drm/i915: Convert dev_priv->dev backpointers to dev_priv->drm
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215};
216#define GEN8_CTX_ID_SHIFT 32
7069b144 217#define GEN8_CTX_ID_WIDTH 21
71562919
MT
218#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 220
0e93cdd4
CW
221/* Typical size of the average request (2 pipecontrols and a MI_BB) */
222#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
e2efd130 224static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 225 struct intel_engine_cs *engine);
e2efd130 226static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 227 struct intel_engine_cs *engine);
7ba717cf 228
73e4d07f
OM
229/**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 231 * @dev_priv: i915 device private
73e4d07f
OM
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
27401d12 235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
c033666a 239int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 240{
a0bd6c31
ZL
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
c033666a 244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
245 return 1;
246
c033666a 247 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
248 return 1;
249
127f1003
OM
250 if (enable_execlists == 0)
251 return 0;
252
5a21b665
DV
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
ca82580c 261static void
0bc40be8 262logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 263{
c033666a 264 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 265
c033666a 266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 267 engine->idle_lite_restore_wa = ~0;
c6a2ac71 268
c033666a
CW
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 271 (engine->id == VCS || engine->id == VCS2);
ca82580c 272
0bc40be8 273 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 274 if (IS_GEN8(dev_priv))
0bc40be8
TU
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
286}
287
73e4d07f 288/**
ca82580c
TU
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
73e4d07f 291 *
ca82580c 292 * @ctx: Context to work on
9021ad03 293 * @engine: Engine the descriptor will be used with
73e4d07f 294 *
ca82580c
TU
295 * The context descriptor encodes various attributes of a context,
296 * including its GTT address and some flags. Because it's fairly
297 * expensive to calculate, we'll just do it once and cache the result,
298 * which remains valid until the context is unpinned.
299 *
300 * This is what a descriptor looks like, from LSB to MSB:
ef87bba8 301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
ca82580c 302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
7069b144 303 * bits 32-52: ctx ID, a globally unique tag
ef87bba8
CW
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 306 */
ca82580c 307static void
e2efd130 308intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 309 struct intel_engine_cs *engine)
84b790f8 310{
9021ad03 311 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 312 u64 desc;
84b790f8 313
7069b144 314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 315
c01fc532
ZW
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
9021ad03
CW
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
7069b144 320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 321
9021ad03 322 ce->lrc_desc = desc;
5af05fef
MT
323}
324
e2efd130 325uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 326 struct intel_engine_cs *engine)
84b790f8 327{
0bc40be8 328 return ctx->engine[engine->id].lrc_desc;
ca82580c 329}
203a571b 330
cc3c4253
MK
331static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
84b790f8 333{
cc3c4253 334
4a570db5 335 struct intel_engine_cs *engine = rq0->engine;
c033666a 336 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 337 uint64_t desc[2];
84b790f8 338
1cff8cc3 339 if (rq1) {
4a570db5 340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
84b790f8 345
4a570db5 346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 347 rq0->elsp_submitted++;
84b790f8 348
1cff8cc3 349 /* You must always write both descriptors in the order below. */
e2f80391
TU
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 352
e2f80391 353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 354 /* The context is automatically loaded after the following */
e2f80391 355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 356
1cff8cc3 357 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
359}
360
c6a2ac71
TU
361static void
362execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363{
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368}
369
370static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 371{
4a570db5 372 struct intel_engine_cs *engine = rq->engine;
05d9824b 373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 375
05d9824b 376 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 377
c6a2ac71
TU
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
385}
386
d8cb8875
MK
387static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
84b790f8 389{
26720ab9 390 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 391 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 392
05d9824b 393 execlists_update_context(rq0);
d8cb8875 394
cc3c4253 395 if (rq1)
05d9824b 396 execlists_update_context(rq1);
84b790f8 397
27af5eea 398 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
26720ab9 402
3756685a 403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 404 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
405}
406
3c7ba635
ZW
407static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410{
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419}
420
26720ab9 421static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 422{
6d3d8274 423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 424 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 425
0bc40be8 426 assert_spin_locked(&engine->execlist_lock);
acdd884a 427
779949f4
PA
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
c033666a 432 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 433
acdd884a 434 /* Try to read in pairs */
0bc40be8 435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
6d3d8274 439 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
e1fee72c 442 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa
TU
443 list_del(&req0->execlist_link);
444 i915_gem_request_unreference(req0);
acdd884a
MT
445 req0 = cursor;
446 } else {
80a9a8db
ZW
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
acdd884a 461 req1 = cursor;
c6a2ac71 462 WARN_ON(req1->elsp_submitted);
acdd884a
MT
463 break;
464 }
465 }
466
c6a2ac71
TU
467 if (unlikely(!req0))
468 return;
469
3c7ba635
ZW
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
0bc40be8 476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 477 /*
c6a2ac71
TU
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
53292cdb 484 */
c6a2ac71 485 struct intel_ringbuffer *ringbuf;
53292cdb 486
0bc40be8 487 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
488 req0->tail += 8;
489 req0->tail &= ringbuf->size - 1;
53292cdb
MT
490 }
491
d8cb8875 492 execlists_submit_requests(req0, req1);
acdd884a
MT
493}
494
c6a2ac71 495static unsigned int
e39d42fa 496execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 497{
6d3d8274 498 struct drm_i915_gem_request *head_req;
e981e7b1 499
0bc40be8 500 assert_spin_locked(&engine->execlist_lock);
e981e7b1 501
0bc40be8 502 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 503 struct drm_i915_gem_request,
e981e7b1
TD
504 execlist_link);
505
e39d42fa
TU
506 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507 return 0;
c6a2ac71
TU
508
509 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510
511 if (--head_req->elsp_submitted > 0)
512 return 0;
513
3c7ba635
ZW
514 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515
e39d42fa
TU
516 list_del(&head_req->execlist_link);
517 i915_gem_request_unreference(head_req);
e981e7b1 518
c6a2ac71 519 return 1;
e981e7b1
TD
520}
521
c6a2ac71 522static u32
0bc40be8 523get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 524 u32 *context_id)
91a41032 525{
c033666a 526 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 527 u32 status;
91a41032 528
c6a2ac71
TU
529 read_pointer %= GEN8_CSB_ENTRIES;
530
0bc40be8 531 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
532
533 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 return 0;
91a41032 535
0bc40be8 536 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
537 read_pointer));
538
539 return status;
91a41032
BW
540}
541
73e4d07f 542/**
3f7531c3 543 * intel_lrc_irq_handler() - handle Context Switch interrupts
14bb2c11 544 * @data: tasklet handler passed in unsigned long
73e4d07f
OM
545 *
546 * Check the unread Context Status Buffers and manage the submission of new
547 * contexts to the ELSP accordingly.
548 */
27af5eea 549static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 550{
27af5eea 551 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 552 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 553 u32 status_pointer;
c6a2ac71 554 unsigned int read_pointer, write_pointer;
26720ab9
TU
555 u32 csb[GEN8_CSB_ENTRIES][2];
556 unsigned int csb_read = 0, i;
c6a2ac71
TU
557 unsigned int submit_contexts = 0;
558
3756685a 559 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 560
0bc40be8 561 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 562
0bc40be8 563 read_pointer = engine->next_context_status_buffer;
5590a5f0 564 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 565 if (read_pointer > write_pointer)
dfc53c5e 566 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 567
e981e7b1 568 while (read_pointer < write_pointer) {
26720ab9
TU
569 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
570 break;
571 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
572 &csb[csb_read][1]);
573 csb_read++;
574 }
91a41032 575
26720ab9
TU
576 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
577
578 /* Update the read pointer to the old write pointer. Manual ringbuffer
579 * management ftw </sarcasm> */
580 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
581 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
582 engine->next_context_status_buffer << 8));
583
3756685a 584 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
585
586 spin_lock(&engine->execlist_lock);
587
588 for (i = 0; i < csb_read; i++) {
589 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
590 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
591 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
592 WARN(1, "Lite Restored request removed from queue\n");
593 } else
594 WARN(1, "Preemption without Lite Restore\n");
595 }
596
26720ab9 597 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
598 GEN8_CTX_STATUS_ELEMENT_SWITCH))
599 submit_contexts +=
26720ab9 600 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
601 }
602
c6a2ac71 603 if (submit_contexts) {
0bc40be8 604 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
605 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
606 execlists_context_unqueue(engine);
5af05fef 607 }
e981e7b1 608
0bc40be8 609 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
610
611 if (unlikely(submit_contexts > 2))
612 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
613}
614
c6a2ac71 615static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 616{
4a570db5 617 struct intel_engine_cs *engine = request->engine;
6d3d8274 618 struct drm_i915_gem_request *cursor;
f1ad5a1f 619 int num_elements = 0;
acdd884a 620
27af5eea 621 spin_lock_bh(&engine->execlist_lock);
acdd884a 622
e2f80391 623 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
624 if (++num_elements > 2)
625 break;
626
627 if (num_elements > 2) {
6d3d8274 628 struct drm_i915_gem_request *tail_req;
f1ad5a1f 629
e2f80391 630 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 631 struct drm_i915_gem_request,
f1ad5a1f
OM
632 execlist_link);
633
ae70797d 634 if (request->ctx == tail_req->ctx) {
f1ad5a1f 635 WARN(tail_req->elsp_submitted != 0,
7ba717cf 636 "More than 2 already-submitted reqs queued\n");
e39d42fa
TU
637 list_del(&tail_req->execlist_link);
638 i915_gem_request_unreference(tail_req);
f1ad5a1f
OM
639 }
640 }
641
e39d42fa 642 i915_gem_request_reference(request);
e2f80391 643 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 644 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 645 if (num_elements == 0)
e2f80391 646 execlists_context_unqueue(engine);
acdd884a 647
27af5eea 648 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
649}
650
2f20055d 651static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 652{
4a570db5 653 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
654 uint32_t flush_domains;
655 int ret;
656
657 flush_domains = 0;
e2f80391 658 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
659 flush_domains = I915_GEM_GPU_DOMAINS;
660
e2f80391 661 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
662 if (ret)
663 return ret;
664
e2f80391 665 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
666 return 0;
667}
668
535fbe82 669static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
670 struct list_head *vmas)
671{
666796da 672 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
673 struct i915_vma *vma;
674 uint32_t flush_domains = 0;
675 bool flush_chipset = false;
676 int ret;
677
678 list_for_each_entry(vma, vmas, exec_list) {
679 struct drm_i915_gem_object *obj = vma->obj;
680
03ade511 681 if (obj->active & other_rings) {
4a570db5 682 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
683 if (ret)
684 return ret;
685 }
ba8b7ccb
OM
686
687 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
688 flush_chipset |= i915_gem_clflush_object(obj, false);
689
690 flush_domains |= obj->base.write_domain;
691 }
692
693 if (flush_domains & I915_GEM_DOMAIN_GTT)
694 wmb();
695
696 /* Unconditionally invalidate gpu caches and ensure that we do flush
697 * any residual writes from the previous batch.
698 */
2f20055d 699 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
700}
701
40e895ce 702int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 703{
24f1d3cc 704 struct intel_engine_cs *engine = request->engine;
9021ad03 705 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 706 int ret;
bc0dce3f 707
6310346e
CW
708 /* Flush enough space to reduce the likelihood of waiting after
709 * we start building the request - in which case we will just
710 * have to repeat work.
711 */
0e93cdd4 712 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 713
9021ad03 714 if (!ce->state) {
978f1e09
CW
715 ret = execlists_context_deferred_alloc(request->ctx, engine);
716 if (ret)
717 return ret;
718 }
719
9021ad03 720 request->ringbuf = ce->ringbuf;
f3cc01f0 721
a7e02199
AD
722 if (i915.enable_guc_submission) {
723 /*
724 * Check that the GuC has space for the request before
725 * going any further, as the i915_add_request() call
726 * later on mustn't fail ...
727 */
7c2c270d 728 ret = i915_guc_wq_check_space(request);
a7e02199
AD
729 if (ret)
730 return ret;
731 }
732
24f1d3cc
CW
733 ret = intel_lr_context_pin(request->ctx, engine);
734 if (ret)
735 return ret;
e28e404c 736
bfa01200
CW
737 ret = intel_ring_begin(request, 0);
738 if (ret)
739 goto err_unpin;
740
9021ad03 741 if (!ce->initialised) {
24f1d3cc
CW
742 ret = engine->init_context(request);
743 if (ret)
744 goto err_unpin;
745
9021ad03 746 ce->initialised = true;
24f1d3cc
CW
747 }
748
749 /* Note that after this point, we have committed to using
750 * this request as it is being used to both track the
751 * state of engine initialisation and liveness of the
752 * golden renderstate above. Think twice before you try
753 * to cancel/unwind this request now.
754 */
755
0e93cdd4 756 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
757 return 0;
758
759err_unpin:
24f1d3cc 760 intel_lr_context_unpin(request->ctx, engine);
e28e404c 761 return ret;
bc0dce3f
JH
762}
763
bc0dce3f
JH
764/*
765 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 766 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
767 *
768 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
769 * really happens during submission is that the context and current tail will be placed
770 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
771 * point, the tail *inside* the context is updated and the ELSP written to.
772 */
7c17d377 773static int
ae70797d 774intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 775{
7c17d377 776 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 777 struct intel_engine_cs *engine = request->engine;
bc0dce3f 778
7c17d377
CW
779 intel_logical_ring_advance(ringbuf);
780 request->tail = ringbuf->tail;
bc0dce3f 781
7c17d377
CW
782 /*
783 * Here we add two extra NOOPs as padding to avoid
784 * lite restore of a context with HEAD==TAIL.
785 *
786 * Caller must reserve WA_TAIL_DWORDS for us!
787 */
788 intel_logical_ring_emit(ringbuf, MI_NOOP);
789 intel_logical_ring_emit(ringbuf, MI_NOOP);
790 intel_logical_ring_advance(ringbuf);
d1675198 791
a16a4052
CW
792 /* We keep the previous context alive until we retire the following
793 * request. This ensures that any the context object is still pinned
794 * for any residual writes the HW makes into it on the context switch
795 * into the next object following the breadcrumb. Otherwise, we may
796 * retire the context too early.
797 */
798 request->previous_context = engine->last_context;
799 engine->last_context = request->ctx;
f4e2dece 800
7c2c270d
DG
801 if (i915.enable_guc_submission)
802 i915_guc_submit(request);
d1675198
AD
803 else
804 execlists_context_queue(request);
7c17d377
CW
805
806 return 0;
bc0dce3f
JH
807}
808
73e4d07f
OM
809/**
810 * execlists_submission() - submit a batchbuffer for execution, Execlists style
14bb2c11 811 * @params: execbuffer call parameters.
73e4d07f
OM
812 * @args: execbuffer call arguments.
813 * @vmas: list of vmas.
73e4d07f
OM
814 *
815 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
816 * away the submission details of the execbuffer ioctl call.
817 *
818 * Return: non-zero if the submission fails.
819 */
5f19e2bf 820int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 821 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 822 struct list_head *vmas)
454afebd 823{
5f19e2bf 824 struct drm_device *dev = params->dev;
4a570db5 825 struct intel_engine_cs *engine = params->engine;
fac5e23e 826 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 827 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 828 u64 exec_start;
ba8b7ccb
OM
829 int instp_mode;
830 u32 instp_mask;
831 int ret;
832
833 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
834 instp_mask = I915_EXEC_CONSTANTS_MASK;
835 switch (instp_mode) {
836 case I915_EXEC_CONSTANTS_REL_GENERAL:
837 case I915_EXEC_CONSTANTS_ABSOLUTE:
838 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 839 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
840 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
841 return -EINVAL;
842 }
843
844 if (instp_mode != dev_priv->relative_constants_mode) {
845 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
846 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
847 return -EINVAL;
848 }
849
850 /* The HW changed the meaning on this bit on gen6 */
851 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
852 }
853 break;
854 default:
855 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
856 return -EINVAL;
857 }
858
ba8b7ccb
OM
859 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
860 DRM_DEBUG("sol reset is gen7 only\n");
861 return -EINVAL;
862 }
863
535fbe82 864 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
865 if (ret)
866 return ret;
867
4a570db5 868 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 869 instp_mode != dev_priv->relative_constants_mode) {
987046ad 870 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
871 if (ret)
872 return ret;
873
874 intel_logical_ring_emit(ringbuf, MI_NOOP);
875 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 876 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
877 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
878 intel_logical_ring_advance(ringbuf);
879
880 dev_priv->relative_constants_mode = instp_mode;
881 }
882
5f19e2bf
JH
883 exec_start = params->batch_obj_vm_offset +
884 args->batch_start_offset;
885
e2f80391 886 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
887 if (ret)
888 return ret;
889
95c24161 890 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 891
8a8edb59 892 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 893
454afebd
OM
894 return 0;
895}
896
e39d42fa 897void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 898{
6d3d8274 899 struct drm_i915_gem_request *req, *tmp;
e39d42fa 900 LIST_HEAD(cancel_list);
c86ee3a9 901
91c8a326 902 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
c86ee3a9 903
27af5eea 904 spin_lock_bh(&engine->execlist_lock);
e39d42fa 905 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 906 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 907
e39d42fa 908 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 909 list_del(&req->execlist_link);
f8210795 910 i915_gem_request_unreference(req);
c86ee3a9
TD
911 }
912}
913
0bc40be8 914void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 915{
c033666a 916 struct drm_i915_private *dev_priv = engine->i915;
9832b9da
OM
917 int ret;
918
117897f4 919 if (!intel_engine_initialized(engine))
9832b9da
OM
920 return;
921
666796da 922 ret = intel_engine_idle(engine);
f4457ae7 923 if (ret)
9832b9da 924 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 925 engine->name, ret);
9832b9da
OM
926
927 /* TODO: Is this correct with Execlists enabled? */
0bc40be8 928 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
3e7941a1
CW
929 if (intel_wait_for_register(dev_priv,
930 RING_MI_MODE(engine->mmio_base),
931 MODE_IDLE, MODE_IDLE,
932 1000)) {
0bc40be8 933 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
934 return;
935 }
0bc40be8 936 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
937}
938
4866d729 939int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 940{
4a570db5 941 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
942 int ret;
943
e2f80391 944 if (!engine->gpu_caches_dirty)
48e29f55
OM
945 return 0;
946
e2f80391 947 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
948 if (ret)
949 return ret;
950
e2f80391 951 engine->gpu_caches_dirty = false;
48e29f55
OM
952 return 0;
953}
954
e2efd130 955static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 956 struct intel_engine_cs *engine)
dcb4c12a 957{
24f1d3cc 958 struct drm_i915_private *dev_priv = ctx->i915;
9021ad03 959 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
960 void *vaddr;
961 u32 *lrc_reg_state;
ca82580c 962 int ret;
dcb4c12a 963
91c8a326 964 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 965
9021ad03 966 if (ce->pin_count++)
24f1d3cc
CW
967 return 0;
968
9021ad03
CW
969 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
970 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
e84fe803 971 if (ret)
24f1d3cc 972 goto err;
7ba717cf 973
9021ad03 974 vaddr = i915_gem_object_pin_map(ce->state);
7d774cac
TU
975 if (IS_ERR(vaddr)) {
976 ret = PTR_ERR(vaddr);
82352e90
TU
977 goto unpin_ctx_obj;
978 }
979
7d774cac
TU
980 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
981
9021ad03 982 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
e84fe803 983 if (ret)
7d774cac 984 goto unpin_map;
d1675198 985
24f1d3cc 986 i915_gem_context_reference(ctx);
9021ad03 987 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
0bc40be8 988 intel_lr_context_descriptor_update(ctx, engine);
9021ad03
CW
989
990 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
991 ce->lrc_reg_state = lrc_reg_state;
992 ce->state->dirty = true;
e93c28f3 993
e84fe803
NH
994 /* Invalidate GuC TLB. */
995 if (i915.enable_guc_submission)
996 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 997
24f1d3cc 998 return 0;
7ba717cf 999
7d774cac 1000unpin_map:
9021ad03 1001 i915_gem_object_unpin_map(ce->state);
7ba717cf 1002unpin_ctx_obj:
9021ad03 1003 i915_gem_object_ggtt_unpin(ce->state);
24f1d3cc 1004err:
9021ad03 1005 ce->pin_count = 0;
e84fe803
NH
1006 return ret;
1007}
1008
e2efd130 1009void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 1010 struct intel_engine_cs *engine)
e84fe803 1011{
9021ad03 1012 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 1013
91c8a326 1014 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 1015 GEM_BUG_ON(ce->pin_count == 0);
321fe304 1016
9021ad03 1017 if (--ce->pin_count)
24f1d3cc 1018 return;
e84fe803 1019
9021ad03 1020 intel_unpin_ringbuffer_obj(ce->ringbuf);
dcb4c12a 1021
9021ad03
CW
1022 i915_gem_object_unpin_map(ce->state);
1023 i915_gem_object_ggtt_unpin(ce->state);
af3302b9 1024
9021ad03
CW
1025 ce->lrc_vma = NULL;
1026 ce->lrc_desc = 0;
1027 ce->lrc_reg_state = NULL;
321fe304 1028
24f1d3cc 1029 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1030}
1031
e2be4faf 1032static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1033{
1034 int ret, i;
4a570db5 1035 struct intel_engine_cs *engine = req->engine;
e2be4faf 1036 struct intel_ringbuffer *ringbuf = req->ringbuf;
c033666a 1037 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 1038
cd7feaaa 1039 if (w->count == 0)
771b9a53
MT
1040 return 0;
1041
e2f80391 1042 engine->gpu_caches_dirty = true;
4866d729 1043 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1044 if (ret)
1045 return ret;
1046
987046ad 1047 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1048 if (ret)
1049 return ret;
1050
1051 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1052 for (i = 0; i < w->count; i++) {
f92a9162 1053 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1054 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1055 }
1056 intel_logical_ring_emit(ringbuf, MI_NOOP);
1057
1058 intel_logical_ring_advance(ringbuf);
1059
e2f80391 1060 engine->gpu_caches_dirty = true;
4866d729 1061 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1062 if (ret)
1063 return ret;
1064
1065 return 0;
1066}
1067
83b8a982 1068#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1069 do { \
83b8a982
AS
1070 int __index = (index)++; \
1071 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1072 return -ENOSPC; \
1073 } \
83b8a982 1074 batch[__index] = (cmd); \
17ee950d
AS
1075 } while (0)
1076
8f40db77 1077#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1078 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1079
1080/*
1081 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1082 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1083 * but there is a slight complication as this is applied in WA batch where the
1084 * values are only initialized once so we cannot take register value at the
1085 * beginning and reuse it further; hence we save its value to memory, upload a
1086 * constant value with bit21 set and then we restore it back with the saved value.
1087 * To simplify the WA, a constant value is formed by using the default value
1088 * of this register. This shouldn't be a problem because we are only modifying
1089 * it for a short period and this batch in non-premptible. We can ofcourse
1090 * use additional instructions that read the actual value of the register
1091 * at that time and set our bit of interest but it makes the WA complicated.
1092 *
1093 * This WA is also required for Gen9 so extracting as a function avoids
1094 * code duplication.
1095 */
0bc40be8 1096static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1097 uint32_t *const batch,
1098 uint32_t index)
1099{
1100 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1101
a4106a78 1102 /*
fe905819 1103 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
1104 * This WA is implemented in skl_init_clock_gating() but since
1105 * this batch updates GEN8_L3SQCREG4 with default value we need to
1106 * set this bit here to retain the WA during flush.
1107 */
fe905819
MK
1108 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1109 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
a4106a78
AS
1110 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1111
f1afe24f 1112 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1113 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1114 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1115 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1116 wa_ctx_emit(batch, index, 0);
1117
1118 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1119 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1120 wa_ctx_emit(batch, index, l3sqc4_flush);
1121
1122 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1123 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1124 PIPE_CONTROL_DC_FLUSH_ENABLE));
1125 wa_ctx_emit(batch, index, 0);
1126 wa_ctx_emit(batch, index, 0);
1127 wa_ctx_emit(batch, index, 0);
1128 wa_ctx_emit(batch, index, 0);
1129
f1afe24f 1130 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1131 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1132 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1133 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1134 wa_ctx_emit(batch, index, 0);
9e000847
AS
1135
1136 return index;
1137}
1138
17ee950d
AS
1139static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1140 uint32_t offset,
1141 uint32_t start_alignment)
1142{
1143 return wa_ctx->offset = ALIGN(offset, start_alignment);
1144}
1145
1146static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1147 uint32_t offset,
1148 uint32_t size_alignment)
1149{
1150 wa_ctx->size = offset - wa_ctx->offset;
1151
1152 WARN(wa_ctx->size % size_alignment,
1153 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1154 wa_ctx->size, size_alignment);
1155 return 0;
1156}
1157
1158/**
1159 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1160 *
14bb2c11 1161 * @engine: only applicable for RCS
17ee950d
AS
1162 * @wa_ctx: structure representing wa_ctx
1163 * offset: specifies start of the batch, should be cache-aligned. This is updated
1164 * with the offset value received as input.
1165 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1166 * @batch: page in which WA are loaded
1167 * @offset: This field specifies the start of the batch, it should be
1168 * cache-aligned otherwise it is adjusted accordingly.
1169 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1170 * initialized at the beginning and shared across all contexts but this field
1171 * helps us to have multiple batches at different offsets and select them based
1172 * on a criteria. At the moment this batch always start at the beginning of the page
1173 * and at this point we don't have multiple wa_ctx batch buffers.
1174 *
1175 * The number of WA applied are not known at the beginning; we use this field
1176 * to return the no of DWORDS written.
4d78c8dc 1177 *
17ee950d
AS
1178 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1179 * so it adds NOOPs as padding to make it cacheline aligned.
1180 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1181 * makes a complete batch buffer.
1182 *
1183 * Return: non-zero if we exceed the PAGE_SIZE limit.
1184 */
1185
0bc40be8 1186static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1187 struct i915_wa_ctx_bb *wa_ctx,
1188 uint32_t *const batch,
1189 uint32_t *offset)
1190{
0160f055 1191 uint32_t scratch_addr;
17ee950d
AS
1192 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1193
7ad00d1a 1194 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1195 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1196
c82435bb 1197 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 1198 if (IS_BROADWELL(engine->i915)) {
0bc40be8 1199 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1200 if (rc < 0)
1201 return rc;
1202 index = rc;
c82435bb
AS
1203 }
1204
0160f055
AS
1205 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1206 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1207 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1208
83b8a982
AS
1209 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1210 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1211 PIPE_CONTROL_GLOBAL_GTT_IVB |
1212 PIPE_CONTROL_CS_STALL |
1213 PIPE_CONTROL_QW_WRITE));
1214 wa_ctx_emit(batch, index, scratch_addr);
1215 wa_ctx_emit(batch, index, 0);
1216 wa_ctx_emit(batch, index, 0);
1217 wa_ctx_emit(batch, index, 0);
0160f055 1218
17ee950d
AS
1219 /* Pad to end of cacheline */
1220 while (index % CACHELINE_DWORDS)
83b8a982 1221 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1222
1223 /*
1224 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1225 * execution depends on the length specified in terms of cache lines
1226 * in the register CTX_RCS_INDIRECT_CTX
1227 */
1228
1229 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1230}
1231
1232/**
1233 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1234 *
14bb2c11 1235 * @engine: only applicable for RCS
17ee950d
AS
1236 * @wa_ctx: structure representing wa_ctx
1237 * offset: specifies start of the batch, should be cache-aligned.
1238 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1239 * @batch: page in which WA are loaded
17ee950d
AS
1240 * @offset: This field specifies the start of this batch.
1241 * This batch is started immediately after indirect_ctx batch. Since we ensure
1242 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1243 *
1244 * The number of DWORDS written are returned using this field.
1245 *
1246 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1247 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1248 */
0bc40be8 1249static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1250 struct i915_wa_ctx_bb *wa_ctx,
1251 uint32_t *const batch,
1252 uint32_t *offset)
1253{
1254 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1255
7ad00d1a 1256 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1257 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1258
83b8a982 1259 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1260
1261 return wa_ctx_end(wa_ctx, *offset = index, 1);
1262}
1263
0bc40be8 1264static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1265 struct i915_wa_ctx_bb *wa_ctx,
1266 uint32_t *const batch,
1267 uint32_t *offset)
1268{
a4106a78 1269 int ret;
0504cffc
AS
1270 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1271
0907c8f7 1272 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1273 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1274 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7 1275 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1276
a4106a78 1277 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1278 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1279 if (ret < 0)
1280 return ret;
1281 index = ret;
1282
066d4628
MK
1283 /* WaClearSlmSpaceAtContextSwitch:kbl */
1284 /* Actual scratch location is at 128 bytes offset */
1285 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1286 uint32_t scratch_addr
1287 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1288
1289 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1290 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1291 PIPE_CONTROL_GLOBAL_GTT_IVB |
1292 PIPE_CONTROL_CS_STALL |
1293 PIPE_CONTROL_QW_WRITE));
1294 wa_ctx_emit(batch, index, scratch_addr);
1295 wa_ctx_emit(batch, index, 0);
1296 wa_ctx_emit(batch, index, 0);
1297 wa_ctx_emit(batch, index, 0);
1298 }
0504cffc
AS
1299 /* Pad to end of cacheline */
1300 while (index % CACHELINE_DWORDS)
1301 wa_ctx_emit(batch, index, MI_NOOP);
1302
1303 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1304}
1305
0bc40be8 1306static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1307 struct i915_wa_ctx_bb *wa_ctx,
1308 uint32_t *const batch,
1309 uint32_t *offset)
1310{
1311 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1312
9b01435d 1313 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1314 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1315 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1316 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1317 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1318 wa_ctx_emit(batch, index,
1319 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1320 wa_ctx_emit(batch, index, MI_NOOP);
1321 }
1322
b1e429fe 1323 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1324 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1325 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1326
1327 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1328 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1329
1330 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1331 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1332
1333 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1334 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1335
1336 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1337 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1338 wa_ctx_emit(batch, index, 0x0);
1339 wa_ctx_emit(batch, index, MI_NOOP);
1340 }
1341
0907c8f7 1342 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1343 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1344 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1345 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1346
0504cffc
AS
1347 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1348
1349 return wa_ctx_end(wa_ctx, *offset = index, 1);
1350}
1351
0bc40be8 1352static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1353{
1354 int ret;
1355
91c8a326
CW
1356 engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
1357 PAGE_ALIGN(size));
fe3db79b 1358 if (IS_ERR(engine->wa_ctx.obj)) {
17ee950d 1359 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
fe3db79b
CW
1360 ret = PTR_ERR(engine->wa_ctx.obj);
1361 engine->wa_ctx.obj = NULL;
1362 return ret;
17ee950d
AS
1363 }
1364
0bc40be8 1365 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1366 if (ret) {
1367 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1368 ret);
0bc40be8 1369 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1370 return ret;
1371 }
1372
1373 return 0;
1374}
1375
0bc40be8 1376static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1377{
0bc40be8
TU
1378 if (engine->wa_ctx.obj) {
1379 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1380 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1381 engine->wa_ctx.obj = NULL;
17ee950d
AS
1382 }
1383}
1384
0bc40be8 1385static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1386{
1387 int ret;
1388 uint32_t *batch;
1389 uint32_t offset;
1390 struct page *page;
0bc40be8 1391 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1392
0bc40be8 1393 WARN_ON(engine->id != RCS);
17ee950d 1394
5e60d790 1395 /* update this when WA for higher Gen are added */
c033666a 1396 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1397 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1398 INTEL_GEN(engine->i915));
5e60d790 1399 return 0;
0504cffc 1400 }
5e60d790 1401
c4db7599 1402 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1403 if (engine->scratch.obj == NULL) {
1404 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1405 return -EINVAL;
1406 }
1407
0bc40be8 1408 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1409 if (ret) {
1410 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1411 return ret;
1412 }
1413
033908ae 1414 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1415 batch = kmap_atomic(page);
1416 offset = 0;
1417
c033666a 1418 if (IS_GEN8(engine->i915)) {
0bc40be8 1419 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1420 &wa_ctx->indirect_ctx,
1421 batch,
1422 &offset);
1423 if (ret)
1424 goto out;
1425
0bc40be8 1426 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1427 &wa_ctx->per_ctx,
1428 batch,
1429 &offset);
1430 if (ret)
1431 goto out;
c033666a 1432 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1433 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1434 &wa_ctx->indirect_ctx,
1435 batch,
1436 &offset);
1437 if (ret)
1438 goto out;
1439
0bc40be8 1440 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1441 &wa_ctx->per_ctx,
1442 batch,
1443 &offset);
1444 if (ret)
1445 goto out;
17ee950d
AS
1446 }
1447
1448out:
1449 kunmap_atomic(batch);
1450 if (ret)
0bc40be8 1451 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1452
1453 return ret;
1454}
1455
04794adb
TU
1456static void lrc_init_hws(struct intel_engine_cs *engine)
1457{
c033666a 1458 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1459
1460 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1461 (u32)engine->status_page.gfx_addr);
1462 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1463}
1464
0bc40be8 1465static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1466{
c033666a 1467 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1468 unsigned int next_context_status_buffer_hw;
9b1136d5 1469
04794adb 1470 lrc_init_hws(engine);
e84fe803 1471
0bc40be8
TU
1472 I915_WRITE_IMR(engine,
1473 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1474 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1475
0bc40be8 1476 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1477 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1478 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1479 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1480
1481 /*
1482 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1483 * zero, we need to read the write pointer from hardware and use its
1484 * value because "this register is power context save restored".
1485 * Effectively, these states have been observed:
1486 *
1487 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1488 * BDW | CSB regs not reset | CSB regs reset |
1489 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1490 * SKL | ? | ? |
1491 * BXT | ? | ? |
dfc53c5e 1492 */
5590a5f0 1493 next_context_status_buffer_hw =
0bc40be8 1494 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1495
1496 /*
1497 * When the CSB registers are reset (also after power-up / gpu reset),
1498 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1499 * this special case, so the first element read is CSB[0].
1500 */
1501 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1502 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1503
0bc40be8
TU
1504 engine->next_context_status_buffer = next_context_status_buffer_hw;
1505 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1506
fc0768ce 1507 intel_engine_init_hangcheck(engine);
9b1136d5 1508
0ccdacf6 1509 return intel_mocs_init_engine(engine);
9b1136d5
OM
1510}
1511
0bc40be8 1512static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1513{
c033666a 1514 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1515 int ret;
1516
0bc40be8 1517 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1518 if (ret)
1519 return ret;
1520
1521 /* We need to disable the AsyncFlip performance optimisations in order
1522 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1523 * programmed to '1' on all products.
1524 *
1525 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1526 */
1527 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1528
9b1136d5
OM
1529 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1530
0bc40be8 1531 return init_workarounds_ring(engine);
9b1136d5
OM
1532}
1533
0bc40be8 1534static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1535{
1536 int ret;
1537
0bc40be8 1538 ret = gen8_init_common_ring(engine);
82ef822e
DL
1539 if (ret)
1540 return ret;
1541
0bc40be8 1542 return init_workarounds_ring(engine);
82ef822e
DL
1543}
1544
7a01a0a2
MT
1545static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1546{
1547 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1548 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1549 struct intel_ringbuffer *ringbuf = req->ringbuf;
1550 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1551 int i, ret;
1552
987046ad 1553 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1554 if (ret)
1555 return ret;
1556
1557 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1558 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1559 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1560
e2f80391
TU
1561 intel_logical_ring_emit_reg(ringbuf,
1562 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1563 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1564 intel_logical_ring_emit_reg(ringbuf,
1565 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1566 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1567 }
1568
1569 intel_logical_ring_emit(ringbuf, MI_NOOP);
1570 intel_logical_ring_advance(ringbuf);
1571
1572 return 0;
1573}
1574
be795fc1 1575static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1576 u64 offset, unsigned dispatch_flags)
15648585 1577{
be795fc1 1578 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1579 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1580 int ret;
1581
7a01a0a2
MT
1582 /* Don't rely in hw updating PDPs, specially in lite-restore.
1583 * Ideally, we should set Force PD Restore in ctx descriptor,
1584 * but we can't. Force Restore would be a second option, but
1585 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1586 * not idle). PML4 is allocated during ppgtt init so this is
1587 * not needed in 48-bit.*/
7a01a0a2 1588 if (req->ctx->ppgtt &&
666796da 1589 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1590 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1591 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1592 ret = intel_logical_ring_emit_pdps(req);
1593 if (ret)
1594 return ret;
1595 }
7a01a0a2 1596
666796da 1597 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1598 }
1599
987046ad 1600 ret = intel_ring_begin(req, 4);
15648585
OM
1601 if (ret)
1602 return ret;
1603
1604 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1605 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1606 (ppgtt<<8) |
1607 (dispatch_flags & I915_DISPATCH_RS ?
1608 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1609 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1610 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1611 intel_logical_ring_emit(ringbuf, MI_NOOP);
1612 intel_logical_ring_advance(ringbuf);
1613
1614 return 0;
1615}
1616
31bb59cc 1617static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1618{
c033666a 1619 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1620 I915_WRITE_IMR(engine,
1621 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1622 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1623}
1624
31bb59cc 1625static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1626{
c033666a 1627 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1628 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1629}
1630
7deb4d39 1631static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1632 u32 invalidate_domains,
1633 u32 unused)
1634{
7deb4d39 1635 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1636 struct intel_engine_cs *engine = ringbuf->engine;
c033666a 1637 struct drm_i915_private *dev_priv = request->i915;
4712274c
OM
1638 uint32_t cmd;
1639 int ret;
1640
987046ad 1641 ret = intel_ring_begin(request, 4);
4712274c
OM
1642 if (ret)
1643 return ret;
1644
1645 cmd = MI_FLUSH_DW + 1;
1646
f0a1fb10
CW
1647 /* We always require a command barrier so that subsequent
1648 * commands, such as breadcrumb interrupts, are strictly ordered
1649 * wrt the contents of the write cache being flushed to memory
1650 * (and thus being coherent from the CPU).
1651 */
1652 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1653
1654 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1655 cmd |= MI_INVALIDATE_TLB;
4a570db5 1656 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1657 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1658 }
1659
1660 intel_logical_ring_emit(ringbuf, cmd);
1661 intel_logical_ring_emit(ringbuf,
1662 I915_GEM_HWS_SCRATCH_ADDR |
1663 MI_FLUSH_DW_USE_GTT);
1664 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1665 intel_logical_ring_emit(ringbuf, 0); /* value */
1666 intel_logical_ring_advance(ringbuf);
1667
1668 return 0;
1669}
1670
7deb4d39 1671static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1672 u32 invalidate_domains,
1673 u32 flush_domains)
1674{
7deb4d39 1675 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1676 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1677 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
0b2d0934 1678 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1679 u32 flags = 0;
1680 int ret;
0b2d0934 1681 int len;
4712274c
OM
1682
1683 flags |= PIPE_CONTROL_CS_STALL;
1684
1685 if (flush_domains) {
1686 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1687 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1688 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1689 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1690 }
1691
1692 if (invalidate_domains) {
1693 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1694 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1695 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1696 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1697 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1698 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1699 flags |= PIPE_CONTROL_QW_WRITE;
1700 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1701
1a5a9ce7
BW
1702 /*
1703 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1704 * pipe control.
1705 */
c033666a 1706 if (IS_GEN9(request->i915))
1a5a9ce7 1707 vf_flush_wa = true;
0b2d0934
MK
1708
1709 /* WaForGAMHang:kbl */
1710 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1711 dc_flush_wa = true;
1a5a9ce7 1712 }
9647ff36 1713
0b2d0934
MK
1714 len = 6;
1715
1716 if (vf_flush_wa)
1717 len += 6;
1718
1719 if (dc_flush_wa)
1720 len += 12;
1721
1722 ret = intel_ring_begin(request, len);
4712274c
OM
1723 if (ret)
1724 return ret;
1725
9647ff36
ID
1726 if (vf_flush_wa) {
1727 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1728 intel_logical_ring_emit(ringbuf, 0);
1729 intel_logical_ring_emit(ringbuf, 0);
1730 intel_logical_ring_emit(ringbuf, 0);
1731 intel_logical_ring_emit(ringbuf, 0);
1732 intel_logical_ring_emit(ringbuf, 0);
1733 }
1734
0b2d0934
MK
1735 if (dc_flush_wa) {
1736 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1737 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1738 intel_logical_ring_emit(ringbuf, 0);
1739 intel_logical_ring_emit(ringbuf, 0);
1740 intel_logical_ring_emit(ringbuf, 0);
1741 intel_logical_ring_emit(ringbuf, 0);
1742 }
1743
4712274c
OM
1744 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1745 intel_logical_ring_emit(ringbuf, flags);
1746 intel_logical_ring_emit(ringbuf, scratch_addr);
1747 intel_logical_ring_emit(ringbuf, 0);
1748 intel_logical_ring_emit(ringbuf, 0);
1749 intel_logical_ring_emit(ringbuf, 0);
0b2d0934
MK
1750
1751 if (dc_flush_wa) {
1752 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1753 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1754 intel_logical_ring_emit(ringbuf, 0);
1755 intel_logical_ring_emit(ringbuf, 0);
1756 intel_logical_ring_emit(ringbuf, 0);
1757 intel_logical_ring_emit(ringbuf, 0);
1758 }
1759
4712274c
OM
1760 intel_logical_ring_advance(ringbuf);
1761
1762 return 0;
1763}
1764
c04e0f3b 1765static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1766{
319404df
ID
1767 /*
1768 * On BXT A steppings there is a HW coherency issue whereby the
1769 * MI_STORE_DATA_IMM storing the completed request's seqno
1770 * occasionally doesn't invalidate the CPU cache. Work around this by
1771 * clflushing the corresponding cacheline whenever the caller wants
1772 * the coherency to be guaranteed. Note that this cacheline is known
1773 * to be clean at this point, since we only write it in
1774 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1775 * this clflush in practice becomes an invalidate operation.
1776 */
c04e0f3b 1777 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1778}
1779
7c17d377
CW
1780/*
1781 * Reserve space for 2 NOOPs at the end of each request to be
1782 * used as a workaround for not being allowed to do lite
1783 * restore with HEAD==TAIL (WaIdleLiteRestore).
1784 */
1785#define WA_TAIL_DWORDS 2
1786
c4e76638 1787static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1788{
c4e76638 1789 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1790 int ret;
1791
987046ad 1792 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1793 if (ret)
1794 return ret;
1795
7c17d377
CW
1796 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1797 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1798
4da46e1e 1799 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1800 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1801 intel_logical_ring_emit(ringbuf,
a58c01aa 1802 intel_hws_seqno_address(request->engine) |
7c17d377 1803 MI_FLUSH_DW_USE_GTT);
4da46e1e 1804 intel_logical_ring_emit(ringbuf, 0);
1b7744e7 1805 intel_logical_ring_emit(ringbuf, request->seqno);
4da46e1e
OM
1806 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1807 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1808 return intel_logical_ring_advance_and_submit(request);
1809}
4da46e1e 1810
7c17d377
CW
1811static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1812{
1813 struct intel_ringbuffer *ringbuf = request->ringbuf;
1814 int ret;
53292cdb 1815
987046ad 1816 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1817 if (ret)
1818 return ret;
1819
ce81a65c
MW
1820 /* We're using qword write, seqno should be aligned to 8 bytes. */
1821 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1822
7c17d377
CW
1823 /* w/a for post sync ops following a GPGPU operation we
1824 * need a prior CS_STALL, which is emitted by the flush
1825 * following the batch.
1826 */
ce81a65c 1827 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1828 intel_logical_ring_emit(ringbuf,
1829 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1830 PIPE_CONTROL_CS_STALL |
1831 PIPE_CONTROL_QW_WRITE));
a58c01aa
CW
1832 intel_logical_ring_emit(ringbuf,
1833 intel_hws_seqno_address(request->engine));
7c17d377
CW
1834 intel_logical_ring_emit(ringbuf, 0);
1835 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1836 /* We're thrashing one dword of HWS. */
1837 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1838 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1839 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1840 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1841}
1842
be01363f 1843static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1844{
cef437ad 1845 struct render_state so;
cef437ad
DL
1846 int ret;
1847
4a570db5 1848 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1849 if (ret)
1850 return ret;
1851
1852 if (so.rodata == NULL)
1853 return 0;
1854
4a570db5 1855 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1856 I915_DISPATCH_SECURE);
cef437ad
DL
1857 if (ret)
1858 goto out;
1859
4a570db5 1860 ret = req->engine->emit_bb_start(req,
84e81020
AS
1861 (so.ggtt_offset + so.aux_batch_offset),
1862 I915_DISPATCH_SECURE);
1863 if (ret)
1864 goto out;
1865
b2af0376 1866 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1867
cef437ad
DL
1868out:
1869 i915_gem_render_state_fini(&so);
1870 return ret;
1871}
1872
8753181e 1873static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1874{
1875 int ret;
1876
e2be4faf 1877 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1878 if (ret)
1879 return ret;
1880
3bbaba0c
PA
1881 ret = intel_rcs_context_init_mocs(req);
1882 /*
1883 * Failing to program the MOCS is non-fatal.The system will not
1884 * run at peak performance. So generate an error and carry on.
1885 */
1886 if (ret)
1887 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1888
be01363f 1889 return intel_lr_context_render_state_init(req);
e7778be1
TD
1890}
1891
73e4d07f
OM
1892/**
1893 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1894 *
14bb2c11 1895 * @engine: Engine Command Streamer.
73e4d07f
OM
1896 *
1897 */
0bc40be8 1898void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1899{
6402c330 1900 struct drm_i915_private *dev_priv;
9832b9da 1901
117897f4 1902 if (!intel_engine_initialized(engine))
48d82387
OM
1903 return;
1904
27af5eea
TU
1905 /*
1906 * Tasklet cannot be active at this point due intel_mark_active/idle
1907 * so this is just for documentation.
1908 */
1909 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1910 tasklet_kill(&engine->irq_tasklet);
1911
c033666a 1912 dev_priv = engine->i915;
6402c330 1913
0bc40be8
TU
1914 if (engine->buffer) {
1915 intel_logical_ring_stop(engine);
1916 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1917 }
48d82387 1918
0bc40be8
TU
1919 if (engine->cleanup)
1920 engine->cleanup(engine);
48d82387 1921
0bc40be8
TU
1922 i915_cmd_parser_fini_ring(engine);
1923 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1924
688e6c72
CW
1925 intel_engine_fini_breadcrumbs(engine);
1926
0bc40be8 1927 if (engine->status_page.obj) {
7d774cac 1928 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1929 engine->status_page.obj = NULL;
48d82387 1930 }
24f1d3cc 1931 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1932
0bc40be8
TU
1933 engine->idle_lite_restore_wa = 0;
1934 engine->disable_lite_restore_wa = false;
1935 engine->ctx_desc_template = 0;
ca82580c 1936
0bc40be8 1937 lrc_destroy_wa_ctx_obj(engine);
c033666a 1938 engine->i915 = NULL;
454afebd
OM
1939}
1940
c9cacf93 1941static void
e1382efb 1942logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1943{
1944 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1945 engine->init_hw = gen8_init_common_ring;
1946 engine->emit_request = gen8_emit_request;
1947 engine->emit_flush = gen8_emit_flush;
31bb59cc
CW
1948 engine->irq_enable = gen8_logical_ring_enable_irq;
1949 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1950 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1951 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1952 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1953}
1954
d9f3af96 1955static inline void
0bc40be8 1956logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1957{
0bc40be8
TU
1958 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1959 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1960}
1961
7d774cac 1962static int
04794adb
TU
1963lrc_setup_hws(struct intel_engine_cs *engine,
1964 struct drm_i915_gem_object *dctx_obj)
1965{
7d774cac 1966 void *hws;
04794adb
TU
1967
1968 /* The HWSP is part of the default context object in LRC mode. */
1969 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1970 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1971 hws = i915_gem_object_pin_map(dctx_obj);
1972 if (IS_ERR(hws))
1973 return PTR_ERR(hws);
1974 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1975 engine->status_page.obj = dctx_obj;
7d774cac
TU
1976
1977 return 0;
04794adb
TU
1978}
1979
a19d6ff2
TU
1980static int
1981logical_ring_init(struct intel_engine_cs *engine)
1982{
1983 struct i915_gem_context *dctx = engine->i915->kernel_context;
1984 int ret;
1985
688e6c72
CW
1986 ret = intel_engine_init_breadcrumbs(engine);
1987 if (ret)
1988 goto error;
1989
a19d6ff2
TU
1990 ret = i915_cmd_parser_init_ring(engine);
1991 if (ret)
1992 goto error;
1993
1994 ret = execlists_context_deferred_alloc(dctx, engine);
1995 if (ret)
1996 goto error;
1997
1998 /* As this is the default context, always pin it */
1999 ret = intel_lr_context_pin(dctx, engine);
2000 if (ret) {
2001 DRM_ERROR("Failed to pin context for %s: %d\n",
2002 engine->name, ret);
2003 goto error;
2004 }
2005
2006 /* And setup the hardware status page. */
2007 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2008 if (ret) {
2009 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2010 goto error;
2011 }
2012
2013 return 0;
2014
2015error:
2016 intel_logical_ring_cleanup(engine);
2017 return ret;
2018}
2019
2020static int logical_render_ring_init(struct intel_engine_cs *engine)
2021{
2022 struct drm_i915_private *dev_priv = engine->i915;
2023 int ret;
2024
2025 if (HAS_L3_DPF(dev_priv))
2026 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2027
2028 /* Override some for render ring. */
2029 if (INTEL_GEN(dev_priv) >= 9)
2030 engine->init_hw = gen9_init_render_ring;
2031 else
2032 engine->init_hw = gen8_init_render_ring;
2033 engine->init_context = gen8_init_rcs_context;
2034 engine->cleanup = intel_fini_pipe_control;
2035 engine->emit_flush = gen8_emit_flush_render;
2036 engine->emit_request = gen8_emit_request_render;
2037
7d5ea807 2038 ret = intel_init_pipe_control(engine, 4096);
a19d6ff2
TU
2039 if (ret)
2040 return ret;
2041
2042 ret = intel_init_workaround_bb(engine);
2043 if (ret) {
2044 /*
2045 * We continue even if we fail to initialize WA batch
2046 * because we only expect rare glitches but nothing
2047 * critical to prevent us from using GPU
2048 */
2049 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2050 ret);
2051 }
2052
2053 ret = logical_ring_init(engine);
2054 if (ret) {
2055 lrc_destroy_wa_ctx_obj(engine);
2056 }
2057
2058 return ret;
2059}
2060
e1382efb
CW
2061static const struct logical_ring_info {
2062 const char *name;
2063 unsigned exec_id;
2064 unsigned guc_id;
2065 u32 mmio_base;
2066 unsigned irq_shift;
a19d6ff2 2067 int (*init)(struct intel_engine_cs *engine);
e1382efb
CW
2068} logical_rings[] = {
2069 [RCS] = {
2070 .name = "render ring",
2071 .exec_id = I915_EXEC_RENDER,
2072 .guc_id = GUC_RENDER_ENGINE,
2073 .mmio_base = RENDER_RING_BASE,
2074 .irq_shift = GEN8_RCS_IRQ_SHIFT,
a19d6ff2 2075 .init = logical_render_ring_init,
e1382efb
CW
2076 },
2077 [BCS] = {
2078 .name = "blitter ring",
2079 .exec_id = I915_EXEC_BLT,
2080 .guc_id = GUC_BLITTER_ENGINE,
2081 .mmio_base = BLT_RING_BASE,
2082 .irq_shift = GEN8_BCS_IRQ_SHIFT,
a19d6ff2 2083 .init = logical_ring_init,
e1382efb
CW
2084 },
2085 [VCS] = {
2086 .name = "bsd ring",
2087 .exec_id = I915_EXEC_BSD,
2088 .guc_id = GUC_VIDEO_ENGINE,
2089 .mmio_base = GEN6_BSD_RING_BASE,
2090 .irq_shift = GEN8_VCS1_IRQ_SHIFT,
a19d6ff2 2091 .init = logical_ring_init,
e1382efb
CW
2092 },
2093 [VCS2] = {
2094 .name = "bsd2 ring",
2095 .exec_id = I915_EXEC_BSD,
2096 .guc_id = GUC_VIDEO_ENGINE2,
2097 .mmio_base = GEN8_BSD2_RING_BASE,
2098 .irq_shift = GEN8_VCS2_IRQ_SHIFT,
a19d6ff2 2099 .init = logical_ring_init,
e1382efb
CW
2100 },
2101 [VECS] = {
2102 .name = "video enhancement ring",
2103 .exec_id = I915_EXEC_VEBOX,
2104 .guc_id = GUC_VIDEOENHANCE_ENGINE,
2105 .mmio_base = VEBOX_RING_BASE,
2106 .irq_shift = GEN8_VECS_IRQ_SHIFT,
a19d6ff2 2107 .init = logical_ring_init,
e1382efb
CW
2108 },
2109};
2110
2111static struct intel_engine_cs *
a19d6ff2 2112logical_ring_setup(struct drm_i915_private *dev_priv, enum intel_engine_id id)
454afebd 2113{
e1382efb 2114 const struct logical_ring_info *info = &logical_rings[id];
e1382efb 2115 struct intel_engine_cs *engine = &dev_priv->engine[id];
3756685a 2116 enum forcewake_domains fw_domains;
48d82387 2117
e1382efb
CW
2118 engine->id = id;
2119 engine->name = info->name;
2120 engine->exec_id = info->exec_id;
2121 engine->guc_id = info->guc_id;
2122 engine->mmio_base = info->mmio_base;
48d82387 2123
c033666a 2124 engine->i915 = dev_priv;
acdd884a 2125
e1382efb
CW
2126 /* Intentionally left blank. */
2127 engine->buffer = NULL;
ca82580c 2128
3756685a
TU
2129 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2130 RING_ELSP(engine),
2131 FW_REG_WRITE);
2132
2133 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2134 RING_CONTEXT_STATUS_PTR(engine),
2135 FW_REG_READ | FW_REG_WRITE);
2136
2137 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2138 RING_CONTEXT_STATUS_BUF_BASE(engine),
2139 FW_REG_READ);
2140
2141 engine->fw_domains = fw_domains;
2142
e1382efb
CW
2143 INIT_LIST_HEAD(&engine->active_list);
2144 INIT_LIST_HEAD(&engine->request_list);
2145 INIT_LIST_HEAD(&engine->buffers);
2146 INIT_LIST_HEAD(&engine->execlist_queue);
2147 spin_lock_init(&engine->execlist_lock);
2148
2149 tasklet_init(&engine->irq_tasklet,
2150 intel_lrc_irq_handler, (unsigned long)engine);
2151
2152 logical_ring_init_platform_invariants(engine);
2153 logical_ring_default_vfuncs(engine);
2154 logical_ring_default_irqs(engine, info->irq_shift);
2155
2156 intel_engine_init_hangcheck(engine);
91c8a326 2157 i915_gem_batch_pool_init(&dev_priv->drm, &engine->batch_pool);
e1382efb
CW
2158
2159 return engine;
2160}
2161
73e4d07f
OM
2162/**
2163 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2164 * @dev: DRM device.
2165 *
a19d6ff2
TU
2166 * This function inits the engines for an Execlists submission style (the
2167 * equivalent in the legacy ringbuffer submission world would be
2168 * i915_gem_init_engines). It does it only for those engines that are present in
2169 * the hardware.
73e4d07f
OM
2170 *
2171 * Return: non-zero if the initialization failed.
2172 */
454afebd
OM
2173int intel_logical_rings_init(struct drm_device *dev)
2174{
fac5e23e 2175 struct drm_i915_private *dev_priv = to_i915(dev);
a19d6ff2
TU
2176 unsigned int mask = 0;
2177 unsigned int i;
454afebd
OM
2178 int ret;
2179
a19d6ff2
TU
2180 WARN_ON(INTEL_INFO(dev_priv)->ring_mask &
2181 GENMASK(sizeof(mask) * BITS_PER_BYTE - 1, I915_NUM_ENGINES));
454afebd 2182
a19d6ff2
TU
2183 for (i = 0; i < ARRAY_SIZE(logical_rings); i++) {
2184 if (!HAS_ENGINE(dev_priv, i))
2185 continue;
454afebd 2186
a19d6ff2
TU
2187 if (!logical_rings[i].init)
2188 continue;
454afebd 2189
a19d6ff2 2190 ret = logical_rings[i].init(logical_ring_setup(dev_priv, i));
454afebd 2191 if (ret)
a19d6ff2
TU
2192 goto cleanup;
2193
2194 mask |= ENGINE_MASK(i);
454afebd
OM
2195 }
2196
a19d6ff2
TU
2197 /*
2198 * Catch failures to update logical_rings table when the new engines
2199 * are added to the driver by a warning and disabling the forgotten
2200 * engines.
2201 */
2202 if (WARN_ON(mask != INTEL_INFO(dev_priv)->ring_mask)) {
2203 struct intel_device_info *info =
2204 (struct intel_device_info *)&dev_priv->info;
2205 info->ring_mask = mask;
454afebd
OM
2206 }
2207
454afebd
OM
2208 return 0;
2209
a19d6ff2
TU
2210cleanup:
2211 for (i = 0; i < I915_NUM_ENGINES; i++)
2212 intel_logical_ring_cleanup(&dev_priv->engine[i]);
454afebd
OM
2213
2214 return ret;
2215}
2216
0cea6502 2217static u32
c033666a 2218make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
2219{
2220 u32 rpcs = 0;
2221
2222 /*
2223 * No explicit RPCS request is needed to ensure full
2224 * slice/subslice/EU enablement prior to Gen9.
2225 */
c033666a 2226 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
2227 return 0;
2228
2229 /*
2230 * Starting in Gen9, render power gating can leave
2231 * slice/subslice/EU in a partially enabled state. We
2232 * must make an explicit request through RPCS for full
2233 * enablement.
2234 */
c033666a 2235 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 2236 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 2237 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
2238 GEN8_RPCS_S_CNT_SHIFT;
2239 rpcs |= GEN8_RPCS_ENABLE;
2240 }
2241
c033666a 2242 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 2243 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 2244 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
2245 GEN8_RPCS_SS_CNT_SHIFT;
2246 rpcs |= GEN8_RPCS_ENABLE;
2247 }
2248
c033666a
CW
2249 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2250 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 2251 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 2252 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
2253 GEN8_RPCS_EU_MAX_SHIFT;
2254 rpcs |= GEN8_RPCS_ENABLE;
2255 }
2256
2257 return rpcs;
2258}
2259
0bc40be8 2260static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2261{
2262 u32 indirect_ctx_offset;
2263
c033666a 2264 switch (INTEL_GEN(engine->i915)) {
71562919 2265 default:
c033666a 2266 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
2267 /* fall through */
2268 case 9:
2269 indirect_ctx_offset =
2270 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2271 break;
2272 case 8:
2273 indirect_ctx_offset =
2274 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2275 break;
2276 }
2277
2278 return indirect_ctx_offset;
2279}
2280
8670d6f9 2281static int
e2efd130 2282populate_lr_context(struct i915_gem_context *ctx,
7d774cac 2283 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2284 struct intel_engine_cs *engine,
2285 struct intel_ringbuffer *ringbuf)
8670d6f9 2286{
c033666a 2287 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 2288 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2289 void *vaddr;
2290 u32 *reg_state;
8670d6f9
OM
2291 int ret;
2292
2d965536
TD
2293 if (!ppgtt)
2294 ppgtt = dev_priv->mm.aliasing_ppgtt;
2295
8670d6f9
OM
2296 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2297 if (ret) {
2298 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2299 return ret;
2300 }
2301
7d774cac
TU
2302 vaddr = i915_gem_object_pin_map(ctx_obj);
2303 if (IS_ERR(vaddr)) {
2304 ret = PTR_ERR(vaddr);
2305 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2306 return ret;
2307 }
7d774cac 2308 ctx_obj->dirty = true;
8670d6f9
OM
2309
2310 /* The second page of the context object contains some fields which must
2311 * be set up prior to the first execution. */
7d774cac 2312 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2313
2314 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2315 * commands followed by (reg, value) pairs. The values we are setting here are
2316 * only for the first context restore: on a subsequent save, the GPU will
2317 * recreate this batchbuffer with new values (including all the missing
2318 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2319 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2320 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2321 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2322 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2323 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2324 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 2325 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 2326 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2327 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2328 0);
2329 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2330 0);
7ba717cf
TD
2331 /* Ring buffer start address is not known until the buffer is pinned.
2332 * It is written to the context image in execlists_update_context()
2333 */
0bc40be8
TU
2334 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2335 RING_START(engine->mmio_base), 0);
2336 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2337 RING_CTL(engine->mmio_base),
0d925ea0 2338 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2339 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2340 RING_BBADDR_UDW(engine->mmio_base), 0);
2341 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2342 RING_BBADDR(engine->mmio_base), 0);
2343 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2344 RING_BBSTATE(engine->mmio_base),
0d925ea0 2345 RING_BB_PPGTT);
0bc40be8
TU
2346 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2347 RING_SBBADDR_UDW(engine->mmio_base), 0);
2348 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2349 RING_SBBADDR(engine->mmio_base), 0);
2350 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2351 RING_SBBSTATE(engine->mmio_base), 0);
2352 if (engine->id == RCS) {
2353 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2354 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2355 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2356 RING_INDIRECT_CTX(engine->mmio_base), 0);
2357 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2358 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2359 if (engine->wa_ctx.obj) {
2360 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2361 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2362
2363 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2364 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2365 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2366
2367 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2368 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2369
2370 reg_state[CTX_BB_PER_CTX_PTR+1] =
2371 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2372 0x01;
2373 }
8670d6f9 2374 }
0d925ea0 2375 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2376 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2377 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2378 /* PDP values well be assigned later if needed */
0bc40be8
TU
2379 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2380 0);
2381 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2382 0);
2383 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2384 0);
2385 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2386 0);
2387 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2388 0);
2389 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2390 0);
2391 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2392 0);
2393 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2394 0);
d7b2633d 2395
2dba3239
MT
2396 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2397 /* 64b PPGTT (48bit canonical)
2398 * PDP0_DESCRIPTOR contains the base address to PML4 and
2399 * other PDP Descriptors are ignored.
2400 */
2401 ASSIGN_CTX_PML4(ppgtt, reg_state);
2402 } else {
2403 /* 32b PPGTT
2404 * PDP*_DESCRIPTOR contains the base address of space supported.
2405 * With dynamic page allocation, PDPs may not be allocated at
2406 * this point. Point the unallocated PDPs to the scratch page
2407 */
c6a2ac71 2408 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2409 }
2410
0bc40be8 2411 if (engine->id == RCS) {
8670d6f9 2412 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2413 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2414 make_rpcs(dev_priv));
8670d6f9
OM
2415 }
2416
7d774cac 2417 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2418
2419 return 0;
2420}
2421
c5d46ee2
DG
2422/**
2423 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2424 * @engine: which engine to find the context size for
c5d46ee2
DG
2425 *
2426 * Each engine may require a different amount of space for a context image,
2427 * so when allocating (or copying) an image, this function can be used to
2428 * find the right size for the specific engine.
2429 *
2430 * Return: size (in bytes) of an engine-specific context image
2431 *
2432 * Note: this size includes the HWSP, which is part of the context image
2433 * in LRC mode, but does not include the "shared data page" used with
2434 * GuC submission. The caller should account for this if using the GuC.
2435 */
0bc40be8 2436uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2437{
2438 int ret = 0;
2439
c033666a 2440 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2441
0bc40be8 2442 switch (engine->id) {
8c857917 2443 case RCS:
c033666a 2444 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2445 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2446 else
2447 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2448 break;
2449 case VCS:
2450 case BCS:
2451 case VECS:
2452 case VCS2:
2453 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2454 break;
2455 }
2456
2457 return ret;
ede7d42b
OM
2458}
2459
73e4d07f 2460/**
978f1e09 2461 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f 2462 * @ctx: LR context to create.
978f1e09 2463 * @engine: engine to be used with the context.
73e4d07f
OM
2464 *
2465 * This function can be called more than once, with different engines, if we plan
2466 * to use the context with them. The context backing objects and the ringbuffers
2467 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2468 * the creation is a deferred call: it's better to make sure first that we need to use
2469 * a given ring with the context.
2470 *
32197aab 2471 * Return: non-zero on error.
73e4d07f 2472 */
e2efd130 2473static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2474 struct intel_engine_cs *engine)
ede7d42b 2475{
8c857917 2476 struct drm_i915_gem_object *ctx_obj;
9021ad03 2477 struct intel_context *ce = &ctx->engine[engine->id];
8c857917 2478 uint32_t context_size;
84c2377f 2479 struct intel_ringbuffer *ringbuf;
8c857917
OM
2480 int ret;
2481
9021ad03 2482 WARN_ON(ce->state);
ede7d42b 2483
0bc40be8 2484 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2485
d1675198
AD
2486 /* One extra page as the sharing data between driver and GuC */
2487 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2488
91c8a326 2489 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2490 if (IS_ERR(ctx_obj)) {
3126a660 2491 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2492 return PTR_ERR(ctx_obj);
8c857917
OM
2493 }
2494
bcd794c2 2495 ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
01101fa7
CW
2496 if (IS_ERR(ringbuf)) {
2497 ret = PTR_ERR(ringbuf);
e84fe803 2498 goto error_deref_obj;
8670d6f9
OM
2499 }
2500
0bc40be8 2501 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2502 if (ret) {
2503 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2504 goto error_ringbuf;
84c2377f
OM
2505 }
2506
9021ad03
CW
2507 ce->ringbuf = ringbuf;
2508 ce->state = ctx_obj;
2509 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2510
2511 return 0;
8670d6f9 2512
01101fa7
CW
2513error_ringbuf:
2514 intel_ringbuffer_free(ringbuf);
e84fe803 2515error_deref_obj:
8670d6f9 2516 drm_gem_object_unreference(&ctx_obj->base);
9021ad03
CW
2517 ce->ringbuf = NULL;
2518 ce->state = NULL;
8670d6f9 2519 return ret;
ede7d42b 2520}
3e5b6f05 2521
7d774cac 2522void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2523 struct i915_gem_context *ctx)
3e5b6f05 2524{
e2f80391 2525 struct intel_engine_cs *engine;
3e5b6f05 2526
b4ac5afc 2527 for_each_engine(engine, dev_priv) {
9021ad03
CW
2528 struct intel_context *ce = &ctx->engine[engine->id];
2529 struct drm_i915_gem_object *ctx_obj = ce->state;
7d774cac 2530 void *vaddr;
3e5b6f05 2531 uint32_t *reg_state;
3e5b6f05
TD
2532
2533 if (!ctx_obj)
2534 continue;
2535
7d774cac
TU
2536 vaddr = i915_gem_object_pin_map(ctx_obj);
2537 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2538 continue;
7d774cac
TU
2539
2540 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2541 ctx_obj->dirty = true;
3e5b6f05
TD
2542
2543 reg_state[CTX_RING_HEAD+1] = 0;
2544 reg_state[CTX_RING_TAIL+1] = 0;
2545
7d774cac 2546 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05 2547
9021ad03
CW
2548 ce->ringbuf->head = 0;
2549 ce->ringbuf->tail = 0;
3e5b6f05
TD
2550 }
2551}
This page took 0.446091 seconds and 5 git commands to generate.