KVM: MMU: Remove unused large page marker
[deliverable/linux.git] / drivers / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19#include <linux/types.h>
20#include <linux/string.h>
21#include <asm/page.h>
22#include <linux/mm.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
e663ee64 25#include <asm/cmpxchg.h>
6aa8b732
AK
26
27#include "vmx.h"
28#include "kvm.h"
29
37a7d8b0
AK
30#undef MMU_DEBUG
31
32#undef AUDIT
33
34#ifdef AUDIT
35static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
36#else
37static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
38#endif
39
40#ifdef MMU_DEBUG
41
42#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
43#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
44
45#else
46
47#define pgprintk(x...) do { } while (0)
48#define rmap_printk(x...) do { } while (0)
49
50#endif
51
52#if defined(MMU_DEBUG) || defined(AUDIT)
53static int dbg = 1;
54#endif
6aa8b732 55
d6c69ee9
YD
56#ifndef MMU_DEBUG
57#define ASSERT(x) do { } while (0)
58#else
6aa8b732
AK
59#define ASSERT(x) \
60 if (!(x)) { \
61 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
62 __FILE__, __LINE__, #x); \
63 }
d6c69ee9 64#endif
6aa8b732 65
cea0f0e7
AK
66#define PT64_PT_BITS 9
67#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
68#define PT32_PT_BITS 10
69#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
6aa8b732
AK
70
71#define PT_WRITABLE_SHIFT 1
72
73#define PT_PRESENT_MASK (1ULL << 0)
74#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
75#define PT_USER_MASK (1ULL << 2)
76#define PT_PWT_MASK (1ULL << 3)
77#define PT_PCD_MASK (1ULL << 4)
78#define PT_ACCESSED_MASK (1ULL << 5)
79#define PT_DIRTY_MASK (1ULL << 6)
80#define PT_PAGE_SIZE_MASK (1ULL << 7)
81#define PT_PAT_MASK (1ULL << 7)
82#define PT_GLOBAL_MASK (1ULL << 8)
83#define PT64_NX_MASK (1ULL << 63)
84
85#define PT_PAT_SHIFT 7
86#define PT_DIR_PAT_SHIFT 12
87#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
88
89#define PT32_DIR_PSE36_SIZE 4
90#define PT32_DIR_PSE36_SHIFT 13
91#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
92
93
6aa8b732
AK
94#define PT_FIRST_AVAIL_BITS_SHIFT 9
95#define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
6aa8b732
AK
97#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
98
6aa8b732
AK
99#define VALID_PAGE(x) ((x) != INVALID_PAGE)
100
101#define PT64_LEVEL_BITS 9
102
103#define PT64_LEVEL_SHIFT(level) \
104 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
105
106#define PT64_LEVEL_MASK(level) \
107 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
108
109#define PT64_INDEX(address, level)\
110 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
111
112
113#define PT32_LEVEL_BITS 10
114
115#define PT32_LEVEL_SHIFT(level) \
116 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
117
118#define PT32_LEVEL_MASK(level) \
119 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
120
121#define PT32_INDEX(address, level)\
122 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
123
124
27aba766 125#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
126#define PT64_DIR_BASE_ADDR_MASK \
127 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
128
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132
133
134#define PFERR_PRESENT_MASK (1U << 0)
135#define PFERR_WRITE_MASK (1U << 1)
136#define PFERR_USER_MASK (1U << 2)
73b1087e 137#define PFERR_FETCH_MASK (1U << 4)
6aa8b732
AK
138
139#define PT64_ROOT_LEVEL 4
140#define PT32_ROOT_LEVEL 2
141#define PT32E_ROOT_LEVEL 3
142
143#define PT_DIRECTORY_LEVEL 2
144#define PT_PAGE_TABLE_LEVEL 1
145
cd4a4e53
AK
146#define RMAP_EXT 4
147
148struct kvm_rmap_desc {
149 u64 *shadow_ptes[RMAP_EXT];
150 struct kvm_rmap_desc *more;
151};
152
b5a33a75
AK
153static struct kmem_cache *pte_chain_cache;
154static struct kmem_cache *rmap_desc_cache;
d3d25b04
AK
155static struct kmem_cache *mmu_page_cache;
156static struct kmem_cache *mmu_page_header_cache;
b5a33a75 157
6aa8b732
AK
158static int is_write_protection(struct kvm_vcpu *vcpu)
159{
160 return vcpu->cr0 & CR0_WP_MASK;
161}
162
163static int is_cpuid_PSE36(void)
164{
165 return 1;
166}
167
73b1087e
AK
168static int is_nx(struct kvm_vcpu *vcpu)
169{
170 return vcpu->shadow_efer & EFER_NX;
171}
172
6aa8b732
AK
173static int is_present_pte(unsigned long pte)
174{
175 return pte & PT_PRESENT_MASK;
176}
177
178static int is_writeble_pte(unsigned long pte)
179{
180 return pte & PT_WRITABLE_MASK;
181}
182
183static int is_io_pte(unsigned long pte)
184{
185 return pte & PT_SHADOW_IO_MARK;
186}
187
cd4a4e53
AK
188static int is_rmap_pte(u64 pte)
189{
190 return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
191 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
192}
193
e663ee64
AK
194static void set_shadow_pte(u64 *sptep, u64 spte)
195{
196#ifdef CONFIG_X86_64
197 set_64bit((unsigned long *)sptep, spte);
198#else
199 set_64bit((unsigned long long *)sptep, spte);
200#endif
201}
202
e2dec939 203static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
8c438502
AK
204 struct kmem_cache *base_cache, int min,
205 gfp_t gfp_flags)
714b93da
AK
206{
207 void *obj;
208
209 if (cache->nobjs >= min)
e2dec939 210 return 0;
714b93da 211 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
8c438502 212 obj = kmem_cache_zalloc(base_cache, gfp_flags);
714b93da 213 if (!obj)
e2dec939 214 return -ENOMEM;
714b93da
AK
215 cache->objects[cache->nobjs++] = obj;
216 }
e2dec939 217 return 0;
714b93da
AK
218}
219
220static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
221{
222 while (mc->nobjs)
223 kfree(mc->objects[--mc->nobjs]);
224}
225
8c438502 226static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
714b93da 227{
e2dec939
AK
228 int r;
229
230 r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
8c438502 231 pte_chain_cache, 4, gfp_flags);
e2dec939
AK
232 if (r)
233 goto out;
234 r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
8c438502 235 rmap_desc_cache, 1, gfp_flags);
d3d25b04
AK
236 if (r)
237 goto out;
238 r = mmu_topup_memory_cache(&vcpu->mmu_page_cache,
239 mmu_page_cache, 4, gfp_flags);
240 if (r)
241 goto out;
242 r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
243 mmu_page_header_cache, 4, gfp_flags);
e2dec939
AK
244out:
245 return r;
714b93da
AK
246}
247
8c438502
AK
248static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
249{
250 int r;
251
252 r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
253 if (r < 0) {
254 spin_unlock(&vcpu->kvm->lock);
255 kvm_arch_ops->vcpu_put(vcpu);
256 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
257 kvm_arch_ops->vcpu_load(vcpu);
258 spin_lock(&vcpu->kvm->lock);
259 }
260 return r;
261}
262
714b93da
AK
263static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
264{
265 mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
266 mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
d3d25b04
AK
267 mmu_free_memory_cache(&vcpu->mmu_page_cache);
268 mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
714b93da
AK
269}
270
271static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
272 size_t size)
273{
274 void *p;
275
276 BUG_ON(!mc->nobjs);
277 p = mc->objects[--mc->nobjs];
278 memset(p, 0, size);
279 return p;
280}
281
282static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
283{
284 if (mc->nobjs < KVM_NR_MEM_OBJS)
285 mc->objects[mc->nobjs++] = obj;
286 else
287 kfree(obj);
288}
289
290static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
291{
292 return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
293 sizeof(struct kvm_pte_chain));
294}
295
296static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
297 struct kvm_pte_chain *pc)
298{
299 mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
300}
301
302static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
303{
304 return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
305 sizeof(struct kvm_rmap_desc));
306}
307
308static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
309 struct kvm_rmap_desc *rd)
310{
311 mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
312}
313
cd4a4e53
AK
314/*
315 * Reverse mapping data structures:
316 *
317 * If page->private bit zero is zero, then page->private points to the
318 * shadow page table entry that points to page_address(page).
319 *
320 * If page->private bit zero is one, (then page->private & ~1) points
321 * to a struct kvm_rmap_desc containing more mappings.
322 */
714b93da 323static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
cd4a4e53
AK
324{
325 struct page *page;
326 struct kvm_rmap_desc *desc;
327 int i;
328
329 if (!is_rmap_pte(*spte))
330 return;
331 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
5972e953 332 if (!page_private(page)) {
cd4a4e53 333 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
5972e953
MR
334 set_page_private(page,(unsigned long)spte);
335 } else if (!(page_private(page) & 1)) {
cd4a4e53 336 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
714b93da 337 desc = mmu_alloc_rmap_desc(vcpu);
5972e953 338 desc->shadow_ptes[0] = (u64 *)page_private(page);
cd4a4e53 339 desc->shadow_ptes[1] = spte;
5972e953 340 set_page_private(page,(unsigned long)desc | 1);
cd4a4e53
AK
341 } else {
342 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
5972e953 343 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
cd4a4e53
AK
344 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
345 desc = desc->more;
346 if (desc->shadow_ptes[RMAP_EXT-1]) {
714b93da 347 desc->more = mmu_alloc_rmap_desc(vcpu);
cd4a4e53
AK
348 desc = desc->more;
349 }
350 for (i = 0; desc->shadow_ptes[i]; ++i)
351 ;
352 desc->shadow_ptes[i] = spte;
353 }
354}
355
714b93da
AK
356static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
357 struct page *page,
cd4a4e53
AK
358 struct kvm_rmap_desc *desc,
359 int i,
360 struct kvm_rmap_desc *prev_desc)
361{
362 int j;
363
364 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
365 ;
366 desc->shadow_ptes[i] = desc->shadow_ptes[j];
11718b4d 367 desc->shadow_ptes[j] = NULL;
cd4a4e53
AK
368 if (j != 0)
369 return;
370 if (!prev_desc && !desc->more)
5972e953 371 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
cd4a4e53
AK
372 else
373 if (prev_desc)
374 prev_desc->more = desc->more;
375 else
5972e953 376 set_page_private(page,(unsigned long)desc->more | 1);
714b93da 377 mmu_free_rmap_desc(vcpu, desc);
cd4a4e53
AK
378}
379
714b93da 380static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
cd4a4e53
AK
381{
382 struct page *page;
383 struct kvm_rmap_desc *desc;
384 struct kvm_rmap_desc *prev_desc;
385 int i;
386
387 if (!is_rmap_pte(*spte))
388 return;
389 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
5972e953 390 if (!page_private(page)) {
cd4a4e53
AK
391 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
392 BUG();
5972e953 393 } else if (!(page_private(page) & 1)) {
cd4a4e53 394 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
5972e953 395 if ((u64 *)page_private(page) != spte) {
cd4a4e53
AK
396 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
397 spte, *spte);
398 BUG();
399 }
5972e953 400 set_page_private(page,0);
cd4a4e53
AK
401 } else {
402 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
5972e953 403 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
cd4a4e53
AK
404 prev_desc = NULL;
405 while (desc) {
406 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
407 if (desc->shadow_ptes[i] == spte) {
714b93da
AK
408 rmap_desc_remove_entry(vcpu, page,
409 desc, i,
cd4a4e53
AK
410 prev_desc);
411 return;
412 }
413 prev_desc = desc;
414 desc = desc->more;
415 }
416 BUG();
417 }
418}
419
714b93da 420static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
374cbac0 421{
714b93da 422 struct kvm *kvm = vcpu->kvm;
374cbac0 423 struct page *page;
374cbac0
AK
424 struct kvm_rmap_desc *desc;
425 u64 *spte;
426
954bbbc2
AK
427 page = gfn_to_page(kvm, gfn);
428 BUG_ON(!page);
374cbac0 429
5972e953
MR
430 while (page_private(page)) {
431 if (!(page_private(page) & 1))
432 spte = (u64 *)page_private(page);
374cbac0 433 else {
5972e953 434 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
374cbac0
AK
435 spte = desc->shadow_ptes[0];
436 }
437 BUG_ON(!spte);
27aba766
AK
438 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
439 != page_to_pfn(page));
374cbac0
AK
440 BUG_ON(!(*spte & PT_PRESENT_MASK));
441 BUG_ON(!(*spte & PT_WRITABLE_MASK));
442 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
714b93da 443 rmap_remove(vcpu, spte);
40907d57 444 kvm_arch_ops->tlb_flush(vcpu);
e663ee64 445 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
374cbac0
AK
446 }
447}
448
d6c69ee9 449#ifdef MMU_DEBUG
47ad8e68 450static int is_empty_shadow_page(u64 *spt)
6aa8b732 451{
139bdb2d
AK
452 u64 *pos;
453 u64 *end;
454
47ad8e68 455 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
139bdb2d
AK
456 if (*pos != 0) {
457 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
458 pos, *pos);
6aa8b732 459 return 0;
139bdb2d 460 }
6aa8b732
AK
461 return 1;
462}
d6c69ee9 463#endif
6aa8b732 464
4b02d6da
AK
465static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
466 struct kvm_mmu_page *page_head)
260746c0 467{
47ad8e68 468 ASSERT(is_empty_shadow_page(page_head->spt));
d3d25b04
AK
469 list_del(&page_head->link);
470 mmu_memory_cache_free(&vcpu->mmu_page_cache, page_head->spt);
471 mmu_memory_cache_free(&vcpu->mmu_page_header_cache, page_head);
260746c0
AK
472 ++vcpu->kvm->n_free_mmu_pages;
473}
474
cea0f0e7
AK
475static unsigned kvm_page_table_hashfn(gfn_t gfn)
476{
477 return gfn;
478}
479
25c0de2c
AK
480static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
481 u64 *parent_pte)
6aa8b732
AK
482{
483 struct kvm_mmu_page *page;
484
d3d25b04 485 if (!vcpu->kvm->n_free_mmu_pages)
25c0de2c 486 return NULL;
6aa8b732 487
d3d25b04
AK
488 page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
489 sizeof *page);
490 page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
491 set_page_private(virt_to_page(page->spt), (unsigned long)page);
492 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
47ad8e68 493 ASSERT(is_empty_shadow_page(page->spt));
6aa8b732 494 page->slot_bitmap = 0;
cea0f0e7 495 page->multimapped = 0;
6aa8b732 496 page->parent_pte = parent_pte;
ebeace86 497 --vcpu->kvm->n_free_mmu_pages;
25c0de2c 498 return page;
6aa8b732
AK
499}
500
714b93da
AK
501static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
502 struct kvm_mmu_page *page, u64 *parent_pte)
cea0f0e7
AK
503{
504 struct kvm_pte_chain *pte_chain;
505 struct hlist_node *node;
506 int i;
507
508 if (!parent_pte)
509 return;
510 if (!page->multimapped) {
511 u64 *old = page->parent_pte;
512
513 if (!old) {
514 page->parent_pte = parent_pte;
515 return;
516 }
517 page->multimapped = 1;
714b93da 518 pte_chain = mmu_alloc_pte_chain(vcpu);
cea0f0e7
AK
519 INIT_HLIST_HEAD(&page->parent_ptes);
520 hlist_add_head(&pte_chain->link, &page->parent_ptes);
521 pte_chain->parent_ptes[0] = old;
522 }
523 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
524 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
525 continue;
526 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
527 if (!pte_chain->parent_ptes[i]) {
528 pte_chain->parent_ptes[i] = parent_pte;
529 return;
530 }
531 }
714b93da 532 pte_chain = mmu_alloc_pte_chain(vcpu);
cea0f0e7
AK
533 BUG_ON(!pte_chain);
534 hlist_add_head(&pte_chain->link, &page->parent_ptes);
535 pte_chain->parent_ptes[0] = parent_pte;
536}
537
714b93da
AK
538static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
539 struct kvm_mmu_page *page,
cea0f0e7
AK
540 u64 *parent_pte)
541{
542 struct kvm_pte_chain *pte_chain;
543 struct hlist_node *node;
544 int i;
545
546 if (!page->multimapped) {
547 BUG_ON(page->parent_pte != parent_pte);
548 page->parent_pte = NULL;
549 return;
550 }
551 hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
552 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
553 if (!pte_chain->parent_ptes[i])
554 break;
555 if (pte_chain->parent_ptes[i] != parent_pte)
556 continue;
697fe2e2
AK
557 while (i + 1 < NR_PTE_CHAIN_ENTRIES
558 && pte_chain->parent_ptes[i + 1]) {
cea0f0e7
AK
559 pte_chain->parent_ptes[i]
560 = pte_chain->parent_ptes[i + 1];
561 ++i;
562 }
563 pte_chain->parent_ptes[i] = NULL;
697fe2e2
AK
564 if (i == 0) {
565 hlist_del(&pte_chain->link);
714b93da 566 mmu_free_pte_chain(vcpu, pte_chain);
697fe2e2
AK
567 if (hlist_empty(&page->parent_ptes)) {
568 page->multimapped = 0;
569 page->parent_pte = NULL;
570 }
571 }
cea0f0e7
AK
572 return;
573 }
574 BUG();
575}
576
577static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
578 gfn_t gfn)
579{
580 unsigned index;
581 struct hlist_head *bucket;
582 struct kvm_mmu_page *page;
583 struct hlist_node *node;
584
585 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
586 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
587 bucket = &vcpu->kvm->mmu_page_hash[index];
588 hlist_for_each_entry(page, node, bucket, hash_link)
589 if (page->gfn == gfn && !page->role.metaphysical) {
590 pgprintk("%s: found role %x\n",
591 __FUNCTION__, page->role.word);
592 return page;
593 }
594 return NULL;
595}
596
597static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
598 gfn_t gfn,
599 gva_t gaddr,
600 unsigned level,
601 int metaphysical,
d28c6cfb 602 unsigned hugepage_access,
cea0f0e7
AK
603 u64 *parent_pte)
604{
605 union kvm_mmu_page_role role;
606 unsigned index;
607 unsigned quadrant;
608 struct hlist_head *bucket;
609 struct kvm_mmu_page *page;
610 struct hlist_node *node;
611
612 role.word = 0;
613 role.glevels = vcpu->mmu.root_level;
614 role.level = level;
615 role.metaphysical = metaphysical;
d28c6cfb 616 role.hugepage_access = hugepage_access;
cea0f0e7
AK
617 if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
618 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
619 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
620 role.quadrant = quadrant;
621 }
622 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
623 gfn, role.word);
624 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
625 bucket = &vcpu->kvm->mmu_page_hash[index];
626 hlist_for_each_entry(page, node, bucket, hash_link)
627 if (page->gfn == gfn && page->role.word == role.word) {
714b93da 628 mmu_page_add_parent_pte(vcpu, page, parent_pte);
cea0f0e7
AK
629 pgprintk("%s: found\n", __FUNCTION__);
630 return page;
631 }
632 page = kvm_mmu_alloc_page(vcpu, parent_pte);
633 if (!page)
634 return page;
635 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
636 page->gfn = gfn;
637 page->role = role;
638 hlist_add_head(&page->hash_link, bucket);
374cbac0 639 if (!metaphysical)
714b93da 640 rmap_write_protect(vcpu, gfn);
cea0f0e7
AK
641 return page;
642}
643
a436036b
AK
644static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
645 struct kvm_mmu_page *page)
646{
697fe2e2
AK
647 unsigned i;
648 u64 *pt;
649 u64 ent;
650
47ad8e68 651 pt = page->spt;
697fe2e2
AK
652
653 if (page->role.level == PT_PAGE_TABLE_LEVEL) {
654 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
655 if (pt[i] & PT_PRESENT_MASK)
714b93da 656 rmap_remove(vcpu, &pt[i]);
697fe2e2
AK
657 pt[i] = 0;
658 }
40907d57 659 kvm_arch_ops->tlb_flush(vcpu);
697fe2e2
AK
660 return;
661 }
662
663 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
664 ent = pt[i];
665
666 pt[i] = 0;
667 if (!(ent & PT_PRESENT_MASK))
668 continue;
669 ent &= PT64_BASE_ADDR_MASK;
714b93da 670 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
697fe2e2 671 }
a436036b
AK
672}
673
cea0f0e7
AK
674static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
675 struct kvm_mmu_page *page,
676 u64 *parent_pte)
677{
714b93da 678 mmu_page_remove_parent_pte(vcpu, page, parent_pte);
a436036b
AK
679}
680
681static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
682 struct kvm_mmu_page *page)
683{
684 u64 *parent_pte;
685
686 while (page->multimapped || page->parent_pte) {
687 if (!page->multimapped)
688 parent_pte = page->parent_pte;
689 else {
690 struct kvm_pte_chain *chain;
691
692 chain = container_of(page->parent_ptes.first,
693 struct kvm_pte_chain, link);
694 parent_pte = chain->parent_ptes[0];
695 }
697fe2e2 696 BUG_ON(!parent_pte);
a436036b 697 kvm_mmu_put_page(vcpu, page, parent_pte);
e663ee64 698 set_shadow_pte(parent_pte, 0);
a436036b 699 }
cc4529ef 700 kvm_mmu_page_unlink_children(vcpu, page);
3bb65a22
AK
701 if (!page->root_count) {
702 hlist_del(&page->hash_link);
4b02d6da 703 kvm_mmu_free_page(vcpu, page);
36868f7b
AK
704 } else
705 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
a436036b
AK
706}
707
708static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
709{
710 unsigned index;
711 struct hlist_head *bucket;
712 struct kvm_mmu_page *page;
713 struct hlist_node *node, *n;
714 int r;
715
716 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
717 r = 0;
718 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
719 bucket = &vcpu->kvm->mmu_page_hash[index];
720 hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
721 if (page->gfn == gfn && !page->role.metaphysical) {
697fe2e2
AK
722 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
723 page->role.word);
a436036b
AK
724 kvm_mmu_zap_page(vcpu, page);
725 r = 1;
726 }
727 return r;
cea0f0e7
AK
728}
729
97a0a01e
AK
730static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
731{
732 struct kvm_mmu_page *page;
733
734 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
735 pgprintk("%s: zap %lx %x\n",
736 __FUNCTION__, gfn, page->role.word);
737 kvm_mmu_zap_page(vcpu, page);
738 }
739}
740
6aa8b732
AK
741static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
742{
743 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
744 struct kvm_mmu_page *page_head = page_header(__pa(pte));
745
746 __set_bit(slot, &page_head->slot_bitmap);
747}
748
749hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
750{
751 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
752
753 return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
754}
755
756hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
757{
6aa8b732
AK
758 struct page *page;
759
760 ASSERT((gpa & HPA_ERR_MASK) == 0);
954bbbc2
AK
761 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
762 if (!page)
6aa8b732 763 return gpa | HPA_ERR_MASK;
6aa8b732
AK
764 return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
765 | (gpa & (PAGE_SIZE-1));
766}
767
768hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
769{
770 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
771
772 if (gpa == UNMAPPED_GVA)
773 return UNMAPPED_GVA;
774 return gpa_to_hpa(vcpu, gpa);
775}
776
039576c0
AK
777struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
778{
779 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
780
781 if (gpa == UNMAPPED_GVA)
782 return NULL;
783 return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
784}
785
6aa8b732
AK
786static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
787{
788}
789
790static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
791{
792 int level = PT32E_ROOT_LEVEL;
793 hpa_t table_addr = vcpu->mmu.root_hpa;
794
795 for (; ; level--) {
796 u32 index = PT64_INDEX(v, level);
797 u64 *table;
cea0f0e7 798 u64 pte;
6aa8b732
AK
799
800 ASSERT(VALID_PAGE(table_addr));
801 table = __va(table_addr);
802
803 if (level == 1) {
cea0f0e7
AK
804 pte = table[index];
805 if (is_present_pte(pte) && is_writeble_pte(pte))
806 return 0;
6aa8b732
AK
807 mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
808 page_header_update_slot(vcpu->kvm, table, v);
809 table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
810 PT_USER_MASK;
714b93da 811 rmap_add(vcpu, &table[index]);
6aa8b732
AK
812 return 0;
813 }
814
815 if (table[index] == 0) {
25c0de2c 816 struct kvm_mmu_page *new_table;
cea0f0e7 817 gfn_t pseudo_gfn;
6aa8b732 818
cea0f0e7
AK
819 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
820 >> PAGE_SHIFT;
821 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
822 v, level - 1,
d28c6cfb 823 1, 0, &table[index]);
25c0de2c 824 if (!new_table) {
6aa8b732
AK
825 pgprintk("nonpaging_map: ENOMEM\n");
826 return -ENOMEM;
827 }
828
47ad8e68 829 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
25c0de2c 830 | PT_WRITABLE_MASK | PT_USER_MASK;
6aa8b732
AK
831 }
832 table_addr = table[index] & PT64_BASE_ADDR_MASK;
833 }
834}
835
17ac10ad
AK
836static void mmu_free_roots(struct kvm_vcpu *vcpu)
837{
838 int i;
3bb65a22 839 struct kvm_mmu_page *page;
17ac10ad
AK
840
841#ifdef CONFIG_X86_64
842 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
843 hpa_t root = vcpu->mmu.root_hpa;
844
845 ASSERT(VALID_PAGE(root));
3bb65a22
AK
846 page = page_header(root);
847 --page->root_count;
17ac10ad
AK
848 vcpu->mmu.root_hpa = INVALID_PAGE;
849 return;
850 }
851#endif
852 for (i = 0; i < 4; ++i) {
853 hpa_t root = vcpu->mmu.pae_root[i];
854
417726a3
AK
855 if (root) {
856 ASSERT(VALID_PAGE(root));
857 root &= PT64_BASE_ADDR_MASK;
858 page = page_header(root);
859 --page->root_count;
860 }
17ac10ad
AK
861 vcpu->mmu.pae_root[i] = INVALID_PAGE;
862 }
863 vcpu->mmu.root_hpa = INVALID_PAGE;
864}
865
866static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
867{
868 int i;
cea0f0e7 869 gfn_t root_gfn;
3bb65a22
AK
870 struct kvm_mmu_page *page;
871
cea0f0e7 872 root_gfn = vcpu->cr3 >> PAGE_SHIFT;
17ac10ad
AK
873
874#ifdef CONFIG_X86_64
875 if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
876 hpa_t root = vcpu->mmu.root_hpa;
877
878 ASSERT(!VALID_PAGE(root));
68a99f6d 879 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
d28c6cfb 880 PT64_ROOT_LEVEL, 0, 0, NULL);
47ad8e68 881 root = __pa(page->spt);
3bb65a22 882 ++page->root_count;
17ac10ad
AK
883 vcpu->mmu.root_hpa = root;
884 return;
885 }
886#endif
887 for (i = 0; i < 4; ++i) {
888 hpa_t root = vcpu->mmu.pae_root[i];
889
890 ASSERT(!VALID_PAGE(root));
417726a3
AK
891 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
892 if (!is_present_pte(vcpu->pdptrs[i])) {
893 vcpu->mmu.pae_root[i] = 0;
894 continue;
895 }
cea0f0e7 896 root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
417726a3 897 } else if (vcpu->mmu.root_level == 0)
cea0f0e7 898 root_gfn = 0;
68a99f6d 899 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
cea0f0e7 900 PT32_ROOT_LEVEL, !is_paging(vcpu),
d28c6cfb 901 0, NULL);
47ad8e68 902 root = __pa(page->spt);
3bb65a22 903 ++page->root_count;
17ac10ad
AK
904 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
905 }
906 vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
907}
908
6aa8b732
AK
909static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
910{
911 return vaddr;
912}
913
914static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
915 u32 error_code)
916{
6aa8b732 917 gpa_t addr = gva;
ebeace86 918 hpa_t paddr;
e2dec939 919 int r;
6aa8b732 920
e2dec939
AK
921 r = mmu_topup_memory_caches(vcpu);
922 if (r)
923 return r;
714b93da 924
6aa8b732
AK
925 ASSERT(vcpu);
926 ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
927
6aa8b732 928
ebeace86 929 paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
6aa8b732 930
ebeace86
AK
931 if (is_error_hpa(paddr))
932 return 1;
6aa8b732 933
ebeace86 934 return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
6aa8b732
AK
935}
936
6aa8b732
AK
937static void nonpaging_free(struct kvm_vcpu *vcpu)
938{
17ac10ad 939 mmu_free_roots(vcpu);
6aa8b732
AK
940}
941
942static int nonpaging_init_context(struct kvm_vcpu *vcpu)
943{
944 struct kvm_mmu *context = &vcpu->mmu;
945
946 context->new_cr3 = nonpaging_new_cr3;
947 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
948 context->gva_to_gpa = nonpaging_gva_to_gpa;
949 context->free = nonpaging_free;
cea0f0e7 950 context->root_level = 0;
6aa8b732 951 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 952 mmu_alloc_roots(vcpu);
6aa8b732
AK
953 ASSERT(VALID_PAGE(context->root_hpa));
954 kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
955 return 0;
956}
957
6aa8b732
AK
958static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
959{
1165f5fe 960 ++vcpu->stat.tlb_flush;
6aa8b732
AK
961 kvm_arch_ops->tlb_flush(vcpu);
962}
963
964static void paging_new_cr3(struct kvm_vcpu *vcpu)
965{
374cbac0 966 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
cea0f0e7 967 mmu_free_roots(vcpu);
7f7417d6
IM
968 if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
969 kvm_mmu_free_some_pages(vcpu);
cea0f0e7 970 mmu_alloc_roots(vcpu);
6aa8b732 971 kvm_mmu_flush_tlb(vcpu);
cea0f0e7 972 kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
6aa8b732
AK
973}
974
6aa8b732
AK
975static void inject_page_fault(struct kvm_vcpu *vcpu,
976 u64 addr,
977 u32 err_code)
978{
979 kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
980}
981
6aa8b732
AK
982static void paging_free(struct kvm_vcpu *vcpu)
983{
984 nonpaging_free(vcpu);
985}
986
987#define PTTYPE 64
988#include "paging_tmpl.h"
989#undef PTTYPE
990
991#define PTTYPE 32
992#include "paging_tmpl.h"
993#undef PTTYPE
994
17ac10ad 995static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
6aa8b732
AK
996{
997 struct kvm_mmu *context = &vcpu->mmu;
998
999 ASSERT(is_pae(vcpu));
1000 context->new_cr3 = paging_new_cr3;
1001 context->page_fault = paging64_page_fault;
6aa8b732
AK
1002 context->gva_to_gpa = paging64_gva_to_gpa;
1003 context->free = paging_free;
17ac10ad
AK
1004 context->root_level = level;
1005 context->shadow_root_level = level;
1006 mmu_alloc_roots(vcpu);
6aa8b732
AK
1007 ASSERT(VALID_PAGE(context->root_hpa));
1008 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1009 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1010 return 0;
1011}
1012
17ac10ad
AK
1013static int paging64_init_context(struct kvm_vcpu *vcpu)
1014{
1015 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1016}
1017
6aa8b732
AK
1018static int paging32_init_context(struct kvm_vcpu *vcpu)
1019{
1020 struct kvm_mmu *context = &vcpu->mmu;
1021
1022 context->new_cr3 = paging_new_cr3;
1023 context->page_fault = paging32_page_fault;
6aa8b732
AK
1024 context->gva_to_gpa = paging32_gva_to_gpa;
1025 context->free = paging_free;
1026 context->root_level = PT32_ROOT_LEVEL;
1027 context->shadow_root_level = PT32E_ROOT_LEVEL;
17ac10ad 1028 mmu_alloc_roots(vcpu);
6aa8b732
AK
1029 ASSERT(VALID_PAGE(context->root_hpa));
1030 kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1031 (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1032 return 0;
1033}
1034
1035static int paging32E_init_context(struct kvm_vcpu *vcpu)
1036{
17ac10ad 1037 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
6aa8b732
AK
1038}
1039
1040static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1041{
1042 ASSERT(vcpu);
1043 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1044
d3d25b04 1045 mmu_topup_memory_caches(vcpu);
6aa8b732
AK
1046 if (!is_paging(vcpu))
1047 return nonpaging_init_context(vcpu);
a9058ecd 1048 else if (is_long_mode(vcpu))
6aa8b732
AK
1049 return paging64_init_context(vcpu);
1050 else if (is_pae(vcpu))
1051 return paging32E_init_context(vcpu);
1052 else
1053 return paging32_init_context(vcpu);
1054}
1055
1056static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1057{
1058 ASSERT(vcpu);
1059 if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1060 vcpu->mmu.free(vcpu);
1061 vcpu->mmu.root_hpa = INVALID_PAGE;
1062 }
1063}
1064
1065int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1066{
714b93da
AK
1067 int r;
1068
6aa8b732 1069 destroy_kvm_mmu(vcpu);
714b93da
AK
1070 r = init_kvm_mmu(vcpu);
1071 if (r < 0)
1072 goto out;
e2dec939 1073 r = mmu_topup_memory_caches(vcpu);
714b93da
AK
1074out:
1075 return r;
6aa8b732
AK
1076}
1077
09072daf 1078static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
ac1b714e
AK
1079 struct kvm_mmu_page *page,
1080 u64 *spte)
1081{
1082 u64 pte;
1083 struct kvm_mmu_page *child;
1084
1085 pte = *spte;
1086 if (is_present_pte(pte)) {
1087 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1088 rmap_remove(vcpu, spte);
1089 else {
1090 child = page_header(pte & PT64_BASE_ADDR_MASK);
1091 mmu_page_remove_parent_pte(vcpu, child, spte);
1092 }
1093 }
1094 *spte = 0;
1095}
1096
0028425f
AK
1097static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1098 struct kvm_mmu_page *page,
1099 u64 *spte,
1100 const void *new, int bytes)
1101{
1102 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1103 return;
1104
1105 if (page->role.glevels == PT32_ROOT_LEVEL)
1106 paging32_update_pte(vcpu, page, spte, new, bytes);
1107 else
1108 paging64_update_pte(vcpu, page, spte, new, bytes);
1109}
1110
09072daf
AK
1111void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1112 const u8 *old, const u8 *new, int bytes)
da4a00f0 1113{
9b7a0325
AK
1114 gfn_t gfn = gpa >> PAGE_SHIFT;
1115 struct kvm_mmu_page *page;
0e7bc4b9 1116 struct hlist_node *node, *n;
9b7a0325
AK
1117 struct hlist_head *bucket;
1118 unsigned index;
1119 u64 *spte;
9b7a0325 1120 unsigned offset = offset_in_page(gpa);
0e7bc4b9 1121 unsigned pte_size;
9b7a0325 1122 unsigned page_offset;
0e7bc4b9 1123 unsigned misaligned;
fce0657f 1124 unsigned quadrant;
9b7a0325 1125 int level;
86a5ba02 1126 int flooded = 0;
ac1b714e 1127 int npte;
9b7a0325 1128
da4a00f0 1129 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
86a5ba02
AK
1130 if (gfn == vcpu->last_pt_write_gfn) {
1131 ++vcpu->last_pt_write_count;
1132 if (vcpu->last_pt_write_count >= 3)
1133 flooded = 1;
1134 } else {
1135 vcpu->last_pt_write_gfn = gfn;
1136 vcpu->last_pt_write_count = 1;
1137 }
9b7a0325
AK
1138 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1139 bucket = &vcpu->kvm->mmu_page_hash[index];
0e7bc4b9 1140 hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
9b7a0325
AK
1141 if (page->gfn != gfn || page->role.metaphysical)
1142 continue;
0e7bc4b9
AK
1143 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1144 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
e925c5ba 1145 misaligned |= bytes < 4;
86a5ba02 1146 if (misaligned || flooded) {
0e7bc4b9
AK
1147 /*
1148 * Misaligned accesses are too much trouble to fix
1149 * up; also, they usually indicate a page is not used
1150 * as a page table.
86a5ba02
AK
1151 *
1152 * If we're seeing too many writes to a page,
1153 * it may no longer be a page table, or we may be
1154 * forking, in which case it is better to unmap the
1155 * page.
0e7bc4b9
AK
1156 */
1157 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1158 gpa, bytes, page->role.word);
1159 kvm_mmu_zap_page(vcpu, page);
1160 continue;
1161 }
9b7a0325
AK
1162 page_offset = offset;
1163 level = page->role.level;
ac1b714e 1164 npte = 1;
9b7a0325 1165 if (page->role.glevels == PT32_ROOT_LEVEL) {
ac1b714e
AK
1166 page_offset <<= 1; /* 32->64 */
1167 /*
1168 * A 32-bit pde maps 4MB while the shadow pdes map
1169 * only 2MB. So we need to double the offset again
1170 * and zap two pdes instead of one.
1171 */
1172 if (level == PT32_ROOT_LEVEL) {
6b8d0f9b 1173 page_offset &= ~7; /* kill rounding error */
ac1b714e
AK
1174 page_offset <<= 1;
1175 npte = 2;
1176 }
fce0657f 1177 quadrant = page_offset >> PAGE_SHIFT;
9b7a0325 1178 page_offset &= ~PAGE_MASK;
fce0657f
AK
1179 if (quadrant != page->role.quadrant)
1180 continue;
9b7a0325 1181 }
47ad8e68 1182 spte = &page->spt[page_offset / sizeof(*spte)];
ac1b714e 1183 while (npte--) {
09072daf 1184 mmu_pte_write_zap_pte(vcpu, page, spte);
0028425f 1185 mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
ac1b714e 1186 ++spte;
9b7a0325 1187 }
9b7a0325 1188 }
da4a00f0
AK
1189}
1190
a436036b
AK
1191int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1192{
1193 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1194
1195 return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1196}
1197
ebeace86
AK
1198void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1199{
1200 while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1201 struct kvm_mmu_page *page;
1202
1203 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1204 struct kvm_mmu_page, link);
1205 kvm_mmu_zap_page(vcpu, page);
1206 }
1207}
1208EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1209
6aa8b732
AK
1210static void free_mmu_pages(struct kvm_vcpu *vcpu)
1211{
f51234c2 1212 struct kvm_mmu_page *page;
6aa8b732 1213
f51234c2
AK
1214 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1215 page = container_of(vcpu->kvm->active_mmu_pages.next,
1216 struct kvm_mmu_page, link);
1217 kvm_mmu_zap_page(vcpu, page);
1218 }
17ac10ad 1219 free_page((unsigned long)vcpu->mmu.pae_root);
6aa8b732
AK
1220}
1221
1222static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1223{
17ac10ad 1224 struct page *page;
6aa8b732
AK
1225 int i;
1226
1227 ASSERT(vcpu);
1228
d3d25b04 1229 vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
17ac10ad
AK
1230
1231 /*
1232 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1233 * Therefore we need to allocate shadow page tables in the first
1234 * 4GB of memory, which happens to fit the DMA32 zone.
1235 */
1236 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1237 if (!page)
1238 goto error_1;
1239 vcpu->mmu.pae_root = page_address(page);
1240 for (i = 0; i < 4; ++i)
1241 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1242
6aa8b732
AK
1243 return 0;
1244
1245error_1:
1246 free_mmu_pages(vcpu);
1247 return -ENOMEM;
1248}
1249
8018c27b 1250int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 1251{
6aa8b732
AK
1252 ASSERT(vcpu);
1253 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
6aa8b732 1254
8018c27b
IM
1255 return alloc_mmu_pages(vcpu);
1256}
6aa8b732 1257
8018c27b
IM
1258int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1259{
1260 ASSERT(vcpu);
1261 ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
2c264957 1262
8018c27b 1263 return init_kvm_mmu(vcpu);
6aa8b732
AK
1264}
1265
1266void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1267{
1268 ASSERT(vcpu);
1269
1270 destroy_kvm_mmu(vcpu);
1271 free_mmu_pages(vcpu);
714b93da 1272 mmu_free_memory_caches(vcpu);
6aa8b732
AK
1273}
1274
714b93da 1275void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
6aa8b732 1276{
714b93da 1277 struct kvm *kvm = vcpu->kvm;
6aa8b732
AK
1278 struct kvm_mmu_page *page;
1279
1280 list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1281 int i;
1282 u64 *pt;
1283
1284 if (!test_bit(slot, &page->slot_bitmap))
1285 continue;
1286
47ad8e68 1287 pt = page->spt;
6aa8b732
AK
1288 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1289 /* avoid RMW */
cd4a4e53 1290 if (pt[i] & PT_WRITABLE_MASK) {
714b93da 1291 rmap_remove(vcpu, &pt[i]);
6aa8b732 1292 pt[i] &= ~PT_WRITABLE_MASK;
cd4a4e53 1293 }
6aa8b732
AK
1294 }
1295}
37a7d8b0 1296
e0fa826f
DL
1297void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1298{
1299 destroy_kvm_mmu(vcpu);
1300
1301 while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1302 struct kvm_mmu_page *page;
1303
1304 page = container_of(vcpu->kvm->active_mmu_pages.next,
1305 struct kvm_mmu_page, link);
1306 kvm_mmu_zap_page(vcpu, page);
1307 }
1308
1309 mmu_free_memory_caches(vcpu);
1310 kvm_arch_ops->tlb_flush(vcpu);
1311 init_kvm_mmu(vcpu);
1312}
1313
b5a33a75
AK
1314void kvm_mmu_module_exit(void)
1315{
1316 if (pte_chain_cache)
1317 kmem_cache_destroy(pte_chain_cache);
1318 if (rmap_desc_cache)
1319 kmem_cache_destroy(rmap_desc_cache);
d3d25b04
AK
1320 if (mmu_page_cache)
1321 kmem_cache_destroy(mmu_page_cache);
1322 if (mmu_page_header_cache)
1323 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
1324}
1325
1326int kvm_mmu_module_init(void)
1327{
1328 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1329 sizeof(struct kvm_pte_chain),
1330 0, 0, NULL, NULL);
1331 if (!pte_chain_cache)
1332 goto nomem;
1333 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1334 sizeof(struct kvm_rmap_desc),
1335 0, 0, NULL, NULL);
1336 if (!rmap_desc_cache)
1337 goto nomem;
1338
d3d25b04
AK
1339 mmu_page_cache = kmem_cache_create("kvm_mmu_page",
1340 PAGE_SIZE,
1341 PAGE_SIZE, 0, NULL, NULL);
1342 if (!mmu_page_cache)
1343 goto nomem;
1344
1345 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1346 sizeof(struct kvm_mmu_page),
1347 0, 0, NULL, NULL);
1348 if (!mmu_page_header_cache)
1349 goto nomem;
1350
b5a33a75
AK
1351 return 0;
1352
1353nomem:
1354 kvm_mmu_module_exit();
1355 return -ENOMEM;
1356}
1357
37a7d8b0
AK
1358#ifdef AUDIT
1359
1360static const char *audit_msg;
1361
1362static gva_t canonicalize(gva_t gva)
1363{
1364#ifdef CONFIG_X86_64
1365 gva = (long long)(gva << 16) >> 16;
1366#endif
1367 return gva;
1368}
1369
1370static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1371 gva_t va, int level)
1372{
1373 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1374 int i;
1375 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1376
1377 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1378 u64 ent = pt[i];
1379
2807696c 1380 if (!(ent & PT_PRESENT_MASK))
37a7d8b0
AK
1381 continue;
1382
1383 va = canonicalize(va);
1384 if (level > 1)
1385 audit_mappings_page(vcpu, ent, va, level - 1);
1386 else {
1387 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1388 hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1389
1390 if ((ent & PT_PRESENT_MASK)
1391 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1392 printk(KERN_ERR "audit error: (%s) levels %d"
1393 " gva %lx gpa %llx hpa %llx ent %llx\n",
1394 audit_msg, vcpu->mmu.root_level,
1395 va, gpa, hpa, ent);
1396 }
1397 }
1398}
1399
1400static void audit_mappings(struct kvm_vcpu *vcpu)
1401{
1ea252af 1402 unsigned i;
37a7d8b0
AK
1403
1404 if (vcpu->mmu.root_level == 4)
1405 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1406 else
1407 for (i = 0; i < 4; ++i)
1408 if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1409 audit_mappings_page(vcpu,
1410 vcpu->mmu.pae_root[i],
1411 i << 30,
1412 2);
1413}
1414
1415static int count_rmaps(struct kvm_vcpu *vcpu)
1416{
1417 int nmaps = 0;
1418 int i, j, k;
1419
1420 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1421 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1422 struct kvm_rmap_desc *d;
1423
1424 for (j = 0; j < m->npages; ++j) {
1425 struct page *page = m->phys_mem[j];
1426
1427 if (!page->private)
1428 continue;
1429 if (!(page->private & 1)) {
1430 ++nmaps;
1431 continue;
1432 }
1433 d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1434 while (d) {
1435 for (k = 0; k < RMAP_EXT; ++k)
1436 if (d->shadow_ptes[k])
1437 ++nmaps;
1438 else
1439 break;
1440 d = d->more;
1441 }
1442 }
1443 }
1444 return nmaps;
1445}
1446
1447static int count_writable_mappings(struct kvm_vcpu *vcpu)
1448{
1449 int nmaps = 0;
1450 struct kvm_mmu_page *page;
1451 int i;
1452
1453 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
47ad8e68 1454 u64 *pt = page->spt;
37a7d8b0
AK
1455
1456 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1457 continue;
1458
1459 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1460 u64 ent = pt[i];
1461
1462 if (!(ent & PT_PRESENT_MASK))
1463 continue;
1464 if (!(ent & PT_WRITABLE_MASK))
1465 continue;
1466 ++nmaps;
1467 }
1468 }
1469 return nmaps;
1470}
1471
1472static void audit_rmap(struct kvm_vcpu *vcpu)
1473{
1474 int n_rmap = count_rmaps(vcpu);
1475 int n_actual = count_writable_mappings(vcpu);
1476
1477 if (n_rmap != n_actual)
1478 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1479 __FUNCTION__, audit_msg, n_rmap, n_actual);
1480}
1481
1482static void audit_write_protection(struct kvm_vcpu *vcpu)
1483{
1484 struct kvm_mmu_page *page;
1485
1486 list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1487 hfn_t hfn;
1488 struct page *pg;
1489
1490 if (page->role.metaphysical)
1491 continue;
1492
1493 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1494 >> PAGE_SHIFT;
1495 pg = pfn_to_page(hfn);
1496 if (pg->private)
1497 printk(KERN_ERR "%s: (%s) shadow page has writable"
1498 " mappings: gfn %lx role %x\n",
1499 __FUNCTION__, audit_msg, page->gfn,
1500 page->role.word);
1501 }
1502}
1503
1504static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1505{
1506 int olddbg = dbg;
1507
1508 dbg = 0;
1509 audit_msg = msg;
1510 audit_rmap(vcpu);
1511 audit_write_protection(vcpu);
1512 audit_mappings(vcpu);
1513 dbg = olddbg;
1514}
1515
1516#endif
This page took 0.167833 seconds and 5 git commands to generate.