[PATCH] kvm: userspace interface
[deliverable/linux.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25
26#include "vmx.h"
27#include "kvm.h"
28
29#define pgprintk(x...) do { } while (0)
30
31#define ASSERT(x) \
32 if (!(x)) { \
33 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
34 __FILE__, __LINE__, #x); \
35 }
36
37#define PT64_ENT_PER_PAGE 512
38#define PT32_ENT_PER_PAGE 1024
39
40#define PT_WRITABLE_SHIFT 1
41
42#define PT_PRESENT_MASK (1ULL << 0)
43#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
44#define PT_USER_MASK (1ULL << 2)
45#define PT_PWT_MASK (1ULL << 3)
46#define PT_PCD_MASK (1ULL << 4)
47#define PT_ACCESSED_MASK (1ULL << 5)
48#define PT_DIRTY_MASK (1ULL << 6)
49#define PT_PAGE_SIZE_MASK (1ULL << 7)
50#define PT_PAT_MASK (1ULL << 7)
51#define PT_GLOBAL_MASK (1ULL << 8)
52#define PT64_NX_MASK (1ULL << 63)
53
54#define PT_PAT_SHIFT 7
55#define PT_DIR_PAT_SHIFT 12
56#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
57
58#define PT32_DIR_PSE36_SIZE 4
59#define PT32_DIR_PSE36_SHIFT 13
60#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
61
62
63#define PT32_PTE_COPY_MASK \
64 (PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK | \
65 PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_PAT_MASK | \
66 PT_GLOBAL_MASK )
67
68#define PT32_NON_PTE_COPY_MASK \
69 (PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK | \
70 PT_ACCESSED_MASK | PT_DIRTY_MASK)
71
72
73#define PT64_PTE_COPY_MASK \
74 (PT64_NX_MASK | PT32_PTE_COPY_MASK)
75
76#define PT64_NON_PTE_COPY_MASK \
77 (PT64_NX_MASK | PT32_NON_PTE_COPY_MASK)
78
79
80
81#define PT_FIRST_AVAIL_BITS_SHIFT 9
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
85#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
86
87#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
88#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
89
90#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
91#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
92
93#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
94
95#define VALID_PAGE(x) ((x) != INVALID_PAGE)
96
97#define PT64_LEVEL_BITS 9
98
99#define PT64_LEVEL_SHIFT(level) \
100 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
101
102#define PT64_LEVEL_MASK(level) \
103 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
104
105#define PT64_INDEX(address, level)\
106 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
107
108
109#define PT32_LEVEL_BITS 10
110
111#define PT32_LEVEL_SHIFT(level) \
112 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
113
114#define PT32_LEVEL_MASK(level) \
115 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
116
117#define PT32_INDEX(address, level)\
118 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
119
120
121#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
122#define PT64_DIR_BASE_ADDR_MASK \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
124
125#define PT32_BASE_ADDR_MASK PAGE_MASK
126#define PT32_DIR_BASE_ADDR_MASK \
127 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
128
129
130#define PFERR_PRESENT_MASK (1U << 0)
131#define PFERR_WRITE_MASK (1U << 1)
132#define PFERR_USER_MASK (1U << 2)
133
134#define PT64_ROOT_LEVEL 4
135#define PT32_ROOT_LEVEL 2
136#define PT32E_ROOT_LEVEL 3
137
138#define PT_DIRECTORY_LEVEL 2
139#define PT_PAGE_TABLE_LEVEL 1
140
141static int is_write_protection(struct kvm_vcpu *vcpu)
142{
143 return vcpu->cr0 & CR0_WP_MASK;
144}
145
146static int is_cpuid_PSE36(void)
147{
148 return 1;
149}
150
151static int is_present_pte(unsigned long pte)
152{
153 return pte & PT_PRESENT_MASK;
154}
155
156static int is_writeble_pte(unsigned long pte)
157{
158 return pte & PT_WRITABLE_MASK;
159}
160
161static int is_io_pte(unsigned long pte)
162{
163 return pte & PT_SHADOW_IO_MARK;
164}
165
166static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
167{
168 struct kvm_mmu_page *page_head = page_header(page_hpa);
169
170 list_del(&page_head->link);
171 page_head->page_hpa = page_hpa;
172 list_add(&page_head->link, &vcpu->free_pages);
173}
174
175static int is_empty_shadow_page(hpa_t page_hpa)
176{
177 u32 *pos;
178 u32 *end;
179 for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
180 pos != end; pos++)
181 if (*pos != 0)
182 return 0;
183 return 1;
184}
185
186static hpa_t kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, u64 *parent_pte)
187{
188 struct kvm_mmu_page *page;
189
190 if (list_empty(&vcpu->free_pages))
191 return INVALID_PAGE;
192
193 page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
194 list_del(&page->link);
195 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
196 ASSERT(is_empty_shadow_page(page->page_hpa));
197 page->slot_bitmap = 0;
198 page->global = 1;
199 page->parent_pte = parent_pte;
200 return page->page_hpa;
201}
202
203static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
204{
205 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
206 struct kvm_mmu_page *page_head = page_header(__pa(pte));
207
208 __set_bit(slot, &page_head->slot_bitmap);
209}
210
211hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
212{
213 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
214
215 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
216}
217
218hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
219{
220 struct kvm_memory_slot *slot;
221 struct page *page;
222
223 ASSERT((gpa & HPA_ERR_MASK) == 0);
224 slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
225 if (!slot)
226 return gpa | HPA_ERR_MASK;
227 page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
228 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
229 | (gpa & (PAGE_SIZE-1));
230}
231
232hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
233{
234 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
235
236 if (gpa == UNMAPPED_GVA)
237 return UNMAPPED_GVA;
238 return gpa_to_hpa(vcpu, gpa);
239}
240
241
242static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
243 int level)
244{
245 ASSERT(vcpu);
246 ASSERT(VALID_PAGE(page_hpa));
247 ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
248
249 if (level == 1)
250 memset(__va(page_hpa), 0, PAGE_SIZE);
251 else {
252 u64 *pos;
253 u64 *end;
254
255 for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
256 pos != end; pos++) {
257 u64 current_ent = *pos;
258
259 *pos = 0;
260 if (is_present_pte(current_ent))
261 release_pt_page_64(vcpu,
262 current_ent &
263 PT64_BASE_ADDR_MASK,
264 level - 1);
265 }
266 }
267 kvm_mmu_free_page(vcpu, page_hpa);
268}
269
270static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
271{
272}
273
274static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
275{
276 int level = PT32E_ROOT_LEVEL;
277 hpa_t table_addr = vcpu->mmu.root_hpa;
278
279 for (; ; level--) {
280 u32 index = PT64_INDEX(v, level);
281 u64 *table;
282
283 ASSERT(VALID_PAGE(table_addr));
284 table = __va(table_addr);
285
286 if (level == 1) {
287 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
288 page_header_update_slot(vcpu->kvm, table, v);
289 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
290 PT_USER_MASK;
291 return 0;
292 }
293
294 if (table[index] == 0) {
295 hpa_t new_table = kvm_mmu_alloc_page(vcpu,
296 &table[index]);
297
298 if (!VALID_PAGE(new_table)) {
299 pgprintk("nonpaging_map: ENOMEM\n");
300 return -ENOMEM;
301 }
302
303 if (level == PT32E_ROOT_LEVEL)
304 table[index] = new_table | PT_PRESENT_MASK;
305 else
306 table[index] = new_table | PT_PRESENT_MASK |
307 PT_WRITABLE_MASK | PT_USER_MASK;
308 }
309 table_addr = table[index] & PT64_BASE_ADDR_MASK;
310 }
311}
312
313static void nonpaging_flush(struct kvm_vcpu *vcpu)
314{
315 hpa_t root = vcpu->mmu.root_hpa;
316
317 ++kvm_stat.tlb_flush;
318 pgprintk("nonpaging_flush\n");
319 ASSERT(VALID_PAGE(root));
320 release_pt_page_64(vcpu, root, vcpu->mmu.shadow_root_level);
321 root = kvm_mmu_alloc_page(vcpu, NULL);
322 ASSERT(VALID_PAGE(root));
323 vcpu->mmu.root_hpa = root;
324 if (is_paging(vcpu))
325 root |= (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK));
326 kvm_arch_ops->set_cr3(vcpu, root);
327 kvm_arch_ops->tlb_flush(vcpu);
328}
329
330static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
331{
332 return vaddr;
333}
334
335static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
336 u32 error_code)
337{
338 int ret;
339 gpa_t addr = gva;
340
341 ASSERT(vcpu);
342 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
343
344 for (;;) {
345 hpa_t paddr;
346
347 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
348
349 if (is_error_hpa(paddr))
350 return 1;
351
352 ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
353 if (ret) {
354 nonpaging_flush(vcpu);
355 continue;
356 }
357 break;
358 }
359 return ret;
360}
361
362static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
363{
364}
365
366static void nonpaging_free(struct kvm_vcpu *vcpu)
367{
368 hpa_t root;
369
370 ASSERT(vcpu);
371 root = vcpu->mmu.root_hpa;
372 if (VALID_PAGE(root))
373 release_pt_page_64(vcpu, root, vcpu->mmu.shadow_root_level);
374 vcpu->mmu.root_hpa = INVALID_PAGE;
375}
376
377static int nonpaging_init_context(struct kvm_vcpu *vcpu)
378{
379 struct kvm_mmu *context = &vcpu->mmu;
380
381 context->new_cr3 = nonpaging_new_cr3;
382 context->page_fault = nonpaging_page_fault;
383 context->inval_page = nonpaging_inval_page;
384 context->gva_to_gpa = nonpaging_gva_to_gpa;
385 context->free = nonpaging_free;
386 context->root_level = PT32E_ROOT_LEVEL;
387 context->shadow_root_level = PT32E_ROOT_LEVEL;
388 context->root_hpa = kvm_mmu_alloc_page(vcpu, NULL);
389 ASSERT(VALID_PAGE(context->root_hpa));
390 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
391 return 0;
392}
393
394
395static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
396{
397 struct kvm_mmu_page *page, *npage;
398
399 list_for_each_entry_safe(page, npage, &vcpu->kvm->active_mmu_pages,
400 link) {
401 if (page->global)
402 continue;
403
404 if (!page->parent_pte)
405 continue;
406
407 *page->parent_pte = 0;
408 release_pt_page_64(vcpu, page->page_hpa, 1);
409 }
410 ++kvm_stat.tlb_flush;
411 kvm_arch_ops->tlb_flush(vcpu);
412}
413
414static void paging_new_cr3(struct kvm_vcpu *vcpu)
415{
416 kvm_mmu_flush_tlb(vcpu);
417}
418
419static void mark_pagetable_nonglobal(void *shadow_pte)
420{
421 page_header(__pa(shadow_pte))->global = 0;
422}
423
424static inline void set_pte_common(struct kvm_vcpu *vcpu,
425 u64 *shadow_pte,
426 gpa_t gaddr,
427 int dirty,
428 u64 access_bits)
429{
430 hpa_t paddr;
431
432 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
433 if (!dirty)
434 access_bits &= ~PT_WRITABLE_MASK;
435
436 if (access_bits & PT_WRITABLE_MASK)
437 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
438
439 *shadow_pte |= access_bits;
440
441 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
442
443 if (!(*shadow_pte & PT_GLOBAL_MASK))
444 mark_pagetable_nonglobal(shadow_pte);
445
446 if (is_error_hpa(paddr)) {
447 *shadow_pte |= gaddr;
448 *shadow_pte |= PT_SHADOW_IO_MARK;
449 *shadow_pte &= ~PT_PRESENT_MASK;
450 } else {
451 *shadow_pte |= paddr;
452 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
453 }
454}
455
456static void inject_page_fault(struct kvm_vcpu *vcpu,
457 u64 addr,
458 u32 err_code)
459{
460 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
461}
462
463static inline int fix_read_pf(u64 *shadow_ent)
464{
465 if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
466 !(*shadow_ent & PT_USER_MASK)) {
467 /*
468 * If supervisor write protect is disabled, we shadow kernel
469 * pages as user pages so we can trap the write access.
470 */
471 *shadow_ent |= PT_USER_MASK;
472 *shadow_ent &= ~PT_WRITABLE_MASK;
473
474 return 1;
475
476 }
477 return 0;
478}
479
480static int may_access(u64 pte, int write, int user)
481{
482
483 if (user && !(pte & PT_USER_MASK))
484 return 0;
485 if (write && !(pte & PT_WRITABLE_MASK))
486 return 0;
487 return 1;
488}
489
490/*
491 * Remove a shadow pte.
492 */
493static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
494{
495 hpa_t page_addr = vcpu->mmu.root_hpa;
496 int level = vcpu->mmu.shadow_root_level;
497
498 ++kvm_stat.invlpg;
499
500 for (; ; level--) {
501 u32 index = PT64_INDEX(addr, level);
502 u64 *table = __va(page_addr);
503
504 if (level == PT_PAGE_TABLE_LEVEL ) {
505 table[index] = 0;
506 return;
507 }
508
509 if (!is_present_pte(table[index]))
510 return;
511
512 page_addr = table[index] & PT64_BASE_ADDR_MASK;
513
514 if (level == PT_DIRECTORY_LEVEL &&
515 (table[index] & PT_SHADOW_PS_MARK)) {
516 table[index] = 0;
517 release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
518
519 kvm_arch_ops->tlb_flush(vcpu);
520 return;
521 }
522 }
523}
524
525static void paging_free(struct kvm_vcpu *vcpu)
526{
527 nonpaging_free(vcpu);
528}
529
530#define PTTYPE 64
531#include "paging_tmpl.h"
532#undef PTTYPE
533
534#define PTTYPE 32
535#include "paging_tmpl.h"
536#undef PTTYPE
537
538static int paging64_init_context(struct kvm_vcpu *vcpu)
539{
540 struct kvm_mmu *context = &vcpu->mmu;
541
542 ASSERT(is_pae(vcpu));
543 context->new_cr3 = paging_new_cr3;
544 context->page_fault = paging64_page_fault;
545 context->inval_page = paging_inval_page;
546 context->gva_to_gpa = paging64_gva_to_gpa;
547 context->free = paging_free;
548 context->root_level = PT64_ROOT_LEVEL;
549 context->shadow_root_level = PT64_ROOT_LEVEL;
550 context->root_hpa = kvm_mmu_alloc_page(vcpu, NULL);
551 ASSERT(VALID_PAGE(context->root_hpa));
552 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
553 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
554 return 0;
555}
556
557static int paging32_init_context(struct kvm_vcpu *vcpu)
558{
559 struct kvm_mmu *context = &vcpu->mmu;
560
561 context->new_cr3 = paging_new_cr3;
562 context->page_fault = paging32_page_fault;
563 context->inval_page = paging_inval_page;
564 context->gva_to_gpa = paging32_gva_to_gpa;
565 context->free = paging_free;
566 context->root_level = PT32_ROOT_LEVEL;
567 context->shadow_root_level = PT32E_ROOT_LEVEL;
568 context->root_hpa = kvm_mmu_alloc_page(vcpu, NULL);
569 ASSERT(VALID_PAGE(context->root_hpa));
570 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
571 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
572 return 0;
573}
574
575static int paging32E_init_context(struct kvm_vcpu *vcpu)
576{
577 int ret;
578
579 if ((ret = paging64_init_context(vcpu)))
580 return ret;
581
582 vcpu->mmu.root_level = PT32E_ROOT_LEVEL;
583 vcpu->mmu.shadow_root_level = PT32E_ROOT_LEVEL;
584 return 0;
585}
586
587static int init_kvm_mmu(struct kvm_vcpu *vcpu)
588{
589 ASSERT(vcpu);
590 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
591
592 if (!is_paging(vcpu))
593 return nonpaging_init_context(vcpu);
594 else if (kvm_arch_ops->is_long_mode(vcpu))
595 return paging64_init_context(vcpu);
596 else if (is_pae(vcpu))
597 return paging32E_init_context(vcpu);
598 else
599 return paging32_init_context(vcpu);
600}
601
602static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
603{
604 ASSERT(vcpu);
605 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
606 vcpu->mmu.free(vcpu);
607 vcpu->mmu.root_hpa = INVALID_PAGE;
608 }
609}
610
611int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
612{
613 destroy_kvm_mmu(vcpu);
614 return init_kvm_mmu(vcpu);
615}
616
617static void free_mmu_pages(struct kvm_vcpu *vcpu)
618{
619 while (!list_empty(&vcpu->free_pages)) {
620 struct kvm_mmu_page *page;
621
622 page = list_entry(vcpu->free_pages.next,
623 struct kvm_mmu_page, link);
624 list_del(&page->link);
625 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
626 page->page_hpa = INVALID_PAGE;
627 }
628}
629
630static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
631{
632 int i;
633
634 ASSERT(vcpu);
635
636 for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
637 struct page *page;
638 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
639
640 INIT_LIST_HEAD(&page_header->link);
641 if ((page = alloc_page(GFP_KVM_MMU)) == NULL)
642 goto error_1;
643 page->private = (unsigned long)page_header;
644 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
645 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
646 list_add(&page_header->link, &vcpu->free_pages);
647 }
648 return 0;
649
650error_1:
651 free_mmu_pages(vcpu);
652 return -ENOMEM;
653}
654
655int kvm_mmu_init(struct kvm_vcpu *vcpu)
656{
657 int r;
658
659 ASSERT(vcpu);
660 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
661 ASSERT(list_empty(&vcpu->free_pages));
662
663 if ((r = alloc_mmu_pages(vcpu)))
664 return r;
665
666 if ((r = init_kvm_mmu(vcpu))) {
667 free_mmu_pages(vcpu);
668 return r;
669 }
670 return 0;
671}
672
673void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
674{
675 ASSERT(vcpu);
676
677 destroy_kvm_mmu(vcpu);
678 free_mmu_pages(vcpu);
679}
680
681void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
682{
683 struct kvm_mmu_page *page;
684
685 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
686 int i;
687 u64 *pt;
688
689 if (!test_bit(slot, &page->slot_bitmap))
690 continue;
691
692 pt = __va(page->page_hpa);
693 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
694 /* avoid RMW */
695 if (pt[i] & PT_WRITABLE_MASK)
696 pt[i] &= ~PT_WRITABLE_MASK;
697
698 }
699}
This page took 0.048862 seconds and 5 git commands to generate.