Merge remote-tracking branch 'md/for-next'
[deliverable/linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
CommitLineData
c8b75bca
EA
1/*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9/**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34#include "drm_atomic.h"
35#include "drm_atomic_helper.h"
36#include "drm_crtc_helper.h"
37#include "linux/clk.h"
b501bacc 38#include "drm_fb_cma_helper.h"
c8b75bca
EA
39#include "linux/component.h"
40#include "linux/of_device.h"
41#include "vc4_drv.h"
42#include "vc4_regs.h"
43
44struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
1bf59f1d
MK
49 /* Timestamp at start of vblank irq - unaffected by lock delays. */
50 ktime_t t_vblank;
51
c8b75bca
EA
52 /* Which HVS channel we're using for our CRTC. */
53 int channel;
54
e582b6c7
EA
55 u8 lut_r[256];
56 u8 lut_g[256];
57 u8 lut_b[256];
1bf59f1d
MK
58 /* Size in pixels of the COB memory allocated to this CRTC. */
59 u32 cob_size;
e582b6c7 60
c8b75bca
EA
61 struct drm_pending_vblank_event *event;
62};
63
d8dbf44f
EA
64struct vc4_crtc_state {
65 struct drm_crtc_state base;
66 /* Dlist area for this CRTC configuration. */
67 struct drm_mm_node mm;
68};
69
c8b75bca
EA
70static inline struct vc4_crtc *
71to_vc4_crtc(struct drm_crtc *crtc)
72{
73 return (struct vc4_crtc *)crtc;
74}
75
d8dbf44f
EA
76static inline struct vc4_crtc_state *
77to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78{
79 return (struct vc4_crtc_state *)crtc_state;
80}
81
c8b75bca
EA
82struct vc4_crtc_data {
83 /* Which channel of the HVS this pixelvalve sources from. */
84 int hvs_channel;
85
86 enum vc4_encoder_type encoder0_type;
87 enum vc4_encoder_type encoder1_type;
88};
89
90#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93#define CRTC_REG(reg) { reg, #reg }
94static const struct {
95 u32 reg;
96 const char *name;
97} crtc_regs[] = {
98 CRTC_REG(PV_CONTROL),
99 CRTC_REG(PV_V_CONTROL),
c31806fb 100 CRTC_REG(PV_VSYNCD_EVEN),
c8b75bca
EA
101 CRTC_REG(PV_HORZA),
102 CRTC_REG(PV_HORZB),
103 CRTC_REG(PV_VERTA),
104 CRTC_REG(PV_VERTB),
105 CRTC_REG(PV_VERTA_EVEN),
106 CRTC_REG(PV_VERTB_EVEN),
107 CRTC_REG(PV_INTEN),
108 CRTC_REG(PV_INTSTAT),
109 CRTC_REG(PV_STAT),
110 CRTC_REG(PV_HACT_ACT),
111};
112
113static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114{
115 int i;
116
117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 DRM_INFO("0x%04x (%s): 0x%08x\n",
119 crtc_regs[i].reg, crtc_regs[i].name,
120 CRTC_READ(crtc_regs[i].reg));
121 }
122}
123
124#ifdef CONFIG_DEBUG_FS
125int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126{
127 struct drm_info_node *node = (struct drm_info_node *)m->private;
128 struct drm_device *dev = node->minor->dev;
129 int crtc_index = (uintptr_t)node->info_ent->data;
130 struct drm_crtc *crtc;
131 struct vc4_crtc *vc4_crtc;
132 int i;
133
134 i = 0;
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 if (i == crtc_index)
137 break;
138 i++;
139 }
140 if (!crtc)
141 return 0;
142 vc4_crtc = to_vc4_crtc(crtc);
143
144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 crtc_regs[i].name, crtc_regs[i].reg,
147 CRTC_READ(crtc_regs[i].reg));
148 }
149
150 return 0;
151}
152#endif
153
1bf59f1d
MK
154int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 unsigned int flags, int *vpos, int *hpos,
156 ktime_t *stime, ktime_t *etime,
157 const struct drm_display_mode *mode)
158{
159 struct vc4_dev *vc4 = to_vc4_dev(dev);
160 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
161 u32 val;
162 int fifo_lines;
163 int vblank_lines;
164 int ret = 0;
165
1bf59f1d
MK
166 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167
168 /* Get optional system timestamp before query. */
169 if (stime)
170 *stime = ktime_get();
171
172 /*
173 * Read vertical scanline which is currently composed for our
174 * pixelvalve by the HVS, and also the scaler status.
175 */
176 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177
178 /* Get optional system timestamp after query. */
179 if (etime)
180 *etime = ktime_get();
181
182 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183
184 /* Vertical position of hvs composed scanline. */
185 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
e538092c
MK
186 *hpos = 0;
187
188 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189 *vpos /= 2;
1bf59f1d 190
e538092c
MK
191 /* Use hpos to correct for field offset in interlaced mode. */
192 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193 *hpos += mode->crtc_htotal / 2;
194 }
1bf59f1d
MK
195
196 /* This is the offset we need for translating hvs -> pv scanout pos. */
197 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198
199 if (fifo_lines > 0)
200 ret |= DRM_SCANOUTPOS_VALID;
201
202 /* HVS more than fifo_lines into frame for compositing? */
203 if (*vpos > fifo_lines) {
204 /*
205 * We are in active scanout and can get some meaningful results
206 * from HVS. The actual PV scanout can not trail behind more
207 * than fifo_lines as that is the fifo's capacity. Assume that
208 * in active scanout the HVS and PV work in lockstep wrt. HVS
209 * refilling the fifo and PV consuming from the fifo, ie.
210 * whenever the PV consumes and frees up a scanline in the
211 * fifo, the HVS will immediately refill it, therefore
212 * incrementing vpos. Therefore we choose HVS read position -
213 * fifo size in scanlines as a estimate of the real scanout
214 * position of the PV.
215 */
216 *vpos -= fifo_lines + 1;
1bf59f1d
MK
217
218 ret |= DRM_SCANOUTPOS_ACCURATE;
219 return ret;
220 }
221
222 /*
223 * Less: This happens when we are in vblank and the HVS, after getting
224 * the VSTART restart signal from the PV, just started refilling its
225 * fifo with new lines from the top-most lines of the new framebuffers.
226 * The PV does not scan out in vblank, so does not remove lines from
227 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 * We can't get meaningful readings wrt. scanline position of the PV
229 * and need to make things up in a approximative but consistent way.
230 */
231 ret |= DRM_SCANOUTPOS_IN_VBLANK;
232 vblank_lines = mode->crtc_vtotal - mode->crtc_vdisplay;
233
234 if (flags & DRM_CALLED_FROM_VBLIRQ) {
235 /*
236 * Assume the irq handler got called close to first
237 * line of vblank, so PV has about a full vblank
238 * scanlines to go, and as a base timestamp use the
239 * one taken at entry into vblank irq handler, so it
240 * is not affected by random delays due to lock
241 * contention on event_lock or vblank_time lock in
242 * the core.
243 */
244 *vpos = -vblank_lines;
245
246 if (stime)
247 *stime = vc4_crtc->t_vblank;
248 if (etime)
249 *etime = vc4_crtc->t_vblank;
250
251 /*
252 * If the HVS fifo is not yet full then we know for certain
253 * we are at the very beginning of vblank, as the hvs just
254 * started refilling, and the stime and etime timestamps
255 * truly correspond to start of vblank.
256 */
257 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258 ret |= DRM_SCANOUTPOS_ACCURATE;
259 } else {
260 /*
261 * No clue where we are inside vblank. Return a vpos of zero,
262 * which will cause calling code to just return the etime
263 * timestamp uncorrected. At least this is no worse than the
264 * standard fallback.
265 */
266 *vpos = 0;
267 }
268
269 return ret;
270}
271
272int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273 int *max_error, struct timeval *vblank_time,
274 unsigned flags)
275{
276 struct vc4_dev *vc4 = to_vc4_dev(dev);
277 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
278 struct drm_crtc *crtc = &vc4_crtc->base;
279 struct drm_crtc_state *state = crtc->state;
280
281 /* Helper routine in DRM core does all the work: */
282 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
283 vblank_time, flags,
284 &state->adjusted_mode);
285}
286
c8b75bca
EA
287static void vc4_crtc_destroy(struct drm_crtc *crtc)
288{
289 drm_crtc_cleanup(crtc);
290}
291
e582b6c7
EA
292static void
293vc4_crtc_lut_load(struct drm_crtc *crtc)
294{
295 struct drm_device *dev = crtc->dev;
296 struct vc4_dev *vc4 = to_vc4_dev(dev);
297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 u32 i;
299
300 /* The LUT memory is laid out with each HVS channel in order,
301 * each of which takes 256 writes for R, 256 for G, then 256
302 * for B.
303 */
304 HVS_WRITE(SCALER_GAMADDR,
305 SCALER_GAMADDR_AUTOINC |
306 (vc4_crtc->channel * 3 * crtc->gamma_size));
307
308 for (i = 0; i < crtc->gamma_size; i++)
309 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
310 for (i = 0; i < crtc->gamma_size; i++)
311 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
312 for (i = 0; i < crtc->gamma_size; i++)
313 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
314}
315
7ea77283 316static int
e582b6c7 317vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
7ea77283 318 uint32_t size)
e582b6c7
EA
319{
320 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
321 u32 i;
322
7ea77283 323 for (i = 0; i < size; i++) {
e582b6c7
EA
324 vc4_crtc->lut_r[i] = r[i] >> 8;
325 vc4_crtc->lut_g[i] = g[i] >> 8;
326 vc4_crtc->lut_b[i] = b[i] >> 8;
327 }
328
329 vc4_crtc_lut_load(crtc);
7ea77283
ML
330
331 return 0;
e582b6c7
EA
332}
333
c8b75bca
EA
334static u32 vc4_get_fifo_full_level(u32 format)
335{
336 static const u32 fifo_len_bytes = 64;
337 static const u32 hvs_latency_pix = 6;
338
339 switch (format) {
340 case PV_CONTROL_FORMAT_DSIV_16:
341 case PV_CONTROL_FORMAT_DSIC_16:
342 return fifo_len_bytes - 2 * hvs_latency_pix;
343 case PV_CONTROL_FORMAT_DSIV_18:
344 return fifo_len_bytes - 14;
345 case PV_CONTROL_FORMAT_24:
346 case PV_CONTROL_FORMAT_DSIV_24:
347 default:
348 return fifo_len_bytes - 3 * hvs_latency_pix;
349 }
350}
351
352/*
353 * Returns the clock select bit for the connector attached to the
354 * CRTC.
355 */
356static int vc4_get_clock_select(struct drm_crtc *crtc)
357{
358 struct drm_connector *connector;
359
360 drm_for_each_connector(connector, crtc->dev) {
2fa8e904 361 if (connector->state->crtc == crtc) {
c8b75bca
EA
362 struct drm_encoder *encoder = connector->encoder;
363 struct vc4_encoder *vc4_encoder =
364 to_vc4_encoder(encoder);
365
366 return vc4_encoder->clock_select;
367 }
368 }
369
370 return -1;
371}
372
373static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
374{
6a609209
EA
375 struct drm_device *dev = crtc->dev;
376 struct vc4_dev *vc4 = to_vc4_dev(dev);
c8b75bca
EA
377 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
378 struct drm_crtc_state *state = crtc->state;
379 struct drm_display_mode *mode = &state->adjusted_mode;
380 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
381 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
382 u32 format = PV_CONTROL_FORMAT_24;
383 bool debug_dump_regs = false;
384 int clock_select = vc4_get_clock_select(crtc);
385
386 if (debug_dump_regs) {
387 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
388 vc4_crtc_dump_regs(vc4_crtc);
389 }
390
391 /* Reset the PV fifo. */
392 CRTC_WRITE(PV_CONTROL, 0);
393 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
394 CRTC_WRITE(PV_CONTROL, 0);
395
396 CRTC_WRITE(PV_HORZA,
397 VC4_SET_FIELD(mode->htotal - mode->hsync_end,
398 PV_HORZA_HBP) |
399 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
400 PV_HORZA_HSYNC));
401 CRTC_WRITE(PV_HORZB,
402 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
403 PV_HORZB_HFP) |
404 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
405
a7c5047d
EA
406 CRTC_WRITE(PV_VERTA,
407 VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
408 PV_VERTA_VBP) |
409 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
410 PV_VERTA_VSYNC));
411 CRTC_WRITE(PV_VERTB,
412 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
413 PV_VERTB_VFP) |
414 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
415
c8b75bca
EA
416 if (interlace) {
417 CRTC_WRITE(PV_VERTA_EVEN,
418 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
419 PV_VERTA_VBP) |
420 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
421 PV_VERTA_VSYNC));
422 CRTC_WRITE(PV_VERTB_EVEN,
423 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
424 PV_VERTB_VFP) |
425 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
426 }
427
428 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
429
430 CRTC_WRITE(PV_V_CONTROL,
431 PV_VCONTROL_CONTINUOUS |
432 (interlace ? PV_VCONTROL_INTERLACE : 0));
433
434 CRTC_WRITE(PV_CONTROL,
435 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
436 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
437 PV_CONTROL_FIFO_LEVEL) |
438 PV_CONTROL_CLR_AT_START |
439 PV_CONTROL_TRIGGER_UNDERFLOW |
440 PV_CONTROL_WAIT_HSTART |
441 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
442 PV_CONTROL_FIFO_CLR |
443 PV_CONTROL_EN);
444
6a609209
EA
445 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
446 SCALER_DISPBKGND_AUTOHS |
e582b6c7 447 SCALER_DISPBKGND_GAMMA |
6a609209
EA
448 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
449
e582b6c7
EA
450 /* Reload the LUT, since the SRAMs would have been disabled if
451 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
452 */
453 vc4_crtc_lut_load(crtc);
454
c8b75bca
EA
455 if (debug_dump_regs) {
456 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
457 vc4_crtc_dump_regs(vc4_crtc);
458 }
459}
460
461static void require_hvs_enabled(struct drm_device *dev)
462{
463 struct vc4_dev *vc4 = to_vc4_dev(dev);
464
465 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
466 SCALER_DISPCTRL_ENABLE);
467}
468
469static void vc4_crtc_disable(struct drm_crtc *crtc)
470{
471 struct drm_device *dev = crtc->dev;
472 struct vc4_dev *vc4 = to_vc4_dev(dev);
473 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
474 u32 chan = vc4_crtc->channel;
475 int ret;
476 require_hvs_enabled(dev);
477
e941f05d
MK
478 /* Disable vblank irq handling before crtc is disabled. */
479 drm_crtc_vblank_off(crtc);
480
c8b75bca
EA
481 CRTC_WRITE(PV_V_CONTROL,
482 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
483 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
484 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
485
486 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
487 SCALER_DISPCTRLX_ENABLE) {
488 HVS_WRITE(SCALER_DISPCTRLX(chan),
489 SCALER_DISPCTRLX_RESET);
490
491 /* While the docs say that reset is self-clearing, it
492 * seems it doesn't actually.
493 */
494 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
495 }
496
497 /* Once we leave, the scaler should be disabled and its fifo empty. */
498
499 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
500
501 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
502 SCALER_DISPSTATX_MODE) !=
503 SCALER_DISPSTATX_MODE_DISABLED);
504
505 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
506 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
507 SCALER_DISPSTATX_EMPTY);
508}
509
510static void vc4_crtc_enable(struct drm_crtc *crtc)
511{
512 struct drm_device *dev = crtc->dev;
513 struct vc4_dev *vc4 = to_vc4_dev(dev);
514 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
515 struct drm_crtc_state *state = crtc->state;
516 struct drm_display_mode *mode = &state->adjusted_mode;
517
518 require_hvs_enabled(dev);
519
520 /* Turn on the scaler, which will wait for vstart to start
521 * compositing.
522 */
523 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
524 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
525 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
526 SCALER_DISPCTRLX_ENABLE);
527
528 /* Turn on the pixel valve, which will emit the vstart signal. */
529 CRTC_WRITE(PV_V_CONTROL,
530 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
e941f05d
MK
531
532 /* Enable vblank irq handling after crtc is started. */
533 drm_crtc_vblank_on(crtc);
c8b75bca
EA
534}
535
acc1be1d
MK
536static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
537 const struct drm_display_mode *mode,
538 struct drm_display_mode *adjusted_mode)
539{
36451467
MK
540 /* Do not allow doublescan modes from user space */
541 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
542 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
543 crtc->base.id);
544 return false;
545 }
546
acc1be1d
MK
547 /*
548 * Interlaced video modes got CRTC_INTERLACE_HALVE_V applied when
549 * coming from user space. We don't want this, as it screws up
550 * vblank timestamping, so fix it up.
551 */
552 drm_mode_set_crtcinfo(adjusted_mode, 0);
553
554 DRM_DEBUG_KMS("[CRTC:%d] adjusted_mode :\n", crtc->base.id);
555 drm_mode_debug_printmodeline(adjusted_mode);
556
557 return true;
558}
559
c8b75bca
EA
560static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
561 struct drm_crtc_state *state)
562{
d8dbf44f 563 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
c8b75bca
EA
564 struct drm_device *dev = crtc->dev;
565 struct vc4_dev *vc4 = to_vc4_dev(dev);
566 struct drm_plane *plane;
d8dbf44f 567 unsigned long flags;
2f196b7c 568 const struct drm_plane_state *plane_state;
c8b75bca 569 u32 dlist_count = 0;
d8dbf44f 570 int ret;
c8b75bca
EA
571
572 /* The pixelvalve can only feed one encoder (and encoders are
573 * 1:1 with connectors.)
574 */
14de6c44 575 if (hweight32(state->connector_mask) > 1)
c8b75bca
EA
576 return -EINVAL;
577
2f196b7c 578 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
c8b75bca 579 dlist_count += vc4_plane_dlist_size(plane_state);
c8b75bca
EA
580
581 dlist_count++; /* Account for SCALER_CTL0_END. */
582
d8dbf44f
EA
583 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
584 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
585 dlist_count, 1, 0);
586 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
587 if (ret)
588 return ret;
c8b75bca
EA
589
590 return 0;
591}
592
593static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
594 struct drm_crtc_state *old_state)
595{
596 struct drm_device *dev = crtc->dev;
597 struct vc4_dev *vc4 = to_vc4_dev(dev);
598 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
d8dbf44f 599 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
c8b75bca
EA
600 struct drm_plane *plane;
601 bool debug_dump_regs = false;
d8dbf44f
EA
602 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
603 u32 __iomem *dlist_next = dlist_start;
c8b75bca
EA
604
605 if (debug_dump_regs) {
606 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
607 vc4_hvs_dump_state(dev);
608 }
609
d8dbf44f 610 /* Copy all the active planes' dlist contents to the hardware dlist. */
c8b75bca
EA
611 drm_atomic_crtc_for_each_plane(plane, crtc) {
612 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
613 }
614
d8dbf44f
EA
615 writel(SCALER_CTL0_END, dlist_next);
616 dlist_next++;
617
618 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
619
c8b75bca
EA
620 if (crtc->state->event) {
621 unsigned long flags;
622
623 crtc->state->event->pipe = drm_crtc_index(crtc);
624
625 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
626
627 spin_lock_irqsave(&dev->event_lock, flags);
628 vc4_crtc->event = crtc->state->event;
c8b75bca 629 crtc->state->event = NULL;
56d1fe09
MK
630
631 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
632 vc4_state->mm.start);
633
634 spin_unlock_irqrestore(&dev->event_lock, flags);
635 } else {
636 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
637 vc4_state->mm.start);
638 }
639
640 if (debug_dump_regs) {
641 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
642 vc4_hvs_dump_state(dev);
c8b75bca
EA
643 }
644}
645
1f43710a 646int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
c8b75bca
EA
647{
648 struct vc4_dev *vc4 = to_vc4_dev(dev);
649 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
650
651 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
652
653 return 0;
654}
655
1f43710a 656void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
c8b75bca
EA
657{
658 struct vc4_dev *vc4 = to_vc4_dev(dev);
659 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
660
661 CRTC_WRITE(PV_INTEN, 0);
662}
663
664static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
665{
666 struct drm_crtc *crtc = &vc4_crtc->base;
667 struct drm_device *dev = crtc->dev;
56d1fe09
MK
668 struct vc4_dev *vc4 = to_vc4_dev(dev);
669 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
670 u32 chan = vc4_crtc->channel;
c8b75bca
EA
671 unsigned long flags;
672
673 spin_lock_irqsave(&dev->event_lock, flags);
56d1fe09
MK
674 if (vc4_crtc->event &&
675 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
c8b75bca
EA
676 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
677 vc4_crtc->event = NULL;
ee7c10e1 678 drm_crtc_vblank_put(crtc);
c8b75bca
EA
679 }
680 spin_unlock_irqrestore(&dev->event_lock, flags);
681}
682
683static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
684{
685 struct vc4_crtc *vc4_crtc = data;
686 u32 stat = CRTC_READ(PV_INTSTAT);
687 irqreturn_t ret = IRQ_NONE;
688
689 if (stat & PV_INT_VFP_START) {
1bf59f1d 690 vc4_crtc->t_vblank = ktime_get();
c8b75bca
EA
691 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
692 drm_crtc_handle_vblank(&vc4_crtc->base);
693 vc4_crtc_handle_page_flip(vc4_crtc);
694 ret = IRQ_HANDLED;
695 }
696
697 return ret;
698}
699
b501bacc
EA
700struct vc4_async_flip_state {
701 struct drm_crtc *crtc;
702 struct drm_framebuffer *fb;
703 struct drm_pending_vblank_event *event;
704
705 struct vc4_seqno_cb cb;
706};
707
708/* Called when the V3D execution for the BO being flipped to is done, so that
709 * we can actually update the plane's address to point to it.
710 */
711static void
712vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
713{
714 struct vc4_async_flip_state *flip_state =
715 container_of(cb, struct vc4_async_flip_state, cb);
716 struct drm_crtc *crtc = flip_state->crtc;
717 struct drm_device *dev = crtc->dev;
718 struct vc4_dev *vc4 = to_vc4_dev(dev);
719 struct drm_plane *plane = crtc->primary;
720
721 vc4_plane_async_set_fb(plane, flip_state->fb);
722 if (flip_state->event) {
723 unsigned long flags;
724
725 spin_lock_irqsave(&dev->event_lock, flags);
726 drm_crtc_send_vblank_event(crtc, flip_state->event);
727 spin_unlock_irqrestore(&dev->event_lock, flags);
728 }
729
ee7c10e1 730 drm_crtc_vblank_put(crtc);
b501bacc
EA
731 drm_framebuffer_unreference(flip_state->fb);
732 kfree(flip_state);
733
734 up(&vc4->async_modeset);
735}
736
737/* Implements async (non-vblank-synced) page flips.
738 *
739 * The page flip ioctl needs to return immediately, so we grab the
740 * modeset semaphore on the pipe, and queue the address update for
741 * when V3D is done with the BO being flipped to.
742 */
743static int vc4_async_page_flip(struct drm_crtc *crtc,
744 struct drm_framebuffer *fb,
745 struct drm_pending_vblank_event *event,
746 uint32_t flags)
747{
748 struct drm_device *dev = crtc->dev;
749 struct vc4_dev *vc4 = to_vc4_dev(dev);
750 struct drm_plane *plane = crtc->primary;
751 int ret = 0;
752 struct vc4_async_flip_state *flip_state;
753 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
754 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
755
756 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
757 if (!flip_state)
758 return -ENOMEM;
759
760 drm_framebuffer_reference(fb);
761 flip_state->fb = fb;
762 flip_state->crtc = crtc;
763 flip_state->event = event;
764
765 /* Make sure all other async modesetes have landed. */
766 ret = down_interruptible(&vc4->async_modeset);
767 if (ret) {
48627eb8 768 drm_framebuffer_unreference(fb);
b501bacc
EA
769 kfree(flip_state);
770 return ret;
771 }
772
ee7c10e1
MK
773 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
774
b501bacc
EA
775 /* Immediately update the plane's legacy fb pointer, so that later
776 * modeset prep sees the state that will be present when the semaphore
777 * is released.
778 */
779 drm_atomic_set_fb_for_plane(plane->state, fb);
780 plane->fb = fb;
781
782 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
783 vc4_async_page_flip_complete);
784
785 /* Driver takes ownership of state on successful async commit. */
786 return 0;
787}
788
789static int vc4_page_flip(struct drm_crtc *crtc,
790 struct drm_framebuffer *fb,
791 struct drm_pending_vblank_event *event,
792 uint32_t flags)
793{
794 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
795 return vc4_async_page_flip(crtc, fb, event, flags);
796 else
797 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
798}
799
d8dbf44f
EA
800static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
801{
802 struct vc4_crtc_state *vc4_state;
803
804 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
805 if (!vc4_state)
806 return NULL;
807
808 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
809 return &vc4_state->base;
810}
811
812static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
813 struct drm_crtc_state *state)
814{
815 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
816 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
817
818 if (vc4_state->mm.allocated) {
819 unsigned long flags;
820
821 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
822 drm_mm_remove_node(&vc4_state->mm);
823 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
824
825 }
826
ec2dc6a0 827 __drm_atomic_helper_crtc_destroy_state(state);
d8dbf44f
EA
828}
829
c8b75bca
EA
830static const struct drm_crtc_funcs vc4_crtc_funcs = {
831 .set_config = drm_atomic_helper_set_config,
832 .destroy = vc4_crtc_destroy,
b501bacc 833 .page_flip = vc4_page_flip,
c8b75bca
EA
834 .set_property = NULL,
835 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
836 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
837 .reset = drm_atomic_helper_crtc_reset,
d8dbf44f
EA
838 .atomic_duplicate_state = vc4_crtc_duplicate_state,
839 .atomic_destroy_state = vc4_crtc_destroy_state,
e582b6c7 840 .gamma_set = vc4_crtc_gamma_set,
c8b75bca
EA
841};
842
843static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
844 .mode_set_nofb = vc4_crtc_mode_set_nofb,
845 .disable = vc4_crtc_disable,
846 .enable = vc4_crtc_enable,
acc1be1d 847 .mode_fixup = vc4_crtc_mode_fixup,
c8b75bca
EA
848 .atomic_check = vc4_crtc_atomic_check,
849 .atomic_flush = vc4_crtc_atomic_flush,
850};
851
c8b75bca
EA
852static const struct vc4_crtc_data pv0_data = {
853 .hvs_channel = 0,
854 .encoder0_type = VC4_ENCODER_TYPE_DSI0,
855 .encoder1_type = VC4_ENCODER_TYPE_DPI,
856};
857
858static const struct vc4_crtc_data pv1_data = {
859 .hvs_channel = 2,
860 .encoder0_type = VC4_ENCODER_TYPE_DSI1,
861 .encoder1_type = VC4_ENCODER_TYPE_SMI,
862};
863
864static const struct vc4_crtc_data pv2_data = {
865 .hvs_channel = 1,
866 .encoder0_type = VC4_ENCODER_TYPE_VEC,
867 .encoder1_type = VC4_ENCODER_TYPE_HDMI,
868};
869
870static const struct of_device_id vc4_crtc_dt_match[] = {
871 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
872 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
873 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
874 {}
875};
876
877static void vc4_set_crtc_possible_masks(struct drm_device *drm,
878 struct drm_crtc *crtc)
879{
880 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
881 struct drm_encoder *encoder;
882
883 drm_for_each_encoder(encoder, drm) {
884 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
885
886 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
887 vc4_encoder->clock_select = 0;
888 encoder->possible_crtcs |= drm_crtc_mask(crtc);
889 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
890 vc4_encoder->clock_select = 1;
891 encoder->possible_crtcs |= drm_crtc_mask(crtc);
892 }
893 }
894}
895
1bf59f1d
MK
896static void
897vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
898{
899 struct drm_device *drm = vc4_crtc->base.dev;
900 struct vc4_dev *vc4 = to_vc4_dev(drm);
901 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
902 /* Top/base are supposed to be 4-pixel aligned, but the
903 * Raspberry Pi firmware fills the low bits (which are
904 * presumably ignored).
905 */
906 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
907 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
908
909 vc4_crtc->cob_size = top - base + 4;
910}
911
c8b75bca
EA
912static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
913{
914 struct platform_device *pdev = to_platform_device(dev);
915 struct drm_device *drm = dev_get_drvdata(master);
916 struct vc4_dev *vc4 = to_vc4_dev(drm);
917 struct vc4_crtc *vc4_crtc;
918 struct drm_crtc *crtc;
fc2d6f1e 919 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
c8b75bca 920 const struct of_device_id *match;
fc2d6f1e 921 int ret, i;
c8b75bca
EA
922
923 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
924 if (!vc4_crtc)
925 return -ENOMEM;
926 crtc = &vc4_crtc->base;
927
928 match = of_match_device(vc4_crtc_dt_match, dev);
929 if (!match)
930 return -ENODEV;
931 vc4_crtc->data = match->data;
932
933 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
934 if (IS_ERR(vc4_crtc->regs))
935 return PTR_ERR(vc4_crtc->regs);
936
937 /* For now, we create just the primary and the legacy cursor
938 * planes. We should be able to stack more planes on easily,
939 * but to do that we would need to compute the bandwidth
940 * requirement of the plane configuration, and reject ones
941 * that will take too much.
942 */
943 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
79513237 944 if (IS_ERR(primary_plane)) {
c8b75bca
EA
945 dev_err(dev, "failed to construct primary plane\n");
946 ret = PTR_ERR(primary_plane);
947 goto err;
948 }
949
fc2d6f1e 950 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
f9882876 951 &vc4_crtc_funcs, NULL);
c8b75bca
EA
952 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
953 primary_plane->crtc = crtc;
c8b75bca
EA
954 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
955 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
e582b6c7 956 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
c8b75bca 957
fc2d6f1e
EA
958 /* Set up some arbitrary number of planes. We're not limited
959 * by a set number of physical registers, just the space in
960 * the HVS (16k) and how small an plane can be (28 bytes).
961 * However, each plane we set up takes up some memory, and
962 * increases the cost of looping over planes, which atomic
963 * modesetting does quite a bit. As a result, we pick a
964 * modest number of planes to expose, that should hopefully
965 * still cover any sane usecase.
966 */
967 for (i = 0; i < 8; i++) {
968 struct drm_plane *plane =
969 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
970
971 if (IS_ERR(plane))
972 continue;
973
974 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
975 }
976
977 /* Set up the legacy cursor after overlay initialization,
978 * since we overlay planes on the CRTC in the order they were
979 * initialized.
980 */
981 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
982 if (!IS_ERR(cursor_plane)) {
983 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
984 cursor_plane->crtc = crtc;
985 crtc->cursor = cursor_plane;
986 }
987
1bf59f1d
MK
988 vc4_crtc_get_cob_allocation(vc4_crtc);
989
c8b75bca
EA
990 CRTC_WRITE(PV_INTEN, 0);
991 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
992 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
993 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
994 if (ret)
fc2d6f1e 995 goto err_destroy_planes;
c8b75bca
EA
996
997 vc4_set_crtc_possible_masks(drm, crtc);
998
e582b6c7
EA
999 for (i = 0; i < crtc->gamma_size; i++) {
1000 vc4_crtc->lut_r[i] = i;
1001 vc4_crtc->lut_g[i] = i;
1002 vc4_crtc->lut_b[i] = i;
1003 }
1004
c8b75bca
EA
1005 platform_set_drvdata(pdev, vc4_crtc);
1006
1007 return 0;
1008
fc2d6f1e
EA
1009err_destroy_planes:
1010 list_for_each_entry_safe(destroy_plane, temp,
1011 &drm->mode_config.plane_list, head) {
1012 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1013 destroy_plane->funcs->destroy(destroy_plane);
1014 }
c8b75bca
EA
1015err:
1016 return ret;
1017}
1018
1019static void vc4_crtc_unbind(struct device *dev, struct device *master,
1020 void *data)
1021{
1022 struct platform_device *pdev = to_platform_device(dev);
1023 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1024
1025 vc4_crtc_destroy(&vc4_crtc->base);
1026
1027 CRTC_WRITE(PV_INTEN, 0);
1028
1029 platform_set_drvdata(pdev, NULL);
1030}
1031
1032static const struct component_ops vc4_crtc_ops = {
1033 .bind = vc4_crtc_bind,
1034 .unbind = vc4_crtc_unbind,
1035};
1036
1037static int vc4_crtc_dev_probe(struct platform_device *pdev)
1038{
1039 return component_add(&pdev->dev, &vc4_crtc_ops);
1040}
1041
1042static int vc4_crtc_dev_remove(struct platform_device *pdev)
1043{
1044 component_del(&pdev->dev, &vc4_crtc_ops);
1045 return 0;
1046}
1047
1048struct platform_driver vc4_crtc_driver = {
1049 .probe = vc4_crtc_dev_probe,
1050 .remove = vc4_crtc_dev_remove,
1051 .driver = {
1052 .name = "vc4_crtc",
1053 .of_match_table = vc4_crtc_dt_match,
1054 },
1055};
This page took 0.098287 seconds and 5 git commands to generate.