device *dev = crtc->base.dev;
8093 struct drm_i915_private *dev_priv = dev->dev_private;
8094 uint32_t tmp;
8095
f458ebbc
DV
8096 if (!intel_display_power_is_enabled(dev_priv,
8097 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
8098 return false;
8099
e143a21c 8100 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8101 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8102
0e8ffe1b
DV
8103 tmp = I915_READ(PIPECONF(crtc->pipe));
8104 if (!(tmp & PIPECONF_ENABLE))
8105 return false;
8106
42571aef
VS
8107 switch (tmp & PIPECONF_BPC_MASK) {
8108 case PIPECONF_6BPC:
8109 pipe_config->pipe_bpp = 18;
8110 break;
8111 case PIPECONF_8BPC:
8112 pipe_config->pipe_bpp = 24;
8113 break;
8114 case PIPECONF_10BPC:
8115 pipe_config->pipe_bpp = 30;
8116 break;
8117 case PIPECONF_12BPC:
8118 pipe_config->pipe_bpp = 36;
8119 break;
8120 default:
8121 break;
8122 }
8123
b5a9fa09
DV
8124 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8125 pipe_config->limited_color_range = true;
8126
ab9412ba 8127 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
8128 struct intel_shared_dpll *pll;
8129
88adfff1
DV
8130 pipe_config->has_pch_encoder = true;
8131
627eb5a3
DV
8132 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8133 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8134 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
8135
8136 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 8137
c0d43d62 8138 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
8139 pipe_config->shared_dpll =
8140 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
8141 } else {
8142 tmp = I915_READ(PCH_DPLL_SEL);
8143 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8144 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8145 else
8146 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8147 }
66e985c0
DV
8148
8149 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8150
8151 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8152 &pipe_config->dpll_hw_state));
c93f54cf
DV
8153
8154 tmp = pipe_config->dpll_hw_state.dpll;
8155 pipe_config->pixel_multiplier =
8156 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8157 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
8158
8159 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
8160 } else {
8161 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
8162 }
8163
1bd1bd80
DV
8164 intel_get_pipe_timings(crtc, pipe_config);
8165
2fa2fe9a
DV
8166 ironlake_get_pfit_config(crtc, pipe_config);
8167
0e8ffe1b
DV
8168 return true;
8169}
8170
be256dc7
PZ
8171static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8172{
8173 struct drm_device *dev = dev_priv->dev;
be256dc7 8174 struct intel_crtc *crtc;
be256dc7 8175
d3fcc808 8176 for_each_intel_crtc(dev, crtc)
e2c719b7 8177 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
8178 pipe_name(crtc->pipe));
8179
e2c719b7
RC
8180 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8181 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8182 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8183 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8184 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8185 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 8186 "CPU PWM1 enabled\n");
c5107b87 8187 if (IS_HASWELL(dev))
e2c719b7 8188 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 8189 "CPU PWM2 enabled\n");
e2c719b7 8190 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 8191 "PCH PWM1 enabled\n");
e2c719b7 8192 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 8193 "Utility pin enabled\n");
e2c719b7 8194 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 8195
9926ada1
PZ
8196 /*
8197 * In theory we can still leave IRQs enabled, as long as only the HPD
8198 * interrupts remain enabled. We used to check for that, but since it's
8199 * gen-specific and since we only disable LCPLL after we fully disable
8200 * the interrupts, the check below should be enough.
8201 */
e2c719b7 8202 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
8203}
8204
9ccd5aeb
PZ
8205static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8206{
8207 struct drm_device *dev = dev_priv->dev;
8208
8209 if (IS_HASWELL(dev))
8210 return I915_READ(D_COMP_HSW);
8211 else
8212 return I915_READ(D_COMP_BDW);
8213}
8214
3c4c9b81
PZ
8215static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8216{
8217 struct drm_device *dev = dev_priv->dev;
8218
8219 if (IS_HASWELL(dev)) {
8220 mutex_lock(&dev_priv->rps.hw_lock);
8221 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8222 val))
f475dadf 8223 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
8224 mutex_unlock(&dev_priv->rps.hw_lock);
8225 } else {
9ccd5aeb
PZ
8226 I915_WRITE(D_COMP_BDW, val);
8227 POSTING_READ(D_COMP_BDW);
3c4c9b81 8228 }
be256dc7
PZ
8229}
8230
8231/*
8232 * This function implements pieces of two sequences from BSpec:
8233 * - Sequence for display software to disable LCPLL
8234 * - Sequence for display software to allow package C8+
8235 * The steps implemented here are just the steps that actually touch the LCPLL
8236 * register. Callers should take care of disabling all the display engine
8237 * functions, doing the mode unset, fixing interrupts, etc.
8238 */
6ff58d53
PZ
8239static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8240 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
8241{
8242 uint32_t val;
8243
8244 assert_can_disable_lcpll(dev_priv);
8245
8246 val = I915_READ(LCPLL_CTL);
8247
8248 if (switch_to_fclk) {
8249 val |= LCPLL_CD_SOURCE_FCLK;
8250 I915_WRITE(LCPLL_CTL, val);
8251
8252 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8253 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8254 DRM_ERROR("Switching to FCLK failed\n");
8255
8256 val = I915_READ(LCPLL_CTL);
8257 }
8258
8259 val |= LCPLL_PLL_DISABLE;
8260 I915_WRITE(LCPLL_CTL, val);
8261 POSTING_READ(LCPLL_CTL);
8262
8263 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8264 DRM_ERROR("LCPLL still locked\n");
8265
9ccd5aeb 8266 val = hsw_read_dcomp(dev_priv);
be256dc7 8267 val |= D_COMP_COMP_DISABLE;
3c4c9b81 8268 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8269 ndelay(100);
8270
9ccd5aeb
PZ
8271 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8272 1))
be256dc7
PZ
8273 DRM_ERROR("D_COMP RCOMP still in progress\n");
8274
8275 if (allow_power_down) {
8276 val = I915_READ(LCPLL_CTL);
8277 val |= LCPLL_POWER_DOWN_ALLOW;
8278 I915_WRITE(LCPLL_CTL, val);
8279 POSTING_READ(LCPLL_CTL);
8280 }
8281}
8282
8283/*
8284 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8285 * source.
8286 */
6ff58d53 8287static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
8288{
8289 uint32_t val;
8290
8291 val = I915_READ(LCPLL_CTL);
8292
8293 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8294 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8295 return;
8296
a8a8bd54
PZ
8297 /*
8298 * Make sure we're not on PC8 state before disabling PC8, otherwise
8299 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 8300 */
59bad947 8301 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 8302
be256dc7
PZ
8303 if (val & LCPLL_POWER_DOWN_ALLOW) {
8304 val &= ~LCPLL_POWER_DOWN_ALLOW;
8305 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 8306 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
8307 }
8308
9ccd5aeb 8309 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
8310 val |= D_COMP_COMP_FORCE;
8311 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 8312 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8313
8314 val = I915_READ(LCPLL_CTL);
8315 val &= ~LCPLL_PLL_DISABLE;
8316 I915_WRITE(LCPLL_CTL, val);
8317
8318 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8319 DRM_ERROR("LCPLL not locked yet\n");
8320
8321 if (val & LCPLL_CD_SOURCE_FCLK) {
8322 val = I915_READ(LCPLL_CTL);
8323 val &= ~LCPLL_CD_SOURCE_FCLK;
8324 I915_WRITE(LCPLL_CTL, val);
8325
8326 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8327 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8328 DRM_ERROR("Switching back to LCPLL failed\n");
8329 }
215733fa 8330
59bad947 8331 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8332}
8333
765dab67
PZ
8334/*
8335 * Package states C8 and deeper are really deep PC states that can only be
8336 * reached when all the devices on the system allow it, so even if the graphics
8337 * device allows PC8+, it doesn't mean the system will actually get to these
8338 * states. Our driver only allows PC8+ when going into runtime PM.
8339 *
8340 * The requirements for PC8+ are that all the outputs are disabled, the power
8341 * well is disabled and most interrupts are disabled, and these are also
8342 * requirements for runtime PM. When these conditions are met, we manually do
8343 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8344 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8345 * hang the machine.
8346 *
8347 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8348 * the state of some registers, so when we come back from PC8+ we need to
8349 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8350 * need to take care of the registers kept by RC6. Notice that this happens even
8351 * if we don't put the device in PCI D3 state (which is what currently happens
8352 * because of the runtime PM support).
8353 *
8354 * For more, read "Display Sequences for Package C8" on the hardware
8355 * documentation.
8356 */
a14cb6fc 8357void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8358{
c67a470b
PZ
8359 struct drm_device *dev = dev_priv->dev;
8360 uint32_t val;
8361
c67a470b
PZ
8362 DRM_DEBUG_KMS("Enabling package C8+\n");
8363
c67a470b
PZ
8364 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8365 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8366 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8367 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8368 }
8369
8370 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8371 hsw_disable_lcpll(dev_priv, true, true);
8372}
8373
a14cb6fc 8374void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8375{
8376 struct drm_device *dev = dev_priv->dev;
8377 uint32_t val;
8378
c67a470b
PZ
8379 DRM_DEBUG_KMS("Disabling package C8+\n");
8380
8381 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8382 lpt_init_pch_refclk(dev);
8383
8384 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8385 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8386 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8387 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8388 }
8389
8390 intel_prepare_ddi(dev);
c67a470b
PZ
8391}
8392
190f68c5
ACO
8393static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8394 struct intel_crtc_state *crtc_state)
09b4ddf9 8395{
190f68c5 8396 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8397 return -EINVAL;
716c2e55 8398
c7653199 8399 crtc->lowfreq_avail = false;
644cef34 8400
c8f7a0db 8401 return 0;
79e53945
JB
8402}
8403
96b7dfb7
S
8404static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8405 enum port port,
5cec258b 8406 struct intel_crtc_state *pipe_config)
96b7dfb7 8407{
3148ade7 8408 u32 temp, dpll_ctl1;
96b7dfb7
S
8409
8410 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8411 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8412
8413 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8414 case SKL_DPLL0:
8415 /*
8416 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8417 * of the shared DPLL framework and thus needs to be read out
8418 * separately
8419 */
8420 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8421 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8422 break;
96b7dfb7
S
8423 case SKL_DPLL1:
8424 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8425 break;
8426 case SKL_DPLL2:
8427 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8428 break;
8429 case SKL_DPLL3:
8430 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8431 break;
96b7dfb7
S
8432 }
8433}
8434
7d2c8175
DL
8435static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8436 enum port port,
5cec258b 8437 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8438{
8439 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8440
8441 switch (pipe_config->ddi_pll_sel) {
8442 case PORT_CLK_SEL_WRPLL1:
8443 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8444 break;
8445 case PORT_CLK_SEL_WRPLL2:
8446 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8447 break;
8448 }
8449}
8450
26804afd 8451static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8452 struct intel_crtc_state *pipe_config)
26804afd
DV
8453{
8454 struct drm_device *dev = crtc->base.dev;
8455 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8456 struct intel_shared_dpll *pll;
26804afd
DV
8457 enum port port;
8458 uint32_t tmp;
8459
8460 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8461
8462 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8463
96b7dfb7
S
8464 if (IS_SKYLAKE(dev))
8465 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8466 else
8467 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8468
d452c5b6
DV
8469 if (pipe_config->shared_dpll >= 0) {
8470 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8471
8472 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8473 &pipe_config->dpll_hw_state));
8474 }
8475
26804afd
DV
8476 /*
8477 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8478 * DDI E. So just check whether this pipe is wired to DDI E and whether
8479 * the PCH transcoder is on.
8480 */
ca370455
DL
8481 if (INTEL_INFO(dev)->gen < 9 &&
8482 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8483 pipe_config->has_pch_encoder = true;
8484
8485 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8486 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8487 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8488
8489 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8490 }
8491}
8492
0e8ffe1b 8493static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8494 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8495{
8496 struct drm_device *dev = crtc->base.dev;
8497 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8498 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8499 uint32_t tmp;
8500
f458ebbc 8501 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8502 POWER_DOMAIN_PIPE(crtc->pipe)))
8503 return false;
8504
e143a21c 8505 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8506 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8507
eccb140b
DV
8508 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8509 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8510 enum pipe trans_edp_pipe;
8511 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8512 default:
8513 WARN(1, "unknown pipe linked to edp transcoder\n");
8514 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8515 case TRANS_DDI_EDP_INPUT_A_ON:
8516 trans_edp_pipe = PIPE_A;
8517 break;
8518 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8519 trans_edp_pipe = PIPE_B;
8520 break;
8521 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8522 trans_edp_pipe = PIPE_C;
8523 break;
8524 }
8525
8526 if (trans_edp_pipe == crtc->pipe)
8527 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8528 }
8529
f458ebbc 8530 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8531 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8532 return false;
8533
eccb140b 8534 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8535 if (!(tmp & PIPECONF_ENABLE))
8536 return false;
8537
26804afd 8538 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8539
1bd1bd80
DV
8540 intel_get_pipe_timings(crtc, pipe_config);
8541
2fa2fe9a 8542 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8543 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8544 if (IS_SKYLAKE(dev))
8545 skylake_get_pfit_config(crtc, pipe_config);
8546 else
8547 ironlake_get_pfit_config(crtc, pipe_config);
8548 }
88adfff1 8549
e59150dc
JB
8550 if (IS_HASWELL(dev))
8551 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8552 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8553
ebb69c95
CT
8554 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8555 pipe_config->pixel_multiplier =
8556 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8557 } else {
8558 pipe_config->pixel_multiplier = 1;
8559 }
6c49f241 8560
0e8ffe1b
DV
8561 return true;
8562}
8563
560b85bb
CW
8564static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8565{
8566 struct drm_device *dev = crtc->dev;
8567 struct drm_i915_private *dev_priv = dev->dev_private;
8568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8569 uint32_t cntl = 0, size = 0;
560b85bb 8570
dc41c154 8571 if (base) {
3dd512fb
MR
8572 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8573 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
8574 unsigned int stride = roundup_pow_of_two(width) * 4;
8575
8576 switch (stride) {
8577 default:
8578 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8579 width, stride);
8580 stride = 256;
8581 /* fallthrough */
8582 case 256:
8583 case 512:
8584 case 1024:
8585 case 2048:
8586 break;
4b0e333e
CW
8587 }
8588
dc41c154
VS
8589 cntl |= CURSOR_ENABLE |
8590 CURSOR_GAMMA_ENABLE |
8591 CURSOR_FORMAT_ARGB |
8592 CURSOR_STRIDE(stride);
8593
8594 size = (height << 12) | width;
4b0e333e 8595 }
560b85bb 8596
dc41c154
VS
8597 if (intel_crtc->cursor_cntl != 0 &&
8598 (intel_crtc->cursor_base != base ||
8599 intel_crtc->cursor_size != size ||
8600 intel_crtc->cursor_cntl != cntl)) {
8601 /* On these chipsets we can only modify the base/size/stride
8602 * whilst the cursor is disabled.
8603 */
8604 I915_WRITE(_CURACNTR, 0);
4b0e333e 8605 POSTING_READ(_CURACNTR);
dc41c154 8606 intel_crtc->cursor_cntl = 0;
4b0e333e 8607 }
560b85bb 8608
99d1f387 8609 if (intel_crtc->cursor_base != base) {
9db4a9c7 8610 I915_WRITE(_CURABASE, base);
99d1f387
VS
8611 intel_crtc->cursor_base = base;
8612 }
4726e0b0 8613
dc41c154
VS
8614 if (intel_crtc->cursor_size != size) {
8615 I915_WRITE(CURSIZE, size);
8616 intel_crtc->cursor_size = size;
4b0e333e 8617 }
560b85bb 8618
4b0e333e 8619 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8620 I915_WRITE(_CURACNTR, cntl);
8621 POSTING_READ(_CURACNTR);
4b0e333e 8622 intel_crtc->cursor_cntl = cntl;
560b85bb 8623 }
560b85bb
CW
8624}
8625
560b85bb 8626static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8627{
8628 struct drm_device *dev = crtc->dev;
8629 struct drm_i915_private *dev_priv = dev->dev_private;
8630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8631 int pipe = intel_crtc->pipe;
4b0e333e
CW
8632 uint32_t cntl;
8633
8634 cntl = 0;
8635 if (base) {
8636 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 8637 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
8638 case 64:
8639 cntl |= CURSOR_MODE_64_ARGB_AX;
8640 break;
8641 case 128:
8642 cntl |= CURSOR_MODE_128_ARGB_AX;
8643 break;
8644 case 256:
8645 cntl |= CURSOR_MODE_256_ARGB_AX;
8646 break;
8647 default:
3dd512fb 8648 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 8649 return;
65a21cd6 8650 }
4b0e333e 8651 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8652
8653 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8654 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8655 }
65a21cd6 8656
8e7d688b 8657 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
8658 cntl |= CURSOR_ROTATE_180;
8659
4b0e333e
CW
8660 if (intel_crtc->cursor_cntl != cntl) {
8661 I915_WRITE(CURCNTR(pipe), cntl);
8662 POSTING_READ(CURCNTR(pipe));
8663 intel_crtc->cursor_cntl = cntl;
65a21cd6 8664 }
4b0e333e 8665
65a21cd6 8666 /* and commit changes on next vblank */
5efb3e28
VS
8667 I915_WRITE(CURBASE(pipe), base);
8668 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8669
8670 intel_crtc->cursor_base = base;
65a21cd6
JB
8671}
8672
cda4b7d3 8673/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8674static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8675 bool on)
cda4b7d3
CW
8676{
8677 struct drm_device *dev = crtc->dev;
8678 struct drm_i915_private *dev_priv = dev->dev_private;
8679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8680 int pipe = intel_crtc->pipe;
3d7d6510
MR
8681 int x = crtc->cursor_x;
8682 int y = crtc->cursor_y;
d6e4db15 8683 u32 base = 0, pos = 0;
cda4b7d3 8684
d6e4db15 8685 if (on)
cda4b7d3 8686 base = intel_crtc->cursor_addr;
cda4b7d3 8687
6e3c9717 8688 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8689 base = 0;
8690
6e3c9717 8691 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8692 base = 0;
8693
8694 if (x < 0) {
3dd512fb 8695 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
8696 base = 0;
8697
8698 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8699 x = -x;
8700 }
8701 pos |= x << CURSOR_X_SHIFT;
8702
8703 if (y < 0) {
3dd512fb 8704 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
8705 base = 0;
8706
8707 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8708 y = -y;
8709 }
8710 pos |= y << CURSOR_Y_SHIFT;
8711
4b0e333e 8712 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8713 return;
8714
5efb3e28
VS
8715 I915_WRITE(CURPOS(pipe), pos);
8716
4398ad45
VS
8717 /* ILK+ do this automagically */
8718 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 8719 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
8720 base += (intel_crtc->base.cursor->state->crtc_h *
8721 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
8722 }
8723
8ac54669 8724 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8725 i845_update_cursor(crtc, base);
8726 else
8727 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8728}
8729
dc41c154
VS
8730static bool cursor_size_ok(struct drm_device *dev,
8731 uint32_t width, uint32_t height)
8732{
8733 if (width == 0 || height == 0)
8734 return false;
8735
8736 /*
8737 * 845g/865g are special in that they are only limited by
8738 * the width of their cursors, the height is arbitrary up to
8739 * the precision of the register. Everything else requires
8740 * square cursors, limited to a few power-of-two sizes.
8741 */
8742 if (IS_845G(dev) || IS_I865G(dev)) {
8743 if ((width & 63) != 0)
8744 return false;
8745
8746 if (width > (IS_845G(dev) ? 64 : 512))
8747 return false;
8748
8749 if (height > 1023)
8750 return false;
8751 } else {
8752 switch (width | height) {
8753 case 256:
8754 case 128:
8755 if (IS_GEN2(dev))
8756 return false;
8757 case 64:
8758 break;
8759 default:
8760 return false;
8761 }
8762 }
8763
8764 return true;
8765}
8766
79e53945 8767static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8768 u16 *blue, uint32_t start, uint32_t size)
79e53945 8769{
7203425a 8770 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8772
7203425a 8773 for (i = start; i < end; i++) {
79e53945
JB
8774 intel_crtc->lut_r[i] = red[i] >> 8;
8775 intel_crtc->lut_g[i] = green[i] >> 8;
8776 intel_crtc->lut_b[i] = blue[i] >> 8;
8777 }
8778
8779 intel_crtc_load_lut(crtc);
8780}
8781
79e53945
JB
8782/* VESA 640x480x72Hz mode to set on the pipe */
8783static struct drm_display_mode load_detect_mode = {
8784 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8785 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8786};
8787
a8bb6818
DV
8788struct drm_framebuffer *
8789__intel_framebuffer_create(struct drm_device *dev,
8790 struct drm_mode_fb_cmd2 *mode_cmd,
8791 struct drm_i915_gem_object *obj)
d2dff872
CW
8792{
8793 struct intel_framebuffer *intel_fb;
8794 int ret;
8795
8796 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8797 if (!intel_fb) {
6ccb81f2 8798 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8799 return ERR_PTR(-ENOMEM);
8800 }
8801
8802 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8803 if (ret)
8804 goto err;
d2dff872
CW
8805
8806 return &intel_fb->base;
dd4916c5 8807err:
6ccb81f2 8808 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8809 kfree(intel_fb);
8810
8811 return ERR_PTR(ret);
d2dff872
CW
8812}
8813
b5ea642a 8814static struct drm_framebuffer *
a8bb6818
DV
8815intel_framebuffer_create(struct drm_device *dev,
8816 struct drm_mode_fb_cmd2 *mode_cmd,
8817 struct drm_i915_gem_object *obj)
8818{
8819 struct drm_framebuffer *fb;
8820 int ret;
8821
8822 ret = i915_mutex_lock_interruptible(dev);
8823 if (ret)
8824 return ERR_PTR(ret);
8825 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8826 mutex_unlock(&dev->struct_mutex);
8827
8828 return fb;
8829}
8830
d2dff872
CW
8831static u32
8832intel_framebuffer_pitch_for_width(int width, int bpp)
8833{
8834 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8835 return ALIGN(pitch, 64);
8836}
8837
8838static u32
8839intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8840{
8841 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8842 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8843}
8844
8845static struct drm_framebuffer *
8846intel_framebuffer_create_for_mode(struct drm_device *dev,
8847 struct drm_display_mode *mode,
8848 int depth, int bpp)
8849{
8850 struct drm_i915_gem_object *obj;
0fed39bd 8851 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8852
8853 obj = i915_gem_alloc_object(dev,
8854 intel_framebuffer_size_for_mode(mode, bpp));
8855 if (obj == NULL)
8856 return ERR_PTR(-ENOMEM);
8857
8858 mode_cmd.width = mode->hdisplay;
8859 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8860 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8861 bpp);
5ca0c34a 8862 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8863
8864 return intel_framebuffer_create(dev, &mode_cmd, obj);
8865}
8866
8867static struct drm_framebuffer *
8868mode_fits_in_fbdev(struct drm_device *dev,
8869 struct drm_display_mode *mode)
8870{
4520f53a 8871#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8872 struct drm_i915_private *dev_priv = dev->dev_private;
8873 struct drm_i915_gem_object *obj;
8874 struct drm_framebuffer *fb;
8875
4c0e5528 8876 if (!dev_priv->fbdev)
d2dff872
CW
8877 return NULL;
8878
4c0e5528 8879 if (!dev_priv->fbdev->fb)
d2dff872
CW
8880 return NULL;
8881
4c0e5528
DV
8882 obj = dev_priv->fbdev->fb->obj;
8883 BUG_ON(!obj);
8884
8bcd4553 8885 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8886 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8887 fb->bits_per_pixel))
d2dff872
CW
8888 return NULL;
8889
01f2c773 8890 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8891 return NULL;
8892
8893 return fb;
4520f53a
DV
8894#else
8895 return NULL;
8896#endif
d2dff872
CW
8897}
8898
d2434ab7 8899bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8900 struct drm_display_mode *mode,
51fd371b
RC
8901 struct intel_load_detect_pipe *old,
8902 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8903{
8904 struct intel_crtc *intel_crtc;
d2434ab7
DV
8905 struct intel_encoder *intel_encoder =
8906 intel_attached_encoder(connector);
79e53945 8907 struct drm_crtc *possible_crtc;
4ef69c7a 8908 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8909 struct drm_crtc *crtc = NULL;
8910 struct drm_device *dev = encoder->dev;
94352cf9 8911 struct drm_framebuffer *fb;
51fd371b
RC
8912 struct drm_mode_config *config = &dev->mode_config;
8913 int ret, i = -1;
79e53945 8914
d2dff872 8915 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8916 connector->base.id, connector->name,
8e329a03 8917 encoder->base.id, encoder->name);
d2dff872 8918
51fd371b
RC
8919retry:
8920 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8921 if (ret)
8922 goto fail_unlock;
6e9f798d 8923
79e53945
JB
8924 /*
8925 * Algorithm gets a little messy:
7a5e4805 8926 *
79e53945
JB
8927 * - if the connector already has an assigned crtc, use it (but make
8928 * sure it's on first)
7a5e4805 8929 *
79e53945
JB
8930 * - try to find the first unused crtc that can drive this connector,
8931 * and use that if we find one
79e53945
JB
8932 */
8933
8934 /* See if we already have a CRTC for this connector */
8935 if (encoder->crtc) {
8936 crtc = encoder->crtc;
8261b191 8937
51fd371b 8938 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8939 if (ret)
8940 goto fail_unlock;
8941 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8942 if (ret)
8943 goto fail_unlock;
7b24056b 8944
24218aac 8945 old->dpms_mode = connector->dpms;
8261b191
CW
8946 old->load_detect_temp = false;
8947
8948 /* Make sure the crtc and connector are running */
24218aac
DV
8949 if (connector->dpms != DRM_MODE_DPMS_ON)
8950 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8951
7173188d 8952 return true;
79e53945
JB
8953 }
8954
8955 /* Find an unused one (if possible) */
70e1e0ec 8956 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8957 i++;
8958 if (!(encoder->possible_crtcs & (1 << i)))
8959 continue;
83d65738 8960 if (possible_crtc->state->enable)
a459249c
VS
8961 continue;
8962 /* This can occur when applying the pipe A quirk on resume. */
8963 if (to_intel_crtc(possible_crtc)->new_enabled)
8964 continue;
8965
8966 crtc = possible_crtc;
8967 break;
79e53945
JB
8968 }
8969
8970 /*
8971 * If we didn't find an unused CRTC, don't use any.
8972 */
8973 if (!crtc) {
7173188d 8974 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8975 goto fail_unlock;
79e53945
JB
8976 }
8977
51fd371b
RC
8978 ret = drm_modeset_lock(&crtc->mutex, ctx);
8979 if (ret)
4d02e2de
DV
8980 goto fail_unlock;
8981 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8982 if (ret)
51fd371b 8983 goto fail_unlock;
fc303101
DV
8984 intel_encoder->new_crtc = to_intel_crtc(crtc);
8985 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8986
8987 intel_crtc = to_intel_crtc(crtc);
412b61d8 8988 intel_crtc->new_enabled = true;
6e3c9717 8989 intel_crtc->new_config = intel_crtc->config;
24218aac 8990 old->dpms_mode = connector->dpms;
8261b191 8991 old->load_detect_temp = true;
d2dff872 8992 old->release_fb = NULL;
79e53945 8993
6492711d
CW
8994 if (!mode)
8995 mode = &load_detect_mode;
79e53945 8996
d2dff872
CW
8997 /* We need a framebuffer large enough to accommodate all accesses
8998 * that the plane may generate whilst we perform load detection.
8999 * We can not rely on the fbcon either being present (we get called
9000 * during its initialisation to detect all boot displays, or it may
9001 * not even exist) or that it is large enough to satisfy the
9002 * requested mode.
9003 */
94352cf9
DV
9004 fb = mode_fits_in_fbdev(dev, mode);
9005 if (fb == NULL) {
d2dff872 9006 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
9007 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9008 old->release_fb = fb;
d2dff872
CW
9009 } else
9010 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 9011 if (IS_ERR(fb)) {
d2dff872 9012 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 9013 goto fail;
79e53945 9014 }
79e53945 9015
c0c36b94 9016 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 9017 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
9018 if (old->release_fb)
9019 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 9020 goto fail;
79e53945 9021 }
9128b040 9022 crtc->primary->crtc = crtc;
7173188d 9023
79e53945 9024 /* let the connector get through one full cycle before testing */
9d0498a2 9025 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 9026 return true;
412b61d8
VS
9027
9028 fail:
83d65738 9029 intel_crtc->new_enabled = crtc->state->enable;
412b61d8 9030 if (intel_crtc->new_enabled)
6e3c9717 9031 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
9032 else
9033 intel_crtc->new_config = NULL;
51fd371b
RC
9034fail_unlock:
9035 if (ret == -EDEADLK) {
9036 drm_modeset_backoff(ctx);
9037 goto retry;
9038 }
9039
412b61d8 9040 return false;
79e53945
JB
9041}
9042
d2434ab7 9043void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 9044 struct intel_load_detect_pipe *old)
79e53945 9045{
d2434ab7
DV
9046 struct intel_encoder *intel_encoder =
9047 intel_attached_encoder(connector);
4ef69c7a 9048 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 9049 struct drm_crtc *crtc = encoder->crtc;
412b61d8 9050 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 9051
d2dff872 9052 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9053 connector->base.id, connector->name,
8e329a03 9054 encoder->base.id, encoder->name);
d2dff872 9055
8261b191 9056 if (old->load_detect_temp) {
fc303101
DV
9057 to_intel_connector(connector)->new_encoder = NULL;
9058 intel_encoder->new_crtc = NULL;
412b61d8
VS
9059 intel_crtc->new_enabled = false;
9060 intel_crtc->new_config = NULL;
fc303101 9061 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 9062
36206361
DV
9063 if (old->release_fb) {
9064 drm_framebuffer_unregister_private(old->release_fb);
9065 drm_framebuffer_unreference(old->release_fb);
9066 }
d2dff872 9067
0622a53c 9068 return;
79e53945
JB
9069 }
9070
c751ce4f 9071 /* Switch crtc and encoder back off if necessary */
24218aac
DV
9072 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9073 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
9074}
9075
da4a1efa 9076static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 9077 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
9078{
9079 struct drm_i915_private *dev_priv = dev->dev_private;
9080 u32 dpll = pipe_config->dpll_hw_state.dpll;
9081
9082 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 9083 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
9084 else if (HAS_PCH_SPLIT(dev))
9085 return 120000;
9086 else if (!IS_GEN2(dev))
9087 return 96000;
9088 else
9089 return 48000;
9090}
9091
79e53945 9092/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 9093static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 9094 struct intel_crtc_state *pipe_config)
79e53945 9095{
f1f644dc 9096 struct drm_device *dev = crtc->base.dev;
79e53945 9097 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 9098 int pipe = pipe_config->cpu_transcoder;
293623f7 9099 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
9100 u32 fp;
9101 intel_clock_t clock;
da4a1efa 9102 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
9103
9104 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 9105 fp = pipe_config->dpll_hw_state.fp0;
79e53945 9106 else
293623f7 9107 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
9108
9109 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
9110 if (IS_PINEVIEW(dev)) {
9111 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9112 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
9113 } else {
9114 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9115 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9116 }
9117
a6c45cf0 9118 if (!IS_GEN2(dev)) {
f2b115e6
AJ
9119 if (IS_PINEVIEW(dev))
9120 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9121 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
9122 else
9123 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
9124 DPLL_FPA01_P1_POST_DIV_SHIFT);
9125
9126 switch (dpll & DPLL_MODE_MASK) {
9127 case DPLLB_MODE_DAC_SERIAL:
9128 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9129 5 : 10;
9130 break;
9131 case DPLLB_MODE_LVDS:
9132 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9133 7 : 14;
9134 break;
9135 default:
28c97730 9136 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 9137 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 9138 return;
79e53945
JB
9139 }
9140
ac58c3f0 9141 if (IS_PINEVIEW(dev))
da4a1efa 9142 pineview_clock(refclk, &clock);
ac58c3f0 9143 else
da4a1efa 9144 i9xx_clock(refclk, &clock);
79e53945 9145 } else {
0fb58223 9146 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 9147 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
9148
9149 if (is_lvds) {
9150 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9151 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
9152
9153 if (lvds & LVDS_CLKB_POWER_UP)
9154 clock.p2 = 7;
9155 else
9156 clock.p2 = 14;
79e53945
JB
9157 } else {
9158 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9159 clock.p1 = 2;
9160 else {
9161 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9162 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9163 }
9164 if (dpll & PLL_P2_DIVIDE_BY_4)
9165 clock.p2 = 4;
9166 else
9167 clock.p2 = 2;
79e53945 9168 }
da4a1efa
VS
9169
9170 i9xx_clock(refclk, &clock);
79e53945
JB
9171 }
9172
18442d08
VS
9173 /*
9174 * This value includes pixel_multiplier. We will use
241bfc38 9175 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
9176 * encoder's get_config() function.
9177 */
9178 pipe_config->port_clock = clock.dot;
f1f644dc
JB
9179}
9180
6878da05
VS
9181int intel_dotclock_calculate(int link_freq,
9182 const struct intel_link_m_n *m_n)
f1f644dc 9183{
f1f644dc
JB
9184 /*
9185 * The calculation for the data clock is:
1041a02f 9186 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 9187 * But we want to avoid losing precison if possible, so:
1041a02f 9188 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
9189 *
9190 * and the link clock is simpler:
1041a02f 9191 * link_clock = (m * link_clock) / n
f1f644dc
JB
9192 */
9193
6878da05
VS
9194 if (!m_n->link_n)
9195 return 0;
f1f644dc 9196
6878da05
VS
9197 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9198}
f1f644dc 9199
18442d08 9200static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 9201 struct intel_crtc_state *pipe_config)
6878da05
VS
9202{
9203 struct drm_device *dev = crtc->base.dev;
79e53945 9204
18442d08
VS
9205 /* read out port_clock from the DPLL */
9206 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 9207
f1f644dc 9208 /*
18442d08 9209 * This value does not include pixel_multiplier.
241bfc38 9210 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
9211 * agree once we know their relationship in the encoder's
9212 * get_config() function.
79e53945 9213 */
2d112de7 9214 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
9215 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9216 &pipe_config->fdi_m_n);
79e53945
JB
9217}
9218
9219/** Returns the currently programmed mode of the given pipe. */
9220struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9221 struct drm_crtc *crtc)
9222{
548f245b 9223 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 9224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 9225 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 9226 struct drm_display_mode *mode;
5cec258b 9227 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
9228 int htot = I915_READ(HTOTAL(cpu_transcoder));
9229 int hsync = I915_READ(HSYNC(cpu_transcoder));
9230 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9231 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 9232 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
9233
9234 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9235 if (!mode)
9236 return NULL;
9237
f1f644dc
JB
9238 /*
9239 * Construct a pipe_config sufficient for getting the clock info
9240 * back out of crtc_clock_get.
9241 *
9242 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9243 * to use a real value here instead.
9244 */
293623f7 9245 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9246 pipe_config.pixel_multiplier = 1;
293623f7
VS
9247 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9248 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9249 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9250 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9251
773ae034 9252 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9253 mode->hdisplay = (htot & 0xffff) + 1;
9254 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9255 mode->hsync_start = (hsync & 0xffff) + 1;
9256 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9257 mode->vdisplay = (vtot & 0xffff) + 1;
9258 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9259 mode->vsync_start = (vsync & 0xffff) + 1;
9260 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9261
9262 drm_mode_set_name(mode);
79e53945
JB
9263
9264 return mode;
9265}
9266
652c393a
JB
9267static void intel_decrease_pllclock(struct drm_crtc *crtc)
9268{
9269 struct drm_device *dev = crtc->dev;
fbee40df 9270 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9272
baff296c 9273 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9274 return;
9275
9276 if (!dev_priv->lvds_downclock_avail)
9277 return;
9278
9279 /*
9280 * Since this is called by a timer, we should never get here in
9281 * the manual case.
9282 */
9283 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9284 int pipe = intel_crtc->pipe;
9285 int dpll_reg = DPLL(pipe);
9286 int dpll;
f6e5b160 9287
44d98a61 9288 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9289
8ac5a6d5 9290 assert_panel_unlocked(dev_priv, pipe);
652c393a 9291
dc257cf1 9292 dpll = I915_READ(dpll_reg);
652c393a
JB
9293 dpll |= DISPLAY_RATE_SELECT_FPA1;
9294 I915_WRITE(dpll_reg, dpll);
9d0498a2 9295 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9296 dpll = I915_READ(dpll_reg);
9297 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9298 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9299 }
9300
9301}
9302
f047e395
CW
9303void intel_mark_busy(struct drm_device *dev)
9304{
c67a470b
PZ
9305 struct drm_i915_private *dev_priv = dev->dev_private;
9306
f62a0076
CW
9307 if (dev_priv->mm.busy)
9308 return;
9309
43694d69 9310 intel_runtime_pm_get(dev_priv);
c67a470b 9311 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
9312 if (INTEL_INFO(dev)->gen >= 6)
9313 gen6_rps_busy(dev_priv);
f62a0076 9314 dev_priv->mm.busy = true;
f047e395
CW
9315}
9316
9317void intel_mark_idle(struct drm_device *dev)
652c393a 9318{
c67a470b 9319 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9320 struct drm_crtc *crtc;
652c393a 9321
f62a0076
CW
9322 if (!dev_priv->mm.busy)
9323 return;
9324
9325 dev_priv->mm.busy = false;
9326
70e1e0ec 9327 for_each_crtc(dev, crtc) {
f4510a27 9328 if (!crtc->primary->fb)
652c393a
JB
9329 continue;
9330
725a5b54 9331 intel_decrease_pllclock(crtc);
652c393a 9332 }
b29c19b6 9333
3d13ef2e 9334 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9335 gen6_rps_idle(dev->dev_private);
bb4cdd53 9336
43694d69 9337 intel_runtime_pm_put(dev_priv);
652c393a
JB
9338}
9339
f5de6e07
ACO
9340static void intel_crtc_set_state(struct intel_crtc *crtc,
9341 struct intel_crtc_state *crtc_state)
9342{
9343 kfree(crtc->config);
9344 crtc->config = crtc_state;
16f3f658 9345 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9346}
9347
79e53945
JB
9348static void intel_crtc_destroy(struct drm_crtc *crtc)
9349{
9350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9351 struct drm_device *dev = crtc->dev;
9352 struct intel_unpin_work *work;
67e77c5a 9353
5e2d7afc 9354 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9355 work = intel_crtc->unpin_work;
9356 intel_crtc->unpin_work = NULL;
5e2d7afc 9357 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9358
9359 if (work) {
9360 cancel_work_sync(&work->work);
9361 kfree(work);
9362 }
79e53945 9363
f5de6e07 9364 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9365 drm_crtc_cleanup(crtc);
67e77c5a 9366
79e53945
JB
9367 kfree(intel_crtc);
9368}
9369
6b95a207
KH
9370static void intel_unpin_work_fn(struct work_struct *__work)
9371{
9372 struct intel_unpin_work *work =
9373 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9374 struct drm_device *dev = work->crtc->dev;
f99d7069 9375 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9376
b4a98e57 9377 mutex_lock(&dev->struct_mutex);
82bc3b2d 9378 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 9379 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 9380
7ff0ebcc 9381 intel_fbc_update(dev);
f06cc1b9
JH
9382
9383 if (work->flip_queued_req)
146d84f0 9384 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9385 mutex_unlock(&dev->struct_mutex);
9386
f99d7069 9387 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 9388 drm_framebuffer_unreference(work->old_fb);
f99d7069 9389
b4a98e57
CW
9390 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9391 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9392
6b95a207
KH
9393 kfree(work);
9394}
9395
1afe3e9d 9396static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9397 struct drm_crtc *crtc)
6b95a207 9398{
6b95a207
KH
9399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9400 struct intel_unpin_work *work;
6b95a207
KH
9401 unsigned long flags;
9402
9403 /* Ignore early vblank irqs */
9404 if (intel_crtc == NULL)
9405 return;
9406
f326038a
DV
9407 /*
9408 * This is called both by irq handlers and the reset code (to complete
9409 * lost pageflips) so needs the full irqsave spinlocks.
9410 */
6b95a207
KH
9411 spin_lock_irqsave(&dev->event_lock, flags);
9412 work = intel_crtc->unpin_work;
e7d841ca
CW
9413
9414 /* Ensure we don't miss a work->pending update ... */
9415 smp_rmb();
9416
9417 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9418 spin_unlock_irqrestore(&dev->event_lock, flags);
9419 return;
9420 }
9421
d6bbafa1 9422 page_flip_completed(intel_crtc);
0af7e4df 9423
6b95a207 9424 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9425}
9426
1afe3e9d
JB
9427void intel_finish_page_flip(struct drm_device *dev, int pipe)
9428{
fbee40df 9429 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9430 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9431
49b14a5c 9432 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9433}
9434
9435void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9436{
fbee40df 9437 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9438 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9439
49b14a5c 9440 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9441}
9442
75f7f3ec
VS
9443/* Is 'a' after or equal to 'b'? */
9444static bool g4x_flip_count_after_eq(u32 a, u32 b)
9445{
9446 return !((a - b) & 0x80000000);
9447}
9448
9449static bool page_flip_finished(struct intel_crtc *crtc)
9450{
9451 struct drm_device *dev = crtc->base.dev;
9452 struct drm_i915_private *dev_priv = dev->dev_private;
9453
bdfa7542
VS
9454 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9455 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9456 return true;
9457
75f7f3ec
VS
9458 /*
9459 * The relevant registers doen't exist on pre-ctg.
9460 * As the flip done interrupt doesn't trigger for mmio
9461 * flips on gmch platforms, a flip count check isn't
9462 * really needed there. But since ctg has the registers,
9463 * include it in the check anyway.
9464 */
9465 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9466 return true;
9467
9468 /*
9469 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9470 * used the same base address. In that case the mmio flip might
9471 * have completed, but the CS hasn't even executed the flip yet.
9472 *
9473 * A flip count check isn't enough as the CS might have updated
9474 * the base address just after start of vblank, but before we
9475 * managed to process the interrupt. This means we'd complete the
9476 * CS flip too soon.
9477 *
9478 * Combining both checks should get us a good enough result. It may
9479 * still happen that the CS flip has been executed, but has not
9480 * yet actually completed. But in case the base address is the same
9481 * anyway, we don't really care.
9482 */
9483 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9484 crtc->unpin_work->gtt_offset &&
9485 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9486 crtc->unpin_work->flip_count);
9487}
9488
6b95a207
KH
9489void intel_prepare_page_flip(struct drm_device *dev, int plane)
9490{
fbee40df 9491 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9492 struct intel_crtc *intel_crtc =
9493 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9494 unsigned long flags;
9495
f326038a
DV
9496
9497 /*
9498 * This is called both by irq handlers and the reset code (to complete
9499 * lost pageflips) so needs the full irqsave spinlocks.
9500 *
9501 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9502 * generate a page-flip completion irq, i.e. every modeset
9503 * is also accompanied by a spurious intel_prepare_page_flip().
9504 */
6b95a207 9505 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9506 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9507 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9508 spin_unlock_irqrestore(&dev->event_lock, flags);
9509}
9510
eba905b2 9511static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9512{
9513 /* Ensure that the work item is consistent when activating it ... */
9514 smp_wmb();
9515 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9516 /* and that it is marked active as soon as the irq could fire. */
9517 smp_wmb();
9518}
9519
8c9f3aaf
JB
9520static int intel_gen2_queue_flip(struct drm_device *dev,
9521 struct drm_crtc *crtc,
9522 struct drm_framebuffer *fb,
ed8d1975 9523 struct drm_i915_gem_object *obj,
a4872ba6 9524 struct intel_engine_cs *ring,
ed8d1975 9525 uint32_t flags)
8c9f3aaf 9526{
8c9f3aaf 9527 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9528 u32 flip_mask;
9529 int ret;
9530
6d90c952 9531 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9532 if (ret)
4fa62c89 9533 return ret;
8c9f3aaf
JB
9534
9535 /* Can't queue multiple flips, so wait for the previous
9536 * one to finish before executing the next.
9537 */
9538 if (intel_crtc->plane)
9539 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9540 else
9541 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9542 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9543 intel_ring_emit(ring, MI_NOOP);
9544 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9545 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9546 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9547 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9548 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9549
9550 intel_mark_page_flip_active(intel_crtc);
09246732 9551 __intel_ring_advance(ring);
83d4092b 9552 return 0;
8c9f3aaf
JB
9553}
9554
9555static int intel_gen3_queue_flip(struct drm_device *dev,
9556 struct drm_crtc *crtc,
9557 struct drm_framebuffer *fb,
ed8d1975 9558 struct drm_i915_gem_object *obj,
a4872ba6 9559 struct intel_engine_cs *ring,
ed8d1975 9560 uint32_t flags)
8c9f3aaf 9561{
8c9f3aaf 9562 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9563 u32 flip_mask;
9564 int ret;
9565
6d90c952 9566 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9567 if (ret)
4fa62c89 9568 return ret;
8c9f3aaf
JB
9569
9570 if (intel_crtc->plane)
9571 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9572 else
9573 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9574 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9575 intel_ring_emit(ring, MI_NOOP);
9576 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9577 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9578 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9579 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9580 intel_ring_emit(ring, MI_NOOP);
9581
e7d841ca 9582 intel_mark_page_flip_active(intel_crtc);
09246732 9583 __intel_ring_advance(ring);
83d4092b 9584 return 0;
8c9f3aaf
JB
9585}
9586
9587static int intel_gen4_queue_flip(struct drm_device *dev,
9588 struct drm_crtc *crtc,
9589 struct drm_framebuffer *fb,
ed8d1975 9590 struct drm_i915_gem_object *obj,
a4872ba6 9591 struct intel_engine_cs *ring,
ed8d1975 9592 uint32_t flags)
8c9f3aaf
JB
9593{
9594 struct drm_i915_private *dev_priv = dev->dev_private;
9595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9596 uint32_t pf, pipesrc;
9597 int ret;
9598
6d90c952 9599 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9600 if (ret)
4fa62c89 9601 return ret;
8c9f3aaf
JB
9602
9603 /* i965+ uses the linear or tiled offsets from the
9604 * Display Registers (which do not change across a page-flip)
9605 * so we need only reprogram the base address.
9606 */
6d90c952
DV
9607 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9608 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9609 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9610 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9611 obj->tiling_mode);
8c9f3aaf
JB
9612
9613 /* XXX Enabling the panel-fitter across page-flip is so far
9614 * untested on non-native modes, so ignore it for now.
9615 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9616 */
9617 pf = 0;
9618 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9619 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9620
9621 intel_mark_page_flip_active(intel_crtc);
09246732 9622 __intel_ring_advance(ring);
83d4092b 9623 return 0;
8c9f3aaf
JB
9624}
9625
9626static int intel_gen6_queue_flip(struct drm_device *dev,
9627 struct drm_crtc *crtc,
9628 struct drm_framebuffer *fb,
ed8d1975 9629 struct drm_i915_gem_object *obj,
a4872ba6 9630 struct intel_engine_cs *ring,
ed8d1975 9631 uint32_t flags)
8c9f3aaf
JB
9632{
9633 struct drm_i915_private *dev_priv = dev->dev_private;
9634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9635 uint32_t pf, pipesrc;
9636 int ret;
9637
6d90c952 9638 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9639 if (ret)
4fa62c89 9640 return ret;
8c9f3aaf 9641
6d90c952
DV
9642 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9643 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9644 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9645 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9646
dc257cf1
DV
9647 /* Contrary to the suggestions in the documentation,
9648 * "Enable Panel Fitter" does not seem to be required when page
9649 * flipping with a non-native mode, and worse causes a normal
9650 * modeset to fail.
9651 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9652 */
9653 pf = 0;
8c9f3aaf 9654 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9655 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9656
9657 intel_mark_page_flip_active(intel_crtc);
09246732 9658 __intel_ring_advance(ring);
83d4092b 9659 return 0;
8c9f3aaf
JB
9660}
9661
7c9017e5
JB
9662static int intel_gen7_queue_flip(struct drm_device *dev,
9663 struct drm_crtc *crtc,
9664 struct drm_framebuffer *fb,
ed8d1975 9665 struct drm_i915_gem_object *obj,
a4872ba6 9666 struct intel_engine_cs *ring,
ed8d1975 9667 uint32_t flags)
7c9017e5 9668{
7c9017e5 9669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9670 uint32_t plane_bit = 0;
ffe74d75
CW
9671 int len, ret;
9672
eba905b2 9673 switch (intel_crtc->plane) {
cb05d8de
DV
9674 case PLANE_A:
9675 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9676 break;
9677 case PLANE_B:
9678 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9679 break;
9680 case PLANE_C:
9681 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9682 break;
9683 default:
9684 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9685 return -ENODEV;
cb05d8de
DV
9686 }
9687
ffe74d75 9688 len = 4;
f476828a 9689 if (ring->id == RCS) {
ffe74d75 9690 len += 6;
f476828a
DL
9691 /*
9692 * On Gen 8, SRM is now taking an extra dword to accommodate
9693 * 48bits addresses, and we need a NOOP for the batch size to
9694 * stay even.
9695 */
9696 if (IS_GEN8(dev))
9697 len += 2;
9698 }
ffe74d75 9699
f66fab8e
VS
9700 /*
9701 * BSpec MI_DISPLAY_FLIP for IVB:
9702 * "The full packet must be contained within the same cache line."
9703 *
9704 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9705 * cacheline, if we ever start emitting more commands before
9706 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9707 * then do the cacheline alignment, and finally emit the
9708 * MI_DISPLAY_FLIP.
9709 */
9710 ret = intel_ring_cacheline_align(ring);
9711 if (ret)
4fa62c89 9712 return ret;
f66fab8e 9713
ffe74d75 9714 ret = intel_ring_begin(ring, len);
7c9017e5 9715 if (ret)
4fa62c89 9716 return ret;
7c9017e5 9717
ffe74d75
CW
9718 /* Unmask the flip-done completion message. Note that the bspec says that
9719 * we should do this for both the BCS and RCS, and that we must not unmask
9720 * more than one flip event at any time (or ensure that one flip message
9721 * can be sent by waiting for flip-done prior to queueing new flips).
9722 * Experimentation says that BCS works despite DERRMR masking all
9723 * flip-done completion events and that unmasking all planes at once
9724 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9725 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9726 */
9727 if (ring->id == RCS) {
9728 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9729 intel_ring_emit(ring, DERRMR);
9730 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9731 DERRMR_PIPEB_PRI_FLIP_DONE |
9732 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9733 if (IS_GEN8(dev))
9734 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9735 MI_SRM_LRM_GLOBAL_GTT);
9736 else
9737 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9738 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9739 intel_ring_emit(ring, DERRMR);
9740 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9741 if (IS_GEN8(dev)) {
9742 intel_ring_emit(ring, 0);
9743 intel_ring_emit(ring, MI_NOOP);
9744 }
ffe74d75
CW
9745 }
9746
cb05d8de 9747 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9748 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9749 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9750 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9751
9752 intel_mark_page_flip_active(intel_crtc);
09246732 9753 __intel_ring_advance(ring);
83d4092b 9754 return 0;
7c9017e5
JB
9755}
9756
84c33a64
SG
9757static bool use_mmio_flip(struct intel_engine_cs *ring,
9758 struct drm_i915_gem_object *obj)
9759{
9760 /*
9761 * This is not being used for older platforms, because
9762 * non-availability of flip done interrupt forces us to use
9763 * CS flips. Older platforms derive flip done using some clever
9764 * tricks involving the flip_pending status bits and vblank irqs.
9765 * So using MMIO flips there would disrupt this mechanism.
9766 */
9767
8e09bf83
CW
9768 if (ring == NULL)
9769 return true;
9770
84c33a64
SG
9771 if (INTEL_INFO(ring->dev)->gen < 5)
9772 return false;
9773
9774 if (i915.use_mmio_flip < 0)
9775 return false;
9776 else if (i915.use_mmio_flip > 0)
9777 return true;
14bf993e
OM
9778 else if (i915.enable_execlists)
9779 return true;
84c33a64 9780 else
41c52415 9781 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9782}
9783
ff944564
DL
9784static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9785{
9786 struct drm_device *dev = intel_crtc->base.dev;
9787 struct drm_i915_private *dev_priv = dev->dev_private;
9788 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9789 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9790 struct drm_i915_gem_object *obj = intel_fb->obj;
9791 const enum pipe pipe = intel_crtc->pipe;
9792 u32 ctl, stride;
9793
9794 ctl = I915_READ(PLANE_CTL(pipe, 0));
9795 ctl &= ~PLANE_CTL_TILED_MASK;
9796 if (obj->tiling_mode == I915_TILING_X)
9797 ctl |= PLANE_CTL_TILED_X;
9798
9799 /*
9800 * The stride is either expressed as a multiple of 64 bytes chunks for
9801 * linear buffers or in number of tiles for tiled buffers.
9802 */
9803 stride = fb->pitches[0] >> 6;
9804 if (obj->tiling_mode == I915_TILING_X)
9805 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9806
9807 /*
9808 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9809 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9810 */
9811 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9812 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9813
9814 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9815 POSTING_READ(PLANE_SURF(pipe, 0));
9816}
9817
9818static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9819{
9820 struct drm_device *dev = intel_crtc->base.dev;
9821 struct drm_i915_private *dev_priv = dev->dev_private;
9822 struct intel_framebuffer *intel_fb =
9823 to_intel_framebuffer(intel_crtc->base.primary->fb);
9824 struct drm_i915_gem_object *obj = intel_fb->obj;
9825 u32 dspcntr;
9826 u32 reg;
9827
84c33a64
SG
9828 reg = DSPCNTR(intel_crtc->plane);
9829 dspcntr = I915_READ(reg);
9830
c5d97472
DL
9831 if (obj->tiling_mode != I915_TILING_NONE)
9832 dspcntr |= DISPPLANE_TILED;
9833 else
9834 dspcntr &= ~DISPPLANE_TILED;
9835
84c33a64
SG
9836 I915_WRITE(reg, dspcntr);
9837
9838 I915_WRITE(DSPSURF(intel_crtc->plane),
9839 intel_crtc->unpin_work->gtt_offset);
9840 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9841
ff944564
DL
9842}
9843
9844/*
9845 * XXX: This is the temporary way to update the plane registers until we get
9846 * around to using the usual plane update functions for MMIO flips
9847 */
9848static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9849{
9850 struct drm_device *dev = intel_crtc->base.dev;
9851 bool atomic_update;
9852 u32 start_vbl_count;
9853
9854 intel_mark_page_flip_active(intel_crtc);
9855
9856 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9857
9858 if (INTEL_INFO(dev)->gen >= 9)
9859 skl_do_mmio_flip(intel_crtc);
9860 else
9861 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9862 ilk_do_mmio_flip(intel_crtc);
9863
9362c7c5
ACO
9864 if (atomic_update)
9865 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9866}
9867
9362c7c5 9868static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9869{
cc8c4cc2 9870 struct intel_crtc *crtc =
9362c7c5 9871 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9872 struct intel_mmio_flip *mmio_flip;
84c33a64 9873
cc8c4cc2
JH
9874 mmio_flip = &crtc->mmio_flip;
9875 if (mmio_flip->req)
9c654818
JH
9876 WARN_ON(__i915_wait_request(mmio_flip->req,
9877 crtc->reset_counter,
9878 false, NULL, NULL) != 0);
84c33a64 9879
cc8c4cc2
JH
9880 intel_do_mmio_flip(crtc);
9881 if (mmio_flip->req) {
9882 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9883 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9884 mutex_unlock(&crtc->base.dev->struct_mutex);
9885 }
84c33a64
SG
9886}
9887
9888static int intel_queue_mmio_flip(struct drm_device *dev,
9889 struct drm_crtc *crtc,
9890 struct drm_framebuffer *fb,
9891 struct drm_i915_gem_object *obj,
9892 struct intel_engine_cs *ring,
9893 uint32_t flags)
9894{
84c33a64 9895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9896
cc8c4cc2
JH
9897 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9898 obj->last_write_req);
536f5b5e
ACO
9899
9900 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9901
84c33a64
SG
9902 return 0;
9903}
9904
8c9f3aaf
JB
9905static int intel_default_queue_flip(struct drm_device *dev,
9906 struct drm_crtc *crtc,
9907 struct drm_framebuffer *fb,
ed8d1975 9908 struct drm_i915_gem_object *obj,
a4872ba6 9909 struct intel_engine_cs *ring,
ed8d1975 9910 uint32_t flags)
8c9f3aaf
JB
9911{
9912 return -ENODEV;
9913}
9914
d6bbafa1
CW
9915static bool __intel_pageflip_stall_check(struct drm_device *dev,
9916 struct drm_crtc *crtc)
9917{
9918 struct drm_i915_private *dev_priv = dev->dev_private;
9919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9920 struct intel_unpin_work *work = intel_crtc->unpin_work;
9921 u32 addr;
9922
9923 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9924 return true;
9925
9926 if (!work->enable_stall_check)
9927 return false;
9928
9929 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9930 if (work->flip_queued_req &&
9931 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9932 return false;
9933
1e3feefd 9934 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
9935 }
9936
1e3feefd 9937 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
9938 return false;
9939
9940 /* Potential stall - if we see that the flip has happened,
9941 * assume a missed interrupt. */
9942 if (INTEL_INFO(dev)->gen >= 4)
9943 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9944 else
9945 addr = I915_READ(DSPADDR(intel_crtc->plane));
9946
9947 /* There is a potential issue here with a false positive after a flip
9948 * to the same address. We could address this by checking for a
9949 * non-incrementing frame counter.
9950 */
9951 return addr == work->gtt_offset;
9952}
9953
9954void intel_check_page_flip(struct drm_device *dev, int pipe)
9955{
9956 struct drm_i915_private *dev_priv = dev->dev_private;
9957 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a 9959
6c51d46f 9960 WARN_ON(!in_interrupt());
d6bbafa1
CW
9961
9962 if (crtc == NULL)
9963 return;
9964
f326038a 9965 spin_lock(&dev->event_lock);
d6bbafa1
CW
9966 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9967 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
1e3feefd
DV
9968 intel_crtc->unpin_work->flip_queued_vblank,
9969 drm_vblank_count(dev, pipe));
d6bbafa1
CW
9970 page_flip_completed(intel_crtc);
9971 }
f326038a 9972 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9973}
9974
6b95a207
KH
9975static int intel_crtc_page_flip(struct drm_crtc *crtc,
9976 struct drm_framebuffer *fb,
ed8d1975
KP
9977 struct drm_pending_vblank_event *event,
9978 uint32_t page_flip_flags)
6b95a207
KH
9979{
9980 struct drm_device *dev = crtc->dev;
9981 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9982 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9983 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 9985 struct drm_plane *primary = crtc->primary;
a071fa00 9986 enum pipe pipe = intel_crtc->pipe;
6b95a207 9987 struct intel_unpin_work *work;
a4872ba6 9988 struct intel_engine_cs *ring;
52e68630 9989 int ret;
6b95a207 9990
2ff8fde1
MR
9991 /*
9992 * drm_mode_page_flip_ioctl() should already catch this, but double
9993 * check to be safe. In the future we may enable pageflipping from
9994 * a disabled primary plane.
9995 */
9996 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9997 return -EBUSY;
9998
e6a595d2 9999 /* Can't change pixel format via MI display flips. */
f4510a27 10000 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
10001 return -EINVAL;
10002
10003 /*
10004 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10005 * Note that pitch changes could also affect these register.
10006 */
10007 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
10008 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10009 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
10010 return -EINVAL;
10011
f900db47
CW
10012 if (i915_terminally_wedged(&dev_priv->gpu_error))
10013 goto out_hang;
10014
b14c5679 10015 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
10016 if (work == NULL)
10017 return -ENOMEM;
10018
6b95a207 10019 work->event = event;
b4a98e57 10020 work->crtc = crtc;
ab8d6675 10021 work->old_fb = old_fb;
6b95a207
KH
10022 INIT_WORK(&work->work, intel_unpin_work_fn);
10023
87b6b101 10024 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
10025 if (ret)
10026 goto free_work;
10027
6b95a207 10028 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 10029 spin_lock_irq(&dev->event_lock);
6b95a207 10030 if (intel_crtc->unpin_work) {
d6bbafa1
CW
10031 /* Before declaring the flip queue wedged, check if
10032 * the hardware completed the operation behind our backs.
10033 */
10034 if (__intel_pageflip_stall_check(dev, crtc)) {
10035 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10036 page_flip_completed(intel_crtc);
10037 } else {
10038 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 10039 spin_unlock_irq(&dev->event_lock);
468f0b44 10040
d6bbafa1
CW
10041 drm_crtc_vblank_put(crtc);
10042 kfree(work);
10043 return -EBUSY;
10044 }
6b95a207
KH
10045 }
10046 intel_crtc->unpin_work = work;
5e2d7afc 10047 spin_unlock_irq(&dev->event_lock);
6b95a207 10048
b4a98e57
CW
10049 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10050 flush_workqueue(dev_priv->wq);
10051
75dfca80 10052 /* Reference the objects for the scheduled work. */
ab8d6675 10053 drm_framebuffer_reference(work->old_fb);
05394f39 10054 drm_gem_object_reference(&obj->base);
6b95a207 10055
f4510a27 10056 crtc->primary->fb = fb;
afd65eb4 10057 update_state_fb(crtc->primary);
1ed1f968 10058
e1f99ce6 10059 work->pending_flip_obj = obj;
e1f99ce6 10060
89ed88ba
CW
10061 ret = i915_mutex_lock_interruptible(dev);
10062 if (ret)
10063 goto cleanup;
10064
b4a98e57 10065 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 10066 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 10067
75f7f3ec 10068 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 10069 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 10070
4fa62c89
VS
10071 if (IS_VALLEYVIEW(dev)) {
10072 ring = &dev_priv->ring[BCS];
ab8d6675 10073 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
10074 /* vlv: DISPLAY_FLIP fails to change tiling */
10075 ring = NULL;
48bf5b2d 10076 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 10077 ring = &dev_priv->ring[BCS];
4fa62c89 10078 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 10079 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
10080 if (ring == NULL || ring->id != RCS)
10081 ring = &dev_priv->ring[BCS];
10082 } else {
10083 ring = &dev_priv->ring[RCS];
10084 }
10085
82bc3b2d
TU
10086 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10087 crtc->primary->state, ring);
8c9f3aaf
JB
10088 if (ret)
10089 goto cleanup_pending;
6b95a207 10090
121920fa
TU
10091 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10092 + intel_crtc->dspaddr_offset;
4fa62c89 10093
d6bbafa1 10094 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
10095 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10096 page_flip_flags);
d6bbafa1
CW
10097 if (ret)
10098 goto cleanup_unpin;
10099
f06cc1b9
JH
10100 i915_gem_request_assign(&work->flip_queued_req,
10101 obj->last_write_req);
d6bbafa1 10102 } else {
84c33a64 10103 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10104 page_flip_flags);
10105 if (ret)
10106 goto cleanup_unpin;
10107
f06cc1b9
JH
10108 i915_gem_request_assign(&work->flip_queued_req,
10109 intel_ring_get_request(ring));
d6bbafa1
CW
10110 }
10111
1e3feefd 10112 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 10113 work->enable_stall_check = true;
4fa62c89 10114
ab8d6675 10115 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
10116 INTEL_FRONTBUFFER_PRIMARY(pipe));
10117
7ff0ebcc 10118 intel_fbc_disable(dev);
f99d7069 10119 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10120 mutex_unlock(&dev->struct_mutex);
10121
e5510fac
JB
10122 trace_i915_flip_request(intel_crtc->plane, obj);
10123
6b95a207 10124 return 0;
96b099fd 10125
4fa62c89 10126cleanup_unpin:
82bc3b2d 10127 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 10128cleanup_pending:
b4a98e57 10129 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
10130 mutex_unlock(&dev->struct_mutex);
10131cleanup:
f4510a27 10132 crtc->primary->fb = old_fb;
afd65eb4 10133 update_state_fb(crtc->primary);
89ed88ba
CW
10134
10135 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 10136 drm_framebuffer_unreference(work->old_fb);
96b099fd 10137
5e2d7afc 10138 spin_lock_irq(&dev->event_lock);
96b099fd 10139 intel_crtc->unpin_work = NULL;
5e2d7afc 10140 spin_unlock_irq(&dev->event_lock);
96b099fd 10141
87b6b101 10142 drm_crtc_vblank_put(crtc);
7317c75e 10143free_work:
96b099fd
CW
10144 kfree(work);
10145
f900db47
CW
10146 if (ret == -EIO) {
10147out_hang:
53a366b9 10148 ret = intel_plane_restore(primary);
f0d3dad3 10149 if (ret == 0 && event) {
5e2d7afc 10150 spin_lock_irq(&dev->event_lock);
a071fa00 10151 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 10152 spin_unlock_irq(&dev->event_lock);
f0d3dad3 10153 }
f900db47 10154 }
96b099fd 10155 return ret;
6b95a207
KH
10156}
10157
f6e5b160 10158static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10159 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10160 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
10161 .atomic_begin = intel_begin_crtc_commit,
10162 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
10163};
10164
9a935856
DV
10165/**
10166 * intel_modeset_update_staged_output_state
10167 *
10168 * Updates the staged output configuration state, e.g. after we've read out the
10169 * current hw state.
10170 */
10171static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10172{
7668851f 10173 struct intel_crtc *crtc;
9a935856
DV
10174 struct intel_encoder *encoder;
10175 struct intel_connector *connector;
f6e5b160 10176
3a3371ff 10177 for_each_intel_connector(dev, connector) {
9a935856
DV
10178 connector->new_encoder =
10179 to_intel_encoder(connector->base.encoder);
10180 }
f6e5b160 10181
b2784e15 10182 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10183 encoder->new_crtc =
10184 to_intel_crtc(encoder->base.crtc);
10185 }
7668851f 10186
d3fcc808 10187 for_each_intel_crtc(dev, crtc) {
83d65738 10188 crtc->new_enabled = crtc->base.state->enable;
7bd0a8e7
VS
10189
10190 if (crtc->new_enabled)
6e3c9717 10191 crtc->new_config = crtc->config;
7bd0a8e7
VS
10192 else
10193 crtc->new_config = NULL;
7668851f 10194 }
f6e5b160
CW
10195}
10196
9a935856
DV
10197/**
10198 * intel_modeset_commit_output_state
10199 *
10200 * This function copies the stage display pipe configuration to the real one.
10201 */
10202static void intel_modeset_commit_output_state(struct drm_device *dev)
10203{
7668851f 10204 struct intel_crtc *crtc;
9a935856
DV
10205 struct intel_encoder *encoder;
10206 struct intel_connector *connector;
f6e5b160 10207
3a3371ff 10208 for_each_intel_connector(dev, connector) {
9a935856
DV
10209 connector->base.encoder = &connector->new_encoder->base;
10210 }
f6e5b160 10211
b2784e15 10212 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10213 encoder->base.crtc = &encoder->new_crtc->base;
10214 }
7668851f 10215
d3fcc808 10216 for_each_intel_crtc(dev, crtc) {
83d65738 10217 crtc->base.state->enable = crtc->new_enabled;
7668851f
VS
10218 crtc->base.enabled = crtc->new_enabled;
10219 }
9a935856
DV
10220}
10221
050f7aeb 10222static void
eba905b2 10223connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 10224 struct intel_crtc_state *pipe_config)
050f7aeb
DV
10225{
10226 int bpp = pipe_config->pipe_bpp;
10227
10228 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10229 connector->base.base.id,
c23cc417 10230 connector->base.name);
050f7aeb
DV
10231
10232 /* Don't use an invalid EDID bpc value */
10233 if (connector->base.display_info.bpc &&
10234 connector->base.display_info.bpc * 3 < bpp) {
10235 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10236 bpp, connector->base.display_info.bpc*3);
10237 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10238 }
10239
10240 /* Clamp bpp to 8 on screens without EDID 1.4 */
10241 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10242 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10243 bpp);
10244 pipe_config->pipe_bpp = 24;
10245 }
10246}
10247
4e53c2e0 10248static int
050f7aeb
DV
10249compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10250 struct drm_framebuffer *fb,
5cec258b 10251 struct intel_crtc_state *pipe_config)
4e53c2e0 10252{
050f7aeb
DV
10253 struct drm_device *dev = crtc->base.dev;
10254 struct intel_connector *connector;
4e53c2e0
DV
10255 int bpp;
10256
d42264b1
DV
10257 switch (fb->pixel_format) {
10258 case DRM_FORMAT_C8:
4e53c2e0
DV
10259 bpp = 8*3; /* since we go through a colormap */
10260 break;
d42264b1
DV
10261 case DRM_FORMAT_XRGB1555:
10262 case DRM_FORMAT_ARGB1555:
10263 /* checked in intel_framebuffer_init already */
10264 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10265 return -EINVAL;
10266 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10267 bpp = 6*3; /* min is 18bpp */
10268 break;
d42264b1
DV
10269 case DRM_FORMAT_XBGR8888:
10270 case DRM_FORMAT_ABGR8888:
10271 /* checked in intel_framebuffer_init already */
10272 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10273 return -EINVAL;
10274 case DRM_FORMAT_XRGB8888:
10275 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10276 bpp = 8*3;
10277 break;
d42264b1
DV
10278 case DRM_FORMAT_XRGB2101010:
10279 case DRM_FORMAT_ARGB2101010:
10280 case DRM_FORMAT_XBGR2101010:
10281 case DRM_FORMAT_ABGR2101010:
10282 /* checked in intel_framebuffer_init already */
10283 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10284 return -EINVAL;
4e53c2e0
DV
10285 bpp = 10*3;
10286 break;
baba133a 10287 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10288 default:
10289 DRM_DEBUG_KMS("unsupported depth\n");
10290 return -EINVAL;
10291 }
10292
4e53c2e0
DV
10293 pipe_config->pipe_bpp = bpp;
10294
10295 /* Clamp display bpp to EDID value */
3a3371ff 10296 for_each_intel_connector(dev, connector) {
1b829e05
DV
10297 if (!connector->new_encoder ||
10298 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10299 continue;
10300
050f7aeb 10301 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10302 }
10303
10304 return bpp;
10305}
10306
644db711
DV
10307static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10308{
10309 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10310 "type: 0x%x flags: 0x%x\n",
1342830c 10311 mode->crtc_clock,
644db711
DV
10312 mode->crtc_hdisplay, mode->crtc_hsync_start,
10313 mode->crtc_hsync_end, mode->crtc_htotal,
10314 mode->crtc_vdisplay, mode->crtc_vsync_start,
10315 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10316}
10317
c0b03411 10318static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10319 struct intel_crtc_state *pipe_config,
c0b03411
DV
10320 const char *context)
10321{
10322 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10323 context, pipe_name(crtc->pipe));
10324
10325 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10326 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10327 pipe_config->pipe_bpp, pipe_config->dither);
10328 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10329 pipe_config->has_pch_encoder,
10330 pipe_config->fdi_lanes,
10331 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10332 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10333 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10334 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10335 pipe_config->has_dp_encoder,
10336 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10337 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10338 pipe_config->dp_m_n.tu);
b95af8be
VK
10339
10340 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10341 pipe_config->has_dp_encoder,
10342 pipe_config->dp_m2_n2.gmch_m,
10343 pipe_config->dp_m2_n2.gmch_n,
10344 pipe_config->dp_m2_n2.link_m,
10345 pipe_config->dp_m2_n2.link_n,
10346 pipe_config->dp_m2_n2.tu);
10347
55072d19
DV
10348 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10349 pipe_config->has_audio,
10350 pipe_config->has_infoframe);
10351
c0b03411 10352 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10353 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10354 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10355 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10356 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10357 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10358 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10359 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10360 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10361 pipe_config->gmch_pfit.control,
10362 pipe_config->gmch_pfit.pgm_ratios,
10363 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10364 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10365 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10366 pipe_config->pch_pfit.size,
10367 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10368 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10369 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10370}
10371
bc079e8b
VS
10372static bool encoders_cloneable(const struct intel_encoder *a,
10373 const struct intel_encoder *b)
accfc0c5 10374{
bc079e8b
VS
10375 /* masks could be asymmetric, so check both ways */
10376 return a == b || (a->cloneable & (1 << b->type) &&
10377 b->cloneable & (1 << a->type));
10378}
10379
10380static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10381 struct intel_encoder *encoder)
10382{
10383 struct drm_device *dev = crtc->base.dev;
10384 struct intel_encoder *source_encoder;
10385
b2784e15 10386 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10387 if (source_encoder->new_crtc != crtc)
10388 continue;
10389
10390 if (!encoders_cloneable(encoder, source_encoder))
10391 return false;
10392 }
10393
10394 return true;
10395}
10396
10397static bool check_encoder_cloning(struct intel_crtc *crtc)
10398{
10399 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10400 struct intel_encoder *encoder;
10401
b2784e15 10402 for_each_intel_encoder(dev, encoder) {
bc079e8b 10403 if (encoder->new_crtc != crtc)
accfc0c5
DV
10404 continue;
10405
bc079e8b
VS
10406 if (!check_single_encoder_cloning(crtc, encoder))
10407 return false;
accfc0c5
DV
10408 }
10409
bc079e8b 10410 return true;
accfc0c5
DV
10411}
10412
00f0b378
VS
10413static bool check_digital_port_conflicts(struct drm_device *dev)
10414{
10415 struct intel_connector *connector;
10416 unsigned int used_ports = 0;
10417
10418 /*
10419 * Walk the connector list instead of the encoder
10420 * list to detect the problem on ddi platforms
10421 * where there's just one encoder per digital port.
10422 */
3a3371ff 10423 for_each_intel_connector(dev, connector) {
00f0b378
VS
10424 struct intel_encoder *encoder = connector->new_encoder;
10425
10426 if (!encoder)
10427 continue;
10428
10429 WARN_ON(!encoder->new_crtc);
10430
10431 switch (encoder->type) {
10432 unsigned int port_mask;
10433 case INTEL_OUTPUT_UNKNOWN:
10434 if (WARN_ON(!HAS_DDI(dev)))
10435 break;
10436 case INTEL_OUTPUT_DISPLAYPORT:
10437 case INTEL_OUTPUT_HDMI:
10438 case INTEL_OUTPUT_EDP:
10439 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10440
10441 /* the same port mustn't appear more than once */
10442 if (used_ports & port_mask)
10443 return false;
10444
10445 used_ports |= port_mask;
10446 default:
10447 break;
10448 }
10449 }
10450
10451 return true;
10452}
10453
5cec258b 10454static struct intel_crtc_state *
b8cecdf5 10455intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10456 struct drm_framebuffer *fb,
b8cecdf5 10457 struct drm_display_mode *mode)
ee7b9f93 10458{
7758a113 10459 struct drm_device *dev = crtc->dev;
7758a113 10460 struct intel_encoder *encoder;
5cec258b 10461 struct intel_crtc_state *pipe_config;
e29c22c0
DV
10462 int plane_bpp, ret = -EINVAL;
10463 bool retry = true;
ee7b9f93 10464
bc079e8b 10465 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10466 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10467 return ERR_PTR(-EINVAL);
10468 }
10469
00f0b378
VS
10470 if (!check_digital_port_conflicts(dev)) {
10471 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10472 return ERR_PTR(-EINVAL);
10473 }
10474
b8cecdf5
DV
10475 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10476 if (!pipe_config)
7758a113
DV
10477 return ERR_PTR(-ENOMEM);
10478
07878248 10479 pipe_config->base.crtc = crtc;
2d112de7
ACO
10480 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10481 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10482
e143a21c
DV
10483 pipe_config->cpu_transcoder =
10484 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10485 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10486
2960bc9c
ID
10487 /*
10488 * Sanitize sync polarity flags based on requested ones. If neither
10489 * positive or negative polarity is requested, treat this as meaning
10490 * negative polarity.
10491 */
2d112de7 10492 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10493 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10494 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10495
2d112de7 10496 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10497 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10498 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10499
050f7aeb
DV
10500 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10501 * plane pixel format and any sink constraints into account. Returns the
10502 * source plane bpp so that dithering can be selected on mismatches
10503 * after encoders and crtc also have had their say. */
10504 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10505 fb, pipe_config);
4e53c2e0
DV
10506 if (plane_bpp < 0)
10507 goto fail;
10508
e41a56be
VS
10509 /*
10510 * Determine the real pipe dimensions. Note that stereo modes can
10511 * increase the actual pipe size due to the frame doubling and
10512 * insertion of additional space for blanks between the frame. This
10513 * is stored in the crtc timings. We use the requested mode to do this
10514 * computation to clearly distinguish it from the adjusted mode, which
10515 * can be changed by the connectors in the below retry loop.
10516 */
2d112de7 10517 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10518 &pipe_config->pipe_src_w,
10519 &pipe_config->pipe_src_h);
e41a56be 10520
e29c22c0 10521encoder_retry:
ef1b460d 10522 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10523 pipe_config->port_clock = 0;
ef1b460d 10524 pipe_config->pixel_multiplier = 1;
ff9a6750 10525
135c81b8 10526 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10527 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10528 CRTC_STEREO_DOUBLE);
135c81b8 10529
7758a113
DV
10530 /* Pass our mode to the connectors and the CRTC to give them a chance to
10531 * adjust it according to limitations or connector properties, and also
10532 * a chance to reject the mode entirely.
47f1c6c9 10533 */
b2784e15 10534 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10535
7758a113
DV
10536 if (&encoder->new_crtc->base != crtc)
10537 continue;
7ae89233 10538
efea6e8e
DV
10539 if (!(encoder->compute_config(encoder, pipe_config))) {
10540 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10541 goto fail;
10542 }
ee7b9f93 10543 }
47f1c6c9 10544
ff9a6750
DV
10545 /* Set default port clock if not overwritten by the encoder. Needs to be
10546 * done afterwards in case the encoder adjusts the mode. */
10547 if (!pipe_config->port_clock)
2d112de7 10548 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10549 * pipe_config->pixel_multiplier;
ff9a6750 10550
a43f6e0f 10551 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10552 if (ret < 0) {
7758a113
DV
10553 DRM_DEBUG_KMS("CRTC fixup failed\n");
10554 goto fail;
ee7b9f93 10555 }
e29c22c0
DV
10556
10557 if (ret == RETRY) {
10558 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10559 ret = -EINVAL;
10560 goto fail;
10561 }
10562
10563 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10564 retry = false;
10565 goto encoder_retry;
10566 }
10567
4e53c2e0
DV
10568 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10569 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10570 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10571
b8cecdf5 10572 return pipe_config;
7758a113 10573fail:
b8cecdf5 10574 kfree(pipe_config);
e29c22c0 10575 return ERR_PTR(ret);
ee7b9f93 10576}
47f1c6c9 10577
e2e1ed41
DV
10578/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10579 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10580static void
10581intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10582 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10583{
10584 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10585 struct drm_device *dev = crtc->dev;
10586 struct intel_encoder *encoder;
10587 struct intel_connector *connector;
10588 struct drm_crtc *tmp_crtc;
79e53945 10589
e2e1ed41 10590 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10591
e2e1ed41
DV
10592 /* Check which crtcs have changed outputs connected to them, these need
10593 * to be part of the prepare_pipes mask. We don't (yet) support global
10594 * modeset across multiple crtcs, so modeset_pipes will only have one
10595 * bit set at most. */
3a3371ff 10596 for_each_intel_connector(dev, connector) {
e2e1ed41
DV
10597 if (connector->base.encoder == &connector->new_encoder->base)
10598 continue;
79e53945 10599
e2e1ed41
DV
10600 if (connector->base.encoder) {
10601 tmp_crtc = connector->base.encoder->crtc;
10602
10603 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10604 }
10605
10606 if (connector->new_encoder)
10607 *prepare_pipes |=
10608 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10609 }
10610
b2784e15 10611 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10612 if (encoder->base.crtc == &encoder->new_crtc->base)
10613 continue;
10614
10615 if (encoder->base.crtc) {
10616 tmp_crtc = encoder->base.crtc;
10617
10618 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10619 }
10620
10621 if (encoder->new_crtc)
10622 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10623 }
10624
7668851f 10625 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10626 for_each_intel_crtc(dev, intel_crtc) {
83d65738 10627 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
e2e1ed41 10628 continue;
7e7d76c3 10629
7668851f 10630 if (!intel_crtc->new_enabled)
e2e1ed41 10631 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10632 else
10633 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10634 }
10635
e2e1ed41
DV
10636
10637 /* set_mode is also used to update properties on life display pipes. */
10638 intel_crtc = to_intel_crtc(crtc);
7668851f 10639 if (intel_crtc->new_enabled)
e2e1ed41
DV
10640 *prepare_pipes |= 1 << intel_crtc->pipe;
10641
b6c5164d
DV
10642 /*
10643 * For simplicity do a full modeset on any pipe where the output routing
10644 * changed. We could be more clever, but that would require us to be
10645 * more careful with calling the relevant encoder->mode_set functions.
10646 */
e2e1ed41
DV
10647 if (*prepare_pipes)
10648 *modeset_pipes = *prepare_pipes;
10649
10650 /* ... and mask these out. */
10651 *modeset_pipes &= ~(*disable_pipes);
10652 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10653
10654 /*
10655 * HACK: We don't (yet) fully support global modesets. intel_set_config
10656 * obies this rule, but the modeset restore mode of
10657 * intel_modeset_setup_hw_state does not.
10658 */
10659 *modeset_pipes &= 1 << intel_crtc->pipe;
10660 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10661
10662 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10663 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10664}
79e53945 10665
ea9d758d 10666static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10667{
ea9d758d 10668 struct drm_encoder *encoder;
f6e5b160 10669 struct drm_device *dev = crtc->dev;
f6e5b160 10670
ea9d758d
DV
10671 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10672 if (encoder->crtc == crtc)
10673 return true;
10674
10675 return false;
10676}
10677
10678static void
10679intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10680{
ba41c0de 10681 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10682 struct intel_encoder *intel_encoder;
10683 struct intel_crtc *intel_crtc;
10684 struct drm_connector *connector;
10685
ba41c0de
DV
10686 intel_shared_dpll_commit(dev_priv);
10687
b2784e15 10688 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10689 if (!intel_encoder->base.crtc)
10690 continue;
10691
10692 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10693
10694 if (prepare_pipes & (1 << intel_crtc->pipe))
10695 intel_encoder->connectors_active = false;
10696 }
10697
10698 intel_modeset_commit_output_state(dev);
10699
7668851f 10700 /* Double check state. */
d3fcc808 10701 for_each_intel_crtc(dev, intel_crtc) {
83d65738 10702 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10703 WARN_ON(intel_crtc->new_config &&
6e3c9717 10704 intel_crtc->new_config != intel_crtc->config);
83d65738 10705 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
ea9d758d
DV
10706 }
10707
10708 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10709 if (!connector->encoder || !connector->encoder->crtc)
10710 continue;
10711
10712 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10713
10714 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10715 struct drm_property *dpms_property =
10716 dev->mode_config.dpms_property;
10717
ea9d758d 10718 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10719 drm_object_property_set_value(&connector->base,
68d34720
DV
10720 dpms_property,
10721 DRM_MODE_DPMS_ON);
ea9d758d
DV
10722
10723 intel_encoder = to_intel_encoder(connector->encoder);
10724 intel_encoder->connectors_active = true;
10725 }
10726 }
10727
10728}
10729
3bd26263 10730static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10731{
3bd26263 10732 int diff;
f1f644dc
JB
10733
10734 if (clock1 == clock2)
10735 return true;
10736
10737 if (!clock1 || !clock2)
10738 return false;
10739
10740 diff = abs(clock1 - clock2);
10741
10742 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10743 return true;
10744
10745 return false;
10746}
10747
25c5b266
DV
10748#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10749 list_for_each_entry((intel_crtc), \
10750 &(dev)->mode_config.crtc_list, \
10751 base.head) \
0973f18f 10752 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10753
0e8ffe1b 10754static bool
2fa2fe9a 10755intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10756 struct intel_crtc_state *current_config,
10757 struct intel_crtc_state *pipe_config)
0e8ffe1b 10758{
66e985c0
DV
10759#define PIPE_CONF_CHECK_X(name) \
10760 if (current_config->name != pipe_config->name) { \
10761 DRM_ERROR("mismatch in " #name " " \
10762 "(expected 0x%08x, found 0x%08x)\n", \
10763 current_config->name, \
10764 pipe_config->name); \
10765 return false; \
10766 }
10767
08a24034
DV
10768#define PIPE_CONF_CHECK_I(name) \
10769 if (current_config->name != pipe_config->name) { \
10770 DRM_ERROR("mismatch in " #name " " \
10771 "(expected %i, found %i)\n", \
10772 current_config->name, \
10773 pipe_config->name); \
10774 return false; \
88adfff1
DV
10775 }
10776
b95af8be
VK
10777/* This is required for BDW+ where there is only one set of registers for
10778 * switching between high and low RR.
10779 * This macro can be used whenever a comparison has to be made between one
10780 * hw state and multiple sw state variables.
10781 */
10782#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10783 if ((current_config->name != pipe_config->name) && \
10784 (current_config->alt_name != pipe_config->name)) { \
10785 DRM_ERROR("mismatch in " #name " " \
10786 "(expected %i or %i, found %i)\n", \
10787 current_config->name, \
10788 current_config->alt_name, \
10789 pipe_config->name); \
10790 return false; \
10791 }
10792
1bd1bd80
DV
10793#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10794 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10795 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10796 "(expected %i, found %i)\n", \
10797 current_config->name & (mask), \
10798 pipe_config->name & (mask)); \
10799 return false; \
10800 }
10801
5e550656
VS
10802#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10803 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10804 DRM_ERROR("mismatch in " #name " " \
10805 "(expected %i, found %i)\n", \
10806 current_config->name, \
10807 pipe_config->name); \
10808 return false; \
10809 }
10810
bb760063
DV
10811#define PIPE_CONF_QUIRK(quirk) \
10812 ((current_config->quirks | pipe_config->quirks) & (quirk))
10813
eccb140b
DV
10814 PIPE_CONF_CHECK_I(cpu_transcoder);
10815
08a24034
DV
10816 PIPE_CONF_CHECK_I(has_pch_encoder);
10817 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10818 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10819 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10820 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10821 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10822 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10823
eb14cb74 10824 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10825
10826 if (INTEL_INFO(dev)->gen < 8) {
10827 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10828 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10829 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10830 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10831 PIPE_CONF_CHECK_I(dp_m_n.tu);
10832
10833 if (current_config->has_drrs) {
10834 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10835 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10836 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10837 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10838 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10839 }
10840 } else {
10841 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10842 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10843 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10844 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10845 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10846 }
eb14cb74 10847
2d112de7
ACO
10848 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10849 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10850 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10851 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10852 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10853 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10854
2d112de7
ACO
10855 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10856 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10857 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10858 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10859 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10860 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10861
c93f54cf 10862 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10863 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10864 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10865 IS_VALLEYVIEW(dev))
10866 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10867 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10868
9ed109a7
DV
10869 PIPE_CONF_CHECK_I(has_audio);
10870
2d112de7 10871 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10872 DRM_MODE_FLAG_INTERLACE);
10873
bb760063 10874 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10875 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10876 DRM_MODE_FLAG_PHSYNC);
2d112de7 10877 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10878 DRM_MODE_FLAG_NHSYNC);
2d112de7 10879 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10880 DRM_MODE_FLAG_PVSYNC);
2d112de7 10881 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10882 DRM_MODE_FLAG_NVSYNC);
10883 }
045ac3b5 10884
37327abd
VS
10885 PIPE_CONF_CHECK_I(pipe_src_w);
10886 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10887
9953599b
DV
10888 /*
10889 * FIXME: BIOS likes to set up a cloned config with lvds+external
10890 * screen. Since we don't yet re-compute the pipe config when moving
10891 * just the lvds port away to another pipe the sw tracking won't match.
10892 *
10893 * Proper atomic modesets with recomputed global state will fix this.
10894 * Until then just don't check gmch state for inherited modes.
10895 */
10896 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10897 PIPE_CONF_CHECK_I(gmch_pfit.control);
10898 /* pfit ratios are autocomputed by the hw on gen4+ */
10899 if (INTEL_INFO(dev)->gen < 4)
10900 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10901 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10902 }
10903
fd4daa9c
CW
10904 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10905 if (current_config->pch_pfit.enabled) {
10906 PIPE_CONF_CHECK_I(pch_pfit.pos);
10907 PIPE_CONF_CHECK_I(pch_pfit.size);
10908 }
2fa2fe9a 10909
e59150dc
JB
10910 /* BDW+ don't expose a synchronous way to read the state */
10911 if (IS_HASWELL(dev))
10912 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10913
282740f7
VS
10914 PIPE_CONF_CHECK_I(double_wide);
10915
26804afd
DV
10916 PIPE_CONF_CHECK_X(ddi_pll_sel);
10917
c0d43d62 10918 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10919 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10920 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10921 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10922 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10923 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
10924 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10925 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10926 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 10927
42571aef
VS
10928 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10929 PIPE_CONF_CHECK_I(pipe_bpp);
10930
2d112de7 10931 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 10932 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10933
66e985c0 10934#undef PIPE_CONF_CHECK_X
08a24034 10935#undef PIPE_CONF_CHECK_I
b95af8be 10936#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10937#undef PIPE_CONF_CHECK_FLAGS
5e550656 10938#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10939#undef PIPE_CONF_QUIRK
88adfff1 10940
0e8ffe1b
DV
10941 return true;
10942}
10943
08db6652
DL
10944static void check_wm_state(struct drm_device *dev)
10945{
10946 struct drm_i915_private *dev_priv = dev->dev_private;
10947 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10948 struct intel_crtc *intel_crtc;
10949 int plane;
10950
10951 if (INTEL_INFO(dev)->gen < 9)
10952 return;
10953
10954 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10955 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10956
10957 for_each_intel_crtc(dev, intel_crtc) {
10958 struct skl_ddb_entry *hw_entry, *sw_entry;
10959 const enum pipe pipe = intel_crtc->pipe;
10960
10961 if (!intel_crtc->active)
10962 continue;
10963
10964 /* planes */
dd740780 10965 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
10966 hw_entry = &hw_ddb.plane[pipe][plane];
10967 sw_entry = &sw_ddb->plane[pipe][plane];
10968
10969 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10970 continue;
10971
10972 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10973 "(expected (%u,%u), found (%u,%u))\n",
10974 pipe_name(pipe), plane + 1,
10975 sw_entry->start, sw_entry->end,
10976 hw_entry->start, hw_entry->end);
10977 }
10978
10979 /* cursor */
10980 hw_entry = &hw_ddb.cursor[pipe];
10981 sw_entry = &sw_ddb->cursor[pipe];
10982
10983 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10984 continue;
10985
10986 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10987 "(expected (%u,%u), found (%u,%u))\n",
10988 pipe_name(pipe),
10989 sw_entry->start, sw_entry->end,
10990 hw_entry->start, hw_entry->end);
10991 }
10992}
10993
91d1b4bd
DV
10994static void
10995check_connector_state(struct drm_device *dev)
8af6cf88 10996{
8af6cf88
DV
10997 struct intel_connector *connector;
10998
3a3371ff 10999 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11000 /* This also checks the encoder/connector hw state with the
11001 * ->get_hw_state callbacks. */
11002 intel_connector_check_state(connector);
11003
e2c719b7 11004 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
11005 "connector's staged encoder doesn't match current encoder\n");
11006 }
91d1b4bd
DV
11007}
11008
11009static void
11010check_encoder_state(struct drm_device *dev)
11011{
11012 struct intel_encoder *encoder;
11013 struct intel_connector *connector;
8af6cf88 11014
b2784e15 11015 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11016 bool enabled = false;
11017 bool active = false;
11018 enum pipe pipe, tracked_pipe;
11019
11020 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11021 encoder->base.base.id,
8e329a03 11022 encoder->base.name);
8af6cf88 11023
e2c719b7 11024 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 11025 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 11026 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
11027 "encoder's active_connectors set, but no crtc\n");
11028
3a3371ff 11029 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11030 if (connector->base.encoder != &encoder->base)
11031 continue;
11032 enabled = true;
11033 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11034 active = true;
11035 }
0e32b39c
DA
11036 /*
11037 * for MST connectors if we unplug the connector is gone
11038 * away but the encoder is still connected to a crtc
11039 * until a modeset happens in response to the hotplug.
11040 */
11041 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11042 continue;
11043
e2c719b7 11044 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
11045 "encoder's enabled state mismatch "
11046 "(expected %i, found %i)\n",
11047 !!encoder->base.crtc, enabled);
e2c719b7 11048 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
11049 "active encoder with no crtc\n");
11050
e2c719b7 11051 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
11052 "encoder's computed active state doesn't match tracked active state "
11053 "(expected %i, found %i)\n", active, encoder->connectors_active);
11054
11055 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 11056 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
11057 "encoder's hw state doesn't match sw tracking "
11058 "(expected %i, found %i)\n",
11059 encoder->connectors_active, active);
11060
11061 if (!encoder->base.crtc)
11062 continue;
11063
11064 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 11065 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
11066 "active encoder's pipe doesn't match"
11067 "(expected %i, found %i)\n",
11068 tracked_pipe, pipe);
11069
11070 }
91d1b4bd
DV
11071}
11072
11073static void
11074check_crtc_state(struct drm_device *dev)
11075{
fbee40df 11076 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11077 struct intel_crtc *crtc;
11078 struct intel_encoder *encoder;
5cec258b 11079 struct intel_crtc_state pipe_config;
8af6cf88 11080
d3fcc808 11081 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
11082 bool enabled = false;
11083 bool active = false;
11084
045ac3b5
JB
11085 memset(&pipe_config, 0, sizeof(pipe_config));
11086
8af6cf88
DV
11087 DRM_DEBUG_KMS("[CRTC:%d]\n",
11088 crtc->base.base.id);
11089
83d65738 11090 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
11091 "active crtc, but not enabled in sw tracking\n");
11092
b2784e15 11093 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11094 if (encoder->base.crtc != &crtc->base)
11095 continue;
11096 enabled = true;
11097 if (encoder->connectors_active)
11098 active = true;
11099 }
6c49f241 11100
e2c719b7 11101 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
11102 "crtc's computed active state doesn't match tracked active state "
11103 "(expected %i, found %i)\n", active, crtc->active);
83d65738 11104 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 11105 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
11106 "(expected %i, found %i)\n", enabled,
11107 crtc->base.state->enable);
8af6cf88 11108
0e8ffe1b
DV
11109 active = dev_priv->display.get_pipe_config(crtc,
11110 &pipe_config);
d62cf62a 11111
b6b5d049
VS
11112 /* hw state is inconsistent with the pipe quirk */
11113 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11114 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
11115 active = crtc->active;
11116
b2784e15 11117 for_each_intel_encoder(dev, encoder) {
3eaba51c 11118 enum pipe pipe;
6c49f241
DV
11119 if (encoder->base.crtc != &crtc->base)
11120 continue;
1d37b689 11121 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
11122 encoder->get_config(encoder, &pipe_config);
11123 }
11124
e2c719b7 11125 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
11126 "crtc active state doesn't match with hw state "
11127 "(expected %i, found %i)\n", crtc->active, active);
11128
c0b03411 11129 if (active &&
6e3c9717 11130 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 11131 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
11132 intel_dump_pipe_config(crtc, &pipe_config,
11133 "[hw state]");
6e3c9717 11134 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
11135 "[sw state]");
11136 }
8af6cf88
DV
11137 }
11138}
11139
91d1b4bd
DV
11140static void
11141check_shared_dpll_state(struct drm_device *dev)
11142{
fbee40df 11143 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11144 struct intel_crtc *crtc;
11145 struct intel_dpll_hw_state dpll_hw_state;
11146 int i;
5358901f
DV
11147
11148 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11149 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11150 int enabled_crtcs = 0, active_crtcs = 0;
11151 bool active;
11152
11153 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11154
11155 DRM_DEBUG_KMS("%s\n", pll->name);
11156
11157 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11158
e2c719b7 11159 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 11160 "more active pll users than references: %i vs %i\n",
3e369b76 11161 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 11162 I915_STATE_WARN(pll->active && !pll->on,
5358901f 11163 "pll in active use but not on in sw tracking\n");
e2c719b7 11164 I915_STATE_WARN(pll->on && !pll->active,
35c95375 11165 "pll in on but not on in use in sw tracking\n");
e2c719b7 11166 I915_STATE_WARN(pll->on != active,
5358901f
DV
11167 "pll on state mismatch (expected %i, found %i)\n",
11168 pll->on, active);
11169
d3fcc808 11170 for_each_intel_crtc(dev, crtc) {
83d65738 11171 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
11172 enabled_crtcs++;
11173 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11174 active_crtcs++;
11175 }
e2c719b7 11176 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
11177 "pll active crtcs mismatch (expected %i, found %i)\n",
11178 pll->active, active_crtcs);
e2c719b7 11179 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 11180 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 11181 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 11182
e2c719b7 11183 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
11184 sizeof(dpll_hw_state)),
11185 "pll hw state mismatch\n");
5358901f 11186 }
8af6cf88
DV
11187}
11188
91d1b4bd
DV
11189void
11190intel_modeset_check_state(struct drm_device *dev)
11191{
08db6652 11192 check_wm_state(dev);
91d1b4bd
DV
11193 check_connector_state(dev);
11194 check_encoder_state(dev);
11195 check_crtc_state(dev);
11196 check_shared_dpll_state(dev);
11197}
11198
5cec258b 11199void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
11200 int dotclock)
11201{
11202 /*
11203 * FDI already provided one idea for the dotclock.
11204 * Yell if the encoder disagrees.
11205 */
2d112de7 11206 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 11207 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 11208 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
11209}
11210
80715b2f
VS
11211static void update_scanline_offset(struct intel_crtc *crtc)
11212{
11213 struct drm_device *dev = crtc->base.dev;
11214
11215 /*
11216 * The scanline counter increments at the leading edge of hsync.
11217 *
11218 * On most platforms it starts counting from vtotal-1 on the
11219 * first active line. That means the scanline counter value is
11220 * always one less than what we would expect. Ie. just after
11221 * start of vblank, which also occurs at start of hsync (on the
11222 * last active line), the scanline counter will read vblank_start-1.
11223 *
11224 * On gen2 the scanline counter starts counting from 1 instead
11225 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11226 * to keep the value positive), instead of adding one.
11227 *
11228 * On HSW+ the behaviour of the scanline counter depends on the output
11229 * type. For DP ports it behaves like most other platforms, but on HDMI
11230 * there's an extra 1 line difference. So we need to add two instead of
11231 * one to the value.
11232 */
11233 if (IS_GEN2(dev)) {
6e3c9717 11234 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
11235 int vtotal;
11236
11237 vtotal = mode->crtc_vtotal;
11238 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11239 vtotal /= 2;
11240
11241 crtc->scanline_offset = vtotal - 1;
11242 } else if (HAS_DDI(dev) &&
409ee761 11243 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
11244 crtc->scanline_offset = 2;
11245 } else
11246 crtc->scanline_offset = 1;
11247}
11248
5cec258b 11249static struct intel_crtc_state *
7f27126e
JB
11250intel_modeset_compute_config(struct drm_crtc *crtc,
11251 struct drm_display_mode *mode,
11252 struct drm_framebuffer *fb,
11253 unsigned *modeset_pipes,
11254 unsigned *prepare_pipes,
11255 unsigned *disable_pipes)
11256{
5cec258b 11257 struct intel_crtc_state *pipe_config = NULL;
7f27126e
JB
11258
11259 intel_modeset_affected_pipes(crtc, modeset_pipes,
11260 prepare_pipes, disable_pipes);
11261
11262 if ((*modeset_pipes) == 0)
11263 goto out;
11264
11265 /*
11266 * Note this needs changes when we start tracking multiple modes
11267 * and crtcs. At that point we'll need to compute the whole config
11268 * (i.e. one pipe_config for each crtc) rather than just the one
11269 * for this crtc.
11270 */
11271 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11272 if (IS_ERR(pipe_config)) {
11273 goto out;
11274 }
11275 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11276 "[modeset]");
7f27126e
JB
11277
11278out:
11279 return pipe_config;
11280}
11281
ed6739ef
ACO
11282static int __intel_set_mode_setup_plls(struct drm_device *dev,
11283 unsigned modeset_pipes,
11284 unsigned disable_pipes)
11285{
11286 struct drm_i915_private *dev_priv = to_i915(dev);
11287 unsigned clear_pipes = modeset_pipes | disable_pipes;
11288 struct intel_crtc *intel_crtc;
11289 int ret = 0;
11290
11291 if (!dev_priv->display.crtc_compute_clock)
11292 return 0;
11293
11294 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11295 if (ret)
11296 goto done;
11297
11298 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11299 struct intel_crtc_state *state = intel_crtc->new_config;
11300 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11301 state);
11302 if (ret) {
11303 intel_shared_dpll_abort_config(dev_priv);
11304 goto done;
11305 }
11306 }
11307
11308done:
11309 return ret;
11310}
11311
f30da187
DV
11312static int __intel_set_mode(struct drm_crtc *crtc,
11313 struct drm_display_mode *mode,
7f27126e 11314 int x, int y, struct drm_framebuffer *fb,
5cec258b 11315 struct intel_crtc_state *pipe_config,
7f27126e
JB
11316 unsigned modeset_pipes,
11317 unsigned prepare_pipes,
11318 unsigned disable_pipes)
a6778b3c
DV
11319{
11320 struct drm_device *dev = crtc->dev;
fbee40df 11321 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11322 struct drm_display_mode *saved_mode;
25c5b266 11323 struct intel_crtc *intel_crtc;
c0c36b94 11324 int ret = 0;
a6778b3c 11325
4b4b9238 11326 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11327 if (!saved_mode)
11328 return -ENOMEM;
a6778b3c 11329
3ac18232 11330 *saved_mode = crtc->mode;
a6778b3c 11331
b9950a13
VS
11332 if (modeset_pipes)
11333 to_intel_crtc(crtc)->new_config = pipe_config;
11334
30a970c6
JB
11335 /*
11336 * See if the config requires any additional preparation, e.g.
11337 * to adjust global state with pipes off. We need to do this
11338 * here so we can get the modeset_pipe updated config for the new
11339 * mode set on this crtc. For other crtcs we need to use the
11340 * adjusted_mode bits in the crtc directly.
11341 */
c164f833 11342 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11343 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11344
c164f833
VS
11345 /* may have added more to prepare_pipes than we should */
11346 prepare_pipes &= ~disable_pipes;
11347 }
11348
ed6739ef
ACO
11349 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11350 if (ret)
11351 goto done;
8bd31e67 11352
460da916
DV
11353 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11354 intel_crtc_disable(&intel_crtc->base);
11355
ea9d758d 11356 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
83d65738 11357 if (intel_crtc->base.state->enable)
ea9d758d
DV
11358 dev_priv->display.crtc_disable(&intel_crtc->base);
11359 }
a6778b3c 11360
6c4c86f5
DV
11361 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11362 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11363 *
11364 * Note we'll need to fix this up when we start tracking multiple
11365 * pipes; here we assume a single modeset_pipe and only track the
11366 * single crtc and mode.
f6e5b160 11367 */
b8cecdf5 11368 if (modeset_pipes) {
25c5b266 11369 crtc->mode = *mode;
b8cecdf5
DV
11370 /* mode_set/enable/disable functions rely on a correct pipe
11371 * config. */
f5de6e07 11372 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11373
11374 /*
11375 * Calculate and store various constants which
11376 * are later needed by vblank and swap-completion
11377 * timestamping. They are derived from true hwmode.
11378 */
11379 drm_calc_timestamping_constants(crtc,
2d112de7 11380 &pipe_config->base.adjusted_mode);
b8cecdf5 11381 }
7758a113 11382
ea9d758d
DV
11383 /* Only after disabling all output pipelines that will be changed can we
11384 * update the the output configuration. */
11385 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11386
50f6e502 11387 modeset_update_crtc_power_domains(dev);
47fab737 11388
a6778b3c
DV
11389 /* Set up the DPLL and any encoders state that needs to adjust or depend
11390 * on the DPLL.
f6e5b160 11391 */
25c5b266 11392 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11393 struct drm_plane *primary = intel_crtc->base.primary;
11394 int vdisplay, hdisplay;
4c10794f 11395
455a6808
GP
11396 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11397 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11398 fb, 0, 0,
11399 hdisplay, vdisplay,
11400 x << 16, y << 16,
11401 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11402 }
11403
11404 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11405 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11406 update_scanline_offset(intel_crtc);
11407
25c5b266 11408 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11409 }
a6778b3c 11410
a6778b3c
DV
11411 /* FIXME: add subpixel order */
11412done:
83d65738 11413 if (ret && crtc->state->enable)
3ac18232 11414 crtc->mode = *saved_mode;
a6778b3c 11415
3ac18232 11416 kfree(saved_mode);
a6778b3c 11417 return ret;
f6e5b160
CW
11418}
11419
7f27126e
JB
11420static int intel_set_mode_pipes(struct drm_crtc *crtc,
11421 struct drm_display_mode *mode,
11422 int x, int y, struct drm_framebuffer *fb,
5cec258b 11423 struct intel_crtc_state *pipe_config,
7f27126e
JB
11424 unsigned modeset_pipes,
11425 unsigned prepare_pipes,
11426 unsigned disable_pipes)
f30da187
DV
11427{
11428 int ret;
11429
7f27126e
JB
11430 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11431 prepare_pipes, disable_pipes);
f30da187
DV
11432
11433 if (ret == 0)
11434 intel_modeset_check_state(crtc->dev);
11435
11436 return ret;
11437}
11438
7f27126e
JB
11439static int intel_set_mode(struct drm_crtc *crtc,
11440 struct drm_display_mode *mode,
11441 int x, int y, struct drm_framebuffer *fb)
11442{
5cec258b 11443 struct intel_crtc_state *pipe_config;
7f27126e
JB
11444 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11445
11446 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11447 &modeset_pipes,
11448 &prepare_pipes,
11449 &disable_pipes);
11450
11451 if (IS_ERR(pipe_config))
11452 return PTR_ERR(pipe_config);
11453
11454 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11455 modeset_pipes, prepare_pipes,
11456 disable_pipes);
11457}
11458
c0c36b94
CW
11459void intel_crtc_restore_mode(struct drm_crtc *crtc)
11460{
f4510a27 11461 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11462}
11463
25c5b266
DV
11464#undef for_each_intel_crtc_masked
11465
d9e55608
DV
11466static void intel_set_config_free(struct intel_set_config *config)
11467{
11468 if (!config)
11469 return;
11470
1aa4b628
DV
11471 kfree(config->save_connector_encoders);
11472 kfree(config->save_encoder_crtcs);
7668851f 11473 kfree(config->save_crtc_enabled);
d9e55608
DV
11474 kfree(config);
11475}
11476
85f9eb71
DV
11477static int intel_set_config_save_state(struct drm_device *dev,
11478 struct intel_set_config *config)
11479{
7668851f 11480 struct drm_crtc *crtc;
85f9eb71
DV
11481 struct drm_encoder *encoder;
11482 struct drm_connector *connector;
11483 int count;
11484
7668851f
VS
11485 config->save_crtc_enabled =
11486 kcalloc(dev->mode_config.num_crtc,
11487 sizeof(bool), GFP_KERNEL);
11488 if (!config->save_crtc_enabled)
11489 return -ENOMEM;
11490
1aa4b628
DV
11491 config->save_encoder_crtcs =
11492 kcalloc(dev->mode_config.num_encoder,
11493 sizeof(struct drm_crtc *), GFP_KERNEL);
11494 if (!config->save_encoder_crtcs)
85f9eb71
DV
11495 return -ENOMEM;
11496
1aa4b628
DV
11497 config->save_connector_encoders =
11498 kcalloc(dev->mode_config.num_connector,
11499 sizeof(struct drm_encoder *), GFP_KERNEL);
11500 if (!config->save_connector_encoders)
85f9eb71
DV
11501 return -ENOMEM;
11502
11503 /* Copy data. Note that driver private data is not affected.
11504 * Should anything bad happen only the expected state is
11505 * restored, not the drivers personal bookkeeping.
11506 */
7668851f 11507 count = 0;
70e1e0ec 11508 for_each_crtc(dev, crtc) {
83d65738 11509 config->save_crtc_enabled[count++] = crtc->state->enable;
7668851f
VS
11510 }
11511
85f9eb71
DV
11512 count = 0;
11513 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11514 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11515 }
11516
11517 count = 0;
11518 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11519 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11520 }
11521
11522 return 0;
11523}
11524
11525static void intel_set_config_restore_state(struct drm_device *dev,
11526 struct intel_set_config *config)
11527{
7668851f 11528 struct intel_crtc *crtc;
9a935856
DV
11529 struct intel_encoder *encoder;
11530 struct intel_connector *connector;
85f9eb71
DV
11531 int count;
11532
7668851f 11533 count = 0;
d3fcc808 11534 for_each_intel_crtc(dev, crtc) {
7668851f 11535 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11536
11537 if (crtc->new_enabled)
6e3c9717 11538 crtc->new_config = crtc->config;
7bd0a8e7
VS
11539 else
11540 crtc->new_config = NULL;
7668851f
VS
11541 }
11542
85f9eb71 11543 count = 0;
b2784e15 11544 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11545 encoder->new_crtc =
11546 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11547 }
11548
11549 count = 0;
3a3371ff 11550 for_each_intel_connector(dev, connector) {
9a935856
DV
11551 connector->new_encoder =
11552 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11553 }
11554}
11555
e3de42b6 11556static bool
2e57f47d 11557is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11558{
11559 int i;
11560
2e57f47d
CW
11561 if (set->num_connectors == 0)
11562 return false;
11563
11564 if (WARN_ON(set->connectors == NULL))
11565 return false;
11566
11567 for (i = 0; i < set->num_connectors; i++)
11568 if (set->connectors[i]->encoder &&
11569 set->connectors[i]->encoder->crtc == set->crtc &&
11570 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11571 return true;
11572
11573 return false;
11574}
11575
5e2b584e
DV
11576static void
11577intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11578 struct intel_set_config *config)
11579{
11580
11581 /* We should be able to check here if the fb has the same properties
11582 * and then just flip_or_move it */
2e57f47d
CW
11583 if (is_crtc_connector_off(set)) {
11584 config->mode_changed = true;
f4510a27 11585 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11586 /*
11587 * If we have no fb, we can only flip as long as the crtc is
11588 * active, otherwise we need a full mode set. The crtc may
11589 * be active if we've only disabled the primary plane, or
11590 * in fastboot situations.
11591 */
f4510a27 11592 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11593 struct intel_crtc *intel_crtc =
11594 to_intel_crtc(set->crtc);
11595
3b150f08 11596 if (intel_crtc->active) {
319d9827
JB
11597 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11598 config->fb_changed = true;
11599 } else {
11600 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11601 config->mode_changed = true;
11602 }
5e2b584e
DV
11603 } else if (set->fb == NULL) {
11604 config->mode_changed = true;
72f4901e 11605 } else if (set->fb->pixel_format !=
f4510a27 11606 set->crtc->primary->fb->pixel_format) {
5e2b584e 11607 config->mode_changed = true;
e3de42b6 11608 } else {
5e2b584e 11609 config->fb_changed = true;
e3de42b6 11610 }
5e2b584e
DV
11611 }
11612
835c5873 11613 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11614 config->fb_changed = true;
11615
11616 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11617 DRM_DEBUG_KMS("modes are different, full mode set\n");
11618 drm_mode_debug_printmodeline(&set->crtc->mode);
11619 drm_mode_debug_printmodeline(set->mode);
11620 config->mode_changed = true;
11621 }
a1d95703
CW
11622
11623 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11624 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11625}
11626
2e431051 11627static int
9a935856
DV
11628intel_modeset_stage_output_state(struct drm_device *dev,
11629 struct drm_mode_set *set,
11630 struct intel_set_config *config)
50f56119 11631{
9a935856
DV
11632 struct intel_connector *connector;
11633 struct intel_encoder *encoder;
7668851f 11634 struct intel_crtc *crtc;
f3f08572 11635 int ro;
50f56119 11636
9abdda74 11637 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11638 * of connectors. For paranoia, double-check this. */
11639 WARN_ON(!set->fb && (set->num_connectors != 0));
11640 WARN_ON(set->fb && (set->num_connectors == 0));
11641
3a3371ff 11642 for_each_intel_connector(dev, connector) {
9a935856
DV
11643 /* Otherwise traverse passed in connector list and get encoders
11644 * for them. */
50f56119 11645 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11646 if (set->connectors[ro] == &connector->base) {
0e32b39c 11647 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11648 break;
11649 }
11650 }
11651
9a935856
DV
11652 /* If we disable the crtc, disable all its connectors. Also, if
11653 * the connector is on the changing crtc but not on the new
11654 * connector list, disable it. */
11655 if ((!set->fb || ro == set->num_connectors) &&
11656 connector->base.encoder &&
11657 connector->base.encoder->crtc == set->crtc) {
11658 connector->new_encoder = NULL;
11659
11660 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11661 connector->base.base.id,
c23cc417 11662 connector->base.name);
9a935856
DV
11663 }
11664
11665
11666 if (&connector->new_encoder->base != connector->base.encoder) {
10634189
ACO
11667 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11668 connector->base.base.id,
11669 connector->base.name);
5e2b584e 11670 config->mode_changed = true;
50f56119
DV
11671 }
11672 }
9a935856 11673 /* connector->new_encoder is now updated for all connectors. */
50f56119 11674
9a935856 11675 /* Update crtc of enabled connectors. */
3a3371ff 11676 for_each_intel_connector(dev, connector) {
7668851f
VS
11677 struct drm_crtc *new_crtc;
11678
9a935856 11679 if (!connector->new_encoder)
50f56119
DV
11680 continue;
11681
9a935856 11682 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11683
11684 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11685 if (set->connectors[ro] == &connector->base)
50f56119
DV
11686 new_crtc = set->crtc;
11687 }
11688
11689 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11690 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11691 new_crtc)) {
5e2b584e 11692 return -EINVAL;
50f56119 11693 }
0e32b39c 11694 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11695
11696 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11697 connector->base.base.id,
c23cc417 11698 connector->base.name,
9a935856
DV
11699 new_crtc->base.id);
11700 }
11701
11702 /* Check for any encoders that needs to be disabled. */
b2784e15 11703 for_each_intel_encoder(dev, encoder) {
5a65f358 11704 int num_connectors = 0;
3a3371ff 11705 for_each_intel_connector(dev, connector) {
9a935856
DV
11706 if (connector->new_encoder == encoder) {
11707 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11708 num_connectors++;
9a935856
DV
11709 }
11710 }
5a65f358
PZ
11711
11712 if (num_connectors == 0)
11713 encoder->new_crtc = NULL;
11714 else if (num_connectors > 1)
11715 return -EINVAL;
11716
9a935856
DV
11717 /* Only now check for crtc changes so we don't miss encoders
11718 * that will be disabled. */
11719 if (&encoder->new_crtc->base != encoder->base.crtc) {
10634189
ACO
11720 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11721 encoder->base.base.id,
11722 encoder->base.name);
5e2b584e 11723 config->mode_changed = true;
50f56119
DV
11724 }
11725 }
9a935856 11726 /* Now we've also updated encoder->new_crtc for all encoders. */
3a3371ff 11727 for_each_intel_connector(dev, connector) {
0e32b39c
DA
11728 if (connector->new_encoder)
11729 if (connector->new_encoder != connector->encoder)
11730 connector->encoder = connector->new_encoder;
11731 }
d3fcc808 11732 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11733 crtc->new_enabled = false;
11734
b2784e15 11735 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11736 if (encoder->new_crtc == crtc) {
11737 crtc->new_enabled = true;
11738 break;
11739 }
11740 }
11741
83d65738 11742 if (crtc->new_enabled != crtc->base.state->enable) {
10634189
ACO
11743 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11744 crtc->base.base.id,
7668851f
VS
11745 crtc->new_enabled ? "en" : "dis");
11746 config->mode_changed = true;
11747 }
7bd0a8e7
VS
11748
11749 if (crtc->new_enabled)
6e3c9717 11750 crtc->new_config = crtc->config;
7bd0a8e7
VS
11751 else
11752 crtc->new_config = NULL;
7668851f
VS
11753 }
11754
2e431051
DV
11755 return 0;
11756}
11757
7d00a1f5
VS
11758static void disable_crtc_nofb(struct intel_crtc *crtc)
11759{
11760 struct drm_device *dev = crtc->base.dev;
11761 struct intel_encoder *encoder;
11762 struct intel_connector *connector;
11763
11764 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11765 pipe_name(crtc->pipe));
11766
3a3371ff 11767 for_each_intel_connector(dev, connector) {
7d00a1f5
VS
11768 if (connector->new_encoder &&
11769 connector->new_encoder->new_crtc == crtc)
11770 connector->new_encoder = NULL;
11771 }
11772
b2784e15 11773 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11774 if (encoder->new_crtc == crtc)
11775 encoder->new_crtc = NULL;
11776 }
11777
11778 crtc->new_enabled = false;
7bd0a8e7 11779 crtc->new_config = NULL;
7d00a1f5
VS
11780}
11781
2e431051
DV
11782static int intel_crtc_set_config(struct drm_mode_set *set)
11783{
11784 struct drm_device *dev;
2e431051
DV
11785 struct drm_mode_set save_set;
11786 struct intel_set_config *config;
5cec258b 11787 struct intel_crtc_state *pipe_config;
50f52756 11788 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11789 int ret;
2e431051 11790
8d3e375e
DV
11791 BUG_ON(!set);
11792 BUG_ON(!set->crtc);
11793 BUG_ON(!set->crtc->helper_private);
2e431051 11794
7e53f3a4
DV
11795 /* Enforce sane interface api - has been abused by the fb helper. */
11796 BUG_ON(!set->mode && set->fb);
11797 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11798
2e431051
DV
11799 if (set->fb) {
11800 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11801 set->crtc->base.id, set->fb->base.id,
11802 (int)set->num_connectors, set->x, set->y);
11803 } else {
11804 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11805 }
11806
11807 dev = set->crtc->dev;
11808
11809 ret = -ENOMEM;
11810 config = kzalloc(sizeof(*config), GFP_KERNEL);
11811 if (!config)
11812 goto out_config;
11813
11814 ret = intel_set_config_save_state(dev, config);
11815 if (ret)
11816 goto out_config;
11817
11818 save_set.crtc = set->crtc;
11819 save_set.mode = &set->crtc->mode;
11820 save_set.x = set->crtc->x;
11821 save_set.y = set->crtc->y;
f4510a27 11822 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11823
11824 /* Compute whether we need a full modeset, only an fb base update or no
11825 * change at all. In the future we might also check whether only the
11826 * mode changed, e.g. for LVDS where we only change the panel fitter in
11827 * such cases. */
11828 intel_set_config_compute_mode_changes(set, config);
11829
9a935856 11830 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11831 if (ret)
11832 goto fail;
11833
50f52756
JB
11834 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11835 set->fb,
11836 &modeset_pipes,
11837 &prepare_pipes,
11838 &disable_pipes);
20664591 11839 if (IS_ERR(pipe_config)) {
6ac0483b 11840 ret = PTR_ERR(pipe_config);
50f52756 11841 goto fail;
20664591 11842 } else if (pipe_config) {
b9950a13 11843 if (pipe_config->has_audio !=
6e3c9717 11844 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
11845 config->mode_changed = true;
11846
af15d2ce
JB
11847 /*
11848 * Note we have an issue here with infoframes: current code
11849 * only updates them on the full mode set path per hw
11850 * requirements. So here we should be checking for any
11851 * required changes and forcing a mode set.
11852 */
20664591 11853 }
50f52756
JB
11854
11855 /* set_mode will free it in the mode_changed case */
11856 if (!config->mode_changed)
11857 kfree(pipe_config);
11858
1f9954d0
JB
11859 intel_update_pipe_size(to_intel_crtc(set->crtc));
11860
5e2b584e 11861 if (config->mode_changed) {
50f52756
JB
11862 ret = intel_set_mode_pipes(set->crtc, set->mode,
11863 set->x, set->y, set->fb, pipe_config,
11864 modeset_pipes, prepare_pipes,
11865 disable_pipes);
5e2b584e 11866 } else if (config->fb_changed) {
3b150f08 11867 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
11868 struct drm_plane *primary = set->crtc->primary;
11869 int vdisplay, hdisplay;
3b150f08 11870
455a6808
GP
11871 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11872 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11873 0, 0, hdisplay, vdisplay,
11874 set->x << 16, set->y << 16,
11875 hdisplay << 16, vdisplay << 16);
3b150f08
MR
11876
11877 /*
11878 * We need to make sure the primary plane is re-enabled if it
11879 * has previously been turned off.
11880 */
11881 if (!intel_crtc->primary_enabled && ret == 0) {
11882 WARN_ON(!intel_crtc->active);
fdd508a6 11883 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11884 }
11885
7ca51a3a
JB
11886 /*
11887 * In the fastboot case this may be our only check of the
11888 * state after boot. It would be better to only do it on
11889 * the first update, but we don't have a nice way of doing that
11890 * (and really, set_config isn't used much for high freq page
11891 * flipping, so increasing its cost here shouldn't be a big
11892 * deal).
11893 */
d330a953 11894 if (i915.fastboot && ret == 0)
7ca51a3a 11895 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11896 }
11897
2d05eae1 11898 if (ret) {
bf67dfeb
DV
11899 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11900 set->crtc->base.id, ret);
50f56119 11901fail:
2d05eae1 11902 intel_set_config_restore_state(dev, config);
50f56119 11903
7d00a1f5
VS
11904 /*
11905 * HACK: if the pipe was on, but we didn't have a framebuffer,
11906 * force the pipe off to avoid oopsing in the modeset code
11907 * due to fb==NULL. This should only happen during boot since
11908 * we don't yet reconstruct the FB from the hardware state.
11909 */
11910 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11911 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11912
2d05eae1
CW
11913 /* Try to restore the config */
11914 if (config->mode_changed &&
11915 intel_set_mode(save_set.crtc, save_set.mode,
11916 save_set.x, save_set.y, save_set.fb))
11917 DRM_ERROR("failed to restore config after modeset failure\n");
11918 }
50f56119 11919
d9e55608
DV
11920out_config:
11921 intel_set_config_free(config);
50f56119
DV
11922 return ret;
11923}
f6e5b160
CW
11924
11925static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11926 .gamma_set = intel_crtc_gamma_set,
50f56119 11927 .set_config = intel_crtc_set_config,
f6e5b160
CW
11928 .destroy = intel_crtc_destroy,
11929 .page_flip = intel_crtc_page_flip,
1356837e
MR
11930 .atomic_duplicate_state = intel_crtc_duplicate_state,
11931 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
11932};
11933
5358901f
DV
11934static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11935 struct intel_shared_dpll *pll,
11936 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11937{
5358901f 11938 uint32_t val;
ee7b9f93 11939
f458ebbc 11940 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11941 return false;
11942
5358901f 11943 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11944 hw_state->dpll = val;
11945 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11946 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11947
11948 return val & DPLL_VCO_ENABLE;
11949}
11950
15bdd4cf
DV
11951static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11952 struct intel_shared_dpll *pll)
11953{
3e369b76
ACO
11954 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11955 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11956}
11957
e7b903d2
DV
11958static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11959 struct intel_shared_dpll *pll)
11960{
e7b903d2 11961 /* PCH refclock must be enabled first */
89eff4be 11962 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11963
3e369b76 11964 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11965
11966 /* Wait for the clocks to stabilize. */
11967 POSTING_READ(PCH_DPLL(pll->id));
11968 udelay(150);
11969
11970 /* The pixel multiplier can only be updated once the
11971 * DPLL is enabled and the clocks are stable.
11972 *
11973 * So write it again.
11974 */
3e369b76 11975 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11976 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11977 udelay(200);
11978}
11979
11980static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11981 struct intel_shared_dpll *pll)
11982{
11983 struct drm_device *dev = dev_priv->dev;
11984 struct intel_crtc *crtc;
e7b903d2
DV
11985
11986 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11987 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11988 if (intel_crtc_to_shared_dpll(crtc) == pll)
11989 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11990 }
11991
15bdd4cf
DV
11992 I915_WRITE(PCH_DPLL(pll->id), 0);
11993 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11994 udelay(200);
11995}
11996
46edb027
DV
11997static char *ibx_pch_dpll_names[] = {
11998 "PCH DPLL A",
11999 "PCH DPLL B",
12000};
12001
7c74ade1 12002static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 12003{
e7b903d2 12004 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
12005 int i;
12006
7c74ade1 12007 dev_priv->num_shared_dpll = 2;
ee7b9f93 12008
e72f9fbf 12009 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
12010 dev_priv->shared_dplls[i].id = i;
12011 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 12012 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
12013 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12014 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
12015 dev_priv->shared_dplls[i].get_hw_state =
12016 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
12017 }
12018}
12019
7c74ade1
DV
12020static void intel_shared_dpll_init(struct drm_device *dev)
12021{
e7b903d2 12022 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 12023
9cd86933
DV
12024 if (HAS_DDI(dev))
12025 intel_ddi_pll_init(dev);
12026 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
12027 ibx_pch_dpll_init(dev);
12028 else
12029 dev_priv->num_shared_dpll = 0;
12030
12031 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
12032}
12033
1fc0a8f7
TU
12034/**
12035 * intel_wm_need_update - Check whether watermarks need updating
12036 * @plane: drm plane
12037 * @state: new plane state
12038 *
12039 * Check current plane state versus the new one to determine whether
12040 * watermarks need to be recalculated.
12041 *
12042 * Returns true or false.
12043 */
12044bool intel_wm_need_update(struct drm_plane *plane,
12045 struct drm_plane_state *state)
12046{
12047 /* Update watermarks on tiling changes. */
12048 if (!plane->state->fb || !state->fb ||
12049 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12050 plane->state->rotation != state->rotation)
12051 return true;
12052
12053 return false;
12054}
12055
6beb8c23
MR
12056/**
12057 * intel_prepare_plane_fb - Prepare fb for usage on plane
12058 * @plane: drm plane to prepare for
12059 * @fb: framebuffer to prepare for presentation
12060 *
12061 * Prepares a framebuffer for usage on a display plane. Generally this
12062 * involves pinning the underlying object and updating the frontbuffer tracking
12063 * bits. Some older platforms need special physical address handling for
12064 * cursor planes.
12065 *
12066 * Returns 0 on success, negative error code on failure.
12067 */
12068int
12069intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
12070 struct drm_framebuffer *fb,
12071 const struct drm_plane_state *new_state)
465c120c
MR
12072{
12073 struct drm_device *dev = plane->dev;
6beb8c23
MR
12074 struct intel_plane *intel_plane = to_intel_plane(plane);
12075 enum pipe pipe = intel_plane->pipe;
12076 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12077 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12078 unsigned frontbuffer_bits = 0;
12079 int ret = 0;
465c120c 12080
ea2c67bb 12081 if (!obj)
465c120c
MR
12082 return 0;
12083
6beb8c23
MR
12084 switch (plane->type) {
12085 case DRM_PLANE_TYPE_PRIMARY:
12086 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12087 break;
12088 case DRM_PLANE_TYPE_CURSOR:
12089 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12090 break;
12091 case DRM_PLANE_TYPE_OVERLAY:
12092 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12093 break;
12094 }
465c120c 12095
6beb8c23 12096 mutex_lock(&dev->struct_mutex);
465c120c 12097
6beb8c23
MR
12098 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12099 INTEL_INFO(dev)->cursor_needs_physical) {
12100 int align = IS_I830(dev) ? 16 * 1024 : 256;
12101 ret = i915_gem_object_attach_phys(obj, align);
12102 if (ret)
12103 DRM_DEBUG_KMS("failed to attach phys object\n");
12104 } else {
82bc3b2d 12105 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
6beb8c23 12106 }
465c120c 12107
6beb8c23
MR
12108 if (ret == 0)
12109 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 12110
4c34574f 12111 mutex_unlock(&dev->struct_mutex);
465c120c 12112
6beb8c23
MR
12113 return ret;
12114}
12115
38f3ce3a
MR
12116/**
12117 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12118 * @plane: drm plane to clean up for
12119 * @fb: old framebuffer that was on plane
12120 *
12121 * Cleans up a framebuffer that has just been removed from a plane.
12122 */
12123void
12124intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
12125 struct drm_framebuffer *fb,
12126 const struct drm_plane_state *old_state)
38f3ce3a
MR
12127{
12128 struct drm_device *dev = plane->dev;
12129 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12130
12131 if (WARN_ON(!obj))
12132 return;
12133
12134 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12135 !INTEL_INFO(dev)->cursor_needs_physical) {
12136 mutex_lock(&dev->struct_mutex);
82bc3b2d 12137 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
12138 mutex_unlock(&dev->struct_mutex);
12139 }
465c120c
MR
12140}
12141
12142static int
3c692a41
GP
12143intel_check_primary_plane(struct drm_plane *plane,
12144 struct intel_plane_state *state)
12145{
32b7eeec
MR
12146 struct drm_device *dev = plane->dev;
12147 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 12148 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12149 struct intel_crtc *intel_crtc;
2b875c22 12150 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
12151 struct drm_rect *dest = &state->dst;
12152 struct drm_rect *src = &state->src;
12153 const struct drm_rect *clip = &state->clip;
465c120c
MR
12154 int ret;
12155
ea2c67bb
MR
12156 crtc = crtc ? crtc : plane->crtc;
12157 intel_crtc = to_intel_crtc(crtc);
12158
c59cb179
MR
12159 ret = drm_plane_helper_check_update(plane, crtc, fb,
12160 src, dest, clip,
12161 DRM_PLANE_HELPER_NO_SCALING,
12162 DRM_PLANE_HELPER_NO_SCALING,
12163 false, true, &state->visible);
12164 if (ret)
12165 return ret;
465c120c 12166
32b7eeec
MR
12167 if (intel_crtc->active) {
12168 intel_crtc->atomic.wait_for_flips = true;
12169
12170 /*
12171 * FBC does not work on some platforms for rotated
12172 * planes, so disable it when rotation is not 0 and
12173 * update it when rotation is set back to 0.
12174 *
12175 * FIXME: This is redundant with the fbc update done in
12176 * the primary plane enable function except that that
12177 * one is done too late. We eventually need to unify
12178 * this.
12179 */
12180 if (intel_crtc->primary_enabled &&
12181 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 12182 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 12183 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
12184 intel_crtc->atomic.disable_fbc = true;
12185 }
12186
12187 if (state->visible) {
12188 /*
12189 * BDW signals flip done immediately if the plane
12190 * is disabled, even if the plane enable is already
12191 * armed to occur at the next vblank :(
12192 */
12193 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12194 intel_crtc->atomic.wait_vblank = true;
12195 }
12196
12197 intel_crtc->atomic.fb_bits |=
12198 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12199
12200 intel_crtc->atomic.update_fbc = true;
0fda6568 12201
1fc0a8f7 12202 if (intel_wm_need_update(plane, &state->base))
0fda6568 12203 intel_crtc->atomic.update_wm = true;
ccc759dc
GP
12204 }
12205
14af293f
GP
12206 return 0;
12207}
12208
12209static void
12210intel_commit_primary_plane(struct drm_plane *plane,
12211 struct intel_plane_state *state)
12212{
2b875c22
MR
12213 struct drm_crtc *crtc = state->base.crtc;
12214 struct drm_framebuffer *fb = state->base.fb;
12215 struct drm_device *dev = plane->dev;
14af293f 12216 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 12217 struct intel_crtc *intel_crtc;
14af293f
GP
12218 struct drm_rect *src = &state->src;
12219
ea2c67bb
MR
12220 crtc = crtc ? crtc : plane->crtc;
12221 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
12222
12223 plane->fb = fb;
9dc806fc
MR
12224 crtc->x = src->x1 >> 16;
12225 crtc->y = src->y1 >> 16;
ccc759dc 12226
ccc759dc 12227 if (intel_crtc->active) {
ccc759dc 12228 if (state->visible) {
ccc759dc
GP
12229 /* FIXME: kill this fastboot hack */
12230 intel_update_pipe_size(intel_crtc);
465c120c 12231
ccc759dc 12232 intel_crtc->primary_enabled = true;
465c120c 12233
ccc759dc
GP
12234 dev_priv->display.update_primary_plane(crtc, plane->fb,
12235 crtc->x, crtc->y);
ccc759dc
GP
12236 } else {
12237 /*
12238 * If clipping results in a non-visible primary plane,
12239 * we'll disable the primary plane. Note that this is
12240 * a bit different than what happens if userspace
12241 * explicitly disables the plane by passing fb=0
12242 * because plane->fb still gets set and pinned.
12243 */
12244 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 12245 }
ccc759dc 12246 }
465c120c
MR
12247}
12248
32b7eeec 12249static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 12250{
32b7eeec 12251 struct drm_device *dev = crtc->dev;
140fd38d 12252 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 12253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
12254 struct intel_plane *intel_plane;
12255 struct drm_plane *p;
12256 unsigned fb_bits = 0;
12257
12258 /* Track fb's for any planes being disabled */
12259 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12260 intel_plane = to_intel_plane(p);
12261
12262 if (intel_crtc->atomic.disabled_planes &
12263 (1 << drm_plane_index(p))) {
12264 switch (p->type) {
12265 case DRM_PLANE_TYPE_PRIMARY:
12266 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12267 break;
12268 case DRM_PLANE_TYPE_CURSOR:
12269 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12270 break;
12271 case DRM_PLANE_TYPE_OVERLAY:
12272 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12273 break;
12274 }
3c692a41 12275
ea2c67bb
MR
12276 mutex_lock(&dev->struct_mutex);
12277 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12278 mutex_unlock(&dev->struct_mutex);
12279 }
12280 }
3c692a41 12281
32b7eeec
MR
12282 if (intel_crtc->atomic.wait_for_flips)
12283 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 12284
32b7eeec
MR
12285 if (intel_crtc->atomic.disable_fbc)
12286 intel_fbc_disable(dev);
3c692a41 12287
32b7eeec
MR
12288 if (intel_crtc->atomic.pre_disable_primary)
12289 intel_pre_disable_primary(crtc);
3c692a41 12290
32b7eeec
MR
12291 if (intel_crtc->atomic.update_wm)
12292 intel_update_watermarks(crtc);
3c692a41 12293
32b7eeec 12294 intel_runtime_pm_get(dev_priv);
3c692a41 12295
c34c9ee4
MR
12296 /* Perform vblank evasion around commit operation */
12297 if (intel_crtc->active)
12298 intel_crtc->atomic.evade =
12299 intel_pipe_update_start(intel_crtc,
12300 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
12301}
12302
12303static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12304{
12305 struct drm_device *dev = crtc->dev;
12306 struct drm_i915_private *dev_priv = dev->dev_private;
12307 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12308 struct drm_plane *p;
12309
c34c9ee4
MR
12310 if (intel_crtc->atomic.evade)
12311 intel_pipe_update_end(intel_crtc,
12312 intel_crtc->atomic.start_vbl_count);
3c692a41 12313
140fd38d 12314 intel_runtime_pm_put(dev_priv);
3c692a41 12315
32b7eeec
MR
12316 if (intel_crtc->atomic.wait_vblank)
12317 intel_wait_for_vblank(dev, intel_crtc->pipe);
12318
12319 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12320
12321 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12322 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12323 intel_fbc_update(dev);
ccc759dc 12324 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12325 }
3c692a41 12326
32b7eeec
MR
12327 if (intel_crtc->atomic.post_enable_primary)
12328 intel_post_enable_primary(crtc);
3c692a41 12329
32b7eeec
MR
12330 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12331 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12332 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12333 false, false);
12334
12335 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12336}
12337
cf4c7c12 12338/**
4a3b8769
MR
12339 * intel_plane_destroy - destroy a plane
12340 * @plane: plane to destroy
cf4c7c12 12341 *
4a3b8769
MR
12342 * Common destruction function for all types of planes (primary, cursor,
12343 * sprite).
cf4c7c12 12344 */
4a3b8769 12345void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12346{
12347 struct intel_plane *intel_plane = to_intel_plane(plane);
12348 drm_plane_cleanup(plane);
12349 kfree(intel_plane);
12350}
12351
65a3fea0 12352const struct drm_plane_funcs intel_plane_funcs = {
ff42e093
DV
12353 .update_plane = drm_plane_helper_update,
12354 .disable_plane = drm_plane_helper_disable,
3d7d6510 12355 .destroy = intel_plane_destroy,
c196e1d6 12356 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
12357 .atomic_get_property = intel_plane_atomic_get_property,
12358 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
12359 .atomic_duplicate_state = intel_plane_duplicate_state,
12360 .atomic_destroy_state = intel_plane_destroy_state,
12361
465c120c
MR
12362};
12363
12364static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12365 int pipe)
12366{
12367 struct intel_plane *primary;
8e7d688b 12368 struct intel_plane_state *state;
465c120c
MR
12369 const uint32_t *intel_primary_formats;
12370 int num_formats;
12371
12372 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12373 if (primary == NULL)
12374 return NULL;
12375
8e7d688b
MR
12376 state = intel_create_plane_state(&primary->base);
12377 if (!state) {
ea2c67bb
MR
12378 kfree(primary);
12379 return NULL;
12380 }
8e7d688b 12381 primary->base.state = &state->base;
ea2c67bb 12382
465c120c
MR
12383 primary->can_scale = false;
12384 primary->max_downscale = 1;
12385 primary->pipe = pipe;
12386 primary->plane = pipe;
c59cb179
MR
12387 primary->check_plane = intel_check_primary_plane;
12388 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12389 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12390 primary->plane = !pipe;
12391
12392 if (INTEL_INFO(dev)->gen <= 3) {
12393 intel_primary_formats = intel_primary_formats_gen2;
12394 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12395 } else {
12396 intel_primary_formats = intel_primary_formats_gen4;
12397 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12398 }
12399
12400 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 12401 &intel_plane_funcs,
465c120c
MR
12402 intel_primary_formats, num_formats,
12403 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12404
12405 if (INTEL_INFO(dev)->gen >= 4) {
12406 if (!dev->mode_config.rotation_property)
12407 dev->mode_config.rotation_property =
12408 drm_mode_create_rotation_property(dev,
12409 BIT(DRM_ROTATE_0) |
12410 BIT(DRM_ROTATE_180));
12411 if (dev->mode_config.rotation_property)
12412 drm_object_attach_property(&primary->base.base,
12413 dev->mode_config.rotation_property,
8e7d688b 12414 state->base.rotation);
48404c1e
SJ
12415 }
12416
ea2c67bb
MR
12417 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12418
465c120c
MR
12419 return &primary->base;
12420}
12421
3d7d6510 12422static int
852e787c
GP
12423intel_check_cursor_plane(struct drm_plane *plane,
12424 struct intel_plane_state *state)
3d7d6510 12425{
2b875c22 12426 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12427 struct drm_device *dev = plane->dev;
2b875c22 12428 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12429 struct drm_rect *dest = &state->dst;
12430 struct drm_rect *src = &state->src;
12431 const struct drm_rect *clip = &state->clip;
757f9a3e 12432 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12433 struct intel_crtc *intel_crtc;
757f9a3e
GP
12434 unsigned stride;
12435 int ret;
3d7d6510 12436
ea2c67bb
MR
12437 crtc = crtc ? crtc : plane->crtc;
12438 intel_crtc = to_intel_crtc(crtc);
12439
757f9a3e 12440 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12441 src, dest, clip,
3d7d6510
MR
12442 DRM_PLANE_HELPER_NO_SCALING,
12443 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12444 true, true, &state->visible);
757f9a3e
GP
12445 if (ret)
12446 return ret;
12447
12448
12449 /* if we want to turn off the cursor ignore width and height */
12450 if (!obj)
32b7eeec 12451 goto finish;
757f9a3e 12452
757f9a3e 12453 /* Check for which cursor types we support */
ea2c67bb
MR
12454 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12455 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12456 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12457 return -EINVAL;
12458 }
12459
ea2c67bb
MR
12460 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12461 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12462 DRM_DEBUG_KMS("buffer is too small\n");
12463 return -ENOMEM;
12464 }
12465
3a656b54 12466 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
12467 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12468 ret = -EINVAL;
12469 }
757f9a3e 12470
32b7eeec
MR
12471finish:
12472 if (intel_crtc->active) {
3749f463 12473 if (plane->state->crtc_w != state->base.crtc_w)
32b7eeec
MR
12474 intel_crtc->atomic.update_wm = true;
12475
12476 intel_crtc->atomic.fb_bits |=
12477 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12478 }
12479
757f9a3e 12480 return ret;
852e787c 12481}
3d7d6510 12482
f4a2cf29 12483static void
852e787c
GP
12484intel_commit_cursor_plane(struct drm_plane *plane,
12485 struct intel_plane_state *state)
12486{
2b875c22 12487 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12488 struct drm_device *dev = plane->dev;
12489 struct intel_crtc *intel_crtc;
2b875c22 12490 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12491 uint32_t addr;
852e787c 12492
ea2c67bb
MR
12493 crtc = crtc ? crtc : plane->crtc;
12494 intel_crtc = to_intel_crtc(crtc);
12495
2b875c22 12496 plane->fb = state->base.fb;
ea2c67bb
MR
12497 crtc->cursor_x = state->base.crtc_x;
12498 crtc->cursor_y = state->base.crtc_y;
12499
a912f12f
GP
12500 if (intel_crtc->cursor_bo == obj)
12501 goto update;
4ed91096 12502
f4a2cf29 12503 if (!obj)
a912f12f 12504 addr = 0;
f4a2cf29 12505 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12506 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12507 else
a912f12f 12508 addr = obj->phys_handle->busaddr;
852e787c 12509
a912f12f
GP
12510 intel_crtc->cursor_addr = addr;
12511 intel_crtc->cursor_bo = obj;
12512update:
852e787c 12513
32b7eeec 12514 if (intel_crtc->active)
a912f12f 12515 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12516}
12517
3d7d6510
MR
12518static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12519 int pipe)
12520{
12521 struct intel_plane *cursor;
8e7d688b 12522 struct intel_plane_state *state;
3d7d6510
MR
12523
12524 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12525 if (cursor == NULL)
12526 return NULL;
12527
8e7d688b
MR
12528 state = intel_create_plane_state(&cursor->base);
12529 if (!state) {
ea2c67bb
MR
12530 kfree(cursor);
12531 return NULL;
12532 }
8e7d688b 12533 cursor->base.state = &state->base;
ea2c67bb 12534
3d7d6510
MR
12535 cursor->can_scale = false;
12536 cursor->max_downscale = 1;
12537 cursor->pipe = pipe;
12538 cursor->plane = pipe;
c59cb179
MR
12539 cursor->check_plane = intel_check_cursor_plane;
12540 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12541
12542 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 12543 &intel_plane_funcs,
3d7d6510
MR
12544 intel_cursor_formats,
12545 ARRAY_SIZE(intel_cursor_formats),
12546 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12547
12548 if (INTEL_INFO(dev)->gen >= 4) {
12549 if (!dev->mode_config.rotation_property)
12550 dev->mode_config.rotation_property =
12551 drm_mode_create_rotation_property(dev,
12552 BIT(DRM_ROTATE_0) |
12553 BIT(DRM_ROTATE_180));
12554 if (dev->mode_config.rotation_property)
12555 drm_object_attach_property(&cursor->base.base,
12556 dev->mode_config.rotation_property,
8e7d688b 12557 state->base.rotation);
4398ad45
VS
12558 }
12559
ea2c67bb
MR
12560 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12561
3d7d6510
MR
12562 return &cursor->base;
12563}
12564
b358d0a6 12565static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12566{
fbee40df 12567 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12568 struct intel_crtc *intel_crtc;
f5de6e07 12569 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12570 struct drm_plane *primary = NULL;
12571 struct drm_plane *cursor = NULL;
465c120c 12572 int i, ret;
79e53945 12573
955382f3 12574 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12575 if (intel_crtc == NULL)
12576 return;
12577
f5de6e07
ACO
12578 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12579 if (!crtc_state)
12580 goto fail;
12581 intel_crtc_set_state(intel_crtc, crtc_state);
07878248 12582 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 12583
465c120c 12584 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12585 if (!primary)
12586 goto fail;
12587
12588 cursor = intel_cursor_plane_create(dev, pipe);
12589 if (!cursor)
12590 goto fail;
12591
465c120c 12592 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12593 cursor, &intel_crtc_funcs);
12594 if (ret)
12595 goto fail;
79e53945
JB
12596
12597 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12598 for (i = 0; i < 256; i++) {
12599 intel_crtc->lut_r[i] = i;
12600 intel_crtc->lut_g[i] = i;
12601 intel_crtc->lut_b[i] = i;
12602 }
12603
1f1c2e24
VS
12604 /*
12605 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12606 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12607 */
80824003
JB
12608 intel_crtc->pipe = pipe;
12609 intel_crtc->plane = pipe;
3a77c4c4 12610 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12611 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12612 intel_crtc->plane = !pipe;
80824003
JB
12613 }
12614
4b0e333e
CW
12615 intel_crtc->cursor_base = ~0;
12616 intel_crtc->cursor_cntl = ~0;
dc41c154 12617 intel_crtc->cursor_size = ~0;
8d7849db 12618
22fd0fab
JB
12619 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12620 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12621 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12622 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12623
9362c7c5
ACO
12624 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12625
79e53945 12626 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12627
12628 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12629 return;
12630
12631fail:
12632 if (primary)
12633 drm_plane_cleanup(primary);
12634 if (cursor)
12635 drm_plane_cleanup(cursor);
f5de6e07 12636 kfree(crtc_state);
3d7d6510 12637 kfree(intel_crtc);
79e53945
JB
12638}
12639
752aa88a
JB
12640enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12641{
12642 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12643 struct drm_device *dev = connector->base.dev;
752aa88a 12644
51fd371b 12645 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12646
d3babd3f 12647 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12648 return INVALID_PIPE;
12649
12650 return to_intel_crtc(encoder->crtc)->pipe;
12651}
12652
08d7b3d1 12653int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12654 struct drm_file *file)
08d7b3d1 12655{
08d7b3d1 12656 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12657 struct drm_crtc *drmmode_crtc;
c05422d5 12658 struct intel_crtc *crtc;
08d7b3d1 12659
7707e653 12660 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12661
7707e653 12662 if (!drmmode_crtc) {
08d7b3d1 12663 DRM_ERROR("no such CRTC id\n");
3f2c2057 12664 return -ENOENT;
08d7b3d1
CW
12665 }
12666
7707e653 12667 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12668 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12669
c05422d5 12670 return 0;
08d7b3d1
CW
12671}
12672
66a9278e 12673static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12674{
66a9278e
DV
12675 struct drm_device *dev = encoder->base.dev;
12676 struct intel_encoder *source_encoder;
79e53945 12677 int index_mask = 0;
79e53945
JB
12678 int entry = 0;
12679
b2784e15 12680 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12681 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12682 index_mask |= (1 << entry);
12683
79e53945
JB
12684 entry++;
12685 }
4ef69c7a 12686
79e53945
JB
12687 return index_mask;
12688}
12689
4d302442
CW
12690static bool has_edp_a(struct drm_device *dev)
12691{
12692 struct drm_i915_private *dev_priv = dev->dev_private;
12693
12694 if (!IS_MOBILE(dev))
12695 return false;
12696
12697 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12698 return false;
12699
e3589908 12700 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12701 return false;
12702
12703 return true;
12704}
12705
84b4e042
JB
12706static bool intel_crt_present(struct drm_device *dev)
12707{
12708 struct drm_i915_private *dev_priv = dev->dev_private;
12709
884497ed
DL
12710 if (INTEL_INFO(dev)->gen >= 9)
12711 return false;
12712
cf404ce4 12713 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12714 return false;
12715
12716 if (IS_CHERRYVIEW(dev))
12717 return false;
12718
12719 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12720 return false;
12721
12722 return true;
12723}
12724
79e53945
JB
12725static void intel_setup_outputs(struct drm_device *dev)
12726{
725e30ad 12727 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12728 struct intel_encoder *encoder;
c6f95f27 12729 struct drm_connector *connector;
cb0953d7 12730 bool dpd_is_edp = false;
79e53945 12731
c9093354 12732 intel_lvds_init(dev);
79e53945 12733
84b4e042 12734 if (intel_crt_present(dev))
79935fca 12735 intel_crt_init(dev);
cb0953d7 12736
affa9354 12737 if (HAS_DDI(dev)) {
0e72a5b5
ED
12738 int found;
12739
de31facd
JB
12740 /*
12741 * Haswell uses DDI functions to detect digital outputs.
12742 * On SKL pre-D0 the strap isn't connected, so we assume
12743 * it's there.
12744 */
0e72a5b5 12745 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
12746 /* WaIgnoreDDIAStrap: skl */
12747 if (found ||
12748 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
12749 intel_ddi_init(dev, PORT_A);
12750
12751 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12752 * register */
12753 found = I915_READ(SFUSE_STRAP);
12754
12755 if (found & SFUSE_STRAP_DDIB_DETECTED)
12756 intel_ddi_init(dev, PORT_B);
12757 if (found & SFUSE_STRAP_DDIC_DETECTED)
12758 intel_ddi_init(dev, PORT_C);
12759 if (found & SFUSE_STRAP_DDID_DETECTED)
12760 intel_ddi_init(dev, PORT_D);
12761 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12762 int found;
5d8a7752 12763 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12764
12765 if (has_edp_a(dev))
12766 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12767
dc0fa718 12768 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12769 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12770 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12771 if (!found)
e2debe91 12772 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12773 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12774 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12775 }
12776
dc0fa718 12777 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12778 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12779
dc0fa718 12780 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12781 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12782
5eb08b69 12783 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12784 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12785
270b3042 12786 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12787 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12788 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12789 /*
12790 * The DP_DETECTED bit is the latched state of the DDC
12791 * SDA pin at boot. However since eDP doesn't require DDC
12792 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12793 * eDP ports may have been muxed to an alternate function.
12794 * Thus we can't rely on the DP_DETECTED bit alone to detect
12795 * eDP ports. Consult the VBT as well as DP_DETECTED to
12796 * detect eDP ports.
12797 */
d2182a66
VS
12798 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12799 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
12800 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12801 PORT_B);
e17ac6db
VS
12802 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12803 intel_dp_is_edp(dev, PORT_B))
12804 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12805
d2182a66
VS
12806 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12807 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
12808 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12809 PORT_C);
e17ac6db
VS
12810 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12811 intel_dp_is_edp(dev, PORT_C))
12812 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12813
9418c1f1 12814 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12815 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12816 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12817 PORT_D);
e17ac6db
VS
12818 /* eDP not supported on port D, so don't check VBT */
12819 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12820 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12821 }
12822
3cfca973 12823 intel_dsi_init(dev);
103a196f 12824 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12825 bool found = false;
7d57382e 12826
e2debe91 12827 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12828 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12829 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12830 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12831 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12832 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12833 }
27185ae1 12834
e7281eab 12835 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12836 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12837 }
13520b05
KH
12838
12839 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12840
e2debe91 12841 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12842 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12843 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12844 }
27185ae1 12845
e2debe91 12846 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12847
b01f2c3a
JB
12848 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12849 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12850 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12851 }
e7281eab 12852 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12853 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12854 }
27185ae1 12855
b01f2c3a 12856 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12857 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12858 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12859 } else if (IS_GEN2(dev))
79e53945
JB
12860 intel_dvo_init(dev);
12861
103a196f 12862 if (SUPPORTS_TV(dev))
79e53945
JB
12863 intel_tv_init(dev);
12864
c6f95f27
MR
12865 /*
12866 * FIXME: We don't have full atomic support yet, but we want to be
12867 * able to enable/test plane updates via the atomic interface in the
12868 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12869 * will take some atomic codepaths to lookup properties during
12870 * drmModeGetConnector() that unconditionally dereference
12871 * connector->state.
12872 *
12873 * We create a dummy connector state here for each connector to ensure
12874 * the DRM core doesn't try to dereference a NULL connector->state.
12875 * The actual connector properties will never be updated or contain
12876 * useful information, but since we're doing this specifically for
12877 * testing/debug of the plane operations (and only when a specific
12878 * kernel module option is given), that shouldn't really matter.
12879 *
12880 * Once atomic support for crtc's + connectors lands, this loop should
12881 * be removed since we'll be setting up real connector state, which
12882 * will contain Intel-specific properties.
12883 */
12884 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12885 list_for_each_entry(connector,
12886 &dev->mode_config.connector_list,
12887 head) {
12888 if (!WARN_ON(connector->state)) {
12889 connector->state =
12890 kzalloc(sizeof(*connector->state),
12891 GFP_KERNEL);
12892 }
12893 }
12894 }
12895
0bc12bcb 12896 intel_psr_init(dev);
7c8f8a70 12897
b2784e15 12898 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12899 encoder->base.possible_crtcs = encoder->crtc_mask;
12900 encoder->base.possible_clones =
66a9278e 12901 intel_encoder_clones(encoder);
79e53945 12902 }
47356eb6 12903
dde86e2d 12904 intel_init_pch_refclk(dev);
270b3042
DV
12905
12906 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12907}
12908
12909static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12910{
60a5ca01 12911 struct drm_device *dev = fb->dev;
79e53945 12912 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12913
ef2d633e 12914 drm_framebuffer_cleanup(fb);
60a5ca01 12915 mutex_lock(&dev->struct_mutex);
ef2d633e 12916 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12917 drm_gem_object_unreference(&intel_fb->obj->base);
12918 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12919 kfree(intel_fb);
12920}
12921
12922static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12923 struct drm_file *file,
79e53945
JB
12924 unsigned int *handle)
12925{
12926 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12927 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12928
05394f39 12929 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12930}
12931
12932static const struct drm_framebuffer_funcs intel_fb_funcs = {
12933 .destroy = intel_user_framebuffer_destroy,
12934 .create_handle = intel_user_framebuffer_create_handle,
12935};
12936
b321803d
DL
12937static
12938u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
12939 uint32_t pixel_format)
12940{
12941 u32 gen = INTEL_INFO(dev)->gen;
12942
12943 if (gen >= 9) {
12944 /* "The stride in bytes must not exceed the of the size of 8K
12945 * pixels and 32K bytes."
12946 */
12947 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
12948 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
12949 return 32*1024;
12950 } else if (gen >= 4) {
12951 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12952 return 16*1024;
12953 else
12954 return 32*1024;
12955 } else if (gen >= 3) {
12956 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12957 return 8*1024;
12958 else
12959 return 16*1024;
12960 } else {
12961 /* XXX DSPC is limited to 4k tiled */
12962 return 8*1024;
12963 }
12964}
12965
b5ea642a
DV
12966static int intel_framebuffer_init(struct drm_device *dev,
12967 struct intel_framebuffer *intel_fb,
12968 struct drm_mode_fb_cmd2 *mode_cmd,
12969 struct drm_i915_gem_object *obj)
79e53945 12970{
6761dd31 12971 unsigned int aligned_height;
79e53945 12972 int ret;
b321803d 12973 u32 pitch_limit, stride_alignment;
79e53945 12974
dd4916c5
DV
12975 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12976
2a80eada
DV
12977 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
12978 /* Enforce that fb modifier and tiling mode match, but only for
12979 * X-tiled. This is needed for FBC. */
12980 if (!!(obj->tiling_mode == I915_TILING_X) !=
12981 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
12982 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
12983 return -EINVAL;
12984 }
12985 } else {
12986 if (obj->tiling_mode == I915_TILING_X)
12987 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
12988 else if (obj->tiling_mode == I915_TILING_Y) {
12989 DRM_DEBUG("No Y tiling for legacy addfb\n");
12990 return -EINVAL;
12991 }
12992 }
12993
9a8f0a12
TU
12994 /* Passed in modifier sanity checking. */
12995 switch (mode_cmd->modifier[0]) {
12996 case I915_FORMAT_MOD_Y_TILED:
12997 case I915_FORMAT_MOD_Yf_TILED:
12998 if (INTEL_INFO(dev)->gen < 9) {
12999 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13000 mode_cmd->modifier[0]);
13001 return -EINVAL;
13002 }
13003 case DRM_FORMAT_MOD_NONE:
13004 case I915_FORMAT_MOD_X_TILED:
13005 break;
13006 default:
c0f40428
JB
13007 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13008 mode_cmd->modifier[0]);
57cd6508 13009 return -EINVAL;
c16ed4be 13010 }
57cd6508 13011
b321803d
DL
13012 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13013 mode_cmd->pixel_format);
13014 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13015 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13016 mode_cmd->pitches[0], stride_alignment);
57cd6508 13017 return -EINVAL;
c16ed4be 13018 }
57cd6508 13019
b321803d
DL
13020 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13021 mode_cmd->pixel_format);
a35cdaa0 13022 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
13023 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13024 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 13025 "tiled" : "linear",
a35cdaa0 13026 mode_cmd->pitches[0], pitch_limit);
5d7bd705 13027 return -EINVAL;
c16ed4be 13028 }
5d7bd705 13029
2a80eada 13030 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
13031 mode_cmd->pitches[0] != obj->stride) {
13032 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13033 mode_cmd->pitches[0], obj->stride);
5d7bd705 13034 return -EINVAL;
c16ed4be 13035 }
5d7bd705 13036
57779d06 13037 /* Reject formats not supported by any plane early. */
308e5bcb 13038 switch (mode_cmd->pixel_format) {
57779d06 13039 case DRM_FORMAT_C8:
04b3924d
VS
13040 case DRM_FORMAT_RGB565:
13041 case DRM_FORMAT_XRGB8888:
13042 case DRM_FORMAT_ARGB8888:
57779d06
VS
13043 break;
13044 case DRM_FORMAT_XRGB1555:
13045 case DRM_FORMAT_ARGB1555:
c16ed4be 13046 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
13047 DRM_DEBUG("unsupported pixel format: %s\n",
13048 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13049 return -EINVAL;
c16ed4be 13050 }
57779d06
VS
13051 break;
13052 case DRM_FORMAT_XBGR8888:
13053 case DRM_FORMAT_ABGR8888:
04b3924d
VS
13054 case DRM_FORMAT_XRGB2101010:
13055 case DRM_FORMAT_ARGB2101010:
57779d06
VS
13056 case DRM_FORMAT_XBGR2101010:
13057 case DRM_FORMAT_ABGR2101010:
c16ed4be 13058 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
13059 DRM_DEBUG("unsupported pixel format: %s\n",
13060 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13061 return -EINVAL;
c16ed4be 13062 }
b5626747 13063 break;
04b3924d
VS
13064 case DRM_FORMAT_YUYV:
13065 case DRM_FORMAT_UYVY:
13066 case DRM_FORMAT_YVYU:
13067 case DRM_FORMAT_VYUY:
c16ed4be 13068 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
13069 DRM_DEBUG("unsupported pixel format: %s\n",
13070 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13071 return -EINVAL;
c16ed4be 13072 }
57cd6508
CW
13073 break;
13074 default:
4ee62c76
VS
13075 DRM_DEBUG("unsupported pixel format: %s\n",
13076 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
13077 return -EINVAL;
13078 }
13079
90f9a336
VS
13080 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13081 if (mode_cmd->offsets[0] != 0)
13082 return -EINVAL;
13083
ec2c981e 13084 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
13085 mode_cmd->pixel_format,
13086 mode_cmd->modifier[0]);
53155c0a
DV
13087 /* FIXME drm helper for size checks (especially planar formats)? */
13088 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13089 return -EINVAL;
13090
c7d73f6a
DV
13091 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13092 intel_fb->obj = obj;
80075d49 13093 intel_fb->obj->framebuffer_references++;
c7d73f6a 13094
79e53945
JB
13095 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13096 if (ret) {
13097 DRM_ERROR("framebuffer init failed %d\n", ret);
13098 return ret;
13099 }
13100
79e53945
JB
13101 return 0;
13102}
13103
79e53945
JB
13104static struct drm_framebuffer *
13105intel_user_framebuffer_create(struct drm_device *dev,
13106 struct drm_file *filp,
308e5bcb 13107 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 13108{
05394f39 13109 struct drm_i915_gem_object *obj;
79e53945 13110
308e5bcb
JB
13111 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13112 mode_cmd->handles[0]));
c8725226 13113 if (&obj->base == NULL)
cce13ff7 13114 return ERR_PTR(-ENOENT);
79e53945 13115
d2dff872 13116 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
13117}
13118
4520f53a 13119#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 13120static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
13121{
13122}
13123#endif
13124
79e53945 13125static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 13126 .fb_create = intel_user_framebuffer_create,
0632fef6 13127 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
13128 .atomic_check = intel_atomic_check,
13129 .atomic_commit = intel_atomic_commit,
79e53945
JB
13130};
13131
e70236a8
JB
13132/* Set up chip specific display functions */
13133static void intel_init_display(struct drm_device *dev)
13134{
13135 struct drm_i915_private *dev_priv = dev->dev_private;
13136
ee9300bb
DV
13137 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13138 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
13139 else if (IS_CHERRYVIEW(dev))
13140 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
13141 else if (IS_VALLEYVIEW(dev))
13142 dev_priv->display.find_dpll = vlv_find_best_dpll;
13143 else if (IS_PINEVIEW(dev))
13144 dev_priv->display.find_dpll = pnv_find_best_dpll;
13145 else
13146 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13147
bc8d7dff
DL
13148 if (INTEL_INFO(dev)->gen >= 9) {
13149 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
13150 dev_priv->display.get_initial_plane_config =
13151 skylake_get_initial_plane_config;
bc8d7dff
DL
13152 dev_priv->display.crtc_compute_clock =
13153 haswell_crtc_compute_clock;
13154 dev_priv->display.crtc_enable = haswell_crtc_enable;
13155 dev_priv->display.crtc_disable = haswell_crtc_disable;
13156 dev_priv->display.off = ironlake_crtc_off;
13157 dev_priv->display.update_primary_plane =
13158 skylake_update_primary_plane;
13159 } else if (HAS_DDI(dev)) {
0e8ffe1b 13160 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
13161 dev_priv->display.get_initial_plane_config =
13162 ironlake_get_initial_plane_config;
797d0259
ACO
13163 dev_priv->display.crtc_compute_clock =
13164 haswell_crtc_compute_clock;
4f771f10
PZ
13165 dev_priv->display.crtc_enable = haswell_crtc_enable;
13166 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 13167 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
13168 dev_priv->display.update_primary_plane =
13169 ironlake_update_primary_plane;
09b4ddf9 13170 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 13171 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
13172 dev_priv->display.get_initial_plane_config =
13173 ironlake_get_initial_plane_config;
3fb37703
ACO
13174 dev_priv->display.crtc_compute_clock =
13175 ironlake_crtc_compute_clock;
76e5a89c
DV
13176 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13177 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 13178 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
13179 dev_priv->display.update_primary_plane =
13180 ironlake_update_primary_plane;
89b667f8
JB
13181 } else if (IS_VALLEYVIEW(dev)) {
13182 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
13183 dev_priv->display.get_initial_plane_config =
13184 i9xx_get_initial_plane_config;
d6dfee7a 13185 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
13186 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13187 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13188 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
13189 dev_priv->display.update_primary_plane =
13190 i9xx_update_primary_plane;
f564048e 13191 } else {
0e8ffe1b 13192 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
13193 dev_priv->display.get_initial_plane_config =
13194 i9xx_get_initial_plane_config;
d6dfee7a 13195 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
13196 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13197 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 13198 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
13199 dev_priv->display.update_primary_plane =
13200 i9xx_update_primary_plane;
f564048e 13201 }
e70236a8 13202
e70236a8 13203 /* Returns the core display clock speed */
25eb05fc
JB
13204 if (IS_VALLEYVIEW(dev))
13205 dev_priv->display.get_display_clock_speed =
13206 valleyview_get_display_clock_speed;
13207 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
13208 dev_priv->display.get_display_clock_speed =
13209 i945_get_display_clock_speed;
13210 else if (IS_I915G(dev))
13211 dev_priv->display.get_display_clock_speed =
13212 i915_get_display_clock_speed;
257a7ffc 13213 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
13214 dev_priv->display.get_display_clock_speed =
13215 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
13216 else if (IS_PINEVIEW(dev))
13217 dev_priv->display.get_display_clock_speed =
13218 pnv_get_display_clock_speed;
e70236a8
JB
13219 else if (IS_I915GM(dev))
13220 dev_priv->display.get_display_clock_speed =
13221 i915gm_get_display_clock_speed;
13222 else if (IS_I865G(dev))
13223 dev_priv->display.get_display_clock_speed =
13224 i865_get_display_clock_speed;
f0f8a9ce 13225 else if (IS_I85X(dev))
e70236a8
JB
13226 dev_priv->display.get_display_clock_speed =
13227 i855_get_display_clock_speed;
13228 else /* 852, 830 */
13229 dev_priv->display.get_display_clock_speed =
13230 i830_get_display_clock_speed;
13231
7c10a2b5 13232 if (IS_GEN5(dev)) {
3bb11b53 13233 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
13234 } else if (IS_GEN6(dev)) {
13235 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
13236 } else if (IS_IVYBRIDGE(dev)) {
13237 /* FIXME: detect B0+ stepping and use auto training */
13238 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 13239 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 13240 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
13241 } else if (IS_VALLEYVIEW(dev)) {
13242 dev_priv->display.modeset_global_resources =
13243 valleyview_modeset_global_resources;
e70236a8 13244 }
8c9f3aaf 13245
8c9f3aaf
JB
13246 switch (INTEL_INFO(dev)->gen) {
13247 case 2:
13248 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13249 break;
13250
13251 case 3:
13252 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13253 break;
13254
13255 case 4:
13256 case 5:
13257 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13258 break;
13259
13260 case 6:
13261 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13262 break;
7c9017e5 13263 case 7:
4e0bbc31 13264 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
13265 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13266 break;
830c81db 13267 case 9:
ba343e02
TU
13268 /* Drop through - unsupported since execlist only. */
13269 default:
13270 /* Default just returns -ENODEV to indicate unsupported */
13271 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 13272 }
7bd688cd
JN
13273
13274 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
13275
13276 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
13277}
13278
b690e96c
JB
13279/*
13280 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13281 * resume, or other times. This quirk makes sure that's the case for
13282 * affected systems.
13283 */
0206e353 13284static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
13285{
13286 struct drm_i915_private *dev_priv = dev->dev_private;
13287
13288 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 13289 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
13290}
13291
b6b5d049
VS
13292static void quirk_pipeb_force(struct drm_device *dev)
13293{
13294 struct drm_i915_private *dev_priv = dev->dev_private;
13295
13296 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13297 DRM_INFO("applying pipe b force quirk\n");
13298}
13299
435793df
KP
13300/*
13301 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13302 */
13303static void quirk_ssc_force_disable(struct drm_device *dev)
13304{
13305 struct drm_i915_private *dev_priv = dev->dev_private;
13306 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 13307 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
13308}
13309
4dca20ef 13310/*
5a15ab5b
CE
13311 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13312 * brightness value
4dca20ef
CE
13313 */
13314static void quirk_invert_brightness(struct drm_device *dev)
13315{
13316 struct drm_i915_private *dev_priv = dev->dev_private;
13317 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 13318 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
13319}
13320
9c72cc6f
SD
13321/* Some VBT's incorrectly indicate no backlight is present */
13322static void quirk_backlight_present(struct drm_device *dev)
13323{
13324 struct drm_i915_private *dev_priv = dev->dev_private;
13325 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13326 DRM_INFO("applying backlight present quirk\n");
13327}
13328
b690e96c
JB
13329struct intel_quirk {
13330 int device;
13331 int subsystem_vendor;
13332 int subsystem_device;
13333 void (*hook)(struct drm_device *dev);
13334};
13335
5f85f176
EE
13336/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13337struct intel_dmi_quirk {
13338 void (*hook)(struct drm_device *dev);
13339 const struct dmi_system_id (*dmi_id_list)[];
13340};
13341
13342static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13343{
13344 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13345 return 1;
13346}
13347
13348static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13349 {
13350 .dmi_id_list = &(const struct dmi_system_id[]) {
13351 {
13352 .callback = intel_dmi_reverse_brightness,
13353 .ident = "NCR Corporation",
13354 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13355 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13356 },
13357 },
13358 { } /* terminating entry */
13359 },
13360 .hook = quirk_invert_brightness,
13361 },
13362};
13363
c43b5634 13364static struct intel_quirk intel_quirks[] = {
b690e96c 13365 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13366 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13367
b690e96c
JB
13368 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13369 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13370
b690e96c
JB
13371 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13372 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13373
5f080c0f
VS
13374 /* 830 needs to leave pipe A & dpll A up */
13375 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13376
b6b5d049
VS
13377 /* 830 needs to leave pipe B & dpll B up */
13378 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13379
435793df
KP
13380 /* Lenovo U160 cannot use SSC on LVDS */
13381 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13382
13383 /* Sony Vaio Y cannot use SSC on LVDS */
13384 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13385
be505f64
AH
13386 /* Acer Aspire 5734Z must invert backlight brightness */
13387 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13388
13389 /* Acer/eMachines G725 */
13390 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13391
13392 /* Acer/eMachines e725 */
13393 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13394
13395 /* Acer/Packard Bell NCL20 */
13396 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13397
13398 /* Acer Aspire 4736Z */
13399 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13400
13401 /* Acer Aspire 5336 */
13402 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13403
13404 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13405 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13406
dfb3d47b
SD
13407 /* Acer C720 Chromebook (Core i3 4005U) */
13408 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13409
b2a9601c 13410 /* Apple Macbook 2,1 (Core 2 T7400) */
13411 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13412
d4967d8c
SD
13413 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13414 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13415
13416 /* HP Chromebook 14 (Celeron 2955U) */
13417 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
13418
13419 /* Dell Chromebook 11 */
13420 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
13421};
13422
13423static void intel_init_quirks(struct drm_device *dev)
13424{
13425 struct pci_dev *d = dev->pdev;
13426 int i;
13427
13428 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13429 struct intel_quirk *q = &intel_quirks[i];
13430
13431 if (d->device == q->device &&
13432 (d->subsystem_vendor == q->subsystem_vendor ||
13433 q->subsystem_vendor == PCI_ANY_ID) &&
13434 (d->subsystem_device == q->subsystem_device ||
13435 q->subsystem_device == PCI_ANY_ID))
13436 q->hook(dev);
13437 }
5f85f176
EE
13438 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13439 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13440 intel_dmi_quirks[i].hook(dev);
13441 }
b690e96c
JB
13442}
13443
9cce37f4
JB
13444/* Disable the VGA plane that we never use */
13445static void i915_disable_vga(struct drm_device *dev)
13446{
13447 struct drm_i915_private *dev_priv = dev->dev_private;
13448 u8 sr1;
766aa1c4 13449 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13450
2b37c616 13451 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13452 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13453 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13454 sr1 = inb(VGA_SR_DATA);
13455 outb(sr1 | 1<<5, VGA_SR_DATA);
13456 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13457 udelay(300);
13458
01f5a626 13459 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13460 POSTING_READ(vga_reg);
13461}
13462
f817586c
DV
13463void intel_modeset_init_hw(struct drm_device *dev)
13464{
a8f78b58
ED
13465 intel_prepare_ddi(dev);
13466
f8bf63fd
VS
13467 if (IS_VALLEYVIEW(dev))
13468 vlv_update_cdclk(dev);
13469
f817586c
DV
13470 intel_init_clock_gating(dev);
13471
8090c6b9 13472 intel_enable_gt_powersave(dev);
f817586c
DV
13473}
13474
79e53945
JB
13475void intel_modeset_init(struct drm_device *dev)
13476{
652c393a 13477 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13478 int sprite, ret;
8cc87b75 13479 enum pipe pipe;
46f297fb 13480 struct intel_crtc *crtc;
79e53945
JB
13481
13482 drm_mode_config_init(dev);
13483
13484 dev->mode_config.min_width = 0;
13485 dev->mode_config.min_height = 0;
13486
019d96cb
DA
13487 dev->mode_config.preferred_depth = 24;
13488 dev->mode_config.prefer_shadow = 1;
13489
25bab385
TU
13490 dev->mode_config.allow_fb_modifiers = true;
13491
e6ecefaa 13492 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13493
b690e96c
JB
13494 intel_init_quirks(dev);
13495
1fa61106
ED
13496 intel_init_pm(dev);
13497
e3c74757
BW
13498 if (INTEL_INFO(dev)->num_pipes == 0)
13499 return;
13500
e70236a8 13501 intel_init_display(dev);
7c10a2b5 13502 intel_init_audio(dev);
e70236a8 13503
a6c45cf0
CW
13504 if (IS_GEN2(dev)) {
13505 dev->mode_config.max_width = 2048;
13506 dev->mode_config.max_height = 2048;
13507 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13508 dev->mode_config.max_width = 4096;
13509 dev->mode_config.max_height = 4096;
79e53945 13510 } else {
a6c45cf0
CW
13511 dev->mode_config.max_width = 8192;
13512 dev->mode_config.max_height = 8192;
79e53945 13513 }
068be561 13514
dc41c154
VS
13515 if (IS_845G(dev) || IS_I865G(dev)) {
13516 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13517 dev->mode_config.cursor_height = 1023;
13518 } else if (IS_GEN2(dev)) {
068be561
DL
13519 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13520 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13521 } else {
13522 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13523 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13524 }
13525
5d4545ae 13526 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13527
28c97730 13528 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13529 INTEL_INFO(dev)->num_pipes,
13530 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13531
055e393f 13532 for_each_pipe(dev_priv, pipe) {
8cc87b75 13533 intel_crtc_init(dev, pipe);
3bdcfc0c 13534 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 13535 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13536 if (ret)
06da8da2 13537 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13538 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13539 }
79e53945
JB
13540 }
13541
f42bb70d
JB
13542 intel_init_dpio(dev);
13543
e72f9fbf 13544 intel_shared_dpll_init(dev);
ee7b9f93 13545
9cce37f4
JB
13546 /* Just disable it once at startup */
13547 i915_disable_vga(dev);
79e53945 13548 intel_setup_outputs(dev);
11be49eb
CW
13549
13550 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13551 intel_fbc_disable(dev);
fa9fa083 13552
6e9f798d 13553 drm_modeset_lock_all(dev);
fa9fa083 13554 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13555 drm_modeset_unlock_all(dev);
46f297fb 13556
d3fcc808 13557 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13558 if (!crtc->active)
13559 continue;
13560
46f297fb 13561 /*
46f297fb
JB
13562 * Note that reserving the BIOS fb up front prevents us
13563 * from stuffing other stolen allocations like the ring
13564 * on top. This prevents some ugliness at boot time, and
13565 * can even allow for smooth boot transitions if the BIOS
13566 * fb is large enough for the active pipe configuration.
13567 */
5724dbd1
DL
13568 if (dev_priv->display.get_initial_plane_config) {
13569 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13570 &crtc->plane_config);
13571 /*
13572 * If the fb is shared between multiple heads, we'll
13573 * just get the first one.
13574 */
f6936e29 13575 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 13576 }
46f297fb 13577 }
2c7111db
CW
13578}
13579
7fad798e
DV
13580static void intel_enable_pipe_a(struct drm_device *dev)
13581{
13582 struct intel_connector *connector;
13583 struct drm_connector *crt = NULL;
13584 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13585 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13586
13587 /* We can't just switch on the pipe A, we need to set things up with a
13588 * proper mode and output configuration. As a gross hack, enable pipe A
13589 * by enabling the load detect pipe once. */
3a3371ff 13590 for_each_intel_connector(dev, connector) {
7fad798e
DV
13591 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13592 crt = &connector->base;
13593 break;
13594 }
13595 }
13596
13597 if (!crt)
13598 return;
13599
208bf9fd
VS
13600 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13601 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13602}
13603
fa555837
DV
13604static bool
13605intel_check_plane_mapping(struct intel_crtc *crtc)
13606{
7eb552ae
BW
13607 struct drm_device *dev = crtc->base.dev;
13608 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13609 u32 reg, val;
13610
7eb552ae 13611 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13612 return true;
13613
13614 reg = DSPCNTR(!crtc->plane);
13615 val = I915_READ(reg);
13616
13617 if ((val & DISPLAY_PLANE_ENABLE) &&
13618 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13619 return false;
13620
13621 return true;
13622}
13623
24929352
DV
13624static void intel_sanitize_crtc(struct intel_crtc *crtc)
13625{
13626 struct drm_device *dev = crtc->base.dev;
13627 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13628 u32 reg;
24929352 13629
24929352 13630 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13631 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13632 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13633
d3eaf884 13634 /* restore vblank interrupts to correct state */
9625604c 13635 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
13636 if (crtc->active) {
13637 update_scanline_offset(crtc);
9625604c
DV
13638 drm_crtc_vblank_on(&crtc->base);
13639 }
d3eaf884 13640
24929352 13641 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13642 * disable the crtc (and hence change the state) if it is wrong. Note
13643 * that gen4+ has a fixed plane -> pipe mapping. */
13644 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13645 struct intel_connector *connector;
13646 bool plane;
13647
24929352
DV
13648 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13649 crtc->base.base.id);
13650
13651 /* Pipe has the wrong plane attached and the plane is active.
13652 * Temporarily change the plane mapping and disable everything
13653 * ... */
13654 plane = crtc->plane;
13655 crtc->plane = !plane;
9c8958bc 13656 crtc->primary_enabled = true;
24929352
DV
13657 dev_priv->display.crtc_disable(&crtc->base);
13658 crtc->plane = plane;
13659
13660 /* ... and break all links. */
3a3371ff 13661 for_each_intel_connector(dev, connector) {
24929352
DV
13662 if (connector->encoder->base.crtc != &crtc->base)
13663 continue;
13664
7f1950fb
EE
13665 connector->base.dpms = DRM_MODE_DPMS_OFF;
13666 connector->base.encoder = NULL;
24929352 13667 }
7f1950fb
EE
13668 /* multiple connectors may have the same encoder:
13669 * handle them and break crtc link separately */
3a3371ff 13670 for_each_intel_connector(dev, connector)
7f1950fb
EE
13671 if (connector->encoder->base.crtc == &crtc->base) {
13672 connector->encoder->base.crtc = NULL;
13673 connector->encoder->connectors_active = false;
13674 }
24929352
DV
13675
13676 WARN_ON(crtc->active);
83d65738 13677 crtc->base.state->enable = false;
24929352
DV
13678 crtc->base.enabled = false;
13679 }
24929352 13680
7fad798e
DV
13681 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13682 crtc->pipe == PIPE_A && !crtc->active) {
13683 /* BIOS forgot to enable pipe A, this mostly happens after
13684 * resume. Force-enable the pipe to fix this, the update_dpms
13685 * call below we restore the pipe to the right state, but leave
13686 * the required bits on. */
13687 intel_enable_pipe_a(dev);
13688 }
13689
24929352
DV
13690 /* Adjust the state of the output pipe according to whether we
13691 * have active connectors/encoders. */
13692 intel_crtc_update_dpms(&crtc->base);
13693
83d65738 13694 if (crtc->active != crtc->base.state->enable) {
24929352
DV
13695 struct intel_encoder *encoder;
13696
13697 /* This can happen either due to bugs in the get_hw_state
13698 * functions or because the pipe is force-enabled due to the
13699 * pipe A quirk. */
13700 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13701 crtc->base.base.id,
83d65738 13702 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
13703 crtc->active ? "enabled" : "disabled");
13704
83d65738 13705 crtc->base.state->enable = crtc->active;
24929352
DV
13706 crtc->base.enabled = crtc->active;
13707
13708 /* Because we only establish the connector -> encoder ->
13709 * crtc links if something is active, this means the
13710 * crtc is now deactivated. Break the links. connector
13711 * -> encoder links are only establish when things are
13712 * actually up, hence no need to break them. */
13713 WARN_ON(crtc->active);
13714
13715 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13716 WARN_ON(encoder->connectors_active);
13717 encoder->base.crtc = NULL;
13718 }
13719 }
c5ab3bc0 13720
a3ed6aad 13721 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13722 /*
13723 * We start out with underrun reporting disabled to avoid races.
13724 * For correct bookkeeping mark this on active crtcs.
13725 *
c5ab3bc0
DV
13726 * Also on gmch platforms we dont have any hardware bits to
13727 * disable the underrun reporting. Which means we need to start
13728 * out with underrun reporting disabled also on inactive pipes,
13729 * since otherwise we'll complain about the garbage we read when
13730 * e.g. coming up after runtime pm.
13731 *
4cc31489
DV
13732 * No protection against concurrent access is required - at
13733 * worst a fifo underrun happens which also sets this to false.
13734 */
13735 crtc->cpu_fifo_underrun_disabled = true;
13736 crtc->pch_fifo_underrun_disabled = true;
13737 }
24929352
DV
13738}
13739
13740static void intel_sanitize_encoder(struct intel_encoder *encoder)
13741{
13742 struct intel_connector *connector;
13743 struct drm_device *dev = encoder->base.dev;
13744
13745 /* We need to check both for a crtc link (meaning that the
13746 * encoder is active and trying to read from a pipe) and the
13747 * pipe itself being active. */
13748 bool has_active_crtc = encoder->base.crtc &&
13749 to_intel_crtc(encoder->base.crtc)->active;
13750
13751 if (encoder->connectors_active && !has_active_crtc) {
13752 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13753 encoder->base.base.id,
8e329a03 13754 encoder->base.name);
24929352
DV
13755
13756 /* Connector is active, but has no active pipe. This is
13757 * fallout from our resume register restoring. Disable
13758 * the encoder manually again. */
13759 if (encoder->base.crtc) {
13760 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13761 encoder->base.base.id,
8e329a03 13762 encoder->base.name);
24929352 13763 encoder->disable(encoder);
a62d1497
VS
13764 if (encoder->post_disable)
13765 encoder->post_disable(encoder);
24929352 13766 }
7f1950fb
EE
13767 encoder->base.crtc = NULL;
13768 encoder->connectors_active = false;
24929352
DV
13769
13770 /* Inconsistent output/port/pipe state happens presumably due to
13771 * a bug in one of the get_hw_state functions. Or someplace else
13772 * in our code, like the register restore mess on resume. Clamp
13773 * things to off as a safer default. */
3a3371ff 13774 for_each_intel_connector(dev, connector) {
24929352
DV
13775 if (connector->encoder != encoder)
13776 continue;
7f1950fb
EE
13777 connector->base.dpms = DRM_MODE_DPMS_OFF;
13778 connector->base.encoder = NULL;
24929352
DV
13779 }
13780 }
13781 /* Enabled encoders without active connectors will be fixed in
13782 * the crtc fixup. */
13783}
13784
04098753 13785void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13786{
13787 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13788 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13789
04098753
ID
13790 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13791 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13792 i915_disable_vga(dev);
13793 }
13794}
13795
13796void i915_redisable_vga(struct drm_device *dev)
13797{
13798 struct drm_i915_private *dev_priv = dev->dev_private;
13799
8dc8a27c
PZ
13800 /* This function can be called both from intel_modeset_setup_hw_state or
13801 * at a very early point in our resume sequence, where the power well
13802 * structures are not yet restored. Since this function is at a very
13803 * paranoid "someone might have enabled VGA while we were not looking"
13804 * level, just check if the power well is enabled instead of trying to
13805 * follow the "don't touch the power well if we don't need it" policy
13806 * the rest of the driver uses. */
f458ebbc 13807 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13808 return;
13809
04098753 13810 i915_redisable_vga_power_on(dev);
0fde901f
KM
13811}
13812
98ec7739
VS
13813static bool primary_get_hw_state(struct intel_crtc *crtc)
13814{
13815 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13816
13817 if (!crtc->active)
13818 return false;
13819
13820 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13821}
13822
30e984df 13823static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13824{
13825 struct drm_i915_private *dev_priv = dev->dev_private;
13826 enum pipe pipe;
24929352
DV
13827 struct intel_crtc *crtc;
13828 struct intel_encoder *encoder;
13829 struct intel_connector *connector;
5358901f 13830 int i;
24929352 13831
d3fcc808 13832 for_each_intel_crtc(dev, crtc) {
6e3c9717 13833 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 13834
6e3c9717 13835 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 13836
0e8ffe1b 13837 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 13838 crtc->config);
24929352 13839
83d65738 13840 crtc->base.state->enable = crtc->active;
24929352 13841 crtc->base.enabled = crtc->active;
98ec7739 13842 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13843
13844 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13845 crtc->base.base.id,
13846 crtc->active ? "enabled" : "disabled");
13847 }
13848
5358901f
DV
13849 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13850 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13851
3e369b76
ACO
13852 pll->on = pll->get_hw_state(dev_priv, pll,
13853 &pll->config.hw_state);
5358901f 13854 pll->active = 0;
3e369b76 13855 pll->config.crtc_mask = 0;
d3fcc808 13856 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13857 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13858 pll->active++;
3e369b76 13859 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13860 }
5358901f 13861 }
5358901f 13862
1e6f2ddc 13863 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13864 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13865
3e369b76 13866 if (pll->config.crtc_mask)
bd2bb1b9 13867 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13868 }
13869
b2784e15 13870 for_each_intel_encoder(dev, encoder) {
24929352
DV
13871 pipe = 0;
13872
13873 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13874 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13875 encoder->base.crtc = &crtc->base;
6e3c9717 13876 encoder->get_config(encoder, crtc->config);
24929352
DV
13877 } else {
13878 encoder->base.crtc = NULL;
13879 }
13880
13881 encoder->connectors_active = false;
6f2bcceb 13882 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13883 encoder->base.base.id,
8e329a03 13884 encoder->base.name,
24929352 13885 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13886 pipe_name(pipe));
24929352
DV
13887 }
13888
3a3371ff 13889 for_each_intel_connector(dev, connector) {
24929352
DV
13890 if (connector->get_hw_state(connector)) {
13891 connector->base.dpms = DRM_MODE_DPMS_ON;
13892 connector->encoder->connectors_active = true;
13893 connector->base.encoder = &connector->encoder->base;
13894 } else {
13895 connector->base.dpms = DRM_MODE_DPMS_OFF;
13896 connector->base.encoder = NULL;
13897 }
13898 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13899 connector->base.base.id,
c23cc417 13900 connector->base.name,
24929352
DV
13901 connector->base.encoder ? "enabled" : "disabled");
13902 }
30e984df
DV
13903}
13904
13905/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13906 * and i915 state tracking structures. */
13907void intel_modeset_setup_hw_state(struct drm_device *dev,
13908 bool force_restore)
13909{
13910 struct drm_i915_private *dev_priv = dev->dev_private;
13911 enum pipe pipe;
30e984df
DV
13912 struct intel_crtc *crtc;
13913 struct intel_encoder *encoder;
35c95375 13914 int i;
30e984df
DV
13915
13916 intel_modeset_readout_hw_state(dev);
24929352 13917
babea61d
JB
13918 /*
13919 * Now that we have the config, copy it to each CRTC struct
13920 * Note that this could go away if we move to using crtc_config
13921 * checking everywhere.
13922 */
d3fcc808 13923 for_each_intel_crtc(dev, crtc) {
d330a953 13924 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
13925 intel_mode_from_pipe_config(&crtc->base.mode,
13926 crtc->config);
babea61d
JB
13927 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13928 crtc->base.base.id);
13929 drm_mode_debug_printmodeline(&crtc->base.mode);
13930 }
13931 }
13932
24929352 13933 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13934 for_each_intel_encoder(dev, encoder) {
24929352
DV
13935 intel_sanitize_encoder(encoder);
13936 }
13937
055e393f 13938 for_each_pipe(dev_priv, pipe) {
24929352
DV
13939 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13940 intel_sanitize_crtc(crtc);
6e3c9717
ACO
13941 intel_dump_pipe_config(crtc, crtc->config,
13942 "[setup_hw_state]");
24929352 13943 }
9a935856 13944
35c95375
DV
13945 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13946 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13947
13948 if (!pll->on || pll->active)
13949 continue;
13950
13951 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13952
13953 pll->disable(dev_priv, pll);
13954 pll->on = false;
13955 }
13956
3078999f
PB
13957 if (IS_GEN9(dev))
13958 skl_wm_get_hw_state(dev);
13959 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13960 ilk_wm_get_hw_state(dev);
13961
45e2b5f6 13962 if (force_restore) {
7d0bc1ea
VS
13963 i915_redisable_vga(dev);
13964
f30da187
DV
13965 /*
13966 * We need to use raw interfaces for restoring state to avoid
13967 * checking (bogus) intermediate states.
13968 */
055e393f 13969 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13970 struct drm_crtc *crtc =
13971 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 13972
7f27126e
JB
13973 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13974 crtc->primary->fb);
45e2b5f6
DV
13975 }
13976 } else {
13977 intel_modeset_update_staged_output_state(dev);
13978 }
8af6cf88
DV
13979
13980 intel_modeset_check_state(dev);
2c7111db
CW
13981}
13982
13983void intel_modeset_gem_init(struct drm_device *dev)
13984{
92122789 13985 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 13986 struct drm_crtc *c;
2ff8fde1 13987 struct drm_i915_gem_object *obj;
484b41dd 13988
ae48434c
ID
13989 mutex_lock(&dev->struct_mutex);
13990 intel_init_gt_powersave(dev);
13991 mutex_unlock(&dev->struct_mutex);
13992
92122789
JB
13993 /*
13994 * There may be no VBT; and if the BIOS enabled SSC we can
13995 * just keep using it to avoid unnecessary flicker. Whereas if the
13996 * BIOS isn't using it, don't assume it will work even if the VBT
13997 * indicates as much.
13998 */
13999 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14000 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14001 DREF_SSC1_ENABLE);
14002
1833b134 14003 intel_modeset_init_hw(dev);
02e792fb
DV
14004
14005 intel_setup_overlay(dev);
484b41dd
JB
14006
14007 /*
14008 * Make sure any fbs we allocated at startup are properly
14009 * pinned & fenced. When we do the allocation it's too early
14010 * for this.
14011 */
14012 mutex_lock(&dev->struct_mutex);
70e1e0ec 14013 for_each_crtc(dev, c) {
2ff8fde1
MR
14014 obj = intel_fb_obj(c->primary->fb);
14015 if (obj == NULL)
484b41dd
JB
14016 continue;
14017
850c4cdc
TU
14018 if (intel_pin_and_fence_fb_obj(c->primary,
14019 c->primary->fb,
82bc3b2d 14020 c->primary->state,
850c4cdc 14021 NULL)) {
484b41dd
JB
14022 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14023 to_intel_crtc(c)->pipe);
66e514c1
DA
14024 drm_framebuffer_unreference(c->primary->fb);
14025 c->primary->fb = NULL;
afd65eb4 14026 update_state_fb(c->primary);
484b41dd
JB
14027 }
14028 }
14029 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
14030
14031 intel_backlight_register(dev);
79e53945
JB
14032}
14033
4932e2c3
ID
14034void intel_connector_unregister(struct intel_connector *intel_connector)
14035{
14036 struct drm_connector *connector = &intel_connector->base;
14037
14038 intel_panel_destroy_backlight(connector);
34ea3d38 14039 drm_connector_unregister(connector);
4932e2c3
ID
14040}
14041
79e53945
JB
14042void intel_modeset_cleanup(struct drm_device *dev)
14043{
652c393a 14044 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 14045 struct drm_connector *connector;
652c393a 14046
2eb5252e
ID
14047 intel_disable_gt_powersave(dev);
14048
0962c3c9
VS
14049 intel_backlight_unregister(dev);
14050
fd0c0642
DV
14051 /*
14052 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 14053 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
14054 * experience fancy races otherwise.
14055 */
2aeb7d3a 14056 intel_irq_uninstall(dev_priv);
eb21b92b 14057
fd0c0642
DV
14058 /*
14059 * Due to the hpd irq storm handling the hotplug work can re-arm the
14060 * poll handlers. Hence disable polling after hpd handling is shut down.
14061 */
f87ea761 14062 drm_kms_helper_poll_fini(dev);
fd0c0642 14063
652c393a
JB
14064 mutex_lock(&dev->struct_mutex);
14065
723bfd70
JB
14066 intel_unregister_dsm_handler();
14067
7ff0ebcc 14068 intel_fbc_disable(dev);
e70236a8 14069
69341a5e
KH
14070 mutex_unlock(&dev->struct_mutex);
14071
1630fe75
CW
14072 /* flush any delayed tasks or pending work */
14073 flush_scheduled_work();
14074
db31af1d
JN
14075 /* destroy the backlight and sysfs files before encoders/connectors */
14076 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
14077 struct intel_connector *intel_connector;
14078
14079 intel_connector = to_intel_connector(connector);
14080 intel_connector->unregister(intel_connector);
db31af1d 14081 }
d9255d57 14082
79e53945 14083 drm_mode_config_cleanup(dev);
4d7bb011
DV
14084
14085 intel_cleanup_overlay(dev);
ae48434c
ID
14086
14087 mutex_lock(&dev->struct_mutex);
14088 intel_cleanup_gt_powersave(dev);
14089 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14090}
14091
f1c79df3
ZW
14092/*
14093 * Return which encoder is currently attached for connector.
14094 */
df0e9248 14095struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 14096{
df0e9248
CW
14097 return &intel_attached_encoder(connector)->base;
14098}
f1c79df3 14099
df0e9248
CW
14100void intel_connector_attach_encoder(struct intel_connector *connector,
14101 struct intel_encoder *encoder)
14102{
14103 connector->encoder = encoder;
14104 drm_mode_connector_attach_encoder(&connector->base,
14105 &encoder->base);
79e53945 14106}
28d52043
DA
14107
14108/*
14109 * set vga decode state - true == enable VGA decode
14110 */
14111int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14112{
14113 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 14114 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
14115 u16 gmch_ctrl;
14116
75fa041d
CW
14117 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14118 DRM_ERROR("failed to read control word\n");
14119 return -EIO;
14120 }
14121
c0cc8a55
CW
14122 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14123 return 0;
14124
28d52043
DA
14125 if (state)
14126 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14127 else
14128 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
14129
14130 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14131 DRM_ERROR("failed to write control word\n");
14132 return -EIO;
14133 }
14134
28d52043
DA
14135 return 0;
14136}
c4a1d9e4 14137
c4a1d9e4 14138struct intel_display_error_state {
ff57f1b0
PZ
14139
14140 u32 power_well_driver;
14141
63b66e5b
CW
14142 int num_transcoders;
14143
c4a1d9e4
CW
14144 struct intel_cursor_error_state {
14145 u32 control;
14146 u32 position;
14147 u32 base;
14148 u32 size;
52331309 14149 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
14150
14151 struct intel_pipe_error_state {
ddf9c536 14152 bool power_domain_on;
c4a1d9e4 14153 u32 source;
f301b1e1 14154 u32 stat;
52331309 14155 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
14156
14157 struct intel_plane_error_state {
14158 u32 control;
14159 u32 stride;
14160 u32 size;
14161 u32 pos;
14162 u32 addr;
14163 u32 surface;
14164 u32 tile_offset;
52331309 14165 } plane[I915_MAX_PIPES];
63b66e5b
CW
14166
14167 struct intel_transcoder_error_state {
ddf9c536 14168 bool power_domain_on;
63b66e5b
CW
14169 enum transcoder cpu_transcoder;
14170
14171 u32 conf;
14172
14173 u32 htotal;
14174 u32 hblank;
14175 u32 hsync;
14176 u32 vtotal;
14177 u32 vblank;
14178 u32 vsync;
14179 } transcoder[4];
c4a1d9e4
CW
14180};
14181
14182struct intel_display_error_state *
14183intel_display_capture_error_state(struct drm_device *dev)
14184{
fbee40df 14185 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 14186 struct intel_display_error_state *error;
63b66e5b
CW
14187 int transcoders[] = {
14188 TRANSCODER_A,
14189 TRANSCODER_B,
14190 TRANSCODER_C,
14191 TRANSCODER_EDP,
14192 };
c4a1d9e4
CW
14193 int i;
14194
63b66e5b
CW
14195 if (INTEL_INFO(dev)->num_pipes == 0)
14196 return NULL;
14197
9d1cb914 14198 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
14199 if (error == NULL)
14200 return NULL;
14201
190be112 14202 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
14203 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14204
055e393f 14205 for_each_pipe(dev_priv, i) {
ddf9c536 14206 error->pipe[i].power_domain_on =
f458ebbc
DV
14207 __intel_display_power_is_enabled(dev_priv,
14208 POWER_DOMAIN_PIPE(i));
ddf9c536 14209 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
14210 continue;
14211
5efb3e28
VS
14212 error->cursor[i].control = I915_READ(CURCNTR(i));
14213 error->cursor[i].position = I915_READ(CURPOS(i));
14214 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
14215
14216 error->plane[i].control = I915_READ(DSPCNTR(i));
14217 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 14218 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 14219 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
14220 error->plane[i].pos = I915_READ(DSPPOS(i));
14221 }
ca291363
PZ
14222 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14223 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
14224 if (INTEL_INFO(dev)->gen >= 4) {
14225 error->plane[i].surface = I915_READ(DSPSURF(i));
14226 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14227 }
14228
c4a1d9e4 14229 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 14230
3abfce77 14231 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 14232 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
14233 }
14234
14235 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14236 if (HAS_DDI(dev_priv->dev))
14237 error->num_transcoders++; /* Account for eDP. */
14238
14239 for (i = 0; i < error->num_transcoders; i++) {
14240 enum transcoder cpu_transcoder = transcoders[i];
14241
ddf9c536 14242 error->transcoder[i].power_domain_on =
f458ebbc 14243 __intel_display_power_is_enabled(dev_priv,
38cc1daf 14244 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 14245 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
14246 continue;
14247
63b66e5b
CW
14248 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14249
14250 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14251 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14252 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14253 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14254 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14255 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14256 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
14257 }
14258
14259 return error;
14260}
14261
edc3d884
MK
14262#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14263
c4a1d9e4 14264void
edc3d884 14265intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
14266 struct drm_device *dev,
14267 struct intel_display_error_state *error)
14268{
055e393f 14269 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
14270 int i;
14271
63b66e5b
CW
14272 if (!error)
14273 return;
14274
edc3d884 14275 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 14276 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 14277 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 14278 error->power_well_driver);
055e393f 14279 for_each_pipe(dev_priv, i) {
edc3d884 14280 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
14281 err_printf(m, " Power: %s\n",
14282 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 14283 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 14284 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
14285
14286 err_printf(m, "Plane [%d]:\n", i);
14287 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14288 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 14289 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
14290 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14291 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 14292 }
4b71a570 14293 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 14294 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 14295 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
14296 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14297 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
14298 }
14299
edc3d884
MK
14300 err_printf(m, "Cursor [%d]:\n", i);
14301 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14302 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14303 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 14304 }
63b66e5b
CW
14305
14306 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 14307 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 14308 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
14309 err_printf(m, " Power: %s\n",
14310 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
14311 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14312 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14313 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14314 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14315 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14316 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14317 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14318 }
c4a1d9e4 14319}
e2fcdaa9
VS
14320
14321void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14322{
14323 struct intel_crtc *crtc;
14324
14325 for_each_intel_crtc(dev, crtc) {
14326 struct intel_unpin_work *work;
e2fcdaa9 14327
5e2d7afc 14328 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
14329
14330 work = crtc->unpin_work;
14331
14332 if (work && work->event &&
14333 work->event->base.file_priv == file) {
14334 kfree(work->event);
14335 work->event = NULL;
14336 }
14337
5e2d7afc 14338 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
14339 }
14340}
This page took 2.749319 seconds and 5 git commands to generate.