Merge remote-tracking branch 'battery/for-next'
[deliverable/linux.git] / drivers / misc / mei / hw-me.c
CommitLineData
3ce72726
OW
1/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
733ba91c 4 * Copyright (c) 2003-2012, Intel Corporation.
3ce72726
OW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
06ecd645
TW
18
19#include <linux/kthread.h>
20#include <linux/interrupt.h>
47a73801
TW
21
22#include "mei_dev.h"
06ecd645
TW
23#include "hbm.h"
24
6e4cd27a
TW
25#include "hw-me.h"
26#include "hw-me-regs.h"
06ecd645 27
a0a927d0
TW
28#include "mei-trace.h"
29
3a65dd4e 30/**
b68301e9 31 * mei_me_reg_read - Reads 32bit data from the mei device
3a65dd4e 32 *
a8605ea2 33 * @hw: the me hardware structure
3a65dd4e
TW
34 * @offset: offset from which to read the data
35 *
a8605ea2 36 * Return: register value (u32)
3a65dd4e 37 */
b68301e9 38static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
3a65dd4e
TW
39 unsigned long offset)
40{
52c34561 41 return ioread32(hw->mem_addr + offset);
3a65dd4e
TW
42}
43
44
45/**
b68301e9 46 * mei_me_reg_write - Writes 32bit data to the mei device
3a65dd4e 47 *
a8605ea2 48 * @hw: the me hardware structure
3a65dd4e
TW
49 * @offset: offset from which to write the data
50 * @value: register value to write (u32)
51 */
b68301e9 52static inline void mei_me_reg_write(const struct mei_me_hw *hw,
3a65dd4e
TW
53 unsigned long offset, u32 value)
54{
52c34561 55 iowrite32(value, hw->mem_addr + offset);
3a65dd4e 56}
3ce72726 57
3a65dd4e 58/**
b68301e9 59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
d025284d 60 * read window register
3a65dd4e
TW
61 *
62 * @dev: the device structure
63 *
a8605ea2 64 * Return: ME_CB_RW register value (u32)
3a65dd4e 65 */
381a58c7 66static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
3a65dd4e 67{
b68301e9 68 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
3a65dd4e 69}
381a58c7
TW
70
71/**
72 * mei_me_hcbww_write - write 32bit data to the host circular buffer
73 *
74 * @dev: the device structure
75 * @data: 32bit data to be written to the host circular buffer
76 */
77static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
78{
79 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
80}
81
3a65dd4e 82/**
b68301e9 83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
3a65dd4e 84 *
381a58c7 85 * @dev: the device structure
3a65dd4e 86 *
a8605ea2 87 * Return: ME_CSR_HA register value (u32)
3a65dd4e 88 */
381a58c7 89static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
3a65dd4e 90{
a0a927d0
TW
91 u32 reg;
92
93 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
94 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
95
96 return reg;
3a65dd4e 97}
3ce72726
OW
98
99/**
d025284d
TW
100 * mei_hcsr_read - Reads 32bit data from the host CSR
101 *
381a58c7 102 * @dev: the device structure
d025284d 103 *
a8605ea2 104 * Return: H_CSR register value (u32)
d025284d 105 */
381a58c7 106static inline u32 mei_hcsr_read(const struct mei_device *dev)
d025284d 107{
a0a927d0
TW
108 u32 reg;
109
110 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
111 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
112
113 return reg;
381a58c7
TW
114}
115
116/**
117 * mei_hcsr_write - writes H_CSR register to the mei device
118 *
119 * @dev: the device structure
120 * @reg: new register value
121 */
122static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
123{
a0a927d0 124 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
381a58c7 125 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
d025284d
TW
126}
127
128/**
129 * mei_hcsr_set - writes H_CSR register to the mei device,
3ce72726
OW
130 * and ignores the H_IS bit for it is write-one-to-zero.
131 *
381a58c7
TW
132 * @dev: the device structure
133 * @reg: new register value
3ce72726 134 */
381a58c7 135static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
3ce72726 136{
1fa55b4e 137 reg &= ~H_CSR_IS_MASK;
381a58c7 138 mei_hcsr_write(dev, reg);
3ce72726
OW
139}
140
859ef2ff
AU
141/**
142 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
143 *
144 * @dev: the device structure
145 *
146 * Return: H_D0I3C register value (u32)
147 */
148static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
149{
150 u32 reg;
151
152 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
cf094ebe 153 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
859ef2ff
AU
154
155 return reg;
156}
157
158/**
159 * mei_me_d0i3c_write - writes H_D0I3C register to device
160 *
161 * @dev: the device structure
162 * @reg: new register value
163 */
164static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
165{
cf094ebe 166 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
859ef2ff
AU
167 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
168}
169
1bd30b6a
TW
170/**
171 * mei_me_fw_status - read fw status register from pci config space
172 *
173 * @dev: mei device
174 * @fw_status: fw status register values
ce23139c
AU
175 *
176 * Return: 0 on success, error otherwise
1bd30b6a
TW
177 */
178static int mei_me_fw_status(struct mei_device *dev,
179 struct mei_fw_status *fw_status)
180{
1bd30b6a 181 struct pci_dev *pdev = to_pci_dev(dev->dev);
4ad96db6
TW
182 struct mei_me_hw *hw = to_me_hw(dev);
183 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
1bd30b6a
TW
184 int ret;
185 int i;
186
187 if (!fw_status)
188 return -EINVAL;
189
190 fw_status->count = fw_src->count;
191 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
a96c5482
TW
192 ret = pci_read_config_dword(pdev, fw_src->status[i],
193 &fw_status->status[i]);
194 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
195 fw_src->status[i],
196 fw_status->status[i]);
1bd30b6a
TW
197 if (ret)
198 return ret;
199 }
200
201 return 0;
202}
e7e0c231
TW
203
204/**
393b148f 205 * mei_me_hw_config - configure hw dependent settings
e7e0c231
TW
206 *
207 * @dev: mei device
208 */
827eef51 209static void mei_me_hw_config(struct mei_device *dev)
e7e0c231 210{
bb9f4d26 211 struct pci_dev *pdev = to_pci_dev(dev->dev);
ba9cdd0e 212 struct mei_me_hw *hw = to_me_hw(dev);
bb9f4d26
AU
213 u32 hcsr, reg;
214
e7e0c231 215 /* Doesn't change in runtime */
bb9f4d26 216 hcsr = mei_hcsr_read(dev);
e7e0c231 217 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
ba9cdd0e 218
bb9f4d26
AU
219 reg = 0;
220 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
a96c5482 221 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
bb9f4d26
AU
222 hw->d0i3_supported =
223 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
b9a1fc99
AU
224
225 hw->pg_state = MEI_PG_OFF;
226 if (hw->d0i3_supported) {
227 reg = mei_me_d0i3c_read(dev);
228 if (reg & H_D0I3C_I3)
229 hw->pg_state = MEI_PG_ON;
230 }
e7e0c231 231}
964a2331
TW
232
233/**
234 * mei_me_pg_state - translate internal pg state
235 * to the mei power gating state
236 *
ce23139c
AU
237 * @dev: mei device
238 *
239 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
964a2331
TW
240 */
241static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
242{
ba9cdd0e 243 struct mei_me_hw *hw = to_me_hw(dev);
92db1555 244
ba9cdd0e 245 return hw->pg_state;
964a2331
TW
246}
247
3ce72726 248/**
ce23139c 249 * mei_me_intr_clear - clear and stop interrupts
3a65dd4e
TW
250 *
251 * @dev: the device structure
252 */
827eef51 253static void mei_me_intr_clear(struct mei_device *dev)
3a65dd4e 254{
381a58c7 255 u32 hcsr = mei_hcsr_read(dev);
92db1555 256
1fa55b4e 257 if (hcsr & H_CSR_IS_MASK)
381a58c7 258 mei_hcsr_write(dev, hcsr);
3a65dd4e 259}
3a65dd4e 260/**
827eef51 261 * mei_me_intr_enable - enables mei device interrupts
3ce72726
OW
262 *
263 * @dev: the device structure
264 */
827eef51 265static void mei_me_intr_enable(struct mei_device *dev)
3ce72726 266{
381a58c7 267 u32 hcsr = mei_hcsr_read(dev);
92db1555 268
1fa55b4e 269 hcsr |= H_CSR_IE_MASK;
381a58c7 270 mei_hcsr_set(dev, hcsr);
3ce72726
OW
271}
272
273/**
ce23139c 274 * mei_me_intr_disable - disables mei device interrupts
3ce72726
OW
275 *
276 * @dev: the device structure
277 */
827eef51 278static void mei_me_intr_disable(struct mei_device *dev)
3ce72726 279{
381a58c7 280 u32 hcsr = mei_hcsr_read(dev);
92db1555 281
1fa55b4e 282 hcsr &= ~H_CSR_IE_MASK;
381a58c7 283 mei_hcsr_set(dev, hcsr);
3ce72726
OW
284}
285
68f8ea18
TW
286/**
287 * mei_me_hw_reset_release - release device from the reset
288 *
289 * @dev: the device structure
290 */
291static void mei_me_hw_reset_release(struct mei_device *dev)
292{
381a58c7 293 u32 hcsr = mei_hcsr_read(dev);
68f8ea18
TW
294
295 hcsr |= H_IG;
296 hcsr &= ~H_RST;
381a58c7 297 mei_hcsr_set(dev, hcsr);
b04ada92
TW
298
299 /* complete this write before we set host ready on another CPU */
300 mmiowb();
68f8ea18 301}
adfba322 302
115ba28c 303/**
827eef51 304 * mei_me_host_set_ready - enable device
115ba28c 305 *
ce23139c 306 * @dev: mei device
115ba28c 307 */
827eef51 308static void mei_me_host_set_ready(struct mei_device *dev)
115ba28c 309{
381a58c7 310 u32 hcsr = mei_hcsr_read(dev);
92db1555 311
1fa55b4e 312 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
381a58c7 313 mei_hcsr_set(dev, hcsr);
115ba28c 314}
ce23139c 315
115ba28c 316/**
827eef51 317 * mei_me_host_is_ready - check whether the host has turned ready
115ba28c 318 *
a8605ea2
AU
319 * @dev: mei device
320 * Return: bool
115ba28c 321 */
827eef51 322static bool mei_me_host_is_ready(struct mei_device *dev)
115ba28c 323{
381a58c7 324 u32 hcsr = mei_hcsr_read(dev);
92db1555 325
18caeb70 326 return (hcsr & H_RDY) == H_RDY;
115ba28c
TW
327}
328
329/**
827eef51 330 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
115ba28c 331 *
a8605ea2
AU
332 * @dev: mei device
333 * Return: bool
115ba28c 334 */
827eef51 335static bool mei_me_hw_is_ready(struct mei_device *dev)
115ba28c 336{
381a58c7 337 u32 mecsr = mei_me_mecsr_read(dev);
92db1555 338
18caeb70 339 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
115ba28c 340}
3a65dd4e 341
ce23139c
AU
342/**
343 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
344 * or timeout is reached
345 *
346 * @dev: mei device
347 * Return: 0 on success, error otherwise
348 */
aafae7ec
TW
349static int mei_me_hw_ready_wait(struct mei_device *dev)
350{
aafae7ec 351 mutex_unlock(&dev->device_lock);
2c2b93ec 352 wait_event_timeout(dev->wait_hw_ready,
dab9bf41 353 dev->recvd_hw_ready,
7d93e58d 354 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
aafae7ec 355 mutex_lock(&dev->device_lock);
2c2b93ec 356 if (!dev->recvd_hw_ready) {
2bf94cab 357 dev_err(dev->dev, "wait hw ready failed\n");
2c2b93ec 358 return -ETIME;
aafae7ec
TW
359 }
360
663b7ee9 361 mei_me_hw_reset_release(dev);
aafae7ec
TW
362 dev->recvd_hw_ready = false;
363 return 0;
364}
365
ce23139c
AU
366/**
367 * mei_me_hw_start - hw start routine
368 *
369 * @dev: mei device
370 * Return: 0 on success, error otherwise
371 */
aafae7ec
TW
372static int mei_me_hw_start(struct mei_device *dev)
373{
374 int ret = mei_me_hw_ready_wait(dev);
92db1555 375
aafae7ec
TW
376 if (ret)
377 return ret;
2bf94cab 378 dev_dbg(dev->dev, "hw is ready\n");
aafae7ec
TW
379
380 mei_me_host_set_ready(dev);
381 return ret;
382}
383
384
3ce72726 385/**
726917f0 386 * mei_hbuf_filled_slots - gets number of device filled buffer slots
3ce72726 387 *
7353f85c 388 * @dev: the device structure
3ce72726 389 *
a8605ea2 390 * Return: number of filled slots
3ce72726 391 */
726917f0 392static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
3ce72726 393{
18caeb70 394 u32 hcsr;
3ce72726
OW
395 char read_ptr, write_ptr;
396
381a58c7 397 hcsr = mei_hcsr_read(dev);
726917f0 398
18caeb70
TW
399 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
400 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
3ce72726
OW
401
402 return (unsigned char) (write_ptr - read_ptr);
403}
404
405/**
393b148f 406 * mei_me_hbuf_is_empty - checks if host buffer is empty.
3ce72726
OW
407 *
408 * @dev: the device structure
409 *
a8605ea2 410 * Return: true if empty, false - otherwise.
3ce72726 411 */
827eef51 412static bool mei_me_hbuf_is_empty(struct mei_device *dev)
3ce72726 413{
726917f0 414 return mei_hbuf_filled_slots(dev) == 0;
3ce72726
OW
415}
416
417/**
827eef51 418 * mei_me_hbuf_empty_slots - counts write empty slots.
3ce72726
OW
419 *
420 * @dev: the device structure
421 *
a8605ea2 422 * Return: -EOVERFLOW if overflow, otherwise empty slots count
3ce72726 423 */
827eef51 424static int mei_me_hbuf_empty_slots(struct mei_device *dev)
3ce72726 425{
24aadc80 426 unsigned char filled_slots, empty_slots;
3ce72726 427
726917f0 428 filled_slots = mei_hbuf_filled_slots(dev);
24aadc80 429 empty_slots = dev->hbuf_depth - filled_slots;
3ce72726
OW
430
431 /* check for overflow */
24aadc80 432 if (filled_slots > dev->hbuf_depth)
3ce72726
OW
433 return -EOVERFLOW;
434
435 return empty_slots;
436}
437
ce23139c
AU
438/**
439 * mei_me_hbuf_max_len - returns size of hw buffer.
440 *
441 * @dev: the device structure
442 *
443 * Return: size of hw buffer in bytes
444 */
827eef51
TW
445static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
446{
447 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
448}
449
450
3ce72726 451/**
7ca96aa2 452 * mei_me_write_message - writes a message to mei device.
3ce72726
OW
453 *
454 * @dev: the device structure
7353f85c 455 * @header: mei HECI header of message
438763f3 456 * @buf: message payload will be written
3ce72726 457 *
a8605ea2 458 * Return: -EIO if write has failed
3ce72726 459 */
827eef51
TW
460static int mei_me_write_message(struct mei_device *dev,
461 struct mei_msg_hdr *header,
462 unsigned char *buf)
3ce72726 463{
c8c8d080 464 unsigned long rem;
438763f3 465 unsigned long length = header->length;
169d1338 466 u32 *reg_buf = (u32 *)buf;
88eb99f2 467 u32 hcsr;
c8c8d080 468 u32 dw_cnt;
169d1338
TW
469 int i;
470 int empty_slots;
3ce72726 471
2bf94cab 472 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
3ce72726 473
726917f0 474 empty_slots = mei_hbuf_empty_slots(dev);
2bf94cab 475 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
3ce72726 476
7bdf72d3 477 dw_cnt = mei_data2slots(length);
169d1338 478 if (empty_slots < 0 || dw_cnt > empty_slots)
9d098192 479 return -EMSGSIZE;
3ce72726 480
381a58c7 481 mei_me_hcbww_write(dev, *((u32 *) header));
3ce72726 482
169d1338 483 for (i = 0; i < length / 4; i++)
381a58c7 484 mei_me_hcbww_write(dev, reg_buf[i]);
3ce72726 485
169d1338
TW
486 rem = length & 0x3;
487 if (rem > 0) {
488 u32 reg = 0;
92db1555 489
169d1338 490 memcpy(&reg, &buf[length - rem], rem);
381a58c7 491 mei_me_hcbww_write(dev, reg);
3ce72726
OW
492 }
493
381a58c7
TW
494 hcsr = mei_hcsr_read(dev) | H_IG;
495 mei_hcsr_set(dev, hcsr);
827eef51 496 if (!mei_me_hw_is_ready(dev))
1ccb7b62 497 return -EIO;
3ce72726 498
1ccb7b62 499 return 0;
3ce72726
OW
500}
501
502/**
827eef51 503 * mei_me_count_full_read_slots - counts read full slots.
3ce72726
OW
504 *
505 * @dev: the device structure
506 *
a8605ea2 507 * Return: -EOVERFLOW if overflow, otherwise filled slots count
3ce72726 508 */
827eef51 509static int mei_me_count_full_read_slots(struct mei_device *dev)
3ce72726 510{
18caeb70 511 u32 me_csr;
3ce72726
OW
512 char read_ptr, write_ptr;
513 unsigned char buffer_depth, filled_slots;
514
381a58c7 515 me_csr = mei_me_mecsr_read(dev);
18caeb70
TW
516 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
517 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
518 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
3ce72726
OW
519 filled_slots = (unsigned char) (write_ptr - read_ptr);
520
521 /* check for overflow */
522 if (filled_slots > buffer_depth)
523 return -EOVERFLOW;
524
2bf94cab 525 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
3ce72726
OW
526 return (int)filled_slots;
527}
528
529/**
827eef51 530 * mei_me_read_slots - reads a message from mei device.
3ce72726
OW
531 *
532 * @dev: the device structure
533 * @buffer: message buffer will be written
534 * @buffer_length: message size will be read
ce23139c
AU
535 *
536 * Return: always 0
3ce72726 537 */
827eef51 538static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
edf1eed4 539 unsigned long buffer_length)
3ce72726 540{
edf1eed4 541 u32 *reg_buf = (u32 *)buffer;
88eb99f2 542 u32 hcsr;
3ce72726 543
edf1eed4 544 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
827eef51 545 *reg_buf++ = mei_me_mecbrw_read(dev);
3ce72726
OW
546
547 if (buffer_length > 0) {
827eef51 548 u32 reg = mei_me_mecbrw_read(dev);
92db1555 549
edf1eed4 550 memcpy(reg_buf, &reg, buffer_length);
3ce72726
OW
551 }
552
381a58c7
TW
553 hcsr = mei_hcsr_read(dev) | H_IG;
554 mei_hcsr_set(dev, hcsr);
827eef51 555 return 0;
3ce72726
OW
556}
557
b16c3571 558/**
2d1995fc 559 * mei_me_pg_set - write pg enter register
b16c3571
TW
560 *
561 * @dev: the device structure
562 */
2d1995fc 563static void mei_me_pg_set(struct mei_device *dev)
b16c3571
TW
564{
565 struct mei_me_hw *hw = to_me_hw(dev);
a0a927d0
TW
566 u32 reg;
567
568 reg = mei_me_reg_read(hw, H_HPG_CSR);
569 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
92db1555 570
b16c3571 571 reg |= H_HPG_CSR_PGI;
a0a927d0
TW
572
573 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
b16c3571
TW
574 mei_me_reg_write(hw, H_HPG_CSR, reg);
575}
576
577/**
2d1995fc 578 * mei_me_pg_unset - write pg exit register
b16c3571
TW
579 *
580 * @dev: the device structure
581 */
2d1995fc 582static void mei_me_pg_unset(struct mei_device *dev)
b16c3571
TW
583{
584 struct mei_me_hw *hw = to_me_hw(dev);
a0a927d0
TW
585 u32 reg;
586
587 reg = mei_me_reg_read(hw, H_HPG_CSR);
588 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
b16c3571
TW
589
590 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
591
592 reg |= H_HPG_CSR_PGIHEXR;
a0a927d0
TW
593
594 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
b16c3571
TW
595 mei_me_reg_write(hw, H_HPG_CSR, reg);
596}
597
ba9cdd0e 598/**
859ef2ff 599 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
ba9cdd0e
TW
600 *
601 * @dev: the device structure
602 *
a8605ea2 603 * Return: 0 on success an error code otherwise
ba9cdd0e 604 */
859ef2ff 605static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
ba9cdd0e
TW
606{
607 struct mei_me_hw *hw = to_me_hw(dev);
608 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
609 int ret;
610
611 dev->pg_event = MEI_PG_EVENT_WAIT;
612
613 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
614 if (ret)
615 return ret;
616
617 mutex_unlock(&dev->device_lock);
618 wait_event_timeout(dev->wait_pg,
619 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
620 mutex_lock(&dev->device_lock);
621
622 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
2d1995fc 623 mei_me_pg_set(dev);
ba9cdd0e
TW
624 ret = 0;
625 } else {
626 ret = -ETIME;
627 }
628
629 dev->pg_event = MEI_PG_EVENT_IDLE;
630 hw->pg_state = MEI_PG_ON;
631
632 return ret;
633}
634
635/**
859ef2ff 636 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
ba9cdd0e
TW
637 *
638 * @dev: the device structure
639 *
a8605ea2 640 * Return: 0 on success an error code otherwise
ba9cdd0e 641 */
859ef2ff 642static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
ba9cdd0e
TW
643{
644 struct mei_me_hw *hw = to_me_hw(dev);
645 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
646 int ret;
647
648 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
649 goto reply;
650
651 dev->pg_event = MEI_PG_EVENT_WAIT;
652
2d1995fc 653 mei_me_pg_unset(dev);
ba9cdd0e
TW
654
655 mutex_unlock(&dev->device_lock);
656 wait_event_timeout(dev->wait_pg,
657 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
658 mutex_lock(&dev->device_lock);
659
660reply:
3dc196ea
AU
661 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
662 ret = -ETIME;
663 goto out;
664 }
665
666 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
667 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
668 if (ret)
669 return ret;
670
671 mutex_unlock(&dev->device_lock);
672 wait_event_timeout(dev->wait_pg,
673 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
674 mutex_lock(&dev->device_lock);
675
676 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
677 ret = 0;
ba9cdd0e
TW
678 else
679 ret = -ETIME;
680
3dc196ea 681out:
ba9cdd0e
TW
682 dev->pg_event = MEI_PG_EVENT_IDLE;
683 hw->pg_state = MEI_PG_OFF;
684
685 return ret;
686}
687
3dc196ea
AU
688/**
689 * mei_me_pg_in_transition - is device now in pg transition
690 *
691 * @dev: the device structure
692 *
693 * Return: true if in pg transition, false otherwise
694 */
695static bool mei_me_pg_in_transition(struct mei_device *dev)
696{
697 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
698 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
699}
700
ee7e5afd
TW
701/**
702 * mei_me_pg_is_enabled - detect if PG is supported by HW
703 *
704 * @dev: the device structure
705 *
a8605ea2 706 * Return: true is pg supported, false otherwise
ee7e5afd
TW
707 */
708static bool mei_me_pg_is_enabled(struct mei_device *dev)
709{
859ef2ff 710 struct mei_me_hw *hw = to_me_hw(dev);
381a58c7 711 u32 reg = mei_me_mecsr_read(dev);
ee7e5afd 712
859ef2ff
AU
713 if (hw->d0i3_supported)
714 return true;
715
ee7e5afd
TW
716 if ((reg & ME_PGIC_HRA) == 0)
717 goto notsupported;
718
bae1cc7d 719 if (!dev->hbm_f_pg_supported)
ee7e5afd
TW
720 goto notsupported;
721
722 return true;
723
724notsupported:
859ef2ff
AU
725 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
726 hw->d0i3_supported,
ee7e5afd
TW
727 !!(reg & ME_PGIC_HRA),
728 dev->version.major_version,
729 dev->version.minor_version,
730 HBM_MAJOR_VERSION_PGI,
731 HBM_MINOR_VERSION_PGI);
732
733 return false;
734}
735
3dc196ea 736/**
859ef2ff 737 * mei_me_d0i3_set - write d0i3 register bit on mei device.
3dc196ea
AU
738 *
739 * @dev: the device structure
859ef2ff
AU
740 * @intr: ask for interrupt
741 *
742 * Return: D0I3C register value
3dc196ea 743 */
859ef2ff
AU
744static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
745{
746 u32 reg = mei_me_d0i3c_read(dev);
747
748 reg |= H_D0I3C_I3;
749 if (intr)
750 reg |= H_D0I3C_IR;
751 else
752 reg &= ~H_D0I3C_IR;
753 mei_me_d0i3c_write(dev, reg);
754 /* read it to ensure HW consistency */
755 reg = mei_me_d0i3c_read(dev);
756 return reg;
757}
758
759/**
760 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
761 *
762 * @dev: the device structure
763 *
764 * Return: D0I3C register value
765 */
766static u32 mei_me_d0i3_unset(struct mei_device *dev)
767{
768 u32 reg = mei_me_d0i3c_read(dev);
769
770 reg &= ~H_D0I3C_I3;
771 reg |= H_D0I3C_IR;
772 mei_me_d0i3c_write(dev, reg);
773 /* read it to ensure HW consistency */
774 reg = mei_me_d0i3c_read(dev);
775 return reg;
776}
777
778/**
779 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
780 *
781 * @dev: the device structure
782 *
783 * Return: 0 on success an error code otherwise
784 */
785static int mei_me_d0i3_enter_sync(struct mei_device *dev)
786{
787 struct mei_me_hw *hw = to_me_hw(dev);
788 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
789 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
790 int ret;
791 u32 reg;
792
793 reg = mei_me_d0i3c_read(dev);
794 if (reg & H_D0I3C_I3) {
795 /* we are in d0i3, nothing to do */
796 dev_dbg(dev->dev, "d0i3 set not needed\n");
797 ret = 0;
798 goto on;
799 }
800
801 /* PGI entry procedure */
802 dev->pg_event = MEI_PG_EVENT_WAIT;
803
804 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
805 if (ret)
806 /* FIXME: should we reset here? */
807 goto out;
808
809 mutex_unlock(&dev->device_lock);
810 wait_event_timeout(dev->wait_pg,
811 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
812 mutex_lock(&dev->device_lock);
813
814 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
815 ret = -ETIME;
816 goto out;
817 }
818 /* end PGI entry procedure */
819
820 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
821
822 reg = mei_me_d0i3_set(dev, true);
823 if (!(reg & H_D0I3C_CIP)) {
824 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
825 ret = 0;
826 goto on;
827 }
828
829 mutex_unlock(&dev->device_lock);
830 wait_event_timeout(dev->wait_pg,
831 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
832 mutex_lock(&dev->device_lock);
833
834 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
835 reg = mei_me_d0i3c_read(dev);
836 if (!(reg & H_D0I3C_I3)) {
837 ret = -ETIME;
838 goto out;
839 }
840 }
841
842 ret = 0;
843on:
844 hw->pg_state = MEI_PG_ON;
845out:
846 dev->pg_event = MEI_PG_EVENT_IDLE;
847 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
848 return ret;
849}
850
851/**
852 * mei_me_d0i3_enter - perform d0i3 entry procedure
853 * no hbm PG handshake
854 * no waiting for confirmation; runs with interrupts
855 * disabled
856 *
857 * @dev: the device structure
858 *
859 * Return: 0 on success an error code otherwise
860 */
861static int mei_me_d0i3_enter(struct mei_device *dev)
862{
863 struct mei_me_hw *hw = to_me_hw(dev);
864 u32 reg;
865
866 reg = mei_me_d0i3c_read(dev);
867 if (reg & H_D0I3C_I3) {
868 /* we are in d0i3, nothing to do */
869 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
870 goto on;
871 }
872
873 mei_me_d0i3_set(dev, false);
874on:
875 hw->pg_state = MEI_PG_ON;
876 dev->pg_event = MEI_PG_EVENT_IDLE;
877 dev_dbg(dev->dev, "d0i3 enter\n");
878 return 0;
879}
880
881/**
882 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
883 *
884 * @dev: the device structure
885 *
886 * Return: 0 on success an error code otherwise
887 */
888static int mei_me_d0i3_exit_sync(struct mei_device *dev)
889{
890 struct mei_me_hw *hw = to_me_hw(dev);
891 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
892 int ret;
893 u32 reg;
894
895 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
896
897 reg = mei_me_d0i3c_read(dev);
898 if (!(reg & H_D0I3C_I3)) {
899 /* we are not in d0i3, nothing to do */
900 dev_dbg(dev->dev, "d0i3 exit not needed\n");
901 ret = 0;
902 goto off;
903 }
904
905 reg = mei_me_d0i3_unset(dev);
906 if (!(reg & H_D0I3C_CIP)) {
907 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
908 ret = 0;
909 goto off;
910 }
911
912 mutex_unlock(&dev->device_lock);
913 wait_event_timeout(dev->wait_pg,
914 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
915 mutex_lock(&dev->device_lock);
916
917 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
918 reg = mei_me_d0i3c_read(dev);
919 if (reg & H_D0I3C_I3) {
920 ret = -ETIME;
921 goto out;
922 }
923 }
924
925 ret = 0;
926off:
927 hw->pg_state = MEI_PG_OFF;
928out:
929 dev->pg_event = MEI_PG_EVENT_IDLE;
930
931 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
932 return ret;
933}
934
935/**
936 * mei_me_pg_legacy_intr - perform legacy pg processing
937 * in interrupt thread handler
938 *
939 * @dev: the device structure
940 */
941static void mei_me_pg_legacy_intr(struct mei_device *dev)
3dc196ea
AU
942{
943 struct mei_me_hw *hw = to_me_hw(dev);
944
945 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
946 return;
947
948 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
949 hw->pg_state = MEI_PG_OFF;
950 if (waitqueue_active(&dev->wait_pg))
951 wake_up(&dev->wait_pg);
952}
953
859ef2ff
AU
954/**
955 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
956 *
957 * @dev: the device structure
958 */
959static void mei_me_d0i3_intr(struct mei_device *dev)
960{
961 struct mei_me_hw *hw = to_me_hw(dev);
962
963 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
964 (hw->intr_source & H_D0I3C_IS)) {
965 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
966 if (hw->pg_state == MEI_PG_ON) {
967 hw->pg_state = MEI_PG_OFF;
968 if (dev->hbm_state != MEI_HBM_IDLE) {
969 /*
970 * force H_RDY because it could be
971 * wiped off during PG
972 */
973 dev_dbg(dev->dev, "d0i3 set host ready\n");
974 mei_me_host_set_ready(dev);
975 }
976 } else {
977 hw->pg_state = MEI_PG_ON;
978 }
979
980 wake_up(&dev->wait_pg);
981 }
982
983 if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
984 /*
985 * HW sent some data and we are in D0i3, so
986 * we got here because of HW initiated exit from D0i3.
987 * Start runtime pm resume sequence to exit low power state.
988 */
989 dev_dbg(dev->dev, "d0i3 want resume\n");
990 mei_hbm_pg_resume(dev);
991 }
992}
993
994/**
995 * mei_me_pg_intr - perform pg processing in interrupt thread handler
996 *
997 * @dev: the device structure
998 */
999static void mei_me_pg_intr(struct mei_device *dev)
1000{
1001 struct mei_me_hw *hw = to_me_hw(dev);
1002
1003 if (hw->d0i3_supported)
1004 mei_me_d0i3_intr(dev);
1005 else
1006 mei_me_pg_legacy_intr(dev);
1007}
1008
1009/**
1010 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1011 *
1012 * @dev: the device structure
1013 *
1014 * Return: 0 on success an error code otherwise
1015 */
1016int mei_me_pg_enter_sync(struct mei_device *dev)
1017{
1018 struct mei_me_hw *hw = to_me_hw(dev);
1019
1020 if (hw->d0i3_supported)
1021 return mei_me_d0i3_enter_sync(dev);
1022 else
1023 return mei_me_pg_legacy_enter_sync(dev);
1024}
1025
1026/**
1027 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1028 *
1029 * @dev: the device structure
1030 *
1031 * Return: 0 on success an error code otherwise
1032 */
1033int mei_me_pg_exit_sync(struct mei_device *dev)
1034{
1035 struct mei_me_hw *hw = to_me_hw(dev);
1036
1037 if (hw->d0i3_supported)
1038 return mei_me_d0i3_exit_sync(dev);
1039 else
1040 return mei_me_pg_legacy_exit_sync(dev);
1041}
1042
ebad6b94
AU
1043/**
1044 * mei_me_hw_reset - resets fw via mei csr register.
1045 *
1046 * @dev: the device structure
1047 * @intr_enable: if interrupt should be enabled after reset.
1048 *
b9a1fc99 1049 * Return: 0 on success an error code otherwise
ebad6b94
AU
1050 */
1051static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1052{
b9a1fc99
AU
1053 struct mei_me_hw *hw = to_me_hw(dev);
1054 int ret;
1055 u32 hcsr;
1056
1057 if (intr_enable) {
1058 mei_me_intr_enable(dev);
1059 if (hw->d0i3_supported) {
1060 ret = mei_me_d0i3_exit_sync(dev);
1061 if (ret)
1062 return ret;
1063 }
1064 }
ebad6b94 1065
b9a1fc99 1066 hcsr = mei_hcsr_read(dev);
ebad6b94
AU
1067 /* H_RST may be found lit before reset is started,
1068 * for example if preceding reset flow hasn't completed.
1069 * In that case asserting H_RST will be ignored, therefore
1070 * we need to clean H_RST bit to start a successful reset sequence.
1071 */
1072 if ((hcsr & H_RST) == H_RST) {
1073 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1074 hcsr &= ~H_RST;
1075 mei_hcsr_set(dev, hcsr);
1076 hcsr = mei_hcsr_read(dev);
1077 }
1078
1079 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1080
b9a1fc99 1081 if (!intr_enable)
ebad6b94
AU
1082 hcsr &= ~H_CSR_IE_MASK;
1083
1084 dev->recvd_hw_ready = false;
1085 mei_hcsr_write(dev, hcsr);
1086
1087 /*
1088 * Host reads the H_CSR once to ensure that the
1089 * posted write to H_CSR completes.
1090 */
1091 hcsr = mei_hcsr_read(dev);
1092
1093 if ((hcsr & H_RST) == 0)
1094 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1095
1096 if ((hcsr & H_RDY) == H_RDY)
1097 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1098
b9a1fc99 1099 if (!intr_enable) {
ebad6b94 1100 mei_me_hw_reset_release(dev);
b9a1fc99
AU
1101 if (hw->d0i3_supported) {
1102 ret = mei_me_d0i3_enter(dev);
1103 if (ret)
1104 return ret;
1105 }
1106 }
ebad6b94
AU
1107 return 0;
1108}
1109
06ecd645
TW
1110/**
1111 * mei_me_irq_quick_handler - The ISR of the MEI device
1112 *
1113 * @irq: The irq number
1114 * @dev_id: pointer to the device structure
1115 *
a8605ea2 1116 * Return: irqreturn_t
06ecd645 1117 */
06ecd645
TW
1118irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1119{
1fa55b4e
AU
1120 struct mei_device *dev = (struct mei_device *)dev_id;
1121 struct mei_me_hw *hw = to_me_hw(dev);
1122 u32 hcsr;
06ecd645 1123
1fa55b4e
AU
1124 hcsr = mei_hcsr_read(dev);
1125 if (!(hcsr & H_CSR_IS_MASK))
06ecd645
TW
1126 return IRQ_NONE;
1127
1fa55b4e
AU
1128 hw->intr_source = hcsr & H_CSR_IS_MASK;
1129 dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);
1130
1131 /* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
381a58c7 1132 mei_hcsr_write(dev, hcsr);
06ecd645
TW
1133
1134 return IRQ_WAKE_THREAD;
1135}
1136
1137/**
1138 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1139 * processing.
1140 *
1141 * @irq: The irq number
1142 * @dev_id: pointer to the device structure
1143 *
a8605ea2 1144 * Return: irqreturn_t
06ecd645
TW
1145 *
1146 */
1147irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1148{
1149 struct mei_device *dev = (struct mei_device *) dev_id;
1150 struct mei_cl_cb complete_list;
06ecd645 1151 s32 slots;
544f9460 1152 int rets = 0;
06ecd645 1153
2bf94cab 1154 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
06ecd645
TW
1155 /* initialize our complete list */
1156 mutex_lock(&dev->device_lock);
1157 mei_io_list_init(&complete_list);
1158
06ecd645 1159 /* check if ME wants a reset */
33ec0826 1160 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 1161 dev_warn(dev->dev, "FW not ready: resetting.\n");
544f9460
TW
1162 schedule_work(&dev->reset_work);
1163 goto end;
06ecd645
TW
1164 }
1165
3dc196ea
AU
1166 mei_me_pg_intr(dev);
1167
06ecd645
TW
1168 /* check if we need to start the dev */
1169 if (!mei_host_is_ready(dev)) {
1170 if (mei_hw_is_ready(dev)) {
2bf94cab 1171 dev_dbg(dev->dev, "we need to start the dev.\n");
aafae7ec 1172 dev->recvd_hw_ready = true;
2c2b93ec 1173 wake_up(&dev->wait_hw_ready);
06ecd645 1174 } else {
2bf94cab 1175 dev_dbg(dev->dev, "Spurious Interrupt\n");
06ecd645 1176 }
544f9460 1177 goto end;
06ecd645
TW
1178 }
1179 /* check slots available for reading */
1180 slots = mei_count_full_read_slots(dev);
1181 while (slots > 0) {
2bf94cab 1182 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
06ecd645 1183 rets = mei_irq_read_handler(dev, &complete_list, &slots);
b1b94b5d
TW
1184 /* There is a race between ME write and interrupt delivery:
1185 * Not all data is always available immediately after the
1186 * interrupt, so try to read again on the next interrupt.
1187 */
1188 if (rets == -ENODATA)
1189 break;
1190
33ec0826 1191 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
2bf94cab 1192 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
b1b94b5d 1193 rets);
544f9460 1194 schedule_work(&dev->reset_work);
06ecd645 1195 goto end;
544f9460 1196 }
06ecd645 1197 }
544f9460 1198
6aae48ff
TW
1199 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1200
ba9cdd0e
TW
1201 /*
1202 * During PG handshake only allowed write is the replay to the
1203 * PG exit message, so block calling write function
3dc196ea 1204 * if the pg event is in PG handshake
ba9cdd0e 1205 */
3dc196ea
AU
1206 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1207 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
ba9cdd0e
TW
1208 rets = mei_irq_write_handler(dev, &complete_list);
1209 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1210 }
06ecd645 1211
4c6e22b8 1212 mei_irq_compl_handler(dev, &complete_list);
06ecd645 1213
544f9460 1214end:
2bf94cab 1215 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
544f9460 1216 mutex_unlock(&dev->device_lock);
06ecd645
TW
1217 return IRQ_HANDLED;
1218}
04dd3661 1219
827eef51
TW
1220static const struct mei_hw_ops mei_me_hw_ops = {
1221
1bd30b6a 1222 .fw_status = mei_me_fw_status,
964a2331
TW
1223 .pg_state = mei_me_pg_state,
1224
827eef51
TW
1225 .host_is_ready = mei_me_host_is_ready,
1226
1227 .hw_is_ready = mei_me_hw_is_ready,
1228 .hw_reset = mei_me_hw_reset,
aafae7ec
TW
1229 .hw_config = mei_me_hw_config,
1230 .hw_start = mei_me_hw_start,
827eef51 1231
3dc196ea 1232 .pg_in_transition = mei_me_pg_in_transition,
ee7e5afd
TW
1233 .pg_is_enabled = mei_me_pg_is_enabled,
1234
827eef51
TW
1235 .intr_clear = mei_me_intr_clear,
1236 .intr_enable = mei_me_intr_enable,
1237 .intr_disable = mei_me_intr_disable,
1238
1239 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1240 .hbuf_is_ready = mei_me_hbuf_is_empty,
1241 .hbuf_max_len = mei_me_hbuf_max_len,
1242
1243 .write = mei_me_write_message,
1244
1245 .rdbuf_full_slots = mei_me_count_full_read_slots,
1246 .read_hdr = mei_me_mecbrw_read,
1247 .read = mei_me_read_slots
1248};
1249
c919951d
TW
1250static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1251{
1252 u32 reg;
92db1555 1253
c919951d 1254 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
a96c5482 1255 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
c919951d
TW
1256 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1257 return (reg & 0x600) == 0x200;
1258}
1259
1260#define MEI_CFG_FW_NM \
1261 .quirk_probe = mei_me_fw_type_nm
1262
1263static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1264{
1265 u32 reg;
8c57cac1
TW
1266 unsigned int devfn;
1267
1268 /*
1269 * Read ME FW Status register to check for SPS Firmware
1270 * The SPS FW is only signaled in pci function 0
1271 */
1272 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1273 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
a96c5482 1274 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
c919951d
TW
1275 /* if bits [19:16] = 15, running SPS Firmware */
1276 return (reg & 0xf0000) == 0xf0000;
1277}
1278
1279#define MEI_CFG_FW_SPS \
1280 .quirk_probe = mei_me_fw_type_sps
1281
1282
8d929d48
AU
1283#define MEI_CFG_LEGACY_HFS \
1284 .fw_status.count = 0
1285
1286#define MEI_CFG_ICH_HFS \
1287 .fw_status.count = 1, \
1288 .fw_status.status[0] = PCI_CFG_HFS_1
1289
1290#define MEI_CFG_PCH_HFS \
1291 .fw_status.count = 2, \
1292 .fw_status.status[0] = PCI_CFG_HFS_1, \
1293 .fw_status.status[1] = PCI_CFG_HFS_2
1294
edca5ea3
AU
1295#define MEI_CFG_PCH8_HFS \
1296 .fw_status.count = 6, \
1297 .fw_status.status[0] = PCI_CFG_HFS_1, \
1298 .fw_status.status[1] = PCI_CFG_HFS_2, \
1299 .fw_status.status[2] = PCI_CFG_HFS_3, \
1300 .fw_status.status[3] = PCI_CFG_HFS_4, \
1301 .fw_status.status[4] = PCI_CFG_HFS_5, \
1302 .fw_status.status[5] = PCI_CFG_HFS_6
8d929d48
AU
1303
1304/* ICH Legacy devices */
1305const struct mei_cfg mei_me_legacy_cfg = {
1306 MEI_CFG_LEGACY_HFS,
1307};
1308
1309/* ICH devices */
1310const struct mei_cfg mei_me_ich_cfg = {
1311 MEI_CFG_ICH_HFS,
1312};
1313
1314/* PCH devices */
1315const struct mei_cfg mei_me_pch_cfg = {
1316 MEI_CFG_PCH_HFS,
1317};
1318
c919951d
TW
1319
1320/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1321const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1322 MEI_CFG_PCH_HFS,
1323 MEI_CFG_FW_NM,
1324};
1325
edca5ea3
AU
1326/* PCH8 Lynx Point and newer devices */
1327const struct mei_cfg mei_me_pch8_cfg = {
1328 MEI_CFG_PCH8_HFS,
1329};
1330
1331/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1332const struct mei_cfg mei_me_pch8_sps_cfg = {
1333 MEI_CFG_PCH8_HFS,
c919951d
TW
1334 MEI_CFG_FW_SPS,
1335};
1336
52c34561 1337/**
393b148f 1338 * mei_me_dev_init - allocates and initializes the mei device structure
52c34561
TW
1339 *
1340 * @pdev: The pci device structure
8d929d48 1341 * @cfg: per device generation config
52c34561 1342 *
a8605ea2 1343 * Return: The mei_device_device pointer on success, NULL on failure.
52c34561 1344 */
8d929d48
AU
1345struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1346 const struct mei_cfg *cfg)
52c34561
TW
1347{
1348 struct mei_device *dev;
4ad96db6 1349 struct mei_me_hw *hw;
52c34561
TW
1350
1351 dev = kzalloc(sizeof(struct mei_device) +
1352 sizeof(struct mei_me_hw), GFP_KERNEL);
1353 if (!dev)
1354 return NULL;
4ad96db6 1355 hw = to_me_hw(dev);
52c34561 1356
3a7e9b6c 1357 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
4ad96db6 1358 hw->cfg = cfg;
52c34561
TW
1359 return dev;
1360}
06ecd645 1361
This page took 0.463384 seconds and 5 git commands to generate.