drm/i915: Convert dev_priv->dev backpointers to dev_priv->drm
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
CommitLineData
62fdfeaf
EA
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
a4d8a0fe 30#include <linux/log2.h>
760285e7 31#include <drm/drmP.h>
62fdfeaf 32#include "i915_drv.h"
760285e7 33#include <drm/i915_drm.h>
62fdfeaf 34#include "i915_trace.h"
881f47b6 35#include "intel_drv.h"
62fdfeaf 36
a0442461
CW
37/* Rough estimate of the typical request size, performing a flush,
38 * set-context and then emitting the batch.
39 */
40#define LEGACY_REQUEST_SIZE 200
41
82e104cc 42int __intel_ring_space(int head, int tail, int size)
c7dca47b 43{
4f54741e
DG
44 int space = head - tail;
45 if (space <= 0)
1cf0ba14 46 space += size;
4f54741e 47 return space - I915_RING_FREE_SPACE;
c7dca47b
CW
48}
49
ebd0fd4b
DG
50void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
51{
52 if (ringbuf->last_retired_head != -1) {
53 ringbuf->head = ringbuf->last_retired_head;
54 ringbuf->last_retired_head = -1;
55 }
56
57 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
58 ringbuf->tail, ringbuf->size);
59}
60
0bc40be8 61static void __intel_ring_advance(struct intel_engine_cs *engine)
88b4aa87 62{
0bc40be8 63 struct intel_ringbuffer *ringbuf = engine->buffer;
93b0a4e0 64 ringbuf->tail &= ringbuf->size - 1;
0bc40be8 65 engine->write_tail(engine, ringbuf->tail);
09246732
CW
66}
67
b72f3acb 68static int
a84c3ae1 69gen2_render_ring_flush(struct drm_i915_gem_request *req,
46f0f8d1
CW
70 u32 invalidate_domains,
71 u32 flush_domains)
72{
4a570db5 73 struct intel_engine_cs *engine = req->engine;
46f0f8d1
CW
74 u32 cmd;
75 int ret;
76
77 cmd = MI_FLUSH;
31b14c9f 78 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
46f0f8d1
CW
79 cmd |= MI_NO_WRITE_FLUSH;
80
81 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
82 cmd |= MI_READ_FLUSH;
83
5fb9de1a 84 ret = intel_ring_begin(req, 2);
46f0f8d1
CW
85 if (ret)
86 return ret;
87
e2f80391
TU
88 intel_ring_emit(engine, cmd);
89 intel_ring_emit(engine, MI_NOOP);
90 intel_ring_advance(engine);
46f0f8d1
CW
91
92 return 0;
93}
94
95static int
a84c3ae1 96gen4_render_ring_flush(struct drm_i915_gem_request *req,
46f0f8d1
CW
97 u32 invalidate_domains,
98 u32 flush_domains)
62fdfeaf 99{
4a570db5 100 struct intel_engine_cs *engine = req->engine;
6f392d54 101 u32 cmd;
b72f3acb 102 int ret;
6f392d54 103
36d527de
CW
104 /*
105 * read/write caches:
106 *
107 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
108 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
109 * also flushed at 2d versus 3d pipeline switches.
110 *
111 * read-only caches:
112 *
113 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
114 * MI_READ_FLUSH is set, and is always flushed on 965.
115 *
116 * I915_GEM_DOMAIN_COMMAND may not exist?
117 *
118 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
119 * invalidated when MI_EXE_FLUSH is set.
120 *
121 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
122 * invalidated with every MI_FLUSH.
123 *
124 * TLBs:
125 *
126 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
127 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
128 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
129 * are flushed at any MI_FLUSH.
130 */
131
132 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
46f0f8d1 133 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
36d527de 134 cmd &= ~MI_NO_WRITE_FLUSH;
36d527de
CW
135 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
136 cmd |= MI_EXE_FLUSH;
62fdfeaf 137
36d527de 138 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
c033666a 139 (IS_G4X(req->i915) || IS_GEN5(req->i915)))
36d527de 140 cmd |= MI_INVALIDATE_ISP;
70eac33e 141
5fb9de1a 142 ret = intel_ring_begin(req, 2);
36d527de
CW
143 if (ret)
144 return ret;
b72f3acb 145
e2f80391
TU
146 intel_ring_emit(engine, cmd);
147 intel_ring_emit(engine, MI_NOOP);
148 intel_ring_advance(engine);
b72f3acb
CW
149
150 return 0;
8187a2b7
ZN
151}
152
8d315287
JB
153/**
154 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
155 * implementing two workarounds on gen6. From section 1.4.7.1
156 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
157 *
158 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
159 * produced by non-pipelined state commands), software needs to first
160 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
161 * 0.
162 *
163 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
164 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
165 *
166 * And the workaround for these two requires this workaround first:
167 *
168 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
169 * BEFORE the pipe-control with a post-sync op and no write-cache
170 * flushes.
171 *
172 * And this last workaround is tricky because of the requirements on
173 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
174 * volume 2 part 1:
175 *
176 * "1 of the following must also be set:
177 * - Render Target Cache Flush Enable ([12] of DW1)
178 * - Depth Cache Flush Enable ([0] of DW1)
179 * - Stall at Pixel Scoreboard ([1] of DW1)
180 * - Depth Stall ([13] of DW1)
181 * - Post-Sync Operation ([13] of DW1)
182 * - Notify Enable ([8] of DW1)"
183 *
184 * The cache flushes require the workaround flush that triggered this
185 * one, so we can't use it. Depth stall would trigger the same.
186 * Post-sync nonzero is what triggered this second workaround, so we
187 * can't use that one either. Notify enable is IRQs, which aren't
188 * really our business. That leaves only stall at scoreboard.
189 */
190static int
f2cf1fcc 191intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
8d315287 192{
4a570db5 193 struct intel_engine_cs *engine = req->engine;
e2f80391 194 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
8d315287
JB
195 int ret;
196
5fb9de1a 197 ret = intel_ring_begin(req, 6);
8d315287
JB
198 if (ret)
199 return ret;
200
e2f80391
TU
201 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
202 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
8d315287 203 PIPE_CONTROL_STALL_AT_SCOREBOARD);
e2f80391
TU
204 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
205 intel_ring_emit(engine, 0); /* low dword */
206 intel_ring_emit(engine, 0); /* high dword */
207 intel_ring_emit(engine, MI_NOOP);
208 intel_ring_advance(engine);
8d315287 209
5fb9de1a 210 ret = intel_ring_begin(req, 6);
8d315287
JB
211 if (ret)
212 return ret;
213
e2f80391
TU
214 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
216 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
217 intel_ring_emit(engine, 0);
218 intel_ring_emit(engine, 0);
219 intel_ring_emit(engine, MI_NOOP);
220 intel_ring_advance(engine);
8d315287
JB
221
222 return 0;
223}
224
225static int
a84c3ae1
JH
226gen6_render_ring_flush(struct drm_i915_gem_request *req,
227 u32 invalidate_domains, u32 flush_domains)
8d315287 228{
4a570db5 229 struct intel_engine_cs *engine = req->engine;
8d315287 230 u32 flags = 0;
e2f80391 231 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
8d315287
JB
232 int ret;
233
b3111509 234 /* Force SNB workarounds for PIPE_CONTROL flushes */
f2cf1fcc 235 ret = intel_emit_post_sync_nonzero_flush(req);
b3111509
PZ
236 if (ret)
237 return ret;
238
8d315287
JB
239 /* Just flush everything. Experiments have shown that reducing the
240 * number of bits based on the write domains has little performance
241 * impact.
242 */
7d54a904
CW
243 if (flush_domains) {
244 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
245 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
246 /*
247 * Ensure that any following seqno writes only happen
248 * when the render cache is indeed flushed.
249 */
97f209bc 250 flags |= PIPE_CONTROL_CS_STALL;
7d54a904
CW
251 }
252 if (invalidate_domains) {
253 flags |= PIPE_CONTROL_TLB_INVALIDATE;
254 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
255 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
256 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
257 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
258 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
259 /*
260 * TLB invalidate requires a post-sync write.
261 */
3ac78313 262 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
7d54a904 263 }
8d315287 264
5fb9de1a 265 ret = intel_ring_begin(req, 4);
8d315287
JB
266 if (ret)
267 return ret;
268
e2f80391
TU
269 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
270 intel_ring_emit(engine, flags);
271 intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
272 intel_ring_emit(engine, 0);
273 intel_ring_advance(engine);
8d315287
JB
274
275 return 0;
276}
277
f3987631 278static int
f2cf1fcc 279gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
f3987631 280{
4a570db5 281 struct intel_engine_cs *engine = req->engine;
f3987631
PZ
282 int ret;
283
5fb9de1a 284 ret = intel_ring_begin(req, 4);
f3987631
PZ
285 if (ret)
286 return ret;
287
e2f80391
TU
288 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
289 intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
f3987631 290 PIPE_CONTROL_STALL_AT_SCOREBOARD);
e2f80391
TU
291 intel_ring_emit(engine, 0);
292 intel_ring_emit(engine, 0);
293 intel_ring_advance(engine);
f3987631
PZ
294
295 return 0;
296}
297
4772eaeb 298static int
a84c3ae1 299gen7_render_ring_flush(struct drm_i915_gem_request *req,
4772eaeb
PZ
300 u32 invalidate_domains, u32 flush_domains)
301{
4a570db5 302 struct intel_engine_cs *engine = req->engine;
4772eaeb 303 u32 flags = 0;
e2f80391 304 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
4772eaeb
PZ
305 int ret;
306
f3987631
PZ
307 /*
308 * Ensure that any following seqno writes only happen when the render
309 * cache is indeed flushed.
310 *
311 * Workaround: 4th PIPE_CONTROL command (except the ones with only
312 * read-cache invalidate bits set) must have the CS_STALL bit set. We
313 * don't try to be clever and just set it unconditionally.
314 */
315 flags |= PIPE_CONTROL_CS_STALL;
316
4772eaeb
PZ
317 /* Just flush everything. Experiments have shown that reducing the
318 * number of bits based on the write domains has little performance
319 * impact.
320 */
321 if (flush_domains) {
322 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
323 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 324 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 325 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4772eaeb
PZ
326 }
327 if (invalidate_domains) {
328 flags |= PIPE_CONTROL_TLB_INVALIDATE;
329 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
330 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
331 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
332 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
333 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
148b83d0 334 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
4772eaeb
PZ
335 /*
336 * TLB invalidate requires a post-sync write.
337 */
338 flags |= PIPE_CONTROL_QW_WRITE;
b9e1faa7 339 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
f3987631 340
add284a3
CW
341 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
342
f3987631
PZ
343 /* Workaround: we must issue a pipe_control with CS-stall bit
344 * set before a pipe_control command that has the state cache
345 * invalidate bit set. */
f2cf1fcc 346 gen7_render_ring_cs_stall_wa(req);
4772eaeb
PZ
347 }
348
5fb9de1a 349 ret = intel_ring_begin(req, 4);
4772eaeb
PZ
350 if (ret)
351 return ret;
352
e2f80391
TU
353 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
354 intel_ring_emit(engine, flags);
355 intel_ring_emit(engine, scratch_addr);
356 intel_ring_emit(engine, 0);
357 intel_ring_advance(engine);
4772eaeb
PZ
358
359 return 0;
360}
361
884ceace 362static int
f2cf1fcc 363gen8_emit_pipe_control(struct drm_i915_gem_request *req,
884ceace
KG
364 u32 flags, u32 scratch_addr)
365{
4a570db5 366 struct intel_engine_cs *engine = req->engine;
884ceace
KG
367 int ret;
368
5fb9de1a 369 ret = intel_ring_begin(req, 6);
884ceace
KG
370 if (ret)
371 return ret;
372
e2f80391
TU
373 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
374 intel_ring_emit(engine, flags);
375 intel_ring_emit(engine, scratch_addr);
376 intel_ring_emit(engine, 0);
377 intel_ring_emit(engine, 0);
378 intel_ring_emit(engine, 0);
379 intel_ring_advance(engine);
884ceace
KG
380
381 return 0;
382}
383
a5f3d68e 384static int
a84c3ae1 385gen8_render_ring_flush(struct drm_i915_gem_request *req,
a5f3d68e
BW
386 u32 invalidate_domains, u32 flush_domains)
387{
388 u32 flags = 0;
4a570db5 389 u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
02c9f7e3 390 int ret;
a5f3d68e
BW
391
392 flags |= PIPE_CONTROL_CS_STALL;
393
394 if (flush_domains) {
395 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
396 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 397 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 398 flags |= PIPE_CONTROL_FLUSH_ENABLE;
a5f3d68e
BW
399 }
400 if (invalidate_domains) {
401 flags |= PIPE_CONTROL_TLB_INVALIDATE;
402 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
403 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
404 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
405 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
406 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
407 flags |= PIPE_CONTROL_QW_WRITE;
408 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
02c9f7e3
KG
409
410 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
f2cf1fcc 411 ret = gen8_emit_pipe_control(req,
02c9f7e3
KG
412 PIPE_CONTROL_CS_STALL |
413 PIPE_CONTROL_STALL_AT_SCOREBOARD,
414 0);
415 if (ret)
416 return ret;
a5f3d68e
BW
417 }
418
f2cf1fcc 419 return gen8_emit_pipe_control(req, flags, scratch_addr);
a5f3d68e
BW
420}
421
0bc40be8 422static void ring_write_tail(struct intel_engine_cs *engine,
297b0c5b 423 u32 value)
d46eefa2 424{
c033666a 425 struct drm_i915_private *dev_priv = engine->i915;
0bc40be8 426 I915_WRITE_TAIL(engine, value);
d46eefa2
XH
427}
428
0bc40be8 429u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
8187a2b7 430{
c033666a 431 struct drm_i915_private *dev_priv = engine->i915;
50877445 432 u64 acthd;
8187a2b7 433
c033666a 434 if (INTEL_GEN(dev_priv) >= 8)
0bc40be8
TU
435 acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
436 RING_ACTHD_UDW(engine->mmio_base));
c033666a 437 else if (INTEL_GEN(dev_priv) >= 4)
0bc40be8 438 acthd = I915_READ(RING_ACTHD(engine->mmio_base));
50877445
CW
439 else
440 acthd = I915_READ(ACTHD);
441
442 return acthd;
8187a2b7
ZN
443}
444
0bc40be8 445static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
035dc1e0 446{
c033666a 447 struct drm_i915_private *dev_priv = engine->i915;
035dc1e0
DV
448 u32 addr;
449
450 addr = dev_priv->status_page_dmah->busaddr;
c033666a 451 if (INTEL_GEN(dev_priv) >= 4)
035dc1e0
DV
452 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
453 I915_WRITE(HWS_PGA, addr);
454}
455
0bc40be8 456static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
af75f269 457{
c033666a 458 struct drm_i915_private *dev_priv = engine->i915;
f0f59a00 459 i915_reg_t mmio;
af75f269
DL
460
461 /* The ring status page addresses are no longer next to the rest of
462 * the ring registers as of gen7.
463 */
c033666a 464 if (IS_GEN7(dev_priv)) {
0bc40be8 465 switch (engine->id) {
af75f269
DL
466 case RCS:
467 mmio = RENDER_HWS_PGA_GEN7;
468 break;
469 case BCS:
470 mmio = BLT_HWS_PGA_GEN7;
471 break;
472 /*
473 * VCS2 actually doesn't exist on Gen7. Only shut up
474 * gcc switch check warning
475 */
476 case VCS2:
477 case VCS:
478 mmio = BSD_HWS_PGA_GEN7;
479 break;
480 case VECS:
481 mmio = VEBOX_HWS_PGA_GEN7;
482 break;
483 }
c033666a 484 } else if (IS_GEN6(dev_priv)) {
0bc40be8 485 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
af75f269
DL
486 } else {
487 /* XXX: gen8 returns to sanity */
0bc40be8 488 mmio = RING_HWS_PGA(engine->mmio_base);
af75f269
DL
489 }
490
0bc40be8 491 I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
af75f269
DL
492 POSTING_READ(mmio);
493
494 /*
495 * Flush the TLB for this page
496 *
497 * FIXME: These two bits have disappeared on gen8, so a question
498 * arises: do we still need this and if so how should we go about
499 * invalidating the TLB?
500 */
ac657f64 501 if (IS_GEN(dev_priv, 6, 7)) {
0bc40be8 502 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
af75f269
DL
503
504 /* ring should be idle before issuing a sync flush*/
0bc40be8 505 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
af75f269
DL
506
507 I915_WRITE(reg,
508 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
509 INSTPM_SYNC_FLUSH));
25ab57f4
CW
510 if (intel_wait_for_register(dev_priv,
511 reg, INSTPM_SYNC_FLUSH, 0,
512 1000))
af75f269 513 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
0bc40be8 514 engine->name);
af75f269
DL
515 }
516}
517
0bc40be8 518static bool stop_ring(struct intel_engine_cs *engine)
8187a2b7 519{
c033666a 520 struct drm_i915_private *dev_priv = engine->i915;
8187a2b7 521
c033666a 522 if (!IS_GEN2(dev_priv)) {
0bc40be8 523 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
3d808eb1
CW
524 if (intel_wait_for_register(dev_priv,
525 RING_MI_MODE(engine->mmio_base),
526 MODE_IDLE,
527 MODE_IDLE,
528 1000)) {
0bc40be8
TU
529 DRM_ERROR("%s : timed out trying to stop ring\n",
530 engine->name);
9bec9b13
CW
531 /* Sometimes we observe that the idle flag is not
532 * set even though the ring is empty. So double
533 * check before giving up.
534 */
0bc40be8 535 if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
9bec9b13 536 return false;
9991ae78
CW
537 }
538 }
b7884eb4 539
0bc40be8
TU
540 I915_WRITE_CTL(engine, 0);
541 I915_WRITE_HEAD(engine, 0);
542 engine->write_tail(engine, 0);
8187a2b7 543
c033666a 544 if (!IS_GEN2(dev_priv)) {
0bc40be8
TU
545 (void)I915_READ_CTL(engine);
546 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
9991ae78 547 }
a51435a3 548
0bc40be8 549 return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
9991ae78 550}
8187a2b7 551
fc0768ce
TE
552void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
553{
554 memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
555}
556
0bc40be8 557static int init_ring_common(struct intel_engine_cs *engine)
9991ae78 558{
c033666a 559 struct drm_i915_private *dev_priv = engine->i915;
0bc40be8 560 struct intel_ringbuffer *ringbuf = engine->buffer;
93b0a4e0 561 struct drm_i915_gem_object *obj = ringbuf->obj;
9991ae78
CW
562 int ret = 0;
563
59bad947 564 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9991ae78 565
0bc40be8 566 if (!stop_ring(engine)) {
9991ae78 567 /* G45 ring initialization often fails to reset head to zero */
6fd0d56e
CW
568 DRM_DEBUG_KMS("%s head not reset to zero "
569 "ctl %08x head %08x tail %08x start %08x\n",
0bc40be8
TU
570 engine->name,
571 I915_READ_CTL(engine),
572 I915_READ_HEAD(engine),
573 I915_READ_TAIL(engine),
574 I915_READ_START(engine));
8187a2b7 575
0bc40be8 576 if (!stop_ring(engine)) {
6fd0d56e
CW
577 DRM_ERROR("failed to set %s head to zero "
578 "ctl %08x head %08x tail %08x start %08x\n",
0bc40be8
TU
579 engine->name,
580 I915_READ_CTL(engine),
581 I915_READ_HEAD(engine),
582 I915_READ_TAIL(engine),
583 I915_READ_START(engine));
9991ae78
CW
584 ret = -EIO;
585 goto out;
6fd0d56e 586 }
8187a2b7
ZN
587 }
588
c033666a 589 if (I915_NEED_GFX_HWS(dev_priv))
0bc40be8 590 intel_ring_setup_status_page(engine);
9991ae78 591 else
0bc40be8 592 ring_setup_phys_status_page(engine);
9991ae78 593
ece4a17d 594 /* Enforce ordering by reading HEAD register back */
0bc40be8 595 I915_READ_HEAD(engine);
ece4a17d 596
0d8957c8
DV
597 /* Initialize the ring. This must happen _after_ we've cleared the ring
598 * registers with the above sequence (the readback of the HEAD registers
599 * also enforces ordering), otherwise the hw might lose the new ring
600 * register values. */
0bc40be8 601 I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
95468892
CW
602
603 /* WaClearRingBufHeadRegAtInit:ctg,elk */
0bc40be8 604 if (I915_READ_HEAD(engine))
95468892 605 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
0bc40be8
TU
606 engine->name, I915_READ_HEAD(engine));
607 I915_WRITE_HEAD(engine, 0);
608 (void)I915_READ_HEAD(engine);
95468892 609
0bc40be8 610 I915_WRITE_CTL(engine,
93b0a4e0 611 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
5d031e5b 612 | RING_VALID);
8187a2b7 613
8187a2b7 614 /* If the head is still not zero, the ring is dead */
0bc40be8
TU
615 if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
616 I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
617 (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
e74cfed5 618 DRM_ERROR("%s initialization failed "
48e48a0b 619 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
0bc40be8
TU
620 engine->name,
621 I915_READ_CTL(engine),
622 I915_READ_CTL(engine) & RING_VALID,
623 I915_READ_HEAD(engine), I915_READ_TAIL(engine),
624 I915_READ_START(engine),
625 (unsigned long)i915_gem_obj_ggtt_offset(obj));
b7884eb4
DV
626 ret = -EIO;
627 goto out;
8187a2b7
ZN
628 }
629
ebd0fd4b 630 ringbuf->last_retired_head = -1;
0bc40be8
TU
631 ringbuf->head = I915_READ_HEAD(engine);
632 ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
ebd0fd4b 633 intel_ring_update_space(ringbuf);
1ec14ad3 634
fc0768ce 635 intel_engine_init_hangcheck(engine);
50f018df 636
b7884eb4 637out:
59bad947 638 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b7884eb4
DV
639
640 return ret;
8187a2b7
ZN
641}
642
f8291952 643void intel_fini_pipe_control(struct intel_engine_cs *engine)
9b1136d5 644{
0bc40be8 645 if (engine->scratch.obj == NULL)
9b1136d5
OM
646 return;
647
f8291952 648 i915_gem_object_ggtt_unpin(engine->scratch.obj);
0bc40be8
TU
649 drm_gem_object_unreference(&engine->scratch.obj->base);
650 engine->scratch.obj = NULL;
9b1136d5
OM
651}
652
7d5ea807 653int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
c6df541c 654{
f8291952 655 struct drm_i915_gem_object *obj;
c6df541c
CW
656 int ret;
657
0bc40be8 658 WARN_ON(engine->scratch.obj);
c6df541c 659
91c8a326 660 obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
de8fe166 661 if (!obj)
91c8a326 662 obj = i915_gem_object_create(&engine->i915->drm, size);
f8291952
CW
663 if (IS_ERR(obj)) {
664 DRM_ERROR("Failed to allocate scratch page\n");
665 ret = PTR_ERR(obj);
c6df541c
CW
666 goto err;
667 }
e4ffd173 668
f8291952 669 ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
a9cc726c
DV
670 if (ret)
671 goto err_unref;
c6df541c 672
f8291952
CW
673 engine->scratch.obj = obj;
674 engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2b1086cc 675 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
0bc40be8 676 engine->name, engine->scratch.gtt_offset);
c6df541c
CW
677 return 0;
678
c6df541c 679err_unref:
0bc40be8 680 drm_gem_object_unreference(&engine->scratch.obj->base);
c6df541c 681err:
c6df541c
CW
682 return ret;
683}
684
e2be4faf 685static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
86d7f238 686{
4a570db5 687 struct intel_engine_cs *engine = req->engine;
c033666a
CW
688 struct i915_workarounds *w = &req->i915->workarounds;
689 int ret, i;
888b5995 690
02235808 691 if (w->count == 0)
7225342a 692 return 0;
888b5995 693
e2f80391 694 engine->gpu_caches_dirty = true;
4866d729 695 ret = intel_ring_flush_all_caches(req);
7225342a
MK
696 if (ret)
697 return ret;
888b5995 698
5fb9de1a 699 ret = intel_ring_begin(req, (w->count * 2 + 2));
7225342a
MK
700 if (ret)
701 return ret;
702
e2f80391 703 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
7225342a 704 for (i = 0; i < w->count; i++) {
e2f80391
TU
705 intel_ring_emit_reg(engine, w->reg[i].addr);
706 intel_ring_emit(engine, w->reg[i].value);
7225342a 707 }
e2f80391 708 intel_ring_emit(engine, MI_NOOP);
7225342a 709
e2f80391 710 intel_ring_advance(engine);
7225342a 711
e2f80391 712 engine->gpu_caches_dirty = true;
4866d729 713 ret = intel_ring_flush_all_caches(req);
7225342a
MK
714 if (ret)
715 return ret;
888b5995 716
7225342a 717 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
888b5995 718
7225342a 719 return 0;
86d7f238
AS
720}
721
8753181e 722static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
8f0e2b9d
DV
723{
724 int ret;
725
e2be4faf 726 ret = intel_ring_workarounds_emit(req);
8f0e2b9d
DV
727 if (ret != 0)
728 return ret;
729
be01363f 730 ret = i915_gem_render_state_init(req);
8f0e2b9d 731 if (ret)
e26e1b97 732 return ret;
8f0e2b9d 733
e26e1b97 734 return 0;
8f0e2b9d
DV
735}
736
7225342a 737static int wa_add(struct drm_i915_private *dev_priv,
f0f59a00
VS
738 i915_reg_t addr,
739 const u32 mask, const u32 val)
7225342a
MK
740{
741 const u32 idx = dev_priv->workarounds.count;
742
743 if (WARN_ON(idx >= I915_MAX_WA_REGS))
744 return -ENOSPC;
745
746 dev_priv->workarounds.reg[idx].addr = addr;
747 dev_priv->workarounds.reg[idx].value = val;
748 dev_priv->workarounds.reg[idx].mask = mask;
749
750 dev_priv->workarounds.count++;
751
752 return 0;
86d7f238
AS
753}
754
ca5a0fbd 755#define WA_REG(addr, mask, val) do { \
cf4b0de6 756 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
7225342a
MK
757 if (r) \
758 return r; \
ca5a0fbd 759 } while (0)
7225342a
MK
760
761#define WA_SET_BIT_MASKED(addr, mask) \
26459343 762 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
7225342a
MK
763
764#define WA_CLR_BIT_MASKED(addr, mask) \
26459343 765 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
7225342a 766
98533251 767#define WA_SET_FIELD_MASKED(addr, mask, value) \
cf4b0de6 768 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
7225342a 769
cf4b0de6
DL
770#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
771#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
7225342a 772
cf4b0de6 773#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
7225342a 774
0bc40be8
TU
775static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
776 i915_reg_t reg)
33136b06 777{
c033666a 778 struct drm_i915_private *dev_priv = engine->i915;
33136b06 779 struct i915_workarounds *wa = &dev_priv->workarounds;
0bc40be8 780 const uint32_t index = wa->hw_whitelist_count[engine->id];
33136b06
AS
781
782 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
783 return -EINVAL;
784
0bc40be8 785 WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
33136b06 786 i915_mmio_reg_offset(reg));
0bc40be8 787 wa->hw_whitelist_count[engine->id]++;
33136b06
AS
788
789 return 0;
790}
791
0bc40be8 792static int gen8_init_workarounds(struct intel_engine_cs *engine)
e9a64ada 793{
c033666a 794 struct drm_i915_private *dev_priv = engine->i915;
68c6198b
AS
795
796 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
e9a64ada 797
717d84d6
AS
798 /* WaDisableAsyncFlipPerfMode:bdw,chv */
799 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
800
d0581194
AS
801 /* WaDisablePartialInstShootdown:bdw,chv */
802 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
803 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
804
a340af58
AS
805 /* Use Force Non-Coherent whenever executing a 3D context. This is a
806 * workaround for for a possible hang in the unlikely event a TLB
807 * invalidation occurs during a PSD flush.
808 */
809 /* WaForceEnableNonCoherent:bdw,chv */
120f5d28 810 /* WaHdcDisableFetchWhenMasked:bdw,chv */
a340af58 811 WA_SET_BIT_MASKED(HDC_CHICKEN0,
120f5d28 812 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
a340af58
AS
813 HDC_FORCE_NON_COHERENT);
814
6def8fdd
AS
815 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
816 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
817 * polygons in the same 8x4 pixel/sample area to be processed without
818 * stalling waiting for the earlier ones to write to Hierarchical Z
819 * buffer."
820 *
821 * This optimization is off by default for BDW and CHV; turn it on.
822 */
823 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
824
48404636
AS
825 /* Wa4x4STCOptimizationDisable:bdw,chv */
826 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
827
7eebcde6
AS
828 /*
829 * BSpec recommends 8x4 when MSAA is used,
830 * however in practice 16x4 seems fastest.
831 *
832 * Note that PS/WM thread counts depend on the WIZ hashing
833 * disable bit, which we don't touch here, but it's good
834 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
835 */
836 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
837 GEN6_WIZ_HASHING_MASK,
838 GEN6_WIZ_HASHING_16x4);
839
e9a64ada
AS
840 return 0;
841}
842
0bc40be8 843static int bdw_init_workarounds(struct intel_engine_cs *engine)
86d7f238 844{
c033666a 845 struct drm_i915_private *dev_priv = engine->i915;
e9a64ada 846 int ret;
86d7f238 847
0bc40be8 848 ret = gen8_init_workarounds(engine);
e9a64ada
AS
849 if (ret)
850 return ret;
851
101b376d 852 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
d0581194 853 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
86d7f238 854
101b376d 855 /* WaDisableDopClockGating:bdw */
7225342a
MK
856 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
857 DOP_CLOCK_GATING_DISABLE);
86d7f238 858
7225342a
MK
859 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
860 GEN8_SAMPLER_POWER_BYPASS_DIS);
86d7f238 861
7225342a 862 WA_SET_BIT_MASKED(HDC_CHICKEN0,
35cb6f3b
DL
863 /* WaForceContextSaveRestoreNonCoherent:bdw */
864 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
35cb6f3b 865 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
c033666a 866 (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
86d7f238 867
86d7f238
AS
868 return 0;
869}
870
0bc40be8 871static int chv_init_workarounds(struct intel_engine_cs *engine)
00e1e623 872{
c033666a 873 struct drm_i915_private *dev_priv = engine->i915;
e9a64ada 874 int ret;
00e1e623 875
0bc40be8 876 ret = gen8_init_workarounds(engine);
e9a64ada
AS
877 if (ret)
878 return ret;
879
00e1e623 880 /* WaDisableThreadStallDopClockGating:chv */
d0581194 881 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
00e1e623 882
d60de81d
KG
883 /* Improve HiZ throughput on CHV. */
884 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
885
7225342a
MK
886 return 0;
887}
888
0bc40be8 889static int gen9_init_workarounds(struct intel_engine_cs *engine)
3b106531 890{
c033666a 891 struct drm_i915_private *dev_priv = engine->i915;
e0f3fa09 892 int ret;
ab0dfafe 893
a8ab5ed5
TG
894 /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
895 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
896
e5f81d65 897 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
9c4cbf82
MK
898 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
899 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
900
e5f81d65 901 /* WaDisableKillLogic:bxt,skl,kbl */
9c4cbf82
MK
902 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
903 ECOCHK_DIS_TLB);
904
e5f81d65
MK
905 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
906 /* WaDisablePartialInstShootdown:skl,bxt,kbl */
ab0dfafe 907 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
950b2aae 908 FLOW_CONTROL_ENABLE |
ab0dfafe
HN
909 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
910
e5f81d65 911 /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
8424171e
NH
912 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
913 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
914
e87a005d 915 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
c033666a
CW
916 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
917 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
a86eb582
DL
918 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
919 GEN9_DG_MIRROR_FIX_ENABLE);
1de4582f 920
e87a005d 921 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
922 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
923 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
183c6dac
DL
924 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
925 GEN9_RHWO_OPTIMIZATION_DISABLE);
9b01435d
AS
926 /*
927 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
928 * but we do that in per ctx batchbuffer as there is an issue
929 * with this register not getting restored on ctx restore
930 */
183c6dac
DL
931 }
932
e5f81d65
MK
933 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
934 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
bfd8ad4e
TG
935 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
936 GEN9_ENABLE_YV12_BUGFIX |
937 GEN9_ENABLE_GPGPU_PREEMPTION);
cac23df4 938
e5f81d65
MK
939 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
940 /* WaDisablePartialResolveInVc:skl,bxt,kbl */
60294683
AS
941 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
942 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
9370cd98 943
e5f81d65 944 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
e2db7071
DL
945 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
946 GEN9_CCS_TLB_PREFETCH_ENABLE);
947
5a2ae95e 948 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
c033666a
CW
949 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
950 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
38a39a7b
BW
951 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
952 PIXEL_MASK_CAMMING_DISABLE);
953
5b0e3659
MK
954 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
955 WA_SET_BIT_MASKED(HDC_CHICKEN0,
956 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
957 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
8ea6f892 958
bbaefe72
MK
959 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
960 * both tied to WaForceContextSaveRestoreNonCoherent
961 * in some hsds for skl. We keep the tie for all gen9. The
962 * documentation is a bit hazy and so we want to get common behaviour,
963 * even though there is no clear evidence we would need both on kbl/bxt.
964 * This area has been source of system hangs so we play it safe
965 * and mimic the skl regardless of what bspec says.
966 *
967 * Use Force Non-Coherent whenever executing a 3D context. This
968 * is a workaround for a possible hang in the unlikely event
969 * a TLB invalidation occurs during a PSD flush.
970 */
971
972 /* WaForceEnableNonCoherent:skl,bxt,kbl */
973 WA_SET_BIT_MASKED(HDC_CHICKEN0,
974 HDC_FORCE_NON_COHERENT);
975
976 /* WaDisableHDCInvalidation:skl,bxt,kbl */
977 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
978 BDW_DISABLE_HDC_INVALIDATION);
979
e5f81d65
MK
980 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
981 if (IS_SKYLAKE(dev_priv) ||
982 IS_KABYLAKE(dev_priv) ||
983 IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
8c761609
AS
984 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
985 GEN8_SAMPLER_POWER_BYPASS_DIS);
8c761609 986
e5f81d65 987 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
6b6d5626
RB
988 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
989
e5f81d65 990 /* WaOCLCoherentLineFlush:skl,bxt,kbl */
6ecf56ae
AS
991 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
992 GEN8_LQSC_FLUSH_COHERENT_LINES));
993
6bb62855 994 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
995 ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
996 if (ret)
997 return ret;
998
e5f81d65 999 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
0bc40be8 1000 ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
e0f3fa09
AS
1001 if (ret)
1002 return ret;
1003
e5f81d65 1004 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
0bc40be8 1005 ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
3669ab61
AS
1006 if (ret)
1007 return ret;
1008
3b106531
HN
1009 return 0;
1010}
1011
0bc40be8 1012static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
b7668791 1013{
c033666a 1014 struct drm_i915_private *dev_priv = engine->i915;
b7668791
DL
1015 u8 vals[3] = { 0, 0, 0 };
1016 unsigned int i;
1017
1018 for (i = 0; i < 3; i++) {
1019 u8 ss;
1020
1021 /*
1022 * Only consider slices where one, and only one, subslice has 7
1023 * EUs
1024 */
a4d8a0fe 1025 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
b7668791
DL
1026 continue;
1027
1028 /*
1029 * subslice_7eu[i] != 0 (because of the check above) and
1030 * ss_max == 4 (maximum number of subslices possible per slice)
1031 *
1032 * -> 0 <= ss <= 3;
1033 */
1034 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1035 vals[i] = 3 - ss;
1036 }
1037
1038 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1039 return 0;
1040
1041 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1042 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1043 GEN9_IZ_HASHING_MASK(2) |
1044 GEN9_IZ_HASHING_MASK(1) |
1045 GEN9_IZ_HASHING_MASK(0),
1046 GEN9_IZ_HASHING(2, vals[2]) |
1047 GEN9_IZ_HASHING(1, vals[1]) |
1048 GEN9_IZ_HASHING(0, vals[0]));
1049
1050 return 0;
1051}
1052
0bc40be8 1053static int skl_init_workarounds(struct intel_engine_cs *engine)
8d205494 1054{
c033666a 1055 struct drm_i915_private *dev_priv = engine->i915;
aa0011a8 1056 int ret;
d0bbbc4f 1057
0bc40be8 1058 ret = gen9_init_workarounds(engine);
aa0011a8
AS
1059 if (ret)
1060 return ret;
8d205494 1061
a78536e7
AS
1062 /*
1063 * Actual WA is to disable percontext preemption granularity control
1064 * until D0 which is the default case so this is equivalent to
1065 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1066 */
c033666a 1067 if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
a78536e7
AS
1068 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1069 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1070 }
1071
71dce58c 1072 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
9c4cbf82
MK
1073 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1074 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1075 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1076 }
1077
1078 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1079 * involving this register should also be added to WA batch as required.
1080 */
c033666a 1081 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
9c4cbf82
MK
1082 /* WaDisableLSQCROPERFforOCL:skl */
1083 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1084 GEN8_LQSC_RO_PERF_DIS);
1085
1086 /* WaEnableGapsTsvCreditFix:skl */
c033666a 1087 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
9c4cbf82
MK
1088 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1089 GEN9_GAPS_TSV_CREDIT_DISABLE));
1090 }
1091
d0bbbc4f 1092 /* WaDisablePowerCompilerClockGating:skl */
c033666a 1093 if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
d0bbbc4f
DL
1094 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1095 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1096
e87a005d 1097 /* WaBarrierPerformanceFixDisable:skl */
c033666a 1098 if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
5b6fd12a
VS
1099 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1100 HDC_FENCE_DEST_SLM_DISABLE |
1101 HDC_BARRIER_PERFORMANCE_DISABLE);
1102
9bd9dfb4 1103 /* WaDisableSbeCacheDispatchPortSharing:skl */
c033666a 1104 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
9bd9dfb4
MK
1105 WA_SET_BIT_MASKED(
1106 GEN7_HALF_SLICE_CHICKEN1,
1107 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
9bd9dfb4 1108
eee8efb0
MK
1109 /* WaDisableGafsUnitClkGating:skl */
1110 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1111
6107497e 1112 /* WaDisableLSQCROPERFforOCL:skl */
0bc40be8 1113 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
6107497e
AS
1114 if (ret)
1115 return ret;
1116
0bc40be8 1117 return skl_tune_iz_hashing(engine);
7225342a
MK
1118}
1119
0bc40be8 1120static int bxt_init_workarounds(struct intel_engine_cs *engine)
cae0437f 1121{
c033666a 1122 struct drm_i915_private *dev_priv = engine->i915;
aa0011a8 1123 int ret;
dfb601e6 1124
0bc40be8 1125 ret = gen9_init_workarounds(engine);
aa0011a8
AS
1126 if (ret)
1127 return ret;
cae0437f 1128
9c4cbf82
MK
1129 /* WaStoreMultiplePTEenable:bxt */
1130 /* This is a requirement according to Hardware specification */
c033666a 1131 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
9c4cbf82
MK
1132 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1133
1134 /* WaSetClckGatingDisableMedia:bxt */
c033666a 1135 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
9c4cbf82
MK
1136 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1137 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1138 }
1139
dfb601e6
NH
1140 /* WaDisableThreadStallDopClockGating:bxt */
1141 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1142 STALL_DOP_GATING_DISABLE);
1143
780f0aeb 1144 /* WaDisablePooledEuLoadBalancingFix:bxt */
1145 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1146 WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1147 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1148 }
1149
983b4b9d 1150 /* WaDisableSbeCacheDispatchPortSharing:bxt */
c033666a 1151 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
983b4b9d
NH
1152 WA_SET_BIT_MASKED(
1153 GEN7_HALF_SLICE_CHICKEN1,
1154 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1155 }
1156
2c8580e4
AS
1157 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1158 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1159 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
a786d53a 1160 /* WaDisableLSQCROPERFforOCL:bxt */
c033666a 1161 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
0bc40be8 1162 ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
2c8580e4
AS
1163 if (ret)
1164 return ret;
a786d53a 1165
0bc40be8 1166 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
a786d53a
AS
1167 if (ret)
1168 return ret;
2c8580e4
AS
1169 }
1170
050fc465 1171 /* WaProgramL3SqcReg1DefaultForPerf:bxt */
c033666a 1172 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
36579cb6
ID
1173 I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1174 L3_HIGH_PRIO_CREDITS(2));
050fc465 1175
ad2bdb44
MK
1176 /* WaInsertDummyPushConstPs:bxt */
1177 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
1178 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1179 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1180
cae0437f
NH
1181 return 0;
1182}
1183
e5f81d65
MK
1184static int kbl_init_workarounds(struct intel_engine_cs *engine)
1185{
e587f6cb 1186 struct drm_i915_private *dev_priv = engine->i915;
e5f81d65
MK
1187 int ret;
1188
1189 ret = gen9_init_workarounds(engine);
1190 if (ret)
1191 return ret;
1192
e587f6cb
MK
1193 /* WaEnableGapsTsvCreditFix:kbl */
1194 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1195 GEN9_GAPS_TSV_CREDIT_DISABLE));
1196
c0b730d5
MK
1197 /* WaDisableDynamicCreditSharing:kbl */
1198 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1199 WA_SET_BIT(GAMT_CHKN_BIT_REG,
1200 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1201
8401d42f
MK
1202 /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1203 if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1204 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1205 HDC_FENCE_DEST_SLM_DISABLE);
1206
fe905819
MK
1207 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1208 * involving this register should also be added to WA batch as required.
1209 */
1210 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
1211 /* WaDisableLSQCROPERFforOCL:kbl */
1212 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1213 GEN8_LQSC_RO_PERF_DIS);
1214
ad2bdb44
MK
1215 /* WaInsertDummyPushConstPs:kbl */
1216 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1217 WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1218 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1219
4de5d7cc
MK
1220 /* WaDisableGafsUnitClkGating:kbl */
1221 WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1222
954337aa
MK
1223 /* WaDisableSbeCacheDispatchPortSharing:kbl */
1224 WA_SET_BIT_MASKED(
1225 GEN7_HALF_SLICE_CHICKEN1,
1226 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1227
fe905819
MK
1228 /* WaDisableLSQCROPERFforOCL:kbl */
1229 ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1230 if (ret)
1231 return ret;
1232
e5f81d65
MK
1233 return 0;
1234}
1235
0bc40be8 1236int init_workarounds_ring(struct intel_engine_cs *engine)
7225342a 1237{
c033666a 1238 struct drm_i915_private *dev_priv = engine->i915;
7225342a 1239
0bc40be8 1240 WARN_ON(engine->id != RCS);
7225342a
MK
1241
1242 dev_priv->workarounds.count = 0;
33136b06 1243 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
7225342a 1244
c033666a 1245 if (IS_BROADWELL(dev_priv))
0bc40be8 1246 return bdw_init_workarounds(engine);
7225342a 1247
c033666a 1248 if (IS_CHERRYVIEW(dev_priv))
0bc40be8 1249 return chv_init_workarounds(engine);
00e1e623 1250
c033666a 1251 if (IS_SKYLAKE(dev_priv))
0bc40be8 1252 return skl_init_workarounds(engine);
cae0437f 1253
c033666a 1254 if (IS_BROXTON(dev_priv))
0bc40be8 1255 return bxt_init_workarounds(engine);
3b106531 1256
e5f81d65
MK
1257 if (IS_KABYLAKE(dev_priv))
1258 return kbl_init_workarounds(engine);
1259
00e1e623
VS
1260 return 0;
1261}
1262
0bc40be8 1263static int init_render_ring(struct intel_engine_cs *engine)
8187a2b7 1264{
c033666a 1265 struct drm_i915_private *dev_priv = engine->i915;
0bc40be8 1266 int ret = init_ring_common(engine);
9c33baa6
KZ
1267 if (ret)
1268 return ret;
a69ffdbf 1269
61a563a2 1270 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
ac657f64 1271 if (IS_GEN(dev_priv, 4, 6))
6b26c86d 1272 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1c8c38c5
CW
1273
1274 /* We need to disable the AsyncFlip performance optimisations in order
1275 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1276 * programmed to '1' on all products.
8693a824 1277 *
2441f877 1278 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1c8c38c5 1279 */
ac657f64 1280 if (IS_GEN(dev_priv, 6, 7))
1c8c38c5
CW
1281 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1282
f05bb0c7 1283 /* Required for the hardware to program scanline values for waiting */
01fa0302 1284 /* WaEnableFlushTlbInvalidationMode:snb */
c033666a 1285 if (IS_GEN6(dev_priv))
f05bb0c7 1286 I915_WRITE(GFX_MODE,
aa83e30d 1287 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
f05bb0c7 1288
01fa0302 1289 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
c033666a 1290 if (IS_GEN7(dev_priv))
1c8c38c5 1291 I915_WRITE(GFX_MODE_GEN7,
01fa0302 1292 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1c8c38c5 1293 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
78501eac 1294
c033666a 1295 if (IS_GEN6(dev_priv)) {
3a69ddd6
KG
1296 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1297 * "If this bit is set, STCunit will have LRA as replacement
1298 * policy. [...] This bit must be reset. LRA replacement
1299 * policy is not supported."
1300 */
1301 I915_WRITE(CACHE_MODE_0,
5e13a0c5 1302 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
84f9f938
BW
1303 }
1304
ac657f64 1305 if (IS_GEN(dev_priv, 6, 7))
6b26c86d 1306 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
84f9f938 1307
61ff75ac 1308 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
15b9f80e 1309
0bc40be8 1310 return init_workarounds_ring(engine);
8187a2b7
ZN
1311}
1312
0bc40be8 1313static void render_ring_cleanup(struct intel_engine_cs *engine)
c6df541c 1314{
c033666a 1315 struct drm_i915_private *dev_priv = engine->i915;
3e78998a
BW
1316
1317 if (dev_priv->semaphore_obj) {
1318 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1319 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1320 dev_priv->semaphore_obj = NULL;
1321 }
b45305fc 1322
0bc40be8 1323 intel_fini_pipe_control(engine);
c6df541c
CW
1324}
1325
f7169687 1326static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
3e78998a
BW
1327 unsigned int num_dwords)
1328{
1329#define MBOX_UPDATE_DWORDS 8
4a570db5 1330 struct intel_engine_cs *signaller = signaller_req->engine;
c033666a 1331 struct drm_i915_private *dev_priv = signaller_req->i915;
3e78998a 1332 struct intel_engine_cs *waiter;
c3232b18
DG
1333 enum intel_engine_id id;
1334 int ret, num_rings;
3e78998a 1335
c033666a 1336 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
3e78998a
BW
1337 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1338#undef MBOX_UPDATE_DWORDS
1339
5fb9de1a 1340 ret = intel_ring_begin(signaller_req, num_dwords);
3e78998a
BW
1341 if (ret)
1342 return ret;
1343
c3232b18 1344 for_each_engine_id(waiter, dev_priv, id) {
c3232b18 1345 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
3e78998a
BW
1346 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1347 continue;
1348
1349 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1350 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1351 PIPE_CONTROL_QW_WRITE |
f9a4ea35 1352 PIPE_CONTROL_CS_STALL);
3e78998a
BW
1353 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1354 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1b7744e7 1355 intel_ring_emit(signaller, signaller_req->seqno);
3e78998a
BW
1356 intel_ring_emit(signaller, 0);
1357 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
215a7e32 1358 MI_SEMAPHORE_TARGET(waiter->hw_id));
3e78998a
BW
1359 intel_ring_emit(signaller, 0);
1360 }
1361
1362 return 0;
1363}
1364
f7169687 1365static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
3e78998a
BW
1366 unsigned int num_dwords)
1367{
1368#define MBOX_UPDATE_DWORDS 6
4a570db5 1369 struct intel_engine_cs *signaller = signaller_req->engine;
c033666a 1370 struct drm_i915_private *dev_priv = signaller_req->i915;
3e78998a 1371 struct intel_engine_cs *waiter;
c3232b18
DG
1372 enum intel_engine_id id;
1373 int ret, num_rings;
3e78998a 1374
c033666a 1375 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
3e78998a
BW
1376 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1377#undef MBOX_UPDATE_DWORDS
1378
5fb9de1a 1379 ret = intel_ring_begin(signaller_req, num_dwords);
3e78998a
BW
1380 if (ret)
1381 return ret;
1382
c3232b18 1383 for_each_engine_id(waiter, dev_priv, id) {
c3232b18 1384 u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
3e78998a
BW
1385 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1386 continue;
1387
1388 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1389 MI_FLUSH_DW_OP_STOREDW);
1390 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1391 MI_FLUSH_DW_USE_GTT);
1392 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1b7744e7 1393 intel_ring_emit(signaller, signaller_req->seqno);
3e78998a 1394 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
215a7e32 1395 MI_SEMAPHORE_TARGET(waiter->hw_id));
3e78998a
BW
1396 intel_ring_emit(signaller, 0);
1397 }
1398
1399 return 0;
1400}
1401
f7169687 1402static int gen6_signal(struct drm_i915_gem_request *signaller_req,
024a43e1 1403 unsigned int num_dwords)
1ec14ad3 1404{
4a570db5 1405 struct intel_engine_cs *signaller = signaller_req->engine;
c033666a 1406 struct drm_i915_private *dev_priv = signaller_req->i915;
a4872ba6 1407 struct intel_engine_cs *useless;
c3232b18
DG
1408 enum intel_engine_id id;
1409 int ret, num_rings;
78325f2d 1410
a1444b79 1411#define MBOX_UPDATE_DWORDS 3
c033666a 1412 num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
a1444b79
BW
1413 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1414#undef MBOX_UPDATE_DWORDS
024a43e1 1415
5fb9de1a 1416 ret = intel_ring_begin(signaller_req, num_dwords);
024a43e1
BW
1417 if (ret)
1418 return ret;
024a43e1 1419
c3232b18
DG
1420 for_each_engine_id(useless, dev_priv, id) {
1421 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
f0f59a00
VS
1422
1423 if (i915_mmio_reg_valid(mbox_reg)) {
78325f2d 1424 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
f92a9162 1425 intel_ring_emit_reg(signaller, mbox_reg);
1b7744e7 1426 intel_ring_emit(signaller, signaller_req->seqno);
78325f2d
BW
1427 }
1428 }
024a43e1 1429
a1444b79
BW
1430 /* If num_dwords was rounded, make sure the tail pointer is correct */
1431 if (num_rings % 2 == 0)
1432 intel_ring_emit(signaller, MI_NOOP);
1433
024a43e1 1434 return 0;
1ec14ad3
CW
1435}
1436
c8c99b0f
BW
1437/**
1438 * gen6_add_request - Update the semaphore mailbox registers
ee044a88
JH
1439 *
1440 * @request - request to write to the ring
c8c99b0f
BW
1441 *
1442 * Update the mailbox registers in the *other* rings with the current seqno.
1443 * This acts like a signal in the canonical semaphore.
1444 */
1ec14ad3 1445static int
ee044a88 1446gen6_add_request(struct drm_i915_gem_request *req)
1ec14ad3 1447{
4a570db5 1448 struct intel_engine_cs *engine = req->engine;
024a43e1 1449 int ret;
52ed2325 1450
e2f80391
TU
1451 if (engine->semaphore.signal)
1452 ret = engine->semaphore.signal(req, 4);
707d9cf9 1453 else
5fb9de1a 1454 ret = intel_ring_begin(req, 4);
707d9cf9 1455
1ec14ad3
CW
1456 if (ret)
1457 return ret;
1458
e2f80391
TU
1459 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1460 intel_ring_emit(engine,
1461 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1b7744e7 1462 intel_ring_emit(engine, req->seqno);
e2f80391
TU
1463 intel_ring_emit(engine, MI_USER_INTERRUPT);
1464 __intel_ring_advance(engine);
1ec14ad3 1465
1ec14ad3
CW
1466 return 0;
1467}
1468
a58c01aa
CW
1469static int
1470gen8_render_add_request(struct drm_i915_gem_request *req)
1471{
1472 struct intel_engine_cs *engine = req->engine;
1473 int ret;
1474
1475 if (engine->semaphore.signal)
1476 ret = engine->semaphore.signal(req, 8);
1477 else
1478 ret = intel_ring_begin(req, 8);
1479 if (ret)
1480 return ret;
1481
1482 intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
1483 intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
1484 PIPE_CONTROL_CS_STALL |
1485 PIPE_CONTROL_QW_WRITE));
1486 intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
1487 intel_ring_emit(engine, 0);
1488 intel_ring_emit(engine, i915_gem_request_get_seqno(req));
1489 /* We're thrashing one dword of HWS. */
1490 intel_ring_emit(engine, 0);
1491 intel_ring_emit(engine, MI_USER_INTERRUPT);
1492 intel_ring_emit(engine, MI_NOOP);
1493 __intel_ring_advance(engine);
1494
1495 return 0;
1496}
1497
c033666a 1498static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
f72b3435
MK
1499 u32 seqno)
1500{
f72b3435
MK
1501 return dev_priv->last_seqno < seqno;
1502}
1503
c8c99b0f
BW
1504/**
1505 * intel_ring_sync - sync the waiter to the signaller on seqno
1506 *
1507 * @waiter - ring that is waiting
1508 * @signaller - ring which has, or will signal
1509 * @seqno - seqno which the waiter will block on
1510 */
5ee426ca
BW
1511
1512static int
599d924c 1513gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
5ee426ca
BW
1514 struct intel_engine_cs *signaller,
1515 u32 seqno)
1516{
4a570db5 1517 struct intel_engine_cs *waiter = waiter_req->engine;
c033666a 1518 struct drm_i915_private *dev_priv = waiter_req->i915;
c38c651b 1519 u64 offset = GEN8_WAIT_OFFSET(waiter, signaller->id);
6ef48d7f 1520 struct i915_hw_ppgtt *ppgtt;
5ee426ca
BW
1521 int ret;
1522
5fb9de1a 1523 ret = intel_ring_begin(waiter_req, 4);
5ee426ca
BW
1524 if (ret)
1525 return ret;
1526
1527 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1528 MI_SEMAPHORE_GLOBAL_GTT |
1529 MI_SEMAPHORE_SAD_GTE_SDD);
1530 intel_ring_emit(waiter, seqno);
c38c651b
TU
1531 intel_ring_emit(waiter, lower_32_bits(offset));
1532 intel_ring_emit(waiter, upper_32_bits(offset));
5ee426ca 1533 intel_ring_advance(waiter);
6ef48d7f
CW
1534
1535 /* When the !RCS engines idle waiting upon a semaphore, they lose their
1536 * pagetables and we must reload them before executing the batch.
1537 * We do this on the i915_switch_context() following the wait and
1538 * before the dispatch.
1539 */
1540 ppgtt = waiter_req->ctx->ppgtt;
1541 if (ppgtt && waiter_req->engine->id != RCS)
1542 ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
5ee426ca
BW
1543 return 0;
1544}
1545
c8c99b0f 1546static int
599d924c 1547gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
a4872ba6 1548 struct intel_engine_cs *signaller,
686cb5f9 1549 u32 seqno)
1ec14ad3 1550{
4a570db5 1551 struct intel_engine_cs *waiter = waiter_req->engine;
c8c99b0f
BW
1552 u32 dw1 = MI_SEMAPHORE_MBOX |
1553 MI_SEMAPHORE_COMPARE |
1554 MI_SEMAPHORE_REGISTER;
ebc348b2
BW
1555 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1556 int ret;
1ec14ad3 1557
1500f7ea
BW
1558 /* Throughout all of the GEM code, seqno passed implies our current
1559 * seqno is >= the last seqno executed. However for hardware the
1560 * comparison is strictly greater than.
1561 */
1562 seqno -= 1;
1563
ebc348b2 1564 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
686cb5f9 1565
5fb9de1a 1566 ret = intel_ring_begin(waiter_req, 4);
1ec14ad3
CW
1567 if (ret)
1568 return ret;
1569
f72b3435 1570 /* If seqno wrap happened, omit the wait with no-ops */
c033666a 1571 if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
ebc348b2 1572 intel_ring_emit(waiter, dw1 | wait_mbox);
f72b3435
MK
1573 intel_ring_emit(waiter, seqno);
1574 intel_ring_emit(waiter, 0);
1575 intel_ring_emit(waiter, MI_NOOP);
1576 } else {
1577 intel_ring_emit(waiter, MI_NOOP);
1578 intel_ring_emit(waiter, MI_NOOP);
1579 intel_ring_emit(waiter, MI_NOOP);
1580 intel_ring_emit(waiter, MI_NOOP);
1581 }
c8c99b0f 1582 intel_ring_advance(waiter);
1ec14ad3
CW
1583
1584 return 0;
1585}
1586
f8973c21
CW
1587static void
1588gen5_seqno_barrier(struct intel_engine_cs *ring)
c6df541c 1589{
f8973c21
CW
1590 /* MI_STORE are internally buffered by the GPU and not flushed
1591 * either by MI_FLUSH or SyncFlush or any other combination of
1592 * MI commands.
c6df541c 1593 *
f8973c21
CW
1594 * "Only the submission of the store operation is guaranteed.
1595 * The write result will be complete (coherent) some time later
1596 * (this is practically a finite period but there is no guaranteed
1597 * latency)."
1598 *
1599 * Empirically, we observe that we need a delay of at least 75us to
1600 * be sure that the seqno write is visible by the CPU.
c6df541c 1601 */
f8973c21 1602 usleep_range(125, 250);
c6df541c
CW
1603}
1604
c04e0f3b
CW
1605static void
1606gen6_seqno_barrier(struct intel_engine_cs *engine)
4cd53c0c 1607{
c033666a 1608 struct drm_i915_private *dev_priv = engine->i915;
bcbdb6d0 1609
4cd53c0c
DV
1610 /* Workaround to force correct ordering between irq and seqno writes on
1611 * ivb (and maybe also on snb) by reading from a CS register (like
9b9ed309
CW
1612 * ACTHD) before reading the status page.
1613 *
1614 * Note that this effectively stalls the read by the time it takes to
1615 * do a memory transaction, which more or less ensures that the write
1616 * from the GPU has sufficient time to invalidate the CPU cacheline.
1617 * Alternatively we could delay the interrupt from the CS ring to give
1618 * the write time to land, but that would incur a delay after every
1619 * batch i.e. much more frequent than a delay when waiting for the
1620 * interrupt (with the same net latency).
bcbdb6d0
CW
1621 *
1622 * Also note that to prevent whole machine hangs on gen7, we have to
1623 * take the spinlock to guard against concurrent cacheline access.
9b9ed309 1624 */
bcbdb6d0 1625 spin_lock_irq(&dev_priv->uncore.lock);
c04e0f3b 1626 POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
bcbdb6d0 1627 spin_unlock_irq(&dev_priv->uncore.lock);
4cd53c0c
DV
1628}
1629
31bb59cc
CW
1630static void
1631gen5_irq_enable(struct intel_engine_cs *engine)
e48d8634 1632{
31bb59cc 1633 gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
e48d8634
DV
1634}
1635
1636static void
31bb59cc 1637gen5_irq_disable(struct intel_engine_cs *engine)
e48d8634 1638{
31bb59cc 1639 gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
e48d8634
DV
1640}
1641
31bb59cc
CW
1642static void
1643i9xx_irq_enable(struct intel_engine_cs *engine)
62fdfeaf 1644{
c033666a 1645 struct drm_i915_private *dev_priv = engine->i915;
b13c2b96 1646
31bb59cc
CW
1647 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1648 I915_WRITE(IMR, dev_priv->irq_mask);
1649 POSTING_READ_FW(RING_IMR(engine->mmio_base));
62fdfeaf
EA
1650}
1651
8187a2b7 1652static void
31bb59cc 1653i9xx_irq_disable(struct intel_engine_cs *engine)
62fdfeaf 1654{
c033666a 1655 struct drm_i915_private *dev_priv = engine->i915;
62fdfeaf 1656
31bb59cc
CW
1657 dev_priv->irq_mask |= engine->irq_enable_mask;
1658 I915_WRITE(IMR, dev_priv->irq_mask);
62fdfeaf
EA
1659}
1660
31bb59cc
CW
1661static void
1662i8xx_irq_enable(struct intel_engine_cs *engine)
c2798b19 1663{
c033666a 1664 struct drm_i915_private *dev_priv = engine->i915;
c2798b19 1665
31bb59cc
CW
1666 dev_priv->irq_mask &= ~engine->irq_enable_mask;
1667 I915_WRITE16(IMR, dev_priv->irq_mask);
1668 POSTING_READ16(RING_IMR(engine->mmio_base));
c2798b19
CW
1669}
1670
1671static void
31bb59cc 1672i8xx_irq_disable(struct intel_engine_cs *engine)
c2798b19 1673{
c033666a 1674 struct drm_i915_private *dev_priv = engine->i915;
c2798b19 1675
31bb59cc
CW
1676 dev_priv->irq_mask |= engine->irq_enable_mask;
1677 I915_WRITE16(IMR, dev_priv->irq_mask);
c2798b19
CW
1678}
1679
b72f3acb 1680static int
a84c3ae1 1681bsd_ring_flush(struct drm_i915_gem_request *req,
78501eac
CW
1682 u32 invalidate_domains,
1683 u32 flush_domains)
d1b851fc 1684{
4a570db5 1685 struct intel_engine_cs *engine = req->engine;
b72f3acb
CW
1686 int ret;
1687
5fb9de1a 1688 ret = intel_ring_begin(req, 2);
b72f3acb
CW
1689 if (ret)
1690 return ret;
1691
e2f80391
TU
1692 intel_ring_emit(engine, MI_FLUSH);
1693 intel_ring_emit(engine, MI_NOOP);
1694 intel_ring_advance(engine);
b72f3acb 1695 return 0;
d1b851fc
ZN
1696}
1697
3cce469c 1698static int
ee044a88 1699i9xx_add_request(struct drm_i915_gem_request *req)
d1b851fc 1700{
4a570db5 1701 struct intel_engine_cs *engine = req->engine;
3cce469c
CW
1702 int ret;
1703
5fb9de1a 1704 ret = intel_ring_begin(req, 4);
3cce469c
CW
1705 if (ret)
1706 return ret;
6f392d54 1707
e2f80391
TU
1708 intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
1709 intel_ring_emit(engine,
1710 I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1b7744e7 1711 intel_ring_emit(engine, req->seqno);
e2f80391
TU
1712 intel_ring_emit(engine, MI_USER_INTERRUPT);
1713 __intel_ring_advance(engine);
d1b851fc 1714
3cce469c 1715 return 0;
d1b851fc
ZN
1716}
1717
31bb59cc
CW
1718static void
1719gen6_irq_enable(struct intel_engine_cs *engine)
0f46832f 1720{
c033666a 1721 struct drm_i915_private *dev_priv = engine->i915;
0f46832f 1722
61ff75ac
CW
1723 I915_WRITE_IMR(engine,
1724 ~(engine->irq_enable_mask |
1725 engine->irq_keep_mask));
31bb59cc 1726 gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
0f46832f
CW
1727}
1728
1729static void
31bb59cc 1730gen6_irq_disable(struct intel_engine_cs *engine)
0f46832f 1731{
c033666a 1732 struct drm_i915_private *dev_priv = engine->i915;
0f46832f 1733
61ff75ac 1734 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
31bb59cc 1735 gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
d1b851fc
ZN
1736}
1737
31bb59cc
CW
1738static void
1739hsw_vebox_irq_enable(struct intel_engine_cs *engine)
a19d2933 1740{
c033666a 1741 struct drm_i915_private *dev_priv = engine->i915;
a19d2933 1742
31bb59cc
CW
1743 I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1744 gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
a19d2933
BW
1745}
1746
1747static void
31bb59cc 1748hsw_vebox_irq_disable(struct intel_engine_cs *engine)
a19d2933 1749{
c033666a 1750 struct drm_i915_private *dev_priv = engine->i915;
a19d2933 1751
31bb59cc
CW
1752 I915_WRITE_IMR(engine, ~0);
1753 gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
a19d2933
BW
1754}
1755
31bb59cc
CW
1756static void
1757gen8_irq_enable(struct intel_engine_cs *engine)
abd58f01 1758{
c033666a 1759 struct drm_i915_private *dev_priv = engine->i915;
abd58f01 1760
61ff75ac
CW
1761 I915_WRITE_IMR(engine,
1762 ~(engine->irq_enable_mask |
1763 engine->irq_keep_mask));
31bb59cc 1764 POSTING_READ_FW(RING_IMR(engine->mmio_base));
abd58f01
BW
1765}
1766
1767static void
31bb59cc 1768gen8_irq_disable(struct intel_engine_cs *engine)
abd58f01 1769{
c033666a 1770 struct drm_i915_private *dev_priv = engine->i915;
abd58f01 1771
61ff75ac 1772 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
abd58f01
BW
1773}
1774
d1b851fc 1775static int
53fddaf7 1776i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
9bcb144c 1777 u64 offset, u32 length,
8e004efc 1778 unsigned dispatch_flags)
d1b851fc 1779{
4a570db5 1780 struct intel_engine_cs *engine = req->engine;
e1f99ce6 1781 int ret;
78501eac 1782
5fb9de1a 1783 ret = intel_ring_begin(req, 2);
e1f99ce6
CW
1784 if (ret)
1785 return ret;
1786
e2f80391 1787 intel_ring_emit(engine,
65f56876
CW
1788 MI_BATCH_BUFFER_START |
1789 MI_BATCH_GTT |
8e004efc
JH
1790 (dispatch_flags & I915_DISPATCH_SECURE ?
1791 0 : MI_BATCH_NON_SECURE_I965));
e2f80391
TU
1792 intel_ring_emit(engine, offset);
1793 intel_ring_advance(engine);
78501eac 1794
d1b851fc
ZN
1795 return 0;
1796}
1797
b45305fc
DV
1798/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1799#define I830_BATCH_LIMIT (256*1024)
c4d69da1
CW
1800#define I830_TLB_ENTRIES (2)
1801#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
8187a2b7 1802static int
53fddaf7 1803i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
8e004efc
JH
1804 u64 offset, u32 len,
1805 unsigned dispatch_flags)
62fdfeaf 1806{
4a570db5 1807 struct intel_engine_cs *engine = req->engine;
e2f80391 1808 u32 cs_offset = engine->scratch.gtt_offset;
c4e7a414 1809 int ret;
62fdfeaf 1810
5fb9de1a 1811 ret = intel_ring_begin(req, 6);
c4d69da1
CW
1812 if (ret)
1813 return ret;
62fdfeaf 1814
c4d69da1 1815 /* Evict the invalid PTE TLBs */
e2f80391
TU
1816 intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1817 intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1818 intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1819 intel_ring_emit(engine, cs_offset);
1820 intel_ring_emit(engine, 0xdeadbeef);
1821 intel_ring_emit(engine, MI_NOOP);
1822 intel_ring_advance(engine);
b45305fc 1823
8e004efc 1824 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
b45305fc
DV
1825 if (len > I830_BATCH_LIMIT)
1826 return -ENOSPC;
1827
5fb9de1a 1828 ret = intel_ring_begin(req, 6 + 2);
b45305fc
DV
1829 if (ret)
1830 return ret;
c4d69da1
CW
1831
1832 /* Blit the batch (which has now all relocs applied) to the
1833 * stable batch scratch bo area (so that the CS never
1834 * stumbles over its tlb invalidation bug) ...
1835 */
e2f80391
TU
1836 intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1837 intel_ring_emit(engine,
1838 BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1839 intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1840 intel_ring_emit(engine, cs_offset);
1841 intel_ring_emit(engine, 4096);
1842 intel_ring_emit(engine, offset);
1843
1844 intel_ring_emit(engine, MI_FLUSH);
1845 intel_ring_emit(engine, MI_NOOP);
1846 intel_ring_advance(engine);
b45305fc
DV
1847
1848 /* ... and execute it. */
c4d69da1 1849 offset = cs_offset;
b45305fc 1850 }
e1f99ce6 1851
9d611c03 1852 ret = intel_ring_begin(req, 2);
c4d69da1
CW
1853 if (ret)
1854 return ret;
1855
e2f80391
TU
1856 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1857 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1858 0 : MI_BATCH_NON_SECURE));
1859 intel_ring_advance(engine);
c4d69da1 1860
fb3256da
DV
1861 return 0;
1862}
1863
1864static int
53fddaf7 1865i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
9bcb144c 1866 u64 offset, u32 len,
8e004efc 1867 unsigned dispatch_flags)
fb3256da 1868{
4a570db5 1869 struct intel_engine_cs *engine = req->engine;
fb3256da
DV
1870 int ret;
1871
5fb9de1a 1872 ret = intel_ring_begin(req, 2);
fb3256da
DV
1873 if (ret)
1874 return ret;
1875
e2f80391
TU
1876 intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1877 intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1878 0 : MI_BATCH_NON_SECURE));
1879 intel_ring_advance(engine);
62fdfeaf 1880
62fdfeaf
EA
1881 return 0;
1882}
1883
0bc40be8 1884static void cleanup_phys_status_page(struct intel_engine_cs *engine)
7d3fdfff 1885{
c033666a 1886 struct drm_i915_private *dev_priv = engine->i915;
7d3fdfff
VS
1887
1888 if (!dev_priv->status_page_dmah)
1889 return;
1890
91c8a326 1891 drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
0bc40be8 1892 engine->status_page.page_addr = NULL;
7d3fdfff
VS
1893}
1894
0bc40be8 1895static void cleanup_status_page(struct intel_engine_cs *engine)
62fdfeaf 1896{
05394f39 1897 struct drm_i915_gem_object *obj;
62fdfeaf 1898
0bc40be8 1899 obj = engine->status_page.obj;
8187a2b7 1900 if (obj == NULL)
62fdfeaf 1901 return;
62fdfeaf 1902
9da3da66 1903 kunmap(sg_page(obj->pages->sgl));
d7f46fc4 1904 i915_gem_object_ggtt_unpin(obj);
05394f39 1905 drm_gem_object_unreference(&obj->base);
0bc40be8 1906 engine->status_page.obj = NULL;
62fdfeaf
EA
1907}
1908
0bc40be8 1909static int init_status_page(struct intel_engine_cs *engine)
62fdfeaf 1910{
0bc40be8 1911 struct drm_i915_gem_object *obj = engine->status_page.obj;
62fdfeaf 1912
7d3fdfff 1913 if (obj == NULL) {
1f767e02 1914 unsigned flags;
e3efda49 1915 int ret;
e4ffd173 1916
91c8a326 1917 obj = i915_gem_object_create(&engine->i915->drm, 4096);
fe3db79b 1918 if (IS_ERR(obj)) {
e3efda49 1919 DRM_ERROR("Failed to allocate status page\n");
fe3db79b 1920 return PTR_ERR(obj);
e3efda49 1921 }
62fdfeaf 1922
e3efda49
CW
1923 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1924 if (ret)
1925 goto err_unref;
1926
1f767e02 1927 flags = 0;
c033666a 1928 if (!HAS_LLC(engine->i915))
1f767e02
CW
1929 /* On g33, we cannot place HWS above 256MiB, so
1930 * restrict its pinning to the low mappable arena.
1931 * Though this restriction is not documented for
1932 * gen4, gen5, or byt, they also behave similarly
1933 * and hang if the HWS is placed at the top of the
1934 * GTT. To generalise, it appears that all !llc
1935 * platforms have issues with us placing the HWS
1936 * above the mappable region (even though we never
1937 * actualy map it).
1938 */
1939 flags |= PIN_MAPPABLE;
1940 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
e3efda49
CW
1941 if (ret) {
1942err_unref:
1943 drm_gem_object_unreference(&obj->base);
1944 return ret;
1945 }
1946
0bc40be8 1947 engine->status_page.obj = obj;
e3efda49 1948 }
62fdfeaf 1949
0bc40be8
TU
1950 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1951 engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1952 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
62fdfeaf 1953
8187a2b7 1954 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
0bc40be8 1955 engine->name, engine->status_page.gfx_addr);
62fdfeaf
EA
1956
1957 return 0;
62fdfeaf
EA
1958}
1959
0bc40be8 1960static int init_phys_status_page(struct intel_engine_cs *engine)
6b8294a4 1961{
c033666a 1962 struct drm_i915_private *dev_priv = engine->i915;
6b8294a4
CW
1963
1964 if (!dev_priv->status_page_dmah) {
1965 dev_priv->status_page_dmah =
91c8a326 1966 drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
6b8294a4
CW
1967 if (!dev_priv->status_page_dmah)
1968 return -ENOMEM;
1969 }
1970
0bc40be8
TU
1971 engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1972 memset(engine->status_page.page_addr, 0, PAGE_SIZE);
6b8294a4
CW
1973
1974 return 0;
1975}
1976
7ba717cf 1977void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2919d291 1978{
3d77e9be
CW
1979 GEM_BUG_ON(ringbuf->vma == NULL);
1980 GEM_BUG_ON(ringbuf->virtual_start == NULL);
1981
def0c5f6 1982 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
0a798eb9 1983 i915_gem_object_unpin_map(ringbuf->obj);
def0c5f6 1984 else
3d77e9be 1985 i915_vma_unpin_iomap(ringbuf->vma);
8305216f 1986 ringbuf->virtual_start = NULL;
3d77e9be 1987
2919d291 1988 i915_gem_object_ggtt_unpin(ringbuf->obj);
3d77e9be 1989 ringbuf->vma = NULL;
7ba717cf
TD
1990}
1991
c033666a 1992int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
7ba717cf
TD
1993 struct intel_ringbuffer *ringbuf)
1994{
7ba717cf 1995 struct drm_i915_gem_object *obj = ringbuf->obj;
a687a43a
CW
1996 /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1997 unsigned flags = PIN_OFFSET_BIAS | 4096;
8305216f 1998 void *addr;
7ba717cf
TD
1999 int ret;
2000
def0c5f6 2001 if (HAS_LLC(dev_priv) && !obj->stolen) {
a687a43a 2002 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
def0c5f6
CW
2003 if (ret)
2004 return ret;
7ba717cf 2005
def0c5f6 2006 ret = i915_gem_object_set_to_cpu_domain(obj, true);
d2cad535
CW
2007 if (ret)
2008 goto err_unpin;
def0c5f6 2009
8305216f
DG
2010 addr = i915_gem_object_pin_map(obj);
2011 if (IS_ERR(addr)) {
2012 ret = PTR_ERR(addr);
d2cad535 2013 goto err_unpin;
def0c5f6
CW
2014 }
2015 } else {
a687a43a
CW
2016 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2017 flags | PIN_MAPPABLE);
def0c5f6
CW
2018 if (ret)
2019 return ret;
7ba717cf 2020
def0c5f6 2021 ret = i915_gem_object_set_to_gtt_domain(obj, true);
d2cad535
CW
2022 if (ret)
2023 goto err_unpin;
def0c5f6 2024
ff3dc087
DCS
2025 /* Access through the GTT requires the device to be awake. */
2026 assert_rpm_wakelock_held(dev_priv);
2027
3d77e9be
CW
2028 addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
2029 if (IS_ERR(addr)) {
2030 ret = PTR_ERR(addr);
d2cad535 2031 goto err_unpin;
def0c5f6 2032 }
7ba717cf
TD
2033 }
2034
8305216f 2035 ringbuf->virtual_start = addr;
0eb973d3 2036 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
7ba717cf 2037 return 0;
d2cad535
CW
2038
2039err_unpin:
2040 i915_gem_object_ggtt_unpin(obj);
2041 return ret;
7ba717cf
TD
2042}
2043
01101fa7 2044static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
7ba717cf 2045{
2919d291
OM
2046 drm_gem_object_unreference(&ringbuf->obj->base);
2047 ringbuf->obj = NULL;
2048}
2049
01101fa7
CW
2050static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2051 struct intel_ringbuffer *ringbuf)
62fdfeaf 2052{
05394f39 2053 struct drm_i915_gem_object *obj;
62fdfeaf 2054
ebc052e0
CW
2055 obj = NULL;
2056 if (!HAS_LLC(dev))
93b0a4e0 2057 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
ebc052e0 2058 if (obj == NULL)
d37cd8a8 2059 obj = i915_gem_object_create(dev, ringbuf->size);
fe3db79b
CW
2060 if (IS_ERR(obj))
2061 return PTR_ERR(obj);
8187a2b7 2062
24f3a8cf
AG
2063 /* mark ring buffers as read-only from GPU side by default */
2064 obj->gt_ro = 1;
2065
93b0a4e0 2066 ringbuf->obj = obj;
e3efda49 2067
7ba717cf 2068 return 0;
e3efda49
CW
2069}
2070
01101fa7
CW
2071struct intel_ringbuffer *
2072intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2073{
2074 struct intel_ringbuffer *ring;
2075 int ret;
2076
2077 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
608c1a52
CW
2078 if (ring == NULL) {
2079 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2080 engine->name);
01101fa7 2081 return ERR_PTR(-ENOMEM);
608c1a52 2082 }
01101fa7 2083
4a570db5 2084 ring->engine = engine;
608c1a52 2085 list_add(&ring->link, &engine->buffers);
01101fa7
CW
2086
2087 ring->size = size;
2088 /* Workaround an erratum on the i830 which causes a hang if
2089 * the TAIL pointer points to within the last 2 cachelines
2090 * of the buffer.
2091 */
2092 ring->effective_size = size;
c033666a 2093 if (IS_I830(engine->i915) || IS_845G(engine->i915))
01101fa7
CW
2094 ring->effective_size -= 2 * CACHELINE_BYTES;
2095
2096 ring->last_retired_head = -1;
2097 intel_ring_update_space(ring);
2098
91c8a326 2099 ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
01101fa7 2100 if (ret) {
608c1a52
CW
2101 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2102 engine->name, ret);
2103 list_del(&ring->link);
01101fa7
CW
2104 kfree(ring);
2105 return ERR_PTR(ret);
2106 }
2107
2108 return ring;
2109}
2110
2111void
2112intel_ringbuffer_free(struct intel_ringbuffer *ring)
2113{
2114 intel_destroy_ringbuffer_obj(ring);
608c1a52 2115 list_del(&ring->link);
01101fa7
CW
2116 kfree(ring);
2117}
2118
0cb26a8e
CW
2119static int intel_ring_context_pin(struct i915_gem_context *ctx,
2120 struct intel_engine_cs *engine)
2121{
2122 struct intel_context *ce = &ctx->engine[engine->id];
2123 int ret;
2124
91c8a326 2125 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
0cb26a8e
CW
2126
2127 if (ce->pin_count++)
2128 return 0;
2129
2130 if (ce->state) {
2131 ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
2132 if (ret)
2133 goto error;
2134 }
2135
c7c3c07d
CW
2136 /* The kernel context is only used as a placeholder for flushing the
2137 * active context. It is never used for submitting user rendering and
2138 * as such never requires the golden render context, and so we can skip
2139 * emitting it when we switch to the kernel context. This is required
2140 * as during eviction we cannot allocate and pin the renderstate in
2141 * order to initialise the context.
2142 */
2143 if (ctx == ctx->i915->kernel_context)
2144 ce->initialised = true;
2145
0cb26a8e
CW
2146 i915_gem_context_reference(ctx);
2147 return 0;
2148
2149error:
2150 ce->pin_count = 0;
2151 return ret;
2152}
2153
2154static void intel_ring_context_unpin(struct i915_gem_context *ctx,
2155 struct intel_engine_cs *engine)
2156{
2157 struct intel_context *ce = &ctx->engine[engine->id];
2158
91c8a326 2159 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
0cb26a8e
CW
2160
2161 if (--ce->pin_count)
2162 return;
2163
2164 if (ce->state)
2165 i915_gem_object_ggtt_unpin(ce->state);
2166
2167 i915_gem_context_unreference(ctx);
2168}
2169
e3efda49 2170static int intel_init_ring_buffer(struct drm_device *dev,
0bc40be8 2171 struct intel_engine_cs *engine)
e3efda49 2172{
c033666a 2173 struct drm_i915_private *dev_priv = to_i915(dev);
bfc882b4 2174 struct intel_ringbuffer *ringbuf;
e3efda49
CW
2175 int ret;
2176
0bc40be8 2177 WARN_ON(engine->buffer);
bfc882b4 2178
c033666a 2179 engine->i915 = dev_priv;
0bc40be8
TU
2180 INIT_LIST_HEAD(&engine->active_list);
2181 INIT_LIST_HEAD(&engine->request_list);
2182 INIT_LIST_HEAD(&engine->execlist_queue);
2183 INIT_LIST_HEAD(&engine->buffers);
2184 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2185 memset(engine->semaphore.sync_seqno, 0,
2186 sizeof(engine->semaphore.sync_seqno));
e3efda49 2187
688e6c72
CW
2188 ret = intel_engine_init_breadcrumbs(engine);
2189 if (ret)
2190 goto error;
e3efda49 2191
0cb26a8e
CW
2192 /* We may need to do things with the shrinker which
2193 * require us to immediately switch back to the default
2194 * context. This can cause a problem as pinning the
2195 * default context also requires GTT space which may not
2196 * be available. To avoid this we always pin the default
2197 * context.
2198 */
2199 ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2200 if (ret)
2201 goto error;
2202
0bc40be8 2203 ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
b0366a54
DG
2204 if (IS_ERR(ringbuf)) {
2205 ret = PTR_ERR(ringbuf);
2206 goto error;
2207 }
0bc40be8 2208 engine->buffer = ringbuf;
01101fa7 2209
c033666a 2210 if (I915_NEED_GFX_HWS(dev_priv)) {
0bc40be8 2211 ret = init_status_page(engine);
e3efda49 2212 if (ret)
8ee14975 2213 goto error;
e3efda49 2214 } else {
0bc40be8
TU
2215 WARN_ON(engine->id != RCS);
2216 ret = init_phys_status_page(engine);
e3efda49 2217 if (ret)
8ee14975 2218 goto error;
e3efda49
CW
2219 }
2220
c033666a 2221 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
bfc882b4
DV
2222 if (ret) {
2223 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2224 engine->name, ret);
bfc882b4
DV
2225 intel_destroy_ringbuffer_obj(ringbuf);
2226 goto error;
e3efda49 2227 }
62fdfeaf 2228
0bc40be8 2229 ret = i915_cmd_parser_init_ring(engine);
44e895a8 2230 if (ret)
8ee14975
OM
2231 goto error;
2232
8ee14975 2233 return 0;
351e3db2 2234
8ee14975 2235error:
117897f4 2236 intel_cleanup_engine(engine);
8ee14975 2237 return ret;
62fdfeaf
EA
2238}
2239
117897f4 2240void intel_cleanup_engine(struct intel_engine_cs *engine)
62fdfeaf 2241{
6402c330 2242 struct drm_i915_private *dev_priv;
33626e6a 2243
117897f4 2244 if (!intel_engine_initialized(engine))
62fdfeaf
EA
2245 return;
2246
c033666a 2247 dev_priv = engine->i915;
6402c330 2248
0bc40be8 2249 if (engine->buffer) {
117897f4 2250 intel_stop_engine(engine);
c033666a 2251 WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
33626e6a 2252
0bc40be8
TU
2253 intel_unpin_ringbuffer_obj(engine->buffer);
2254 intel_ringbuffer_free(engine->buffer);
2255 engine->buffer = NULL;
b0366a54 2256 }
78501eac 2257
0bc40be8
TU
2258 if (engine->cleanup)
2259 engine->cleanup(engine);
8d19215b 2260
c033666a 2261 if (I915_NEED_GFX_HWS(dev_priv)) {
0bc40be8 2262 cleanup_status_page(engine);
7d3fdfff 2263 } else {
0bc40be8
TU
2264 WARN_ON(engine->id != RCS);
2265 cleanup_phys_status_page(engine);
7d3fdfff 2266 }
44e895a8 2267
0bc40be8
TU
2268 i915_cmd_parser_fini_ring(engine);
2269 i915_gem_batch_pool_fini(&engine->batch_pool);
688e6c72 2270 intel_engine_fini_breadcrumbs(engine);
0cb26a8e
CW
2271
2272 intel_ring_context_unpin(dev_priv->kernel_context, engine);
2273
c033666a 2274 engine->i915 = NULL;
62fdfeaf
EA
2275}
2276
666796da 2277int intel_engine_idle(struct intel_engine_cs *engine)
3e960501 2278{
a4b3a571 2279 struct drm_i915_gem_request *req;
3e960501 2280
3e960501 2281 /* Wait upon the last request to be completed */
0bc40be8 2282 if (list_empty(&engine->request_list))
3e960501
CW
2283 return 0;
2284
0bc40be8
TU
2285 req = list_entry(engine->request_list.prev,
2286 struct drm_i915_gem_request,
2287 list);
b4716185
CW
2288
2289 /* Make sure we do not trigger any retires */
2290 return __i915_wait_request(req,
c19ae989 2291 req->i915->mm.interruptible,
b4716185 2292 NULL, NULL);
3e960501
CW
2293}
2294
6689cb2b 2295int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
9d773091 2296{
6310346e
CW
2297 int ret;
2298
2299 /* Flush enough space to reduce the likelihood of waiting after
2300 * we start building the request - in which case we will just
2301 * have to repeat work.
2302 */
a0442461 2303 request->reserved_space += LEGACY_REQUEST_SIZE;
6310346e 2304
4a570db5 2305 request->ringbuf = request->engine->buffer;
6310346e
CW
2306
2307 ret = intel_ring_begin(request, 0);
2308 if (ret)
2309 return ret;
2310
a0442461 2311 request->reserved_space -= LEGACY_REQUEST_SIZE;
6310346e 2312 return 0;
9d773091
CW
2313}
2314
987046ad
CW
2315static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2316{
2317 struct intel_ringbuffer *ringbuf = req->ringbuf;
2318 struct intel_engine_cs *engine = req->engine;
2319 struct drm_i915_gem_request *target;
2320
2321 intel_ring_update_space(ringbuf);
2322 if (ringbuf->space >= bytes)
2323 return 0;
2324
2325 /*
2326 * Space is reserved in the ringbuffer for finalising the request,
2327 * as that cannot be allowed to fail. During request finalisation,
2328 * reserved_space is set to 0 to stop the overallocation and the
2329 * assumption is that then we never need to wait (which has the
2330 * risk of failing with EINTR).
2331 *
2332 * See also i915_gem_request_alloc() and i915_add_request().
2333 */
0251a963 2334 GEM_BUG_ON(!req->reserved_space);
987046ad
CW
2335
2336 list_for_each_entry(target, &engine->request_list, list) {
2337 unsigned space;
2338
79bbcc29 2339 /*
987046ad
CW
2340 * The request queue is per-engine, so can contain requests
2341 * from multiple ringbuffers. Here, we must ignore any that
2342 * aren't from the ringbuffer we're considering.
79bbcc29 2343 */
987046ad
CW
2344 if (target->ringbuf != ringbuf)
2345 continue;
2346
2347 /* Would completion of this request free enough space? */
2348 space = __intel_ring_space(target->postfix, ringbuf->tail,
2349 ringbuf->size);
2350 if (space >= bytes)
2351 break;
79bbcc29 2352 }
29b1b415 2353
987046ad
CW
2354 if (WARN_ON(&target->list == &engine->request_list))
2355 return -ENOSPC;
2356
2357 return i915_wait_request(target);
29b1b415
JH
2358}
2359
987046ad 2360int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
cbcc80df 2361{
987046ad 2362 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29 2363 int remain_actual = ringbuf->size - ringbuf->tail;
987046ad
CW
2364 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2365 int bytes = num_dwords * sizeof(u32);
2366 int total_bytes, wait_bytes;
79bbcc29 2367 bool need_wrap = false;
29b1b415 2368
0251a963 2369 total_bytes = bytes + req->reserved_space;
29b1b415 2370
79bbcc29
JH
2371 if (unlikely(bytes > remain_usable)) {
2372 /*
2373 * Not enough space for the basic request. So need to flush
2374 * out the remainder and then wait for base + reserved.
2375 */
2376 wait_bytes = remain_actual + total_bytes;
2377 need_wrap = true;
987046ad
CW
2378 } else if (unlikely(total_bytes > remain_usable)) {
2379 /*
2380 * The base request will fit but the reserved space
2381 * falls off the end. So we don't need an immediate wrap
2382 * and only need to effectively wait for the reserved
2383 * size space from the start of ringbuffer.
2384 */
0251a963 2385 wait_bytes = remain_actual + req->reserved_space;
79bbcc29 2386 } else {
987046ad
CW
2387 /* No wrapping required, just waiting. */
2388 wait_bytes = total_bytes;
cbcc80df
MK
2389 }
2390
987046ad
CW
2391 if (wait_bytes > ringbuf->space) {
2392 int ret = wait_for_space(req, wait_bytes);
cbcc80df
MK
2393 if (unlikely(ret))
2394 return ret;
79bbcc29 2395
987046ad 2396 intel_ring_update_space(ringbuf);
e075a32f
CW
2397 if (unlikely(ringbuf->space < wait_bytes))
2398 return -EAGAIN;
cbcc80df
MK
2399 }
2400
987046ad
CW
2401 if (unlikely(need_wrap)) {
2402 GEM_BUG_ON(remain_actual > ringbuf->space);
2403 GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
78501eac 2404
987046ad
CW
2405 /* Fill the tail with MI_NOOP */
2406 memset(ringbuf->virtual_start + ringbuf->tail,
2407 0, remain_actual);
2408 ringbuf->tail = 0;
2409 ringbuf->space -= remain_actual;
2410 }
304d695c 2411
987046ad
CW
2412 ringbuf->space -= bytes;
2413 GEM_BUG_ON(ringbuf->space < 0);
304d695c 2414 return 0;
8187a2b7 2415}
78501eac 2416
753b1ad4 2417/* Align the ring tail to a cacheline boundary */
bba09b12 2418int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
753b1ad4 2419{
4a570db5 2420 struct intel_engine_cs *engine = req->engine;
e2f80391 2421 int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
753b1ad4
VS
2422 int ret;
2423
2424 if (num_dwords == 0)
2425 return 0;
2426
18393f63 2427 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
5fb9de1a 2428 ret = intel_ring_begin(req, num_dwords);
753b1ad4
VS
2429 if (ret)
2430 return ret;
2431
2432 while (num_dwords--)
e2f80391 2433 intel_ring_emit(engine, MI_NOOP);
753b1ad4 2434
e2f80391 2435 intel_ring_advance(engine);
753b1ad4
VS
2436
2437 return 0;
2438}
2439
0bc40be8 2440void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
498d2ac1 2441{
c033666a 2442 struct drm_i915_private *dev_priv = engine->i915;
498d2ac1 2443
29dcb570
CW
2444 /* Our semaphore implementation is strictly monotonic (i.e. we proceed
2445 * so long as the semaphore value in the register/page is greater
2446 * than the sync value), so whenever we reset the seqno,
2447 * so long as we reset the tracking semaphore value to 0, it will
2448 * always be before the next request's seqno. If we don't reset
2449 * the semaphore value, then when the seqno moves backwards all
2450 * future waits will complete instantly (causing rendering corruption).
2451 */
7e22dbbb 2452 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
0bc40be8
TU
2453 I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
2454 I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
d04bce48 2455 if (HAS_VEBOX(dev_priv))
0bc40be8 2456 I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
e1f99ce6 2457 }
a058d934
CW
2458 if (dev_priv->semaphore_obj) {
2459 struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
2460 struct page *page = i915_gem_object_get_dirty_page(obj, 0);
2461 void *semaphores = kmap(page);
2462 memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
2463 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
2464 kunmap(page);
2465 }
29dcb570
CW
2466 memset(engine->semaphore.sync_seqno, 0,
2467 sizeof(engine->semaphore.sync_seqno));
d97ed339 2468
1b7744e7
CW
2469 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
2470 if (engine->irq_seqno_barrier)
2471 engine->irq_seqno_barrier(engine);
01347126 2472 engine->last_submitted_seqno = seqno;
29dcb570 2473
0bc40be8 2474 engine->hangcheck.seqno = seqno;
688e6c72
CW
2475
2476 /* After manually advancing the seqno, fake the interrupt in case
2477 * there are any waiters for that seqno.
2478 */
2479 rcu_read_lock();
2480 intel_engine_wakeup(engine);
2481 rcu_read_unlock();
8187a2b7 2482}
62fdfeaf 2483
0bc40be8 2484static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
297b0c5b 2485 u32 value)
881f47b6 2486{
c033666a 2487 struct drm_i915_private *dev_priv = engine->i915;
881f47b6 2488
76f8421f
CW
2489 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2490
881f47b6 2491 /* Every tail move must follow the sequence below */
12f55818
CW
2492
2493 /* Disable notification that the ring is IDLE. The GT
2494 * will then assume that it is busy and bring it out of rc6.
2495 */
76f8421f
CW
2496 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2497 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
12f55818
CW
2498
2499 /* Clear the context id. Here be magic! */
76f8421f 2500 I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
0206e353 2501
12f55818 2502 /* Wait for the ring not to be idle, i.e. for it to wake up. */
76f8421f
CW
2503 if (intel_wait_for_register_fw(dev_priv,
2504 GEN6_BSD_SLEEP_PSMI_CONTROL,
2505 GEN6_BSD_SLEEP_INDICATOR,
2506 0,
2507 50))
12f55818 2508 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
0206e353 2509
12f55818 2510 /* Now that the ring is fully powered up, update the tail */
76f8421f
CW
2511 I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
2512 POSTING_READ_FW(RING_TAIL(engine->mmio_base));
12f55818
CW
2513
2514 /* Let the ring send IDLE messages to the GT again,
2515 * and so let it sleep to conserve power when idle.
2516 */
76f8421f
CW
2517 I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2518 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2519
2520 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
881f47b6
XH
2521}
2522
a84c3ae1 2523static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
ea251324 2524 u32 invalidate, u32 flush)
881f47b6 2525{
4a570db5 2526 struct intel_engine_cs *engine = req->engine;
71a77e07 2527 uint32_t cmd;
b72f3acb
CW
2528 int ret;
2529
5fb9de1a 2530 ret = intel_ring_begin(req, 4);
b72f3acb
CW
2531 if (ret)
2532 return ret;
2533
71a77e07 2534 cmd = MI_FLUSH_DW;
c033666a 2535 if (INTEL_GEN(req->i915) >= 8)
075b3bba 2536 cmd += 1;
f0a1fb10
CW
2537
2538 /* We always require a command barrier so that subsequent
2539 * commands, such as breadcrumb interrupts, are strictly ordered
2540 * wrt the contents of the write cache being flushed to memory
2541 * (and thus being coherent from the CPU).
2542 */
2543 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2544
9a289771
JB
2545 /*
2546 * Bspec vol 1c.5 - video engine command streamer:
2547 * "If ENABLED, all TLBs will be invalidated once the flush
2548 * operation is complete. This bit is only valid when the
2549 * Post-Sync Operation field is a value of 1h or 3h."
2550 */
71a77e07 2551 if (invalidate & I915_GEM_GPU_DOMAINS)
f0a1fb10
CW
2552 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2553
e2f80391
TU
2554 intel_ring_emit(engine, cmd);
2555 intel_ring_emit(engine,
2556 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
c033666a 2557 if (INTEL_GEN(req->i915) >= 8) {
e2f80391
TU
2558 intel_ring_emit(engine, 0); /* upper addr */
2559 intel_ring_emit(engine, 0); /* value */
075b3bba 2560 } else {
e2f80391
TU
2561 intel_ring_emit(engine, 0);
2562 intel_ring_emit(engine, MI_NOOP);
075b3bba 2563 }
e2f80391 2564 intel_ring_advance(engine);
b72f3acb 2565 return 0;
881f47b6
XH
2566}
2567
1c7a0623 2568static int
53fddaf7 2569gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
9bcb144c 2570 u64 offset, u32 len,
8e004efc 2571 unsigned dispatch_flags)
1c7a0623 2572{
4a570db5 2573 struct intel_engine_cs *engine = req->engine;
e2f80391 2574 bool ppgtt = USES_PPGTT(engine->dev) &&
8e004efc 2575 !(dispatch_flags & I915_DISPATCH_SECURE);
1c7a0623
BW
2576 int ret;
2577
5fb9de1a 2578 ret = intel_ring_begin(req, 4);
1c7a0623
BW
2579 if (ret)
2580 return ret;
2581
2582 /* FIXME(BDW): Address space and security selectors. */
e2f80391 2583 intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
919032ec
AJ
2584 (dispatch_flags & I915_DISPATCH_RS ?
2585 MI_BATCH_RESOURCE_STREAMER : 0));
e2f80391
TU
2586 intel_ring_emit(engine, lower_32_bits(offset));
2587 intel_ring_emit(engine, upper_32_bits(offset));
2588 intel_ring_emit(engine, MI_NOOP);
2589 intel_ring_advance(engine);
1c7a0623
BW
2590
2591 return 0;
2592}
2593
d7d4eedd 2594static int
53fddaf7 2595hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
8e004efc
JH
2596 u64 offset, u32 len,
2597 unsigned dispatch_flags)
d7d4eedd 2598{
4a570db5 2599 struct intel_engine_cs *engine = req->engine;
d7d4eedd
CW
2600 int ret;
2601
5fb9de1a 2602 ret = intel_ring_begin(req, 2);
d7d4eedd
CW
2603 if (ret)
2604 return ret;
2605
e2f80391 2606 intel_ring_emit(engine,
77072258 2607 MI_BATCH_BUFFER_START |
8e004efc 2608 (dispatch_flags & I915_DISPATCH_SECURE ?
919032ec
AJ
2609 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2610 (dispatch_flags & I915_DISPATCH_RS ?
2611 MI_BATCH_RESOURCE_STREAMER : 0));
d7d4eedd 2612 /* bit0-7 is the length on GEN6+ */
e2f80391
TU
2613 intel_ring_emit(engine, offset);
2614 intel_ring_advance(engine);
d7d4eedd
CW
2615
2616 return 0;
2617}
2618
881f47b6 2619static int
53fddaf7 2620gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
9bcb144c 2621 u64 offset, u32 len,
8e004efc 2622 unsigned dispatch_flags)
881f47b6 2623{
4a570db5 2624 struct intel_engine_cs *engine = req->engine;
0206e353 2625 int ret;
ab6f8e32 2626
5fb9de1a 2627 ret = intel_ring_begin(req, 2);
0206e353
AJ
2628 if (ret)
2629 return ret;
e1f99ce6 2630
e2f80391 2631 intel_ring_emit(engine,
d7d4eedd 2632 MI_BATCH_BUFFER_START |
8e004efc
JH
2633 (dispatch_flags & I915_DISPATCH_SECURE ?
2634 0 : MI_BATCH_NON_SECURE_I965));
0206e353 2635 /* bit0-7 is the length on GEN6+ */
e2f80391
TU
2636 intel_ring_emit(engine, offset);
2637 intel_ring_advance(engine);
ab6f8e32 2638
0206e353 2639 return 0;
881f47b6
XH
2640}
2641
549f7365
CW
2642/* Blitter support (SandyBridge+) */
2643
a84c3ae1 2644static int gen6_ring_flush(struct drm_i915_gem_request *req,
ea251324 2645 u32 invalidate, u32 flush)
8d19215b 2646{
4a570db5 2647 struct intel_engine_cs *engine = req->engine;
71a77e07 2648 uint32_t cmd;
b72f3acb
CW
2649 int ret;
2650
5fb9de1a 2651 ret = intel_ring_begin(req, 4);
b72f3acb
CW
2652 if (ret)
2653 return ret;
2654
71a77e07 2655 cmd = MI_FLUSH_DW;
c033666a 2656 if (INTEL_GEN(req->i915) >= 8)
075b3bba 2657 cmd += 1;
f0a1fb10
CW
2658
2659 /* We always require a command barrier so that subsequent
2660 * commands, such as breadcrumb interrupts, are strictly ordered
2661 * wrt the contents of the write cache being flushed to memory
2662 * (and thus being coherent from the CPU).
2663 */
2664 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2665
9a289771
JB
2666 /*
2667 * Bspec vol 1c.3 - blitter engine command streamer:
2668 * "If ENABLED, all TLBs will be invalidated once the flush
2669 * operation is complete. This bit is only valid when the
2670 * Post-Sync Operation field is a value of 1h or 3h."
2671 */
71a77e07 2672 if (invalidate & I915_GEM_DOMAIN_RENDER)
f0a1fb10 2673 cmd |= MI_INVALIDATE_TLB;
e2f80391
TU
2674 intel_ring_emit(engine, cmd);
2675 intel_ring_emit(engine,
2676 I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
c033666a 2677 if (INTEL_GEN(req->i915) >= 8) {
e2f80391
TU
2678 intel_ring_emit(engine, 0); /* upper addr */
2679 intel_ring_emit(engine, 0); /* value */
075b3bba 2680 } else {
e2f80391
TU
2681 intel_ring_emit(engine, 0);
2682 intel_ring_emit(engine, MI_NOOP);
075b3bba 2683 }
e2f80391 2684 intel_ring_advance(engine);
fd3da6c9 2685
b72f3acb 2686 return 0;
8d19215b
ZN
2687}
2688
d9a64610
TU
2689static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2690 struct intel_engine_cs *engine)
2691{
db3d4019 2692 struct drm_i915_gem_object *obj;
1b9e6650 2693 int ret, i;
db3d4019
TU
2694
2695 if (!i915_semaphore_is_enabled(dev_priv))
2696 return;
2697
2698 if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
91c8a326 2699 obj = i915_gem_object_create(&dev_priv->drm, 4096);
db3d4019
TU
2700 if (IS_ERR(obj)) {
2701 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2702 i915.semaphores = 0;
2703 } else {
2704 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2705 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2706 if (ret != 0) {
2707 drm_gem_object_unreference(&obj->base);
2708 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2709 i915.semaphores = 0;
2710 } else {
2711 dev_priv->semaphore_obj = obj;
2712 }
2713 }
2714 }
2715
d9a64610
TU
2716 if (!i915_semaphore_is_enabled(dev_priv))
2717 return;
2718
2719 if (INTEL_GEN(dev_priv) >= 8) {
1b9e6650
TU
2720 u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
2721
d9a64610
TU
2722 engine->semaphore.sync_to = gen8_ring_sync;
2723 engine->semaphore.signal = gen8_xcs_signal;
1b9e6650
TU
2724
2725 for (i = 0; i < I915_NUM_ENGINES; i++) {
2726 u64 ring_offset;
2727
2728 if (i != engine->id)
2729 ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2730 else
2731 ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2732
2733 engine->semaphore.signal_ggtt[i] = ring_offset;
2734 }
d9a64610
TU
2735 } else if (INTEL_GEN(dev_priv) >= 6) {
2736 engine->semaphore.sync_to = gen6_ring_sync;
2737 engine->semaphore.signal = gen6_signal;
4b8e38a9
TU
2738
2739 /*
2740 * The current semaphore is only applied on pre-gen8
2741 * platform. And there is no VCS2 ring on the pre-gen8
2742 * platform. So the semaphore between RCS and VCS2 is
2743 * initialized as INVALID. Gen8 will initialize the
2744 * sema between VCS2 and RCS later.
2745 */
2746 for (i = 0; i < I915_NUM_ENGINES; i++) {
2747 static const struct {
2748 u32 wait_mbox;
2749 i915_reg_t mbox_reg;
2750 } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
2751 [RCS] = {
2752 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
2753 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
2754 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2755 },
2756 [VCS] = {
2757 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
2758 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
2759 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2760 },
2761 [BCS] = {
2762 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
2763 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
2764 [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2765 },
2766 [VECS] = {
2767 [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2768 [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2769 [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2770 },
2771 };
2772 u32 wait_mbox;
2773 i915_reg_t mbox_reg;
2774
2775 if (i == engine->id || i == VCS2) {
2776 wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2777 mbox_reg = GEN6_NOSYNC;
2778 } else {
2779 wait_mbox = sem_data[engine->id][i].wait_mbox;
2780 mbox_reg = sem_data[engine->id][i].mbox_reg;
2781 }
2782
2783 engine->semaphore.mbox.wait[i] = wait_mbox;
2784 engine->semaphore.mbox.signal[i] = mbox_reg;
2785 }
d9a64610
TU
2786 }
2787}
2788
ed003078
CW
2789static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2790 struct intel_engine_cs *engine)
2791{
2792 if (INTEL_GEN(dev_priv) >= 8) {
31bb59cc
CW
2793 engine->irq_enable = gen8_irq_enable;
2794 engine->irq_disable = gen8_irq_disable;
ed003078
CW
2795 engine->irq_seqno_barrier = gen6_seqno_barrier;
2796 } else if (INTEL_GEN(dev_priv) >= 6) {
31bb59cc
CW
2797 engine->irq_enable = gen6_irq_enable;
2798 engine->irq_disable = gen6_irq_disable;
ed003078
CW
2799 engine->irq_seqno_barrier = gen6_seqno_barrier;
2800 } else if (INTEL_GEN(dev_priv) >= 5) {
31bb59cc
CW
2801 engine->irq_enable = gen5_irq_enable;
2802 engine->irq_disable = gen5_irq_disable;
f8973c21 2803 engine->irq_seqno_barrier = gen5_seqno_barrier;
ed003078 2804 } else if (INTEL_GEN(dev_priv) >= 3) {
31bb59cc
CW
2805 engine->irq_enable = i9xx_irq_enable;
2806 engine->irq_disable = i9xx_irq_disable;
ed003078 2807 } else {
31bb59cc
CW
2808 engine->irq_enable = i8xx_irq_enable;
2809 engine->irq_disable = i8xx_irq_disable;
ed003078
CW
2810 }
2811}
2812
06a2fe22
TU
2813static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2814 struct intel_engine_cs *engine)
2815{
1d8a1337 2816 engine->init_hw = init_ring_common;
06a2fe22 2817 engine->write_tail = ring_write_tail;
7445a2a4 2818
6f7bef75
CW
2819 engine->add_request = i9xx_add_request;
2820 if (INTEL_GEN(dev_priv) >= 6)
960ecaad 2821 engine->add_request = gen6_add_request;
6f7bef75
CW
2822
2823 if (INTEL_GEN(dev_priv) >= 8)
2824 engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2825 else if (INTEL_GEN(dev_priv) >= 6)
960ecaad 2826 engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
6f7bef75 2827 else if (INTEL_GEN(dev_priv) >= 4)
960ecaad 2828 engine->dispatch_execbuffer = i965_dispatch_execbuffer;
6f7bef75
CW
2829 else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2830 engine->dispatch_execbuffer = i830_dispatch_execbuffer;
2831 else
2832 engine->dispatch_execbuffer = i915_dispatch_execbuffer;
b9700325 2833
ed003078 2834 intel_ring_init_irq(dev_priv, engine);
d9a64610 2835 intel_ring_init_semaphores(dev_priv, engine);
06a2fe22
TU
2836}
2837
5c1143bb
XH
2838int intel_init_render_ring_buffer(struct drm_device *dev)
2839{
fac5e23e 2840 struct drm_i915_private *dev_priv = to_i915(dev);
4a570db5 2841 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
3e78998a 2842 int ret;
5c1143bb 2843
e2f80391
TU
2844 engine->name = "render ring";
2845 engine->id = RCS;
2846 engine->exec_id = I915_EXEC_RENDER;
215a7e32 2847 engine->hw_id = 0;
e2f80391 2848 engine->mmio_base = RENDER_RING_BASE;
59465b5f 2849
06a2fe22
TU
2850 intel_ring_default_vfuncs(dev_priv, engine);
2851
f8973c21 2852 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
61ff75ac
CW
2853 if (HAS_L3_DPF(dev_priv))
2854 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
f8973c21 2855
c033666a 2856 if (INTEL_GEN(dev_priv) >= 8) {
e2f80391 2857 engine->init_context = intel_rcs_ctx_init;
a58c01aa 2858 engine->add_request = gen8_render_add_request;
e2f80391 2859 engine->flush = gen8_render_ring_flush;
db3d4019 2860 if (i915_semaphore_is_enabled(dev_priv))
e2f80391 2861 engine->semaphore.signal = gen8_rcs_signal;
c033666a 2862 } else if (INTEL_GEN(dev_priv) >= 6) {
e2f80391 2863 engine->init_context = intel_rcs_ctx_init;
e2f80391 2864 engine->flush = gen7_render_ring_flush;
c033666a 2865 if (IS_GEN6(dev_priv))
e2f80391 2866 engine->flush = gen6_render_ring_flush;
c033666a 2867 } else if (IS_GEN5(dev_priv)) {
e2f80391 2868 engine->flush = gen4_render_ring_flush;
59465b5f 2869 } else {
c033666a 2870 if (INTEL_GEN(dev_priv) < 4)
e2f80391 2871 engine->flush = gen2_render_ring_flush;
46f0f8d1 2872 else
e2f80391 2873 engine->flush = gen4_render_ring_flush;
e2f80391 2874 engine->irq_enable_mask = I915_USER_INTERRUPT;
1ec14ad3 2875 }
707d9cf9 2876
c033666a 2877 if (IS_HASWELL(dev_priv))
e2f80391 2878 engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
6f7bef75 2879
e2f80391
TU
2880 engine->init_hw = init_render_ring;
2881 engine->cleanup = render_ring_cleanup;
59465b5f 2882
e2f80391 2883 ret = intel_init_ring_buffer(dev, engine);
99be1dfe
DV
2884 if (ret)
2885 return ret;
2886
f8973c21 2887 if (INTEL_GEN(dev_priv) >= 6) {
7d5ea807
CW
2888 ret = intel_init_pipe_control(engine, 4096);
2889 if (ret)
2890 return ret;
2891 } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2892 ret = intel_init_pipe_control(engine, I830_WA_SIZE);
99be1dfe
DV
2893 if (ret)
2894 return ret;
2895 }
2896
2897 return 0;
5c1143bb
XH
2898}
2899
2900int intel_init_bsd_ring_buffer(struct drm_device *dev)
2901{
fac5e23e 2902 struct drm_i915_private *dev_priv = to_i915(dev);
4a570db5 2903 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
5c1143bb 2904
e2f80391
TU
2905 engine->name = "bsd ring";
2906 engine->id = VCS;
2907 engine->exec_id = I915_EXEC_BSD;
215a7e32 2908 engine->hw_id = 1;
58fa3835 2909
06a2fe22
TU
2910 intel_ring_default_vfuncs(dev_priv, engine);
2911
c033666a 2912 if (INTEL_GEN(dev_priv) >= 6) {
e2f80391 2913 engine->mmio_base = GEN6_BSD_RING_BASE;
0fd2c201 2914 /* gen6 bsd needs a special wa for tail updates */
c033666a 2915 if (IS_GEN6(dev_priv))
e2f80391
TU
2916 engine->write_tail = gen6_bsd_ring_write_tail;
2917 engine->flush = gen6_bsd_ring_flush;
8d228911 2918 if (INTEL_GEN(dev_priv) >= 8)
e2f80391 2919 engine->irq_enable_mask =
abd58f01 2920 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
8d228911 2921 else
e2f80391 2922 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
58fa3835 2923 } else {
e2f80391
TU
2924 engine->mmio_base = BSD_RING_BASE;
2925 engine->flush = bsd_ring_flush;
8d228911 2926 if (IS_GEN5(dev_priv))
e2f80391 2927 engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
8d228911 2928 else
e2f80391 2929 engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
58fa3835 2930 }
58fa3835 2931
e2f80391 2932 return intel_init_ring_buffer(dev, engine);
5c1143bb 2933}
549f7365 2934
845f74a7 2935/**
62659920 2936 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
845f74a7
ZY
2937 */
2938int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2939{
fac5e23e 2940 struct drm_i915_private *dev_priv = to_i915(dev);
4a570db5 2941 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
e2f80391
TU
2942
2943 engine->name = "bsd2 ring";
2944 engine->id = VCS2;
2945 engine->exec_id = I915_EXEC_BSD;
215a7e32 2946 engine->hw_id = 4;
e2f80391 2947 engine->mmio_base = GEN8_BSD2_RING_BASE;
06a2fe22
TU
2948
2949 intel_ring_default_vfuncs(dev_priv, engine);
2950
e2f80391 2951 engine->flush = gen6_bsd_ring_flush;
e2f80391 2952 engine->irq_enable_mask =
845f74a7 2953 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
845f74a7 2954
e2f80391 2955 return intel_init_ring_buffer(dev, engine);
845f74a7
ZY
2956}
2957
549f7365
CW
2958int intel_init_blt_ring_buffer(struct drm_device *dev)
2959{
fac5e23e 2960 struct drm_i915_private *dev_priv = to_i915(dev);
4a570db5 2961 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
e2f80391
TU
2962
2963 engine->name = "blitter ring";
2964 engine->id = BCS;
2965 engine->exec_id = I915_EXEC_BLT;
215a7e32 2966 engine->hw_id = 2;
e2f80391 2967 engine->mmio_base = BLT_RING_BASE;
06a2fe22
TU
2968
2969 intel_ring_default_vfuncs(dev_priv, engine);
2970
e2f80391 2971 engine->flush = gen6_ring_flush;
8d228911 2972 if (INTEL_GEN(dev_priv) >= 8)
e2f80391 2973 engine->irq_enable_mask =
abd58f01 2974 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
8d228911 2975 else
e2f80391 2976 engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
549f7365 2977
e2f80391 2978 return intel_init_ring_buffer(dev, engine);
549f7365 2979}
a7b9761d 2980
9a8a2213
BW
2981int intel_init_vebox_ring_buffer(struct drm_device *dev)
2982{
fac5e23e 2983 struct drm_i915_private *dev_priv = to_i915(dev);
4a570db5 2984 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
9a8a2213 2985
e2f80391
TU
2986 engine->name = "video enhancement ring";
2987 engine->id = VECS;
2988 engine->exec_id = I915_EXEC_VEBOX;
215a7e32 2989 engine->hw_id = 3;
e2f80391 2990 engine->mmio_base = VEBOX_RING_BASE;
06a2fe22
TU
2991
2992 intel_ring_default_vfuncs(dev_priv, engine);
2993
e2f80391 2994 engine->flush = gen6_ring_flush;
abd58f01 2995
c033666a 2996 if (INTEL_GEN(dev_priv) >= 8) {
e2f80391 2997 engine->irq_enable_mask =
40c499f9 2998 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
abd58f01 2999 } else {
e2f80391 3000 engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
31bb59cc
CW
3001 engine->irq_enable = hsw_vebox_irq_enable;
3002 engine->irq_disable = hsw_vebox_irq_disable;
abd58f01 3003 }
9a8a2213 3004
e2f80391 3005 return intel_init_ring_buffer(dev, engine);
9a8a2213
BW
3006}
3007
a7b9761d 3008int
4866d729 3009intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
a7b9761d 3010{
4a570db5 3011 struct intel_engine_cs *engine = req->engine;
a7b9761d
CW
3012 int ret;
3013
e2f80391 3014 if (!engine->gpu_caches_dirty)
a7b9761d
CW
3015 return 0;
3016
e2f80391 3017 ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
a7b9761d
CW
3018 if (ret)
3019 return ret;
3020
a84c3ae1 3021 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
a7b9761d 3022
e2f80391 3023 engine->gpu_caches_dirty = false;
a7b9761d
CW
3024 return 0;
3025}
3026
3027int
2f20055d 3028intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
a7b9761d 3029{
4a570db5 3030 struct intel_engine_cs *engine = req->engine;
a7b9761d
CW
3031 uint32_t flush_domains;
3032 int ret;
3033
3034 flush_domains = 0;
e2f80391 3035 if (engine->gpu_caches_dirty)
a7b9761d
CW
3036 flush_domains = I915_GEM_GPU_DOMAINS;
3037
e2f80391 3038 ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
a7b9761d
CW
3039 if (ret)
3040 return ret;
3041
a84c3ae1 3042 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
a7b9761d 3043
e2f80391 3044 engine->gpu_caches_dirty = false;
a7b9761d
CW
3045 return 0;
3046}
e3efda49
CW
3047
3048void
117897f4 3049intel_stop_engine(struct intel_engine_cs *engine)
e3efda49
CW
3050{
3051 int ret;
3052
117897f4 3053 if (!intel_engine_initialized(engine))
e3efda49
CW
3054 return;
3055
666796da 3056 ret = intel_engine_idle(engine);
f4457ae7 3057 if (ret)
e3efda49 3058 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 3059 engine->name, ret);
e3efda49 3060
0bc40be8 3061 stop_ring(engine);
e3efda49 3062}
This page took 0.68743 seconds and 5 git commands to generate.