drm/i915: Slaughter the thundering i915_wait_request herd
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
CommitLineData
62fdfeaf
EA
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
a4d8a0fe 30#include <linux/log2.h>
760285e7 31#include <drm/drmP.h>
62fdfeaf 32#include "i915_drv.h"
760285e7 33#include <drm/i915_drm.h>
62fdfeaf 34#include "i915_trace.h"
881f47b6 35#include "intel_drv.h"
62fdfeaf 36
a0442461
CW
37/* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40#define LEGACY_REQUEST_SIZE 200
41
82e104cc 42int __intel_ring_space(int head, int tail, int size)
c7dca47b 43{
4f54741e
DG
44 int space = head - tail;
45 if (space <= 0)
1cf0ba14 46 space += size;
4f54741e 47 return space - I915_RING_FREE_SPACE;
c7dca47b
CW
48}
49
ebd0fd4b
DG
50void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51{
52 if (ringbuf->last_retired_head != -1) {
53 ringbuf->head = ringbuf->last_retired_head;
54 ringbuf->last_retired_head = -1;
55 }
56
57 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 ringbuf->tail, ringbuf->size);
59}
60
117897f4 61bool intel_engine_stopped(struct intel_engine_cs *engine)
09246732 62{
c033666a 63 struct drm_i915_private *dev_priv = engine->i915;
666796da 64 return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
88b4aa87 65}
09246732 66
0bc40be8 67static void __intel_ring_advance(struct intel_engine_cs *engine)
88b4aa87 68{
0bc40be8 69 struct intel_ringbuffer *ringbuf = engine->buffer;
93b0a4e0 70 ringbuf->tail &= ringbuf->size - 1;
117897f4 71 if (intel_engine_stopped(engine))
09246732 72 return;
0bc40be8 73 engine->write_tail(engine, ringbuf->tail);
09246732
CW
74}
75
b72f3acb 76static int
a84c3ae1 77gen2_render_ring_flush(struct drm_i915_gem_request *req,
46f0f8d1
CW
78 u32 invalidate_domains,
79 u32 flush_domains)
80{
4a570db5 81 struct intel_engine_cs *engine = req->engine;
46f0f8d1
CW
82 u32 cmd;
83 int ret;
84
85 cmd = MI_FLUSH;
31b14c9f 86 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
46f0f8d1
CW
87 cmd |= MI_NO_WRITE_FLUSH;
88
89 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90 cmd |= MI_READ_FLUSH;
91
5fb9de1a 92 ret = intel_ring_begin(req, 2);
46f0f8d1
CW
93 if (ret)
94 return ret;
95
e2f80391
TU
96 intel_ring_emit(engine, cmd);
97 intel_ring_emit(engine, MI_NOOP);
98 intel_ring_advance(engine);
46f0f8d1
CW
99
100 return 0;
101}
102
103static int
a84c3ae1 104gen4_render_ring_flush(struct drm_i915_gem_request *req,
46f0f8d1
CW
105 u32 invalidate_domains,
106 u32 flush_domains)
62fdfeaf 107{
4a570db5 108 struct intel_engine_cs *engine = req->engine;
6f392d54 109 u32 cmd;
b72f3acb 110 int ret;
6f392d54 111
36d527de
CW
112 /*
113 * read/write caches:
114 *
115 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
116 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
117 * also flushed at 2d versus 3d pipeline switches.
118 *
119 * read-only caches:
120 *
121 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
122 * MI_READ_FLUSH is set, and is always flushed on 965.
123 *
124 * I915_GEM_DOMAIN_COMMAND may not exist?
125 *
126 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
127 * invalidated when MI_EXE_FLUSH is set.
128 *
129 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
130 * invalidated with every MI_FLUSH.
131 *
132 * TLBs:
133 *
134 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
135 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
136 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
137 * are flushed at any MI_FLUSH.
138 */
139
140 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
46f0f8d1 141 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
36d527de 142 cmd &= ~MI_NO_WRITE_FLUSH;
36d527de
CW
143 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
144 cmd |= MI_EXE_FLUSH;
62fdfeaf 145
36d527de 146 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
c033666a 147 (IS_G4X(req->i915) || IS_GEN5(req->i915)))
36d527de 148 cmd |= MI_INVALIDATE_ISP;
70eac33e 149
5fb9de1a 150 ret = intel_ring_begin(req, 2);
36d527de
CW
151 if (ret)
152 return ret;
b72f3acb 153
e2f80391
TU
154 intel_ring_emit(engine, cmd);
155 intel_ring_emit(engine, MI_NOOP);
156 intel_ring_advance(engine);
b72f3acb
CW
157
158 return 0;
8187a2b7
ZN
159}
160
8d315287
JB
161/**
162 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
163 * implementing two workarounds on gen6. From section 1.4.7.1
164 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
165 *
166 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
167 * produced by non-pipelined state commands), software needs to first
168 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
169 * 0.
170 *
171 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
172 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
173 *
174 * And the workaround for these two requires this workaround first:
175 *
176 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
177 * BEFORE the pipe-control with a post-sync op and no write-cache
178 * flushes.
179 *
180 * And this last workaround is tricky because of the requirements on
181 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
182 * volume 2 part 1:
183 *
184 * "1 of the following must also be set:
185 * - Render Target Cache Flush Enable ([12] of DW1)
186 * - Depth Cache Flush Enable ([0] of DW1)
187 * - Stall at Pixel Scoreboard ([1] of DW1)
188 * - Depth Stall ([13] of DW1)
189 * - Post-Sync Operation ([13] of DW1)
190 * - Notify Enable ([8] of DW1)"
191 *
192 * The cache flushes require the workaround flush that triggered this
193 * one, so we can't use it. Depth stall would trigger the same.
194 * Post-sync nonzero is what triggered this second workaround, so we
195 * can't use that one either. Notify enable is IRQs, which aren't
196 * really our business. That leaves only stall at scoreboard.
197 */
198static int
f2cf1fcc 199intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
8d315287 200{
4a570db5 201 struct intel_engine_cs *engine = req->engine;
e2f80391 202 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
8d315287
JB
203 int ret;
204
5fb9de1a 205 ret = intel_ring_begin(req, 6);
8d315287
JB
206 if (ret)
207 return ret;
208
e2f80391
TU
209 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
210 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
8d315287 211 PIPE_CONTROL_STALL_AT_SCOREBOARD);
e2f80391
TU
212 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
213 intel_ring_emit(engine, 0); /* low dword */
214 intel_ring_emit(engine, 0); /* high dword */
215 intel_ring_emit(engine, MI_NOOP);
216 intel_ring_advance(engine);
8d315287 217
5fb9de1a 218 ret = intel_ring_begin(req, 6);
8d315287
JB
219 if (ret)
220 return ret;
221
e2f80391
TU
222 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
223 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
224 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
225 intel_ring_emit(engine, 0);
226 intel_ring_emit(engine, 0);
227 intel_ring_emit(engine, MI_NOOP);
228 intel_ring_advance(engine);
8d315287
JB
229
230 return 0;
231}
232
233static int
a84c3ae1
JH
234gen6_render_ring_flush(struct drm_i915_gem_request *req,
235 u32 invalidate_domains, u32 flush_domains)
8d315287 236{
4a570db5 237 struct intel_engine_cs *engine = req->engine;
8d315287 238 u32 flags = 0;
e2f80391 239 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
8d315287
JB
240 int ret;
241
b3111509 242 /* Force SNB workarounds for PIPE_CONTROL flushes */
f2cf1fcc 243 ret = intel_emit_post_sync_nonzero_flush(req);
b3111509
PZ
244 if (ret)
245 return ret;
246
8d315287
JB
247 /* Just flush everything. Experiments have shown that reducing the
248 * number of bits based on the write domains has little performance
249 * impact.
250 */
7d54a904
CW
251 if (flush_domains) {
252 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
253 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
254 /*
255 * Ensure that any following seqno writes only happen
256 * when the render cache is indeed flushed.
257 */
97f209bc 258 flags |= PIPE_CONTROL_CS_STALL;
7d54a904
CW
259 }
260 if (invalidate_domains) {
261 flags |= PIPE_CONTROL_TLB_INVALIDATE;
262 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
263 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
264 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
267 /*
268 * TLB invalidate requires a post-sync write.
269 */
3ac78313 270 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
7d54a904 271 }
8d315287 272
5fb9de1a 273 ret = intel_ring_begin(req, 4);
8d315287
JB
274 if (ret)
275 return ret;
276
e2f80391
TU
277 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
278 intel_ring_emit(engine, flags);
279 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
280 intel_ring_emit(engine, 0);
281 intel_ring_advance(engine);
8d315287
JB
282
283 return 0;
284}
285
f3987631 286static int
f2cf1fcc 287gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
f3987631 288{
4a570db5 289 struct intel_engine_cs *engine = req->engine;
f3987631
PZ
290 int ret;
291
5fb9de1a 292 ret = intel_ring_begin(req, 4);
f3987631
PZ
293 if (ret)
294 return ret;
295
e2f80391
TU
296 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
297 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
f3987631 298 PIPE_CONTROL_STALL_AT_SCOREBOARD);
e2f80391
TU
299 intel_ring_emit(engine, 0);
300 intel_ring_emit(engine, 0);
301 intel_ring_advance(engine);
f3987631
PZ
302
303 return 0;
304}
305
4772eaeb 306static int
a84c3ae1 307gen7_render_ring_flush(struct drm_i915_gem_request *req,
4772eaeb
PZ
308 u32 invalidate_domains, u32 flush_domains)
309{
4a570db5 310 struct intel_engine_cs *engine = req->engine;
4772eaeb 311 u32 flags = 0;
e2f80391 312 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4772eaeb
PZ
313 int ret;
314
f3987631
PZ
315 /*
316 * Ensure that any following seqno writes only happen when the render
317 * cache is indeed flushed.
318 *
319 * Workaround: 4th PIPE_CONTROL command (except the ones with only
320 * read-cache invalidate bits set) must have the CS_STALL bit set. We
321 * don't try to be clever and just set it unconditionally.
322 */
323 flags |= PIPE_CONTROL_CS_STALL;
324
4772eaeb
PZ
325 /* Just flush everything. Experiments have shown that reducing the
326 * number of bits based on the write domains has little performance
327 * impact.
328 */
329 if (flush_domains) {
330 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
331 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 332 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 333 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4772eaeb
PZ
334 }
335 if (invalidate_domains) {
336 flags |= PIPE_CONTROL_TLB_INVALIDATE;
337 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
338 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
339 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
148b83d0 342 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
4772eaeb
PZ
343 /*
344 * TLB invalidate requires a post-sync write.
345 */
346 flags |= PIPE_CONTROL_QW_WRITE;
b9e1faa7 347 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
f3987631 348
add284a3
CW
349 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
350
f3987631
PZ
351 /* Workaround: we must issue a pipe_control with CS-stall bit
352 * set before a pipe_control command that has the state cache
353 * invalidate bit set. */
f2cf1fcc 354 gen7_render_ring_cs_stall_wa(req);
4772eaeb
PZ
355 }
356
5fb9de1a 357 ret = intel_ring_begin(req, 4);
4772eaeb
PZ
358 if (ret)
359 return ret;
360
e2f80391
TU
361 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
362 intel_ring_emit(engine, flags);
363 intel_ring_emit(engine, scratch_addr);
364 intel_ring_emit(engine, 0);
365 intel_ring_advance(engine);
4772eaeb
PZ
366
367 return 0;
368}
369
884ceace 370static int
f2cf1fcc 371gen8_emit_pipe_control(struct drm_i915_gem_request *req,
884ceace
KG
372 u32 flags, u32 scratch_addr)
373{
4a570db5 374 struct intel_engine_cs *engine = req->engine;
884ceace
KG
375 int ret;
376
5fb9de1a 377 ret = intel_ring_begin(req, 6);
884ceace
KG
378 if (ret)
379 return ret;
380
e2f80391
TU
381 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
382 intel_ring_emit(engine, flags);
383 intel_ring_emit(engine, scratch_addr);
384 intel_ring_emit(engine, 0);
385 intel_ring_emit(engine, 0);
386 intel_ring_emit(engine, 0);
387 intel_ring_advance(engine);
884ceace
KG
388
389 return 0;
390}
391
a5f3d68e 392static int
a84c3ae1 393gen8_render_ring_flush(struct drm_i915_gem_request *req,
a5f3d68e
BW
394 u32 invalidate_domains, u32 flush_domains)
395{
396 u32 flags = 0;
4a570db5 397 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
02c9f7e3 398 int ret;
a5f3d68e
BW
399
400 flags |= PIPE_CONTROL_CS_STALL;
401
402 if (flush_domains) {
403 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
404 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 405 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 406 flags |= PIPE_CONTROL_FLUSH_ENABLE;
a5f3d68e
BW
407 }
408 if (invalidate_domains) {
409 flags |= PIPE_CONTROL_TLB_INVALIDATE;
410 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
411 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
412 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_QW_WRITE;
416 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
02c9f7e3
KG
417
418 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
f2cf1fcc 419 ret = gen8_emit_pipe_control(req,
02c9f7e3
KG
420 PIPE_CONTROL_CS_STALL |
421 PIPE_CONTROL_STALL_AT_SCOREBOARD,
422 0);
423 if (ret)
424 return ret;
a5f3d68e
BW
425 }
426
f2cf1fcc 427 return gen8_emit_pipe_control(req, flags, scratch_addr);
a5f3d68e
BW
428}
429
0bc40be8 430static void ring_write_tail(struct intel_engine_cs *engine,
297b0c5b 431 u32 value)
d46eefa2 432{
c033666a 433 struct drm_i915_private *dev_priv = engine->i915;
0bc40be8 434 I915_WRITE_TAIL(engine, value);
d46eefa2
XH
435}
436
0bc40be8 437u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
8187a2b7 438{
c033666a 439 struct drm_i915_private *dev_priv = engine->i915;
50877445 440 u64 acthd;
8187a2b7 441
c033666a 442 if (INTEL_GEN(dev_priv) >= 8)
0bc40be8
TU
443 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
444 RING_ACTHD_UDW(engine->mmio_base));
c033666a 445 else if (INTEL_GEN(dev_priv) >= 4)
0bc40be8 446 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
50877445
CW
447 else
448 acthd = I915_READ(ACTHD);
449
450 return acthd;
8187a2b7
ZN
451}
452
0bc40be8 453static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
035dc1e0 454{
c033666a 455 struct drm_i915_private *dev_priv = engine->i915;
035dc1e0
DV
456 u32 addr;
457
458 addr = dev_priv->status_page_dmah->busaddr;
c033666a 459 if (INTEL_GEN(dev_priv) >= 4)
035dc1e0
DV
460 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
461 I915_WRITE(HWS_PGA, addr);
462}
463
0bc40be8 464static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
af75f269 465{
c033666a 466 struct drm_i915_private *dev_priv = engine->i915;
f0f59a00 467 i915_reg_t mmio;
af75f269
DL
468
469 /* The ring status page addresses are no longer next to the rest of
470 * the ring registers as of gen7.
471 */
c033666a 472 if (IS_GEN7(dev_priv)) {
0bc40be8 473 switch (engine->id) {
af75f269
DL
474 case RCS:
475 mmio = RENDER_HWS_PGA_GEN7;
476 break;
477 case BCS:
478 mmio = BLT_HWS_PGA_GEN7;
479 break;
480 /*
481 * VCS2 actually doesn't exist on Gen7. Only shut up
482 * gcc switch check warning
483 */
484 case VCS2:
485 case VCS:
486 mmio = BSD_HWS_PGA_GEN7;
487 break;
488 case VECS:
489 mmio = VEBOX_HWS_PGA_GEN7;
490 break;
491 }
c033666a 492 } else if (IS_GEN6(dev_priv)) {
0bc40be8 493 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
af75f269
DL
494 } else {
495 /* XXX: gen8 returns to sanity */
0bc40be8 496 mmio = RING_HWS_PGA(engine->mmio_base);
af75f269
DL
497 }
498
0bc40be8 499 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
af75f269
DL
500 POSTING_READ(mmio);
501
502 /*
503 * Flush the TLB for this page
504 *
505 * FIXME: These two bits have disappeared on gen8, so a question
506 * arises: do we still need this and if so how should we go about
507 * invalidating the TLB?
508 */
ac657f64 509 if (IS_GEN(dev_priv, 6, 7)) {
0bc40be8 510 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
af75f269
DL
511
512 /* ring should be idle before issuing a sync flush*/
0bc40be8 513 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
af75f269
DL
514
515 I915_WRITE(reg,
516 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
517 INSTPM_SYNC_FLUSH));
25ab57f4
CW
518 if (intel_wait_for_register(dev_priv,
519 reg, INSTPM_SYNC_FLUSH, 0,
520 1000))
af75f269 521 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
0bc40be8 522 engine->name);
af75f269
DL
523 }
524}
525
0bc40be8 526static bool stop_ring(struct intel_engine_cs *engine)
8187a2b7 527{
c033666a 528 struct drm_i915_private *dev_priv = engine->i915;
8187a2b7 529
c033666a 530 if (!IS_GEN2(dev_priv)) {
0bc40be8 531 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
3d808eb1
CW
532 if (intel_wait_for_register(dev_priv,
533 RING_MI_MODE(engine->mmio_base),
534 MODE_IDLE,
535 MODE_IDLE,
536 1000)) {
0bc40be8
TU
537 DRM_ERROR("%s : timed out trying to stop ring\n",
538 engine->name);
9bec9b13
CW
539 /* Sometimes we observe that the idle flag is not
540 * set even though the ring is empty. So double
541 * check before giving up.
542 */
0bc40be8 543 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
9bec9b13 544 return false;
9991ae78
CW
545 }
546 }
b7884eb4 547
0bc40be8
TU
548 I915_WRITE_CTL(engine, 0);
549 I915_WRITE_HEAD(engine, 0);
550 engine->write_tail(engine, 0);
8187a2b7 551
c033666a 552 if (!IS_GEN2(dev_priv)) {
0bc40be8
TU
553 (void)I915_READ_CTL(engine);
554 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
9991ae78 555 }
a51435a3 556
0bc40be8 557 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
9991ae78 558}
8187a2b7 559
fc0768ce
TE
560void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
561{
562 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
563}
564
0bc40be8 565static int init_ring_common(struct intel_engine_cs *engine)
9991ae78 566{
c033666a 567 struct drm_i915_private *dev_priv = engine->i915;
0bc40be8 568 struct intel_ringbuffer *ringbuf = engine->buffer;
93b0a4e0 569 struct drm_i915_gem_object *obj = ringbuf->obj;
9991ae78
CW
570 int ret = 0;
571
59bad947 572 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9991ae78 573
0bc40be8 574 if (!stop_ring(engine)) {
9991ae78 575 /* G45 ring initialization often fails to reset head to zero */
6fd0d56e
CW
576 DRM_DEBUG_KMS("%s head not reset to zero "
577 "ctl %08x head %08x tail %08x start %08x\n",
0bc40be8
TU
578 engine->name,
579 I915_READ_CTL(engine),
580 I915_READ_HEAD(engine),
581 I915_READ_TAIL(engine),
582 I915_READ_START(engine));
8187a2b7 583
0bc40be8 584 if (!stop_ring(engine)) {
6fd0d56e
CW
585 DRM_ERROR("failed to set %s head to zero "
586 "ctl %08x head %08x tail %08x start %08x\n",
0bc40be8
TU
587 engine->name,
588 I915_READ_CTL(engine),
589 I915_READ_HEAD(engine),
590 I915_READ_TAIL(engine),
591 I915_READ_START(engine));
9991ae78
CW
592 ret = -EIO;
593 goto out;
6fd0d56e 594 }
8187a2b7
ZN
595 }
596
c033666a 597 if (I915_NEED_GFX_HWS(dev_priv))
0bc40be8 598 intel_ring_setup_status_page(engine);
9991ae78 599 else
0bc40be8 600 ring_setup_phys_status_page(engine);
9991ae78 601
ece4a17d 602 /* Enforce ordering by reading HEAD register back */
0bc40be8 603 I915_READ_HEAD(engine);
ece4a17d 604
0d8957c8
DV
605 /* Initialize the ring. This must happen _after_ we've cleared the ring
606 * registers with the above sequence (the readback of the HEAD registers
607 * also enforces ordering), otherwise the hw might lose the new ring
608 * register values. */
0bc40be8 609 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
95468892
CW
610
611 /* WaClearRingBufHeadRegAtInit:ctg,elk */
0bc40be8 612 if (I915_READ_HEAD(engine))
95468892 613 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
0bc40be8
TU
614 engine->name, I915_READ_HEAD(engine));
615 I915_WRITE_HEAD(engine, 0);
616 (void)I915_READ_HEAD(engine);
95468892 617
0bc40be8 618 I915_WRITE_CTL(engine,
93b0a4e0 619 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
5d031e5b 620 | RING_VALID);
8187a2b7 621
8187a2b7 622 /* If the head is still not zero, the ring is dead */
0bc40be8
TU
623 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
624 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
625 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
e74cfed5 626 DRM_ERROR("%s initialization failed "
48e48a0b 627 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
0bc40be8
TU
628 engine->name,
629 I915_READ_CTL(engine),
630 I915_READ_CTL(engine) & RING_VALID,
631 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
632 I915_READ_START(engine),
633 (unsigned long)i915_gem_obj_ggtt_offset(obj));
b7884eb4
DV
634 ret = -EIO;
635 goto out;
8187a2b7
ZN
636 }
637
ebd0fd4b 638 ringbuf->last_retired_head = -1;
0bc40be8
TU
639 ringbuf->head = I915_READ_HEAD(engine);
640 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
ebd0fd4b 641 intel_ring_update_space(ringbuf);
1ec14ad3 642
fc0768ce 643 intel_engine_init_hangcheck(engine);
50f018df 644
b7884eb4 645out:
59bad947 646 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b7884eb4
DV
647
648 return ret;
8187a2b7
ZN
649}
650
9b1136d5 651void
0bc40be8 652intel_fini_pipe_control(struct intel_engine_cs *engine)
9b1136d5 653{
0bc40be8 654 if (engine->scratch.obj == NULL)
9b1136d5
OM
655 return;
656
c033666a 657 if (INTEL_GEN(engine->i915) >= 5) {
0bc40be8
TU
658 kunmap(sg_page(engine->scratch.obj->pages->sgl));
659 i915_gem_object_ggtt_unpin(engine->scratch.obj);
9b1136d5
OM
660 }
661
0bc40be8
TU
662 drm_gem_object_unreference(&engine->scratch.obj->base);
663 engine->scratch.obj = NULL;
9b1136d5
OM
664}
665
666int
0bc40be8 667intel_init_pipe_control(struct intel_engine_cs *engine)
c6df541c 668{
c6df541c
CW
669 int ret;
670
0bc40be8 671 WARN_ON(engine->scratch.obj);
c6df541c 672
c033666a 673 engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
fe3db79b 674 if (IS_ERR(engine->scratch.obj)) {
c6df541c 675 DRM_ERROR("Failed to allocate seqno page\n");
fe3db79b
CW
676 ret = PTR_ERR(engine->scratch.obj);
677 engine->scratch.obj = NULL;
c6df541c
CW
678 goto err;
679 }
e4ffd173 680
0bc40be8
TU
681 ret = i915_gem_object_set_cache_level(engine->scratch.obj,
682 I915_CACHE_LLC);
a9cc726c
DV
683 if (ret)
684 goto err_unref;
c6df541c 685
0bc40be8 686 ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
c6df541c
CW
687 if (ret)
688 goto err_unref;
689
0bc40be8
TU
690 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
691 engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
692 if (engine->scratch.cpu_page == NULL) {
56b085a0 693 ret = -ENOMEM;
c6df541c 694 goto err_unpin;
56b085a0 695 }
c6df541c 696
2b1086cc 697 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
0bc40be8 698 engine->name, engine->scratch.gtt_offset);
c6df541c
CW
699 return 0;
700
701err_unpin:
0bc40be8 702 i915_gem_object_ggtt_unpin(engine->scratch.obj);
c6df541c 703err_unref:
0bc40be8 704 drm_gem_object_unreference(&engine->scratch.obj->base);
c6df541c 705err:
c6df541c
CW
706 return ret;
707}
708
e2be4faf 709static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
86d7f238 710{
4a570db5 711 struct intel_engine_cs *engine = req->engine;
c033666a
CW
712 struct i915_workarounds *w = &req->i915->workarounds;
713 int ret, i;
888b5995 714
02235808 715 if (w->count == 0)
7225342a 716 return 0;
888b5995 717
e2f80391 718 engine->gpu_caches_dirty = true;
4866d729 719 ret = intel_ring_flush_all_caches(req);
7225342a
MK
720 if (ret)
721 return ret;
888b5995 722
5fb9de1a 723 ret = intel_ring_begin(req, (w->count * 2 + 2));
7225342a
MK
724 if (ret)
725 return ret;
726
e2f80391 727 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
7225342a 728 for (i = 0; i < w->count; i++) {
e2f80391
TU
729 intel_ring_emit_reg(engine, w->reg[i].addr);
730 intel_ring_emit(engine, w->reg[i].value);
7225342a 731 }
e2f80391 732 intel_ring_emit(engine, MI_NOOP);
7225342a 733
e2f80391 734 intel_ring_advance(engine);
7225342a 735
e2f80391 736 engine->gpu_caches_dirty = true;
4866d729 737 ret = intel_ring_flush_all_caches(req);
7225342a
MK
738 if (ret)
739 return ret;
888b5995 740
7225342a 741 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
888b5995 742
7225342a 743 return 0;
86d7f238
AS
744}
745
8753181e 746static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
8f0e2b9d
DV
747{
748 int ret;
749
e2be4faf 750 ret = intel_ring_workarounds_emit(req);
8f0e2b9d
DV
751 if (ret != 0)
752 return ret;
753
be01363f 754 ret = i915_gem_render_state_init(req);
8f0e2b9d 755 if (ret)
e26e1b97 756 return ret;
8f0e2b9d 757
e26e1b97 758 return 0;
8f0e2b9d
DV
759}
760
7225342a 761static int wa_add(struct drm_i915_private *dev_priv,
f0f59a00
VS
762 i915_reg_t addr,
763 const u32 mask, const u32 val)
7225342a
MK
764{
765 const u32 idx = dev_priv->workarounds.count;
766
767 if (WARN_ON(idx >= I915_MAX_WA_REGS))
768 return -ENOSPC;
769
770 dev_priv->workarounds.reg[idx].addr = addr;
771 dev_priv->workarounds.reg[idx].value = val;
772 dev_priv->workarounds.reg[idx].mask = mask;
773
774 dev_priv->workarounds.count++;
775
776 return 0;
86d7f238
AS
777}
778
ca5a0fbd 779#define WA_REG(addr, mask, val) do { \
cf4b0de6 780 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
7225342a
MK
781 if (r) \
782 return r; \
ca5a0fbd 783 } while (0)
7225342a
MK
784
785#define WA_SET_BIT_MASKED(addr, mask) \
26459343 786 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
7225342a
MK
787
788#define WA_CLR_BIT_MASKED(addr, mask) \
26459343 789 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
7225342a 790
98533251 791#define WA_SET_FIELD_MASKED(addr, mask, value) \
cf4b0de6 792 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
7225342a 793
cf4b0de6
DL
794#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
795#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
7225342a 796
cf4b0de6 797#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
7225342a 798
0bc40be8
TU
799static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
800 i915_reg_t reg)
33136b06 801{
c033666a 802 struct drm_i915_private *dev_priv = engine->i915;
33136b06 803 struct i915_workarounds *wa = &dev_priv->workarounds;
0bc40be8 804 const uint32_t index = wa->hw_whitelist_count[engine->id];
33136b06
AS
805
806 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
807 return -EINVAL;
808
0bc40be8 809 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
33136b06 810 i915_mmio_reg_offset(reg));
0bc40be8 811 wa->hw_whitelist_count[engine->id]++;
33136b06
AS
812
813 return 0;
814}
815
0bc40be8 816static int gen8_init_workarounds(struct intel_engine_cs *engine)
e9a64ada 817{
c033666a 818 struct drm_i915_private *dev_priv = engine->i915;
68c6198b
AS
819
820 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
e9a64ada 821
717d84d6
AS
822 /* WaDisableAsyncFlipPerfMode:bdw,chv */
823 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
824
d0581194
AS
825 /* WaDisablePartialInstShootdown:bdw,chv */
826 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
827 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
828
a340af58
AS
829 /* Use Force Non-Coherent whenever executing a 3D context. This is a
830 * workaround for for a possible hang in the unlikely event a TLB
831 * invalidation occurs during a PSD flush.
832 */
833 /* WaForceEnableNonCoherent:bdw,chv */
120f5d28 834 /* WaHdcDisableFetchWhenMasked:bdw,chv */
a340af58 835 WA_SET_BIT_MASKED(HDC_CHICKEN0,
120f5d28 836 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
a340af58
AS
837 HDC_FORCE_NON_COHERENT);
838
6def8fdd
AS
839 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
840 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
841 * polygons in the same 8x4 pixel/sample area to be processed without
842 * stalling waiting for the earlier ones to write to Hierarchical Z
843 * buffer."
844 *
845 * This optimization is off by default for BDW and CHV; turn it on.
846 */
847 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
848
48404636
AS
849 /* Wa4x4STCOptimizationDisable:bdw,chv */
850 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
851
7eebcde6
AS
852 /*
853 * BSpec recommends 8x4 when MSAA is used,
854 * however in practice 16x4 seems fastest.
855 *
856 * Note that PS/WM thread counts depend on the WIZ hashing
857 * disable bit, which we don't touch here, but it's good
858 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
859 */
860 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
861 GEN6_WIZ_HASHING_MASK,
862 GEN6_WIZ_HASHING_16x4);
863
e9a64ada
AS
864 return 0;
865}
866
0bc40be8 867static int bdw_init_workarounds(struct intel_engine_cs *engine)
86d7f238 868{
c033666a 869 struct drm_i915_private *dev_priv = engine->i915;
e9a64ada 870 int ret;
86d7f238 871
0bc40be8 872 ret = gen8_init_workarounds(engine);
e9a64ada
AS
873 if (ret)
874 return ret;
875
101b376d 876 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
d0581194 877 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
86d7f238 878
101b376d 879 /* WaDisableDopClockGating:bdw */
7225342a
MK
880 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
881 DOP_CLOCK_GATING_DISABLE);
86d7f238 882
7225342a
MK
883 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
884 GEN8_SAMPLER_POWER_BYPASS_DIS);
86d7f238 885
7225342a 886 WA_SET_BIT_MASKED(HDC_CHICKEN0,
35cb6f3b
DL
887 /* WaForceContextSaveRestoreNonCoherent:bdw */
888 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
35cb6f3b 889 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
c033666a 890 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
86d7f238 891
86d7f238
AS
892 return 0;
893}
894
0bc40be8 895static int chv_init_workarounds(struct intel_engine_cs *engine)
00e1e623 896{
c033666a 897 struct drm_i915_private *dev_priv = engine->i915;
e9a64ada 898 int ret;
00e1e623 899
0bc40be8 900 ret = gen8_init_workarounds(engine);
e9a64ada
AS
901 if (ret)
902 return ret;
903
00e1e623 904 /* WaDisableThreadStallDopClockGating:chv */
d0581194 905 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
00e1e623 906
d60de81d
KG
907 /* Improve HiZ throughput on CHV. */
908 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
909
7225342a
MK
910 return 0;
911}
912
0bc40be8 913static int gen9_init_workarounds(struct intel_engine_cs *engine)
3b106531 914{
c033666a 915 struct drm_i915_private *dev_priv = engine->i915;
e0f3fa09 916 int ret;
ab0dfafe 917
a8ab5ed5
TG
918 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
919 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
920
e5f81d65 921 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
9c4cbf82
MK
922 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
923 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
924
e5f81d65 925 /* WaDisableKillLogic:bxt,skl,kbl */
9c4cbf82
MK
926 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
927 ECOCHK_DIS_TLB);
928
e5f81d65
MK
929 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
930 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
ab0dfafe 931 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
950b2aae 932 FLOW_CONTROL_ENABLE |
ab0dfafe
HN
933 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
934
e5f81d65 935 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
8424171e
NH
936 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
937 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
938
e87a005d 939 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
c033666a
CW
940 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
941 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
a86eb582
DL
942 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943 GEN9_DG_MIRROR_FIX_ENABLE);
1de4582f 944
e87a005d 945 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
946 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
947 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
183c6dac
DL
948 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
949 GEN9_RHWO_OPTIMIZATION_DISABLE);
9b01435d
AS
950 /*
951 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
952 * but we do that in per ctx batchbuffer as there is an issue
953 * with this register not getting restored on ctx restore
954 */
183c6dac
DL
955 }
956
e5f81d65
MK
957 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
958 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
bfd8ad4e
TG
959 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
960 GEN9_ENABLE_YV12_BUGFIX |
961 GEN9_ENABLE_GPGPU_PREEMPTION);
cac23df4 962
e5f81d65
MK
963 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
964 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
60294683
AS
965 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
966 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
9370cd98 967
e5f81d65 968 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
e2db7071
DL
969 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
970 GEN9_CCS_TLB_PREFETCH_ENABLE);
971
5a2ae95e 972 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
c033666a
CW
973 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
974 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
38a39a7b
BW
975 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
976 PIXEL_MASK_CAMMING_DISABLE);
977
5b0e3659
MK
978 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
979 WA_SET_BIT_MASKED(HDC_CHICKEN0,
980 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
981 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
8ea6f892 982
bbaefe72
MK
983 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
984 * both tied to WaForceContextSaveRestoreNonCoherent
985 * in some hsds for skl. We keep the tie for all gen9. The
986 * documentation is a bit hazy and so we want to get common behaviour,
987 * even though there is no clear evidence we would need both on kbl/bxt.
988 * This area has been source of system hangs so we play it safe
989 * and mimic the skl regardless of what bspec says.
990 *
991 * Use Force Non-Coherent whenever executing a 3D context. This
992 * is a workaround for a possible hang in the unlikely event
993 * a TLB invalidation occurs during a PSD flush.
994 */
995
996 /* WaForceEnableNonCoherent:skl,bxt,kbl */
997 WA_SET_BIT_MASKED(HDC_CHICKEN0,
998 HDC_FORCE_NON_COHERENT);
999
1000 /* WaDisableHDCInvalidation:skl,bxt,kbl */
1001 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1002 BDW_DISABLE_HDC_INVALIDATION);
1003
e5f81d65
MK
1004 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
1005 if (IS_SKYLAKE(dev_priv) ||
1006 IS_KABYLAKE(dev_priv) ||
1007 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
8c761609
AS
1008 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
1009 GEN8_SAMPLER_POWER_BYPASS_DIS);
8c761609 1010
e5f81d65 1011 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
6b6d5626
RB
1012 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
1013
e5f81d65 1014 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
6ecf56ae
AS
1015 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
1016 GEN8_LQSC_FLUSH_COHERENT_LINES));
1017
6bb62855 1018 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
1019 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
1020 if (ret)
1021 return ret;
1022
e5f81d65 1023 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
0bc40be8 1024 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
e0f3fa09
AS
1025 if (ret)
1026 return ret;
1027
e5f81d65 1028 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
0bc40be8 1029 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
3669ab61
AS
1030 if (ret)
1031 return ret;
1032
3b106531
HN
1033 return 0;
1034}
1035
0bc40be8 1036static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
b7668791 1037{
c033666a 1038 struct drm_i915_private *dev_priv = engine->i915;
b7668791
DL
1039 u8 vals[3] = { 0, 0, 0 };
1040 unsigned int i;
1041
1042 for (i = 0; i < 3; i++) {
1043 u8 ss;
1044
1045 /*
1046 * Only consider slices where one, and only one, subslice has 7
1047 * EUs
1048 */
a4d8a0fe 1049 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
b7668791
DL
1050 continue;
1051
1052 /*
1053 * subslice_7eu[i] != 0 (because of the check above) and
1054 * ss_max == 4 (maximum number of subslices possible per slice)
1055 *
1056 * -> 0 <= ss <= 3;
1057 */
1058 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1059 vals[i] = 3 - ss;
1060 }
1061
1062 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1063 return 0;
1064
1065 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1066 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1067 GEN9_IZ_HASHING_MASK(2) |
1068 GEN9_IZ_HASHING_MASK(1) |
1069 GEN9_IZ_HASHING_MASK(0),
1070 GEN9_IZ_HASHING(2, vals[2]) |
1071 GEN9_IZ_HASHING(1, vals[1]) |
1072 GEN9_IZ_HASHING(0, vals[0]));
1073
1074 return 0;
1075}
1076
0bc40be8 1077static int skl_init_workarounds(struct intel_engine_cs *engine)
8d205494 1078{
c033666a 1079 struct drm_i915_private *dev_priv = engine->i915;
aa0011a8 1080 int ret;
d0bbbc4f 1081
0bc40be8 1082 ret = gen9_init_workarounds(engine);
aa0011a8
AS
1083 if (ret)
1084 return ret;
8d205494 1085
a78536e7
AS
1086 /*
1087 * Actual WA is to disable percontext preemption granularity control
1088 * until D0 which is the default case so this is equivalent to
1089 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1090 */
c033666a 1091 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
a78536e7
AS
1092 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1093 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1094 }
1095
71dce58c 1096 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
9c4cbf82
MK
1097 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1098 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1099 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1100 }
1101
1102 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1103 * involving this register should also be added to WA batch as required.
1104 */
c033666a 1105 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
9c4cbf82
MK
1106 /* WaDisableLSQCROPERFforOCL:skl */
1107 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1108 GEN8_LQSC_RO_PERF_DIS);
1109
1110 /* WaEnableGapsTsvCreditFix:skl */
c033666a 1111 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
9c4cbf82
MK
1112 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1113 GEN9_GAPS_TSV_CREDIT_DISABLE));
1114 }
1115
d0bbbc4f 1116 /* WaDisablePowerCompilerClockGating:skl */
c033666a 1117 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
d0bbbc4f
DL
1118 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1119 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1120
e87a005d 1121 /* WaBarrierPerformanceFixDisable:skl */
c033666a 1122 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
5b6fd12a
VS
1123 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1124 HDC_FENCE_DEST_SLM_DISABLE |
1125 HDC_BARRIER_PERFORMANCE_DISABLE);
1126
9bd9dfb4 1127 /* WaDisableSbeCacheDispatchPortSharing:skl */
c033666a 1128 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
9bd9dfb4
MK
1129 WA_SET_BIT_MASKED(
1130 GEN7_HALF_SLICE_CHICKEN1,
1131 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
9bd9dfb4 1132
eee8efb0
MK
1133 /* WaDisableGafsUnitClkGating:skl */
1134 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1135
6107497e 1136 /* WaDisableLSQCROPERFforOCL:skl */
0bc40be8 1137 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
6107497e
AS
1138 if (ret)
1139 return ret;
1140
0bc40be8 1141 return skl_tune_iz_hashing(engine);
7225342a
MK
1142}
1143
0bc40be8 1144static int bxt_init_workarounds(struct intel_engine_cs *engine)
cae0437f 1145{
c033666a 1146 struct drm_i915_private *dev_priv = engine->i915;
aa0011a8 1147 int ret;
dfb601e6 1148
0bc40be8 1149 ret = gen9_init_workarounds(engine);
aa0011a8
AS
1150 if (ret)
1151 return ret;
cae0437f 1152
9c4cbf82
MK
1153 /* WaStoreMultiplePTEenable:bxt */
1154 /* This is a requirement according to Hardware specification */
c033666a 1155 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
9c4cbf82
MK
1156 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1157
1158 /* WaSetClckGatingDisableMedia:bxt */
c033666a 1159 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
9c4cbf82
MK
1160 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1161 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1162 }
1163
dfb601e6
NH
1164 /* WaDisableThreadStallDopClockGating:bxt */
1165 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1166 STALL_DOP_GATING_DISABLE);
1167
780f0aeb 1168 /* WaDisablePooledEuLoadBalancingFix:bxt */
1169 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1170 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1171 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1172 }
1173
983b4b9d 1174 /* WaDisableSbeCacheDispatchPortSharing:bxt */
c033666a 1175 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
983b4b9d
NH
1176 WA_SET_BIT_MASKED(
1177 GEN7_HALF_SLICE_CHICKEN1,
1178 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1179 }
1180
2c8580e4
AS
1181 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1182 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1183 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
a786d53a 1184 /* WaDisableLSQCROPERFforOCL:bxt */
c033666a 1185 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
0bc40be8 1186 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
2c8580e4
AS
1187 if (ret)
1188 return ret;
a786d53a 1189
0bc40be8 1190 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
a786d53a
AS
1191 if (ret)
1192 return ret;
2c8580e4
AS
1193 }
1194
050fc465 1195 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
c033666a 1196 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
36579cb6
ID
1197 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1198 L3_HIGH_PRIO_CREDITS(2));
050fc465 1199
ad2bdb44
MK
1200 /* WaInsertDummyPushConstPs:bxt */
1201 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1202 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1203 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1204
cae0437f
NH
1205 return 0;
1206}
1207
e5f81d65
MK
1208static int kbl_init_workarounds(struct intel_engine_cs *engine)
1209{
e587f6cb 1210 struct drm_i915_private *dev_priv = engine->i915;
e5f81d65
MK
1211 int ret;
1212
1213 ret = gen9_init_workarounds(engine);
1214 if (ret)
1215 return ret;
1216
e587f6cb
MK
1217 /* WaEnableGapsTsvCreditFix:kbl */
1218 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1219 GEN9_GAPS_TSV_CREDIT_DISABLE));
1220
c0b730d5
MK
1221 /* WaDisableDynamicCreditSharing:kbl */
1222 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1223 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1224 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1225
8401d42f
MK
1226 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1227 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1228 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1229 HDC_FENCE_DEST_SLM_DISABLE);
1230
fe905819
MK
1231 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1232 * involving this register should also be added to WA batch as required.
1233 */
1234 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1235 /* WaDisableLSQCROPERFforOCL:kbl */
1236 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1237 GEN8_LQSC_RO_PERF_DIS);
1238
ad2bdb44
MK
1239 /* WaInsertDummyPushConstPs:kbl */
1240 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1241 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1242 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1243
4de5d7cc
MK
1244 /* WaDisableGafsUnitClkGating:kbl */
1245 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1246
954337aa
MK
1247 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1248 WA_SET_BIT_MASKED(
1249 GEN7_HALF_SLICE_CHICKEN1,
1250 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1251
fe905819
MK
1252 /* WaDisableLSQCROPERFforOCL:kbl */
1253 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1254 if (ret)
1255 return ret;
1256
e5f81d65
MK
1257 return 0;
1258}
1259
0bc40be8 1260int init_workarounds_ring(struct intel_engine_cs *engine)
7225342a 1261{
c033666a 1262 struct drm_i915_private *dev_priv = engine->i915;
7225342a 1263
0bc40be8 1264 WARN_ON(engine->id != RCS);
7225342a
MK
1265
1266 dev_priv->workarounds.count = 0;
33136b06 1267 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
7225342a 1268
c033666a 1269 if (IS_BROADWELL(dev_priv))
0bc40be8 1270 return bdw_init_workarounds(engine);
7225342a 1271
c033666a 1272 if (IS_CHERRYVIEW(dev_priv))
0bc40be8 1273 return chv_init_workarounds(engine);
00e1e623 1274
c033666a 1275 if (IS_SKYLAKE(dev_priv))
0bc40be8 1276 return skl_init_workarounds(engine);
cae0437f 1277
c033666a 1278 if (IS_BROXTON(dev_priv))
0bc40be8 1279 return bxt_init_workarounds(engine);
3b106531 1280
e5f81d65
MK
1281 if (IS_KABYLAKE(dev_priv))
1282 return kbl_init_workarounds(engine);
1283
00e1e623
VS
1284 return 0;
1285}
1286
0bc40be8 1287static int init_render_ring(struct intel_engine_cs *engine)
8187a2b7 1288{
c033666a 1289 struct drm_i915_private *dev_priv = engine->i915;
0bc40be8 1290 int ret = init_ring_common(engine);
9c33baa6
KZ
1291 if (ret)
1292 return ret;
a69ffdbf 1293
61a563a2 1294 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
ac657f64 1295 if (IS_GEN(dev_priv, 4, 6))
6b26c86d 1296 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1c8c38c5
CW
1297
1298 /* We need to disable the AsyncFlip performance optimisations in order
1299 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1300 * programmed to '1' on all products.
8693a824 1301 *
2441f877 1302 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1c8c38c5 1303 */
ac657f64 1304 if (IS_GEN(dev_priv, 6, 7))
1c8c38c5
CW
1305 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1306
f05bb0c7 1307 /* Required for the hardware to program scanline values for waiting */
01fa0302 1308 /* WaEnableFlushTlbInvalidationMode:snb */
c033666a 1309 if (IS_GEN6(dev_priv))
f05bb0c7 1310 I915_WRITE(GFX_MODE,
aa83e30d 1311 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
f05bb0c7 1312
01fa0302 1313 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
c033666a 1314 if (IS_GEN7(dev_priv))
1c8c38c5 1315 I915_WRITE(GFX_MODE_GEN7,
01fa0302 1316 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1c8c38c5 1317 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
78501eac 1318
c033666a 1319 if (IS_GEN6(dev_priv)) {
3a69ddd6
KG
1320 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1321 * "If this bit is set, STCunit will have LRA as replacement
1322 * policy. [...] This bit must be reset. LRA replacement
1323 * policy is not supported."
1324 */
1325 I915_WRITE(CACHE_MODE_0,
5e13a0c5 1326 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
84f9f938
BW
1327 }
1328
ac657f64 1329 if (IS_GEN(dev_priv, 6, 7))
6b26c86d 1330 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
84f9f938 1331
c033666a
CW
1332 if (HAS_L3_DPF(dev_priv))
1333 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
15b9f80e 1334
0bc40be8 1335 return init_workarounds_ring(engine);
8187a2b7
ZN
1336}
1337
0bc40be8 1338static void render_ring_cleanup(struct intel_engine_cs *engine)
c6df541c 1339{
c033666a 1340 struct drm_i915_private *dev_priv = engine->i915;
3e78998a
BW
1341
1342 if (dev_priv->semaphore_obj) {
1343 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1344 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1345 dev_priv->semaphore_obj = NULL;
1346 }
b45305fc 1347
0bc40be8 1348 intel_fini_pipe_control(engine);
c6df541c
CW
1349}
1350
f7169687 1351static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
3e78998a
BW
1352 unsigned int num_dwords)
1353{
1354#define MBOX_UPDATE_DWORDS 8
4a570db5 1355 struct intel_engine_cs *signaller = signaller_req->engine;
c033666a 1356 struct drm_i915_private *dev_priv = signaller_req->i915;
3e78998a 1357 struct intel_engine_cs *waiter;
c3232b18
DG
1358 enum intel_engine_id id;
1359 int ret, num_rings;
3e78998a 1360
c033666a 1361 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
3e78998a
BW
1362 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1363#undef MBOX_UPDATE_DWORDS
1364
5fb9de1a 1365 ret = intel_ring_begin(signaller_req, num_dwords);
3e78998a
BW
1366 if (ret)
1367 return ret;
1368
c3232b18 1369 for_each_engine_id(waiter, dev_priv, id) {
6259cead 1370 u32 seqno;
c3232b18 1371 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
3e78998a
BW
1372 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1373 continue;
1374
f7169687 1375 seqno = i915_gem_request_get_seqno(signaller_req);
3e78998a
BW
1376 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1377 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1378 PIPE_CONTROL_QW_WRITE |
f9a4ea35 1379 PIPE_CONTROL_CS_STALL);
3e78998a
BW
1380 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1381 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
6259cead 1382 intel_ring_emit(signaller, seqno);
3e78998a
BW
1383 intel_ring_emit(signaller, 0);
1384 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
215a7e32 1385 MI_SEMAPHORE_TARGET(waiter->hw_id));
3e78998a
BW
1386 intel_ring_emit(signaller, 0);
1387 }
1388
1389 return 0;
1390}
1391
f7169687 1392static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
3e78998a
BW
1393 unsigned int num_dwords)
1394{
1395#define MBOX_UPDATE_DWORDS 6
4a570db5 1396 struct intel_engine_cs *signaller = signaller_req->engine;
c033666a 1397 struct drm_i915_private *dev_priv = signaller_req->i915;
3e78998a 1398 struct intel_engine_cs *waiter;
c3232b18
DG
1399 enum intel_engine_id id;
1400 int ret, num_rings;
3e78998a 1401
c033666a 1402 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
3e78998a
BW
1403 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1404#undef MBOX_UPDATE_DWORDS
1405
5fb9de1a 1406 ret = intel_ring_begin(signaller_req, num_dwords);
3e78998a
BW
1407 if (ret)
1408 return ret;
1409
c3232b18 1410 for_each_engine_id(waiter, dev_priv, id) {
6259cead 1411 u32 seqno;
c3232b18 1412 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
3e78998a
BW
1413 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1414 continue;
1415
f7169687 1416 seqno = i915_gem_request_get_seqno(signaller_req);
3e78998a
BW
1417 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1418 MI_FLUSH_DW_OP_STOREDW);
1419 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1420 MI_FLUSH_DW_USE_GTT);
1421 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
6259cead 1422 intel_ring_emit(signaller, seqno);
3e78998a 1423 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
215a7e32 1424 MI_SEMAPHORE_TARGET(waiter->hw_id));
3e78998a
BW
1425 intel_ring_emit(signaller, 0);
1426 }
1427
1428 return 0;
1429}
1430
f7169687 1431static int gen6_signal(struct drm_i915_gem_request *signaller_req,
024a43e1 1432 unsigned int num_dwords)
1ec14ad3 1433{
4a570db5 1434 struct intel_engine_cs *signaller = signaller_req->engine;
c033666a 1435 struct drm_i915_private *dev_priv = signaller_req->i915;
a4872ba6 1436 struct intel_engine_cs *useless;
c3232b18
DG
1437 enum intel_engine_id id;
1438 int ret, num_rings;
78325f2d 1439
a1444b79 1440#define MBOX_UPDATE_DWORDS 3
c033666a 1441 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
a1444b79
BW
1442 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1443#undef MBOX_UPDATE_DWORDS
024a43e1 1444
5fb9de1a 1445 ret = intel_ring_begin(signaller_req, num_dwords);
024a43e1
BW
1446 if (ret)
1447 return ret;
024a43e1 1448
c3232b18
DG
1449 for_each_engine_id(useless, dev_priv, id) {
1450 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
f0f59a00
VS
1451
1452 if (i915_mmio_reg_valid(mbox_reg)) {
f7169687 1453 u32 seqno = i915_gem_request_get_seqno(signaller_req);
f0f59a00 1454
78325f2d 1455 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
f92a9162 1456 intel_ring_emit_reg(signaller, mbox_reg);
6259cead 1457 intel_ring_emit(signaller, seqno);
78325f2d
BW
1458 }
1459 }
024a43e1 1460
a1444b79
BW
1461 /* If num_dwords was rounded, make sure the tail pointer is correct */
1462 if (num_rings % 2 == 0)
1463 intel_ring_emit(signaller, MI_NOOP);
1464
024a43e1 1465 return 0;
1ec14ad3
CW
1466}
1467
c8c99b0f
BW
1468/**
1469 * gen6_add_request - Update the semaphore mailbox registers
ee044a88
JH
1470 *
1471 * @request - request to write to the ring
c8c99b0f
BW
1472 *
1473 * Update the mailbox registers in the *other* rings with the current seqno.
1474 * This acts like a signal in the canonical semaphore.
1475 */
1ec14ad3 1476static int
ee044a88 1477gen6_add_request(struct drm_i915_gem_request *req)
1ec14ad3 1478{
4a570db5 1479 struct intel_engine_cs *engine = req->engine;
024a43e1 1480 int ret;
52ed2325 1481
e2f80391
TU
1482 if (engine->semaphore.signal)
1483 ret = engine->semaphore.signal(req, 4);
707d9cf9 1484 else
5fb9de1a 1485 ret = intel_ring_begin(req, 4);
707d9cf9 1486
1ec14ad3
CW
1487 if (ret)
1488 return ret;
1489
e2f80391
TU
1490 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1491 intel_ring_emit(engine,
1492 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1493 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1494 intel_ring_emit(engine, MI_USER_INTERRUPT);
1495 __intel_ring_advance(engine);
1ec14ad3 1496
1ec14ad3
CW
1497 return 0;
1498}
1499
a58c01aa
CW
1500static int
1501gen8_render_add_request(struct drm_i915_gem_request *req)
1502{
1503 struct intel_engine_cs *engine = req->engine;
1504 int ret;
1505
1506 if (engine->semaphore.signal)
1507 ret = engine->semaphore.signal(req, 8);
1508 else
1509 ret = intel_ring_begin(req, 8);
1510 if (ret)
1511 return ret;
1512
1513 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1514 intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1515 PIPE_CONTROL_CS_STALL |
1516 PIPE_CONTROL_QW_WRITE));
1517 intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1518 intel_ring_emit(engine, 0);
1519 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1520 /* We're thrashing one dword of HWS. */
1521 intel_ring_emit(engine, 0);
1522 intel_ring_emit(engine, MI_USER_INTERRUPT);
1523 intel_ring_emit(engine, MI_NOOP);
1524 __intel_ring_advance(engine);
1525
1526 return 0;
1527}
1528
c033666a 1529static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
f72b3435
MK
1530 u32 seqno)
1531{
f72b3435
MK
1532 return dev_priv->last_seqno < seqno;
1533}
1534
c8c99b0f
BW
1535/**
1536 * intel_ring_sync - sync the waiter to the signaller on seqno
1537 *
1538 * @waiter - ring that is waiting
1539 * @signaller - ring which has, or will signal
1540 * @seqno - seqno which the waiter will block on
1541 */
5ee426ca
BW
1542
1543static int
599d924c 1544gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
5ee426ca
BW
1545 struct intel_engine_cs *signaller,
1546 u32 seqno)
1547{
4a570db5 1548 struct intel_engine_cs *waiter = waiter_req->engine;
c033666a 1549 struct drm_i915_private *dev_priv = waiter_req->i915;
c38c651b 1550 u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
6ef48d7f 1551 struct i915_hw_ppgtt *ppgtt;
5ee426ca
BW
1552 int ret;
1553
5fb9de1a 1554 ret = intel_ring_begin(waiter_req, 4);
5ee426ca
BW
1555 if (ret)
1556 return ret;
1557
1558 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1559 MI_SEMAPHORE_GLOBAL_GTT |
1560 MI_SEMAPHORE_SAD_GTE_SDD);
1561 intel_ring_emit(waiter, seqno);
c38c651b
TU
1562 intel_ring_emit(waiter, lower_32_bits(offset));
1563 intel_ring_emit(waiter, upper_32_bits(offset));
5ee426ca 1564 intel_ring_advance(waiter);
6ef48d7f
CW
1565
1566 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1567 * pagetables and we must reload them before executing the batch.
1568 * We do this on the i915_switch_context() following the wait and
1569 * before the dispatch.
1570 */
1571 ppgtt = waiter_req->ctx->ppgtt;
1572 if (ppgtt && waiter_req->engine->id != RCS)
1573 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
5ee426ca
BW
1574 return 0;
1575}
1576
c8c99b0f 1577static int
599d924c 1578gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
a4872ba6 1579 struct intel_engine_cs *signaller,
686cb5f9 1580 u32 seqno)
1ec14ad3 1581{
4a570db5 1582 struct intel_engine_cs *waiter = waiter_req->engine;
c8c99b0f
BW
1583 u32 dw1 = MI_SEMAPHORE_MBOX |
1584 MI_SEMAPHORE_COMPARE |
1585 MI_SEMAPHORE_REGISTER;
ebc348b2
BW
1586 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1587 int ret;
1ec14ad3 1588
1500f7ea
BW
1589 /* Throughout all of the GEM code, seqno passed implies our current
1590 * seqno is >= the last seqno executed. However for hardware the
1591 * comparison is strictly greater than.
1592 */
1593 seqno -= 1;
1594
ebc348b2 1595 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
686cb5f9 1596
5fb9de1a 1597 ret = intel_ring_begin(waiter_req, 4);
1ec14ad3
CW
1598 if (ret)
1599 return ret;
1600
f72b3435 1601 /* If seqno wrap happened, omit the wait with no-ops */
c033666a 1602 if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
ebc348b2 1603 intel_ring_emit(waiter, dw1 | wait_mbox);
f72b3435
MK
1604 intel_ring_emit(waiter, seqno);
1605 intel_ring_emit(waiter, 0);
1606 intel_ring_emit(waiter, MI_NOOP);
1607 } else {
1608 intel_ring_emit(waiter, MI_NOOP);
1609 intel_ring_emit(waiter, MI_NOOP);
1610 intel_ring_emit(waiter, MI_NOOP);
1611 intel_ring_emit(waiter, MI_NOOP);
1612 }
c8c99b0f 1613 intel_ring_advance(waiter);
1ec14ad3
CW
1614
1615 return 0;
1616}
1617
c6df541c
CW
1618#define PIPE_CONTROL_FLUSH(ring__, addr__) \
1619do { \
fcbc34e4
KG
1620 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1621 PIPE_CONTROL_DEPTH_STALL); \
c6df541c
CW
1622 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1623 intel_ring_emit(ring__, 0); \
1624 intel_ring_emit(ring__, 0); \
1625} while (0)
1626
1627static int
ee044a88 1628pc_render_add_request(struct drm_i915_gem_request *req)
c6df541c 1629{
4a570db5 1630 struct intel_engine_cs *engine = req->engine;
e2f80391 1631 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
c6df541c
CW
1632 int ret;
1633
1634 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1635 * incoherent with writes to memory, i.e. completely fubar,
1636 * so we need to use PIPE_NOTIFY instead.
1637 *
1638 * However, we also need to workaround the qword write
1639 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1640 * memory before requesting an interrupt.
1641 */
5fb9de1a 1642 ret = intel_ring_begin(req, 32);
c6df541c
CW
1643 if (ret)
1644 return ret;
1645
e2f80391
TU
1646 intel_ring_emit(engine,
1647 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
9d971b37
KG
1648 PIPE_CONTROL_WRITE_FLUSH |
1649 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
e2f80391
TU
1650 intel_ring_emit(engine,
1651 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1652 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1653 intel_ring_emit(engine, 0);
1654 PIPE_CONTROL_FLUSH(engine, scratch_addr);
18393f63 1655 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
e2f80391 1656 PIPE_CONTROL_FLUSH(engine, scratch_addr);
18393f63 1657 scratch_addr += 2 * CACHELINE_BYTES;
e2f80391 1658 PIPE_CONTROL_FLUSH(engine, scratch_addr);
18393f63 1659 scratch_addr += 2 * CACHELINE_BYTES;
e2f80391 1660 PIPE_CONTROL_FLUSH(engine, scratch_addr);
18393f63 1661 scratch_addr += 2 * CACHELINE_BYTES;
e2f80391 1662 PIPE_CONTROL_FLUSH(engine, scratch_addr);
18393f63 1663 scratch_addr += 2 * CACHELINE_BYTES;
e2f80391 1664 PIPE_CONTROL_FLUSH(engine, scratch_addr);
a71d8d94 1665
e2f80391
TU
1666 intel_ring_emit(engine,
1667 GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
9d971b37
KG
1668 PIPE_CONTROL_WRITE_FLUSH |
1669 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
c6df541c 1670 PIPE_CONTROL_NOTIFY);
e2f80391
TU
1671 intel_ring_emit(engine,
1672 engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1673 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1674 intel_ring_emit(engine, 0);
1675 __intel_ring_advance(engine);
c6df541c 1676
c6df541c
CW
1677 return 0;
1678}
1679
c04e0f3b
CW
1680static void
1681gen6_seqno_barrier(struct intel_engine_cs *engine)
4cd53c0c 1682{
c033666a 1683 struct drm_i915_private *dev_priv = engine->i915;
bcbdb6d0 1684
4cd53c0c
DV
1685 /* Workaround to force correct ordering between irq and seqno writes on
1686 * ivb (and maybe also on snb) by reading from a CS register (like
9b9ed309
CW
1687 * ACTHD) before reading the status page.
1688 *
1689 * Note that this effectively stalls the read by the time it takes to
1690 * do a memory transaction, which more or less ensures that the write
1691 * from the GPU has sufficient time to invalidate the CPU cacheline.
1692 * Alternatively we could delay the interrupt from the CS ring to give
1693 * the write time to land, but that would incur a delay after every
1694 * batch i.e. much more frequent than a delay when waiting for the
1695 * interrupt (with the same net latency).
bcbdb6d0
CW
1696 *
1697 * Also note that to prevent whole machine hangs on gen7, we have to
1698 * take the spinlock to guard against concurrent cacheline access.
9b9ed309 1699 */
bcbdb6d0 1700 spin_lock_irq(&dev_priv->uncore.lock);
c04e0f3b 1701 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
bcbdb6d0 1702 spin_unlock_irq(&dev_priv->uncore.lock);
4cd53c0c
DV
1703}
1704
8187a2b7 1705static u32
c04e0f3b 1706ring_get_seqno(struct intel_engine_cs *engine)
8187a2b7 1707{
0bc40be8 1708 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1ec14ad3
CW
1709}
1710
b70ec5bf 1711static void
0bc40be8 1712ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
b70ec5bf 1713{
0bc40be8 1714 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
b70ec5bf
MK
1715}
1716
c6df541c 1717static u32
c04e0f3b 1718pc_render_get_seqno(struct intel_engine_cs *engine)
c6df541c 1719{
0bc40be8 1720 return engine->scratch.cpu_page[0];
c6df541c
CW
1721}
1722
b70ec5bf 1723static void
0bc40be8 1724pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
b70ec5bf 1725{
0bc40be8 1726 engine->scratch.cpu_page[0] = seqno;
b70ec5bf
MK
1727}
1728
e48d8634 1729static bool
0bc40be8 1730gen5_ring_get_irq(struct intel_engine_cs *engine)
e48d8634 1731{
c033666a 1732 struct drm_i915_private *dev_priv = engine->i915;
7338aefa 1733 unsigned long flags;
e48d8634 1734
7cd512f1 1735 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
e48d8634
DV
1736 return false;
1737
7338aefa 1738 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1739 if (engine->irq_refcount++ == 0)
1740 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
7338aefa 1741 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
e48d8634
DV
1742
1743 return true;
1744}
1745
1746static void
0bc40be8 1747gen5_ring_put_irq(struct intel_engine_cs *engine)
e48d8634 1748{
c033666a 1749 struct drm_i915_private *dev_priv = engine->i915;
7338aefa 1750 unsigned long flags;
e48d8634 1751
7338aefa 1752 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1753 if (--engine->irq_refcount == 0)
1754 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
7338aefa 1755 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
e48d8634
DV
1756}
1757
b13c2b96 1758static bool
0bc40be8 1759i9xx_ring_get_irq(struct intel_engine_cs *engine)
62fdfeaf 1760{
c033666a 1761 struct drm_i915_private *dev_priv = engine->i915;
7338aefa 1762 unsigned long flags;
62fdfeaf 1763
7cd512f1 1764 if (!intel_irqs_enabled(dev_priv))
b13c2b96
CW
1765 return false;
1766
7338aefa 1767 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1768 if (engine->irq_refcount++ == 0) {
1769 dev_priv->irq_mask &= ~engine->irq_enable_mask;
f637fde4
DV
1770 I915_WRITE(IMR, dev_priv->irq_mask);
1771 POSTING_READ(IMR);
1772 }
7338aefa 1773 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
b13c2b96
CW
1774
1775 return true;
62fdfeaf
EA
1776}
1777
8187a2b7 1778static void
0bc40be8 1779i9xx_ring_put_irq(struct intel_engine_cs *engine)
62fdfeaf 1780{
c033666a 1781 struct drm_i915_private *dev_priv = engine->i915;
7338aefa 1782 unsigned long flags;
62fdfeaf 1783
7338aefa 1784 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1785 if (--engine->irq_refcount == 0) {
1786 dev_priv->irq_mask |= engine->irq_enable_mask;
f637fde4
DV
1787 I915_WRITE(IMR, dev_priv->irq_mask);
1788 POSTING_READ(IMR);
1789 }
7338aefa 1790 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
62fdfeaf
EA
1791}
1792
c2798b19 1793static bool
0bc40be8 1794i8xx_ring_get_irq(struct intel_engine_cs *engine)
c2798b19 1795{
c033666a 1796 struct drm_i915_private *dev_priv = engine->i915;
7338aefa 1797 unsigned long flags;
c2798b19 1798
7cd512f1 1799 if (!intel_irqs_enabled(dev_priv))
c2798b19
CW
1800 return false;
1801
7338aefa 1802 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1803 if (engine->irq_refcount++ == 0) {
1804 dev_priv->irq_mask &= ~engine->irq_enable_mask;
c2798b19
CW
1805 I915_WRITE16(IMR, dev_priv->irq_mask);
1806 POSTING_READ16(IMR);
1807 }
7338aefa 1808 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
c2798b19
CW
1809
1810 return true;
1811}
1812
1813static void
0bc40be8 1814i8xx_ring_put_irq(struct intel_engine_cs *engine)
c2798b19 1815{
c033666a 1816 struct drm_i915_private *dev_priv = engine->i915;
7338aefa 1817 unsigned long flags;
c2798b19 1818
7338aefa 1819 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1820 if (--engine->irq_refcount == 0) {
1821 dev_priv->irq_mask |= engine->irq_enable_mask;
c2798b19
CW
1822 I915_WRITE16(IMR, dev_priv->irq_mask);
1823 POSTING_READ16(IMR);
1824 }
7338aefa 1825 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
c2798b19
CW
1826}
1827
b72f3acb 1828static int
a84c3ae1 1829bsd_ring_flush(struct drm_i915_gem_request *req,
78501eac
CW
1830 u32 invalidate_domains,
1831 u32 flush_domains)
d1b851fc 1832{
4a570db5 1833 struct intel_engine_cs *engine = req->engine;
b72f3acb
CW
1834 int ret;
1835
5fb9de1a 1836 ret = intel_ring_begin(req, 2);
b72f3acb
CW
1837 if (ret)
1838 return ret;
1839
e2f80391
TU
1840 intel_ring_emit(engine, MI_FLUSH);
1841 intel_ring_emit(engine, MI_NOOP);
1842 intel_ring_advance(engine);
b72f3acb 1843 return 0;
d1b851fc
ZN
1844}
1845
3cce469c 1846static int
ee044a88 1847i9xx_add_request(struct drm_i915_gem_request *req)
d1b851fc 1848{
4a570db5 1849 struct intel_engine_cs *engine = req->engine;
3cce469c
CW
1850 int ret;
1851
5fb9de1a 1852 ret = intel_ring_begin(req, 4);
3cce469c
CW
1853 if (ret)
1854 return ret;
6f392d54 1855
e2f80391
TU
1856 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1857 intel_ring_emit(engine,
1858 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1859 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1860 intel_ring_emit(engine, MI_USER_INTERRUPT);
1861 __intel_ring_advance(engine);
d1b851fc 1862
3cce469c 1863 return 0;
d1b851fc
ZN
1864}
1865
0f46832f 1866static bool
0bc40be8 1867gen6_ring_get_irq(struct intel_engine_cs *engine)
0f46832f 1868{
c033666a 1869 struct drm_i915_private *dev_priv = engine->i915;
7338aefa 1870 unsigned long flags;
0f46832f 1871
7cd512f1
DV
1872 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1873 return false;
0f46832f 1874
7338aefa 1875 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8 1876 if (engine->irq_refcount++ == 0) {
c033666a 1877 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
0bc40be8
TU
1878 I915_WRITE_IMR(engine,
1879 ~(engine->irq_enable_mask |
c033666a 1880 GT_PARITY_ERROR(dev_priv)));
15b9f80e 1881 else
0bc40be8
TU
1882 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1883 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
0f46832f 1884 }
7338aefa 1885 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
0f46832f
CW
1886
1887 return true;
1888}
1889
1890static void
0bc40be8 1891gen6_ring_put_irq(struct intel_engine_cs *engine)
0f46832f 1892{
c033666a 1893 struct drm_i915_private *dev_priv = engine->i915;
7338aefa 1894 unsigned long flags;
0f46832f 1895
7338aefa 1896 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8 1897 if (--engine->irq_refcount == 0) {
c033666a
CW
1898 if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
1899 I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
15b9f80e 1900 else
0bc40be8
TU
1901 I915_WRITE_IMR(engine, ~0);
1902 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1ec14ad3 1903 }
7338aefa 1904 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
d1b851fc
ZN
1905}
1906
a19d2933 1907static bool
0bc40be8 1908hsw_vebox_get_irq(struct intel_engine_cs *engine)
a19d2933 1909{
c033666a 1910 struct drm_i915_private *dev_priv = engine->i915;
a19d2933
BW
1911 unsigned long flags;
1912
7cd512f1 1913 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
a19d2933
BW
1914 return false;
1915
59cdb63d 1916 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1917 if (engine->irq_refcount++ == 0) {
1918 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1919 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
a19d2933 1920 }
59cdb63d 1921 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
a19d2933
BW
1922
1923 return true;
1924}
1925
1926static void
0bc40be8 1927hsw_vebox_put_irq(struct intel_engine_cs *engine)
a19d2933 1928{
c033666a 1929 struct drm_i915_private *dev_priv = engine->i915;
a19d2933
BW
1930 unsigned long flags;
1931
59cdb63d 1932 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1933 if (--engine->irq_refcount == 0) {
1934 I915_WRITE_IMR(engine, ~0);
1935 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
a19d2933 1936 }
59cdb63d 1937 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
a19d2933
BW
1938}
1939
abd58f01 1940static bool
0bc40be8 1941gen8_ring_get_irq(struct intel_engine_cs *engine)
abd58f01 1942{
c033666a 1943 struct drm_i915_private *dev_priv = engine->i915;
abd58f01
BW
1944 unsigned long flags;
1945
7cd512f1 1946 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
abd58f01
BW
1947 return false;
1948
1949 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8 1950 if (engine->irq_refcount++ == 0) {
c033666a 1951 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
0bc40be8
TU
1952 I915_WRITE_IMR(engine,
1953 ~(engine->irq_enable_mask |
abd58f01
BW
1954 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1955 } else {
0bc40be8 1956 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
abd58f01 1957 }
0bc40be8 1958 POSTING_READ(RING_IMR(engine->mmio_base));
abd58f01
BW
1959 }
1960 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1961
1962 return true;
1963}
1964
1965static void
0bc40be8 1966gen8_ring_put_irq(struct intel_engine_cs *engine)
abd58f01 1967{
c033666a 1968 struct drm_i915_private *dev_priv = engine->i915;
abd58f01
BW
1969 unsigned long flags;
1970
1971 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8 1972 if (--engine->irq_refcount == 0) {
c033666a 1973 if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
0bc40be8 1974 I915_WRITE_IMR(engine,
abd58f01
BW
1975 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1976 } else {
0bc40be8 1977 I915_WRITE_IMR(engine, ~0);
abd58f01 1978 }
0bc40be8 1979 POSTING_READ(RING_IMR(engine->mmio_base));
abd58f01
BW
1980 }
1981 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1982}
1983
d1b851fc 1984static int
53fddaf7 1985i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
9bcb144c 1986 u64 offset, u32 length,
8e004efc 1987 unsigned dispatch_flags)
d1b851fc 1988{
4a570db5 1989 struct intel_engine_cs *engine = req->engine;
e1f99ce6 1990 int ret;
78501eac 1991
5fb9de1a 1992 ret = intel_ring_begin(req, 2);
e1f99ce6
CW
1993 if (ret)
1994 return ret;
1995
e2f80391 1996 intel_ring_emit(engine,
65f56876
CW
1997 MI_BATCH_BUFFER_START |
1998 MI_BATCH_GTT |
8e004efc
JH
1999 (dispatch_flags & I915_DISPATCH_SECURE ?
2000 0 : MI_BATCH_NON_SECURE_I965));
e2f80391
TU
2001 intel_ring_emit(engine, offset);
2002 intel_ring_advance(engine);
78501eac 2003
d1b851fc
ZN
2004 return 0;
2005}
2006
b45305fc
DV
2007/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
2008#define I830_BATCH_LIMIT (256*1024)
c4d69da1
CW
2009#define I830_TLB_ENTRIES (2)
2010#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
8187a2b7 2011static int
53fddaf7 2012i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
8e004efc
JH
2013 u64 offset, u32 len,
2014 unsigned dispatch_flags)
62fdfeaf 2015{
4a570db5 2016 struct intel_engine_cs *engine = req->engine;
e2f80391 2017 u32 cs_offset = engine->scratch.gtt_offset;
c4e7a414 2018 int ret;
62fdfeaf 2019
5fb9de1a 2020 ret = intel_ring_begin(req, 6);
c4d69da1
CW
2021 if (ret)
2022 return ret;
62fdfeaf 2023
c4d69da1 2024 /* Evict the invalid PTE TLBs */
e2f80391
TU
2025 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
2026 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
2027 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
2028 intel_ring_emit(engine, cs_offset);
2029 intel_ring_emit(engine, 0xdeadbeef);
2030 intel_ring_emit(engine, MI_NOOP);
2031 intel_ring_advance(engine);
b45305fc 2032
8e004efc 2033 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
b45305fc
DV
2034 if (len > I830_BATCH_LIMIT)
2035 return -ENOSPC;
2036
5fb9de1a 2037 ret = intel_ring_begin(req, 6 + 2);
b45305fc
DV
2038 if (ret)
2039 return ret;
c4d69da1
CW
2040
2041 /* Blit the batch (which has now all relocs applied) to the
2042 * stable batch scratch bo area (so that the CS never
2043 * stumbles over its tlb invalidation bug) ...
2044 */
e2f80391
TU
2045 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
2046 intel_ring_emit(engine,
2047 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
2048 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
2049 intel_ring_emit(engine, cs_offset);
2050 intel_ring_emit(engine, 4096);
2051 intel_ring_emit(engine, offset);
2052
2053 intel_ring_emit(engine, MI_FLUSH);
2054 intel_ring_emit(engine, MI_NOOP);
2055 intel_ring_advance(engine);
b45305fc
DV
2056
2057 /* ... and execute it. */
c4d69da1 2058 offset = cs_offset;
b45305fc 2059 }
e1f99ce6 2060
9d611c03 2061 ret = intel_ring_begin(req, 2);
c4d69da1
CW
2062 if (ret)
2063 return ret;
2064
e2f80391
TU
2065 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2066 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2067 0 : MI_BATCH_NON_SECURE));
2068 intel_ring_advance(engine);
c4d69da1 2069
fb3256da
DV
2070 return 0;
2071}
2072
2073static int
53fddaf7 2074i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
9bcb144c 2075 u64 offset, u32 len,
8e004efc 2076 unsigned dispatch_flags)
fb3256da 2077{
4a570db5 2078 struct intel_engine_cs *engine = req->engine;
fb3256da
DV
2079 int ret;
2080
5fb9de1a 2081 ret = intel_ring_begin(req, 2);
fb3256da
DV
2082 if (ret)
2083 return ret;
2084
e2f80391
TU
2085 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
2086 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
2087 0 : MI_BATCH_NON_SECURE));
2088 intel_ring_advance(engine);
62fdfeaf 2089
62fdfeaf
EA
2090 return 0;
2091}
2092
0bc40be8 2093static void cleanup_phys_status_page(struct intel_engine_cs *engine)
7d3fdfff 2094{
c033666a 2095 struct drm_i915_private *dev_priv = engine->i915;
7d3fdfff
VS
2096
2097 if (!dev_priv->status_page_dmah)
2098 return;
2099
c033666a 2100 drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
0bc40be8 2101 engine->status_page.page_addr = NULL;
7d3fdfff
VS
2102}
2103
0bc40be8 2104static void cleanup_status_page(struct intel_engine_cs *engine)
62fdfeaf 2105{
05394f39 2106 struct drm_i915_gem_object *obj;
62fdfeaf 2107
0bc40be8 2108 obj = engine->status_page.obj;
8187a2b7 2109 if (obj == NULL)
62fdfeaf 2110 return;
62fdfeaf 2111
9da3da66 2112 kunmap(sg_page(obj->pages->sgl));
d7f46fc4 2113 i915_gem_object_ggtt_unpin(obj);
05394f39 2114 drm_gem_object_unreference(&obj->base);
0bc40be8 2115 engine->status_page.obj = NULL;
62fdfeaf
EA
2116}
2117
0bc40be8 2118static int init_status_page(struct intel_engine_cs *engine)
62fdfeaf 2119{
0bc40be8 2120 struct drm_i915_gem_object *obj = engine->status_page.obj;
62fdfeaf 2121
7d3fdfff 2122 if (obj == NULL) {
1f767e02 2123 unsigned flags;
e3efda49 2124 int ret;
e4ffd173 2125
c033666a 2126 obj = i915_gem_object_create(engine->i915->dev, 4096);
fe3db79b 2127 if (IS_ERR(obj)) {
e3efda49 2128 DRM_ERROR("Failed to allocate status page\n");
fe3db79b 2129 return PTR_ERR(obj);
e3efda49 2130 }
62fdfeaf 2131
e3efda49
CW
2132 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2133 if (ret)
2134 goto err_unref;
2135
1f767e02 2136 flags = 0;
c033666a 2137 if (!HAS_LLC(engine->i915))
1f767e02
CW
2138 /* On g33, we cannot place HWS above 256MiB, so
2139 * restrict its pinning to the low mappable arena.
2140 * Though this restriction is not documented for
2141 * gen4, gen5, or byt, they also behave similarly
2142 * and hang if the HWS is placed at the top of the
2143 * GTT. To generalise, it appears that all !llc
2144 * platforms have issues with us placing the HWS
2145 * above the mappable region (even though we never
2146 * actualy map it).
2147 */
2148 flags |= PIN_MAPPABLE;
2149 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
e3efda49
CW
2150 if (ret) {
2151err_unref:
2152 drm_gem_object_unreference(&obj->base);
2153 return ret;
2154 }
2155
0bc40be8 2156 engine->status_page.obj = obj;
e3efda49 2157 }
62fdfeaf 2158
0bc40be8
TU
2159 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2160 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2161 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
62fdfeaf 2162
8187a2b7 2163 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
0bc40be8 2164 engine->name, engine->status_page.gfx_addr);
62fdfeaf
EA
2165
2166 return 0;
62fdfeaf
EA
2167}
2168
0bc40be8 2169static int init_phys_status_page(struct intel_engine_cs *engine)
6b8294a4 2170{
c033666a 2171 struct drm_i915_private *dev_priv = engine->i915;
6b8294a4
CW
2172
2173 if (!dev_priv->status_page_dmah) {
2174 dev_priv->status_page_dmah =
c033666a 2175 drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
6b8294a4
CW
2176 if (!dev_priv->status_page_dmah)
2177 return -ENOMEM;
2178 }
2179
0bc40be8
TU
2180 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2181 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
6b8294a4
CW
2182
2183 return 0;
2184}
2185
7ba717cf 2186void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2919d291 2187{
3d77e9be
CW
2188 GEM_BUG_ON(ringbuf->vma == NULL);
2189 GEM_BUG_ON(ringbuf->virtual_start == NULL);
2190
def0c5f6 2191 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
0a798eb9 2192 i915_gem_object_unpin_map(ringbuf->obj);
def0c5f6 2193 else
3d77e9be 2194 i915_vma_unpin_iomap(ringbuf->vma);
8305216f 2195 ringbuf->virtual_start = NULL;
3d77e9be 2196
2919d291 2197 i915_gem_object_ggtt_unpin(ringbuf->obj);
3d77e9be 2198 ringbuf->vma = NULL;
7ba717cf
TD
2199}
2200
c033666a 2201int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
7ba717cf
TD
2202 struct intel_ringbuffer *ringbuf)
2203{
7ba717cf 2204 struct drm_i915_gem_object *obj = ringbuf->obj;
a687a43a
CW
2205 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2206 unsigned flags = PIN_OFFSET_BIAS | 4096;
8305216f 2207 void *addr;
7ba717cf
TD
2208 int ret;
2209
def0c5f6 2210 if (HAS_LLC(dev_priv) && !obj->stolen) {
a687a43a 2211 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
def0c5f6
CW
2212 if (ret)
2213 return ret;
7ba717cf 2214
def0c5f6 2215 ret = i915_gem_object_set_to_cpu_domain(obj, true);
d2cad535
CW
2216 if (ret)
2217 goto err_unpin;
def0c5f6 2218
8305216f
DG
2219 addr = i915_gem_object_pin_map(obj);
2220 if (IS_ERR(addr)) {
2221 ret = PTR_ERR(addr);
d2cad535 2222 goto err_unpin;
def0c5f6
CW
2223 }
2224 } else {
a687a43a
CW
2225 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2226 flags | PIN_MAPPABLE);
def0c5f6
CW
2227 if (ret)
2228 return ret;
7ba717cf 2229
def0c5f6 2230 ret = i915_gem_object_set_to_gtt_domain(obj, true);
d2cad535
CW
2231 if (ret)
2232 goto err_unpin;
def0c5f6 2233
ff3dc087
DCS
2234 /* Access through the GTT requires the device to be awake. */
2235 assert_rpm_wakelock_held(dev_priv);
2236
3d77e9be
CW
2237 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2238 if (IS_ERR(addr)) {
2239 ret = PTR_ERR(addr);
d2cad535 2240 goto err_unpin;
def0c5f6 2241 }
7ba717cf
TD
2242 }
2243
8305216f 2244 ringbuf->virtual_start = addr;
0eb973d3 2245 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
7ba717cf 2246 return 0;
d2cad535
CW
2247
2248err_unpin:
2249 i915_gem_object_ggtt_unpin(obj);
2250 return ret;
7ba717cf
TD
2251}
2252
01101fa7 2253static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
7ba717cf 2254{
2919d291
OM
2255 drm_gem_object_unreference(&ringbuf->obj->base);
2256 ringbuf->obj = NULL;
2257}
2258
01101fa7
CW
2259static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2260 struct intel_ringbuffer *ringbuf)
62fdfeaf 2261{
05394f39 2262 struct drm_i915_gem_object *obj;
62fdfeaf 2263
ebc052e0
CW
2264 obj = NULL;
2265 if (!HAS_LLC(dev))
93b0a4e0 2266 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
ebc052e0 2267 if (obj == NULL)
d37cd8a8 2268 obj = i915_gem_object_create(dev, ringbuf->size);
fe3db79b
CW
2269 if (IS_ERR(obj))
2270 return PTR_ERR(obj);
8187a2b7 2271
24f3a8cf
AG
2272 /* mark ring buffers as read-only from GPU side by default */
2273 obj->gt_ro = 1;
2274
93b0a4e0 2275 ringbuf->obj = obj;
e3efda49 2276
7ba717cf 2277 return 0;
e3efda49
CW
2278}
2279
01101fa7
CW
2280struct intel_ringbuffer *
2281intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2282{
2283 struct intel_ringbuffer *ring;
2284 int ret;
2285
2286 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
608c1a52
CW
2287 if (ring == NULL) {
2288 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2289 engine->name);
01101fa7 2290 return ERR_PTR(-ENOMEM);
608c1a52 2291 }
01101fa7 2292
4a570db5 2293 ring->engine = engine;
608c1a52 2294 list_add(&ring->link, &engine->buffers);
01101fa7
CW
2295
2296 ring->size = size;
2297 /* Workaround an erratum on the i830 which causes a hang if
2298 * the TAIL pointer points to within the last 2 cachelines
2299 * of the buffer.
2300 */
2301 ring->effective_size = size;
c033666a 2302 if (IS_I830(engine->i915) || IS_845G(engine->i915))
01101fa7
CW
2303 ring->effective_size -= 2 * CACHELINE_BYTES;
2304
2305 ring->last_retired_head = -1;
2306 intel_ring_update_space(ring);
2307
c033666a 2308 ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
01101fa7 2309 if (ret) {
608c1a52
CW
2310 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2311 engine->name, ret);
2312 list_del(&ring->link);
01101fa7
CW
2313 kfree(ring);
2314 return ERR_PTR(ret);
2315 }
2316
2317 return ring;
2318}
2319
2320void
2321intel_ringbuffer_free(struct intel_ringbuffer *ring)
2322{
2323 intel_destroy_ringbuffer_obj(ring);
608c1a52 2324 list_del(&ring->link);
01101fa7
CW
2325 kfree(ring);
2326}
2327
0cb26a8e
CW
2328static int intel_ring_context_pin(struct i915_gem_context *ctx,
2329 struct intel_engine_cs *engine)
2330{
2331 struct intel_context *ce = &ctx->engine[engine->id];
2332 int ret;
2333
2334 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
2335
2336 if (ce->pin_count++)
2337 return 0;
2338
2339 if (ce->state) {
2340 ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2341 if (ret)
2342 goto error;
2343 }
2344
c7c3c07d
CW
2345 /* The kernel context is only used as a placeholder for flushing the
2346 * active context. It is never used for submitting user rendering and
2347 * as such never requires the golden render context, and so we can skip
2348 * emitting it when we switch to the kernel context. This is required
2349 * as during eviction we cannot allocate and pin the renderstate in
2350 * order to initialise the context.
2351 */
2352 if (ctx == ctx->i915->kernel_context)
2353 ce->initialised = true;
2354
0cb26a8e
CW
2355 i915_gem_context_reference(ctx);
2356 return 0;
2357
2358error:
2359 ce->pin_count = 0;
2360 return ret;
2361}
2362
2363static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2364 struct intel_engine_cs *engine)
2365{
2366 struct intel_context *ce = &ctx->engine[engine->id];
2367
2368 lockdep_assert_held(&ctx->i915->dev->struct_mutex);
2369
2370 if (--ce->pin_count)
2371 return;
2372
2373 if (ce->state)
2374 i915_gem_object_ggtt_unpin(ce->state);
2375
2376 i915_gem_context_unreference(ctx);
2377}
2378
e3efda49 2379static int intel_init_ring_buffer(struct drm_device *dev,
0bc40be8 2380 struct intel_engine_cs *engine)
e3efda49 2381{
c033666a 2382 struct drm_i915_private *dev_priv = to_i915(dev);
bfc882b4 2383 struct intel_ringbuffer *ringbuf;
e3efda49
CW
2384 int ret;
2385
0bc40be8 2386 WARN_ON(engine->buffer);
bfc882b4 2387
c033666a 2388 engine->i915 = dev_priv;
0bc40be8
TU
2389 INIT_LIST_HEAD(&engine->active_list);
2390 INIT_LIST_HEAD(&engine->request_list);
2391 INIT_LIST_HEAD(&engine->execlist_queue);
2392 INIT_LIST_HEAD(&engine->buffers);
2393 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2394 memset(engine->semaphore.sync_seqno, 0,
2395 sizeof(engine->semaphore.sync_seqno));
e3efda49 2396
688e6c72
CW
2397 ret = intel_engine_init_breadcrumbs(engine);
2398 if (ret)
2399 goto error;
e3efda49 2400
0cb26a8e
CW
2401 /* We may need to do things with the shrinker which
2402 * require us to immediately switch back to the default
2403 * context. This can cause a problem as pinning the
2404 * default context also requires GTT space which may not
2405 * be available. To avoid this we always pin the default
2406 * context.
2407 */
2408 ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2409 if (ret)
2410 goto error;
2411
0bc40be8 2412 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
b0366a54
DG
2413 if (IS_ERR(ringbuf)) {
2414 ret = PTR_ERR(ringbuf);
2415 goto error;
2416 }
0bc40be8 2417 engine->buffer = ringbuf;
01101fa7 2418
c033666a 2419 if (I915_NEED_GFX_HWS(dev_priv)) {
0bc40be8 2420 ret = init_status_page(engine);
e3efda49 2421 if (ret)
8ee14975 2422 goto error;
e3efda49 2423 } else {
0bc40be8
TU
2424 WARN_ON(engine->id != RCS);
2425 ret = init_phys_status_page(engine);
e3efda49 2426 if (ret)
8ee14975 2427 goto error;
e3efda49
CW
2428 }
2429
c033666a 2430 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
bfc882b4
DV
2431 if (ret) {
2432 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2433 engine->name, ret);
bfc882b4
DV
2434 intel_destroy_ringbuffer_obj(ringbuf);
2435 goto error;
e3efda49 2436 }
62fdfeaf 2437
0bc40be8 2438 ret = i915_cmd_parser_init_ring(engine);
44e895a8 2439 if (ret)
8ee14975
OM
2440 goto error;
2441
8ee14975 2442 return 0;
351e3db2 2443
8ee14975 2444error:
117897f4 2445 intel_cleanup_engine(engine);
8ee14975 2446 return ret;
62fdfeaf
EA
2447}
2448
117897f4 2449void intel_cleanup_engine(struct intel_engine_cs *engine)
62fdfeaf 2450{
6402c330 2451 struct drm_i915_private *dev_priv;
33626e6a 2452
117897f4 2453 if (!intel_engine_initialized(engine))
62fdfeaf
EA
2454 return;
2455
c033666a 2456 dev_priv = engine->i915;
6402c330 2457
0bc40be8 2458 if (engine->buffer) {
117897f4 2459 intel_stop_engine(engine);
c033666a 2460 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
33626e6a 2461
0bc40be8
TU
2462 intel_unpin_ringbuffer_obj(engine->buffer);
2463 intel_ringbuffer_free(engine->buffer);
2464 engine->buffer = NULL;
b0366a54 2465 }
78501eac 2466
0bc40be8
TU
2467 if (engine->cleanup)
2468 engine->cleanup(engine);
8d19215b 2469
c033666a 2470 if (I915_NEED_GFX_HWS(dev_priv)) {
0bc40be8 2471 cleanup_status_page(engine);
7d3fdfff 2472 } else {
0bc40be8
TU
2473 WARN_ON(engine->id != RCS);
2474 cleanup_phys_status_page(engine);
7d3fdfff 2475 }
44e895a8 2476
0bc40be8
TU
2477 i915_cmd_parser_fini_ring(engine);
2478 i915_gem_batch_pool_fini(&engine->batch_pool);
688e6c72 2479 intel_engine_fini_breadcrumbs(engine);
0cb26a8e
CW
2480
2481 intel_ring_context_unpin(dev_priv->kernel_context, engine);
2482
c033666a 2483 engine->i915 = NULL;
62fdfeaf
EA
2484}
2485
666796da 2486int intel_engine_idle(struct intel_engine_cs *engine)
3e960501 2487{
a4b3a571 2488 struct drm_i915_gem_request *req;
3e960501 2489
3e960501 2490 /* Wait upon the last request to be completed */
0bc40be8 2491 if (list_empty(&engine->request_list))
3e960501
CW
2492 return 0;
2493
0bc40be8
TU
2494 req = list_entry(engine->request_list.prev,
2495 struct drm_i915_gem_request,
2496 list);
b4716185
CW
2497
2498 /* Make sure we do not trigger any retires */
2499 return __i915_wait_request(req,
c19ae989 2500 req->i915->mm.interruptible,
b4716185 2501 NULL, NULL);
3e960501
CW
2502}
2503
6689cb2b 2504int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
9d773091 2505{
6310346e
CW
2506 int ret;
2507
2508 /* Flush enough space to reduce the likelihood of waiting after
2509 * we start building the request - in which case we will just
2510 * have to repeat work.
2511 */
a0442461 2512 request->reserved_space += LEGACY_REQUEST_SIZE;
6310346e 2513
4a570db5 2514 request->ringbuf = request->engine->buffer;
6310346e
CW
2515
2516 ret = intel_ring_begin(request, 0);
2517 if (ret)
2518 return ret;
2519
a0442461 2520 request->reserved_space -= LEGACY_REQUEST_SIZE;
6310346e 2521 return 0;
9d773091
CW
2522}
2523
987046ad
CW
2524static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2525{
2526 struct intel_ringbuffer *ringbuf = req->ringbuf;
2527 struct intel_engine_cs *engine = req->engine;
2528 struct drm_i915_gem_request *target;
2529
2530 intel_ring_update_space(ringbuf);
2531 if (ringbuf->space >= bytes)
2532 return 0;
2533
2534 /*
2535 * Space is reserved in the ringbuffer for finalising the request,
2536 * as that cannot be allowed to fail. During request finalisation,
2537 * reserved_space is set to 0 to stop the overallocation and the
2538 * assumption is that then we never need to wait (which has the
2539 * risk of failing with EINTR).
2540 *
2541 * See also i915_gem_request_alloc() and i915_add_request().
2542 */
0251a963 2543 GEM_BUG_ON(!req->reserved_space);
987046ad
CW
2544
2545 list_for_each_entry(target, &engine->request_list, list) {
2546 unsigned space;
2547
79bbcc29 2548 /*
987046ad
CW
2549 * The request queue is per-engine, so can contain requests
2550 * from multiple ringbuffers. Here, we must ignore any that
2551 * aren't from the ringbuffer we're considering.
79bbcc29 2552 */
987046ad
CW
2553 if (target->ringbuf != ringbuf)
2554 continue;
2555
2556 /* Would completion of this request free enough space? */
2557 space = __intel_ring_space(target->postfix, ringbuf->tail,
2558 ringbuf->size);
2559 if (space >= bytes)
2560 break;
79bbcc29 2561 }
29b1b415 2562
987046ad
CW
2563 if (WARN_ON(&target->list == &engine->request_list))
2564 return -ENOSPC;
2565
2566 return i915_wait_request(target);
29b1b415
JH
2567}
2568
987046ad 2569int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
cbcc80df 2570{
987046ad 2571 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29 2572 int remain_actual = ringbuf->size - ringbuf->tail;
987046ad
CW
2573 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2574 int bytes = num_dwords * sizeof(u32);
2575 int total_bytes, wait_bytes;
79bbcc29 2576 bool need_wrap = false;
29b1b415 2577
0251a963 2578 total_bytes = bytes + req->reserved_space;
29b1b415 2579
79bbcc29
JH
2580 if (unlikely(bytes > remain_usable)) {
2581 /*
2582 * Not enough space for the basic request. So need to flush
2583 * out the remainder and then wait for base + reserved.
2584 */
2585 wait_bytes = remain_actual + total_bytes;
2586 need_wrap = true;
987046ad
CW
2587 } else if (unlikely(total_bytes > remain_usable)) {
2588 /*
2589 * The base request will fit but the reserved space
2590 * falls off the end. So we don't need an immediate wrap
2591 * and only need to effectively wait for the reserved
2592 * size space from the start of ringbuffer.
2593 */
0251a963 2594 wait_bytes = remain_actual + req->reserved_space;
79bbcc29 2595 } else {
987046ad
CW
2596 /* No wrapping required, just waiting. */
2597 wait_bytes = total_bytes;
cbcc80df
MK
2598 }
2599
987046ad
CW
2600 if (wait_bytes > ringbuf->space) {
2601 int ret = wait_for_space(req, wait_bytes);
cbcc80df
MK
2602 if (unlikely(ret))
2603 return ret;
79bbcc29 2604
987046ad 2605 intel_ring_update_space(ringbuf);
e075a32f
CW
2606 if (unlikely(ringbuf->space < wait_bytes))
2607 return -EAGAIN;
cbcc80df
MK
2608 }
2609
987046ad
CW
2610 if (unlikely(need_wrap)) {
2611 GEM_BUG_ON(remain_actual > ringbuf->space);
2612 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
78501eac 2613
987046ad
CW
2614 /* Fill the tail with MI_NOOP */
2615 memset(ringbuf->virtual_start + ringbuf->tail,
2616 0, remain_actual);
2617 ringbuf->tail = 0;
2618 ringbuf->space -= remain_actual;
2619 }
304d695c 2620
987046ad
CW
2621 ringbuf->space -= bytes;
2622 GEM_BUG_ON(ringbuf->space < 0);
304d695c 2623 return 0;
8187a2b7 2624}
78501eac 2625
753b1ad4 2626/* Align the ring tail to a cacheline boundary */
bba09b12 2627int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
753b1ad4 2628{
4a570db5 2629 struct intel_engine_cs *engine = req->engine;
e2f80391 2630 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
753b1ad4
VS
2631 int ret;
2632
2633 if (num_dwords == 0)
2634 return 0;
2635
18393f63 2636 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
5fb9de1a 2637 ret = intel_ring_begin(req, num_dwords);
753b1ad4
VS
2638 if (ret)
2639 return ret;
2640
2641 while (num_dwords--)
e2f80391 2642 intel_ring_emit(engine, MI_NOOP);
753b1ad4 2643
e2f80391 2644 intel_ring_advance(engine);
753b1ad4
VS
2645
2646 return 0;
2647}
2648
0bc40be8 2649void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
498d2ac1 2650{
c033666a 2651 struct drm_i915_private *dev_priv = engine->i915;
498d2ac1 2652
29dcb570
CW
2653 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2654 * so long as the semaphore value in the register/page is greater
2655 * than the sync value), so whenever we reset the seqno,
2656 * so long as we reset the tracking semaphore value to 0, it will
2657 * always be before the next request's seqno. If we don't reset
2658 * the semaphore value, then when the seqno moves backwards all
2659 * future waits will complete instantly (causing rendering corruption).
2660 */
7e22dbbb 2661 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
0bc40be8
TU
2662 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2663 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
d04bce48 2664 if (HAS_VEBOX(dev_priv))
0bc40be8 2665 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
e1f99ce6 2666 }
a058d934
CW
2667 if (dev_priv->semaphore_obj) {
2668 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2669 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2670 void *semaphores = kmap(page);
2671 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2672 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2673 kunmap(page);
2674 }
29dcb570
CW
2675 memset(engine->semaphore.sync_seqno, 0,
2676 sizeof(engine->semaphore.sync_seqno));
d97ed339 2677
0bc40be8 2678 engine->set_seqno(engine, seqno);
01347126 2679 engine->last_submitted_seqno = seqno;
29dcb570 2680
0bc40be8 2681 engine->hangcheck.seqno = seqno;
688e6c72
CW
2682
2683 /* After manually advancing the seqno, fake the interrupt in case
2684 * there are any waiters for that seqno.
2685 */
2686 rcu_read_lock();
2687 intel_engine_wakeup(engine);
2688 rcu_read_unlock();
8187a2b7 2689}
62fdfeaf 2690
0bc40be8 2691static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
297b0c5b 2692 u32 value)
881f47b6 2693{
c033666a 2694 struct drm_i915_private *dev_priv = engine->i915;
881f47b6 2695
76f8421f
CW
2696 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2697
881f47b6 2698 /* Every tail move must follow the sequence below */
12f55818
CW
2699
2700 /* Disable notification that the ring is IDLE. The GT
2701 * will then assume that it is busy and bring it out of rc6.
2702 */
76f8421f
CW
2703 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2704 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
12f55818
CW
2705
2706 /* Clear the context id. Here be magic! */
76f8421f 2707 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
0206e353 2708
12f55818 2709 /* Wait for the ring not to be idle, i.e. for it to wake up. */
76f8421f
CW
2710 if (intel_wait_for_register_fw(dev_priv,
2711 GEN6_BSD_SLEEP_PSMI_CONTROL,
2712 GEN6_BSD_SLEEP_INDICATOR,
2713 0,
2714 50))
12f55818 2715 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
0206e353 2716
12f55818 2717 /* Now that the ring is fully powered up, update the tail */
76f8421f
CW
2718 I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2719 POSTING_READ_FW(RING_TAIL(engine->mmio_base));
12f55818
CW
2720
2721 /* Let the ring send IDLE messages to the GT again,
2722 * and so let it sleep to conserve power when idle.
2723 */
76f8421f
CW
2724 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2725 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2726
2727 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
881f47b6
XH
2728}
2729
a84c3ae1 2730static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
ea251324 2731 u32 invalidate, u32 flush)
881f47b6 2732{
4a570db5 2733 struct intel_engine_cs *engine = req->engine;
71a77e07 2734 uint32_t cmd;
b72f3acb
CW
2735 int ret;
2736
5fb9de1a 2737 ret = intel_ring_begin(req, 4);
b72f3acb
CW
2738 if (ret)
2739 return ret;
2740
71a77e07 2741 cmd = MI_FLUSH_DW;
c033666a 2742 if (INTEL_GEN(req->i915) >= 8)
075b3bba 2743 cmd += 1;
f0a1fb10
CW
2744
2745 /* We always require a command barrier so that subsequent
2746 * commands, such as breadcrumb interrupts, are strictly ordered
2747 * wrt the contents of the write cache being flushed to memory
2748 * (and thus being coherent from the CPU).
2749 */
2750 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2751
9a289771
JB
2752 /*
2753 * Bspec vol 1c.5 - video engine command streamer:
2754 * "If ENABLED, all TLBs will be invalidated once the flush
2755 * operation is complete. This bit is only valid when the
2756 * Post-Sync Operation field is a value of 1h or 3h."
2757 */
71a77e07 2758 if (invalidate & I915_GEM_GPU_DOMAINS)
f0a1fb10
CW
2759 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2760
e2f80391
TU
2761 intel_ring_emit(engine, cmd);
2762 intel_ring_emit(engine,
2763 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
c033666a 2764 if (INTEL_GEN(req->i915) >= 8) {
e2f80391
TU
2765 intel_ring_emit(engine, 0); /* upper addr */
2766 intel_ring_emit(engine, 0); /* value */
075b3bba 2767 } else {
e2f80391
TU
2768 intel_ring_emit(engine, 0);
2769 intel_ring_emit(engine, MI_NOOP);
075b3bba 2770 }
e2f80391 2771 intel_ring_advance(engine);
b72f3acb 2772 return 0;
881f47b6
XH
2773}
2774
1c7a0623 2775static int
53fddaf7 2776gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
9bcb144c 2777 u64 offset, u32 len,
8e004efc 2778 unsigned dispatch_flags)
1c7a0623 2779{
4a570db5 2780 struct intel_engine_cs *engine = req->engine;
e2f80391 2781 bool ppgtt = USES_PPGTT(engine->dev) &&
8e004efc 2782 !(dispatch_flags & I915_DISPATCH_SECURE);
1c7a0623
BW
2783 int ret;
2784
5fb9de1a 2785 ret = intel_ring_begin(req, 4);
1c7a0623
BW
2786 if (ret)
2787 return ret;
2788
2789 /* FIXME(BDW): Address space and security selectors. */
e2f80391 2790 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
919032ec
AJ
2791 (dispatch_flags & I915_DISPATCH_RS ?
2792 MI_BATCH_RESOURCE_STREAMER : 0));
e2f80391
TU
2793 intel_ring_emit(engine, lower_32_bits(offset));
2794 intel_ring_emit(engine, upper_32_bits(offset));
2795 intel_ring_emit(engine, MI_NOOP);
2796 intel_ring_advance(engine);
1c7a0623
BW
2797
2798 return 0;
2799}
2800
d7d4eedd 2801static int
53fddaf7 2802hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
8e004efc
JH
2803 u64 offset, u32 len,
2804 unsigned dispatch_flags)
d7d4eedd 2805{
4a570db5 2806 struct intel_engine_cs *engine = req->engine;
d7d4eedd
CW
2807 int ret;
2808
5fb9de1a 2809 ret = intel_ring_begin(req, 2);
d7d4eedd
CW
2810 if (ret)
2811 return ret;
2812
e2f80391 2813 intel_ring_emit(engine,
77072258 2814 MI_BATCH_BUFFER_START |
8e004efc 2815 (dispatch_flags & I915_DISPATCH_SECURE ?
919032ec
AJ
2816 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2817 (dispatch_flags & I915_DISPATCH_RS ?
2818 MI_BATCH_RESOURCE_STREAMER : 0));
d7d4eedd 2819 /* bit0-7 is the length on GEN6+ */
e2f80391
TU
2820 intel_ring_emit(engine, offset);
2821 intel_ring_advance(engine);
d7d4eedd
CW
2822
2823 return 0;
2824}
2825
881f47b6 2826static int
53fddaf7 2827gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
9bcb144c 2828 u64 offset, u32 len,
8e004efc 2829 unsigned dispatch_flags)
881f47b6 2830{
4a570db5 2831 struct intel_engine_cs *engine = req->engine;
0206e353 2832 int ret;
ab6f8e32 2833
5fb9de1a 2834 ret = intel_ring_begin(req, 2);
0206e353
AJ
2835 if (ret)
2836 return ret;
e1f99ce6 2837
e2f80391 2838 intel_ring_emit(engine,
d7d4eedd 2839 MI_BATCH_BUFFER_START |
8e004efc
JH
2840 (dispatch_flags & I915_DISPATCH_SECURE ?
2841 0 : MI_BATCH_NON_SECURE_I965));
0206e353 2842 /* bit0-7 is the length on GEN6+ */
e2f80391
TU
2843 intel_ring_emit(engine, offset);
2844 intel_ring_advance(engine);
ab6f8e32 2845
0206e353 2846 return 0;
881f47b6
XH
2847}
2848
549f7365
CW
2849/* Blitter support (SandyBridge+) */
2850
a84c3ae1 2851static int gen6_ring_flush(struct drm_i915_gem_request *req,
ea251324 2852 u32 invalidate, u32 flush)
8d19215b 2853{
4a570db5 2854 struct intel_engine_cs *engine = req->engine;
71a77e07 2855 uint32_t cmd;
b72f3acb
CW
2856 int ret;
2857
5fb9de1a 2858 ret = intel_ring_begin(req, 4);
b72f3acb
CW
2859 if (ret)
2860 return ret;
2861
71a77e07 2862 cmd = MI_FLUSH_DW;
c033666a 2863 if (INTEL_GEN(req->i915) >= 8)
075b3bba 2864 cmd += 1;
f0a1fb10
CW
2865
2866 /* We always require a command barrier so that subsequent
2867 * commands, such as breadcrumb interrupts, are strictly ordered
2868 * wrt the contents of the write cache being flushed to memory
2869 * (and thus being coherent from the CPU).
2870 */
2871 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2872
9a289771
JB
2873 /*
2874 * Bspec vol 1c.3 - blitter engine command streamer:
2875 * "If ENABLED, all TLBs will be invalidated once the flush
2876 * operation is complete. This bit is only valid when the
2877 * Post-Sync Operation field is a value of 1h or 3h."
2878 */
71a77e07 2879 if (invalidate & I915_GEM_DOMAIN_RENDER)
f0a1fb10 2880 cmd |= MI_INVALIDATE_TLB;
e2f80391
TU
2881 intel_ring_emit(engine, cmd);
2882 intel_ring_emit(engine,
2883 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
c033666a 2884 if (INTEL_GEN(req->i915) >= 8) {
e2f80391
TU
2885 intel_ring_emit(engine, 0); /* upper addr */
2886 intel_ring_emit(engine, 0); /* value */
075b3bba 2887 } else {
e2f80391
TU
2888 intel_ring_emit(engine, 0);
2889 intel_ring_emit(engine, MI_NOOP);
075b3bba 2890 }
e2f80391 2891 intel_ring_advance(engine);
fd3da6c9 2892
b72f3acb 2893 return 0;
8d19215b
ZN
2894}
2895
d9a64610
TU
2896static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2897 struct intel_engine_cs *engine)
2898{
db3d4019 2899 struct drm_i915_gem_object *obj;
1b9e6650 2900 int ret, i;
db3d4019
TU
2901
2902 if (!i915_semaphore_is_enabled(dev_priv))
2903 return;
2904
2905 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2906 obj = i915_gem_object_create(dev_priv->dev, 4096);
2907 if (IS_ERR(obj)) {
2908 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2909 i915.semaphores = 0;
2910 } else {
2911 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2912 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2913 if (ret != 0) {
2914 drm_gem_object_unreference(&obj->base);
2915 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2916 i915.semaphores = 0;
2917 } else {
2918 dev_priv->semaphore_obj = obj;
2919 }
2920 }
2921 }
2922
d9a64610
TU
2923 if (!i915_semaphore_is_enabled(dev_priv))
2924 return;
2925
2926 if (INTEL_GEN(dev_priv) >= 8) {
1b9e6650
TU
2927 u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2928
d9a64610
TU
2929 engine->semaphore.sync_to = gen8_ring_sync;
2930 engine->semaphore.signal = gen8_xcs_signal;
1b9e6650
TU
2931
2932 for (i = 0; i < I915_NUM_ENGINES; i++) {
2933 u64 ring_offset;
2934
2935 if (i != engine->id)
2936 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2937 else
2938 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2939
2940 engine->semaphore.signal_ggtt[i] = ring_offset;
2941 }
d9a64610
TU
2942 } else if (INTEL_GEN(dev_priv) >= 6) {
2943 engine->semaphore.sync_to = gen6_ring_sync;
2944 engine->semaphore.signal = gen6_signal;
4b8e38a9
TU
2945
2946 /*
2947 * The current semaphore is only applied on pre-gen8
2948 * platform. And there is no VCS2 ring on the pre-gen8
2949 * platform. So the semaphore between RCS and VCS2 is
2950 * initialized as INVALID. Gen8 will initialize the
2951 * sema between VCS2 and RCS later.
2952 */
2953 for (i = 0; i < I915_NUM_ENGINES; i++) {
2954 static const struct {
2955 u32 wait_mbox;
2956 i915_reg_t mbox_reg;
2957 } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2958 [RCS] = {
2959 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2960 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2961 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2962 },
2963 [VCS] = {
2964 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2965 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2966 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2967 },
2968 [BCS] = {
2969 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2970 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2971 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2972 },
2973 [VECS] = {
2974 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2975 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2976 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2977 },
2978 };
2979 u32 wait_mbox;
2980 i915_reg_t mbox_reg;
2981
2982 if (i == engine->id || i == VCS2) {
2983 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2984 mbox_reg = GEN6_NOSYNC;
2985 } else {
2986 wait_mbox = sem_data[engine->id][i].wait_mbox;
2987 mbox_reg = sem_data[engine->id][i].mbox_reg;
2988 }
2989
2990 engine->semaphore.mbox.wait[i] = wait_mbox;
2991 engine->semaphore.mbox.signal[i] = mbox_reg;
2992 }
d9a64610
TU
2993 }
2994}
2995
ed003078
CW
2996static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2997 struct intel_engine_cs *engine)
2998{
2999 if (INTEL_GEN(dev_priv) >= 8) {
3000 engine->irq_get = gen8_ring_get_irq;
3001 engine->irq_put = gen8_ring_put_irq;
3002 engine->irq_seqno_barrier = gen6_seqno_barrier;
3003 } else if (INTEL_GEN(dev_priv) >= 6) {
3004 engine->irq_get = gen6_ring_get_irq;
3005 engine->irq_put = gen6_ring_put_irq;
3006 engine->irq_seqno_barrier = gen6_seqno_barrier;
3007 } else if (INTEL_GEN(dev_priv) >= 5) {
3008 engine->irq_get = gen5_ring_get_irq;
3009 engine->irq_put = gen5_ring_put_irq;
3010 } else if (INTEL_GEN(dev_priv) >= 3) {
3011 engine->irq_get = i9xx_ring_get_irq;
3012 engine->irq_put = i9xx_ring_put_irq;
3013 } else {
3014 engine->irq_get = i8xx_ring_get_irq;
3015 engine->irq_put = i8xx_ring_put_irq;
3016 }
3017}
3018
06a2fe22
TU
3019static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
3020 struct intel_engine_cs *engine)
3021{
1d8a1337 3022 engine->init_hw = init_ring_common;
06a2fe22 3023 engine->write_tail = ring_write_tail;
604096d7
TU
3024 engine->get_seqno = ring_get_seqno;
3025 engine->set_seqno = ring_set_seqno;
7445a2a4 3026
6f7bef75
CW
3027 engine->add_request = i9xx_add_request;
3028 if (INTEL_GEN(dev_priv) >= 6)
960ecaad 3029 engine->add_request = gen6_add_request;
6f7bef75
CW
3030
3031 if (INTEL_GEN(dev_priv) >= 8)
3032 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3033 else if (INTEL_GEN(dev_priv) >= 6)
960ecaad 3034 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
6f7bef75 3035 else if (INTEL_GEN(dev_priv) >= 4)
960ecaad 3036 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
6f7bef75
CW
3037 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
3038 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
3039 else
3040 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
b9700325 3041
ed003078 3042 intel_ring_init_irq(dev_priv, engine);
d9a64610 3043 intel_ring_init_semaphores(dev_priv, engine);
06a2fe22
TU
3044}
3045
5c1143bb
XH
3046int intel_init_render_ring_buffer(struct drm_device *dev)
3047{
4640c4ff 3048 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 3049 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
3e78998a
BW
3050 struct drm_i915_gem_object *obj;
3051 int ret;
5c1143bb 3052
e2f80391
TU
3053 engine->name = "render ring";
3054 engine->id = RCS;
3055 engine->exec_id = I915_EXEC_RENDER;
215a7e32 3056 engine->hw_id = 0;
e2f80391 3057 engine->mmio_base = RENDER_RING_BASE;
59465b5f 3058
06a2fe22
TU
3059 intel_ring_default_vfuncs(dev_priv, engine);
3060
c033666a 3061 if (INTEL_GEN(dev_priv) >= 8) {
e2f80391 3062 engine->init_context = intel_rcs_ctx_init;
a58c01aa 3063 engine->add_request = gen8_render_add_request;
e2f80391 3064 engine->flush = gen8_render_ring_flush;
e2f80391 3065 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
db3d4019 3066 if (i915_semaphore_is_enabled(dev_priv))
e2f80391 3067 engine->semaphore.signal = gen8_rcs_signal;
c033666a 3068 } else if (INTEL_GEN(dev_priv) >= 6) {
e2f80391 3069 engine->init_context = intel_rcs_ctx_init;
e2f80391 3070 engine->flush = gen7_render_ring_flush;
c033666a 3071 if (IS_GEN6(dev_priv))
e2f80391 3072 engine->flush = gen6_render_ring_flush;
e2f80391 3073 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
c033666a 3074 } else if (IS_GEN5(dev_priv)) {
e2f80391
TU
3075 engine->add_request = pc_render_add_request;
3076 engine->flush = gen4_render_ring_flush;
3077 engine->get_seqno = pc_render_get_seqno;
3078 engine->set_seqno = pc_render_set_seqno;
e2f80391 3079 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
cc609d5d 3080 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
59465b5f 3081 } else {
c033666a 3082 if (INTEL_GEN(dev_priv) < 4)
e2f80391 3083 engine->flush = gen2_render_ring_flush;
46f0f8d1 3084 else
e2f80391 3085 engine->flush = gen4_render_ring_flush;
e2f80391 3086 engine->irq_enable_mask = I915_USER_INTERRUPT;
1ec14ad3 3087 }
707d9cf9 3088
c033666a 3089 if (IS_HASWELL(dev_priv))
e2f80391 3090 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
6f7bef75 3091
e2f80391
TU
3092 engine->init_hw = init_render_ring;
3093 engine->cleanup = render_ring_cleanup;
59465b5f 3094
b45305fc 3095 /* Workaround batchbuffer to combat CS tlb bug. */
c033666a 3096 if (HAS_BROKEN_CS_TLB(dev_priv)) {
d37cd8a8 3097 obj = i915_gem_object_create(dev, I830_WA_SIZE);
fe3db79b 3098 if (IS_ERR(obj)) {
b45305fc 3099 DRM_ERROR("Failed to allocate batch bo\n");
fe3db79b 3100 return PTR_ERR(obj);
b45305fc
DV
3101 }
3102
be1fa129 3103 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
b45305fc
DV
3104 if (ret != 0) {
3105 drm_gem_object_unreference(&obj->base);
3106 DRM_ERROR("Failed to ping batch bo\n");
3107 return ret;
3108 }
3109
e2f80391
TU
3110 engine->scratch.obj = obj;
3111 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
b45305fc
DV
3112 }
3113
e2f80391 3114 ret = intel_init_ring_buffer(dev, engine);
99be1dfe
DV
3115 if (ret)
3116 return ret;
3117
c033666a 3118 if (INTEL_GEN(dev_priv) >= 5) {
e2f80391 3119 ret = intel_init_pipe_control(engine);
99be1dfe
DV
3120 if (ret)
3121 return ret;
3122 }
3123
3124 return 0;
5c1143bb
XH
3125}
3126
3127int intel_init_bsd_ring_buffer(struct drm_device *dev)
3128{
4640c4ff 3129 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 3130 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
5c1143bb 3131
e2f80391
TU
3132 engine->name = "bsd ring";
3133 engine->id = VCS;
3134 engine->exec_id = I915_EXEC_BSD;
215a7e32 3135 engine->hw_id = 1;
58fa3835 3136
06a2fe22
TU
3137 intel_ring_default_vfuncs(dev_priv, engine);
3138
c033666a 3139 if (INTEL_GEN(dev_priv) >= 6) {
e2f80391 3140 engine->mmio_base = GEN6_BSD_RING_BASE;
0fd2c201 3141 /* gen6 bsd needs a special wa for tail updates */
c033666a 3142 if (IS_GEN6(dev_priv))
e2f80391
TU
3143 engine->write_tail = gen6_bsd_ring_write_tail;
3144 engine->flush = gen6_bsd_ring_flush;
8d228911 3145 if (INTEL_GEN(dev_priv) >= 8)
e2f80391 3146 engine->irq_enable_mask =
abd58f01 3147 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
8d228911 3148 else
e2f80391 3149 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
58fa3835 3150 } else {
e2f80391
TU
3151 engine->mmio_base = BSD_RING_BASE;
3152 engine->flush = bsd_ring_flush;
8d228911 3153 if (IS_GEN5(dev_priv))
e2f80391 3154 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
8d228911 3155 else
e2f80391 3156 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
58fa3835 3157 }
58fa3835 3158
e2f80391 3159 return intel_init_ring_buffer(dev, engine);
5c1143bb 3160}
549f7365 3161
845f74a7 3162/**
62659920 3163 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
845f74a7
ZY
3164 */
3165int intel_init_bsd2_ring_buffer(struct drm_device *dev)
3166{
3167 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 3168 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
e2f80391
TU
3169
3170 engine->name = "bsd2 ring";
3171 engine->id = VCS2;
3172 engine->exec_id = I915_EXEC_BSD;
215a7e32 3173 engine->hw_id = 4;
e2f80391 3174 engine->mmio_base = GEN8_BSD2_RING_BASE;
06a2fe22
TU
3175
3176 intel_ring_default_vfuncs(dev_priv, engine);
3177
e2f80391 3178 engine->flush = gen6_bsd_ring_flush;
e2f80391 3179 engine->irq_enable_mask =
845f74a7 3180 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
845f74a7 3181
e2f80391 3182 return intel_init_ring_buffer(dev, engine);
845f74a7
ZY
3183}
3184
549f7365
CW
3185int intel_init_blt_ring_buffer(struct drm_device *dev)
3186{
4640c4ff 3187 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 3188 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
e2f80391
TU
3189
3190 engine->name = "blitter ring";
3191 engine->id = BCS;
3192 engine->exec_id = I915_EXEC_BLT;
215a7e32 3193 engine->hw_id = 2;
e2f80391 3194 engine->mmio_base = BLT_RING_BASE;
06a2fe22
TU
3195
3196 intel_ring_default_vfuncs(dev_priv, engine);
3197
e2f80391 3198 engine->flush = gen6_ring_flush;
8d228911 3199 if (INTEL_GEN(dev_priv) >= 8)
e2f80391 3200 engine->irq_enable_mask =
abd58f01 3201 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
8d228911 3202 else
e2f80391 3203 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
549f7365 3204
e2f80391 3205 return intel_init_ring_buffer(dev, engine);
549f7365 3206}
a7b9761d 3207
9a8a2213
BW
3208int intel_init_vebox_ring_buffer(struct drm_device *dev)
3209{
4640c4ff 3210 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 3211 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
9a8a2213 3212
e2f80391
TU
3213 engine->name = "video enhancement ring";
3214 engine->id = VECS;
3215 engine->exec_id = I915_EXEC_VEBOX;
215a7e32 3216 engine->hw_id = 3;
e2f80391 3217 engine->mmio_base = VEBOX_RING_BASE;
06a2fe22
TU
3218
3219 intel_ring_default_vfuncs(dev_priv, engine);
3220
e2f80391 3221 engine->flush = gen6_ring_flush;
abd58f01 3222
c033666a 3223 if (INTEL_GEN(dev_priv) >= 8) {
e2f80391 3224 engine->irq_enable_mask =
40c499f9 3225 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
abd58f01 3226 } else {
e2f80391
TU
3227 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3228 engine->irq_get = hsw_vebox_get_irq;
3229 engine->irq_put = hsw_vebox_put_irq;
abd58f01 3230 }
9a8a2213 3231
e2f80391 3232 return intel_init_ring_buffer(dev, engine);
9a8a2213
BW
3233}
3234
a7b9761d 3235int
4866d729 3236intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
a7b9761d 3237{
4a570db5 3238 struct intel_engine_cs *engine = req->engine;
a7b9761d
CW
3239 int ret;
3240
e2f80391 3241 if (!engine->gpu_caches_dirty)
a7b9761d
CW
3242 return 0;
3243
e2f80391 3244 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
a7b9761d
CW
3245 if (ret)
3246 return ret;
3247
a84c3ae1 3248 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
a7b9761d 3249
e2f80391 3250 engine->gpu_caches_dirty = false;
a7b9761d
CW
3251 return 0;
3252}
3253
3254int
2f20055d 3255intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
a7b9761d 3256{
4a570db5 3257 struct intel_engine_cs *engine = req->engine;
a7b9761d
CW
3258 uint32_t flush_domains;
3259 int ret;
3260
3261 flush_domains = 0;
e2f80391 3262 if (engine->gpu_caches_dirty)
a7b9761d
CW
3263 flush_domains = I915_GEM_GPU_DOMAINS;
3264
e2f80391 3265 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
a7b9761d
CW
3266 if (ret)
3267 return ret;
3268
a84c3ae1 3269 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
a7b9761d 3270
e2f80391 3271 engine->gpu_caches_dirty = false;
a7b9761d
CW
3272 return 0;
3273}
e3efda49
CW
3274
3275void
117897f4 3276intel_stop_engine(struct intel_engine_cs *engine)
e3efda49
CW
3277{
3278 int ret;
3279
117897f4 3280 if (!intel_engine_initialized(engine))
e3efda49
CW
3281 return;
3282
666796da 3283 ret = intel_engine_idle(engine);
f4457ae7 3284 if (ret)
e3efda49 3285 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 3286 engine->name, ret);
e3efda49 3287
0bc40be8 3288 stop_ring(engine);
e3efda49 3289}
This page took 0.90725 seconds and 5 git commands to generate.