Merge remote-tracking branch 'selinux/next'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9 158
70c2a24d
CW
159#define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
8670d6f9
OM
164#define CTX_LRI_HEADER_0 0x01
165#define CTX_CONTEXT_CONTROL 0x02
166#define CTX_RING_HEAD 0x04
167#define CTX_RING_TAIL 0x06
168#define CTX_RING_BUFFER_START 0x08
169#define CTX_RING_BUFFER_CONTROL 0x0a
170#define CTX_BB_HEAD_U 0x0c
171#define CTX_BB_HEAD_L 0x0e
172#define CTX_BB_STATE 0x10
173#define CTX_SECOND_BB_HEAD_U 0x12
174#define CTX_SECOND_BB_HEAD_L 0x14
175#define CTX_SECOND_BB_STATE 0x16
176#define CTX_BB_PER_CTX_PTR 0x18
177#define CTX_RCS_INDIRECT_CTX 0x1a
178#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179#define CTX_LRI_HEADER_1 0x21
180#define CTX_CTX_TIMESTAMP 0x22
181#define CTX_PDP3_UDW 0x24
182#define CTX_PDP3_LDW 0x26
183#define CTX_PDP2_UDW 0x28
184#define CTX_PDP2_LDW 0x2a
185#define CTX_PDP1_UDW 0x2c
186#define CTX_PDP1_LDW 0x2e
187#define CTX_PDP0_UDW 0x30
188#define CTX_PDP0_LDW 0x32
189#define CTX_LRI_HEADER_2 0x41
190#define CTX_R_PWR_CLK_STATE 0x42
191#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
84b790f8
BW
193#define GEN8_CTX_VALID (1<<0)
194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195#define GEN8_CTX_FORCE_RESTORE (1<<2)
196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
197#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 198
0d925ea0 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
201 (reg_state)[(pos)+1] = (val); \
202} while (0)
203
204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 208} while (0)
e5815a2e 209
9244a817 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 213} while (0)
2dba3239 214
84b790f8
BW
215enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220};
221#define GEN8_CTX_ID_SHIFT 32
7069b144 222#define GEN8_CTX_ID_WIDTH 21
71562919
MT
223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 225
0e93cdd4
CW
226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
e2efd130 229static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 230 struct intel_engine_cs *engine);
e2efd130 231static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 232 struct intel_engine_cs *engine);
7ba717cf 233
73e4d07f
OM
234/**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 236 * @dev_priv: i915 device private
73e4d07f
OM
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
27401d12 240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
c033666a 244int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 245{
a0bd6c31
ZL
246 /* On platforms with execlist available, vGPU will only
247 * support execlist mode, no ring buffer mode.
248 */
c033666a 249 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
250 return 1;
251
c033666a 252 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
253 return 1;
254
127f1003
OM
255 if (enable_execlists == 0)
256 return 0;
257
5a21b665
DV
258 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
259 USES_PPGTT(dev_priv) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
ca82580c 266static void
0bc40be8 267logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 268{
c033666a 269 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 270
70c2a24d
CW
271 engine->disable_lite_restore_wa =
272 (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
273 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
274 (engine->id == VCS || engine->id == VCS2);
ca82580c 275
0bc40be8 276 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 277 if (IS_GEN8(dev_priv))
0bc40be8
TU
278 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
279 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
280
281 /* TODO: WaDisableLiteRestore when we start using semaphore
282 * signalling between Command Streamers */
283 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
284
285 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
286 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
287 if (engine->disable_lite_restore_wa)
288 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
289}
290
73e4d07f 291/**
ca82580c
TU
292 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
293 * descriptor for a pinned context
ca82580c 294 * @ctx: Context to work on
9021ad03 295 * @engine: Engine the descriptor will be used with
73e4d07f 296 *
ca82580c
TU
297 * The context descriptor encodes various attributes of a context,
298 * including its GTT address and some flags. Because it's fairly
299 * expensive to calculate, we'll just do it once and cache the result,
300 * which remains valid until the context is unpinned.
301 *
6e5248b5
DV
302 * This is what a descriptor looks like, from LSB to MSB::
303 *
304 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
305 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
306 * bits 32-52: ctx ID, a globally unique tag
307 * bits 53-54: mbz, reserved for use by hardware
308 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 309 */
ca82580c 310static void
e2efd130 311intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 312 struct intel_engine_cs *engine)
84b790f8 313{
9021ad03 314 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 315 u64 desc;
84b790f8 316
7069b144 317 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 318
c01fc532
ZW
319 desc = ctx->desc_template; /* bits 3-4 */
320 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 321 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 322 /* bits 12-31 */
7069b144 323 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 324
9021ad03 325 ce->lrc_desc = desc;
5af05fef
MT
326}
327
e2efd130 328uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 329 struct intel_engine_cs *engine)
84b790f8 330{
0bc40be8 331 return ctx->engine[engine->id].lrc_desc;
ca82580c 332}
203a571b 333
bbd6c47e
CW
334static inline void
335execlists_context_status_change(struct drm_i915_gem_request *rq,
336 unsigned long status)
84b790f8 337{
bbd6c47e
CW
338 /*
339 * Only used when GVT-g is enabled now. When GVT-g is disabled,
340 * The compiler should eliminate this function as dead-code.
341 */
342 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
343 return;
6daccb0b 344
bbd6c47e 345 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
84b790f8
BW
346}
347
c6a2ac71
TU
348static void
349execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
350{
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355}
356
70c2a24d 357static u64 execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 358{
70c2a24d 359 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
05d9824b 360 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
70c2a24d 361 u32 *reg_state = ce->lrc_reg_state;
ae1250b9 362
8f942018 363 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
ae1250b9 364
c6a2ac71
TU
365 /* True 32b PPGTT with dynamic page allocation: update PDP
366 * registers and point the unallocated PDPs to scratch page.
367 * PML4 is allocated during ppgtt init, so this is not needed
368 * in 48-bit mode.
369 */
370 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
371 execlists_update_context_pdps(ppgtt, reg_state);
70c2a24d
CW
372
373 return ce->lrc_desc;
ae1250b9
OM
374}
375
70c2a24d 376static void execlists_submit_ports(struct intel_engine_cs *engine)
bbd6c47e 377{
70c2a24d
CW
378 struct drm_i915_private *dev_priv = engine->i915;
379 struct execlist_port *port = engine->execlist_port;
bbd6c47e
CW
380 u32 __iomem *elsp =
381 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
382 u64 desc[2];
383
70c2a24d
CW
384 if (!port[0].count)
385 execlists_context_status_change(port[0].request,
386 INTEL_CONTEXT_SCHEDULE_IN);
387 desc[0] = execlists_update_context(port[0].request);
388 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
389
390 if (port[1].request) {
391 GEM_BUG_ON(port[1].count);
392 execlists_context_status_change(port[1].request,
393 INTEL_CONTEXT_SCHEDULE_IN);
394 desc[1] = execlists_update_context(port[1].request);
395 port[1].count = 1;
bbd6c47e
CW
396 } else {
397 desc[1] = 0;
398 }
70c2a24d 399 GEM_BUG_ON(desc[0] == desc[1]);
bbd6c47e
CW
400
401 /* You must always write both descriptors in the order below. */
402 writel(upper_32_bits(desc[1]), elsp);
403 writel(lower_32_bits(desc[1]), elsp);
404
405 writel(upper_32_bits(desc[0]), elsp);
406 /* The context is automatically loaded after the following */
407 writel(lower_32_bits(desc[0]), elsp);
408}
409
70c2a24d 410static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
84b790f8 411{
70c2a24d
CW
412 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
413 ctx->execlists_force_single_submission);
414}
84b790f8 415
70c2a24d
CW
416static bool can_merge_ctx(const struct i915_gem_context *prev,
417 const struct i915_gem_context *next)
418{
419 if (prev != next)
420 return false;
26720ab9 421
70c2a24d
CW
422 if (ctx_single_port_submission(prev))
423 return false;
26720ab9 424
70c2a24d 425 return true;
84b790f8
BW
426}
427
70c2a24d 428static void execlists_dequeue(struct intel_engine_cs *engine)
acdd884a 429{
70c2a24d
CW
430 struct drm_i915_gem_request *cursor, *last;
431 struct execlist_port *port = engine->execlist_port;
432 bool submit = false;
433
434 last = port->request;
435 if (last)
436 /* WaIdleLiteRestore:bdw,skl
437 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
438 * as we resubmit the request. See gen8_emit_request()
439 * for where we prepare the padding after the end of the
440 * request.
441 */
442 last->tail = last->wa_tail;
e981e7b1 443
70c2a24d 444 GEM_BUG_ON(port[1].request);
acdd884a 445
70c2a24d
CW
446 /* Hardware submission is through 2 ports. Conceptually each port
447 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
448 * static for a context, and unique to each, so we only execute
449 * requests belonging to a single context from each ring. RING_HEAD
450 * is maintained by the CS in the context image, it marks the place
451 * where it got up to last time, and through RING_TAIL we tell the CS
452 * where we want to execute up to this time.
453 *
454 * In this list the requests are in order of execution. Consecutive
455 * requests from the same context are adjacent in the ringbuffer. We
456 * can combine these requests into a single RING_TAIL update:
457 *
458 * RING_HEAD...req1...req2
459 * ^- RING_TAIL
460 * since to execute req2 the CS must first execute req1.
461 *
462 * Our goal then is to point each port to the end of a consecutive
463 * sequence of requests as being the most optimal (fewest wake ups
464 * and context switches) submission.
779949f4 465 */
acdd884a 466
70c2a24d
CW
467 spin_lock(&engine->execlist_lock);
468 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
469 /* Can we combine this request with the current port? It has to
470 * be the same context/ringbuffer and not have any exceptions
471 * (e.g. GVT saying never to combine contexts).
c6a2ac71 472 *
70c2a24d
CW
473 * If we can combine the requests, we can execute both by
474 * updating the RING_TAIL to point to the end of the second
475 * request, and so we never need to tell the hardware about
476 * the first.
53292cdb 477 */
70c2a24d
CW
478 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
479 /* If we are on the second port and cannot combine
480 * this request with the last, then we are done.
481 */
482 if (port != engine->execlist_port)
483 break;
484
485 /* If GVT overrides us we only ever submit port[0],
486 * leaving port[1] empty. Note that we also have
487 * to be careful that we don't queue the same
488 * context (even though a different request) to
489 * the second port.
490 */
491 if (ctx_single_port_submission(cursor->ctx))
492 break;
493
494 GEM_BUG_ON(last->ctx == cursor->ctx);
495
496 i915_gem_request_assign(&port->request, last);
497 port++;
498 }
499 last = cursor;
500 submit = true;
501 }
502 if (submit) {
503 /* Decouple all the requests submitted from the queue */
504 engine->execlist_queue.next = &cursor->execlist_link;
505 cursor->execlist_link.prev = &engine->execlist_queue;
506
507 i915_gem_request_assign(&port->request, last);
53292cdb 508 }
70c2a24d 509 spin_unlock(&engine->execlist_lock);
53292cdb 510
70c2a24d
CW
511 if (submit)
512 execlists_submit_ports(engine);
acdd884a
MT
513}
514
70c2a24d 515static bool execlists_elsp_idle(struct intel_engine_cs *engine)
e981e7b1 516{
70c2a24d 517 return !engine->execlist_port[0].request;
e981e7b1
TD
518}
519
70c2a24d 520static bool execlists_elsp_ready(struct intel_engine_cs *engine)
91a41032 521{
70c2a24d 522 int port;
91a41032 523
70c2a24d
CW
524 port = 1; /* wait for a free slot */
525 if (engine->disable_lite_restore_wa || engine->preempt_wa)
526 port = 0; /* wait for GPU to be idle before continuing */
c6a2ac71 527
70c2a24d 528 return !engine->execlist_port[port].request;
91a41032
BW
529}
530
6e5248b5 531/*
73e4d07f
OM
532 * Check the unread Context Status Buffers and manage the submission of new
533 * contexts to the ELSP accordingly.
534 */
27af5eea 535static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 536{
27af5eea 537 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
70c2a24d 538 struct execlist_port *port = engine->execlist_port;
c033666a 539 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 540
3756685a 541 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 542
70c2a24d
CW
543 if (!execlists_elsp_idle(engine)) {
544 u32 __iomem *csb_mmio =
545 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
546 u32 __iomem *buf =
547 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
548 unsigned int csb, head, tail;
549
550 csb = readl(csb_mmio);
551 head = GEN8_CSB_READ_PTR(csb);
552 tail = GEN8_CSB_WRITE_PTR(csb);
553 if (tail < head)
554 tail += GEN8_CSB_ENTRIES;
555 while (head < tail) {
556 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
557 unsigned int status = readl(buf + 2 * idx);
558
559 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
560 continue;
561
562 GEM_BUG_ON(port[0].count == 0);
563 if (--port[0].count == 0) {
564 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
565 execlists_context_status_change(port[0].request,
566 INTEL_CONTEXT_SCHEDULE_OUT);
567
568 i915_gem_request_put(port[0].request);
569 port[0] = port[1];
570 memset(&port[1], 0, sizeof(port[1]));
571
572 engine->preempt_wa = false;
573 }
26720ab9 574
70c2a24d
CW
575 GEM_BUG_ON(port[0].count == 0 &&
576 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
e1fee72c
OM
577 }
578
70c2a24d
CW
579 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
580 GEN8_CSB_WRITE_PTR(csb) << 8),
581 csb_mmio);
e981e7b1
TD
582 }
583
70c2a24d
CW
584 if (execlists_elsp_ready(engine))
585 execlists_dequeue(engine);
c6a2ac71 586
70c2a24d 587 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
e981e7b1
TD
588}
589
f4ea6bdd 590static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 591{
4a570db5 592 struct intel_engine_cs *engine = request->engine;
5590af3e 593 unsigned long flags;
acdd884a 594
5590af3e 595 spin_lock_irqsave(&engine->execlist_lock, flags);
acdd884a 596
ba49b2f8 597 list_add_tail(&request->execlist_link, &engine->execlist_queue);
70c2a24d
CW
598 if (execlists_elsp_idle(engine))
599 tasklet_hi_schedule(&engine->irq_tasklet);
acdd884a 600
5590af3e 601 spin_unlock_irqrestore(&engine->execlist_lock, flags);
acdd884a
MT
602}
603
40e895ce 604int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 605{
24f1d3cc 606 struct intel_engine_cs *engine = request->engine;
9021ad03 607 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 608 int ret;
bc0dce3f 609
6310346e
CW
610 /* Flush enough space to reduce the likelihood of waiting after
611 * we start building the request - in which case we will just
612 * have to repeat work.
613 */
0e93cdd4 614 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 615
9021ad03 616 if (!ce->state) {
978f1e09
CW
617 ret = execlists_context_deferred_alloc(request->ctx, engine);
618 if (ret)
619 return ret;
620 }
621
dca33ecc 622 request->ring = ce->ring;
f3cc01f0 623
a7e02199
AD
624 if (i915.enable_guc_submission) {
625 /*
626 * Check that the GuC has space for the request before
627 * going any further, as the i915_add_request() call
628 * later on mustn't fail ...
629 */
7c2c270d 630 ret = i915_guc_wq_check_space(request);
a7e02199
AD
631 if (ret)
632 return ret;
633 }
634
24f1d3cc
CW
635 ret = intel_lr_context_pin(request->ctx, engine);
636 if (ret)
637 return ret;
e28e404c 638
bfa01200
CW
639 ret = intel_ring_begin(request, 0);
640 if (ret)
641 goto err_unpin;
642
9021ad03 643 if (!ce->initialised) {
24f1d3cc
CW
644 ret = engine->init_context(request);
645 if (ret)
646 goto err_unpin;
647
9021ad03 648 ce->initialised = true;
24f1d3cc
CW
649 }
650
651 /* Note that after this point, we have committed to using
652 * this request as it is being used to both track the
653 * state of engine initialisation and liveness of the
654 * golden renderstate above. Think twice before you try
655 * to cancel/unwind this request now.
656 */
657
0e93cdd4 658 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
659 return 0;
660
661err_unpin:
24f1d3cc 662 intel_lr_context_unpin(request->ctx, engine);
e28e404c 663 return ret;
bc0dce3f
JH
664}
665
bc0dce3f 666/*
ddd66c51 667 * intel_logical_ring_advance() - advance the tail and prepare for submission
ae70797d 668 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
669 *
670 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
671 * really happens during submission is that the context and current tail will be placed
672 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
673 * point, the tail *inside* the context is updated and the ELSP written to.
674 */
7c17d377 675static int
ddd66c51 676intel_logical_ring_advance(struct drm_i915_gem_request *request)
bc0dce3f 677{
7e37f889 678 struct intel_ring *ring = request->ring;
4a570db5 679 struct intel_engine_cs *engine = request->engine;
bc0dce3f 680
1dae2dfb
CW
681 intel_ring_advance(ring);
682 request->tail = ring->tail;
bc0dce3f 683
7c17d377
CW
684 /*
685 * Here we add two extra NOOPs as padding to avoid
686 * lite restore of a context with HEAD==TAIL.
687 *
688 * Caller must reserve WA_TAIL_DWORDS for us!
689 */
1dae2dfb
CW
690 intel_ring_emit(ring, MI_NOOP);
691 intel_ring_emit(ring, MI_NOOP);
692 intel_ring_advance(ring);
a52abd2f 693 request->wa_tail = ring->tail;
d1675198 694
a16a4052
CW
695 /* We keep the previous context alive until we retire the following
696 * request. This ensures that any the context object is still pinned
697 * for any residual writes the HW makes into it on the context switch
698 * into the next object following the breadcrumb. Otherwise, we may
699 * retire the context too early.
700 */
701 request->previous_context = engine->last_context;
702 engine->last_context = request->ctx;
7c17d377 703 return 0;
bc0dce3f
JH
704}
705
e2efd130 706static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 707 struct intel_engine_cs *engine)
dcb4c12a 708{
9021ad03 709 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
710 void *vaddr;
711 u32 *lrc_reg_state;
ca82580c 712 int ret;
dcb4c12a 713
91c8a326 714 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 715
9021ad03 716 if (ce->pin_count++)
24f1d3cc
CW
717 return 0;
718
bf3783e5
CW
719 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
720 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 721 if (ret)
24f1d3cc 722 goto err;
7ba717cf 723
bf3783e5 724 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
725 if (IS_ERR(vaddr)) {
726 ret = PTR_ERR(vaddr);
bf3783e5 727 goto unpin_vma;
82352e90
TU
728 }
729
7d774cac
TU
730 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
731
aad29fbb 732 ret = intel_ring_pin(ce->ring);
e84fe803 733 if (ret)
7d774cac 734 goto unpin_map;
d1675198 735
0bc40be8 736 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 737
bde13ebd
CW
738 lrc_reg_state[CTX_RING_BUFFER_START+1] =
739 i915_ggtt_offset(ce->ring->vma);
9021ad03 740 ce->lrc_reg_state = lrc_reg_state;
bf3783e5 741 ce->state->obj->dirty = true;
e93c28f3 742
e84fe803 743 /* Invalidate GuC TLB. */
bf3783e5
CW
744 if (i915.enable_guc_submission) {
745 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 746 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 747 }
dcb4c12a 748
9a6feaf0 749 i915_gem_context_get(ctx);
24f1d3cc 750 return 0;
7ba717cf 751
7d774cac 752unpin_map:
bf3783e5
CW
753 i915_gem_object_unpin_map(ce->state->obj);
754unpin_vma:
755 __i915_vma_unpin(ce->state);
24f1d3cc 756err:
9021ad03 757 ce->pin_count = 0;
e84fe803
NH
758 return ret;
759}
760
e2efd130 761void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 762 struct intel_engine_cs *engine)
e84fe803 763{
9021ad03 764 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 765
91c8a326 766 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 767 GEM_BUG_ON(ce->pin_count == 0);
321fe304 768
9021ad03 769 if (--ce->pin_count)
24f1d3cc 770 return;
e84fe803 771
aad29fbb 772 intel_ring_unpin(ce->ring);
dcb4c12a 773
bf3783e5
CW
774 i915_gem_object_unpin_map(ce->state->obj);
775 i915_vma_unpin(ce->state);
321fe304 776
9a6feaf0 777 i915_gem_context_put(ctx);
dcb4c12a
OM
778}
779
e2be4faf 780static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
781{
782 int ret, i;
7e37f889 783 struct intel_ring *ring = req->ring;
c033666a 784 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 785
cd7feaaa 786 if (w->count == 0)
771b9a53
MT
787 return 0;
788
7c9cf4e3 789 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
790 if (ret)
791 return ret;
792
987046ad 793 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
794 if (ret)
795 return ret;
796
1dae2dfb 797 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 798 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
799 intel_ring_emit_reg(ring, w->reg[i].addr);
800 intel_ring_emit(ring, w->reg[i].value);
771b9a53 801 }
1dae2dfb 802 intel_ring_emit(ring, MI_NOOP);
771b9a53 803
1dae2dfb 804 intel_ring_advance(ring);
771b9a53 805
7c9cf4e3 806 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
807 if (ret)
808 return ret;
809
810 return 0;
811}
812
83b8a982 813#define wa_ctx_emit(batch, index, cmd) \
17ee950d 814 do { \
83b8a982
AS
815 int __index = (index)++; \
816 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
817 return -ENOSPC; \
818 } \
83b8a982 819 batch[__index] = (cmd); \
17ee950d
AS
820 } while (0)
821
8f40db77 822#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 823 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
824
825/*
826 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
827 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
828 * but there is a slight complication as this is applied in WA batch where the
829 * values are only initialized once so we cannot take register value at the
830 * beginning and reuse it further; hence we save its value to memory, upload a
831 * constant value with bit21 set and then we restore it back with the saved value.
832 * To simplify the WA, a constant value is formed by using the default value
833 * of this register. This shouldn't be a problem because we are only modifying
834 * it for a short period and this batch in non-premptible. We can ofcourse
835 * use additional instructions that read the actual value of the register
836 * at that time and set our bit of interest but it makes the WA complicated.
837 *
838 * This WA is also required for Gen9 so extracting as a function avoids
839 * code duplication.
840 */
0bc40be8 841static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 842 uint32_t *batch,
9e000847
AS
843 uint32_t index)
844{
5e580523 845 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
846 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
847
a4106a78 848 /*
fe905819 849 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
850 * This WA is implemented in skl_init_clock_gating() but since
851 * this batch updates GEN8_L3SQCREG4 with default value we need to
852 * set this bit here to retain the WA during flush.
853 */
738fa1b3
MK
854 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
855 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
856 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
857
f1afe24f 858 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 859 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 860 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 861 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
862 wa_ctx_emit(batch, index, 0);
863
864 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 865 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
866 wa_ctx_emit(batch, index, l3sqc4_flush);
867
868 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
869 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
870 PIPE_CONTROL_DC_FLUSH_ENABLE));
871 wa_ctx_emit(batch, index, 0);
872 wa_ctx_emit(batch, index, 0);
873 wa_ctx_emit(batch, index, 0);
874 wa_ctx_emit(batch, index, 0);
875
f1afe24f 876 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 877 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 878 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 879 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 880 wa_ctx_emit(batch, index, 0);
9e000847
AS
881
882 return index;
883}
884
17ee950d
AS
885static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
886 uint32_t offset,
887 uint32_t start_alignment)
888{
889 return wa_ctx->offset = ALIGN(offset, start_alignment);
890}
891
892static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
893 uint32_t offset,
894 uint32_t size_alignment)
895{
896 wa_ctx->size = offset - wa_ctx->offset;
897
898 WARN(wa_ctx->size % size_alignment,
899 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
900 wa_ctx->size, size_alignment);
901 return 0;
902}
903
6e5248b5
DV
904/*
905 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
906 * initialized at the beginning and shared across all contexts but this field
907 * helps us to have multiple batches at different offsets and select them based
908 * on a criteria. At the moment this batch always start at the beginning of the page
909 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 910 *
6e5248b5
DV
911 * The number of WA applied are not known at the beginning; we use this field
912 * to return the no of DWORDS written.
17ee950d 913 *
6e5248b5
DV
914 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
915 * so it adds NOOPs as padding to make it cacheline aligned.
916 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
917 * makes a complete batch buffer.
17ee950d 918 */
0bc40be8 919static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 920 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 921 uint32_t *batch,
17ee950d
AS
922 uint32_t *offset)
923{
0160f055 924 uint32_t scratch_addr;
17ee950d
AS
925 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
926
7ad00d1a 927 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 928 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 929
c82435bb 930 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 931 if (IS_BROADWELL(engine->i915)) {
0bc40be8 932 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
933 if (rc < 0)
934 return rc;
935 index = rc;
c82435bb
AS
936 }
937
0160f055
AS
938 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
939 /* Actual scratch location is at 128 bytes offset */
bde13ebd 940 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 941
83b8a982
AS
942 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
943 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
944 PIPE_CONTROL_GLOBAL_GTT_IVB |
945 PIPE_CONTROL_CS_STALL |
946 PIPE_CONTROL_QW_WRITE));
947 wa_ctx_emit(batch, index, scratch_addr);
948 wa_ctx_emit(batch, index, 0);
949 wa_ctx_emit(batch, index, 0);
950 wa_ctx_emit(batch, index, 0);
0160f055 951
17ee950d
AS
952 /* Pad to end of cacheline */
953 while (index % CACHELINE_DWORDS)
83b8a982 954 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
955
956 /*
957 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
958 * execution depends on the length specified in terms of cache lines
959 * in the register CTX_RCS_INDIRECT_CTX
960 */
961
962 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
963}
964
6e5248b5
DV
965/*
966 * This batch is started immediately after indirect_ctx batch. Since we ensure
967 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 968 *
6e5248b5 969 * The number of DWORDS written are returned using this field.
17ee950d
AS
970 *
971 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
972 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
973 */
0bc40be8 974static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 975 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 976 uint32_t *batch,
17ee950d
AS
977 uint32_t *offset)
978{
979 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
980
7ad00d1a 981 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 982 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 983
83b8a982 984 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
985
986 return wa_ctx_end(wa_ctx, *offset = index, 1);
987}
988
0bc40be8 989static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 990 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 991 uint32_t *batch,
0504cffc
AS
992 uint32_t *offset)
993{
a4106a78 994 int ret;
5e580523 995 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
996 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
997
0907c8f7 998 /* WaDisableCtxRestoreArbitration:skl,bxt */
5e580523
DA
999 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1000 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1001 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1002
a4106a78 1003 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1004 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1005 if (ret < 0)
1006 return ret;
1007 index = ret;
1008
873e8171
MK
1009 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1010 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1011 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1012 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1013 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1014 wa_ctx_emit(batch, index, MI_NOOP);
1015
066d4628
MK
1016 /* WaClearSlmSpaceAtContextSwitch:kbl */
1017 /* Actual scratch location is at 128 bytes offset */
703d1282 1018 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1019 u32 scratch_addr =
bde13ebd 1020 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1021
1022 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1023 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1024 PIPE_CONTROL_GLOBAL_GTT_IVB |
1025 PIPE_CONTROL_CS_STALL |
1026 PIPE_CONTROL_QW_WRITE));
1027 wa_ctx_emit(batch, index, scratch_addr);
1028 wa_ctx_emit(batch, index, 0);
1029 wa_ctx_emit(batch, index, 0);
1030 wa_ctx_emit(batch, index, 0);
1031 }
3485d99e
TG
1032
1033 /* WaMediaPoolStateCmdInWABB:bxt */
1034 if (HAS_POOLED_EU(engine->i915)) {
1035 /*
1036 * EU pool configuration is setup along with golden context
1037 * during context initialization. This value depends on
1038 * device type (2x6 or 3x6) and needs to be updated based
1039 * on which subslice is disabled especially for 2x6
1040 * devices, however it is safe to load default
1041 * configuration of 3x6 device instead of masking off
1042 * corresponding bits because HW ignores bits of a disabled
1043 * subslice and drops down to appropriate config. Please
1044 * see render_state_setup() in i915_gem_render_state.c for
1045 * possible configurations, to avoid duplication they are
1046 * not shown here again.
1047 */
1048 u32 eu_pool_config = 0x00777000;
1049 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1050 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1051 wa_ctx_emit(batch, index, eu_pool_config);
1052 wa_ctx_emit(batch, index, 0);
1053 wa_ctx_emit(batch, index, 0);
1054 wa_ctx_emit(batch, index, 0);
1055 }
1056
0504cffc
AS
1057 /* Pad to end of cacheline */
1058 while (index % CACHELINE_DWORDS)
1059 wa_ctx_emit(batch, index, MI_NOOP);
1060
1061 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1062}
1063
0bc40be8 1064static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1065 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1066 uint32_t *batch,
0504cffc
AS
1067 uint32_t *offset)
1068{
1069 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1070
9b01435d 1071 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1072 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1073 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1074 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1075 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1076 wa_ctx_emit(batch, index,
1077 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1078 wa_ctx_emit(batch, index, MI_NOOP);
1079 }
1080
b1e429fe 1081 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1082 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1083 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1084
1085 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1086 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1087
1088 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1089 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1090
1091 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1092 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1093
1094 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1095 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1096 wa_ctx_emit(batch, index, 0x0);
1097 wa_ctx_emit(batch, index, MI_NOOP);
1098 }
1099
0907c8f7 1100 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1101 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1102 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1103 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1104
0504cffc
AS
1105 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1106
1107 return wa_ctx_end(wa_ctx, *offset = index, 1);
1108}
1109
0bc40be8 1110static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1111{
48bb74e4
CW
1112 struct drm_i915_gem_object *obj;
1113 struct i915_vma *vma;
1114 int err;
17ee950d 1115
48bb74e4
CW
1116 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1117 if (IS_ERR(obj))
1118 return PTR_ERR(obj);
17ee950d 1119
48bb74e4
CW
1120 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1121 if (IS_ERR(vma)) {
1122 err = PTR_ERR(vma);
1123 goto err;
17ee950d
AS
1124 }
1125
48bb74e4
CW
1126 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1127 if (err)
1128 goto err;
1129
1130 engine->wa_ctx.vma = vma;
17ee950d 1131 return 0;
48bb74e4
CW
1132
1133err:
1134 i915_gem_object_put(obj);
1135 return err;
17ee950d
AS
1136}
1137
0bc40be8 1138static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1139{
19880c4a 1140 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1141}
1142
0bc40be8 1143static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1144{
48bb74e4 1145 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1146 uint32_t *batch;
1147 uint32_t offset;
1148 struct page *page;
48bb74e4 1149 int ret;
17ee950d 1150
0bc40be8 1151 WARN_ON(engine->id != RCS);
17ee950d 1152
5e60d790 1153 /* update this when WA for higher Gen are added */
c033666a 1154 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1155 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1156 INTEL_GEN(engine->i915));
5e60d790 1157 return 0;
0504cffc 1158 }
5e60d790 1159
c4db7599 1160 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1161 if (!engine->scratch) {
0bc40be8 1162 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1163 return -EINVAL;
1164 }
1165
0bc40be8 1166 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1167 if (ret) {
1168 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1169 return ret;
1170 }
1171
48bb74e4 1172 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1173 batch = kmap_atomic(page);
1174 offset = 0;
1175
c033666a 1176 if (IS_GEN8(engine->i915)) {
0bc40be8 1177 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1178 &wa_ctx->indirect_ctx,
1179 batch,
1180 &offset);
1181 if (ret)
1182 goto out;
1183
0bc40be8 1184 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1185 &wa_ctx->per_ctx,
1186 batch,
1187 &offset);
1188 if (ret)
1189 goto out;
c033666a 1190 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1191 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1192 &wa_ctx->indirect_ctx,
1193 batch,
1194 &offset);
1195 if (ret)
1196 goto out;
1197
0bc40be8 1198 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1199 &wa_ctx->per_ctx,
1200 batch,
1201 &offset);
1202 if (ret)
1203 goto out;
17ee950d
AS
1204 }
1205
1206out:
1207 kunmap_atomic(batch);
1208 if (ret)
0bc40be8 1209 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1210
1211 return ret;
1212}
1213
04794adb
TU
1214static void lrc_init_hws(struct intel_engine_cs *engine)
1215{
c033666a 1216 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1217
1218 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1219 engine->status_page.ggtt_offset);
04794adb
TU
1220 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1221}
1222
0bc40be8 1223static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1224{
c033666a 1225 struct drm_i915_private *dev_priv = engine->i915;
821ed7df
CW
1226 int ret;
1227
1228 ret = intel_mocs_init_engine(engine);
1229 if (ret)
1230 return ret;
9b1136d5 1231
04794adb 1232 lrc_init_hws(engine);
e84fe803 1233
821ed7df
CW
1234 intel_engine_reset_irq(engine);
1235
0bc40be8 1236 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1237
0bc40be8 1238 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1239 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1240 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
dfc53c5e 1241
0bc40be8 1242 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1243
fc0768ce 1244 intel_engine_init_hangcheck(engine);
9b1136d5 1245
821ed7df
CW
1246 if (!execlists_elsp_idle(engine))
1247 execlists_submit_ports(engine);
1248
1249 return 0;
9b1136d5
OM
1250}
1251
0bc40be8 1252static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1253{
c033666a 1254 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1255 int ret;
1256
0bc40be8 1257 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1258 if (ret)
1259 return ret;
1260
1261 /* We need to disable the AsyncFlip performance optimisations in order
1262 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1263 * programmed to '1' on all products.
1264 *
1265 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1266 */
1267 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1268
9b1136d5
OM
1269 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1270
0bc40be8 1271 return init_workarounds_ring(engine);
9b1136d5
OM
1272}
1273
0bc40be8 1274static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1275{
1276 int ret;
1277
0bc40be8 1278 ret = gen8_init_common_ring(engine);
82ef822e
DL
1279 if (ret)
1280 return ret;
1281
0bc40be8 1282 return init_workarounds_ring(engine);
82ef822e
DL
1283}
1284
821ed7df
CW
1285static void reset_common_ring(struct intel_engine_cs *engine,
1286 struct drm_i915_gem_request *request)
1287{
1288 struct drm_i915_private *dev_priv = engine->i915;
1289 struct execlist_port *port = engine->execlist_port;
1290 struct intel_context *ce = &request->ctx->engine[engine->id];
1291
1292 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1293 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1294 request->ring->head = request->postfix;
1295 request->ring->last_retired_head = -1;
1296 intel_ring_update_space(request->ring);
1297
1298 if (i915.enable_guc_submission)
1299 return;
1300
1301 /* Catch up with any missed context-switch interrupts */
1302 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1303 if (request->ctx != port[0].request->ctx) {
1304 i915_gem_request_put(port[0].request);
1305 port[0] = port[1];
1306 memset(&port[1], 0, sizeof(port[1]));
1307 }
1308
1309 /* CS is stopped, and we will resubmit both ports on resume */
1310 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1311 port[0].count = 0;
1312 port[1].count = 0;
1313}
1314
7a01a0a2
MT
1315static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1316{
1317 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1318 struct intel_ring *ring = req->ring;
4a570db5 1319 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1320 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1321 int i, ret;
1322
987046ad 1323 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1324 if (ret)
1325 return ret;
1326
b5321f30 1327 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1328 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1329 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1330
b5321f30
CW
1331 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1332 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1333 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1334 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1335 }
1336
b5321f30
CW
1337 intel_ring_emit(ring, MI_NOOP);
1338 intel_ring_advance(ring);
7a01a0a2
MT
1339
1340 return 0;
1341}
1342
be795fc1 1343static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1344 u64 offset, u32 len,
1345 unsigned int dispatch_flags)
15648585 1346{
7e37f889 1347 struct intel_ring *ring = req->ring;
8e004efc 1348 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1349 int ret;
1350
7a01a0a2
MT
1351 /* Don't rely in hw updating PDPs, specially in lite-restore.
1352 * Ideally, we should set Force PD Restore in ctx descriptor,
1353 * but we can't. Force Restore would be a second option, but
1354 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1355 * not idle). PML4 is allocated during ppgtt init so this is
1356 * not needed in 48-bit.*/
7a01a0a2 1357 if (req->ctx->ppgtt &&
666796da 1358 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1359 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1360 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1361 ret = intel_logical_ring_emit_pdps(req);
1362 if (ret)
1363 return ret;
1364 }
7a01a0a2 1365
666796da 1366 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1367 }
1368
987046ad 1369 ret = intel_ring_begin(req, 4);
15648585
OM
1370 if (ret)
1371 return ret;
1372
1373 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1374 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1375 (ppgtt<<8) |
1376 (dispatch_flags & I915_DISPATCH_RS ?
1377 MI_BATCH_RESOURCE_STREAMER : 0));
1378 intel_ring_emit(ring, lower_32_bits(offset));
1379 intel_ring_emit(ring, upper_32_bits(offset));
1380 intel_ring_emit(ring, MI_NOOP);
1381 intel_ring_advance(ring);
15648585
OM
1382
1383 return 0;
1384}
1385
31bb59cc 1386static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1387{
c033666a 1388 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1389 I915_WRITE_IMR(engine,
1390 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1391 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1392}
1393
31bb59cc 1394static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1395{
c033666a 1396 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1397 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1398}
1399
7c9cf4e3 1400static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1401{
7e37f889
CW
1402 struct intel_ring *ring = request->ring;
1403 u32 cmd;
4712274c
OM
1404 int ret;
1405
987046ad 1406 ret = intel_ring_begin(request, 4);
4712274c
OM
1407 if (ret)
1408 return ret;
1409
1410 cmd = MI_FLUSH_DW + 1;
1411
f0a1fb10
CW
1412 /* We always require a command barrier so that subsequent
1413 * commands, such as breadcrumb interrupts, are strictly ordered
1414 * wrt the contents of the write cache being flushed to memory
1415 * (and thus being coherent from the CPU).
1416 */
1417 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1418
7c9cf4e3 1419 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1420 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1421 if (request->engine->id == VCS)
f0a1fb10 1422 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1423 }
1424
b5321f30
CW
1425 intel_ring_emit(ring, cmd);
1426 intel_ring_emit(ring,
1427 I915_GEM_HWS_SCRATCH_ADDR |
1428 MI_FLUSH_DW_USE_GTT);
1429 intel_ring_emit(ring, 0); /* upper addr */
1430 intel_ring_emit(ring, 0); /* value */
1431 intel_ring_advance(ring);
4712274c
OM
1432
1433 return 0;
1434}
1435
7deb4d39 1436static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1437 u32 mode)
4712274c 1438{
7e37f889 1439 struct intel_ring *ring = request->ring;
b5321f30 1440 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1441 u32 scratch_addr =
1442 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1443 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1444 u32 flags = 0;
1445 int ret;
0b2d0934 1446 int len;
4712274c
OM
1447
1448 flags |= PIPE_CONTROL_CS_STALL;
1449
7c9cf4e3 1450 if (mode & EMIT_FLUSH) {
4712274c
OM
1451 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1452 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1453 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1454 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1455 }
1456
7c9cf4e3 1457 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1458 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1459 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1460 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1461 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1462 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1463 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1464 flags |= PIPE_CONTROL_QW_WRITE;
1465 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1466
1a5a9ce7
BW
1467 /*
1468 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1469 * pipe control.
1470 */
c033666a 1471 if (IS_GEN9(request->i915))
1a5a9ce7 1472 vf_flush_wa = true;
0b2d0934
MK
1473
1474 /* WaForGAMHang:kbl */
1475 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1476 dc_flush_wa = true;
1a5a9ce7 1477 }
9647ff36 1478
0b2d0934
MK
1479 len = 6;
1480
1481 if (vf_flush_wa)
1482 len += 6;
1483
1484 if (dc_flush_wa)
1485 len += 12;
1486
1487 ret = intel_ring_begin(request, len);
4712274c
OM
1488 if (ret)
1489 return ret;
1490
9647ff36 1491 if (vf_flush_wa) {
b5321f30
CW
1492 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1493 intel_ring_emit(ring, 0);
1494 intel_ring_emit(ring, 0);
1495 intel_ring_emit(ring, 0);
1496 intel_ring_emit(ring, 0);
1497 intel_ring_emit(ring, 0);
9647ff36
ID
1498 }
1499
0b2d0934 1500 if (dc_flush_wa) {
b5321f30
CW
1501 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1502 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1503 intel_ring_emit(ring, 0);
1504 intel_ring_emit(ring, 0);
1505 intel_ring_emit(ring, 0);
1506 intel_ring_emit(ring, 0);
0b2d0934
MK
1507 }
1508
b5321f30
CW
1509 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1510 intel_ring_emit(ring, flags);
1511 intel_ring_emit(ring, scratch_addr);
1512 intel_ring_emit(ring, 0);
1513 intel_ring_emit(ring, 0);
1514 intel_ring_emit(ring, 0);
0b2d0934
MK
1515
1516 if (dc_flush_wa) {
b5321f30
CW
1517 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1518 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1519 intel_ring_emit(ring, 0);
1520 intel_ring_emit(ring, 0);
1521 intel_ring_emit(ring, 0);
1522 intel_ring_emit(ring, 0);
0b2d0934
MK
1523 }
1524
b5321f30 1525 intel_ring_advance(ring);
4712274c
OM
1526
1527 return 0;
1528}
1529
c04e0f3b 1530static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1531{
319404df
ID
1532 /*
1533 * On BXT A steppings there is a HW coherency issue whereby the
1534 * MI_STORE_DATA_IMM storing the completed request's seqno
1535 * occasionally doesn't invalidate the CPU cache. Work around this by
1536 * clflushing the corresponding cacheline whenever the caller wants
1537 * the coherency to be guaranteed. Note that this cacheline is known
1538 * to be clean at this point, since we only write it in
1539 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1540 * this clflush in practice becomes an invalidate operation.
1541 */
c04e0f3b 1542 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1543}
1544
7c17d377
CW
1545/*
1546 * Reserve space for 2 NOOPs at the end of each request to be
1547 * used as a workaround for not being allowed to do lite
1548 * restore with HEAD==TAIL (WaIdleLiteRestore).
1549 */
1550#define WA_TAIL_DWORDS 2
1551
c4e76638 1552static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1553{
7e37f889 1554 struct intel_ring *ring = request->ring;
4da46e1e
OM
1555 int ret;
1556
987046ad 1557 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1558 if (ret)
1559 return ret;
1560
7c17d377
CW
1561 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1562 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1563
b5321f30
CW
1564 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1565 intel_ring_emit(ring,
1566 intel_hws_seqno_address(request->engine) |
1567 MI_FLUSH_DW_USE_GTT);
1568 intel_ring_emit(ring, 0);
1569 intel_ring_emit(ring, request->fence.seqno);
1570 intel_ring_emit(ring, MI_USER_INTERRUPT);
1571 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1572 return intel_logical_ring_advance(request);
7c17d377 1573}
4da46e1e 1574
7c17d377
CW
1575static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1576{
7e37f889 1577 struct intel_ring *ring = request->ring;
7c17d377 1578 int ret;
53292cdb 1579
987046ad 1580 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1581 if (ret)
1582 return ret;
1583
ce81a65c
MW
1584 /* We're using qword write, seqno should be aligned to 8 bytes. */
1585 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1586
7c17d377
CW
1587 /* w/a for post sync ops following a GPGPU operation we
1588 * need a prior CS_STALL, which is emitted by the flush
1589 * following the batch.
1590 */
b5321f30
CW
1591 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1592 intel_ring_emit(ring,
1593 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1594 PIPE_CONTROL_CS_STALL |
1595 PIPE_CONTROL_QW_WRITE));
1596 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1597 intel_ring_emit(ring, 0);
1598 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
ce81a65c 1599 /* We're thrashing one dword of HWS. */
b5321f30
CW
1600 intel_ring_emit(ring, 0);
1601 intel_ring_emit(ring, MI_USER_INTERRUPT);
1602 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1603 return intel_logical_ring_advance(request);
4da46e1e
OM
1604}
1605
8753181e 1606static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1607{
1608 int ret;
1609
e2be4faf 1610 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1611 if (ret)
1612 return ret;
1613
3bbaba0c
PA
1614 ret = intel_rcs_context_init_mocs(req);
1615 /*
1616 * Failing to program the MOCS is non-fatal.The system will not
1617 * run at peak performance. So generate an error and carry on.
1618 */
1619 if (ret)
1620 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1621
e40f9ee6 1622 return i915_gem_render_state_init(req);
e7778be1
TD
1623}
1624
73e4d07f
OM
1625/**
1626 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1627 * @engine: Engine Command Streamer.
73e4d07f 1628 */
0bc40be8 1629void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1630{
6402c330 1631 struct drm_i915_private *dev_priv;
9832b9da 1632
117897f4 1633 if (!intel_engine_initialized(engine))
48d82387
OM
1634 return;
1635
27af5eea
TU
1636 /*
1637 * Tasklet cannot be active at this point due intel_mark_active/idle
1638 * so this is just for documentation.
1639 */
1640 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1641 tasklet_kill(&engine->irq_tasklet);
1642
c033666a 1643 dev_priv = engine->i915;
6402c330 1644
0bc40be8 1645 if (engine->buffer) {
0bc40be8 1646 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1647 }
48d82387 1648
0bc40be8
TU
1649 if (engine->cleanup)
1650 engine->cleanup(engine);
48d82387 1651
96a945aa 1652 intel_engine_cleanup_common(engine);
688e6c72 1653
57e88531
CW
1654 if (engine->status_page.vma) {
1655 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1656 engine->status_page.vma = NULL;
48d82387 1657 }
24f1d3cc 1658 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1659
0bc40be8 1660 lrc_destroy_wa_ctx_obj(engine);
c033666a 1661 engine->i915 = NULL;
454afebd
OM
1662}
1663
ddd66c51
CW
1664void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1665{
1666 struct intel_engine_cs *engine;
1667
1668 for_each_engine(engine, dev_priv)
f4ea6bdd 1669 engine->submit_request = execlists_submit_request;
ddd66c51
CW
1670}
1671
c9cacf93 1672static void
e1382efb 1673logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1674{
1675 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1676 engine->init_hw = gen8_init_common_ring;
821ed7df 1677 engine->reset_hw = reset_common_ring;
0bc40be8 1678 engine->emit_flush = gen8_emit_flush;
ddd66c51 1679 engine->emit_request = gen8_emit_request;
f4ea6bdd 1680 engine->submit_request = execlists_submit_request;
ddd66c51 1681
31bb59cc
CW
1682 engine->irq_enable = gen8_logical_ring_enable_irq;
1683 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1684 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1685 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1686 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1687}
1688
d9f3af96 1689static inline void
c2c7f240 1690logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1691{
c2c7f240 1692 unsigned shift = engine->irq_shift;
0bc40be8
TU
1693 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1694 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1695}
1696
7d774cac 1697static int
bf3783e5 1698lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1699{
57e88531 1700 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1701 void *hws;
04794adb
TU
1702
1703 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1704 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1705 if (IS_ERR(hws))
1706 return PTR_ERR(hws);
57e88531
CW
1707
1708 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1709 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1710 engine->status_page.vma = vma;
7d774cac
TU
1711
1712 return 0;
04794adb
TU
1713}
1714
bb45438f
TU
1715static void
1716logical_ring_setup(struct intel_engine_cs *engine)
1717{
1718 struct drm_i915_private *dev_priv = engine->i915;
1719 enum forcewake_domains fw_domains;
1720
019bf277
TU
1721 intel_engine_setup_common(engine);
1722
bb45438f
TU
1723 /* Intentionally left blank. */
1724 engine->buffer = NULL;
1725
1726 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1727 RING_ELSP(engine),
1728 FW_REG_WRITE);
1729
1730 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1731 RING_CONTEXT_STATUS_PTR(engine),
1732 FW_REG_READ | FW_REG_WRITE);
1733
1734 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1735 RING_CONTEXT_STATUS_BUF_BASE(engine),
1736 FW_REG_READ);
1737
1738 engine->fw_domains = fw_domains;
1739
bb45438f
TU
1740 tasklet_init(&engine->irq_tasklet,
1741 intel_lrc_irq_handler, (unsigned long)engine);
1742
1743 logical_ring_init_platform_invariants(engine);
1744 logical_ring_default_vfuncs(engine);
1745 logical_ring_default_irqs(engine);
bb45438f
TU
1746}
1747
a19d6ff2
TU
1748static int
1749logical_ring_init(struct intel_engine_cs *engine)
1750{
1751 struct i915_gem_context *dctx = engine->i915->kernel_context;
1752 int ret;
1753
019bf277 1754 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1755 if (ret)
1756 goto error;
1757
1758 ret = execlists_context_deferred_alloc(dctx, engine);
1759 if (ret)
1760 goto error;
1761
1762 /* As this is the default context, always pin it */
1763 ret = intel_lr_context_pin(dctx, engine);
1764 if (ret) {
1765 DRM_ERROR("Failed to pin context for %s: %d\n",
1766 engine->name, ret);
1767 goto error;
1768 }
1769
1770 /* And setup the hardware status page. */
1771 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1772 if (ret) {
1773 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1774 goto error;
1775 }
1776
1777 return 0;
1778
1779error:
1780 intel_logical_ring_cleanup(engine);
1781 return ret;
1782}
1783
88d2ba2e 1784int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1785{
1786 struct drm_i915_private *dev_priv = engine->i915;
1787 int ret;
1788
bb45438f
TU
1789 logical_ring_setup(engine);
1790
a19d6ff2
TU
1791 if (HAS_L3_DPF(dev_priv))
1792 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1793
1794 /* Override some for render ring. */
1795 if (INTEL_GEN(dev_priv) >= 9)
1796 engine->init_hw = gen9_init_render_ring;
1797 else
1798 engine->init_hw = gen8_init_render_ring;
1799 engine->init_context = gen8_init_rcs_context;
a19d6ff2
TU
1800 engine->emit_flush = gen8_emit_flush_render;
1801 engine->emit_request = gen8_emit_request_render;
1802
56c0f1a7 1803 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1804 if (ret)
1805 return ret;
1806
1807 ret = intel_init_workaround_bb(engine);
1808 if (ret) {
1809 /*
1810 * We continue even if we fail to initialize WA batch
1811 * because we only expect rare glitches but nothing
1812 * critical to prevent us from using GPU
1813 */
1814 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1815 ret);
1816 }
1817
1818 ret = logical_ring_init(engine);
1819 if (ret) {
1820 lrc_destroy_wa_ctx_obj(engine);
1821 }
1822
1823 return ret;
1824}
1825
88d2ba2e 1826int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1827{
1828 logical_ring_setup(engine);
1829
1830 return logical_ring_init(engine);
454afebd
OM
1831}
1832
0cea6502 1833static u32
c033666a 1834make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1835{
1836 u32 rpcs = 0;
1837
1838 /*
1839 * No explicit RPCS request is needed to ensure full
1840 * slice/subslice/EU enablement prior to Gen9.
1841 */
c033666a 1842 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1843 return 0;
1844
1845 /*
1846 * Starting in Gen9, render power gating can leave
1847 * slice/subslice/EU in a partially enabled state. We
1848 * must make an explicit request through RPCS for full
1849 * enablement.
1850 */
43b67998 1851 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
0cea6502 1852 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
f08a0c92 1853 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
0cea6502
JM
1854 GEN8_RPCS_S_CNT_SHIFT;
1855 rpcs |= GEN8_RPCS_ENABLE;
1856 }
1857
43b67998 1858 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
0cea6502 1859 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
57ec171e 1860 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
0cea6502
JM
1861 GEN8_RPCS_SS_CNT_SHIFT;
1862 rpcs |= GEN8_RPCS_ENABLE;
1863 }
1864
43b67998
ID
1865 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1866 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502 1867 GEN8_RPCS_EU_MIN_SHIFT;
43b67998 1868 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
0cea6502
JM
1869 GEN8_RPCS_EU_MAX_SHIFT;
1870 rpcs |= GEN8_RPCS_ENABLE;
1871 }
1872
1873 return rpcs;
1874}
1875
0bc40be8 1876static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1877{
1878 u32 indirect_ctx_offset;
1879
c033666a 1880 switch (INTEL_GEN(engine->i915)) {
71562919 1881 default:
c033666a 1882 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1883 /* fall through */
1884 case 9:
1885 indirect_ctx_offset =
1886 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1887 break;
1888 case 8:
1889 indirect_ctx_offset =
1890 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1891 break;
1892 }
1893
1894 return indirect_ctx_offset;
1895}
1896
8670d6f9 1897static int
e2efd130 1898populate_lr_context(struct i915_gem_context *ctx,
7d774cac 1899 struct drm_i915_gem_object *ctx_obj,
0bc40be8 1900 struct intel_engine_cs *engine,
7e37f889 1901 struct intel_ring *ring)
8670d6f9 1902{
c033666a 1903 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 1904 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
1905 void *vaddr;
1906 u32 *reg_state;
8670d6f9
OM
1907 int ret;
1908
2d965536
TD
1909 if (!ppgtt)
1910 ppgtt = dev_priv->mm.aliasing_ppgtt;
1911
8670d6f9
OM
1912 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1913 if (ret) {
1914 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1915 return ret;
1916 }
1917
d31d7cb1 1918 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
7d774cac
TU
1919 if (IS_ERR(vaddr)) {
1920 ret = PTR_ERR(vaddr);
1921 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
1922 return ret;
1923 }
7d774cac 1924 ctx_obj->dirty = true;
8670d6f9
OM
1925
1926 /* The second page of the context object contains some fields which must
1927 * be set up prior to the first execution. */
7d774cac 1928 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
1929
1930 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1931 * commands followed by (reg, value) pairs. The values we are setting here are
1932 * only for the first context restore: on a subsequent save, the GPU will
1933 * recreate this batchbuffer with new values (including all the missing
1934 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1935 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1936 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1937 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1938 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1939 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1940 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1941 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 1942 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1943 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1944 0);
1945 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1946 0);
7ba717cf
TD
1947 /* Ring buffer start address is not known until the buffer is pinned.
1948 * It is written to the context image in execlists_update_context()
1949 */
0bc40be8
TU
1950 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1951 RING_START(engine->mmio_base), 0);
1952 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1953 RING_CTL(engine->mmio_base),
7e37f889 1954 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
1955 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1956 RING_BBADDR_UDW(engine->mmio_base), 0);
1957 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1958 RING_BBADDR(engine->mmio_base), 0);
1959 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1960 RING_BBSTATE(engine->mmio_base),
0d925ea0 1961 RING_BB_PPGTT);
0bc40be8
TU
1962 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1963 RING_SBBADDR_UDW(engine->mmio_base), 0);
1964 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1965 RING_SBBADDR(engine->mmio_base), 0);
1966 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1967 RING_SBBSTATE(engine->mmio_base), 0);
1968 if (engine->id == RCS) {
1969 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1970 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1971 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1972 RING_INDIRECT_CTX(engine->mmio_base), 0);
1973 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1974 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 1975 if (engine->wa_ctx.vma) {
0bc40be8 1976 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 1977 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
1978
1979 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1980 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1981 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1982
1983 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 1984 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
1985
1986 reg_state[CTX_BB_PER_CTX_PTR+1] =
1987 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1988 0x01;
1989 }
8670d6f9 1990 }
0d925ea0 1991 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
1992 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1993 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 1994 /* PDP values well be assigned later if needed */
0bc40be8
TU
1995 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1996 0);
1997 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1998 0);
1999 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2000 0);
2001 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2002 0);
2003 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2004 0);
2005 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2006 0);
2007 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2008 0);
2009 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2010 0);
d7b2633d 2011
2dba3239
MT
2012 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2013 /* 64b PPGTT (48bit canonical)
2014 * PDP0_DESCRIPTOR contains the base address to PML4 and
2015 * other PDP Descriptors are ignored.
2016 */
2017 ASSIGN_CTX_PML4(ppgtt, reg_state);
2018 } else {
2019 /* 32b PPGTT
2020 * PDP*_DESCRIPTOR contains the base address of space supported.
2021 * With dynamic page allocation, PDPs may not be allocated at
2022 * this point. Point the unallocated PDPs to the scratch page
2023 */
c6a2ac71 2024 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2025 }
2026
0bc40be8 2027 if (engine->id == RCS) {
8670d6f9 2028 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2029 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2030 make_rpcs(dev_priv));
8670d6f9
OM
2031 }
2032
7d774cac 2033 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2034
2035 return 0;
2036}
2037
c5d46ee2
DG
2038/**
2039 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2040 * @engine: which engine to find the context size for
c5d46ee2
DG
2041 *
2042 * Each engine may require a different amount of space for a context image,
2043 * so when allocating (or copying) an image, this function can be used to
2044 * find the right size for the specific engine.
2045 *
2046 * Return: size (in bytes) of an engine-specific context image
2047 *
2048 * Note: this size includes the HWSP, which is part of the context image
2049 * in LRC mode, but does not include the "shared data page" used with
2050 * GuC submission. The caller should account for this if using the GuC.
2051 */
0bc40be8 2052uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2053{
2054 int ret = 0;
2055
c033666a 2056 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2057
0bc40be8 2058 switch (engine->id) {
8c857917 2059 case RCS:
c033666a 2060 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2061 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2062 else
2063 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2064 break;
2065 case VCS:
2066 case BCS:
2067 case VECS:
2068 case VCS2:
2069 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2070 break;
2071 }
2072
2073 return ret;
ede7d42b
OM
2074}
2075
e2efd130 2076static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2077 struct intel_engine_cs *engine)
ede7d42b 2078{
8c857917 2079 struct drm_i915_gem_object *ctx_obj;
9021ad03 2080 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2081 struct i915_vma *vma;
8c857917 2082 uint32_t context_size;
7e37f889 2083 struct intel_ring *ring;
8c857917
OM
2084 int ret;
2085
9021ad03 2086 WARN_ON(ce->state);
ede7d42b 2087
0bc40be8 2088 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2089
d1675198
AD
2090 /* One extra page as the sharing data between driver and GuC */
2091 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2092
91c8a326 2093 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2094 if (IS_ERR(ctx_obj)) {
3126a660 2095 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2096 return PTR_ERR(ctx_obj);
8c857917
OM
2097 }
2098
bf3783e5
CW
2099 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2100 if (IS_ERR(vma)) {
2101 ret = PTR_ERR(vma);
2102 goto error_deref_obj;
2103 }
2104
7e37f889 2105 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2106 if (IS_ERR(ring)) {
2107 ret = PTR_ERR(ring);
e84fe803 2108 goto error_deref_obj;
8670d6f9
OM
2109 }
2110
dca33ecc 2111 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2112 if (ret) {
2113 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2114 goto error_ring_free;
84c2377f
OM
2115 }
2116
dca33ecc 2117 ce->ring = ring;
bf3783e5 2118 ce->state = vma;
9021ad03 2119 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2120
2121 return 0;
8670d6f9 2122
dca33ecc 2123error_ring_free:
7e37f889 2124 intel_ring_free(ring);
e84fe803 2125error_deref_obj:
f8c417cd 2126 i915_gem_object_put(ctx_obj);
8670d6f9 2127 return ret;
ede7d42b 2128}
3e5b6f05 2129
821ed7df 2130void intel_lr_context_resume(struct drm_i915_private *dev_priv)
3e5b6f05 2131{
821ed7df 2132 struct i915_gem_context *ctx = dev_priv->kernel_context;
e2f80391 2133 struct intel_engine_cs *engine;
3e5b6f05 2134
b4ac5afc 2135 for_each_engine(engine, dev_priv) {
9021ad03 2136 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 2137 void *vaddr;
3e5b6f05 2138 uint32_t *reg_state;
3e5b6f05 2139
bf3783e5 2140 if (!ce->state)
3e5b6f05
TD
2141 continue;
2142
bf3783e5 2143 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac 2144 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2145 continue;
7d774cac
TU
2146
2147 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
3e5b6f05
TD
2148
2149 reg_state[CTX_RING_HEAD+1] = 0;
2150 reg_state[CTX_RING_TAIL+1] = 0;
2151
bf3783e5
CW
2152 ce->state->obj->dirty = true;
2153 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2154
dca33ecc
CW
2155 ce->ring->head = 0;
2156 ce->ring->tail = 0;
3e5b6f05
TD
2157 }
2158}
This page took 0.373358 seconds and 5 git commands to generate.