raid5-cache: add journal hot add/remove support
[deliverable/linux.git] / drivers / md / raid5-cache.c
CommitLineData
f6bed0ef
SL
1/*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 */
14#include <linux/kernel.h>
15#include <linux/wait.h>
16#include <linux/blkdev.h>
17#include <linux/slab.h>
18#include <linux/raid/md_p.h>
5cb2fbd6 19#include <linux/crc32c.h>
f6bed0ef
SL
20#include <linux/random.h>
21#include "md.h"
22#include "raid5.h"
23
24/*
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
27 */
28#define BLOCK_SECTORS (8)
29
0576b1c6
SL
30/*
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
33 */
34#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36
f6bed0ef
SL
37struct r5l_log {
38 struct md_rdev *rdev;
39
40 u32 uuid_checksum;
41
42 sector_t device_size; /* log device size, round to
43 * BLOCK_SECTORS */
0576b1c6
SL
44 sector_t max_free_space; /* reclaim run if free space is at
45 * this size */
f6bed0ef
SL
46
47 sector_t last_checkpoint; /* log tail. where recovery scan
48 * starts from */
49 u64 last_cp_seq; /* log tail sequence */
50
51 sector_t log_start; /* log head. where new data appends */
52 u64 seq; /* log head sequence */
53
17036461
CH
54 sector_t next_checkpoint;
55 u64 next_cp_seq;
56
f6bed0ef
SL
57 struct mutex io_mutex;
58 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
59
60 spinlock_t io_list_lock;
61 struct list_head running_ios; /* io_units which are still running,
62 * and have not yet been completely
63 * written to the log */
64 struct list_head io_end_ios; /* io_units which have been completely
65 * written to the log but not yet written
66 * to the RAID */
a8c34f91
SL
67 struct list_head flushing_ios; /* io_units which are waiting for log
68 * cache flush */
04732f74 69 struct list_head finished_ios; /* io_units which settle down in log disk */
a8c34f91 70 struct bio flush_bio;
f6bed0ef
SL
71
72 struct kmem_cache *io_kc;
73
0576b1c6
SL
74 struct md_thread *reclaim_thread;
75 unsigned long reclaim_target; /* number of space that need to be
76 * reclaimed. if it's 0, reclaim spaces
77 * used by io_units which are in
78 * IO_UNIT_STRIPE_END state (eg, reclaim
79 * dones't wait for specific io_unit
80 * switching to IO_UNIT_STRIPE_END
81 * state) */
0fd22b45 82 wait_queue_head_t iounit_wait;
0576b1c6 83
f6bed0ef
SL
84 struct list_head no_space_stripes; /* pending stripes, log has no space */
85 spinlock_t no_space_stripes_lock;
56fef7c6
CH
86
87 bool need_cache_flush;
4b482044 88 bool in_teardown;
f6bed0ef
SL
89};
90
91/*
92 * an IO range starts from a meta data block and end at the next meta data
93 * block. The io unit's the meta data block tracks data/parity followed it. io
94 * unit is written to log disk with normal write, as we always flush log disk
95 * first and then start move data to raid disks, there is no requirement to
96 * write io unit with FLUSH/FUA
97 */
98struct r5l_io_unit {
99 struct r5l_log *log;
100
101 struct page *meta_page; /* store meta block */
102 int meta_offset; /* current offset in meta_page */
103
f6bed0ef
SL
104 struct bio *current_bio;/* current_bio accepting new data */
105
106 atomic_t pending_stripe;/* how many stripes not flushed to raid */
107 u64 seq; /* seq number of the metablock */
108 sector_t log_start; /* where the io_unit starts */
109 sector_t log_end; /* where the io_unit ends */
110 struct list_head log_sibling; /* log->running_ios */
111 struct list_head stripe_list; /* stripes added to the io_unit */
112
113 int state;
6143e2ce 114 bool need_split_bio;
f6bed0ef
SL
115};
116
117/* r5l_io_unit state */
118enum r5l_io_unit_state {
119 IO_UNIT_RUNNING = 0, /* accepting new IO */
120 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
121 * don't accepting new bio */
122 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
a8c34f91 123 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
f6bed0ef
SL
124};
125
126static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
127{
128 start += inc;
129 if (start >= log->device_size)
130 start = start - log->device_size;
131 return start;
132}
133
134static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
135 sector_t end)
136{
137 if (end >= start)
138 return end - start;
139 else
140 return end + log->device_size - start;
141}
142
143static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
144{
145 sector_t used_size;
146
147 used_size = r5l_ring_distance(log, log->last_checkpoint,
148 log->log_start);
149
150 return log->device_size > used_size + size;
151}
152
f6bed0ef
SL
153static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
154 enum r5l_io_unit_state state)
155{
f6bed0ef
SL
156 if (WARN_ON(io->state >= state))
157 return;
158 io->state = state;
f6bed0ef
SL
159}
160
d8858f43
CH
161static void r5l_io_run_stripes(struct r5l_io_unit *io)
162{
163 struct stripe_head *sh, *next;
164
165 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
166 list_del_init(&sh->log_list);
167 set_bit(STRIPE_HANDLE, &sh->state);
168 raid5_release_stripe(sh);
169 }
170}
171
56fef7c6
CH
172static void r5l_log_run_stripes(struct r5l_log *log)
173{
174 struct r5l_io_unit *io, *next;
175
176 assert_spin_locked(&log->io_list_lock);
177
178 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
179 /* don't change list order */
180 if (io->state < IO_UNIT_IO_END)
181 break;
182
183 list_move_tail(&io->log_sibling, &log->finished_ios);
184 r5l_io_run_stripes(io);
185 }
186}
187
3848c0bc
CH
188static void r5l_move_to_end_ios(struct r5l_log *log)
189{
190 struct r5l_io_unit *io, *next;
191
192 assert_spin_locked(&log->io_list_lock);
193
194 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
195 /* don't change list order */
196 if (io->state < IO_UNIT_IO_END)
197 break;
198 list_move_tail(&io->log_sibling, &log->io_end_ios);
199 }
200}
201
f6bed0ef
SL
202static void r5l_log_endio(struct bio *bio)
203{
204 struct r5l_io_unit *io = bio->bi_private;
205 struct r5l_log *log = io->log;
509ffec7 206 unsigned long flags;
f6bed0ef 207
6e74a9cf
SL
208 if (bio->bi_error)
209 md_error(log->rdev->mddev, log->rdev);
210
f6bed0ef 211 bio_put(bio);
ad66d445 212 __free_page(io->meta_page);
f6bed0ef 213
509ffec7
CH
214 spin_lock_irqsave(&log->io_list_lock, flags);
215 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
56fef7c6 216 if (log->need_cache_flush)
3848c0bc 217 r5l_move_to_end_ios(log);
56fef7c6
CH
218 else
219 r5l_log_run_stripes(log);
509ffec7
CH
220 spin_unlock_irqrestore(&log->io_list_lock, flags);
221
56fef7c6
CH
222 if (log->need_cache_flush)
223 md_wakeup_thread(log->rdev->mddev->thread);
f6bed0ef
SL
224}
225
226static void r5l_submit_current_io(struct r5l_log *log)
227{
228 struct r5l_io_unit *io = log->current_io;
229 struct r5l_meta_block *block;
509ffec7 230 unsigned long flags;
f6bed0ef
SL
231 u32 crc;
232
233 if (!io)
234 return;
235
236 block = page_address(io->meta_page);
237 block->meta_size = cpu_to_le32(io->meta_offset);
5cb2fbd6 238 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
f6bed0ef
SL
239 block->checksum = cpu_to_le32(crc);
240
241 log->current_io = NULL;
509ffec7
CH
242 spin_lock_irqsave(&log->io_list_lock, flags);
243 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
244 spin_unlock_irqrestore(&log->io_list_lock, flags);
f6bed0ef 245
6143e2ce 246 submit_bio(WRITE, io->current_bio);
f6bed0ef
SL
247}
248
6143e2ce 249static struct bio *r5l_bio_alloc(struct r5l_log *log)
b349feb3
CH
250{
251 struct bio *bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
252
253 bio->bi_rw = WRITE;
254 bio->bi_bdev = log->rdev->bdev;
1e932a37 255 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
b349feb3 256
b349feb3
CH
257 return bio;
258}
259
c1b99198
CH
260static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
261{
262 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
263
264 /*
265 * If we filled up the log device start from the beginning again,
266 * which will require a new bio.
267 *
268 * Note: for this to work properly the log size needs to me a multiple
269 * of BLOCK_SECTORS.
270 */
271 if (log->log_start == 0)
6143e2ce 272 io->need_split_bio = true;
c1b99198
CH
273
274 io->log_end = log->log_start;
275}
276
f6bed0ef
SL
277static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
278{
279 struct r5l_io_unit *io;
280 struct r5l_meta_block *block;
f6bed0ef 281
51039cd0
CH
282 /* We can't handle memory allocate failure so far */
283 io = kmem_cache_zalloc(log->io_kc, GFP_NOIO | __GFP_NOFAIL);
284 io->log = log;
51039cd0
CH
285 INIT_LIST_HEAD(&io->log_sibling);
286 INIT_LIST_HEAD(&io->stripe_list);
287 io->state = IO_UNIT_RUNNING;
f6bed0ef 288
51039cd0 289 io->meta_page = alloc_page(GFP_NOIO | __GFP_NOFAIL | __GFP_ZERO);
f6bed0ef
SL
290 block = page_address(io->meta_page);
291 block->magic = cpu_to_le32(R5LOG_MAGIC);
292 block->version = R5LOG_VERSION;
293 block->seq = cpu_to_le64(log->seq);
294 block->position = cpu_to_le64(log->log_start);
295
296 io->log_start = log->log_start;
297 io->meta_offset = sizeof(struct r5l_meta_block);
2b8ef16e 298 io->seq = log->seq++;
f6bed0ef 299
6143e2ce
CH
300 io->current_bio = r5l_bio_alloc(log);
301 io->current_bio->bi_end_io = r5l_log_endio;
302 io->current_bio->bi_private = io;
b349feb3 303 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
f6bed0ef 304
c1b99198 305 r5_reserve_log_entry(log, io);
f6bed0ef
SL
306
307 spin_lock_irq(&log->io_list_lock);
308 list_add_tail(&io->log_sibling, &log->running_ios);
309 spin_unlock_irq(&log->io_list_lock);
310
311 return io;
312}
313
314static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
315{
22581f58
CH
316 if (log->current_io &&
317 log->current_io->meta_offset + payload_size > PAGE_SIZE)
f6bed0ef 318 r5l_submit_current_io(log);
f6bed0ef 319
22581f58
CH
320 if (!log->current_io)
321 log->current_io = r5l_new_meta(log);
f6bed0ef
SL
322 return 0;
323}
324
325static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
326 sector_t location,
327 u32 checksum1, u32 checksum2,
328 bool checksum2_valid)
329{
330 struct r5l_io_unit *io = log->current_io;
331 struct r5l_payload_data_parity *payload;
332
333 payload = page_address(io->meta_page) + io->meta_offset;
334 payload->header.type = cpu_to_le16(type);
335 payload->header.flags = cpu_to_le16(0);
336 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
337 (PAGE_SHIFT - 9));
338 payload->location = cpu_to_le64(location);
339 payload->checksum[0] = cpu_to_le32(checksum1);
340 if (checksum2_valid)
341 payload->checksum[1] = cpu_to_le32(checksum2);
342
343 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
344 sizeof(__le32) * (1 + !!checksum2_valid);
345}
346
347static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
348{
349 struct r5l_io_unit *io = log->current_io;
350
6143e2ce
CH
351 if (io->need_split_bio) {
352 struct bio *prev = io->current_bio;
b349feb3 353
6143e2ce
CH
354 io->current_bio = r5l_bio_alloc(log);
355 bio_chain(io->current_bio, prev);
356
357 submit_bio(WRITE, prev);
f6bed0ef 358 }
f6bed0ef 359
6143e2ce
CH
360 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
361 BUG();
362
c1b99198 363 r5_reserve_log_entry(log, io);
f6bed0ef
SL
364}
365
366static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
367 int data_pages, int parity_pages)
368{
369 int i;
370 int meta_size;
371 struct r5l_io_unit *io;
372
373 meta_size =
374 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
375 * data_pages) +
376 sizeof(struct r5l_payload_data_parity) +
377 sizeof(__le32) * parity_pages;
378
379 r5l_get_meta(log, meta_size);
380 io = log->current_io;
381
382 for (i = 0; i < sh->disks; i++) {
383 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
384 continue;
385 if (i == sh->pd_idx || i == sh->qd_idx)
386 continue;
387 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
388 raid5_compute_blocknr(sh, i, 0),
389 sh->dev[i].log_checksum, 0, false);
390 r5l_append_payload_page(log, sh->dev[i].page);
391 }
392
393 if (sh->qd_idx >= 0) {
394 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
395 sh->sector, sh->dev[sh->pd_idx].log_checksum,
396 sh->dev[sh->qd_idx].log_checksum, true);
397 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
398 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
399 } else {
400 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
401 sh->sector, sh->dev[sh->pd_idx].log_checksum,
402 0, false);
403 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
404 }
405
406 list_add_tail(&sh->log_list, &io->stripe_list);
407 atomic_inc(&io->pending_stripe);
408 sh->log_io = io;
409}
410
509ffec7 411static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
f6bed0ef
SL
412/*
413 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
414 * data from log to raid disks), so we shouldn't wait for reclaim here
415 */
416int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
417{
418 int write_disks = 0;
419 int data_pages, parity_pages;
420 int meta_size;
421 int reserve;
422 int i;
423
424 if (!log)
425 return -EAGAIN;
426 /* Don't support stripe batch */
427 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
428 test_bit(STRIPE_SYNCING, &sh->state)) {
429 /* the stripe is written to log, we start writing it to raid */
430 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
431 return -EAGAIN;
432 }
433
434 for (i = 0; i < sh->disks; i++) {
435 void *addr;
436
437 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
438 continue;
439 write_disks++;
440 /* checksum is already calculated in last run */
441 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
442 continue;
443 addr = kmap_atomic(sh->dev[i].page);
5cb2fbd6
SL
444 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
445 addr, PAGE_SIZE);
f6bed0ef
SL
446 kunmap_atomic(addr);
447 }
448 parity_pages = 1 + !!(sh->qd_idx >= 0);
449 data_pages = write_disks - parity_pages;
450
451 meta_size =
452 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
453 * data_pages) +
454 sizeof(struct r5l_payload_data_parity) +
455 sizeof(__le32) * parity_pages;
456 /* Doesn't work with very big raid array */
457 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
458 return -EINVAL;
459
460 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
253f9fd4
SL
461 /*
462 * The stripe must enter state machine again to finish the write, so
463 * don't delay.
464 */
465 clear_bit(STRIPE_DELAYED, &sh->state);
f6bed0ef
SL
466 atomic_inc(&sh->count);
467
468 mutex_lock(&log->io_mutex);
469 /* meta + data */
470 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
471 if (r5l_has_free_space(log, reserve))
472 r5l_log_stripe(log, sh, data_pages, parity_pages);
473 else {
474 spin_lock(&log->no_space_stripes_lock);
475 list_add_tail(&sh->log_list, &log->no_space_stripes);
476 spin_unlock(&log->no_space_stripes_lock);
477
478 r5l_wake_reclaim(log, reserve);
479 }
480 mutex_unlock(&log->io_mutex);
481
482 return 0;
483}
484
485void r5l_write_stripe_run(struct r5l_log *log)
486{
487 if (!log)
488 return;
489 mutex_lock(&log->io_mutex);
490 r5l_submit_current_io(log);
491 mutex_unlock(&log->io_mutex);
492}
493
828cbe98
SL
494int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
495{
496 if (!log)
497 return -ENODEV;
498 /*
499 * we flush log disk cache first, then write stripe data to raid disks.
500 * So if bio is finished, the log disk cache is flushed already. The
501 * recovery guarantees we can recovery the bio from log disk, so we
502 * don't need to flush again
503 */
504 if (bio->bi_iter.bi_size == 0) {
505 bio_endio(bio);
506 return 0;
507 }
508 bio->bi_rw &= ~REQ_FLUSH;
509 return -EAGAIN;
510}
511
f6bed0ef
SL
512/* This will run after log space is reclaimed */
513static void r5l_run_no_space_stripes(struct r5l_log *log)
514{
515 struct stripe_head *sh;
516
517 spin_lock(&log->no_space_stripes_lock);
518 while (!list_empty(&log->no_space_stripes)) {
519 sh = list_first_entry(&log->no_space_stripes,
520 struct stripe_head, log_list);
521 list_del_init(&sh->log_list);
522 set_bit(STRIPE_HANDLE, &sh->state);
523 raid5_release_stripe(sh);
524 }
525 spin_unlock(&log->no_space_stripes_lock);
526}
527
17036461
CH
528static sector_t r5l_reclaimable_space(struct r5l_log *log)
529{
530 return r5l_ring_distance(log, log->last_checkpoint,
531 log->next_checkpoint);
532}
533
04732f74 534static bool r5l_complete_finished_ios(struct r5l_log *log)
17036461
CH
535{
536 struct r5l_io_unit *io, *next;
537 bool found = false;
538
539 assert_spin_locked(&log->io_list_lock);
540
04732f74 541 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
17036461
CH
542 /* don't change list order */
543 if (io->state < IO_UNIT_STRIPE_END)
544 break;
545
546 log->next_checkpoint = io->log_start;
547 log->next_cp_seq = io->seq;
548
549 list_del(&io->log_sibling);
ad66d445 550 kmem_cache_free(log->io_kc, io);
17036461
CH
551
552 found = true;
553 }
554
555 return found;
556}
557
509ffec7
CH
558static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
559{
560 struct r5l_log *log = io->log;
509ffec7
CH
561 unsigned long flags;
562
563 spin_lock_irqsave(&log->io_list_lock, flags);
564 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
17036461 565
04732f74 566 if (!r5l_complete_finished_ios(log)) {
85f2f9a4
SL
567 spin_unlock_irqrestore(&log->io_list_lock, flags);
568 return;
569 }
509ffec7 570
17036461 571 if (r5l_reclaimable_space(log) > log->max_free_space)
509ffec7
CH
572 r5l_wake_reclaim(log, 0);
573
509ffec7
CH
574 spin_unlock_irqrestore(&log->io_list_lock, flags);
575 wake_up(&log->iounit_wait);
576}
577
0576b1c6
SL
578void r5l_stripe_write_finished(struct stripe_head *sh)
579{
580 struct r5l_io_unit *io;
581
0576b1c6 582 io = sh->log_io;
0576b1c6
SL
583 sh->log_io = NULL;
584
509ffec7
CH
585 if (io && atomic_dec_and_test(&io->pending_stripe))
586 __r5l_stripe_write_finished(io);
0576b1c6
SL
587}
588
a8c34f91
SL
589static void r5l_log_flush_endio(struct bio *bio)
590{
591 struct r5l_log *log = container_of(bio, struct r5l_log,
592 flush_bio);
593 unsigned long flags;
594 struct r5l_io_unit *io;
a8c34f91 595
6e74a9cf
SL
596 if (bio->bi_error)
597 md_error(log->rdev->mddev, log->rdev);
598
a8c34f91 599 spin_lock_irqsave(&log->io_list_lock, flags);
d8858f43
CH
600 list_for_each_entry(io, &log->flushing_ios, log_sibling)
601 r5l_io_run_stripes(io);
04732f74 602 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
a8c34f91
SL
603 spin_unlock_irqrestore(&log->io_list_lock, flags);
604}
605
0576b1c6
SL
606/*
607 * Starting dispatch IO to raid.
608 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
609 * broken meta in the middle of a log causes recovery can't find meta at the
610 * head of log. If operations require meta at the head persistent in log, we
611 * must make sure meta before it persistent in log too. A case is:
612 *
613 * stripe data/parity is in log, we start write stripe to raid disks. stripe
614 * data/parity must be persistent in log before we do the write to raid disks.
615 *
616 * The solution is we restrictly maintain io_unit list order. In this case, we
617 * only write stripes of an io_unit to raid disks till the io_unit is the first
618 * one whose data/parity is in log.
619 */
620void r5l_flush_stripe_to_raid(struct r5l_log *log)
621{
a8c34f91 622 bool do_flush;
56fef7c6
CH
623
624 if (!log || !log->need_cache_flush)
0576b1c6 625 return;
0576b1c6
SL
626
627 spin_lock_irq(&log->io_list_lock);
a8c34f91
SL
628 /* flush bio is running */
629 if (!list_empty(&log->flushing_ios)) {
630 spin_unlock_irq(&log->io_list_lock);
631 return;
0576b1c6 632 }
a8c34f91
SL
633 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
634 do_flush = !list_empty(&log->flushing_ios);
0576b1c6 635 spin_unlock_irq(&log->io_list_lock);
a8c34f91
SL
636
637 if (!do_flush)
638 return;
639 bio_reset(&log->flush_bio);
640 log->flush_bio.bi_bdev = log->rdev->bdev;
641 log->flush_bio.bi_end_io = r5l_log_flush_endio;
642 submit_bio(WRITE_FLUSH, &log->flush_bio);
0576b1c6
SL
643}
644
0576b1c6 645static void r5l_write_super(struct r5l_log *log, sector_t cp);
4b482044
SL
646static void r5l_write_super_and_discard_space(struct r5l_log *log,
647 sector_t end)
648{
649 struct block_device *bdev = log->rdev->bdev;
650 struct mddev *mddev;
651
652 r5l_write_super(log, end);
653
654 if (!blk_queue_discard(bdev_get_queue(bdev)))
655 return;
656
657 mddev = log->rdev->mddev;
658 /*
659 * This is to avoid a deadlock. r5l_quiesce holds reconfig_mutex and
660 * wait for this thread to finish. This thread waits for
661 * MD_CHANGE_PENDING clear, which is supposed to be done in
662 * md_check_recovery(). md_check_recovery() tries to get
663 * reconfig_mutex. Since r5l_quiesce already holds the mutex,
664 * md_check_recovery() fails, so the PENDING never get cleared. The
665 * in_teardown check workaround this issue.
666 */
667 if (!log->in_teardown) {
668 set_bit(MD_CHANGE_DEVS, &mddev->flags);
669 set_bit(MD_CHANGE_PENDING, &mddev->flags);
670 md_wakeup_thread(mddev->thread);
671 wait_event(mddev->sb_wait,
672 !test_bit(MD_CHANGE_PENDING, &mddev->flags) ||
673 log->in_teardown);
674 /*
675 * r5l_quiesce could run after in_teardown check and hold
676 * mutex first. Superblock might get updated twice.
677 */
678 if (log->in_teardown)
679 md_update_sb(mddev, 1);
680 } else {
681 WARN_ON(!mddev_is_locked(mddev));
682 md_update_sb(mddev, 1);
683 }
684
6e74a9cf 685 /* discard IO error really doesn't matter, ignore it */
4b482044
SL
686 if (log->last_checkpoint < end) {
687 blkdev_issue_discard(bdev,
688 log->last_checkpoint + log->rdev->data_offset,
689 end - log->last_checkpoint, GFP_NOIO, 0);
690 } else {
691 blkdev_issue_discard(bdev,
692 log->last_checkpoint + log->rdev->data_offset,
693 log->device_size - log->last_checkpoint,
694 GFP_NOIO, 0);
695 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
696 GFP_NOIO, 0);
697 }
698}
699
700
0576b1c6
SL
701static void r5l_do_reclaim(struct r5l_log *log)
702{
0576b1c6 703 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
17036461
CH
704 sector_t reclaimable;
705 sector_t next_checkpoint;
706 u64 next_cp_seq;
0576b1c6
SL
707
708 spin_lock_irq(&log->io_list_lock);
709 /*
710 * move proper io_unit to reclaim list. We should not change the order.
711 * reclaimable/unreclaimable io_unit can be mixed in the list, we
712 * shouldn't reuse space of an unreclaimable io_unit
713 */
714 while (1) {
17036461
CH
715 reclaimable = r5l_reclaimable_space(log);
716 if (reclaimable >= reclaim_target ||
0576b1c6
SL
717 (list_empty(&log->running_ios) &&
718 list_empty(&log->io_end_ios) &&
a8c34f91 719 list_empty(&log->flushing_ios) &&
04732f74 720 list_empty(&log->finished_ios)))
0576b1c6
SL
721 break;
722
17036461
CH
723 md_wakeup_thread(log->rdev->mddev->thread);
724 wait_event_lock_irq(log->iounit_wait,
725 r5l_reclaimable_space(log) > reclaimable,
726 log->io_list_lock);
0576b1c6 727 }
17036461
CH
728
729 next_checkpoint = log->next_checkpoint;
730 next_cp_seq = log->next_cp_seq;
0576b1c6
SL
731 spin_unlock_irq(&log->io_list_lock);
732
17036461
CH
733 BUG_ON(reclaimable < 0);
734 if (reclaimable == 0)
0576b1c6
SL
735 return;
736
0576b1c6
SL
737 /*
738 * write_super will flush cache of each raid disk. We must write super
739 * here, because the log area might be reused soon and we don't want to
740 * confuse recovery
741 */
4b482044 742 r5l_write_super_and_discard_space(log, next_checkpoint);
0576b1c6
SL
743
744 mutex_lock(&log->io_mutex);
17036461
CH
745 log->last_checkpoint = next_checkpoint;
746 log->last_cp_seq = next_cp_seq;
0576b1c6 747 mutex_unlock(&log->io_mutex);
0576b1c6 748
17036461 749 r5l_run_no_space_stripes(log);
0576b1c6
SL
750}
751
752static void r5l_reclaim_thread(struct md_thread *thread)
753{
754 struct mddev *mddev = thread->mddev;
755 struct r5conf *conf = mddev->private;
756 struct r5l_log *log = conf->log;
757
758 if (!log)
759 return;
760 r5l_do_reclaim(log);
761}
762
f6bed0ef
SL
763static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
764{
0576b1c6
SL
765 unsigned long target;
766 unsigned long new = (unsigned long)space; /* overflow in theory */
767
768 do {
769 target = log->reclaim_target;
770 if (new < target)
771 return;
772 } while (cmpxchg(&log->reclaim_target, target, new) != target);
773 md_wakeup_thread(log->reclaim_thread);
f6bed0ef
SL
774}
775
e6c033f7
SL
776void r5l_quiesce(struct r5l_log *log, int state)
777{
4b482044 778 struct mddev *mddev;
e6c033f7
SL
779 if (!log || state == 2)
780 return;
781 if (state == 0) {
4b482044 782 log->in_teardown = 0;
e6c033f7
SL
783 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
784 log->rdev->mddev, "reclaim");
785 } else if (state == 1) {
786 /*
787 * at this point all stripes are finished, so io_unit is at
788 * least in STRIPE_END state
789 */
4b482044
SL
790 log->in_teardown = 1;
791 /* make sure r5l_write_super_and_discard_space exits */
792 mddev = log->rdev->mddev;
793 wake_up(&mddev->sb_wait);
e6c033f7
SL
794 r5l_wake_reclaim(log, -1L);
795 md_unregister_thread(&log->reclaim_thread);
796 r5l_do_reclaim(log);
797 }
798}
799
6e74a9cf
SL
800bool r5l_log_disk_error(struct r5conf *conf)
801{
f6b6ec5c
SL
802 struct r5l_log *log;
803 bool ret;
7dde2ad3 804 /* don't allow write if journal disk is missing */
f6b6ec5c
SL
805 rcu_read_lock();
806 log = rcu_dereference(conf->log);
807
808 if (!log)
809 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
810 else
811 ret = test_bit(Faulty, &log->rdev->flags);
812 rcu_read_unlock();
813 return ret;
6e74a9cf
SL
814}
815
355810d1
SL
816struct r5l_recovery_ctx {
817 struct page *meta_page; /* current meta */
818 sector_t meta_total_blocks; /* total size of current meta and data */
819 sector_t pos; /* recovery position */
820 u64 seq; /* recovery position seq */
821};
822
823static int r5l_read_meta_block(struct r5l_log *log,
824 struct r5l_recovery_ctx *ctx)
825{
826 struct page *page = ctx->meta_page;
827 struct r5l_meta_block *mb;
828 u32 crc, stored_crc;
829
830 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
831 return -EIO;
832
833 mb = page_address(page);
834 stored_crc = le32_to_cpu(mb->checksum);
835 mb->checksum = 0;
836
837 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
838 le64_to_cpu(mb->seq) != ctx->seq ||
839 mb->version != R5LOG_VERSION ||
840 le64_to_cpu(mb->position) != ctx->pos)
841 return -EINVAL;
842
5cb2fbd6 843 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
844 if (stored_crc != crc)
845 return -EINVAL;
846
847 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
848 return -EINVAL;
849
850 ctx->meta_total_blocks = BLOCK_SECTORS;
851
852 return 0;
853}
854
855static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
856 struct r5l_recovery_ctx *ctx,
857 sector_t stripe_sect,
858 int *offset, sector_t *log_offset)
859{
860 struct r5conf *conf = log->rdev->mddev->private;
861 struct stripe_head *sh;
862 struct r5l_payload_data_parity *payload;
863 int disk_index;
864
865 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
866 while (1) {
867 payload = page_address(ctx->meta_page) + *offset;
868
869 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
870 raid5_compute_sector(conf,
871 le64_to_cpu(payload->location), 0,
872 &disk_index, sh);
873
874 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
875 sh->dev[disk_index].page, READ, false);
876 sh->dev[disk_index].log_checksum =
877 le32_to_cpu(payload->checksum[0]);
878 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
879 ctx->meta_total_blocks += BLOCK_SECTORS;
880 } else {
881 disk_index = sh->pd_idx;
882 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
883 sh->dev[disk_index].page, READ, false);
884 sh->dev[disk_index].log_checksum =
885 le32_to_cpu(payload->checksum[0]);
886 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
887
888 if (sh->qd_idx >= 0) {
889 disk_index = sh->qd_idx;
890 sync_page_io(log->rdev,
891 r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
892 PAGE_SIZE, sh->dev[disk_index].page,
893 READ, false);
894 sh->dev[disk_index].log_checksum =
895 le32_to_cpu(payload->checksum[1]);
896 set_bit(R5_Wantwrite,
897 &sh->dev[disk_index].flags);
898 }
899 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
900 }
901
902 *log_offset = r5l_ring_add(log, *log_offset,
903 le32_to_cpu(payload->size));
904 *offset += sizeof(struct r5l_payload_data_parity) +
905 sizeof(__le32) *
906 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
907 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
908 break;
909 }
910
911 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
912 void *addr;
913 u32 checksum;
914
915 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
916 continue;
917 addr = kmap_atomic(sh->dev[disk_index].page);
5cb2fbd6 918 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
355810d1
SL
919 kunmap_atomic(addr);
920 if (checksum != sh->dev[disk_index].log_checksum)
921 goto error;
922 }
923
924 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
925 struct md_rdev *rdev, *rrdev;
926
927 if (!test_and_clear_bit(R5_Wantwrite,
928 &sh->dev[disk_index].flags))
929 continue;
930
931 /* in case device is broken */
932 rdev = rcu_dereference(conf->disks[disk_index].rdev);
933 if (rdev)
934 sync_page_io(rdev, stripe_sect, PAGE_SIZE,
935 sh->dev[disk_index].page, WRITE, false);
936 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
937 if (rrdev)
938 sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
939 sh->dev[disk_index].page, WRITE, false);
940 }
941 raid5_release_stripe(sh);
942 return 0;
943
944error:
945 for (disk_index = 0; disk_index < sh->disks; disk_index++)
946 sh->dev[disk_index].flags = 0;
947 raid5_release_stripe(sh);
948 return -EINVAL;
949}
950
951static int r5l_recovery_flush_one_meta(struct r5l_log *log,
952 struct r5l_recovery_ctx *ctx)
953{
954 struct r5conf *conf = log->rdev->mddev->private;
955 struct r5l_payload_data_parity *payload;
956 struct r5l_meta_block *mb;
957 int offset;
958 sector_t log_offset;
959 sector_t stripe_sector;
960
961 mb = page_address(ctx->meta_page);
962 offset = sizeof(struct r5l_meta_block);
963 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
964
965 while (offset < le32_to_cpu(mb->meta_size)) {
966 int dd;
967
968 payload = (void *)mb + offset;
969 stripe_sector = raid5_compute_sector(conf,
970 le64_to_cpu(payload->location), 0, &dd, NULL);
971 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
972 &offset, &log_offset))
973 return -EINVAL;
974 }
975 return 0;
976}
977
978/* copy data/parity from log to raid disks */
979static void r5l_recovery_flush_log(struct r5l_log *log,
980 struct r5l_recovery_ctx *ctx)
981{
982 while (1) {
983 if (r5l_read_meta_block(log, ctx))
984 return;
985 if (r5l_recovery_flush_one_meta(log, ctx))
986 return;
987 ctx->seq++;
988 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
989 }
990}
991
992static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
993 u64 seq)
994{
995 struct page *page;
996 struct r5l_meta_block *mb;
997 u32 crc;
998
999 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1000 if (!page)
1001 return -ENOMEM;
1002 mb = page_address(page);
1003 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1004 mb->version = R5LOG_VERSION;
1005 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1006 mb->seq = cpu_to_le64(seq);
1007 mb->position = cpu_to_le64(pos);
5cb2fbd6 1008 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
355810d1
SL
1009 mb->checksum = cpu_to_le32(crc);
1010
1011 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
1012 __free_page(page);
1013 return -EIO;
1014 }
1015 __free_page(page);
1016 return 0;
1017}
1018
f6bed0ef
SL
1019static int r5l_recovery_log(struct r5l_log *log)
1020{
355810d1
SL
1021 struct r5l_recovery_ctx ctx;
1022
1023 ctx.pos = log->last_checkpoint;
1024 ctx.seq = log->last_cp_seq;
1025 ctx.meta_page = alloc_page(GFP_KERNEL);
1026 if (!ctx.meta_page)
1027 return -ENOMEM;
1028
1029 r5l_recovery_flush_log(log, &ctx);
1030 __free_page(ctx.meta_page);
1031
1032 /*
1033 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1034 * log will start here. but we can't let superblock point to last valid
1035 * meta block. The log might looks like:
1036 * | meta 1| meta 2| meta 3|
1037 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1038 * superblock points to meta 1, we write a new valid meta 2n. if crash
1039 * happens again, new recovery will start from meta 1. Since meta 2n is
1040 * valid now, recovery will think meta 3 is valid, which is wrong.
1041 * The solution is we create a new meta in meta2 with its seq == meta
1042 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1043 * not think meta 3 is a valid meta, because its seq doesn't match
1044 */
1045 if (ctx.seq > log->last_cp_seq + 1) {
1046 int ret;
1047
1048 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1049 if (ret)
1050 return ret;
1051 log->seq = ctx.seq + 11;
1052 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1053 r5l_write_super(log, ctx.pos);
1054 } else {
1055 log->log_start = ctx.pos;
1056 log->seq = ctx.seq;
1057 }
f6bed0ef
SL
1058 return 0;
1059}
1060
1061static void r5l_write_super(struct r5l_log *log, sector_t cp)
1062{
1063 struct mddev *mddev = log->rdev->mddev;
1064
1065 log->rdev->journal_tail = cp;
1066 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1067}
1068
1069static int r5l_load_log(struct r5l_log *log)
1070{
1071 struct md_rdev *rdev = log->rdev;
1072 struct page *page;
1073 struct r5l_meta_block *mb;
1074 sector_t cp = log->rdev->journal_tail;
1075 u32 stored_crc, expected_crc;
1076 bool create_super = false;
1077 int ret;
1078
1079 /* Make sure it's valid */
1080 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1081 cp = 0;
1082 page = alloc_page(GFP_KERNEL);
1083 if (!page)
1084 return -ENOMEM;
1085
1086 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
1087 ret = -EIO;
1088 goto ioerr;
1089 }
1090 mb = page_address(page);
1091
1092 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1093 mb->version != R5LOG_VERSION) {
1094 create_super = true;
1095 goto create;
1096 }
1097 stored_crc = le32_to_cpu(mb->checksum);
1098 mb->checksum = 0;
5cb2fbd6 1099 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
f6bed0ef
SL
1100 if (stored_crc != expected_crc) {
1101 create_super = true;
1102 goto create;
1103 }
1104 if (le64_to_cpu(mb->position) != cp) {
1105 create_super = true;
1106 goto create;
1107 }
1108create:
1109 if (create_super) {
1110 log->last_cp_seq = prandom_u32();
1111 cp = 0;
1112 /*
1113 * Make sure super points to correct address. Log might have
1114 * data very soon. If super hasn't correct log tail address,
1115 * recovery can't find the log
1116 */
1117 r5l_write_super(log, cp);
1118 } else
1119 log->last_cp_seq = le64_to_cpu(mb->seq);
1120
1121 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
0576b1c6
SL
1122 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1123 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1124 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
f6bed0ef
SL
1125 log->last_checkpoint = cp;
1126
1127 __free_page(page);
1128
1129 return r5l_recovery_log(log);
1130ioerr:
1131 __free_page(page);
1132 return ret;
1133}
1134
1135int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1136{
1137 struct r5l_log *log;
1138
1139 if (PAGE_SIZE != 4096)
1140 return -EINVAL;
1141 log = kzalloc(sizeof(*log), GFP_KERNEL);
1142 if (!log)
1143 return -ENOMEM;
1144 log->rdev = rdev;
1145
56fef7c6
CH
1146 log->need_cache_flush = (rdev->bdev->bd_disk->queue->flush_flags != 0);
1147
5cb2fbd6
SL
1148 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1149 sizeof(rdev->mddev->uuid));
f6bed0ef
SL
1150
1151 mutex_init(&log->io_mutex);
1152
1153 spin_lock_init(&log->io_list_lock);
1154 INIT_LIST_HEAD(&log->running_ios);
0576b1c6 1155 INIT_LIST_HEAD(&log->io_end_ios);
a8c34f91 1156 INIT_LIST_HEAD(&log->flushing_ios);
04732f74 1157 INIT_LIST_HEAD(&log->finished_ios);
a8c34f91 1158 bio_init(&log->flush_bio);
f6bed0ef
SL
1159
1160 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1161 if (!log->io_kc)
1162 goto io_kc;
1163
0576b1c6
SL
1164 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1165 log->rdev->mddev, "reclaim");
1166 if (!log->reclaim_thread)
1167 goto reclaim_thread;
0fd22b45 1168 init_waitqueue_head(&log->iounit_wait);
0576b1c6 1169
f6bed0ef
SL
1170 INIT_LIST_HEAD(&log->no_space_stripes);
1171 spin_lock_init(&log->no_space_stripes_lock);
1172
1173 if (r5l_load_log(log))
1174 goto error;
1175
f6b6ec5c 1176 rcu_assign_pointer(conf->log, log);
f6bed0ef
SL
1177 return 0;
1178error:
0576b1c6
SL
1179 md_unregister_thread(&log->reclaim_thread);
1180reclaim_thread:
f6bed0ef
SL
1181 kmem_cache_destroy(log->io_kc);
1182io_kc:
1183 kfree(log);
1184 return -EINVAL;
1185}
1186
1187void r5l_exit_log(struct r5l_log *log)
1188{
0576b1c6 1189 md_unregister_thread(&log->reclaim_thread);
f6bed0ef
SL
1190 kmem_cache_destroy(log->io_kc);
1191 kfree(log);
1192}
This page took 0.088551 seconds and 5 git commands to generate.