drm/i915: Move the get/put irq locking into the caller
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215};
216#define GEN8_CTX_ID_SHIFT 32
7069b144 217#define GEN8_CTX_ID_WIDTH 21
71562919
MT
218#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 220
0e93cdd4
CW
221/* Typical size of the average request (2 pipecontrols and a MI_BB) */
222#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
e2efd130 224static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 225 struct intel_engine_cs *engine);
e2efd130 226static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 227 struct intel_engine_cs *engine);
7ba717cf 228
73e4d07f
OM
229/**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 231 * @dev_priv: i915 device private
73e4d07f
OM
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
27401d12 235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
c033666a 239int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 240{
a0bd6c31
ZL
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
c033666a 244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
245 return 1;
246
c033666a 247 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
248 return 1;
249
127f1003
OM
250 if (enable_execlists == 0)
251 return 0;
252
5a21b665
DV
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
ca82580c 261static void
0bc40be8 262logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 263{
c033666a 264 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 265
c033666a 266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 267 engine->idle_lite_restore_wa = ~0;
c6a2ac71 268
c033666a
CW
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 271 (engine->id == VCS || engine->id == VCS2);
ca82580c 272
0bc40be8 273 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 274 if (IS_GEN8(dev_priv))
0bc40be8
TU
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
286}
287
73e4d07f 288/**
ca82580c
TU
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
73e4d07f 291 *
ca82580c 292 * @ctx: Context to work on
9021ad03 293 * @engine: Engine the descriptor will be used with
73e4d07f 294 *
ca82580c
TU
295 * The context descriptor encodes various attributes of a context,
296 * including its GTT address and some flags. Because it's fairly
297 * expensive to calculate, we'll just do it once and cache the result,
298 * which remains valid until the context is unpinned.
299 *
300 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 303 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 306 */
ca82580c 307static void
e2efd130 308intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 309 struct intel_engine_cs *engine)
84b790f8 310{
9021ad03 311 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 312 u64 desc;
84b790f8 313
7069b144 314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 315
c01fc532
ZW
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
9021ad03
CW
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
7069b144 320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 321
9021ad03 322 ce->lrc_desc = desc;
5af05fef
MT
323}
324
e2efd130 325uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 326 struct intel_engine_cs *engine)
84b790f8 327{
0bc40be8 328 return ctx->engine[engine->id].lrc_desc;
ca82580c 329}
203a571b 330
cc3c4253
MK
331static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
84b790f8 333{
cc3c4253 334
4a570db5 335 struct intel_engine_cs *engine = rq0->engine;
c033666a 336 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 337 uint64_t desc[2];
84b790f8 338
1cff8cc3 339 if (rq1) {
4a570db5 340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
84b790f8 345
4a570db5 346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 347 rq0->elsp_submitted++;
84b790f8 348
1cff8cc3 349 /* You must always write both descriptors in the order below. */
e2f80391
TU
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 352
e2f80391 353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 354 /* The context is automatically loaded after the following */
e2f80391 355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 356
1cff8cc3 357 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
359}
360
c6a2ac71
TU
361static void
362execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363{
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368}
369
370static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 371{
4a570db5 372 struct intel_engine_cs *engine = rq->engine;
05d9824b 373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 375
05d9824b 376 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 377
c6a2ac71
TU
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
385}
386
d8cb8875
MK
387static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
84b790f8 389{
26720ab9 390 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 391 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 392
05d9824b 393 execlists_update_context(rq0);
d8cb8875 394
cc3c4253 395 if (rq1)
05d9824b 396 execlists_update_context(rq1);
84b790f8 397
27af5eea 398 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
26720ab9 402
3756685a 403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 404 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
405}
406
3c7ba635
ZW
407static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410{
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419}
420
26720ab9 421static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 422{
6d3d8274 423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 424 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 425
0bc40be8 426 assert_spin_locked(&engine->execlist_lock);
acdd884a 427
779949f4
PA
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
c033666a 432 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 433
acdd884a 434 /* Try to read in pairs */
0bc40be8 435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
6d3d8274 439 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
e1fee72c 442 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
443 list_del(&req0->execlist_link);
444 i915_gem_request_unreference(req0);
acdd884a
MT
445 req0 = cursor;
446 } else {
80a9a8db
ZW
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
acdd884a 461 req1 = cursor;
c6a2ac71 462 WARN_ON(req1->elsp_submitted);
acdd884a
MT
463 break;
464 }
465 }
466
c6a2ac71
TU
467 if (unlikely(!req0))
468 return;
469
3c7ba635
ZW
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
0bc40be8 476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 477 /*
c6a2ac71
TU
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
53292cdb 484 */
c6a2ac71 485 struct intel_ringbuffer *ringbuf;
53292cdb 486
0bc40be8 487 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
488 req0->tail += 8;
489 req0->tail &= ringbuf->size - 1;
53292cdb
MT
490 }
491
d8cb8875 492 execlists_submit_requests(req0, req1);
acdd884a
MT
493}
494
c6a2ac71 495static unsigned int
e39d42fa 496execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 497{
6d3d8274 498 struct drm_i915_gem_request *head_req;
e981e7b1 499
0bc40be8 500 assert_spin_locked(&engine->execlist_lock);
e981e7b1 501
0bc40be8 502 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 503 struct drm_i915_gem_request,
e981e7b1
TD
504 execlist_link);
505
e39d42fa
TU
506 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507 return 0;
c6a2ac71
TU
508
509 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510
511 if (--head_req->elsp_submitted > 0)
512 return 0;
513
3c7ba635
ZW
514 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515
e39d42fa
TU
516 list_del(&head_req->execlist_link);
517 i915_gem_request_unreference(head_req);
e981e7b1 518
c6a2ac71 519 return 1;
e981e7b1
TD
520}
521
c6a2ac71 522static u32
0bc40be8 523get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 524 u32 *context_id)
91a41032 525{
c033666a 526 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 527 u32 status;
91a41032 528
c6a2ac71
TU
529 read_pointer %= GEN8_CSB_ENTRIES;
530
0bc40be8 531 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
532
533 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 return 0;
91a41032 535
0bc40be8 536 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
537 read_pointer));
538
539 return status;
91a41032
BW
540}
541
73e4d07f 542/**
3f7531c3 543 * intel_lrc_irq_handler() - handle Context Switch interrupts
14bb2c11 544 * @data: tasklet handler passed in unsigned long
73e4d07f
OM
545 *
546 * Check the unread Context Status Buffers and manage the submission of new
547 * contexts to the ELSP accordingly.
548 */
27af5eea 549static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 550{
27af5eea 551 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 552 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 553 u32 status_pointer;
c6a2ac71 554 unsigned int read_pointer, write_pointer;
26720ab9
TU
555 u32 csb[GEN8_CSB_ENTRIES][2];
556 unsigned int csb_read = 0, i;
c6a2ac71
TU
557 unsigned int submit_contexts = 0;
558
3756685a 559 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 560
0bc40be8 561 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 562
0bc40be8 563 read_pointer = engine->next_context_status_buffer;
5590a5f0 564 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 565 if (read_pointer > write_pointer)
dfc53c5e 566 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 567
e981e7b1 568 while (read_pointer < write_pointer) {
26720ab9
TU
569 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
570 break;
571 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
572 &csb[csb_read][1]);
573 csb_read++;
574 }
91a41032 575
26720ab9
TU
576 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
577
578 /* Update the read pointer to the old write pointer. Manual ringbuffer
579 * management ftw </sarcasm> */
580 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
581 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
582 engine->next_context_status_buffer << 8));
583
3756685a 584 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
585
586 spin_lock(&engine->execlist_lock);
587
588 for (i = 0; i < csb_read; i++) {
589 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
590 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
591 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
592 WARN(1, "Lite Restored request removed from queue\n");
593 } else
594 WARN(1, "Preemption without Lite Restore\n");
595 }
596
26720ab9 597 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
598 GEN8_CTX_STATUS_ELEMENT_SWITCH))
599 submit_contexts +=
26720ab9 600 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
601 }
602
c6a2ac71 603 if (submit_contexts) {
0bc40be8 604 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
605 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
606 execlists_context_unqueue(engine);
5af05fef 607 }
e981e7b1 608
0bc40be8 609 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
610
611 if (unlikely(submit_contexts > 2))
612 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
613}
614
c6a2ac71 615static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 616{
4a570db5 617 struct intel_engine_cs *engine = request->engine;
6d3d8274 618 struct drm_i915_gem_request *cursor;
f1ad5a1f 619 int num_elements = 0;
acdd884a 620
27af5eea 621 spin_lock_bh(&engine->execlist_lock);
acdd884a 622
e2f80391 623 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
624 if (++num_elements > 2)
625 break;
626
627 if (num_elements > 2) {
6d3d8274 628 struct drm_i915_gem_request *tail_req;
f1ad5a1f 629
e2f80391 630 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 631 struct drm_i915_gem_request,
f1ad5a1f
OM
632 execlist_link);
633
ae70797d 634 if (request->ctx == tail_req->ctx) {
f1ad5a1f 635 WARN(tail_req->elsp_submitted != 0,
7ba717cf 636 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
637 list_del(&tail_req->execlist_link);
638 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
639 }
640 }
641
e39d42fa 642 i915_gem_request_reference(request);
e2f80391 643 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 644 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 645 if (num_elements == 0)
e2f80391 646 execlists_context_unqueue(engine);
acdd884a 647
27af5eea 648 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
649}
650
2f20055d 651static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 652{
4a570db5 653 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
654 uint32_t flush_domains;
655 int ret;
656
657 flush_domains = 0;
e2f80391 658 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
659 flush_domains = I915_GEM_GPU_DOMAINS;
660
e2f80391 661 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
662 if (ret)
663 return ret;
664
e2f80391 665 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
666 return 0;
667}
668
535fbe82 669static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
670 struct list_head *vmas)
671{
666796da 672 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
673 struct i915_vma *vma;
674 uint32_t flush_domains = 0;
675 bool flush_chipset = false;
676 int ret;
677
678 list_for_each_entry(vma, vmas, exec_list) {
679 struct drm_i915_gem_object *obj = vma->obj;
680
03ade511 681 if (obj->active & other_rings) {
4a570db5 682 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
683 if (ret)
684 return ret;
685 }
ba8b7ccb
OM
686
687 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688 flush_chipset |= i915_gem_clflush_object(obj, false);
689
690 flush_domains |= obj->base.write_domain;
691 }
692
693 if (flush_domains & I915_GEM_DOMAIN_GTT)
694 wmb();
695
696 /* Unconditionally invalidate gpu caches and ensure that we do flush
697 * any residual writes from the previous batch.
698 */
2f20055d 699 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
700}
701
40e895ce 702int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 703{
24f1d3cc 704 struct intel_engine_cs *engine = request->engine;
9021ad03 705 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 706 int ret;
bc0dce3f 707
6310346e
CW
708 /* Flush enough space to reduce the likelihood of waiting after
709 * we start building the request - in which case we will just
710 * have to repeat work.
711 */
0e93cdd4 712 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 713
9021ad03 714 if (!ce->state) {
978f1e09
CW
715 ret = execlists_context_deferred_alloc(request->ctx, engine);
716 if (ret)
717 return ret;
718 }
719
9021ad03 720 request->ringbuf = ce->ringbuf;
f3cc01f0 721
a7e02199
AD
722 if (i915.enable_guc_submission) {
723 /*
724 * Check that the GuC has space for the request before
725 * going any further, as the i915_add_request() call
726 * later on mustn't fail ...
727 */
7c2c270d 728 ret = i915_guc_wq_check_space(request);
a7e02199
AD
729 if (ret)
730 return ret;
731 }
732
24f1d3cc
CW
733 ret = intel_lr_context_pin(request->ctx, engine);
734 if (ret)
735 return ret;
e28e404c 736
bfa01200
CW
737 ret = intel_ring_begin(request, 0);
738 if (ret)
739 goto err_unpin;
740
9021ad03 741 if (!ce->initialised) {
24f1d3cc
CW
742 ret = engine->init_context(request);
743 if (ret)
744 goto err_unpin;
745
9021ad03 746 ce->initialised = true;
24f1d3cc
CW
747 }
748
749 /* Note that after this point, we have committed to using
750 * this request as it is being used to both track the
751 * state of engine initialisation and liveness of the
752 * golden renderstate above. Think twice before you try
753 * to cancel/unwind this request now.
754 */
755
0e93cdd4 756 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
757 return 0;
758
759err_unpin:
24f1d3cc 760 intel_lr_context_unpin(request->ctx, engine);
e28e404c 761 return ret;
bc0dce3f
JH
762}
763
bc0dce3f
JH
764/*
765 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 766 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
767 *
768 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
769 * really happens during submission is that the context and current tail will be placed
770 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
771 * point, the tail *inside* the context is updated and the ELSP written to.
772 */
7c17d377 773static int
ae70797d 774intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 775{
7c17d377 776 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 777 struct intel_engine_cs *engine = request->engine;
bc0dce3f 778
7c17d377
CW
779 intel_logical_ring_advance(ringbuf);
780 request->tail = ringbuf->tail;
bc0dce3f 781
7c17d377
CW
782 /*
783 * Here we add two extra NOOPs as padding to avoid
784 * lite restore of a context with HEAD==TAIL.
785 *
786 * Caller must reserve WA_TAIL_DWORDS for us!
787 */
788 intel_logical_ring_emit(ringbuf, MI_NOOP);
789 intel_logical_ring_emit(ringbuf, MI_NOOP);
790 intel_logical_ring_advance(ringbuf);
d1675198 791
117897f4 792 if (intel_engine_stopped(engine))
7c17d377 793 return 0;
bc0dce3f 794
a16a4052
CW
795 /* We keep the previous context alive until we retire the following
796 * request. This ensures that any the context object is still pinned
797 * for any residual writes the HW makes into it on the context switch
798 * into the next object following the breadcrumb. Otherwise, we may
799 * retire the context too early.
800 */
801 request->previous_context = engine->last_context;
802 engine->last_context = request->ctx;
f4e2dece 803
7c2c270d
DG
804 if (i915.enable_guc_submission)
805 i915_guc_submit(request);
d1675198
AD
806 else
807 execlists_context_queue(request);
7c17d377
CW
808
809 return 0;
bc0dce3f
JH
810}
811
73e4d07f
OM
812/**
813 * execlists_submission() - submit a batchbuffer for execution, Execlists style
14bb2c11 814 * @params: execbuffer call parameters.
73e4d07f
OM
815 * @args: execbuffer call arguments.
816 * @vmas: list of vmas.
73e4d07f
OM
817 *
818 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
819 * away the submission details of the execbuffer ioctl call.
820 *
821 * Return: non-zero if the submission fails.
822 */
5f19e2bf 823int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 824 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 825 struct list_head *vmas)
454afebd 826{
5f19e2bf 827 struct drm_device *dev = params->dev;
4a570db5 828 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 829 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 830 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 831 u64 exec_start;
ba8b7ccb
OM
832 int instp_mode;
833 u32 instp_mask;
834 int ret;
835
836 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
837 instp_mask = I915_EXEC_CONSTANTS_MASK;
838 switch (instp_mode) {
839 case I915_EXEC_CONSTANTS_REL_GENERAL:
840 case I915_EXEC_CONSTANTS_ABSOLUTE:
841 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 842 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
843 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
844 return -EINVAL;
845 }
846
847 if (instp_mode != dev_priv->relative_constants_mode) {
848 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
849 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
850 return -EINVAL;
851 }
852
853 /* The HW changed the meaning on this bit on gen6 */
854 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
855 }
856 break;
857 default:
858 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
859 return -EINVAL;
860 }
861
ba8b7ccb
OM
862 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
863 DRM_DEBUG("sol reset is gen7 only\n");
864 return -EINVAL;
865 }
866
535fbe82 867 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
868 if (ret)
869 return ret;
870
4a570db5 871 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 872 instp_mode != dev_priv->relative_constants_mode) {
987046ad 873 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
874 if (ret)
875 return ret;
876
877 intel_logical_ring_emit(ringbuf, MI_NOOP);
878 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 879 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
880 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
881 intel_logical_ring_advance(ringbuf);
882
883 dev_priv->relative_constants_mode = instp_mode;
884 }
885
5f19e2bf
JH
886 exec_start = params->batch_obj_vm_offset +
887 args->batch_start_offset;
888
e2f80391 889 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
890 if (ret)
891 return ret;
892
95c24161 893 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 894
8a8edb59 895 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 896
454afebd
OM
897 return 0;
898}
899
e39d42fa 900void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 901{
6d3d8274 902 struct drm_i915_gem_request *req, *tmp;
e39d42fa 903 LIST_HEAD(cancel_list);
c86ee3a9 904
c033666a 905 WARN_ON(!mutex_is_locked(&engine->i915->dev->struct_mutex));
c86ee3a9 906
27af5eea 907 spin_lock_bh(&engine->execlist_lock);
e39d42fa 908 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 909 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 910
e39d42fa 911 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 912 list_del(&req->execlist_link);
f8210795 913 i915_gem_request_unreference(req);
c86ee3a9
TD
914 }
915}
916
0bc40be8 917void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 918{
c033666a 919 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
920 int ret;
921
117897f4 922 if (!intel_engine_initialized(engine))
9832b9da
OM
923 return;
924
666796da 925 ret = intel_engine_idle(engine);
f4457ae7 926 if (ret)
9832b9da 927 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 928 engine->name, ret);
9832b9da
OM
929
930 /* TODO: Is this correct with Execlists enabled? */
0bc40be8 931 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
3e7941a1
CW
932 if (intel_wait_for_register(dev_priv,
933 RING_MI_MODE(engine->mmio_base),
934 MODE_IDLE, MODE_IDLE,
935 1000)) {
0bc40be8 936 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
937 return;
938 }
0bc40be8 939 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
940}
941
4866d729 942int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 943{
4a570db5 944 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
945 int ret;
946
e2f80391 947 if (!engine->gpu_caches_dirty)
48e29f55
OM
948 return 0;
949
e2f80391 950 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
951 if (ret)
952 return ret;
953
e2f80391 954 engine->gpu_caches_dirty = false;
48e29f55
OM
955 return 0;
956}
957
e2efd130 958static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 959 struct intel_engine_cs *engine)
dcb4c12a 960{
24f1d3cc 961 struct drm_i915_private *dev_priv = ctx->i915;
9021ad03 962 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
963 void *vaddr;
964 u32 *lrc_reg_state;
ca82580c 965 int ret;
dcb4c12a 966
24f1d3cc 967 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
ca82580c 968
9021ad03 969 if (ce->pin_count++)
24f1d3cc
CW
970 return 0;
971
9021ad03
CW
972 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
973 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
e84fe803 974 if (ret)
24f1d3cc 975 goto err;
7ba717cf 976
9021ad03 977 vaddr = i915_gem_object_pin_map(ce->state);
7d774cac
TU
978 if (IS_ERR(vaddr)) {
979 ret = PTR_ERR(vaddr);
82352e90
TU
980 goto unpin_ctx_obj;
981 }
982
7d774cac
TU
983 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
984
9021ad03 985 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
e84fe803 986 if (ret)
7d774cac 987 goto unpin_map;
d1675198 988
24f1d3cc 989 i915_gem_context_reference(ctx);
9021ad03 990 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
0bc40be8 991 intel_lr_context_descriptor_update(ctx, engine);
9021ad03
CW
992
993 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
994 ce->lrc_reg_state = lrc_reg_state;
995 ce->state->dirty = true;
e93c28f3 996
e84fe803
NH
997 /* Invalidate GuC TLB. */
998 if (i915.enable_guc_submission)
999 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1000
24f1d3cc 1001 return 0;
7ba717cf 1002
7d774cac 1003unpin_map:
9021ad03 1004 i915_gem_object_unpin_map(ce->state);
7ba717cf 1005unpin_ctx_obj:
9021ad03 1006 i915_gem_object_ggtt_unpin(ce->state);
24f1d3cc 1007err:
9021ad03 1008 ce->pin_count = 0;
e84fe803
NH
1009 return ret;
1010}
1011
e2efd130 1012void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 1013 struct intel_engine_cs *engine)
e84fe803 1014{
9021ad03 1015 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 1016
24f1d3cc 1017 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
9021ad03 1018 GEM_BUG_ON(ce->pin_count == 0);
321fe304 1019
9021ad03 1020 if (--ce->pin_count)
24f1d3cc 1021 return;
e84fe803 1022
9021ad03 1023 intel_unpin_ringbuffer_obj(ce->ringbuf);
dcb4c12a 1024
9021ad03
CW
1025 i915_gem_object_unpin_map(ce->state);
1026 i915_gem_object_ggtt_unpin(ce->state);
af3302b9 1027
9021ad03
CW
1028 ce->lrc_vma = NULL;
1029 ce->lrc_desc = 0;
1030 ce->lrc_reg_state = NULL;
321fe304 1031
24f1d3cc 1032 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1033}
1034
e2be4faf 1035static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1036{
1037 int ret, i;
4a570db5 1038 struct intel_engine_cs *engine = req->engine;
e2be4faf 1039 struct intel_ringbuffer *ringbuf = req->ringbuf;
c033666a 1040 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 1041
cd7feaaa 1042 if (w->count == 0)
771b9a53
MT
1043 return 0;
1044
e2f80391 1045 engine->gpu_caches_dirty = true;
4866d729 1046 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1047 if (ret)
1048 return ret;
1049
987046ad 1050 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1051 if (ret)
1052 return ret;
1053
1054 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1055 for (i = 0; i < w->count; i++) {
f92a9162 1056 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1057 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1058 }
1059 intel_logical_ring_emit(ringbuf, MI_NOOP);
1060
1061 intel_logical_ring_advance(ringbuf);
1062
e2f80391 1063 engine->gpu_caches_dirty = true;
4866d729 1064 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1065 if (ret)
1066 return ret;
1067
1068 return 0;
1069}
1070
83b8a982 1071#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1072 do { \
83b8a982
AS
1073 int __index = (index)++; \
1074 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1075 return -ENOSPC; \
1076 } \
83b8a982 1077 batch[__index] = (cmd); \
17ee950d
AS
1078 } while (0)
1079
8f40db77 1080#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1081 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1082
1083/*
1084 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1085 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1086 * but there is a slight complication as this is applied in WA batch where the
1087 * values are only initialized once so we cannot take register value at the
1088 * beginning and reuse it further; hence we save its value to memory, upload a
1089 * constant value with bit21 set and then we restore it back with the saved value.
1090 * To simplify the WA, a constant value is formed by using the default value
1091 * of this register. This shouldn't be a problem because we are only modifying
1092 * it for a short period and this batch in non-premptible. We can ofcourse
1093 * use additional instructions that read the actual value of the register
1094 * at that time and set our bit of interest but it makes the WA complicated.
1095 *
1096 * This WA is also required for Gen9 so extracting as a function avoids
1097 * code duplication.
1098 */
0bc40be8 1099static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1100 uint32_t *const batch,
1101 uint32_t index)
1102{
1103 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1104
a4106a78 1105 /*
fe905819 1106 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
1107 * This WA is implemented in skl_init_clock_gating() but since
1108 * this batch updates GEN8_L3SQCREG4 with default value we need to
1109 * set this bit here to retain the WA during flush.
1110 */
fe905819
MK
1111 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1112 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
a4106a78
AS
1113 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1114
f1afe24f 1115 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1116 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1117 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1118 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1119 wa_ctx_emit(batch, index, 0);
1120
1121 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1122 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1123 wa_ctx_emit(batch, index, l3sqc4_flush);
1124
1125 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1126 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1127 PIPE_CONTROL_DC_FLUSH_ENABLE));
1128 wa_ctx_emit(batch, index, 0);
1129 wa_ctx_emit(batch, index, 0);
1130 wa_ctx_emit(batch, index, 0);
1131 wa_ctx_emit(batch, index, 0);
1132
f1afe24f 1133 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1134 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1135 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1136 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1137 wa_ctx_emit(batch, index, 0);
9e000847
AS
1138
1139 return index;
1140}
1141
17ee950d
AS
1142static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1143 uint32_t offset,
1144 uint32_t start_alignment)
1145{
1146 return wa_ctx->offset = ALIGN(offset, start_alignment);
1147}
1148
1149static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1150 uint32_t offset,
1151 uint32_t size_alignment)
1152{
1153 wa_ctx->size = offset - wa_ctx->offset;
1154
1155 WARN(wa_ctx->size % size_alignment,
1156 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1157 wa_ctx->size, size_alignment);
1158 return 0;
1159}
1160
1161/**
1162 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1163 *
14bb2c11 1164 * @engine: only applicable for RCS
17ee950d
AS
1165 * @wa_ctx: structure representing wa_ctx
1166 * offset: specifies start of the batch, should be cache-aligned. This is updated
1167 * with the offset value received as input.
1168 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1169 * @batch: page in which WA are loaded
1170 * @offset: This field specifies the start of the batch, it should be
1171 * cache-aligned otherwise it is adjusted accordingly.
1172 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1173 * initialized at the beginning and shared across all contexts but this field
1174 * helps us to have multiple batches at different offsets and select them based
1175 * on a criteria. At the moment this batch always start at the beginning of the page
1176 * and at this point we don't have multiple wa_ctx batch buffers.
1177 *
1178 * The number of WA applied are not known at the beginning; we use this field
1179 * to return the no of DWORDS written.
4d78c8dc 1180 *
17ee950d
AS
1181 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1182 * so it adds NOOPs as padding to make it cacheline aligned.
1183 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1184 * makes a complete batch buffer.
1185 *
1186 * Return: non-zero if we exceed the PAGE_SIZE limit.
1187 */
1188
0bc40be8 1189static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1190 struct i915_wa_ctx_bb *wa_ctx,
1191 uint32_t *const batch,
1192 uint32_t *offset)
1193{
0160f055 1194 uint32_t scratch_addr;
17ee950d
AS
1195 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1196
7ad00d1a 1197 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1198 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1199
c82435bb 1200 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1201 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1202 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1203 if (rc < 0)
1204 return rc;
1205 index = rc;
c82435bb
AS
1206 }
1207
0160f055
AS
1208 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1209 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1210 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1211
83b8a982
AS
1212 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1213 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1214 PIPE_CONTROL_GLOBAL_GTT_IVB |
1215 PIPE_CONTROL_CS_STALL |
1216 PIPE_CONTROL_QW_WRITE));
1217 wa_ctx_emit(batch, index, scratch_addr);
1218 wa_ctx_emit(batch, index, 0);
1219 wa_ctx_emit(batch, index, 0);
1220 wa_ctx_emit(batch, index, 0);
0160f055 1221
17ee950d
AS
1222 /* Pad to end of cacheline */
1223 while (index % CACHELINE_DWORDS)
83b8a982 1224 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1225
1226 /*
1227 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1228 * execution depends on the length specified in terms of cache lines
1229 * in the register CTX_RCS_INDIRECT_CTX
1230 */
1231
1232 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1233}
1234
1235/**
1236 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1237 *
14bb2c11 1238 * @engine: only applicable for RCS
17ee950d
AS
1239 * @wa_ctx: structure representing wa_ctx
1240 * offset: specifies start of the batch, should be cache-aligned.
1241 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1242 * @batch: page in which WA are loaded
17ee950d
AS
1243 * @offset: This field specifies the start of this batch.
1244 * This batch is started immediately after indirect_ctx batch. Since we ensure
1245 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1246 *
1247 * The number of DWORDS written are returned using this field.
1248 *
1249 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1250 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1251 */
0bc40be8 1252static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1253 struct i915_wa_ctx_bb *wa_ctx,
1254 uint32_t *const batch,
1255 uint32_t *offset)
1256{
1257 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1258
7ad00d1a 1259 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1260 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1261
83b8a982 1262 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1263
1264 return wa_ctx_end(wa_ctx, *offset = index, 1);
1265}
1266
0bc40be8 1267static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1268 struct i915_wa_ctx_bb *wa_ctx,
1269 uint32_t *const batch,
1270 uint32_t *offset)
1271{
a4106a78 1272 int ret;
0504cffc
AS
1273 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1274
0907c8f7 1275 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1276 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1277 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1278 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1279
a4106a78 1280 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1281 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1282 if (ret < 0)
1283 return ret;
1284 index = ret;
1285
066d4628
MK
1286 /* WaClearSlmSpaceAtContextSwitch:kbl */
1287 /* Actual scratch location is at 128 bytes offset */
1288 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1289 uint32_t scratch_addr
1290 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1291
1292 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1293 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1294 PIPE_CONTROL_GLOBAL_GTT_IVB |
1295 PIPE_CONTROL_CS_STALL |
1296 PIPE_CONTROL_QW_WRITE));
1297 wa_ctx_emit(batch, index, scratch_addr);
1298 wa_ctx_emit(batch, index, 0);
1299 wa_ctx_emit(batch, index, 0);
1300 wa_ctx_emit(batch, index, 0);
1301 }
0504cffc
AS
1302 /* Pad to end of cacheline */
1303 while (index % CACHELINE_DWORDS)
1304 wa_ctx_emit(batch, index, MI_NOOP);
1305
1306 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1307}
1308
0bc40be8 1309static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1310 struct i915_wa_ctx_bb *wa_ctx,
1311 uint32_t *const batch,
1312 uint32_t *offset)
1313{
1314 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1315
9b01435d 1316 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1317 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1318 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1319 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1320 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1321 wa_ctx_emit(batch, index,
1322 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1323 wa_ctx_emit(batch, index, MI_NOOP);
1324 }
1325
b1e429fe 1326 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1327 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1328 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1329
1330 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1331 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1332
1333 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1334 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1335
1336 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1337 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1338
1339 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1340 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1341 wa_ctx_emit(batch, index, 0x0);
1342 wa_ctx_emit(batch, index, MI_NOOP);
1343 }
1344
0907c8f7 1345 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1346 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1347 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1348 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1349
0504cffc
AS
1350 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1351
1352 return wa_ctx_end(wa_ctx, *offset = index, 1);
1353}
1354
0bc40be8 1355static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1356{
1357 int ret;
1358
c033666a 1359 engine->wa_ctx.obj = i915_gem_object_create(engine->i915->dev,
0bc40be8 1360 PAGE_ALIGN(size));
fe3db79b 1361 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1362 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1363 ret = PTR_ERR(engine->wa_ctx.obj);
1364 engine->wa_ctx.obj = NULL;
1365 return ret;
17ee950d
AS
1366 }
1367
0bc40be8 1368 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1369 if (ret) {
1370 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1371 ret);
0bc40be8 1372 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1373 return ret;
1374 }
1375
1376 return 0;
1377}
1378
0bc40be8 1379static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1380{
0bc40be8
TU
1381 if (engine->wa_ctx.obj) {
1382 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1383 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1384 engine->wa_ctx.obj = NULL;
17ee950d
AS
1385 }
1386}
1387
0bc40be8 1388static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1389{
1390 int ret;
1391 uint32_t *batch;
1392 uint32_t offset;
1393 struct page *page;
0bc40be8 1394 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1395
0bc40be8 1396 WARN_ON(engine->id != RCS);
17ee950d 1397
5e60d790 1398 /* update this when WA for higher Gen are added */
c033666a 1399 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1400 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1401 INTEL_GEN(engine->i915));
5e60d790 1402 return 0;
0504cffc 1403 }
5e60d790 1404
c4db7599 1405 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1406 if (engine->scratch.obj == NULL) {
1407 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1408 return -EINVAL;
1409 }
1410
0bc40be8 1411 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1412 if (ret) {
1413 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1414 return ret;
1415 }
1416
033908ae 1417 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1418 batch = kmap_atomic(page);
1419 offset = 0;
1420
c033666a 1421 if (IS_GEN8(engine->i915)) {
0bc40be8 1422 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1423 &wa_ctx->indirect_ctx,
1424 batch,
1425 &offset);
1426 if (ret)
1427 goto out;
1428
0bc40be8 1429 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1430 &wa_ctx->per_ctx,
1431 batch,
1432 &offset);
1433 if (ret)
1434 goto out;
c033666a 1435 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1436 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1437 &wa_ctx->indirect_ctx,
1438 batch,
1439 &offset);
1440 if (ret)
1441 goto out;
1442
0bc40be8 1443 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1444 &wa_ctx->per_ctx,
1445 batch,
1446 &offset);
1447 if (ret)
1448 goto out;
17ee950d
AS
1449 }
1450
1451out:
1452 kunmap_atomic(batch);
1453 if (ret)
0bc40be8 1454 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1455
1456 return ret;
1457}
1458
04794adb
TU
1459static void lrc_init_hws(struct intel_engine_cs *engine)
1460{
c033666a 1461 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1462
1463 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1464 (u32)engine->status_page.gfx_addr);
1465 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1466}
1467
0bc40be8 1468static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1469{
c033666a 1470 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1471 unsigned int next_context_status_buffer_hw;
9b1136d5 1472
04794adb 1473 lrc_init_hws(engine);
e84fe803 1474
0bc40be8
TU
1475 I915_WRITE_IMR(engine,
1476 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1477 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1478
0bc40be8 1479 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1480 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1481 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1482 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1483
1484 /*
1485 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1486 * zero, we need to read the write pointer from hardware and use its
1487 * value because "this register is power context save restored".
1488 * Effectively, these states have been observed:
1489 *
1490 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1491 * BDW | CSB regs not reset | CSB regs reset |
1492 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1493 * SKL | ? | ? |
1494 * BXT | ? | ? |
dfc53c5e 1495 */
5590a5f0 1496 next_context_status_buffer_hw =
0bc40be8 1497 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1498
1499 /*
1500 * When the CSB registers are reset (also after power-up / gpu reset),
1501 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1502 * this special case, so the first element read is CSB[0].
1503 */
1504 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1505 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1506
0bc40be8
TU
1507 engine->next_context_status_buffer = next_context_status_buffer_hw;
1508 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1509
fc0768ce 1510 intel_engine_init_hangcheck(engine);
9b1136d5 1511
0ccdacf6 1512 return intel_mocs_init_engine(engine);
9b1136d5
OM
1513}
1514
0bc40be8 1515static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1516{
c033666a 1517 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1518 int ret;
1519
0bc40be8 1520 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1521 if (ret)
1522 return ret;
1523
1524 /* We need to disable the AsyncFlip performance optimisations in order
1525 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1526 * programmed to '1' on all products.
1527 *
1528 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1529 */
1530 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1531
9b1136d5
OM
1532 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1533
0bc40be8 1534 return init_workarounds_ring(engine);
9b1136d5
OM
1535}
1536
0bc40be8 1537static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1538{
1539 int ret;
1540
0bc40be8 1541 ret = gen8_init_common_ring(engine);
82ef822e
DL
1542 if (ret)
1543 return ret;
1544
0bc40be8 1545 return init_workarounds_ring(engine);
82ef822e
DL
1546}
1547
7a01a0a2
MT
1548static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1549{
1550 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1551 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1552 struct intel_ringbuffer *ringbuf = req->ringbuf;
1553 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1554 int i, ret;
1555
987046ad 1556 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1557 if (ret)
1558 return ret;
1559
1560 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1561 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1562 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1563
e2f80391
TU
1564 intel_logical_ring_emit_reg(ringbuf,
1565 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1566 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1567 intel_logical_ring_emit_reg(ringbuf,
1568 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1569 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1570 }
1571
1572 intel_logical_ring_emit(ringbuf, MI_NOOP);
1573 intel_logical_ring_advance(ringbuf);
1574
1575 return 0;
1576}
1577
be795fc1 1578static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1579 u64 offset, unsigned dispatch_flags)
15648585 1580{
be795fc1 1581 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1582 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1583 int ret;
1584
7a01a0a2
MT
1585 /* Don't rely in hw updating PDPs, specially in lite-restore.
1586 * Ideally, we should set Force PD Restore in ctx descriptor,
1587 * but we can't. Force Restore would be a second option, but
1588 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1589 * not idle). PML4 is allocated during ppgtt init so this is
1590 * not needed in 48-bit.*/
7a01a0a2 1591 if (req->ctx->ppgtt &&
666796da 1592 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1593 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1594 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1595 ret = intel_logical_ring_emit_pdps(req);
1596 if (ret)
1597 return ret;
1598 }
7a01a0a2 1599
666796da 1600 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1601 }
1602
987046ad 1603 ret = intel_ring_begin(req, 4);
15648585
OM
1604 if (ret)
1605 return ret;
1606
1607 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1608 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1609 (ppgtt<<8) |
1610 (dispatch_flags & I915_DISPATCH_RS ?
1611 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1612 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1613 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1614 intel_logical_ring_emit(ringbuf, MI_NOOP);
1615 intel_logical_ring_advance(ringbuf);
1616
1617 return 0;
1618}
1619
31bb59cc 1620static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1621{
c033666a 1622 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1623 I915_WRITE_IMR(engine,
1624 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1625 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1626}
1627
31bb59cc 1628static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1629{
c033666a 1630 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1631 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1632}
1633
7deb4d39 1634static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1635 u32 invalidate_domains,
1636 u32 unused)
1637{
7deb4d39 1638 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1639 struct intel_engine_cs *engine = ringbuf->engine;
c033666a 1640 struct drm_i915_private *dev_priv = request->i915;
4712274c
OM
1641 uint32_t cmd;
1642 int ret;
1643
987046ad 1644 ret = intel_ring_begin(request, 4);
4712274c
OM
1645 if (ret)
1646 return ret;
1647
1648 cmd = MI_FLUSH_DW + 1;
1649
f0a1fb10
CW
1650 /* We always require a command barrier so that subsequent
1651 * commands, such as breadcrumb interrupts, are strictly ordered
1652 * wrt the contents of the write cache being flushed to memory
1653 * (and thus being coherent from the CPU).
1654 */
1655 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1656
1657 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1658 cmd |= MI_INVALIDATE_TLB;
4a570db5 1659 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1660 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1661 }
1662
1663 intel_logical_ring_emit(ringbuf, cmd);
1664 intel_logical_ring_emit(ringbuf,
1665 I915_GEM_HWS_SCRATCH_ADDR |
1666 MI_FLUSH_DW_USE_GTT);
1667 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1668 intel_logical_ring_emit(ringbuf, 0); /* value */
1669 intel_logical_ring_advance(ringbuf);
1670
1671 return 0;
1672}
1673
7deb4d39 1674static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1675 u32 invalidate_domains,
1676 u32 flush_domains)
1677{
7deb4d39 1678 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1679 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1680 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
0b2d0934 1681 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1682 u32 flags = 0;
1683 int ret;
0b2d0934 1684 int len;
4712274c
OM
1685
1686 flags |= PIPE_CONTROL_CS_STALL;
1687
1688 if (flush_domains) {
1689 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1690 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1691 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1692 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1693 }
1694
1695 if (invalidate_domains) {
1696 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1697 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1698 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1699 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1700 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1701 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1702 flags |= PIPE_CONTROL_QW_WRITE;
1703 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1704
1a5a9ce7
BW
1705 /*
1706 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1707 * pipe control.
1708 */
c033666a 1709 if (IS_GEN9(request->i915))
1a5a9ce7 1710 vf_flush_wa = true;
0b2d0934
MK
1711
1712 /* WaForGAMHang:kbl */
1713 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1714 dc_flush_wa = true;
1a5a9ce7 1715 }
9647ff36 1716
0b2d0934
MK
1717 len = 6;
1718
1719 if (vf_flush_wa)
1720 len += 6;
1721
1722 if (dc_flush_wa)
1723 len += 12;
1724
1725 ret = intel_ring_begin(request, len);
4712274c
OM
1726 if (ret)
1727 return ret;
1728
9647ff36
ID
1729 if (vf_flush_wa) {
1730 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1731 intel_logical_ring_emit(ringbuf, 0);
1732 intel_logical_ring_emit(ringbuf, 0);
1733 intel_logical_ring_emit(ringbuf, 0);
1734 intel_logical_ring_emit(ringbuf, 0);
1735 intel_logical_ring_emit(ringbuf, 0);
1736 }
1737
0b2d0934
MK
1738 if (dc_flush_wa) {
1739 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1740 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1741 intel_logical_ring_emit(ringbuf, 0);
1742 intel_logical_ring_emit(ringbuf, 0);
1743 intel_logical_ring_emit(ringbuf, 0);
1744 intel_logical_ring_emit(ringbuf, 0);
1745 }
1746
4712274c
OM
1747 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1748 intel_logical_ring_emit(ringbuf, flags);
1749 intel_logical_ring_emit(ringbuf, scratch_addr);
1750 intel_logical_ring_emit(ringbuf, 0);
1751 intel_logical_ring_emit(ringbuf, 0);
1752 intel_logical_ring_emit(ringbuf, 0);
0b2d0934
MK
1753
1754 if (dc_flush_wa) {
1755 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1756 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1757 intel_logical_ring_emit(ringbuf, 0);
1758 intel_logical_ring_emit(ringbuf, 0);
1759 intel_logical_ring_emit(ringbuf, 0);
1760 intel_logical_ring_emit(ringbuf, 0);
1761 }
1762
4712274c
OM
1763 intel_logical_ring_advance(ringbuf);
1764
1765 return 0;
1766}
1767
c04e0f3b 1768static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1769{
319404df
ID
1770 /*
1771 * On BXT A steppings there is a HW coherency issue whereby the
1772 * MI_STORE_DATA_IMM storing the completed request's seqno
1773 * occasionally doesn't invalidate the CPU cache. Work around this by
1774 * clflushing the corresponding cacheline whenever the caller wants
1775 * the coherency to be guaranteed. Note that this cacheline is known
1776 * to be clean at this point, since we only write it in
1777 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1778 * this clflush in practice becomes an invalidate operation.
1779 */
c04e0f3b 1780 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1781}
1782
7c17d377
CW
1783/*
1784 * Reserve space for 2 NOOPs at the end of each request to be
1785 * used as a workaround for not being allowed to do lite
1786 * restore with HEAD==TAIL (WaIdleLiteRestore).
1787 */
1788#define WA_TAIL_DWORDS 2
1789
c4e76638 1790static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1791{
c4e76638 1792 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1793 int ret;
1794
987046ad 1795 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1796 if (ret)
1797 return ret;
1798
7c17d377
CW
1799 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1800 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1801
4da46e1e 1802 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1803 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1804 intel_logical_ring_emit(ringbuf,
a58c01aa 1805 intel_hws_seqno_address(request->engine) |
7c17d377 1806 MI_FLUSH_DW_USE_GTT);
4da46e1e 1807 intel_logical_ring_emit(ringbuf, 0);
1b7744e7 1808 intel_logical_ring_emit(ringbuf, request->seqno);
4da46e1e
OM
1809 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1810 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1811 return intel_logical_ring_advance_and_submit(request);
1812}
4da46e1e 1813
7c17d377
CW
1814static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1815{
1816 struct intel_ringbuffer *ringbuf = request->ringbuf;
1817 int ret;
53292cdb 1818
987046ad 1819 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1820 if (ret)
1821 return ret;
1822
ce81a65c
MW
1823 /* We're using qword write, seqno should be aligned to 8 bytes. */
1824 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1825
7c17d377
CW
1826 /* w/a for post sync ops following a GPGPU operation we
1827 * need a prior CS_STALL, which is emitted by the flush
1828 * following the batch.
1829 */
ce81a65c 1830 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1831 intel_logical_ring_emit(ringbuf,
1832 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1833 PIPE_CONTROL_CS_STALL |
1834 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1835 intel_logical_ring_emit(ringbuf,
1836 intel_hws_seqno_address(request->engine));
7c17d377
CW
1837 intel_logical_ring_emit(ringbuf, 0);
1838 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1839 /* We're thrashing one dword of HWS. */
1840 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1841 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1842 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1843 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1844}
1845
be01363f 1846static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1847{
cef437ad 1848 struct render_state so;
cef437ad
DL
1849 int ret;
1850
4a570db5 1851 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1852 if (ret)
1853 return ret;
1854
1855 if (so.rodata == NULL)
1856 return 0;
1857
4a570db5 1858 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1859 I915_DISPATCH_SECURE);
cef437ad
DL
1860 if (ret)
1861 goto out;
1862
4a570db5 1863 ret = req->engine->emit_bb_start(req,
84e81020
AS
1864 (so.ggtt_offset + so.aux_batch_offset),
1865 I915_DISPATCH_SECURE);
1866 if (ret)
1867 goto out;
1868
b2af0376 1869 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1870
cef437ad
DL
1871out:
1872 i915_gem_render_state_fini(&so);
1873 return ret;
1874}
1875
8753181e 1876static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1877{
1878 int ret;
1879
e2be4faf 1880 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1881 if (ret)
1882 return ret;
1883
3bbaba0c
PA
1884 ret = intel_rcs_context_init_mocs(req);
1885 /*
1886 * Failing to program the MOCS is non-fatal.The system will not
1887 * run at peak performance. So generate an error and carry on.
1888 */
1889 if (ret)
1890 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1891
be01363f 1892 return intel_lr_context_render_state_init(req);
e7778be1
TD
1893}
1894
73e4d07f
OM
1895/**
1896 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1897 *
14bb2c11 1898 * @engine: Engine Command Streamer.
73e4d07f
OM
1899 *
1900 */
0bc40be8 1901void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1902{
6402c330 1903 struct drm_i915_private *dev_priv;
9832b9da 1904
117897f4 1905 if (!intel_engine_initialized(engine))
48d82387
OM
1906 return;
1907
27af5eea
TU
1908 /*
1909 * Tasklet cannot be active at this point due intel_mark_active/idle
1910 * so this is just for documentation.
1911 */
1912 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1913 tasklet_kill(&engine->irq_tasklet);
1914
c033666a 1915 dev_priv = engine->i915;
6402c330 1916
0bc40be8
TU
1917 if (engine->buffer) {
1918 intel_logical_ring_stop(engine);
1919 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1920 }
48d82387 1921
0bc40be8
TU
1922 if (engine->cleanup)
1923 engine->cleanup(engine);
48d82387 1924
0bc40be8
TU
1925 i915_cmd_parser_fini_ring(engine);
1926 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1927
688e6c72
CW
1928 intel_engine_fini_breadcrumbs(engine);
1929
0bc40be8 1930 if (engine->status_page.obj) {
7d774cac 1931 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1932 engine->status_page.obj = NULL;
48d82387 1933 }
24f1d3cc 1934 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1935
0bc40be8
TU
1936 engine->idle_lite_restore_wa = 0;
1937 engine->disable_lite_restore_wa = false;
1938 engine->ctx_desc_template = 0;
ca82580c 1939
0bc40be8 1940 lrc_destroy_wa_ctx_obj(engine);
c033666a 1941 engine->i915 = NULL;
454afebd
OM
1942}
1943
c9cacf93 1944static void
e1382efb 1945logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1946{
1947 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1948 engine->init_hw = gen8_init_common_ring;
1949 engine->emit_request = gen8_emit_request;
1950 engine->emit_flush = gen8_emit_flush;
31bb59cc
CW
1951 engine->irq_enable = gen8_logical_ring_enable_irq;
1952 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1953 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1954 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1955 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1956}
1957
d9f3af96 1958static inline void
0bc40be8 1959logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1960{
0bc40be8
TU
1961 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1962 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1963}
1964
7d774cac 1965static int
04794adb
TU
1966lrc_setup_hws(struct intel_engine_cs *engine,
1967 struct drm_i915_gem_object *dctx_obj)
1968{
7d774cac 1969 void *hws;
04794adb
TU
1970
1971 /* The HWSP is part of the default context object in LRC mode. */
1972 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1973 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1974 hws = i915_gem_object_pin_map(dctx_obj);
1975 if (IS_ERR(hws))
1976 return PTR_ERR(hws);
1977 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1978 engine->status_page.obj = dctx_obj;
7d774cac
TU
1979
1980 return 0;
04794adb
TU
1981}
1982
a19d6ff2
TU
1983static int
1984logical_ring_init(struct intel_engine_cs *engine)
1985{
1986 struct i915_gem_context *dctx = engine->i915->kernel_context;
1987 int ret;
1988
688e6c72
CW
1989 ret = intel_engine_init_breadcrumbs(engine);
1990 if (ret)
1991 goto error;
1992
a19d6ff2
TU
1993 ret = i915_cmd_parser_init_ring(engine);
1994 if (ret)
1995 goto error;
1996
1997 ret = execlists_context_deferred_alloc(dctx, engine);
1998 if (ret)
1999 goto error;
2000
2001 /* As this is the default context, always pin it */
2002 ret = intel_lr_context_pin(dctx, engine);
2003 if (ret) {
2004 DRM_ERROR("Failed to pin context for %s: %d\n",
2005 engine->name, ret);
2006 goto error;
2007 }
2008
2009 /* And setup the hardware status page. */
2010 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2011 if (ret) {
2012 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2013 goto error;
2014 }
2015
2016 return 0;
2017
2018error:
2019 intel_logical_ring_cleanup(engine);
2020 return ret;
2021}
2022
2023static int logical_render_ring_init(struct intel_engine_cs *engine)
2024{
2025 struct drm_i915_private *dev_priv = engine->i915;
2026 int ret;
2027
2028 if (HAS_L3_DPF(dev_priv))
2029 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2030
2031 /* Override some for render ring. */
2032 if (INTEL_GEN(dev_priv) >= 9)
2033 engine->init_hw = gen9_init_render_ring;
2034 else
2035 engine->init_hw = gen8_init_render_ring;
2036 engine->init_context = gen8_init_rcs_context;
2037 engine->cleanup = intel_fini_pipe_control;
2038 engine->emit_flush = gen8_emit_flush_render;
2039 engine->emit_request = gen8_emit_request_render;
2040
7d5ea807 2041 ret = intel_init_pipe_control(engine, 4096);
a19d6ff2
TU
2042 if (ret)
2043 return ret;
2044
2045 ret = intel_init_workaround_bb(engine);
2046 if (ret) {
2047 /*
2048 * We continue even if we fail to initialize WA batch
2049 * because we only expect rare glitches but nothing
2050 * critical to prevent us from using GPU
2051 */
2052 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2053 ret);
2054 }
2055
2056 ret = logical_ring_init(engine);
2057 if (ret) {
2058 lrc_destroy_wa_ctx_obj(engine);
2059 }
2060
2061 return ret;
2062}
2063
e1382efb
CW
2064static const struct logical_ring_info {
2065 const char *name;
2066 unsigned exec_id;
2067 unsigned guc_id;
2068 u32 mmio_base;
2069 unsigned irq_shift;
a19d6ff2 2070 int (*init)(struct intel_engine_cs *engine);
e1382efb
CW
2071} logical_rings[] = {
2072 [RCS] = {
2073 .name = "render ring",
2074 .exec_id = I915_EXEC_RENDER,
2075 .guc_id = GUC_RENDER_ENGINE,
2076 .mmio_base = RENDER_RING_BASE,
2077 .irq_shift = GEN8_RCS_IRQ_SHIFT,
a19d6ff2 2078 .init = logical_render_ring_init,
e1382efb
CW
2079 },
2080 [BCS] = {
2081 .name = "blitter ring",
2082 .exec_id = I915_EXEC_BLT,
2083 .guc_id = GUC_BLITTER_ENGINE,
2084 .mmio_base = BLT_RING_BASE,
2085 .irq_shift = GEN8_BCS_IRQ_SHIFT,
a19d6ff2 2086 .init = logical_ring_init,
e1382efb
CW
2087 },
2088 [VCS] = {
2089 .name = "bsd ring",
2090 .exec_id = I915_EXEC_BSD,
2091 .guc_id = GUC_VIDEO_ENGINE,
2092 .mmio_base = GEN6_BSD_RING_BASE,
2093 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
a19d6ff2 2094 .init = logical_ring_init,
e1382efb
CW
2095 },
2096 [VCS2] = {
2097 .name = "bsd2 ring",
2098 .exec_id = I915_EXEC_BSD,
2099 .guc_id = GUC_VIDEO_ENGINE2,
2100 .mmio_base = GEN8_BSD2_RING_BASE,
2101 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
a19d6ff2 2102 .init = logical_ring_init,
e1382efb
CW
2103 },
2104 [VECS] = {
2105 .name = "video enhancement ring",
2106 .exec_id = I915_EXEC_VEBOX,
2107 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2108 .mmio_base = VEBOX_RING_BASE,
2109 .irq_shift = GEN8_VECS_IRQ_SHIFT,
a19d6ff2 2110 .init = logical_ring_init,
e1382efb
CW
2111 },
2112};
2113
2114static struct intel_engine_cs *
a19d6ff2 2115logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
454afebd 2116{
e1382efb 2117 const struct logical_ring_info *info = &logical_rings[id];
e1382efb 2118 struct intel_engine_cs *engine = &dev_priv->engine[id];
3756685a 2119 enum forcewake_domains fw_domains;
48d82387 2120
e1382efb
CW
2121 engine->id = id;
2122 engine->name = info->name;
2123 engine->exec_id = info->exec_id;
2124 engine->guc_id = info->guc_id;
2125 engine->mmio_base = info->mmio_base;
48d82387 2126
c033666a 2127 engine->i915 = dev_priv;
acdd884a 2128
e1382efb
CW
2129 /* Intentionally left blank. */
2130 engine->buffer = NULL;
ca82580c 2131
3756685a
TU
2132 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2133 RING_ELSP(engine),
2134 FW_REG_WRITE);
2135
2136 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2137 RING_CONTEXT_STATUS_PTR(engine),
2138 FW_REG_READ | FW_REG_WRITE);
2139
2140 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2141 RING_CONTEXT_STATUS_BUF_BASE(engine),
2142 FW_REG_READ);
2143
2144 engine->fw_domains = fw_domains;
2145
e1382efb
CW
2146 INIT_LIST_HEAD(&engine->active_list);
2147 INIT_LIST_HEAD(&engine->request_list);
2148 INIT_LIST_HEAD(&engine->buffers);
2149 INIT_LIST_HEAD(&engine->execlist_queue);
2150 spin_lock_init(&engine->execlist_lock);
2151
2152 tasklet_init(&engine->irq_tasklet,
2153 intel_lrc_irq_handler, (unsigned long)engine);
2154
2155 logical_ring_init_platform_invariants(engine);
2156 logical_ring_default_vfuncs(engine);
2157 logical_ring_default_irqs(engine, info->irq_shift);
2158
2159 intel_engine_init_hangcheck(engine);
a19d6ff2 2160 i915_gem_batch_pool_init(dev_priv->dev, &engine->batch_pool);
e1382efb
CW
2161
2162 return engine;
2163}
2164
73e4d07f
OM
2165/**
2166 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2167 * @dev: DRM device.
2168 *
a19d6ff2
TU
2169 * This function inits the engines for an Execlists submission style (the
2170 * equivalent in the legacy ringbuffer submission world would be
2171 * i915_gem_init_engines). It does it only for those engines that are present in
2172 * the hardware.
73e4d07f
OM
2173 *
2174 * Return: non-zero if the initialization failed.
2175 */
454afebd
OM
2176int intel_logical_rings_init(struct drm_device *dev)
2177{
2178 struct drm_i915_private *dev_priv = dev->dev_private;
a19d6ff2
TU
2179 unsigned int mask = 0;
2180 unsigned int i;
454afebd
OM
2181 int ret;
2182
a19d6ff2
TU
2183 WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
2184 GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
454afebd 2185
a19d6ff2
TU
2186 for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
2187 if (!HAS_ENGINE(dev_priv, i))
2188 continue;
454afebd 2189
a19d6ff2
TU
2190 if (!logical_rings[i].init)
2191 continue;
454afebd 2192
a19d6ff2 2193 ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
454afebd 2194 if (ret)
a19d6ff2
TU
2195 goto cleanup;
2196
2197 mask |= ENGINE_MASK(i);
454afebd
OM
2198 }
2199
a19d6ff2
TU
2200 /*
2201 * Catch failures to update logical_rings table when the new engines
2202 * are added to the driver by a warning and disabling the forgotten
2203 * engines.
2204 */
2205 if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
2206 struct intel_device_info *info =
2207 (struct intel_device_info *)&dev_priv->info;
2208 info->ring_mask = mask;
454afebd
OM
2209 }
2210
454afebd
OM
2211 return 0;
2212
a19d6ff2
TU
2213cleanup:
2214 for (i = 0; i < I915_NUM_ENGINES; i++)
2215 intel_logical_ring_cleanup(&dev_priv->engine[i]);
454afebd
OM
2216
2217 return ret;
2218}
2219
0cea6502 2220static u32
c033666a 2221make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2222{
2223 u32 rpcs = 0;
2224
2225 /*
2226 * No explicit RPCS request is needed to ensure full
2227 * slice/subslice/EU enablement prior to Gen9.
2228 */
c033666a 2229 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2230 return 0;
2231
2232 /*
2233 * Starting in Gen9, render power gating can leave
2234 * slice/subslice/EU in a partially enabled state. We
2235 * must make an explicit request through RPCS for full
2236 * enablement.
2237 */
c033666a 2238 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2239 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2240 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2241 GEN8_RPCS_S_CNT_SHIFT;
2242 rpcs |= GEN8_RPCS_ENABLE;
2243 }
2244
c033666a 2245 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2246 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2247 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2248 GEN8_RPCS_SS_CNT_SHIFT;
2249 rpcs |= GEN8_RPCS_ENABLE;
2250 }
2251
c033666a
CW
2252 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2253 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2254 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2255 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2256 GEN8_RPCS_EU_MAX_SHIFT;
2257 rpcs |= GEN8_RPCS_ENABLE;
2258 }
2259
2260 return rpcs;
2261}
2262
0bc40be8 2263static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2264{
2265 u32 indirect_ctx_offset;
2266
c033666a 2267 switch (INTEL_GEN(engine->i915)) {
71562919 2268 default:
c033666a 2269 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2270 /* fall through */
2271 case 9:
2272 indirect_ctx_offset =
2273 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2274 break;
2275 case 8:
2276 indirect_ctx_offset =
2277 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2278 break;
2279 }
2280
2281 return indirect_ctx_offset;
2282}
2283
8670d6f9 2284static int
e2efd130 2285populate_lr_context(struct i915_gem_context *ctx,
7d774cac 2286 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2287 struct intel_engine_cs *engine,
2288 struct intel_ringbuffer *ringbuf)
8670d6f9 2289{
c033666a 2290 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2291 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2292 void *vaddr;
2293 u32 *reg_state;
8670d6f9
OM
2294 int ret;
2295
2d965536
TD
2296 if (!ppgtt)
2297 ppgtt = dev_priv->mm.aliasing_ppgtt;
2298
8670d6f9
OM
2299 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2300 if (ret) {
2301 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2302 return ret;
2303 }
2304
7d774cac
TU
2305 vaddr = i915_gem_object_pin_map(ctx_obj);
2306 if (IS_ERR(vaddr)) {
2307 ret = PTR_ERR(vaddr);
2308 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2309 return ret;
2310 }
7d774cac 2311 ctx_obj->dirty = true;
8670d6f9
OM
2312
2313 /* The second page of the context object contains some fields which must
2314 * be set up prior to the first execution. */
7d774cac 2315 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2316
2317 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2318 * commands followed by (reg, value) pairs. The values we are setting here are
2319 * only for the first context restore: on a subsequent save, the GPU will
2320 * recreate this batchbuffer with new values (including all the missing
2321 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2322 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2323 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2324 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2325 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2326 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2327 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2328 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2329 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2330 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2331 0);
2332 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2333 0);
7ba717cf
TD
2334 /* Ring buffer start address is not known until the buffer is pinned.
2335 * It is written to the context image in execlists_update_context()
2336 */
0bc40be8
TU
2337 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2338 RING_START(engine->mmio_base), 0);
2339 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2340 RING_CTL(engine->mmio_base),
0d925ea0 2341 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2342 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2343 RING_BBADDR_UDW(engine->mmio_base), 0);
2344 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2345 RING_BBADDR(engine->mmio_base), 0);
2346 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2347 RING_BBSTATE(engine->mmio_base),
0d925ea0 2348 RING_BB_PPGTT);
0bc40be8
TU
2349 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2350 RING_SBBADDR_UDW(engine->mmio_base), 0);
2351 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2352 RING_SBBADDR(engine->mmio_base), 0);
2353 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2354 RING_SBBSTATE(engine->mmio_base), 0);
2355 if (engine->id == RCS) {
2356 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2357 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2358 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2359 RING_INDIRECT_CTX(engine->mmio_base), 0);
2360 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2361 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2362 if (engine->wa_ctx.obj) {
2363 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2364 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2365
2366 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2367 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2368 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2369
2370 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2371 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2372
2373 reg_state[CTX_BB_PER_CTX_PTR+1] =
2374 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2375 0x01;
2376 }
8670d6f9 2377 }
0d925ea0 2378 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2379 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2380 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2381 /* PDP values well be assigned later if needed */
0bc40be8
TU
2382 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2383 0);
2384 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2385 0);
2386 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2387 0);
2388 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2389 0);
2390 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2391 0);
2392 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2393 0);
2394 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2395 0);
2396 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2397 0);
d7b2633d 2398
2dba3239
MT
2399 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2400 /* 64b PPGTT (48bit canonical)
2401 * PDP0_DESCRIPTOR contains the base address to PML4 and
2402 * other PDP Descriptors are ignored.
2403 */
2404 ASSIGN_CTX_PML4(ppgtt, reg_state);
2405 } else {
2406 /* 32b PPGTT
2407 * PDP*_DESCRIPTOR contains the base address of space supported.
2408 * With dynamic page allocation, PDPs may not be allocated at
2409 * this point. Point the unallocated PDPs to the scratch page
2410 */
c6a2ac71 2411 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2412 }
2413
0bc40be8 2414 if (engine->id == RCS) {
8670d6f9 2415 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2416 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2417 make_rpcs(dev_priv));
8670d6f9
OM
2418 }
2419
7d774cac 2420 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2421
2422 return 0;
2423}
2424
c5d46ee2
DG
2425/**
2426 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2427 * @engine: which engine to find the context size for
c5d46ee2
DG
2428 *
2429 * Each engine may require a different amount of space for a context image,
2430 * so when allocating (or copying) an image, this function can be used to
2431 * find the right size for the specific engine.
2432 *
2433 * Return: size (in bytes) of an engine-specific context image
2434 *
2435 * Note: this size includes the HWSP, which is part of the context image
2436 * in LRC mode, but does not include the "shared data page" used with
2437 * GuC submission. The caller should account for this if using the GuC.
2438 */
0bc40be8 2439uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2440{
2441 int ret = 0;
2442
c033666a 2443 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2444
0bc40be8 2445 switch (engine->id) {
8c857917 2446 case RCS:
c033666a 2447 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2448 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2449 else
2450 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2451 break;
2452 case VCS:
2453 case BCS:
2454 case VECS:
2455 case VCS2:
2456 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2457 break;
2458 }
2459
2460 return ret;
ede7d42b
OM
2461}
2462
73e4d07f 2463/**
978f1e09 2464 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2465 * @ctx: LR context to create.
978f1e09 2466 * @engine: engine to be used with the context.
73e4d07f
OM
2467 *
2468 * This function can be called more than once, with different engines, if we plan
2469 * to use the context with them. The context backing objects and the ringbuffers
2470 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2471 * the creation is a deferred call: it's better to make sure first that we need to use
2472 * a given ring with the context.
2473 *
32197aab 2474 * Return: non-zero on error.
73e4d07f 2475 */
e2efd130 2476static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2477 struct intel_engine_cs *engine)
ede7d42b 2478{
8c857917 2479 struct drm_i915_gem_object *ctx_obj;
9021ad03 2480 struct intel_context *ce = &ctx->engine[engine->id];
8c857917 2481 uint32_t context_size;
84c2377f 2482 struct intel_ringbuffer *ringbuf;
8c857917
OM
2483 int ret;
2484
9021ad03 2485 WARN_ON(ce->state);
ede7d42b 2486
0bc40be8 2487 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2488
d1675198
AD
2489 /* One extra page as the sharing data between driver and GuC */
2490 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2491
c033666a 2492 ctx_obj = i915_gem_object_create(ctx->i915->dev, context_size);
fe3db79b 2493 if (IS_ERR(ctx_obj)) {
3126a660 2494 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2495 return PTR_ERR(ctx_obj);
8c857917
OM
2496 }
2497
bcd794c2 2498 ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
01101fa7
CW
2499 if (IS_ERR(ringbuf)) {
2500 ret = PTR_ERR(ringbuf);
e84fe803 2501 goto error_deref_obj;
8670d6f9
OM
2502 }
2503
0bc40be8 2504 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2505 if (ret) {
2506 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2507 goto error_ringbuf;
84c2377f
OM
2508 }
2509
9021ad03
CW
2510 ce->ringbuf = ringbuf;
2511 ce->state = ctx_obj;
2512 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2513
2514 return 0;
8670d6f9 2515
01101fa7
CW
2516error_ringbuf:
2517 intel_ringbuffer_free(ringbuf);
e84fe803 2518error_deref_obj:
8670d6f9 2519 drm_gem_object_unreference(&ctx_obj->base);
9021ad03
CW
2520 ce->ringbuf = NULL;
2521 ce->state = NULL;
8670d6f9 2522 return ret;
ede7d42b 2523}
3e5b6f05 2524
7d774cac 2525void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2526 struct i915_gem_context *ctx)
3e5b6f05 2527{
e2f80391 2528 struct intel_engine_cs *engine;
3e5b6f05 2529
b4ac5afc 2530 for_each_engine(engine, dev_priv) {
9021ad03
CW
2531 struct intel_context *ce = &ctx->engine[engine->id];
2532 struct drm_i915_gem_object *ctx_obj = ce->state;
7d774cac 2533 void *vaddr;
3e5b6f05 2534 uint32_t *reg_state;
3e5b6f05
TD
2535
2536 if (!ctx_obj)
2537 continue;
2538
7d774cac
TU
2539 vaddr = i915_gem_object_pin_map(ctx_obj);
2540 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2541 continue;
7d774cac
TU
2542
2543 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2544 ctx_obj->dirty = true;
3e5b6f05
TD
2545
2546 reg_state[CTX_RING_HEAD+1] = 0;
2547 reg_state[CTX_RING_TAIL+1] = 0;
2548
7d774cac 2549 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05 2550
9021ad03
CW
2551 ce->ringbuf->head = 0;
2552 ce->ringbuf->tail = 0;
3e5b6f05
TD
2553 }
2554}
This page took 0.417359 seconds and 5 git commands to generate.