cxgb4/cxgb4vf: Allocate more queues for 25G and 100G adapter
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
56d36be4
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
56d36be4
DM
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
f612b815 38#include "t4_values.h"
56d36be4 39#include "t4fw_api.h"
a69265e9 40#include "t4fw_version.h"
56d36be4
DM
41
42/**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
51 *
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
56 */
de498c89
RD
57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
59{
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
62
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
67 }
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
72 }
73}
74
75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
77{
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
80}
81
82/**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
88 *
89 * Sets a register field specified by the supplied mask to the
90 * given value.
91 */
92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
94{
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
99}
100
101/**
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
109 *
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
112 */
f2b7e78d 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
116{
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
121 }
122}
123
13ee15d3
VP
124/**
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
132 *
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
135 */
136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
139{
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
143 }
144}
145
0abfd152
HS
146/*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153{
3ccc6cf7
HS
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
0abfd152
HS
160
161 if (is_t4(adap->params.chip))
f061de42 162 req |= LOCALCFG_F;
0abfd152 163
f061de42
HS
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0abfd152
HS
166
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
171 */
f061de42 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0abfd152
HS
173}
174
31d55c2d
HS
175/*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
183static void t4_report_fw_error(struct adapter *adap)
184{
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
194 };
195 u32 pcie_fw;
196
f061de42
HS
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
31d55c2d 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
b2e1a3f0 200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
31d55c2d
HS
201}
202
56d36be4
DM
203/*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 u32 mbox_addr)
208{
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211}
212
213/*
214 * Handle a FW assertion reported in a mailbox.
215 */
216static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217{
218 struct fw_debug_cmd asrt;
219
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
f404f80c
HS
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
56d36be4
DM
225}
226
7f080c3f
HS
227/**
228 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229 * @adapter: the adapter
230 * @cmd: the Firmware Mailbox Command or Reply
231 * @size: command length in bytes
232 * @access: the time (ms) needed to access the Firmware Mailbox
233 * @execute: the time (ms) the command spent being executed
234 */
235static void t4_record_mbox(struct adapter *adapter,
236 const __be64 *cmd, unsigned int size,
237 int access, int execute)
56d36be4 238{
7f080c3f
HS
239 struct mbox_cmd_log *log = adapter->mbox_log;
240 struct mbox_cmd *entry;
241 int i;
242
243 entry = mbox_cmd_log_entry(log, log->cursor++);
244 if (log->cursor == log->size)
245 log->cursor = 0;
246
247 for (i = 0; i < size / 8; i++)
248 entry->cmd[i] = be64_to_cpu(cmd[i]);
249 while (i < MBOX_LEN / 8)
250 entry->cmd[i++] = 0;
251 entry->timestamp = jiffies;
252 entry->seqno = log->seqno++;
253 entry->access = access;
254 entry->execute = execute;
56d36be4
DM
255}
256
257/**
01b69614 258 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
56d36be4
DM
259 * @adap: the adapter
260 * @mbox: index of the mailbox to use
261 * @cmd: the command to write
262 * @size: command length in bytes
263 * @rpl: where to optionally store the reply
264 * @sleep_ok: if true we may sleep while awaiting command completion
01b69614 265 * @timeout: time to wait for command to finish before timing out
56d36be4
DM
266 *
267 * Sends the given command to FW through the selected mailbox and waits
268 * for the FW to execute the command. If @rpl is not %NULL it is used to
269 * store the FW's reply to the command. The command and its optional
270 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
271 * to respond. @sleep_ok determines whether we may sleep while awaiting
272 * the response. If sleeping is allowed we use progressive backoff
273 * otherwise we spin.
274 *
275 * The return value is 0 on success or a negative errno on failure. A
276 * failure can happen either because we are not able to execute the
277 * command or FW executes it but signals an error. In the latter case
278 * the return value is the error code indicated by FW (negated).
279 */
01b69614
HS
280int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 int size, void *rpl, bool sleep_ok, int timeout)
56d36be4 282{
005b5717 283 static const int delay[] = {
56d36be4
DM
284 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 };
286
7f080c3f
HS
287 u16 access = 0;
288 u16 execute = 0;
56d36be4
DM
289 u32 v;
290 u64 res;
7f080c3f 291 int i, ms, delay_idx, ret;
56d36be4 292 const __be64 *p = cmd;
89c3a86c
HS
293 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
294 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
7f080c3f 295 __be64 cmd_rpl[MBOX_LEN / 8];
f358738b 296 u32 pcie_fw;
56d36be4
DM
297
298 if ((size & 15) || size > MBOX_LEN)
299 return -EINVAL;
300
204dc3c0
DM
301 /*
302 * If the device is off-line, as in EEH, commands will time out.
303 * Fail them early so we don't waste time waiting.
304 */
305 if (adap->pdev->error_state != pci_channel_io_normal)
306 return -EIO;
307
5a20f5cf
HS
308 /* If we have a negative timeout, that implies that we can't sleep. */
309 if (timeout < 0) {
310 sleep_ok = false;
311 timeout = -timeout;
312 }
313
89c3a86c 314 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 315 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 316 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 317
7f080c3f
HS
318 if (v != MBOX_OWNER_DRV) {
319 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
320 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
321 return ret;
322 }
56d36be4 323
7f080c3f
HS
324 /* Copy in the new mailbox command and send it on its way ... */
325 t4_record_mbox(adap, cmd, MBOX_LEN, access, 0);
56d36be4
DM
326 for (i = 0; i < size; i += 8)
327 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
328
89c3a86c 329 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
56d36be4
DM
330 t4_read_reg(adap, ctl_reg); /* flush write */
331
332 delay_idx = 0;
333 ms = delay[0];
334
f358738b
HS
335 for (i = 0;
336 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
337 i < timeout;
338 i += ms) {
56d36be4
DM
339 if (sleep_ok) {
340 ms = delay[delay_idx]; /* last element may repeat */
341 if (delay_idx < ARRAY_SIZE(delay) - 1)
342 delay_idx++;
343 msleep(ms);
344 } else
345 mdelay(ms);
346
347 v = t4_read_reg(adap, ctl_reg);
89c3a86c
HS
348 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
349 if (!(v & MBMSGVALID_F)) {
56d36be4
DM
350 t4_write_reg(adap, ctl_reg, 0);
351 continue;
352 }
353
7f080c3f
HS
354 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
355 res = be64_to_cpu(cmd_rpl[0]);
356
e2ac9628 357 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
56d36be4 358 fw_asrt(adap, data_reg);
e2ac9628
HS
359 res = FW_CMD_RETVAL_V(EIO);
360 } else if (rpl) {
7f080c3f 361 memcpy(rpl, cmd_rpl, size);
e2ac9628 362 }
56d36be4 363
56d36be4 364 t4_write_reg(adap, ctl_reg, 0);
7f080c3f
HS
365
366 execute = i + ms;
367 t4_record_mbox(adap, cmd_rpl,
368 MBOX_LEN, access, execute);
e2ac9628 369 return -FW_CMD_RETVAL_G((int)res);
56d36be4
DM
370 }
371 }
372
f358738b 373 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
7f080c3f 374 t4_record_mbox(adap, cmd, MBOX_LEN, access, ret);
56d36be4
DM
375 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
376 *(const u8 *)cmd, mbox);
31d55c2d 377 t4_report_fw_error(adap);
7f080c3f 378 return ret;
56d36be4
DM
379}
380
01b69614
HS
381int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
382 void *rpl, bool sleep_ok)
56d36be4 383{
01b69614
HS
384 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
385 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
386}
387
bf8ebb67
HS
388static int t4_edc_err_read(struct adapter *adap, int idx)
389{
390 u32 edc_ecc_err_addr_reg;
391 u32 rdata_reg;
392
393 if (is_t4(adap->params.chip)) {
394 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
395 return 0;
396 }
397 if (idx != 0 && idx != 1) {
398 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
399 return 0;
400 }
401
402 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
403 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
404
405 CH_WARN(adap,
406 "edc%d err addr 0x%x: 0x%x.\n",
407 idx, edc_ecc_err_addr_reg,
408 t4_read_reg(adap, edc_ecc_err_addr_reg));
409 CH_WARN(adap,
410 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
411 rdata_reg,
412 (unsigned long long)t4_read_reg64(adap, rdata_reg),
413 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
414 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
415 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
416 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
417 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
418 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
419 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
420 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
421
422 return 0;
423}
424
5afc8b84
VP
425/**
426 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
427 * @adap: the adapter
fc5ab020 428 * @win: PCI-E Memory Window to use
5afc8b84
VP
429 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
430 * @addr: address within indicated memory type
431 * @len: amount of memory to transfer
f01aa633 432 * @hbuf: host memory buffer
fc5ab020 433 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5afc8b84
VP
434 *
435 * Reads/writes an [almost] arbitrary memory region in the firmware: the
fc5ab020
HS
436 * firmware memory address and host buffer must be aligned on 32-bit
437 * boudaries; the length may be arbitrary. The memory is transferred as
438 * a raw byte sequence from/to the firmware's memory. If this memory
439 * contains data structures which contain multi-byte integers, it's the
440 * caller's responsibility to perform appropriate byte order conversions.
5afc8b84 441 */
fc5ab020 442int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
f01aa633 443 u32 len, void *hbuf, int dir)
5afc8b84 444{
fc5ab020
HS
445 u32 pos, offset, resid, memoffset;
446 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
f01aa633 447 u32 *buf;
5afc8b84 448
fc5ab020 449 /* Argument sanity checks ...
5afc8b84 450 */
f01aa633 451 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5afc8b84 452 return -EINVAL;
f01aa633 453 buf = (u32 *)hbuf;
5afc8b84 454
fc5ab020
HS
455 /* It's convenient to be able to handle lengths which aren't a
456 * multiple of 32-bits because we often end up transferring files to
457 * the firmware. So we'll handle that by normalizing the length here
458 * and then handling any residual transfer at the end.
459 */
460 resid = len & 0x3;
461 len -= resid;
8c357ebd 462
19dd37ba 463 /* Offset into the region of memory which is being accessed
5afc8b84
VP
464 * MEM_EDC0 = 0
465 * MEM_EDC1 = 1
3ccc6cf7
HS
466 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
467 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
5afc8b84 468 */
6559a7e8 469 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
19dd37ba
SR
470 if (mtype != MEM_MC1)
471 memoffset = (mtype * (edc_size * 1024 * 1024));
472 else {
6559a7e8 473 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
7f0b8a56 474 MA_EXT_MEMORY0_BAR_A));
19dd37ba
SR
475 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
476 }
5afc8b84
VP
477
478 /* Determine the PCIE_MEM_ACCESS_OFFSET */
479 addr = addr + memoffset;
480
fc5ab020
HS
481 /* Each PCI-E Memory Window is programmed with a window size -- or
482 * "aperture" -- which controls the granularity of its mapping onto
483 * adapter memory. We need to grab that aperture in order to know
484 * how to use the specified window. The window is also programmed
485 * with the base address of the Memory Window in BAR0's address
486 * space. For T4 this is an absolute PCI-E Bus Address. For T5
487 * the address is relative to BAR0.
5afc8b84 488 */
fc5ab020 489 mem_reg = t4_read_reg(adap,
f061de42 490 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
fc5ab020 491 win));
f061de42
HS
492 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
493 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
fc5ab020
HS
494 if (is_t4(adap->params.chip))
495 mem_base -= adap->t4_bar0;
b2612722 496 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
5afc8b84 497
fc5ab020
HS
498 /* Calculate our initial PCI-E Memory Window Position and Offset into
499 * that Window.
500 */
501 pos = addr & ~(mem_aperture-1);
502 offset = addr - pos;
5afc8b84 503
fc5ab020
HS
504 /* Set up initial PCI-E Memory Window to cover the start of our
505 * transfer. (Read it back to ensure that changes propagate before we
506 * attempt to use the new value.)
507 */
508 t4_write_reg(adap,
f061de42 509 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
fc5ab020
HS
510 pos | win_pf);
511 t4_read_reg(adap,
f061de42 512 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
fc5ab020
HS
513
514 /* Transfer data to/from the adapter as long as there's an integral
515 * number of 32-bit transfers to complete.
f01aa633
HS
516 *
517 * A note on Endianness issues:
518 *
519 * The "register" reads and writes below from/to the PCI-E Memory
520 * Window invoke the standard adapter Big-Endian to PCI-E Link
521 * Little-Endian "swizzel." As a result, if we have the following
522 * data in adapter memory:
523 *
524 * Memory: ... | b0 | b1 | b2 | b3 | ...
525 * Address: i+0 i+1 i+2 i+3
526 *
527 * Then a read of the adapter memory via the PCI-E Memory Window
528 * will yield:
529 *
530 * x = readl(i)
531 * 31 0
532 * [ b3 | b2 | b1 | b0 ]
533 *
534 * If this value is stored into local memory on a Little-Endian system
535 * it will show up correctly in local memory as:
536 *
537 * ( ..., b0, b1, b2, b3, ... )
538 *
539 * But on a Big-Endian system, the store will show up in memory
540 * incorrectly swizzled as:
541 *
542 * ( ..., b3, b2, b1, b0, ... )
543 *
544 * So we need to account for this in the reads and writes to the
545 * PCI-E Memory Window below by undoing the register read/write
546 * swizzels.
fc5ab020
HS
547 */
548 while (len > 0) {
549 if (dir == T4_MEMORY_READ)
f01aa633
HS
550 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
551 mem_base + offset));
fc5ab020
HS
552 else
553 t4_write_reg(adap, mem_base + offset,
f01aa633 554 (__force u32)cpu_to_le32(*buf++));
fc5ab020
HS
555 offset += sizeof(__be32);
556 len -= sizeof(__be32);
557
558 /* If we've reached the end of our current window aperture,
559 * move the PCI-E Memory Window on to the next. Note that
560 * doing this here after "len" may be 0 allows us to set up
561 * the PCI-E Memory Window for a possible final residual
562 * transfer below ...
5afc8b84 563 */
fc5ab020
HS
564 if (offset == mem_aperture) {
565 pos += mem_aperture;
566 offset = 0;
567 t4_write_reg(adap,
f061de42
HS
568 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
569 win), pos | win_pf);
fc5ab020 570 t4_read_reg(adap,
f061de42
HS
571 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
572 win));
5afc8b84 573 }
5afc8b84
VP
574 }
575
fc5ab020
HS
576 /* If the original transfer had a length which wasn't a multiple of
577 * 32-bits, now's where we need to finish off the transfer of the
578 * residual amount. The PCI-E Memory Window has already been moved
579 * above (if necessary) to cover this final transfer.
580 */
581 if (resid) {
582 union {
f01aa633 583 u32 word;
fc5ab020
HS
584 char byte[4];
585 } last;
586 unsigned char *bp;
587 int i;
588
c81576c2 589 if (dir == T4_MEMORY_READ) {
f01aa633
HS
590 last.word = le32_to_cpu(
591 (__force __le32)t4_read_reg(adap,
592 mem_base + offset));
fc5ab020
HS
593 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
594 bp[i] = last.byte[i];
595 } else {
596 last.word = *buf;
597 for (i = resid; i < 4; i++)
598 last.byte[i] = 0;
599 t4_write_reg(adap, mem_base + offset,
f01aa633 600 (__force u32)cpu_to_le32(last.word));
fc5ab020
HS
601 }
602 }
5afc8b84 603
fc5ab020 604 return 0;
5afc8b84
VP
605}
606
b562fc37
HS
607/* Return the specified PCI-E Configuration Space register from our Physical
608 * Function. We try first via a Firmware LDST Command since we prefer to let
609 * the firmware own all of these registers, but if that fails we go for it
610 * directly ourselves.
611 */
612u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
613{
614 u32 val, ldst_addrspace;
615
616 /* If fw_attach != 0, construct and send the Firmware LDST Command to
617 * retrieve the specified PCI-E Configuration Space register.
618 */
619 struct fw_ldst_cmd ldst_cmd;
620 int ret;
621
622 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
623 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
624 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
625 FW_CMD_REQUEST_F |
626 FW_CMD_READ_F |
627 ldst_addrspace);
628 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
629 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
630 ldst_cmd.u.pcie.ctrl_to_fn =
b2612722 631 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
b562fc37
HS
632 ldst_cmd.u.pcie.r = reg;
633
634 /* If the LDST Command succeeds, return the result, otherwise
635 * fall through to reading it directly ourselves ...
636 */
637 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
638 &ldst_cmd);
639 if (ret == 0)
640 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
641 else
642 /* Read the desired Configuration Space register via the PCI-E
643 * Backdoor mechanism.
644 */
645 t4_hw_pci_read_cfg4(adap, reg, &val);
646 return val;
647}
648
649/* Get the window based on base passed to it.
650 * Window aperture is currently unhandled, but there is no use case for it
651 * right now
652 */
653static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
654 u32 memwin_base)
655{
656 u32 ret;
657
658 if (is_t4(adap->params.chip)) {
659 u32 bar0;
660
661 /* Truncation intentional: we only read the bottom 32-bits of
662 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
663 * mechanism to read BAR0 instead of using
664 * pci_resource_start() because we could be operating from
665 * within a Virtual Machine which is trapping our accesses to
666 * our Configuration Space and we need to set up the PCI-E
667 * Memory Window decoders with the actual addresses which will
668 * be coming across the PCI-E link.
669 */
670 bar0 = t4_read_pcie_cfg4(adap, pci_base);
671 bar0 &= pci_mask;
672 adap->t4_bar0 = bar0;
673
674 ret = bar0 + memwin_base;
675 } else {
676 /* For T5, only relative offset inside the PCIe BAR is passed */
677 ret = memwin_base;
678 }
679 return ret;
680}
681
682/* Get the default utility window (win0) used by everyone */
683u32 t4_get_util_window(struct adapter *adap)
684{
685 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
686 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
687}
688
689/* Set up memory window for accessing adapter memory ranges. (Read
690 * back MA register to ensure that changes propagate before we attempt
691 * to use the new values.)
692 */
693void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
694{
695 t4_write_reg(adap,
696 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
697 memwin_base | BIR_V(0) |
698 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
699 t4_read_reg(adap,
700 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
701}
702
812034f1
HS
703/**
704 * t4_get_regs_len - return the size of the chips register set
705 * @adapter: the adapter
706 *
707 * Returns the size of the chip's BAR0 register space.
708 */
709unsigned int t4_get_regs_len(struct adapter *adapter)
710{
711 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
712
713 switch (chip_version) {
714 case CHELSIO_T4:
715 return T4_REGMAP_SIZE;
716
717 case CHELSIO_T5:
ab4b583b 718 case CHELSIO_T6:
812034f1
HS
719 return T5_REGMAP_SIZE;
720 }
721
722 dev_err(adapter->pdev_dev,
723 "Unsupported chip version %d\n", chip_version);
724 return 0;
725}
726
727/**
728 * t4_get_regs - read chip registers into provided buffer
729 * @adap: the adapter
730 * @buf: register buffer
731 * @buf_size: size (in bytes) of register buffer
732 *
733 * If the provided register buffer isn't large enough for the chip's
734 * full register range, the register dump will be truncated to the
735 * register buffer's size.
736 */
737void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
738{
739 static const unsigned int t4_reg_ranges[] = {
740 0x1008, 0x1108,
8119c018
HS
741 0x1180, 0x1184,
742 0x1190, 0x1194,
743 0x11a0, 0x11a4,
744 0x11b0, 0x11b4,
812034f1
HS
745 0x11fc, 0x123c,
746 0x1300, 0x173c,
747 0x1800, 0x18fc,
8119c018
HS
748 0x3000, 0x30d8,
749 0x30e0, 0x30e4,
750 0x30ec, 0x5910,
751 0x5920, 0x5924,
752 0x5960, 0x5960,
753 0x5968, 0x5968,
754 0x5970, 0x5970,
755 0x5978, 0x5978,
756 0x5980, 0x5980,
757 0x5988, 0x5988,
758 0x5990, 0x5990,
759 0x5998, 0x5998,
760 0x59a0, 0x59d4,
761 0x5a00, 0x5ae0,
762 0x5ae8, 0x5ae8,
763 0x5af0, 0x5af0,
764 0x5af8, 0x5af8,
812034f1
HS
765 0x6000, 0x6098,
766 0x6100, 0x6150,
767 0x6200, 0x6208,
768 0x6240, 0x6248,
8119c018
HS
769 0x6280, 0x62b0,
770 0x62c0, 0x6338,
812034f1
HS
771 0x6370, 0x638c,
772 0x6400, 0x643c,
773 0x6500, 0x6524,
8119c018
HS
774 0x6a00, 0x6a04,
775 0x6a14, 0x6a38,
776 0x6a60, 0x6a70,
777 0x6a78, 0x6a78,
778 0x6b00, 0x6b0c,
779 0x6b1c, 0x6b84,
780 0x6bf0, 0x6bf8,
781 0x6c00, 0x6c0c,
782 0x6c1c, 0x6c84,
783 0x6cf0, 0x6cf8,
784 0x6d00, 0x6d0c,
785 0x6d1c, 0x6d84,
786 0x6df0, 0x6df8,
787 0x6e00, 0x6e0c,
788 0x6e1c, 0x6e84,
789 0x6ef0, 0x6ef8,
790 0x6f00, 0x6f0c,
791 0x6f1c, 0x6f84,
792 0x6ff0, 0x6ff8,
793 0x7000, 0x700c,
794 0x701c, 0x7084,
795 0x70f0, 0x70f8,
796 0x7100, 0x710c,
797 0x711c, 0x7184,
798 0x71f0, 0x71f8,
799 0x7200, 0x720c,
800 0x721c, 0x7284,
801 0x72f0, 0x72f8,
802 0x7300, 0x730c,
803 0x731c, 0x7384,
804 0x73f0, 0x73f8,
805 0x7400, 0x7450,
812034f1 806 0x7500, 0x7530,
8119c018
HS
807 0x7600, 0x760c,
808 0x7614, 0x761c,
812034f1
HS
809 0x7680, 0x76cc,
810 0x7700, 0x7798,
811 0x77c0, 0x77fc,
812 0x7900, 0x79fc,
8119c018
HS
813 0x7b00, 0x7b58,
814 0x7b60, 0x7b84,
815 0x7b8c, 0x7c38,
816 0x7d00, 0x7d38,
817 0x7d40, 0x7d80,
818 0x7d8c, 0x7ddc,
819 0x7de4, 0x7e04,
820 0x7e10, 0x7e1c,
821 0x7e24, 0x7e38,
822 0x7e40, 0x7e44,
823 0x7e4c, 0x7e78,
824 0x7e80, 0x7ea4,
825 0x7eac, 0x7edc,
826 0x7ee8, 0x7efc,
827 0x8dc0, 0x8e04,
828 0x8e10, 0x8e1c,
812034f1 829 0x8e30, 0x8e78,
8119c018
HS
830 0x8ea0, 0x8eb8,
831 0x8ec0, 0x8f6c,
832 0x8fc0, 0x9008,
833 0x9010, 0x9058,
834 0x9060, 0x9060,
835 0x9068, 0x9074,
812034f1 836 0x90fc, 0x90fc,
8119c018
HS
837 0x9400, 0x9408,
838 0x9410, 0x9458,
839 0x9600, 0x9600,
840 0x9608, 0x9638,
841 0x9640, 0x96bc,
812034f1
HS
842 0x9800, 0x9808,
843 0x9820, 0x983c,
844 0x9850, 0x9864,
845 0x9c00, 0x9c6c,
846 0x9c80, 0x9cec,
847 0x9d00, 0x9d6c,
848 0x9d80, 0x9dec,
849 0x9e00, 0x9e6c,
850 0x9e80, 0x9eec,
851 0x9f00, 0x9f6c,
852 0x9f80, 0x9fec,
8119c018
HS
853 0xd004, 0xd004,
854 0xd010, 0xd03c,
812034f1
HS
855 0xdfc0, 0xdfe0,
856 0xe000, 0xea7c,
8119c018 857 0xf000, 0x11190,
812034f1
HS
858 0x19040, 0x1906c,
859 0x19078, 0x19080,
8119c018
HS
860 0x1908c, 0x190e4,
861 0x190f0, 0x190f8,
862 0x19100, 0x19110,
863 0x19120, 0x19124,
864 0x19150, 0x19194,
865 0x1919c, 0x191b0,
812034f1
HS
866 0x191d0, 0x191e8,
867 0x19238, 0x1924c,
8119c018
HS
868 0x193f8, 0x1943c,
869 0x1944c, 0x19474,
870 0x19490, 0x194e0,
871 0x194f0, 0x194f8,
872 0x19800, 0x19c08,
873 0x19c10, 0x19c90,
874 0x19ca0, 0x19ce4,
875 0x19cf0, 0x19d40,
876 0x19d50, 0x19d94,
877 0x19da0, 0x19de8,
878 0x19df0, 0x19e40,
879 0x19e50, 0x19e90,
880 0x19ea0, 0x19f4c,
881 0x1a000, 0x1a004,
882 0x1a010, 0x1a06c,
883 0x1a0b0, 0x1a0e4,
884 0x1a0ec, 0x1a0f4,
885 0x1a100, 0x1a108,
886 0x1a114, 0x1a120,
887 0x1a128, 0x1a130,
888 0x1a138, 0x1a138,
812034f1
HS
889 0x1a190, 0x1a1c4,
890 0x1a1fc, 0x1a1fc,
891 0x1e040, 0x1e04c,
892 0x1e284, 0x1e28c,
893 0x1e2c0, 0x1e2c0,
894 0x1e2e0, 0x1e2e0,
895 0x1e300, 0x1e384,
896 0x1e3c0, 0x1e3c8,
897 0x1e440, 0x1e44c,
898 0x1e684, 0x1e68c,
899 0x1e6c0, 0x1e6c0,
900 0x1e6e0, 0x1e6e0,
901 0x1e700, 0x1e784,
902 0x1e7c0, 0x1e7c8,
903 0x1e840, 0x1e84c,
904 0x1ea84, 0x1ea8c,
905 0x1eac0, 0x1eac0,
906 0x1eae0, 0x1eae0,
907 0x1eb00, 0x1eb84,
908 0x1ebc0, 0x1ebc8,
909 0x1ec40, 0x1ec4c,
910 0x1ee84, 0x1ee8c,
911 0x1eec0, 0x1eec0,
912 0x1eee0, 0x1eee0,
913 0x1ef00, 0x1ef84,
914 0x1efc0, 0x1efc8,
915 0x1f040, 0x1f04c,
916 0x1f284, 0x1f28c,
917 0x1f2c0, 0x1f2c0,
918 0x1f2e0, 0x1f2e0,
919 0x1f300, 0x1f384,
920 0x1f3c0, 0x1f3c8,
921 0x1f440, 0x1f44c,
922 0x1f684, 0x1f68c,
923 0x1f6c0, 0x1f6c0,
924 0x1f6e0, 0x1f6e0,
925 0x1f700, 0x1f784,
926 0x1f7c0, 0x1f7c8,
927 0x1f840, 0x1f84c,
928 0x1fa84, 0x1fa8c,
929 0x1fac0, 0x1fac0,
930 0x1fae0, 0x1fae0,
931 0x1fb00, 0x1fb84,
932 0x1fbc0, 0x1fbc8,
933 0x1fc40, 0x1fc4c,
934 0x1fe84, 0x1fe8c,
935 0x1fec0, 0x1fec0,
936 0x1fee0, 0x1fee0,
937 0x1ff00, 0x1ff84,
938 0x1ffc0, 0x1ffc8,
939 0x20000, 0x2002c,
940 0x20100, 0x2013c,
8119c018
HS
941 0x20190, 0x201a0,
942 0x201a8, 0x201b8,
943 0x201c4, 0x201c8,
812034f1 944 0x20200, 0x20318,
8119c018
HS
945 0x20400, 0x204b4,
946 0x204c0, 0x20528,
812034f1
HS
947 0x20540, 0x20614,
948 0x21000, 0x21040,
949 0x2104c, 0x21060,
950 0x210c0, 0x210ec,
951 0x21200, 0x21268,
952 0x21270, 0x21284,
953 0x212fc, 0x21388,
954 0x21400, 0x21404,
8119c018
HS
955 0x21500, 0x21500,
956 0x21510, 0x21518,
957 0x2152c, 0x21530,
958 0x2153c, 0x2153c,
812034f1
HS
959 0x21550, 0x21554,
960 0x21600, 0x21600,
8119c018
HS
961 0x21608, 0x2161c,
962 0x21624, 0x21628,
963 0x21630, 0x21634,
964 0x2163c, 0x2163c,
812034f1
HS
965 0x21700, 0x2171c,
966 0x21780, 0x2178c,
8119c018
HS
967 0x21800, 0x21818,
968 0x21820, 0x21828,
969 0x21830, 0x21848,
970 0x21850, 0x21854,
971 0x21860, 0x21868,
972 0x21870, 0x21870,
973 0x21878, 0x21898,
974 0x218a0, 0x218a8,
975 0x218b0, 0x218c8,
976 0x218d0, 0x218d4,
977 0x218e0, 0x218e8,
978 0x218f0, 0x218f0,
979 0x218f8, 0x21a18,
980 0x21a20, 0x21a28,
981 0x21a30, 0x21a48,
982 0x21a50, 0x21a54,
983 0x21a60, 0x21a68,
984 0x21a70, 0x21a70,
985 0x21a78, 0x21a98,
986 0x21aa0, 0x21aa8,
987 0x21ab0, 0x21ac8,
988 0x21ad0, 0x21ad4,
989 0x21ae0, 0x21ae8,
990 0x21af0, 0x21af0,
991 0x21af8, 0x21c18,
992 0x21c20, 0x21c20,
993 0x21c28, 0x21c30,
994 0x21c38, 0x21c38,
995 0x21c80, 0x21c98,
996 0x21ca0, 0x21ca8,
997 0x21cb0, 0x21cc8,
998 0x21cd0, 0x21cd4,
999 0x21ce0, 0x21ce8,
1000 0x21cf0, 0x21cf0,
1001 0x21cf8, 0x21d7c,
812034f1
HS
1002 0x21e00, 0x21e04,
1003 0x22000, 0x2202c,
1004 0x22100, 0x2213c,
8119c018
HS
1005 0x22190, 0x221a0,
1006 0x221a8, 0x221b8,
1007 0x221c4, 0x221c8,
812034f1 1008 0x22200, 0x22318,
8119c018
HS
1009 0x22400, 0x224b4,
1010 0x224c0, 0x22528,
812034f1
HS
1011 0x22540, 0x22614,
1012 0x23000, 0x23040,
1013 0x2304c, 0x23060,
1014 0x230c0, 0x230ec,
1015 0x23200, 0x23268,
1016 0x23270, 0x23284,
1017 0x232fc, 0x23388,
1018 0x23400, 0x23404,
8119c018
HS
1019 0x23500, 0x23500,
1020 0x23510, 0x23518,
1021 0x2352c, 0x23530,
1022 0x2353c, 0x2353c,
812034f1
HS
1023 0x23550, 0x23554,
1024 0x23600, 0x23600,
8119c018
HS
1025 0x23608, 0x2361c,
1026 0x23624, 0x23628,
1027 0x23630, 0x23634,
1028 0x2363c, 0x2363c,
812034f1
HS
1029 0x23700, 0x2371c,
1030 0x23780, 0x2378c,
8119c018
HS
1031 0x23800, 0x23818,
1032 0x23820, 0x23828,
1033 0x23830, 0x23848,
1034 0x23850, 0x23854,
1035 0x23860, 0x23868,
1036 0x23870, 0x23870,
1037 0x23878, 0x23898,
1038 0x238a0, 0x238a8,
1039 0x238b0, 0x238c8,
1040 0x238d0, 0x238d4,
1041 0x238e0, 0x238e8,
1042 0x238f0, 0x238f0,
1043 0x238f8, 0x23a18,
1044 0x23a20, 0x23a28,
1045 0x23a30, 0x23a48,
1046 0x23a50, 0x23a54,
1047 0x23a60, 0x23a68,
1048 0x23a70, 0x23a70,
1049 0x23a78, 0x23a98,
1050 0x23aa0, 0x23aa8,
1051 0x23ab0, 0x23ac8,
1052 0x23ad0, 0x23ad4,
1053 0x23ae0, 0x23ae8,
1054 0x23af0, 0x23af0,
1055 0x23af8, 0x23c18,
1056 0x23c20, 0x23c20,
1057 0x23c28, 0x23c30,
1058 0x23c38, 0x23c38,
1059 0x23c80, 0x23c98,
1060 0x23ca0, 0x23ca8,
1061 0x23cb0, 0x23cc8,
1062 0x23cd0, 0x23cd4,
1063 0x23ce0, 0x23ce8,
1064 0x23cf0, 0x23cf0,
1065 0x23cf8, 0x23d7c,
812034f1
HS
1066 0x23e00, 0x23e04,
1067 0x24000, 0x2402c,
1068 0x24100, 0x2413c,
8119c018
HS
1069 0x24190, 0x241a0,
1070 0x241a8, 0x241b8,
1071 0x241c4, 0x241c8,
812034f1 1072 0x24200, 0x24318,
8119c018
HS
1073 0x24400, 0x244b4,
1074 0x244c0, 0x24528,
812034f1
HS
1075 0x24540, 0x24614,
1076 0x25000, 0x25040,
1077 0x2504c, 0x25060,
1078 0x250c0, 0x250ec,
1079 0x25200, 0x25268,
1080 0x25270, 0x25284,
1081 0x252fc, 0x25388,
1082 0x25400, 0x25404,
8119c018
HS
1083 0x25500, 0x25500,
1084 0x25510, 0x25518,
1085 0x2552c, 0x25530,
1086 0x2553c, 0x2553c,
812034f1
HS
1087 0x25550, 0x25554,
1088 0x25600, 0x25600,
8119c018
HS
1089 0x25608, 0x2561c,
1090 0x25624, 0x25628,
1091 0x25630, 0x25634,
1092 0x2563c, 0x2563c,
812034f1
HS
1093 0x25700, 0x2571c,
1094 0x25780, 0x2578c,
8119c018
HS
1095 0x25800, 0x25818,
1096 0x25820, 0x25828,
1097 0x25830, 0x25848,
1098 0x25850, 0x25854,
1099 0x25860, 0x25868,
1100 0x25870, 0x25870,
1101 0x25878, 0x25898,
1102 0x258a0, 0x258a8,
1103 0x258b0, 0x258c8,
1104 0x258d0, 0x258d4,
1105 0x258e0, 0x258e8,
1106 0x258f0, 0x258f0,
1107 0x258f8, 0x25a18,
1108 0x25a20, 0x25a28,
1109 0x25a30, 0x25a48,
1110 0x25a50, 0x25a54,
1111 0x25a60, 0x25a68,
1112 0x25a70, 0x25a70,
1113 0x25a78, 0x25a98,
1114 0x25aa0, 0x25aa8,
1115 0x25ab0, 0x25ac8,
1116 0x25ad0, 0x25ad4,
1117 0x25ae0, 0x25ae8,
1118 0x25af0, 0x25af0,
1119 0x25af8, 0x25c18,
1120 0x25c20, 0x25c20,
1121 0x25c28, 0x25c30,
1122 0x25c38, 0x25c38,
1123 0x25c80, 0x25c98,
1124 0x25ca0, 0x25ca8,
1125 0x25cb0, 0x25cc8,
1126 0x25cd0, 0x25cd4,
1127 0x25ce0, 0x25ce8,
1128 0x25cf0, 0x25cf0,
1129 0x25cf8, 0x25d7c,
812034f1
HS
1130 0x25e00, 0x25e04,
1131 0x26000, 0x2602c,
1132 0x26100, 0x2613c,
8119c018
HS
1133 0x26190, 0x261a0,
1134 0x261a8, 0x261b8,
1135 0x261c4, 0x261c8,
812034f1 1136 0x26200, 0x26318,
8119c018
HS
1137 0x26400, 0x264b4,
1138 0x264c0, 0x26528,
812034f1
HS
1139 0x26540, 0x26614,
1140 0x27000, 0x27040,
1141 0x2704c, 0x27060,
1142 0x270c0, 0x270ec,
1143 0x27200, 0x27268,
1144 0x27270, 0x27284,
1145 0x272fc, 0x27388,
1146 0x27400, 0x27404,
8119c018
HS
1147 0x27500, 0x27500,
1148 0x27510, 0x27518,
1149 0x2752c, 0x27530,
1150 0x2753c, 0x2753c,
812034f1
HS
1151 0x27550, 0x27554,
1152 0x27600, 0x27600,
8119c018
HS
1153 0x27608, 0x2761c,
1154 0x27624, 0x27628,
1155 0x27630, 0x27634,
1156 0x2763c, 0x2763c,
812034f1
HS
1157 0x27700, 0x2771c,
1158 0x27780, 0x2778c,
8119c018
HS
1159 0x27800, 0x27818,
1160 0x27820, 0x27828,
1161 0x27830, 0x27848,
1162 0x27850, 0x27854,
1163 0x27860, 0x27868,
1164 0x27870, 0x27870,
1165 0x27878, 0x27898,
1166 0x278a0, 0x278a8,
1167 0x278b0, 0x278c8,
1168 0x278d0, 0x278d4,
1169 0x278e0, 0x278e8,
1170 0x278f0, 0x278f0,
1171 0x278f8, 0x27a18,
1172 0x27a20, 0x27a28,
1173 0x27a30, 0x27a48,
1174 0x27a50, 0x27a54,
1175 0x27a60, 0x27a68,
1176 0x27a70, 0x27a70,
1177 0x27a78, 0x27a98,
1178 0x27aa0, 0x27aa8,
1179 0x27ab0, 0x27ac8,
1180 0x27ad0, 0x27ad4,
1181 0x27ae0, 0x27ae8,
1182 0x27af0, 0x27af0,
1183 0x27af8, 0x27c18,
1184 0x27c20, 0x27c20,
1185 0x27c28, 0x27c30,
1186 0x27c38, 0x27c38,
1187 0x27c80, 0x27c98,
1188 0x27ca0, 0x27ca8,
1189 0x27cb0, 0x27cc8,
1190 0x27cd0, 0x27cd4,
1191 0x27ce0, 0x27ce8,
1192 0x27cf0, 0x27cf0,
1193 0x27cf8, 0x27d7c,
9f5ac48d 1194 0x27e00, 0x27e04,
812034f1
HS
1195 };
1196
1197 static const unsigned int t5_reg_ranges[] = {
8119c018
HS
1198 0x1008, 0x10c0,
1199 0x10cc, 0x10f8,
1200 0x1100, 0x1100,
1201 0x110c, 0x1148,
1202 0x1180, 0x1184,
1203 0x1190, 0x1194,
1204 0x11a0, 0x11a4,
1205 0x11b0, 0x11b4,
812034f1
HS
1206 0x11fc, 0x123c,
1207 0x1280, 0x173c,
1208 0x1800, 0x18fc,
1209 0x3000, 0x3028,
8119c018
HS
1210 0x3060, 0x30b0,
1211 0x30b8, 0x30d8,
812034f1
HS
1212 0x30e0, 0x30fc,
1213 0x3140, 0x357c,
1214 0x35a8, 0x35cc,
1215 0x35ec, 0x35ec,
1216 0x3600, 0x5624,
8119c018
HS
1217 0x56cc, 0x56ec,
1218 0x56f4, 0x5720,
1219 0x5728, 0x575c,
812034f1 1220 0x580c, 0x5814,
8119c018
HS
1221 0x5890, 0x589c,
1222 0x58a4, 0x58ac,
1223 0x58b8, 0x58bc,
1224 0x5940, 0x59c8,
1225 0x59d0, 0x59dc,
812034f1 1226 0x59fc, 0x5a18,
8119c018
HS
1227 0x5a60, 0x5a70,
1228 0x5a80, 0x5a9c,
9f5ac48d 1229 0x5b94, 0x5bfc,
8119c018
HS
1230 0x6000, 0x6020,
1231 0x6028, 0x6040,
1232 0x6058, 0x609c,
1233 0x60a8, 0x614c,
812034f1
HS
1234 0x7700, 0x7798,
1235 0x77c0, 0x78fc,
8119c018
HS
1236 0x7b00, 0x7b58,
1237 0x7b60, 0x7b84,
1238 0x7b8c, 0x7c54,
1239 0x7d00, 0x7d38,
1240 0x7d40, 0x7d80,
1241 0x7d8c, 0x7ddc,
1242 0x7de4, 0x7e04,
1243 0x7e10, 0x7e1c,
1244 0x7e24, 0x7e38,
1245 0x7e40, 0x7e44,
1246 0x7e4c, 0x7e78,
1247 0x7e80, 0x7edc,
1248 0x7ee8, 0x7efc,
812034f1 1249 0x8dc0, 0x8de0,
8119c018
HS
1250 0x8df8, 0x8e04,
1251 0x8e10, 0x8e84,
812034f1 1252 0x8ea0, 0x8f84,
8119c018
HS
1253 0x8fc0, 0x9058,
1254 0x9060, 0x9060,
1255 0x9068, 0x90f8,
1256 0x9400, 0x9408,
1257 0x9410, 0x9470,
1258 0x9600, 0x9600,
1259 0x9608, 0x9638,
1260 0x9640, 0x96f4,
812034f1
HS
1261 0x9800, 0x9808,
1262 0x9820, 0x983c,
1263 0x9850, 0x9864,
1264 0x9c00, 0x9c6c,
1265 0x9c80, 0x9cec,
1266 0x9d00, 0x9d6c,
1267 0x9d80, 0x9dec,
1268 0x9e00, 0x9e6c,
1269 0x9e80, 0x9eec,
1270 0x9f00, 0x9f6c,
1271 0x9f80, 0xa020,
8119c018
HS
1272 0xd004, 0xd004,
1273 0xd010, 0xd03c,
812034f1 1274 0xdfc0, 0xdfe0,
8119c018
HS
1275 0xe000, 0x1106c,
1276 0x11074, 0x11088,
1277 0x1109c, 0x1117c,
812034f1
HS
1278 0x11190, 0x11204,
1279 0x19040, 0x1906c,
1280 0x19078, 0x19080,
8119c018
HS
1281 0x1908c, 0x190e8,
1282 0x190f0, 0x190f8,
1283 0x19100, 0x19110,
1284 0x19120, 0x19124,
1285 0x19150, 0x19194,
1286 0x1919c, 0x191b0,
812034f1
HS
1287 0x191d0, 0x191e8,
1288 0x19238, 0x19290,
8119c018
HS
1289 0x193f8, 0x19428,
1290 0x19430, 0x19444,
1291 0x1944c, 0x1946c,
1292 0x19474, 0x19474,
812034f1
HS
1293 0x19490, 0x194cc,
1294 0x194f0, 0x194f8,
8119c018
HS
1295 0x19c00, 0x19c08,
1296 0x19c10, 0x19c60,
1297 0x19c94, 0x19ce4,
1298 0x19cf0, 0x19d40,
1299 0x19d50, 0x19d94,
1300 0x19da0, 0x19de8,
1301 0x19df0, 0x19e10,
1302 0x19e50, 0x19e90,
1303 0x19ea0, 0x19f24,
1304 0x19f34, 0x19f34,
812034f1 1305 0x19f40, 0x19f50,
8119c018
HS
1306 0x19f90, 0x19fb4,
1307 0x19fc4, 0x19fe4,
1308 0x1a000, 0x1a004,
1309 0x1a010, 0x1a06c,
1310 0x1a0b0, 0x1a0e4,
1311 0x1a0ec, 0x1a0f8,
1312 0x1a100, 0x1a108,
1313 0x1a114, 0x1a120,
1314 0x1a128, 0x1a130,
1315 0x1a138, 0x1a138,
812034f1
HS
1316 0x1a190, 0x1a1c4,
1317 0x1a1fc, 0x1a1fc,
1318 0x1e008, 0x1e00c,
8119c018
HS
1319 0x1e040, 0x1e044,
1320 0x1e04c, 0x1e04c,
812034f1
HS
1321 0x1e284, 0x1e290,
1322 0x1e2c0, 0x1e2c0,
1323 0x1e2e0, 0x1e2e0,
1324 0x1e300, 0x1e384,
1325 0x1e3c0, 0x1e3c8,
1326 0x1e408, 0x1e40c,
8119c018
HS
1327 0x1e440, 0x1e444,
1328 0x1e44c, 0x1e44c,
812034f1
HS
1329 0x1e684, 0x1e690,
1330 0x1e6c0, 0x1e6c0,
1331 0x1e6e0, 0x1e6e0,
1332 0x1e700, 0x1e784,
1333 0x1e7c0, 0x1e7c8,
1334 0x1e808, 0x1e80c,
8119c018
HS
1335 0x1e840, 0x1e844,
1336 0x1e84c, 0x1e84c,
812034f1
HS
1337 0x1ea84, 0x1ea90,
1338 0x1eac0, 0x1eac0,
1339 0x1eae0, 0x1eae0,
1340 0x1eb00, 0x1eb84,
1341 0x1ebc0, 0x1ebc8,
1342 0x1ec08, 0x1ec0c,
8119c018
HS
1343 0x1ec40, 0x1ec44,
1344 0x1ec4c, 0x1ec4c,
812034f1
HS
1345 0x1ee84, 0x1ee90,
1346 0x1eec0, 0x1eec0,
1347 0x1eee0, 0x1eee0,
1348 0x1ef00, 0x1ef84,
1349 0x1efc0, 0x1efc8,
1350 0x1f008, 0x1f00c,
8119c018
HS
1351 0x1f040, 0x1f044,
1352 0x1f04c, 0x1f04c,
812034f1
HS
1353 0x1f284, 0x1f290,
1354 0x1f2c0, 0x1f2c0,
1355 0x1f2e0, 0x1f2e0,
1356 0x1f300, 0x1f384,
1357 0x1f3c0, 0x1f3c8,
1358 0x1f408, 0x1f40c,
8119c018
HS
1359 0x1f440, 0x1f444,
1360 0x1f44c, 0x1f44c,
812034f1
HS
1361 0x1f684, 0x1f690,
1362 0x1f6c0, 0x1f6c0,
1363 0x1f6e0, 0x1f6e0,
1364 0x1f700, 0x1f784,
1365 0x1f7c0, 0x1f7c8,
1366 0x1f808, 0x1f80c,
8119c018
HS
1367 0x1f840, 0x1f844,
1368 0x1f84c, 0x1f84c,
812034f1
HS
1369 0x1fa84, 0x1fa90,
1370 0x1fac0, 0x1fac0,
1371 0x1fae0, 0x1fae0,
1372 0x1fb00, 0x1fb84,
1373 0x1fbc0, 0x1fbc8,
1374 0x1fc08, 0x1fc0c,
8119c018
HS
1375 0x1fc40, 0x1fc44,
1376 0x1fc4c, 0x1fc4c,
812034f1
HS
1377 0x1fe84, 0x1fe90,
1378 0x1fec0, 0x1fec0,
1379 0x1fee0, 0x1fee0,
1380 0x1ff00, 0x1ff84,
1381 0x1ffc0, 0x1ffc8,
1382 0x30000, 0x30030,
8119c018
HS
1383 0x30038, 0x30038,
1384 0x30040, 0x30040,
812034f1 1385 0x30100, 0x30144,
8119c018
HS
1386 0x30190, 0x301a0,
1387 0x301a8, 0x301b8,
1388 0x301c4, 0x301c8,
1389 0x301d0, 0x301d0,
812034f1 1390 0x30200, 0x30318,
8119c018
HS
1391 0x30400, 0x304b4,
1392 0x304c0, 0x3052c,
812034f1 1393 0x30540, 0x3061c,
8119c018
HS
1394 0x30800, 0x30828,
1395 0x30834, 0x30834,
812034f1
HS
1396 0x308c0, 0x30908,
1397 0x30910, 0x309ac,
8119c018
HS
1398 0x30a00, 0x30a14,
1399 0x30a1c, 0x30a2c,
812034f1 1400 0x30a44, 0x30a50,
8119c018
HS
1401 0x30a74, 0x30a74,
1402 0x30a7c, 0x30afc,
1403 0x30b08, 0x30c24,
9f5ac48d 1404 0x30d00, 0x30d00,
812034f1
HS
1405 0x30d08, 0x30d14,
1406 0x30d1c, 0x30d20,
8119c018
HS
1407 0x30d3c, 0x30d3c,
1408 0x30d48, 0x30d50,
812034f1
HS
1409 0x31200, 0x3120c,
1410 0x31220, 0x31220,
1411 0x31240, 0x31240,
9f5ac48d 1412 0x31600, 0x3160c,
812034f1 1413 0x31a00, 0x31a1c,
9f5ac48d 1414 0x31e00, 0x31e20,
812034f1
HS
1415 0x31e38, 0x31e3c,
1416 0x31e80, 0x31e80,
1417 0x31e88, 0x31ea8,
1418 0x31eb0, 0x31eb4,
1419 0x31ec8, 0x31ed4,
1420 0x31fb8, 0x32004,
9f5ac48d
HS
1421 0x32200, 0x32200,
1422 0x32208, 0x32240,
1423 0x32248, 0x32280,
1424 0x32288, 0x322c0,
1425 0x322c8, 0x322fc,
812034f1
HS
1426 0x32600, 0x32630,
1427 0x32a00, 0x32abc,
8119c018
HS
1428 0x32b00, 0x32b10,
1429 0x32b20, 0x32b30,
1430 0x32b40, 0x32b50,
1431 0x32b60, 0x32b70,
1432 0x33000, 0x33028,
1433 0x33030, 0x33048,
1434 0x33060, 0x33068,
1435 0x33070, 0x3309c,
1436 0x330f0, 0x33128,
1437 0x33130, 0x33148,
1438 0x33160, 0x33168,
1439 0x33170, 0x3319c,
1440 0x331f0, 0x33238,
1441 0x33240, 0x33240,
1442 0x33248, 0x33250,
1443 0x3325c, 0x33264,
1444 0x33270, 0x332b8,
1445 0x332c0, 0x332e4,
1446 0x332f8, 0x33338,
1447 0x33340, 0x33340,
1448 0x33348, 0x33350,
1449 0x3335c, 0x33364,
1450 0x33370, 0x333b8,
1451 0x333c0, 0x333e4,
1452 0x333f8, 0x33428,
1453 0x33430, 0x33448,
1454 0x33460, 0x33468,
1455 0x33470, 0x3349c,
1456 0x334f0, 0x33528,
1457 0x33530, 0x33548,
1458 0x33560, 0x33568,
1459 0x33570, 0x3359c,
1460 0x335f0, 0x33638,
1461 0x33640, 0x33640,
1462 0x33648, 0x33650,
1463 0x3365c, 0x33664,
1464 0x33670, 0x336b8,
1465 0x336c0, 0x336e4,
1466 0x336f8, 0x33738,
1467 0x33740, 0x33740,
1468 0x33748, 0x33750,
1469 0x3375c, 0x33764,
1470 0x33770, 0x337b8,
1471 0x337c0, 0x337e4,
812034f1
HS
1472 0x337f8, 0x337fc,
1473 0x33814, 0x33814,
1474 0x3382c, 0x3382c,
1475 0x33880, 0x3388c,
1476 0x338e8, 0x338ec,
8119c018
HS
1477 0x33900, 0x33928,
1478 0x33930, 0x33948,
1479 0x33960, 0x33968,
1480 0x33970, 0x3399c,
1481 0x339f0, 0x33a38,
1482 0x33a40, 0x33a40,
1483 0x33a48, 0x33a50,
1484 0x33a5c, 0x33a64,
1485 0x33a70, 0x33ab8,
1486 0x33ac0, 0x33ae4,
812034f1
HS
1487 0x33af8, 0x33b10,
1488 0x33b28, 0x33b28,
1489 0x33b3c, 0x33b50,
1490 0x33bf0, 0x33c10,
1491 0x33c28, 0x33c28,
1492 0x33c3c, 0x33c50,
1493 0x33cf0, 0x33cfc,
1494 0x34000, 0x34030,
8119c018
HS
1495 0x34038, 0x34038,
1496 0x34040, 0x34040,
812034f1 1497 0x34100, 0x34144,
8119c018
HS
1498 0x34190, 0x341a0,
1499 0x341a8, 0x341b8,
1500 0x341c4, 0x341c8,
1501 0x341d0, 0x341d0,
812034f1 1502 0x34200, 0x34318,
8119c018
HS
1503 0x34400, 0x344b4,
1504 0x344c0, 0x3452c,
812034f1 1505 0x34540, 0x3461c,
8119c018
HS
1506 0x34800, 0x34828,
1507 0x34834, 0x34834,
812034f1
HS
1508 0x348c0, 0x34908,
1509 0x34910, 0x349ac,
8119c018
HS
1510 0x34a00, 0x34a14,
1511 0x34a1c, 0x34a2c,
812034f1 1512 0x34a44, 0x34a50,
8119c018
HS
1513 0x34a74, 0x34a74,
1514 0x34a7c, 0x34afc,
1515 0x34b08, 0x34c24,
9f5ac48d 1516 0x34d00, 0x34d00,
812034f1
HS
1517 0x34d08, 0x34d14,
1518 0x34d1c, 0x34d20,
8119c018
HS
1519 0x34d3c, 0x34d3c,
1520 0x34d48, 0x34d50,
812034f1
HS
1521 0x35200, 0x3520c,
1522 0x35220, 0x35220,
1523 0x35240, 0x35240,
9f5ac48d 1524 0x35600, 0x3560c,
812034f1 1525 0x35a00, 0x35a1c,
9f5ac48d 1526 0x35e00, 0x35e20,
812034f1
HS
1527 0x35e38, 0x35e3c,
1528 0x35e80, 0x35e80,
1529 0x35e88, 0x35ea8,
1530 0x35eb0, 0x35eb4,
1531 0x35ec8, 0x35ed4,
1532 0x35fb8, 0x36004,
9f5ac48d
HS
1533 0x36200, 0x36200,
1534 0x36208, 0x36240,
1535 0x36248, 0x36280,
1536 0x36288, 0x362c0,
1537 0x362c8, 0x362fc,
812034f1
HS
1538 0x36600, 0x36630,
1539 0x36a00, 0x36abc,
8119c018
HS
1540 0x36b00, 0x36b10,
1541 0x36b20, 0x36b30,
1542 0x36b40, 0x36b50,
1543 0x36b60, 0x36b70,
1544 0x37000, 0x37028,
1545 0x37030, 0x37048,
1546 0x37060, 0x37068,
1547 0x37070, 0x3709c,
1548 0x370f0, 0x37128,
1549 0x37130, 0x37148,
1550 0x37160, 0x37168,
1551 0x37170, 0x3719c,
1552 0x371f0, 0x37238,
1553 0x37240, 0x37240,
1554 0x37248, 0x37250,
1555 0x3725c, 0x37264,
1556 0x37270, 0x372b8,
1557 0x372c0, 0x372e4,
1558 0x372f8, 0x37338,
1559 0x37340, 0x37340,
1560 0x37348, 0x37350,
1561 0x3735c, 0x37364,
1562 0x37370, 0x373b8,
1563 0x373c0, 0x373e4,
1564 0x373f8, 0x37428,
1565 0x37430, 0x37448,
1566 0x37460, 0x37468,
1567 0x37470, 0x3749c,
1568 0x374f0, 0x37528,
1569 0x37530, 0x37548,
1570 0x37560, 0x37568,
1571 0x37570, 0x3759c,
1572 0x375f0, 0x37638,
1573 0x37640, 0x37640,
1574 0x37648, 0x37650,
1575 0x3765c, 0x37664,
1576 0x37670, 0x376b8,
1577 0x376c0, 0x376e4,
1578 0x376f8, 0x37738,
1579 0x37740, 0x37740,
1580 0x37748, 0x37750,
1581 0x3775c, 0x37764,
1582 0x37770, 0x377b8,
1583 0x377c0, 0x377e4,
812034f1
HS
1584 0x377f8, 0x377fc,
1585 0x37814, 0x37814,
1586 0x3782c, 0x3782c,
1587 0x37880, 0x3788c,
1588 0x378e8, 0x378ec,
8119c018
HS
1589 0x37900, 0x37928,
1590 0x37930, 0x37948,
1591 0x37960, 0x37968,
1592 0x37970, 0x3799c,
1593 0x379f0, 0x37a38,
1594 0x37a40, 0x37a40,
1595 0x37a48, 0x37a50,
1596 0x37a5c, 0x37a64,
1597 0x37a70, 0x37ab8,
1598 0x37ac0, 0x37ae4,
812034f1
HS
1599 0x37af8, 0x37b10,
1600 0x37b28, 0x37b28,
1601 0x37b3c, 0x37b50,
1602 0x37bf0, 0x37c10,
1603 0x37c28, 0x37c28,
1604 0x37c3c, 0x37c50,
1605 0x37cf0, 0x37cfc,
1606 0x38000, 0x38030,
8119c018
HS
1607 0x38038, 0x38038,
1608 0x38040, 0x38040,
812034f1 1609 0x38100, 0x38144,
8119c018
HS
1610 0x38190, 0x381a0,
1611 0x381a8, 0x381b8,
1612 0x381c4, 0x381c8,
1613 0x381d0, 0x381d0,
812034f1 1614 0x38200, 0x38318,
8119c018
HS
1615 0x38400, 0x384b4,
1616 0x384c0, 0x3852c,
812034f1 1617 0x38540, 0x3861c,
8119c018
HS
1618 0x38800, 0x38828,
1619 0x38834, 0x38834,
812034f1
HS
1620 0x388c0, 0x38908,
1621 0x38910, 0x389ac,
8119c018
HS
1622 0x38a00, 0x38a14,
1623 0x38a1c, 0x38a2c,
812034f1 1624 0x38a44, 0x38a50,
8119c018
HS
1625 0x38a74, 0x38a74,
1626 0x38a7c, 0x38afc,
1627 0x38b08, 0x38c24,
9f5ac48d 1628 0x38d00, 0x38d00,
812034f1
HS
1629 0x38d08, 0x38d14,
1630 0x38d1c, 0x38d20,
8119c018
HS
1631 0x38d3c, 0x38d3c,
1632 0x38d48, 0x38d50,
812034f1
HS
1633 0x39200, 0x3920c,
1634 0x39220, 0x39220,
1635 0x39240, 0x39240,
9f5ac48d 1636 0x39600, 0x3960c,
812034f1 1637 0x39a00, 0x39a1c,
9f5ac48d 1638 0x39e00, 0x39e20,
812034f1
HS
1639 0x39e38, 0x39e3c,
1640 0x39e80, 0x39e80,
1641 0x39e88, 0x39ea8,
1642 0x39eb0, 0x39eb4,
1643 0x39ec8, 0x39ed4,
1644 0x39fb8, 0x3a004,
9f5ac48d
HS
1645 0x3a200, 0x3a200,
1646 0x3a208, 0x3a240,
1647 0x3a248, 0x3a280,
1648 0x3a288, 0x3a2c0,
1649 0x3a2c8, 0x3a2fc,
812034f1
HS
1650 0x3a600, 0x3a630,
1651 0x3aa00, 0x3aabc,
8119c018
HS
1652 0x3ab00, 0x3ab10,
1653 0x3ab20, 0x3ab30,
1654 0x3ab40, 0x3ab50,
1655 0x3ab60, 0x3ab70,
1656 0x3b000, 0x3b028,
1657 0x3b030, 0x3b048,
1658 0x3b060, 0x3b068,
1659 0x3b070, 0x3b09c,
1660 0x3b0f0, 0x3b128,
1661 0x3b130, 0x3b148,
1662 0x3b160, 0x3b168,
1663 0x3b170, 0x3b19c,
1664 0x3b1f0, 0x3b238,
1665 0x3b240, 0x3b240,
1666 0x3b248, 0x3b250,
1667 0x3b25c, 0x3b264,
1668 0x3b270, 0x3b2b8,
1669 0x3b2c0, 0x3b2e4,
1670 0x3b2f8, 0x3b338,
1671 0x3b340, 0x3b340,
1672 0x3b348, 0x3b350,
1673 0x3b35c, 0x3b364,
1674 0x3b370, 0x3b3b8,
1675 0x3b3c0, 0x3b3e4,
1676 0x3b3f8, 0x3b428,
1677 0x3b430, 0x3b448,
1678 0x3b460, 0x3b468,
1679 0x3b470, 0x3b49c,
1680 0x3b4f0, 0x3b528,
1681 0x3b530, 0x3b548,
1682 0x3b560, 0x3b568,
1683 0x3b570, 0x3b59c,
1684 0x3b5f0, 0x3b638,
1685 0x3b640, 0x3b640,
1686 0x3b648, 0x3b650,
1687 0x3b65c, 0x3b664,
1688 0x3b670, 0x3b6b8,
1689 0x3b6c0, 0x3b6e4,
1690 0x3b6f8, 0x3b738,
1691 0x3b740, 0x3b740,
1692 0x3b748, 0x3b750,
1693 0x3b75c, 0x3b764,
1694 0x3b770, 0x3b7b8,
1695 0x3b7c0, 0x3b7e4,
812034f1
HS
1696 0x3b7f8, 0x3b7fc,
1697 0x3b814, 0x3b814,
1698 0x3b82c, 0x3b82c,
1699 0x3b880, 0x3b88c,
1700 0x3b8e8, 0x3b8ec,
8119c018
HS
1701 0x3b900, 0x3b928,
1702 0x3b930, 0x3b948,
1703 0x3b960, 0x3b968,
1704 0x3b970, 0x3b99c,
1705 0x3b9f0, 0x3ba38,
1706 0x3ba40, 0x3ba40,
1707 0x3ba48, 0x3ba50,
1708 0x3ba5c, 0x3ba64,
1709 0x3ba70, 0x3bab8,
1710 0x3bac0, 0x3bae4,
812034f1
HS
1711 0x3baf8, 0x3bb10,
1712 0x3bb28, 0x3bb28,
1713 0x3bb3c, 0x3bb50,
1714 0x3bbf0, 0x3bc10,
1715 0x3bc28, 0x3bc28,
1716 0x3bc3c, 0x3bc50,
1717 0x3bcf0, 0x3bcfc,
1718 0x3c000, 0x3c030,
8119c018
HS
1719 0x3c038, 0x3c038,
1720 0x3c040, 0x3c040,
812034f1 1721 0x3c100, 0x3c144,
8119c018
HS
1722 0x3c190, 0x3c1a0,
1723 0x3c1a8, 0x3c1b8,
1724 0x3c1c4, 0x3c1c8,
1725 0x3c1d0, 0x3c1d0,
812034f1 1726 0x3c200, 0x3c318,
8119c018
HS
1727 0x3c400, 0x3c4b4,
1728 0x3c4c0, 0x3c52c,
812034f1 1729 0x3c540, 0x3c61c,
8119c018
HS
1730 0x3c800, 0x3c828,
1731 0x3c834, 0x3c834,
812034f1
HS
1732 0x3c8c0, 0x3c908,
1733 0x3c910, 0x3c9ac,
8119c018
HS
1734 0x3ca00, 0x3ca14,
1735 0x3ca1c, 0x3ca2c,
812034f1 1736 0x3ca44, 0x3ca50,
8119c018
HS
1737 0x3ca74, 0x3ca74,
1738 0x3ca7c, 0x3cafc,
1739 0x3cb08, 0x3cc24,
9f5ac48d 1740 0x3cd00, 0x3cd00,
812034f1
HS
1741 0x3cd08, 0x3cd14,
1742 0x3cd1c, 0x3cd20,
8119c018
HS
1743 0x3cd3c, 0x3cd3c,
1744 0x3cd48, 0x3cd50,
812034f1
HS
1745 0x3d200, 0x3d20c,
1746 0x3d220, 0x3d220,
1747 0x3d240, 0x3d240,
9f5ac48d 1748 0x3d600, 0x3d60c,
812034f1 1749 0x3da00, 0x3da1c,
9f5ac48d 1750 0x3de00, 0x3de20,
812034f1
HS
1751 0x3de38, 0x3de3c,
1752 0x3de80, 0x3de80,
1753 0x3de88, 0x3dea8,
1754 0x3deb0, 0x3deb4,
1755 0x3dec8, 0x3ded4,
1756 0x3dfb8, 0x3e004,
9f5ac48d
HS
1757 0x3e200, 0x3e200,
1758 0x3e208, 0x3e240,
1759 0x3e248, 0x3e280,
1760 0x3e288, 0x3e2c0,
1761 0x3e2c8, 0x3e2fc,
812034f1
HS
1762 0x3e600, 0x3e630,
1763 0x3ea00, 0x3eabc,
8119c018
HS
1764 0x3eb00, 0x3eb10,
1765 0x3eb20, 0x3eb30,
1766 0x3eb40, 0x3eb50,
1767 0x3eb60, 0x3eb70,
1768 0x3f000, 0x3f028,
1769 0x3f030, 0x3f048,
1770 0x3f060, 0x3f068,
1771 0x3f070, 0x3f09c,
1772 0x3f0f0, 0x3f128,
1773 0x3f130, 0x3f148,
1774 0x3f160, 0x3f168,
1775 0x3f170, 0x3f19c,
1776 0x3f1f0, 0x3f238,
1777 0x3f240, 0x3f240,
1778 0x3f248, 0x3f250,
1779 0x3f25c, 0x3f264,
1780 0x3f270, 0x3f2b8,
1781 0x3f2c0, 0x3f2e4,
1782 0x3f2f8, 0x3f338,
1783 0x3f340, 0x3f340,
1784 0x3f348, 0x3f350,
1785 0x3f35c, 0x3f364,
1786 0x3f370, 0x3f3b8,
1787 0x3f3c0, 0x3f3e4,
1788 0x3f3f8, 0x3f428,
1789 0x3f430, 0x3f448,
1790 0x3f460, 0x3f468,
1791 0x3f470, 0x3f49c,
1792 0x3f4f0, 0x3f528,
1793 0x3f530, 0x3f548,
1794 0x3f560, 0x3f568,
1795 0x3f570, 0x3f59c,
1796 0x3f5f0, 0x3f638,
1797 0x3f640, 0x3f640,
1798 0x3f648, 0x3f650,
1799 0x3f65c, 0x3f664,
1800 0x3f670, 0x3f6b8,
1801 0x3f6c0, 0x3f6e4,
1802 0x3f6f8, 0x3f738,
1803 0x3f740, 0x3f740,
1804 0x3f748, 0x3f750,
1805 0x3f75c, 0x3f764,
1806 0x3f770, 0x3f7b8,
1807 0x3f7c0, 0x3f7e4,
812034f1
HS
1808 0x3f7f8, 0x3f7fc,
1809 0x3f814, 0x3f814,
1810 0x3f82c, 0x3f82c,
1811 0x3f880, 0x3f88c,
1812 0x3f8e8, 0x3f8ec,
8119c018
HS
1813 0x3f900, 0x3f928,
1814 0x3f930, 0x3f948,
1815 0x3f960, 0x3f968,
1816 0x3f970, 0x3f99c,
1817 0x3f9f0, 0x3fa38,
1818 0x3fa40, 0x3fa40,
1819 0x3fa48, 0x3fa50,
1820 0x3fa5c, 0x3fa64,
1821 0x3fa70, 0x3fab8,
1822 0x3fac0, 0x3fae4,
812034f1
HS
1823 0x3faf8, 0x3fb10,
1824 0x3fb28, 0x3fb28,
1825 0x3fb3c, 0x3fb50,
1826 0x3fbf0, 0x3fc10,
1827 0x3fc28, 0x3fc28,
1828 0x3fc3c, 0x3fc50,
1829 0x3fcf0, 0x3fcfc,
1830 0x40000, 0x4000c,
8119c018
HS
1831 0x40040, 0x40050,
1832 0x40060, 0x40068,
1833 0x4007c, 0x4008c,
1834 0x40094, 0x400b0,
1835 0x400c0, 0x40144,
812034f1 1836 0x40180, 0x4018c,
8119c018
HS
1837 0x40200, 0x40254,
1838 0x40260, 0x40264,
1839 0x40270, 0x40288,
1840 0x40290, 0x40298,
1841 0x402ac, 0x402c8,
1842 0x402d0, 0x402e0,
1843 0x402f0, 0x402f0,
1844 0x40300, 0x4033c,
812034f1
HS
1845 0x403f8, 0x403fc,
1846 0x41304, 0x413c4,
8119c018
HS
1847 0x41400, 0x4140c,
1848 0x41414, 0x4141c,
812034f1 1849 0x41480, 0x414d0,
8119c018
HS
1850 0x44000, 0x44054,
1851 0x4405c, 0x44078,
1852 0x440c0, 0x44174,
1853 0x44180, 0x441ac,
1854 0x441b4, 0x441b8,
1855 0x441c0, 0x44254,
1856 0x4425c, 0x44278,
1857 0x442c0, 0x44374,
1858 0x44380, 0x443ac,
1859 0x443b4, 0x443b8,
1860 0x443c0, 0x44454,
1861 0x4445c, 0x44478,
1862 0x444c0, 0x44574,
1863 0x44580, 0x445ac,
1864 0x445b4, 0x445b8,
1865 0x445c0, 0x44654,
1866 0x4465c, 0x44678,
1867 0x446c0, 0x44774,
1868 0x44780, 0x447ac,
1869 0x447b4, 0x447b8,
1870 0x447c0, 0x44854,
1871 0x4485c, 0x44878,
1872 0x448c0, 0x44974,
1873 0x44980, 0x449ac,
1874 0x449b4, 0x449b8,
1875 0x449c0, 0x449fc,
1876 0x45000, 0x45004,
1877 0x45010, 0x45030,
1878 0x45040, 0x45060,
1879 0x45068, 0x45068,
812034f1
HS
1880 0x45080, 0x45084,
1881 0x450a0, 0x450b0,
8119c018
HS
1882 0x45200, 0x45204,
1883 0x45210, 0x45230,
1884 0x45240, 0x45260,
1885 0x45268, 0x45268,
812034f1
HS
1886 0x45280, 0x45284,
1887 0x452a0, 0x452b0,
1888 0x460c0, 0x460e4,
8119c018
HS
1889 0x47000, 0x4703c,
1890 0x47044, 0x4708c,
812034f1 1891 0x47200, 0x47250,
8119c018
HS
1892 0x47400, 0x47408,
1893 0x47414, 0x47420,
812034f1
HS
1894 0x47600, 0x47618,
1895 0x47800, 0x47814,
1896 0x48000, 0x4800c,
8119c018
HS
1897 0x48040, 0x48050,
1898 0x48060, 0x48068,
1899 0x4807c, 0x4808c,
1900 0x48094, 0x480b0,
1901 0x480c0, 0x48144,
812034f1 1902 0x48180, 0x4818c,
8119c018
HS
1903 0x48200, 0x48254,
1904 0x48260, 0x48264,
1905 0x48270, 0x48288,
1906 0x48290, 0x48298,
1907 0x482ac, 0x482c8,
1908 0x482d0, 0x482e0,
1909 0x482f0, 0x482f0,
1910 0x48300, 0x4833c,
812034f1
HS
1911 0x483f8, 0x483fc,
1912 0x49304, 0x493c4,
8119c018
HS
1913 0x49400, 0x4940c,
1914 0x49414, 0x4941c,
812034f1 1915 0x49480, 0x494d0,
8119c018
HS
1916 0x4c000, 0x4c054,
1917 0x4c05c, 0x4c078,
1918 0x4c0c0, 0x4c174,
1919 0x4c180, 0x4c1ac,
1920 0x4c1b4, 0x4c1b8,
1921 0x4c1c0, 0x4c254,
1922 0x4c25c, 0x4c278,
1923 0x4c2c0, 0x4c374,
1924 0x4c380, 0x4c3ac,
1925 0x4c3b4, 0x4c3b8,
1926 0x4c3c0, 0x4c454,
1927 0x4c45c, 0x4c478,
1928 0x4c4c0, 0x4c574,
1929 0x4c580, 0x4c5ac,
1930 0x4c5b4, 0x4c5b8,
1931 0x4c5c0, 0x4c654,
1932 0x4c65c, 0x4c678,
1933 0x4c6c0, 0x4c774,
1934 0x4c780, 0x4c7ac,
1935 0x4c7b4, 0x4c7b8,
1936 0x4c7c0, 0x4c854,
1937 0x4c85c, 0x4c878,
1938 0x4c8c0, 0x4c974,
1939 0x4c980, 0x4c9ac,
1940 0x4c9b4, 0x4c9b8,
1941 0x4c9c0, 0x4c9fc,
1942 0x4d000, 0x4d004,
1943 0x4d010, 0x4d030,
1944 0x4d040, 0x4d060,
1945 0x4d068, 0x4d068,
812034f1
HS
1946 0x4d080, 0x4d084,
1947 0x4d0a0, 0x4d0b0,
8119c018
HS
1948 0x4d200, 0x4d204,
1949 0x4d210, 0x4d230,
1950 0x4d240, 0x4d260,
1951 0x4d268, 0x4d268,
812034f1
HS
1952 0x4d280, 0x4d284,
1953 0x4d2a0, 0x4d2b0,
1954 0x4e0c0, 0x4e0e4,
8119c018
HS
1955 0x4f000, 0x4f03c,
1956 0x4f044, 0x4f08c,
812034f1 1957 0x4f200, 0x4f250,
8119c018
HS
1958 0x4f400, 0x4f408,
1959 0x4f414, 0x4f420,
812034f1
HS
1960 0x4f600, 0x4f618,
1961 0x4f800, 0x4f814,
8119c018
HS
1962 0x50000, 0x50084,
1963 0x50090, 0x500cc,
812034f1 1964 0x50400, 0x50400,
8119c018
HS
1965 0x50800, 0x50884,
1966 0x50890, 0x508cc,
812034f1
HS
1967 0x50c00, 0x50c00,
1968 0x51000, 0x5101c,
1969 0x51300, 0x51308,
1970 };
1971
ab4b583b 1972 static const unsigned int t6_reg_ranges[] = {
8119c018
HS
1973 0x1008, 0x101c,
1974 0x1024, 0x10a8,
1975 0x10b4, 0x10f8,
1976 0x1100, 0x1114,
1977 0x111c, 0x112c,
1978 0x1138, 0x113c,
1979 0x1144, 0x114c,
1980 0x1180, 0x1184,
1981 0x1190, 0x1194,
1982 0x11a0, 0x11a4,
1983 0x11b0, 0x11b4,
676d6a75
HS
1984 0x11fc, 0x1258,
1985 0x1280, 0x12d4,
1986 0x12d9, 0x12d9,
1987 0x12de, 0x12de,
1988 0x12e3, 0x12e3,
1989 0x12e8, 0x133c,
ab4b583b
HS
1990 0x1800, 0x18fc,
1991 0x3000, 0x302c,
8119c018
HS
1992 0x3060, 0x30b0,
1993 0x30b8, 0x30d8,
ab4b583b
HS
1994 0x30e0, 0x30fc,
1995 0x3140, 0x357c,
1996 0x35a8, 0x35cc,
1997 0x35ec, 0x35ec,
1998 0x3600, 0x5624,
8119c018
HS
1999 0x56cc, 0x56ec,
2000 0x56f4, 0x5720,
2001 0x5728, 0x575c,
ab4b583b 2002 0x580c, 0x5814,
8119c018
HS
2003 0x5890, 0x589c,
2004 0x58a4, 0x58ac,
2005 0x58b8, 0x58bc,
ab4b583b
HS
2006 0x5940, 0x595c,
2007 0x5980, 0x598c,
8119c018
HS
2008 0x59b0, 0x59c8,
2009 0x59d0, 0x59dc,
ab4b583b
HS
2010 0x59fc, 0x5a18,
2011 0x5a60, 0x5a6c,
8119c018
HS
2012 0x5a80, 0x5a8c,
2013 0x5a94, 0x5a9c,
ab4b583b 2014 0x5b94, 0x5bfc,
8119c018
HS
2015 0x5c10, 0x5e48,
2016 0x5e50, 0x5e94,
2017 0x5ea0, 0x5eb0,
2018 0x5ec0, 0x5ec0,
676d6a75 2019 0x5ec8, 0x5ed0,
8119c018
HS
2020 0x6000, 0x6020,
2021 0x6028, 0x6040,
2022 0x6058, 0x609c,
2023 0x60a8, 0x619c,
ab4b583b
HS
2024 0x7700, 0x7798,
2025 0x77c0, 0x7880,
2026 0x78cc, 0x78fc,
8119c018
HS
2027 0x7b00, 0x7b58,
2028 0x7b60, 0x7b84,
2029 0x7b8c, 0x7c54,
2030 0x7d00, 0x7d38,
2031 0x7d40, 0x7d84,
2032 0x7d8c, 0x7ddc,
2033 0x7de4, 0x7e04,
2034 0x7e10, 0x7e1c,
2035 0x7e24, 0x7e38,
2036 0x7e40, 0x7e44,
2037 0x7e4c, 0x7e78,
2038 0x7e80, 0x7edc,
2039 0x7ee8, 0x7efc,
f109ff11 2040 0x8dc0, 0x8de4,
8119c018
HS
2041 0x8df8, 0x8e04,
2042 0x8e10, 0x8e84,
ab4b583b 2043 0x8ea0, 0x8f88,
8119c018
HS
2044 0x8fb8, 0x9058,
2045 0x9060, 0x9060,
2046 0x9068, 0x90f8,
2047 0x9100, 0x9124,
ab4b583b 2048 0x9400, 0x9470,
8119c018
HS
2049 0x9600, 0x9600,
2050 0x9608, 0x9638,
2051 0x9640, 0x9704,
2052 0x9710, 0x971c,
ab4b583b
HS
2053 0x9800, 0x9808,
2054 0x9820, 0x983c,
2055 0x9850, 0x9864,
2056 0x9c00, 0x9c6c,
2057 0x9c80, 0x9cec,
2058 0x9d00, 0x9d6c,
2059 0x9d80, 0x9dec,
2060 0x9e00, 0x9e6c,
2061 0x9e80, 0x9eec,
2062 0x9f00, 0x9f6c,
2063 0x9f80, 0xa020,
2064 0xd004, 0xd03c,
5b4e83e1 2065 0xd100, 0xd118,
8119c018
HS
2066 0xd200, 0xd214,
2067 0xd220, 0xd234,
2068 0xd240, 0xd254,
2069 0xd260, 0xd274,
2070 0xd280, 0xd294,
2071 0xd2a0, 0xd2b4,
2072 0xd2c0, 0xd2d4,
2073 0xd2e0, 0xd2f4,
2074 0xd300, 0xd31c,
ab4b583b
HS
2075 0xdfc0, 0xdfe0,
2076 0xe000, 0xf008,
2077 0x11000, 0x11014,
8119c018
HS
2078 0x11048, 0x1106c,
2079 0x11074, 0x11088,
2080 0x11098, 0x11120,
2081 0x1112c, 0x1117c,
2082 0x11190, 0x112e0,
ab4b583b 2083 0x11300, 0x1130c,
5b4e83e1 2084 0x12000, 0x1206c,
ab4b583b
HS
2085 0x19040, 0x1906c,
2086 0x19078, 0x19080,
8119c018
HS
2087 0x1908c, 0x190e8,
2088 0x190f0, 0x190f8,
2089 0x19100, 0x19110,
2090 0x19120, 0x19124,
2091 0x19150, 0x19194,
2092 0x1919c, 0x191b0,
ab4b583b 2093 0x191d0, 0x191e8,
676d6a75
HS
2094 0x19238, 0x19290,
2095 0x192a4, 0x192b0,
8119c018
HS
2096 0x192bc, 0x192bc,
2097 0x19348, 0x1934c,
2098 0x193f8, 0x19418,
2099 0x19420, 0x19428,
2100 0x19430, 0x19444,
2101 0x1944c, 0x1946c,
2102 0x19474, 0x19474,
ab4b583b
HS
2103 0x19490, 0x194cc,
2104 0x194f0, 0x194f8,
8119c018
HS
2105 0x19c00, 0x19c48,
2106 0x19c50, 0x19c80,
2107 0x19c94, 0x19c98,
2108 0x19ca0, 0x19cbc,
2109 0x19ce4, 0x19ce4,
2110 0x19cf0, 0x19cf8,
2111 0x19d00, 0x19d28,
ab4b583b 2112 0x19d50, 0x19d78,
8119c018
HS
2113 0x19d94, 0x19d98,
2114 0x19da0, 0x19dc8,
ab4b583b
HS
2115 0x19df0, 0x19e10,
2116 0x19e50, 0x19e6c,
8119c018
HS
2117 0x19ea0, 0x19ebc,
2118 0x19ec4, 0x19ef4,
2119 0x19f04, 0x19f2c,
2120 0x19f34, 0x19f34,
ab4b583b
HS
2121 0x19f40, 0x19f50,
2122 0x19f90, 0x19fac,
8119c018
HS
2123 0x19fc4, 0x19fc8,
2124 0x19fd0, 0x19fe4,
2125 0x1a000, 0x1a004,
2126 0x1a010, 0x1a06c,
2127 0x1a0b0, 0x1a0e4,
2128 0x1a0ec, 0x1a0f8,
2129 0x1a100, 0x1a108,
2130 0x1a114, 0x1a120,
2131 0x1a128, 0x1a130,
2132 0x1a138, 0x1a138,
ab4b583b
HS
2133 0x1a190, 0x1a1c4,
2134 0x1a1fc, 0x1a1fc,
2135 0x1e008, 0x1e00c,
8119c018
HS
2136 0x1e040, 0x1e044,
2137 0x1e04c, 0x1e04c,
ab4b583b
HS
2138 0x1e284, 0x1e290,
2139 0x1e2c0, 0x1e2c0,
2140 0x1e2e0, 0x1e2e0,
2141 0x1e300, 0x1e384,
2142 0x1e3c0, 0x1e3c8,
2143 0x1e408, 0x1e40c,
8119c018
HS
2144 0x1e440, 0x1e444,
2145 0x1e44c, 0x1e44c,
ab4b583b
HS
2146 0x1e684, 0x1e690,
2147 0x1e6c0, 0x1e6c0,
2148 0x1e6e0, 0x1e6e0,
2149 0x1e700, 0x1e784,
2150 0x1e7c0, 0x1e7c8,
2151 0x1e808, 0x1e80c,
8119c018
HS
2152 0x1e840, 0x1e844,
2153 0x1e84c, 0x1e84c,
ab4b583b
HS
2154 0x1ea84, 0x1ea90,
2155 0x1eac0, 0x1eac0,
2156 0x1eae0, 0x1eae0,
2157 0x1eb00, 0x1eb84,
2158 0x1ebc0, 0x1ebc8,
2159 0x1ec08, 0x1ec0c,
8119c018
HS
2160 0x1ec40, 0x1ec44,
2161 0x1ec4c, 0x1ec4c,
ab4b583b
HS
2162 0x1ee84, 0x1ee90,
2163 0x1eec0, 0x1eec0,
2164 0x1eee0, 0x1eee0,
2165 0x1ef00, 0x1ef84,
2166 0x1efc0, 0x1efc8,
2167 0x1f008, 0x1f00c,
8119c018
HS
2168 0x1f040, 0x1f044,
2169 0x1f04c, 0x1f04c,
ab4b583b
HS
2170 0x1f284, 0x1f290,
2171 0x1f2c0, 0x1f2c0,
2172 0x1f2e0, 0x1f2e0,
2173 0x1f300, 0x1f384,
2174 0x1f3c0, 0x1f3c8,
2175 0x1f408, 0x1f40c,
8119c018
HS
2176 0x1f440, 0x1f444,
2177 0x1f44c, 0x1f44c,
ab4b583b
HS
2178 0x1f684, 0x1f690,
2179 0x1f6c0, 0x1f6c0,
2180 0x1f6e0, 0x1f6e0,
2181 0x1f700, 0x1f784,
2182 0x1f7c0, 0x1f7c8,
2183 0x1f808, 0x1f80c,
8119c018
HS
2184 0x1f840, 0x1f844,
2185 0x1f84c, 0x1f84c,
ab4b583b
HS
2186 0x1fa84, 0x1fa90,
2187 0x1fac0, 0x1fac0,
2188 0x1fae0, 0x1fae0,
2189 0x1fb00, 0x1fb84,
2190 0x1fbc0, 0x1fbc8,
2191 0x1fc08, 0x1fc0c,
8119c018
HS
2192 0x1fc40, 0x1fc44,
2193 0x1fc4c, 0x1fc4c,
ab4b583b
HS
2194 0x1fe84, 0x1fe90,
2195 0x1fec0, 0x1fec0,
2196 0x1fee0, 0x1fee0,
2197 0x1ff00, 0x1ff84,
2198 0x1ffc0, 0x1ffc8,
8119c018
HS
2199 0x30000, 0x30030,
2200 0x30038, 0x30038,
2201 0x30040, 0x30040,
2202 0x30048, 0x30048,
2203 0x30050, 0x30050,
2204 0x3005c, 0x30060,
2205 0x30068, 0x30068,
2206 0x30070, 0x30070,
2207 0x30100, 0x30168,
2208 0x30190, 0x301a0,
2209 0x301a8, 0x301b8,
2210 0x301c4, 0x301c8,
2211 0x301d0, 0x301d0,
f109ff11 2212 0x30200, 0x30320,
8119c018
HS
2213 0x30400, 0x304b4,
2214 0x304c0, 0x3052c,
ab4b583b 2215 0x30540, 0x3061c,
8119c018 2216 0x30800, 0x308a0,
ab4b583b
HS
2217 0x308c0, 0x30908,
2218 0x30910, 0x309b8,
2219 0x30a00, 0x30a04,
8119c018
HS
2220 0x30a0c, 0x30a14,
2221 0x30a1c, 0x30a2c,
ab4b583b 2222 0x30a44, 0x30a50,
8119c018
HS
2223 0x30a74, 0x30a74,
2224 0x30a7c, 0x30afc,
2225 0x30b08, 0x30c24,
2226 0x30d00, 0x30d14,
2227 0x30d1c, 0x30d3c,
2228 0x30d44, 0x30d4c,
2229 0x30d54, 0x30d74,
2230 0x30d7c, 0x30d7c,
ab4b583b
HS
2231 0x30de0, 0x30de0,
2232 0x30e00, 0x30ed4,
2233 0x30f00, 0x30fa4,
2234 0x30fc0, 0x30fc4,
2235 0x31000, 0x31004,
2236 0x31080, 0x310fc,
2237 0x31208, 0x31220,
2238 0x3123c, 0x31254,
2239 0x31300, 0x31300,
2240 0x31308, 0x3131c,
2241 0x31338, 0x3133c,
2242 0x31380, 0x31380,
2243 0x31388, 0x313a8,
2244 0x313b4, 0x313b4,
2245 0x31400, 0x31420,
2246 0x31438, 0x3143c,
2247 0x31480, 0x31480,
2248 0x314a8, 0x314a8,
2249 0x314b0, 0x314b4,
2250 0x314c8, 0x314d4,
2251 0x31a40, 0x31a4c,
2252 0x31af0, 0x31b20,
2253 0x31b38, 0x31b3c,
2254 0x31b80, 0x31b80,
2255 0x31ba8, 0x31ba8,
2256 0x31bb0, 0x31bb4,
2257 0x31bc8, 0x31bd4,
2258 0x32140, 0x3218c,
8119c018
HS
2259 0x321f0, 0x321f4,
2260 0x32200, 0x32200,
ab4b583b
HS
2261 0x32218, 0x32218,
2262 0x32400, 0x32400,
2263 0x32408, 0x3241c,
2264 0x32618, 0x32620,
2265 0x32664, 0x32664,
2266 0x326a8, 0x326a8,
2267 0x326ec, 0x326ec,
2268 0x32a00, 0x32abc,
8119c018
HS
2269 0x32b00, 0x32b38,
2270 0x32b40, 0x32b58,
2271 0x32b60, 0x32b78,
ab4b583b
HS
2272 0x32c00, 0x32c00,
2273 0x32c08, 0x32c3c,
2274 0x32e00, 0x32e2c,
2275 0x32f00, 0x32f2c,
8119c018
HS
2276 0x33000, 0x3302c,
2277 0x33034, 0x33050,
2278 0x33058, 0x33058,
2279 0x33060, 0x3308c,
2280 0x3309c, 0x330ac,
2281 0x330c0, 0x330c0,
2282 0x330c8, 0x330d0,
2283 0x330d8, 0x330e0,
2284 0x330ec, 0x3312c,
2285 0x33134, 0x33150,
2286 0x33158, 0x33158,
2287 0x33160, 0x3318c,
2288 0x3319c, 0x331ac,
2289 0x331c0, 0x331c0,
2290 0x331c8, 0x331d0,
2291 0x331d8, 0x331e0,
2292 0x331ec, 0x33290,
2293 0x33298, 0x332c4,
2294 0x332e4, 0x33390,
2295 0x33398, 0x333c4,
2296 0x333e4, 0x3342c,
2297 0x33434, 0x33450,
2298 0x33458, 0x33458,
2299 0x33460, 0x3348c,
2300 0x3349c, 0x334ac,
2301 0x334c0, 0x334c0,
2302 0x334c8, 0x334d0,
2303 0x334d8, 0x334e0,
2304 0x334ec, 0x3352c,
2305 0x33534, 0x33550,
2306 0x33558, 0x33558,
2307 0x33560, 0x3358c,
2308 0x3359c, 0x335ac,
2309 0x335c0, 0x335c0,
2310 0x335c8, 0x335d0,
2311 0x335d8, 0x335e0,
2312 0x335ec, 0x33690,
2313 0x33698, 0x336c4,
2314 0x336e4, 0x33790,
2315 0x33798, 0x337c4,
ab4b583b
HS
2316 0x337e4, 0x337fc,
2317 0x33814, 0x33814,
2318 0x33854, 0x33868,
2319 0x33880, 0x3388c,
2320 0x338c0, 0x338d0,
2321 0x338e8, 0x338ec,
8119c018
HS
2322 0x33900, 0x3392c,
2323 0x33934, 0x33950,
2324 0x33958, 0x33958,
2325 0x33960, 0x3398c,
2326 0x3399c, 0x339ac,
2327 0x339c0, 0x339c0,
2328 0x339c8, 0x339d0,
2329 0x339d8, 0x339e0,
2330 0x339ec, 0x33a90,
2331 0x33a98, 0x33ac4,
ab4b583b 2332 0x33ae4, 0x33b10,
8119c018
HS
2333 0x33b24, 0x33b28,
2334 0x33b38, 0x33b50,
ab4b583b 2335 0x33bf0, 0x33c10,
8119c018
HS
2336 0x33c24, 0x33c28,
2337 0x33c38, 0x33c50,
ab4b583b 2338 0x33cf0, 0x33cfc,
8119c018
HS
2339 0x34000, 0x34030,
2340 0x34038, 0x34038,
2341 0x34040, 0x34040,
2342 0x34048, 0x34048,
2343 0x34050, 0x34050,
2344 0x3405c, 0x34060,
2345 0x34068, 0x34068,
2346 0x34070, 0x34070,
2347 0x34100, 0x34168,
2348 0x34190, 0x341a0,
2349 0x341a8, 0x341b8,
2350 0x341c4, 0x341c8,
2351 0x341d0, 0x341d0,
f109ff11 2352 0x34200, 0x34320,
8119c018
HS
2353 0x34400, 0x344b4,
2354 0x344c0, 0x3452c,
ab4b583b 2355 0x34540, 0x3461c,
8119c018 2356 0x34800, 0x348a0,
ab4b583b
HS
2357 0x348c0, 0x34908,
2358 0x34910, 0x349b8,
2359 0x34a00, 0x34a04,
8119c018
HS
2360 0x34a0c, 0x34a14,
2361 0x34a1c, 0x34a2c,
ab4b583b 2362 0x34a44, 0x34a50,
8119c018
HS
2363 0x34a74, 0x34a74,
2364 0x34a7c, 0x34afc,
2365 0x34b08, 0x34c24,
2366 0x34d00, 0x34d14,
2367 0x34d1c, 0x34d3c,
2368 0x34d44, 0x34d4c,
2369 0x34d54, 0x34d74,
2370 0x34d7c, 0x34d7c,
ab4b583b
HS
2371 0x34de0, 0x34de0,
2372 0x34e00, 0x34ed4,
2373 0x34f00, 0x34fa4,
2374 0x34fc0, 0x34fc4,
2375 0x35000, 0x35004,
2376 0x35080, 0x350fc,
2377 0x35208, 0x35220,
2378 0x3523c, 0x35254,
2379 0x35300, 0x35300,
2380 0x35308, 0x3531c,
2381 0x35338, 0x3533c,
2382 0x35380, 0x35380,
2383 0x35388, 0x353a8,
2384 0x353b4, 0x353b4,
2385 0x35400, 0x35420,
2386 0x35438, 0x3543c,
2387 0x35480, 0x35480,
2388 0x354a8, 0x354a8,
2389 0x354b0, 0x354b4,
2390 0x354c8, 0x354d4,
2391 0x35a40, 0x35a4c,
2392 0x35af0, 0x35b20,
2393 0x35b38, 0x35b3c,
2394 0x35b80, 0x35b80,
2395 0x35ba8, 0x35ba8,
2396 0x35bb0, 0x35bb4,
2397 0x35bc8, 0x35bd4,
2398 0x36140, 0x3618c,
8119c018
HS
2399 0x361f0, 0x361f4,
2400 0x36200, 0x36200,
ab4b583b
HS
2401 0x36218, 0x36218,
2402 0x36400, 0x36400,
2403 0x36408, 0x3641c,
2404 0x36618, 0x36620,
2405 0x36664, 0x36664,
2406 0x366a8, 0x366a8,
2407 0x366ec, 0x366ec,
2408 0x36a00, 0x36abc,
8119c018
HS
2409 0x36b00, 0x36b38,
2410 0x36b40, 0x36b58,
2411 0x36b60, 0x36b78,
ab4b583b
HS
2412 0x36c00, 0x36c00,
2413 0x36c08, 0x36c3c,
2414 0x36e00, 0x36e2c,
2415 0x36f00, 0x36f2c,
8119c018
HS
2416 0x37000, 0x3702c,
2417 0x37034, 0x37050,
2418 0x37058, 0x37058,
2419 0x37060, 0x3708c,
2420 0x3709c, 0x370ac,
2421 0x370c0, 0x370c0,
2422 0x370c8, 0x370d0,
2423 0x370d8, 0x370e0,
2424 0x370ec, 0x3712c,
2425 0x37134, 0x37150,
2426 0x37158, 0x37158,
2427 0x37160, 0x3718c,
2428 0x3719c, 0x371ac,
2429 0x371c0, 0x371c0,
2430 0x371c8, 0x371d0,
2431 0x371d8, 0x371e0,
2432 0x371ec, 0x37290,
2433 0x37298, 0x372c4,
2434 0x372e4, 0x37390,
2435 0x37398, 0x373c4,
2436 0x373e4, 0x3742c,
2437 0x37434, 0x37450,
2438 0x37458, 0x37458,
2439 0x37460, 0x3748c,
2440 0x3749c, 0x374ac,
2441 0x374c0, 0x374c0,
2442 0x374c8, 0x374d0,
2443 0x374d8, 0x374e0,
2444 0x374ec, 0x3752c,
2445 0x37534, 0x37550,
2446 0x37558, 0x37558,
2447 0x37560, 0x3758c,
2448 0x3759c, 0x375ac,
2449 0x375c0, 0x375c0,
2450 0x375c8, 0x375d0,
2451 0x375d8, 0x375e0,
2452 0x375ec, 0x37690,
2453 0x37698, 0x376c4,
2454 0x376e4, 0x37790,
2455 0x37798, 0x377c4,
ab4b583b
HS
2456 0x377e4, 0x377fc,
2457 0x37814, 0x37814,
2458 0x37854, 0x37868,
2459 0x37880, 0x3788c,
2460 0x378c0, 0x378d0,
2461 0x378e8, 0x378ec,
8119c018
HS
2462 0x37900, 0x3792c,
2463 0x37934, 0x37950,
2464 0x37958, 0x37958,
2465 0x37960, 0x3798c,
2466 0x3799c, 0x379ac,
2467 0x379c0, 0x379c0,
2468 0x379c8, 0x379d0,
2469 0x379d8, 0x379e0,
2470 0x379ec, 0x37a90,
2471 0x37a98, 0x37ac4,
ab4b583b 2472 0x37ae4, 0x37b10,
8119c018
HS
2473 0x37b24, 0x37b28,
2474 0x37b38, 0x37b50,
ab4b583b 2475 0x37bf0, 0x37c10,
8119c018
HS
2476 0x37c24, 0x37c28,
2477 0x37c38, 0x37c50,
ab4b583b
HS
2478 0x37cf0, 0x37cfc,
2479 0x40040, 0x40040,
2480 0x40080, 0x40084,
2481 0x40100, 0x40100,
2482 0x40140, 0x401bc,
2483 0x40200, 0x40214,
2484 0x40228, 0x40228,
2485 0x40240, 0x40258,
2486 0x40280, 0x40280,
2487 0x40304, 0x40304,
2488 0x40330, 0x4033c,
676d6a75
HS
2489 0x41304, 0x413b8,
2490 0x413c0, 0x413c8,
8119c018
HS
2491 0x413d0, 0x413dc,
2492 0x413f0, 0x413f0,
2493 0x41400, 0x4140c,
2494 0x41414, 0x4141c,
ab4b583b
HS
2495 0x41480, 0x414d0,
2496 0x44000, 0x4407c,
8119c018
HS
2497 0x440c0, 0x441ac,
2498 0x441b4, 0x4427c,
2499 0x442c0, 0x443ac,
2500 0x443b4, 0x4447c,
2501 0x444c0, 0x445ac,
2502 0x445b4, 0x4467c,
2503 0x446c0, 0x447ac,
2504 0x447b4, 0x4487c,
2505 0x448c0, 0x449ac,
2506 0x449b4, 0x44a7c,
2507 0x44ac0, 0x44bac,
2508 0x44bb4, 0x44c7c,
2509 0x44cc0, 0x44dac,
2510 0x44db4, 0x44e7c,
2511 0x44ec0, 0x44fac,
2512 0x44fb4, 0x4507c,
2513 0x450c0, 0x451ac,
2514 0x451b4, 0x451fc,
2515 0x45800, 0x45804,
2516 0x45810, 0x45830,
2517 0x45840, 0x45860,
2518 0x45868, 0x45868,
ab4b583b
HS
2519 0x45880, 0x45884,
2520 0x458a0, 0x458b0,
8119c018
HS
2521 0x45a00, 0x45a04,
2522 0x45a10, 0x45a30,
2523 0x45a40, 0x45a60,
2524 0x45a68, 0x45a68,
ab4b583b
HS
2525 0x45a80, 0x45a84,
2526 0x45aa0, 0x45ab0,
2527 0x460c0, 0x460e4,
8119c018
HS
2528 0x47000, 0x4703c,
2529 0x47044, 0x4708c,
ab4b583b 2530 0x47200, 0x47250,
8119c018
HS
2531 0x47400, 0x47408,
2532 0x47414, 0x47420,
ab4b583b 2533 0x47600, 0x47618,
8119c018
HS
2534 0x47800, 0x47814,
2535 0x47820, 0x4782c,
2536 0x50000, 0x50084,
2537 0x50090, 0x500cc,
2538 0x50300, 0x50384,
ab4b583b 2539 0x50400, 0x50400,
8119c018
HS
2540 0x50800, 0x50884,
2541 0x50890, 0x508cc,
2542 0x50b00, 0x50b84,
ab4b583b 2543 0x50c00, 0x50c00,
8119c018
HS
2544 0x51000, 0x51020,
2545 0x51028, 0x510b0,
ab4b583b
HS
2546 0x51300, 0x51324,
2547 };
2548
812034f1
HS
2549 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2550 const unsigned int *reg_ranges;
2551 int reg_ranges_size, range;
2552 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2553
2554 /* Select the right set of register ranges to dump depending on the
2555 * adapter chip type.
2556 */
2557 switch (chip_version) {
2558 case CHELSIO_T4:
2559 reg_ranges = t4_reg_ranges;
2560 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2561 break;
2562
2563 case CHELSIO_T5:
2564 reg_ranges = t5_reg_ranges;
2565 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2566 break;
2567
ab4b583b
HS
2568 case CHELSIO_T6:
2569 reg_ranges = t6_reg_ranges;
2570 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2571 break;
2572
812034f1
HS
2573 default:
2574 dev_err(adap->pdev_dev,
2575 "Unsupported chip version %d\n", chip_version);
2576 return;
2577 }
2578
2579 /* Clear the register buffer and insert the appropriate register
2580 * values selected by the above register ranges.
2581 */
2582 memset(buf, 0, buf_size);
2583 for (range = 0; range < reg_ranges_size; range += 2) {
2584 unsigned int reg = reg_ranges[range];
2585 unsigned int last_reg = reg_ranges[range + 1];
2586 u32 *bufp = (u32 *)((char *)buf + reg);
2587
2588 /* Iterate across the register range filling in the register
2589 * buffer but don't write past the end of the register buffer.
2590 */
2591 while (reg <= last_reg && bufp < buf_end) {
2592 *bufp++ = t4_read_reg(adap, reg);
2593 reg += sizeof(u32);
2594 }
2595 }
2596}
2597
56d36be4 2598#define EEPROM_STAT_ADDR 0x7bfc
67e65879 2599#define VPD_SIZE 0x800
47ce9c48
SR
2600#define VPD_BASE 0x400
2601#define VPD_BASE_OLD 0
0a57a536 2602#define VPD_LEN 1024
63a92fe6 2603#define CHELSIO_VPD_UNIQUE_ID 0x82
56d36be4
DM
2604
2605/**
2606 * t4_seeprom_wp - enable/disable EEPROM write protection
2607 * @adapter: the adapter
2608 * @enable: whether to enable or disable write protection
2609 *
2610 * Enables or disables write protection on the serial EEPROM.
2611 */
2612int t4_seeprom_wp(struct adapter *adapter, bool enable)
2613{
2614 unsigned int v = enable ? 0xc : 0;
2615 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2616 return ret < 0 ? ret : 0;
2617}
2618
2619/**
098ef6c2 2620 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
56d36be4
DM
2621 * @adapter: adapter to read
2622 * @p: where to store the parameters
2623 *
2624 * Reads card parameters stored in VPD EEPROM.
2625 */
098ef6c2 2626int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 2627{
098ef6c2
HS
2628 int i, ret = 0, addr;
2629 int ec, sn, pn, na;
8c357ebd 2630 u8 *vpd, csum;
23d88e1d 2631 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 2632
8c357ebd
VP
2633 vpd = vmalloc(VPD_LEN);
2634 if (!vpd)
2635 return -ENOMEM;
2636
67e65879
HS
2637 /* We have two VPD data structures stored in the adapter VPD area.
2638 * By default, Linux calculates the size of the VPD area by traversing
2639 * the first VPD area at offset 0x0, so we need to tell the OS what
2640 * our real VPD size is.
2641 */
2642 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2643 if (ret < 0)
2644 goto out;
2645
098ef6c2
HS
2646 /* Card information normally starts at VPD_BASE but early cards had
2647 * it at 0.
2648 */
47ce9c48
SR
2649 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2650 if (ret < 0)
2651 goto out;
63a92fe6
HS
2652
2653 /* The VPD shall have a unique identifier specified by the PCI SIG.
2654 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2655 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2656 * is expected to automatically put this entry at the
2657 * beginning of the VPD.
2658 */
2659 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
47ce9c48
SR
2660
2661 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 2662 if (ret < 0)
8c357ebd 2663 goto out;
56d36be4 2664
23d88e1d
DM
2665 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2666 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
2667 ret = -EINVAL;
2668 goto out;
23d88e1d
DM
2669 }
2670
2671 id_len = pci_vpd_lrdt_size(vpd);
2672 if (id_len > ID_LEN)
2673 id_len = ID_LEN;
2674
2675 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2676 if (i < 0) {
2677 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
2678 ret = -EINVAL;
2679 goto out;
23d88e1d
DM
2680 }
2681
2682 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2683 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2684 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 2685 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
2686 ret = -EINVAL;
2687 goto out;
226ec5fd
DM
2688 }
2689
2690#define FIND_VPD_KW(var, name) do { \
23d88e1d 2691 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
2692 if (var < 0) { \
2693 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
2694 ret = -EINVAL; \
2695 goto out; \
226ec5fd
DM
2696 } \
2697 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2698} while (0)
2699
2700 FIND_VPD_KW(i, "RV");
2701 for (csum = 0; i >= 0; i--)
2702 csum += vpd[i];
56d36be4
DM
2703
2704 if (csum) {
2705 dev_err(adapter->pdev_dev,
2706 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
2707 ret = -EINVAL;
2708 goto out;
56d36be4
DM
2709 }
2710
226ec5fd
DM
2711 FIND_VPD_KW(ec, "EC");
2712 FIND_VPD_KW(sn, "SN");
a94cd705 2713 FIND_VPD_KW(pn, "PN");
098ef6c2 2714 FIND_VPD_KW(na, "NA");
226ec5fd
DM
2715#undef FIND_VPD_KW
2716
23d88e1d 2717 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 2718 strim(p->id);
226ec5fd 2719 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 2720 strim(p->ec);
226ec5fd
DM
2721 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2722 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 2723 strim(p->sn);
63a92fe6 2724 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
a94cd705
KS
2725 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2726 strim(p->pn);
098ef6c2
HS
2727 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2728 strim((char *)p->na);
636f9d37 2729
098ef6c2
HS
2730out:
2731 vfree(vpd);
2732 return ret;
2733}
2734
2735/**
2736 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2737 * @adapter: adapter to read
2738 * @p: where to store the parameters
2739 *
2740 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2741 * Clock. This can only be called after a connection to the firmware
2742 * is established.
2743 */
2744int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745{
2746 u32 cclk_param, cclk_val;
2747 int ret;
2748
2749 /* Grab the raw VPD parameters.
2750 */
2751 ret = t4_get_raw_vpd_params(adapter, p);
2752 if (ret)
2753 return ret;
2754
2755 /* Ask firmware for the Core Clock since it knows how to translate the
636f9d37
VP
2756 * Reference Clock ('V2') VPD field into a Core Clock value ...
2757 */
5167865a
HS
2758 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2759 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
098ef6c2 2760 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
636f9d37 2761 1, &cclk_param, &cclk_val);
8c357ebd 2762
636f9d37
VP
2763 if (ret)
2764 return ret;
2765 p->cclk = cclk_val;
2766
56d36be4
DM
2767 return 0;
2768}
2769
2770/* serial flash and firmware constants */
2771enum {
2772 SF_ATTEMPTS = 10, /* max retries for SF operations */
2773
2774 /* flash command opcodes */
2775 SF_PROG_PAGE = 2, /* program page */
2776 SF_WR_DISABLE = 4, /* disable writes */
2777 SF_RD_STATUS = 5, /* read status register */
2778 SF_WR_ENABLE = 6, /* enable writes */
2779 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 2780 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
2781 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2782
6f1d7210 2783 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
56d36be4
DM
2784};
2785
2786/**
2787 * sf1_read - read data from the serial flash
2788 * @adapter: the adapter
2789 * @byte_cnt: number of bytes to read
2790 * @cont: whether another operation will be chained
2791 * @lock: whether to lock SF for PL access only
2792 * @valp: where to store the read data
2793 *
2794 * Reads up to 4 bytes of data from the serial flash. The location of
2795 * the read needs to be specified prior to calling this by issuing the
2796 * appropriate commands to the serial flash.
2797 */
2798static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2799 int lock, u32 *valp)
2800{
2801 int ret;
2802
2803 if (!byte_cnt || byte_cnt > 4)
2804 return -EINVAL;
0d804338 2805 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2806 return -EBUSY;
0d804338
HS
2807 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2808 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2809 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4 2810 if (!ret)
0d804338 2811 *valp = t4_read_reg(adapter, SF_DATA_A);
56d36be4
DM
2812 return ret;
2813}
2814
2815/**
2816 * sf1_write - write data to the serial flash
2817 * @adapter: the adapter
2818 * @byte_cnt: number of bytes to write
2819 * @cont: whether another operation will be chained
2820 * @lock: whether to lock SF for PL access only
2821 * @val: value to write
2822 *
2823 * Writes up to 4 bytes of data to the serial flash. The location of
2824 * the write needs to be specified prior to calling this by issuing the
2825 * appropriate commands to the serial flash.
2826 */
2827static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2828 int lock, u32 val)
2829{
2830 if (!byte_cnt || byte_cnt > 4)
2831 return -EINVAL;
0d804338 2832 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2833 return -EBUSY;
0d804338
HS
2834 t4_write_reg(adapter, SF_DATA_A, val);
2835 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2836 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2837 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4
DM
2838}
2839
2840/**
2841 * flash_wait_op - wait for a flash operation to complete
2842 * @adapter: the adapter
2843 * @attempts: max number of polls of the status register
2844 * @delay: delay between polls in ms
2845 *
2846 * Wait for a flash operation to complete by polling the status register.
2847 */
2848static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2849{
2850 int ret;
2851 u32 status;
2852
2853 while (1) {
2854 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2855 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2856 return ret;
2857 if (!(status & 1))
2858 return 0;
2859 if (--attempts == 0)
2860 return -EAGAIN;
2861 if (delay)
2862 msleep(delay);
2863 }
2864}
2865
2866/**
2867 * t4_read_flash - read words from serial flash
2868 * @adapter: the adapter
2869 * @addr: the start address for the read
2870 * @nwords: how many 32-bit words to read
2871 * @data: where to store the read data
2872 * @byte_oriented: whether to store data as bytes or as words
2873 *
2874 * Read the specified number of 32-bit words from the serial flash.
2875 * If @byte_oriented is set the read data is stored as a byte array
2876 * (i.e., big-endian), otherwise as 32-bit words in the platform's
dbedd44e 2877 * natural endianness.
56d36be4 2878 */
49216c1c
HS
2879int t4_read_flash(struct adapter *adapter, unsigned int addr,
2880 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
2881{
2882 int ret;
2883
900a6596 2884 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
2885 return -EINVAL;
2886
2887 addr = swab32(addr) | SF_RD_DATA_FAST;
2888
2889 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2890 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2891 return ret;
2892
2893 for ( ; nwords; nwords--, data++) {
2894 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2895 if (nwords == 1)
0d804338 2896 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2897 if (ret)
2898 return ret;
2899 if (byte_oriented)
f404f80c 2900 *data = (__force __u32)(cpu_to_be32(*data));
56d36be4
DM
2901 }
2902 return 0;
2903}
2904
2905/**
2906 * t4_write_flash - write up to a page of data to the serial flash
2907 * @adapter: the adapter
2908 * @addr: the start address to write
2909 * @n: length of data to write in bytes
2910 * @data: the data to write
2911 *
2912 * Writes up to a page of data (256 bytes) to the serial flash starting
2913 * at the given address. All the data must be written to the same page.
2914 */
2915static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2916 unsigned int n, const u8 *data)
2917{
2918 int ret;
2919 u32 buf[64];
2920 unsigned int i, c, left, val, offset = addr & 0xff;
2921
900a6596 2922 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
2923 return -EINVAL;
2924
2925 val = swab32(addr) | SF_PROG_PAGE;
2926
2927 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2928 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2929 goto unlock;
2930
2931 for (left = n; left; left -= c) {
2932 c = min(left, 4U);
2933 for (val = 0, i = 0; i < c; ++i)
2934 val = (val << 8) + *data++;
2935
2936 ret = sf1_write(adapter, c, c != left, 1, val);
2937 if (ret)
2938 goto unlock;
2939 }
900a6596 2940 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
2941 if (ret)
2942 goto unlock;
2943
0d804338 2944 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2945
2946 /* Read the page to verify the write succeeded */
2947 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2948 if (ret)
2949 return ret;
2950
2951 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2952 dev_err(adapter->pdev_dev,
2953 "failed to correctly write the flash page at %#x\n",
2954 addr);
2955 return -EIO;
2956 }
2957 return 0;
2958
2959unlock:
0d804338 2960 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2961 return ret;
2962}
2963
2964/**
16e47624 2965 * t4_get_fw_version - read the firmware version
56d36be4
DM
2966 * @adapter: the adapter
2967 * @vers: where to place the version
2968 *
2969 * Reads the FW version from flash.
2970 */
16e47624 2971int t4_get_fw_version(struct adapter *adapter, u32 *vers)
56d36be4 2972{
16e47624
HS
2973 return t4_read_flash(adapter, FLASH_FW_START +
2974 offsetof(struct fw_hdr, fw_ver), 1,
2975 vers, 0);
56d36be4
DM
2976}
2977
0de72738
HS
2978/**
2979 * t4_get_bs_version - read the firmware bootstrap version
2980 * @adapter: the adapter
2981 * @vers: where to place the version
2982 *
2983 * Reads the FW Bootstrap version from flash.
2984 */
2985int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2986{
2987 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2988 offsetof(struct fw_hdr, fw_ver), 1,
2989 vers, 0);
2990}
2991
56d36be4 2992/**
16e47624 2993 * t4_get_tp_version - read the TP microcode version
56d36be4
DM
2994 * @adapter: the adapter
2995 * @vers: where to place the version
2996 *
2997 * Reads the TP microcode version from flash.
2998 */
16e47624 2999int t4_get_tp_version(struct adapter *adapter, u32 *vers)
56d36be4 3000{
16e47624 3001 return t4_read_flash(adapter, FLASH_FW_START +
900a6596 3002 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
3003 1, vers, 0);
3004}
3005
ba3f8cd5
HS
3006/**
3007 * t4_get_exprom_version - return the Expansion ROM version (if any)
3008 * @adapter: the adapter
3009 * @vers: where to place the version
3010 *
3011 * Reads the Expansion ROM header from FLASH and returns the version
3012 * number (if present) through the @vers return value pointer. We return
3013 * this in the Firmware Version Format since it's convenient. Return
3014 * 0 on success, -ENOENT if no Expansion ROM is present.
3015 */
3016int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3017{
3018 struct exprom_header {
3019 unsigned char hdr_arr[16]; /* must start with 0x55aa */
3020 unsigned char hdr_ver[4]; /* Expansion ROM version */
3021 } *hdr;
3022 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3023 sizeof(u32))];
3024 int ret;
3025
3026 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3027 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3028 0);
3029 if (ret)
3030 return ret;
3031
3032 hdr = (struct exprom_header *)exprom_header_buf;
3033 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3034 return -ENOENT;
3035
3036 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3037 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3038 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3039 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3040 return 0;
3041}
3042
a69265e9
HS
3043/**
3044 * t4_check_fw_version - check if the FW is supported with this driver
3045 * @adap: the adapter
3046 *
3047 * Checks if an adapter's FW is compatible with the driver. Returns 0
3048 * if there's exact match, a negative error if the version could not be
3049 * read or there's a major version mismatch
3050 */
3051int t4_check_fw_version(struct adapter *adap)
3052{
21d11bd6 3053 int i, ret, major, minor, micro;
a69265e9
HS
3054 int exp_major, exp_minor, exp_micro;
3055 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3056
3057 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
21d11bd6
HS
3058 /* Try multiple times before returning error */
3059 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3060 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3061
a69265e9
HS
3062 if (ret)
3063 return ret;
3064
3065 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3066 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3067 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3068
3069 switch (chip_version) {
3070 case CHELSIO_T4:
3071 exp_major = T4FW_MIN_VERSION_MAJOR;
3072 exp_minor = T4FW_MIN_VERSION_MINOR;
3073 exp_micro = T4FW_MIN_VERSION_MICRO;
3074 break;
3075 case CHELSIO_T5:
3076 exp_major = T5FW_MIN_VERSION_MAJOR;
3077 exp_minor = T5FW_MIN_VERSION_MINOR;
3078 exp_micro = T5FW_MIN_VERSION_MICRO;
3079 break;
3080 case CHELSIO_T6:
3081 exp_major = T6FW_MIN_VERSION_MAJOR;
3082 exp_minor = T6FW_MIN_VERSION_MINOR;
3083 exp_micro = T6FW_MIN_VERSION_MICRO;
3084 break;
3085 default:
3086 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3087 adap->chip);
3088 return -EINVAL;
3089 }
3090
3091 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3092 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3093 dev_err(adap->pdev_dev,
3094 "Card has firmware version %u.%u.%u, minimum "
3095 "supported firmware is %u.%u.%u.\n", major, minor,
3096 micro, exp_major, exp_minor, exp_micro);
3097 return -EFAULT;
3098 }
3099 return 0;
3100}
3101
16e47624
HS
3102/* Is the given firmware API compatible with the one the driver was compiled
3103 * with?
56d36be4 3104 */
16e47624 3105static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
56d36be4 3106{
56d36be4 3107
16e47624
HS
3108 /* short circuit if it's the exact same firmware version */
3109 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3110 return 1;
56d36be4 3111
16e47624
HS
3112#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3113 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3114 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3115 return 1;
3116#undef SAME_INTF
0a57a536 3117
16e47624
HS
3118 return 0;
3119}
56d36be4 3120
16e47624
HS
3121/* The firmware in the filesystem is usable, but should it be installed?
3122 * This routine explains itself in detail if it indicates the filesystem
3123 * firmware should be installed.
3124 */
3125static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3126 int k, int c)
3127{
3128 const char *reason;
3129
3130 if (!card_fw_usable) {
3131 reason = "incompatible or unusable";
3132 goto install;
e69972f5
JH
3133 }
3134
16e47624
HS
3135 if (k > c) {
3136 reason = "older than the version supported with this driver";
3137 goto install;
56d36be4
DM
3138 }
3139
16e47624
HS
3140 return 0;
3141
3142install:
3143 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3144 "installing firmware %u.%u.%u.%u on card.\n",
b2e1a3f0
HS
3145 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3146 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3147 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3148 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
56d36be4 3149
56d36be4
DM
3150 return 1;
3151}
3152
16e47624
HS
3153int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3154 const u8 *fw_data, unsigned int fw_size,
3155 struct fw_hdr *card_fw, enum dev_state state,
3156 int *reset)
3157{
3158 int ret, card_fw_usable, fs_fw_usable;
3159 const struct fw_hdr *fs_fw;
3160 const struct fw_hdr *drv_fw;
3161
3162 drv_fw = &fw_info->fw_hdr;
3163
3164 /* Read the header of the firmware on the card */
3165 ret = -t4_read_flash(adap, FLASH_FW_START,
3166 sizeof(*card_fw) / sizeof(uint32_t),
3167 (uint32_t *)card_fw, 1);
3168 if (ret == 0) {
3169 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3170 } else {
3171 dev_err(adap->pdev_dev,
3172 "Unable to read card's firmware header: %d\n", ret);
3173 card_fw_usable = 0;
3174 }
3175
3176 if (fw_data != NULL) {
3177 fs_fw = (const void *)fw_data;
3178 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3179 } else {
3180 fs_fw = NULL;
3181 fs_fw_usable = 0;
3182 }
3183
3184 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3185 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3186 /* Common case: the firmware on the card is an exact match and
3187 * the filesystem one is an exact match too, or the filesystem
3188 * one is absent/incompatible.
3189 */
3190 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3191 should_install_fs_fw(adap, card_fw_usable,
3192 be32_to_cpu(fs_fw->fw_ver),
3193 be32_to_cpu(card_fw->fw_ver))) {
3194 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3195 fw_size, 0);
3196 if (ret != 0) {
3197 dev_err(adap->pdev_dev,
3198 "failed to install firmware: %d\n", ret);
3199 goto bye;
3200 }
3201
3202 /* Installed successfully, update the cached header too. */
e3d50738 3203 *card_fw = *fs_fw;
16e47624
HS
3204 card_fw_usable = 1;
3205 *reset = 0; /* already reset as part of load_fw */
3206 }
3207
3208 if (!card_fw_usable) {
3209 uint32_t d, c, k;
3210
3211 d = be32_to_cpu(drv_fw->fw_ver);
3212 c = be32_to_cpu(card_fw->fw_ver);
3213 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3214
3215 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3216 "chip state %d, "
3217 "driver compiled with %d.%d.%d.%d, "
3218 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3219 state,
b2e1a3f0
HS
3220 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3221 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3222 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3223 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3224 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3225 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
16e47624
HS
3226 ret = EINVAL;
3227 goto bye;
3228 }
3229
3230 /* We're using whatever's on the card and it's known to be good. */
3231 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3232 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3233
3234bye:
3235 return ret;
3236}
3237
56d36be4
DM
3238/**
3239 * t4_flash_erase_sectors - erase a range of flash sectors
3240 * @adapter: the adapter
3241 * @start: the first sector to erase
3242 * @end: the last sector to erase
3243 *
3244 * Erases the sectors in the given inclusive range.
3245 */
3246static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3247{
3248 int ret = 0;
3249
c0d5b8cf
HS
3250 if (end >= adapter->params.sf_nsec)
3251 return -EINVAL;
3252
56d36be4
DM
3253 while (start <= end) {
3254 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3255 (ret = sf1_write(adapter, 4, 0, 1,
3256 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 3257 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
3258 dev_err(adapter->pdev_dev,
3259 "erase of flash sector %d failed, error %d\n",
3260 start, ret);
3261 break;
3262 }
3263 start++;
3264 }
0d804338 3265 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
3266 return ret;
3267}
3268
636f9d37
VP
3269/**
3270 * t4_flash_cfg_addr - return the address of the flash configuration file
3271 * @adapter: the adapter
3272 *
3273 * Return the address within the flash where the Firmware Configuration
3274 * File is stored.
3275 */
3276unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3277{
3278 if (adapter->params.sf_size == 0x100000)
3279 return FLASH_FPGA_CFG_START;
3280 else
3281 return FLASH_CFG_START;
3282}
3283
79af221d
HS
3284/* Return TRUE if the specified firmware matches the adapter. I.e. T4
3285 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3286 * and emit an error message for mismatched firmware to save our caller the
3287 * effort ...
3288 */
3289static bool t4_fw_matches_chip(const struct adapter *adap,
3290 const struct fw_hdr *hdr)
3291{
3292 /* The expression below will return FALSE for any unsupported adapter
3293 * which will keep us "honest" in the future ...
3294 */
3295 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3ccc6cf7
HS
3296 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3297 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
79af221d
HS
3298 return true;
3299
3300 dev_err(adap->pdev_dev,
3301 "FW image (%d) is not suitable for this adapter (%d)\n",
3302 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3303 return false;
3304}
3305
56d36be4
DM
3306/**
3307 * t4_load_fw - download firmware
3308 * @adap: the adapter
3309 * @fw_data: the firmware image to write
3310 * @size: image size
3311 *
3312 * Write the supplied firmware image to the card's serial flash.
3313 */
3314int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3315{
3316 u32 csum;
3317 int ret, addr;
3318 unsigned int i;
3319 u8 first_page[SF_PAGE_SIZE];
404d9e3f 3320 const __be32 *p = (const __be32 *)fw_data;
56d36be4 3321 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
3322 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3323 unsigned int fw_img_start = adap->params.sf_fw_start;
3324 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
3325
3326 if (!size) {
3327 dev_err(adap->pdev_dev, "FW image has no data\n");
3328 return -EINVAL;
3329 }
3330 if (size & 511) {
3331 dev_err(adap->pdev_dev,
3332 "FW image size not multiple of 512 bytes\n");
3333 return -EINVAL;
3334 }
f404f80c 3335 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
56d36be4
DM
3336 dev_err(adap->pdev_dev,
3337 "FW image size differs from size in FW header\n");
3338 return -EINVAL;
3339 }
3340 if (size > FW_MAX_SIZE) {
3341 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3342 FW_MAX_SIZE);
3343 return -EFBIG;
3344 }
79af221d
HS
3345 if (!t4_fw_matches_chip(adap, hdr))
3346 return -EINVAL;
56d36be4
DM
3347
3348 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
f404f80c 3349 csum += be32_to_cpu(p[i]);
56d36be4
DM
3350
3351 if (csum != 0xffffffff) {
3352 dev_err(adap->pdev_dev,
3353 "corrupted firmware image, checksum %#x\n", csum);
3354 return -EINVAL;
3355 }
3356
900a6596
DM
3357 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3358 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
3359 if (ret)
3360 goto out;
3361
3362 /*
3363 * We write the correct version at the end so the driver can see a bad
3364 * version if the FW write fails. Start by writing a copy of the
3365 * first page with a bad version.
3366 */
3367 memcpy(first_page, fw_data, SF_PAGE_SIZE);
f404f80c 3368 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
900a6596 3369 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
3370 if (ret)
3371 goto out;
3372
900a6596 3373 addr = fw_img_start;
56d36be4
DM
3374 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3375 addr += SF_PAGE_SIZE;
3376 fw_data += SF_PAGE_SIZE;
3377 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3378 if (ret)
3379 goto out;
3380 }
3381
3382 ret = t4_write_flash(adap,
900a6596 3383 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
3384 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3385out:
3386 if (ret)
3387 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3388 ret);
dff04bce
HS
3389 else
3390 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
56d36be4
DM
3391 return ret;
3392}
3393
01b69614
HS
3394/**
3395 * t4_phy_fw_ver - return current PHY firmware version
3396 * @adap: the adapter
3397 * @phy_fw_ver: return value buffer for PHY firmware version
3398 *
3399 * Returns the current version of external PHY firmware on the
3400 * adapter.
3401 */
3402int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3403{
3404 u32 param, val;
3405 int ret;
3406
3407 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3408 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3409 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3410 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
b2612722 3411 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3412 &param, &val);
3413 if (ret < 0)
3414 return ret;
3415 *phy_fw_ver = val;
3416 return 0;
3417}
3418
3419/**
3420 * t4_load_phy_fw - download port PHY firmware
3421 * @adap: the adapter
3422 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3423 * @win_lock: the lock to use to guard the memory copy
3424 * @phy_fw_version: function to check PHY firmware versions
3425 * @phy_fw_data: the PHY firmware image to write
3426 * @phy_fw_size: image size
3427 *
3428 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3429 * @phy_fw_version is supplied, then it will be used to determine if
3430 * it's necessary to perform the transfer by comparing the version
3431 * of any existing adapter PHY firmware with that of the passed in
3432 * PHY firmware image. If @win_lock is non-NULL then it will be used
3433 * around the call to t4_memory_rw() which transfers the PHY firmware
3434 * to the adapter.
3435 *
3436 * A negative error number will be returned if an error occurs. If
3437 * version number support is available and there's no need to upgrade
3438 * the firmware, 0 will be returned. If firmware is successfully
3439 * transferred to the adapter, 1 will be retured.
3440 *
3441 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3442 * a result, a RESET of the adapter would cause that RAM to lose its
3443 * contents. Thus, loading PHY firmware on such adapters must happen
3444 * after any FW_RESET_CMDs ...
3445 */
3446int t4_load_phy_fw(struct adapter *adap,
3447 int win, spinlock_t *win_lock,
3448 int (*phy_fw_version)(const u8 *, size_t),
3449 const u8 *phy_fw_data, size_t phy_fw_size)
3450{
3451 unsigned long mtype = 0, maddr = 0;
3452 u32 param, val;
3453 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3454 int ret;
3455
3456 /* If we have version number support, then check to see if the adapter
3457 * already has up-to-date PHY firmware loaded.
3458 */
3459 if (phy_fw_version) {
3460 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3461 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3462 if (ret < 0)
3463 return ret;
3464
3465 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3466 CH_WARN(adap, "PHY Firmware already up-to-date, "
3467 "version %#x\n", cur_phy_fw_ver);
3468 return 0;
3469 }
3470 }
3471
3472 /* Ask the firmware where it wants us to copy the PHY firmware image.
3473 * The size of the file requires a special version of the READ coommand
3474 * which will pass the file size via the values field in PARAMS_CMD and
3475 * retrieve the return value from firmware and place it in the same
3476 * buffer values
3477 */
3478 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3479 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3480 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3481 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3482 val = phy_fw_size;
b2612722 3483 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3484 &param, &val, 1);
3485 if (ret < 0)
3486 return ret;
3487 mtype = val >> 8;
3488 maddr = (val & 0xff) << 16;
3489
3490 /* Copy the supplied PHY Firmware image to the adapter memory location
3491 * allocated by the adapter firmware.
3492 */
3493 if (win_lock)
3494 spin_lock_bh(win_lock);
3495 ret = t4_memory_rw(adap, win, mtype, maddr,
3496 phy_fw_size, (__be32 *)phy_fw_data,
3497 T4_MEMORY_WRITE);
3498 if (win_lock)
3499 spin_unlock_bh(win_lock);
3500 if (ret)
3501 return ret;
3502
3503 /* Tell the firmware that the PHY firmware image has been written to
3504 * RAM and it can now start copying it over to the PHYs. The chip
3505 * firmware will RESET the affected PHYs as part of this operation
3506 * leaving them running the new PHY firmware image.
3507 */
3508 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3509 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3510 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3511 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
b2612722 3512 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3513 &param, &val, 30000);
3514
3515 /* If we have version number support, then check to see that the new
3516 * firmware got loaded properly.
3517 */
3518 if (phy_fw_version) {
3519 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3520 if (ret < 0)
3521 return ret;
3522
3523 if (cur_phy_fw_ver != new_phy_fw_vers) {
3524 CH_WARN(adap, "PHY Firmware did not update: "
3525 "version on adapter %#x, "
3526 "version flashed %#x\n",
3527 cur_phy_fw_ver, new_phy_fw_vers);
3528 return -ENXIO;
3529 }
3530 }
3531
3532 return 1;
3533}
3534
49216c1c
HS
3535/**
3536 * t4_fwcache - firmware cache operation
3537 * @adap: the adapter
3538 * @op : the operation (flush or flush and invalidate)
3539 */
3540int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3541{
3542 struct fw_params_cmd c;
3543
3544 memset(&c, 0, sizeof(c));
3545 c.op_to_vfn =
3546 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3547 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2612722 3548 FW_PARAMS_CMD_PFN_V(adap->pf) |
49216c1c
HS
3549 FW_PARAMS_CMD_VFN_V(0));
3550 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3551 c.param[0].mnem =
3552 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3553 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3554 c.param[0].val = (__force __be32)op;
3555
3556 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3557}
3558
19689609
HS
3559void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3560 unsigned int *pif_req_wrptr,
3561 unsigned int *pif_rsp_wrptr)
3562{
3563 int i, j;
3564 u32 cfg, val, req, rsp;
3565
3566 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3567 if (cfg & LADBGEN_F)
3568 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3569
3570 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3571 req = POLADBGWRPTR_G(val);
3572 rsp = PILADBGWRPTR_G(val);
3573 if (pif_req_wrptr)
3574 *pif_req_wrptr = req;
3575 if (pif_rsp_wrptr)
3576 *pif_rsp_wrptr = rsp;
3577
3578 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3579 for (j = 0; j < 6; j++) {
3580 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3581 PILADBGRDPTR_V(rsp));
3582 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3583 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3584 req++;
3585 rsp++;
3586 }
3587 req = (req + 2) & POLADBGRDPTR_M;
3588 rsp = (rsp + 2) & PILADBGRDPTR_M;
3589 }
3590 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3591}
3592
26fae93f
HS
3593void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3594{
3595 u32 cfg;
3596 int i, j, idx;
3597
3598 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3599 if (cfg & LADBGEN_F)
3600 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3601
3602 for (i = 0; i < CIM_MALA_SIZE; i++) {
3603 for (j = 0; j < 5; j++) {
3604 idx = 8 * i + j;
3605 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3606 PILADBGRDPTR_V(idx));
3607 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3608 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3609 }
3610 }
3611 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3612}
3613
797ff0f5
HS
3614void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3615{
3616 unsigned int i, j;
3617
3618 for (i = 0; i < 8; i++) {
3619 u32 *p = la_buf + i;
3620
3621 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3622 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3623 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3624 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3625 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3626 }
3627}
3628
56d36be4 3629#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
9b86a8d1
HS
3630 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3631 FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
72aca4bf 3632 FW_PORT_CAP_ANEG)
56d36be4
DM
3633
3634/**
4036da90 3635 * t4_link_l1cfg - apply link configuration to MAC/PHY
56d36be4
DM
3636 * @phy: the PHY to setup
3637 * @mac: the MAC to setup
3638 * @lc: the requested link configuration
3639 *
3640 * Set up a port's MAC and PHY according to a desired link configuration.
3641 * - If the PHY can auto-negotiate first decide what to advertise, then
3642 * enable/disable auto-negotiation as desired, and reset.
3643 * - If the PHY does not auto-negotiate just reset it.
3644 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3645 * otherwise do it later based on the outcome of auto-negotiation.
3646 */
4036da90 3647int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
56d36be4
DM
3648 struct link_config *lc)
3649{
3650 struct fw_port_cmd c;
2b5fb1f2 3651 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
56d36be4
DM
3652
3653 lc->link_ok = 0;
3654 if (lc->requested_fc & PAUSE_RX)
3655 fc |= FW_PORT_CAP_FC_RX;
3656 if (lc->requested_fc & PAUSE_TX)
3657 fc |= FW_PORT_CAP_FC_TX;
3658
3659 memset(&c, 0, sizeof(c));
f404f80c
HS
3660 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3661 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3662 FW_PORT_CMD_PORTID_V(port));
3663 c.action_to_len16 =
3664 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3665 FW_LEN16(c));
56d36be4
DM
3666
3667 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
f404f80c
HS
3668 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3669 fc);
56d36be4
DM
3670 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3671 } else if (lc->autoneg == AUTONEG_DISABLE) {
f404f80c 3672 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
56d36be4
DM
3673 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3674 } else
f404f80c 3675 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
56d36be4
DM
3676
3677 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3678}
3679
3680/**
3681 * t4_restart_aneg - restart autonegotiation
3682 * @adap: the adapter
3683 * @mbox: mbox to use for the FW command
3684 * @port: the port id
3685 *
3686 * Restarts autonegotiation for the selected port.
3687 */
3688int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3689{
3690 struct fw_port_cmd c;
3691
3692 memset(&c, 0, sizeof(c));
f404f80c
HS
3693 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3694 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3695 FW_PORT_CMD_PORTID_V(port));
3696 c.action_to_len16 =
3697 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3698 FW_LEN16(c));
3699 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
56d36be4
DM
3700 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3701}
3702
8caa1e84
VP
3703typedef void (*int_handler_t)(struct adapter *adap);
3704
56d36be4
DM
3705struct intr_info {
3706 unsigned int mask; /* bits to check in interrupt status */
3707 const char *msg; /* message to print or NULL */
3708 short stat_idx; /* stat counter to increment or -1 */
3709 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 3710 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
3711};
3712
3713/**
3714 * t4_handle_intr_status - table driven interrupt handler
3715 * @adapter: the adapter that generated the interrupt
3716 * @reg: the interrupt status register to process
3717 * @acts: table of interrupt actions
3718 *
3719 * A table driven interrupt handler that applies a set of masks to an
3720 * interrupt status word and performs the corresponding actions if the
25985edc 3721 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
3722 * optionally emitting a warning or alert message. The table is terminated
3723 * by an entry specifying mask 0. Returns the number of fatal interrupt
3724 * conditions.
3725 */
3726static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3727 const struct intr_info *acts)
3728{
3729 int fatal = 0;
3730 unsigned int mask = 0;
3731 unsigned int status = t4_read_reg(adapter, reg);
3732
3733 for ( ; acts->mask; ++acts) {
3734 if (!(status & acts->mask))
3735 continue;
3736 if (acts->fatal) {
3737 fatal++;
3738 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3739 status & acts->mask);
3740 } else if (acts->msg && printk_ratelimit())
3741 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3742 status & acts->mask);
8caa1e84
VP
3743 if (acts->int_handler)
3744 acts->int_handler(adapter);
56d36be4
DM
3745 mask |= acts->mask;
3746 }
3747 status &= mask;
3748 if (status) /* clear processed interrupts */
3749 t4_write_reg(adapter, reg, status);
3750 return fatal;
3751}
3752
3753/*
3754 * Interrupt handler for the PCIE module.
3755 */
3756static void pcie_intr_handler(struct adapter *adapter)
3757{
005b5717 3758 static const struct intr_info sysbus_intr_info[] = {
f061de42
HS
3759 { RNPP_F, "RXNP array parity error", -1, 1 },
3760 { RPCP_F, "RXPC array parity error", -1, 1 },
3761 { RCIP_F, "RXCIF array parity error", -1, 1 },
3762 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3763 { RFTP_F, "RXFT array parity error", -1, 1 },
56d36be4
DM
3764 { 0 }
3765 };
005b5717 3766 static const struct intr_info pcie_port_intr_info[] = {
f061de42
HS
3767 { TPCP_F, "TXPC array parity error", -1, 1 },
3768 { TNPP_F, "TXNP array parity error", -1, 1 },
3769 { TFTP_F, "TXFT array parity error", -1, 1 },
3770 { TCAP_F, "TXCA array parity error", -1, 1 },
3771 { TCIP_F, "TXCIF array parity error", -1, 1 },
3772 { RCAP_F, "RXCA array parity error", -1, 1 },
3773 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3774 { RDPE_F, "Rx data parity error", -1, 1 },
3775 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
56d36be4
DM
3776 { 0 }
3777 };
005b5717 3778 static const struct intr_info pcie_intr_info[] = {
f061de42
HS
3779 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3780 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3781 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3782 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3783 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3784 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3785 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3786 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3787 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3788 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3789 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3790 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3791 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3792 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3793 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3794 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3795 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3796 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3797 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3798 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3799 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3800 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3801 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3802 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3803 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3804 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3805 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3806 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3807 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3808 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3809 -1, 0 },
56d36be4
DM
3810 { 0 }
3811 };
3812
0a57a536 3813 static struct intr_info t5_pcie_intr_info[] = {
f061de42 3814 { MSTGRPPERR_F, "Master Response Read Queue parity error",
0a57a536 3815 -1, 1 },
f061de42
HS
3816 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3817 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3818 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3819 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3820 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3821 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3822 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
0a57a536 3823 -1, 1 },
f061de42 3824 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
0a57a536 3825 -1, 1 },
f061de42
HS
3826 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3827 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3828 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3829 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3830 { DREQWRPERR_F, "PCI DMA channel write request parity error",
0a57a536 3831 -1, 1 },
f061de42
HS
3832 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3833 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3834 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3835 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3836 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3837 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3838 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3839 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3840 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3841 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3842 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
0a57a536 3843 -1, 1 },
f061de42
HS
3844 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3845 -1, 1 },
3846 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3847 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3848 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3849 { READRSPERR_F, "Outbound read error", -1, 0 },
0a57a536
SR
3850 { 0 }
3851 };
3852
56d36be4
DM
3853 int fat;
3854
9bb59b96
HS
3855 if (is_t4(adapter->params.chip))
3856 fat = t4_handle_intr_status(adapter,
f061de42
HS
3857 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3858 sysbus_intr_info) +
9bb59b96 3859 t4_handle_intr_status(adapter,
f061de42
HS
3860 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3861 pcie_port_intr_info) +
3862 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96
HS
3863 pcie_intr_info);
3864 else
f061de42 3865 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96 3866 t5_pcie_intr_info);
0a57a536 3867
56d36be4
DM
3868 if (fat)
3869 t4_fatal_err(adapter);
3870}
3871
3872/*
3873 * TP interrupt handler.
3874 */
3875static void tp_intr_handler(struct adapter *adapter)
3876{
005b5717 3877 static const struct intr_info tp_intr_info[] = {
56d36be4 3878 { 0x3fffffff, "TP parity error", -1, 1 },
837e4a42 3879 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
56d36be4
DM
3880 { 0 }
3881 };
3882
837e4a42 3883 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
56d36be4
DM
3884 t4_fatal_err(adapter);
3885}
3886
3887/*
3888 * SGE interrupt handler.
3889 */
3890static void sge_intr_handler(struct adapter *adapter)
3891{
3892 u64 v;
3ccc6cf7 3893 u32 err;
56d36be4 3894
005b5717 3895 static const struct intr_info sge_intr_info[] = {
f612b815 3896 { ERR_CPL_EXCEED_IQE_SIZE_F,
56d36be4 3897 "SGE received CPL exceeding IQE size", -1, 1 },
f612b815 3898 { ERR_INVALID_CIDX_INC_F,
56d36be4 3899 "SGE GTS CIDX increment too large", -1, 0 },
f612b815
HS
3900 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3901 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
f612b815 3902 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
56d36be4 3903 "SGE IQID > 1023 received CPL for FL", -1, 0 },
f612b815 3904 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
56d36be4 3905 0 },
f612b815 3906 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
56d36be4 3907 0 },
f612b815 3908 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
56d36be4 3909 0 },
f612b815 3910 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
56d36be4 3911 0 },
f612b815 3912 { ERR_ING_CTXT_PRIO_F,
56d36be4 3913 "SGE too many priority ingress contexts", -1, 0 },
f612b815
HS
3914 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3915 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
56d36be4
DM
3916 { 0 }
3917 };
3918
3ccc6cf7
HS
3919 static struct intr_info t4t5_sge_intr_info[] = {
3920 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3921 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3922 { ERR_EGR_CTXT_PRIO_F,
3923 "SGE too many priority egress contexts", -1, 0 },
3924 { 0 }
3925 };
3926
f612b815
HS
3927 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3928 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
56d36be4
DM
3929 if (v) {
3930 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 3931 (unsigned long long)v);
f612b815
HS
3932 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3933 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
56d36be4
DM
3934 }
3935
3ccc6cf7
HS
3936 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3937 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3938 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3939 t4t5_sge_intr_info);
3940
3941 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3942 if (err & ERROR_QID_VALID_F) {
3943 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3944 ERROR_QID_G(err));
3945 if (err & UNCAPTURED_ERROR_F)
3946 dev_err(adapter->pdev_dev,
3947 "SGE UNCAPTURED_ERROR set (clearing)\n");
3948 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3949 UNCAPTURED_ERROR_F);
3950 }
3951
3952 if (v != 0)
56d36be4
DM
3953 t4_fatal_err(adapter);
3954}
3955
89c3a86c
HS
3956#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3957 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3958#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3959 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3960
56d36be4
DM
3961/*
3962 * CIM interrupt handler.
3963 */
3964static void cim_intr_handler(struct adapter *adapter)
3965{
005b5717 3966 static const struct intr_info cim_intr_info[] = {
89c3a86c
HS
3967 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3968 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3969 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3970 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3971 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3972 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3973 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
56d36be4
DM
3974 { 0 }
3975 };
005b5717 3976 static const struct intr_info cim_upintr_info[] = {
89c3a86c
HS
3977 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3978 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3979 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3980 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3981 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3982 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3983 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3984 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3985 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3986 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3987 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3988 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3989 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3990 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3991 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3992 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3993 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3994 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3995 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3996 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3997 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3998 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3999 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4000 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4001 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4002 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4003 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4004 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
56d36be4
DM
4005 { 0 }
4006 };
4007
4008 int fat;
4009
f061de42 4010 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d
HS
4011 t4_report_fw_error(adapter);
4012
89c3a86c 4013 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
56d36be4 4014 cim_intr_info) +
89c3a86c 4015 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
56d36be4
DM
4016 cim_upintr_info);
4017 if (fat)
4018 t4_fatal_err(adapter);
4019}
4020
4021/*
4022 * ULP RX interrupt handler.
4023 */
4024static void ulprx_intr_handler(struct adapter *adapter)
4025{
005b5717 4026 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 4027 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
4028 { 0x7fffff, "ULPRX parity error", -1, 1 },
4029 { 0 }
4030 };
4031
0d804338 4032 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
56d36be4
DM
4033 t4_fatal_err(adapter);
4034}
4035
4036/*
4037 * ULP TX interrupt handler.
4038 */
4039static void ulptx_intr_handler(struct adapter *adapter)
4040{
005b5717 4041 static const struct intr_info ulptx_intr_info[] = {
837e4a42 4042 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
56d36be4 4043 0 },
837e4a42 4044 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
56d36be4 4045 0 },
837e4a42 4046 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
56d36be4 4047 0 },
837e4a42 4048 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
56d36be4
DM
4049 0 },
4050 { 0xfffffff, "ULPTX parity error", -1, 1 },
4051 { 0 }
4052 };
4053
837e4a42 4054 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
56d36be4
DM
4055 t4_fatal_err(adapter);
4056}
4057
4058/*
4059 * PM TX interrupt handler.
4060 */
4061static void pmtx_intr_handler(struct adapter *adapter)
4062{
005b5717 4063 static const struct intr_info pmtx_intr_info[] = {
837e4a42
HS
4064 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4065 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4066 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4067 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4068 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4069 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4070 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4071 -1, 1 },
4072 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4073 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
56d36be4
DM
4074 { 0 }
4075 };
4076
837e4a42 4077 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
56d36be4
DM
4078 t4_fatal_err(adapter);
4079}
4080
4081/*
4082 * PM RX interrupt handler.
4083 */
4084static void pmrx_intr_handler(struct adapter *adapter)
4085{
005b5717 4086 static const struct intr_info pmrx_intr_info[] = {
837e4a42
HS
4087 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4088 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4089 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4090 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4091 -1, 1 },
4092 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4093 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
56d36be4
DM
4094 { 0 }
4095 };
4096
837e4a42 4097 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
56d36be4
DM
4098 t4_fatal_err(adapter);
4099}
4100
4101/*
4102 * CPL switch interrupt handler.
4103 */
4104static void cplsw_intr_handler(struct adapter *adapter)
4105{
005b5717 4106 static const struct intr_info cplsw_intr_info[] = {
0d804338
HS
4107 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4108 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4109 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4110 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4111 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4112 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
56d36be4
DM
4113 { 0 }
4114 };
4115
0d804338 4116 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
56d36be4
DM
4117 t4_fatal_err(adapter);
4118}
4119
4120/*
4121 * LE interrupt handler.
4122 */
4123static void le_intr_handler(struct adapter *adap)
4124{
3ccc6cf7 4125 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
005b5717 4126 static const struct intr_info le_intr_info[] = {
0d804338
HS
4127 { LIPMISS_F, "LE LIP miss", -1, 0 },
4128 { LIP0_F, "LE 0 LIP error", -1, 0 },
4129 { PARITYERR_F, "LE parity error", -1, 1 },
4130 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4131 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
56d36be4
DM
4132 { 0 }
4133 };
4134
3ccc6cf7
HS
4135 static struct intr_info t6_le_intr_info[] = {
4136 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4137 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4138 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4139 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4140 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4141 { 0 }
4142 };
4143
4144 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4145 (chip <= CHELSIO_T5) ?
4146 le_intr_info : t6_le_intr_info))
56d36be4
DM
4147 t4_fatal_err(adap);
4148}
4149
4150/*
4151 * MPS interrupt handler.
4152 */
4153static void mps_intr_handler(struct adapter *adapter)
4154{
005b5717 4155 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
4156 { 0xffffff, "MPS Rx parity error", -1, 1 },
4157 { 0 }
4158 };
005b5717 4159 static const struct intr_info mps_tx_intr_info[] = {
837e4a42
HS
4160 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4161 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4162 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4163 -1, 1 },
4164 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4165 -1, 1 },
4166 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4167 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4168 { FRMERR_F, "MPS Tx framing error", -1, 1 },
56d36be4
DM
4169 { 0 }
4170 };
005b5717 4171 static const struct intr_info mps_trc_intr_info[] = {
837e4a42
HS
4172 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4173 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4174 -1, 1 },
4175 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
56d36be4
DM
4176 { 0 }
4177 };
005b5717 4178 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
4179 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4180 { 0 }
4181 };
005b5717 4182 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
4183 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4184 { 0 }
4185 };
005b5717 4186 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
4187 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4188 { 0 }
4189 };
005b5717 4190 static const struct intr_info mps_cls_intr_info[] = {
837e4a42
HS
4191 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4192 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4193 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
56d36be4
DM
4194 { 0 }
4195 };
4196
4197 int fat;
4198
837e4a42 4199 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
56d36be4 4200 mps_rx_intr_info) +
837e4a42 4201 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
56d36be4 4202 mps_tx_intr_info) +
837e4a42 4203 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
56d36be4 4204 mps_trc_intr_info) +
837e4a42 4205 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
56d36be4 4206 mps_stat_sram_intr_info) +
837e4a42 4207 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
56d36be4 4208 mps_stat_tx_intr_info) +
837e4a42 4209 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
56d36be4 4210 mps_stat_rx_intr_info) +
837e4a42 4211 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
56d36be4
DM
4212 mps_cls_intr_info);
4213
837e4a42
HS
4214 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4215 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
56d36be4
DM
4216 if (fat)
4217 t4_fatal_err(adapter);
4218}
4219
89c3a86c
HS
4220#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4221 ECC_UE_INT_CAUSE_F)
56d36be4
DM
4222
4223/*
4224 * EDC/MC interrupt handler.
4225 */
4226static void mem_intr_handler(struct adapter *adapter, int idx)
4227{
822dd8a8 4228 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
56d36be4
DM
4229
4230 unsigned int addr, cnt_addr, v;
4231
4232 if (idx <= MEM_EDC1) {
89c3a86c
HS
4233 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4234 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
822dd8a8
HS
4235 } else if (idx == MEM_MC) {
4236 if (is_t4(adapter->params.chip)) {
89c3a86c
HS
4237 addr = MC_INT_CAUSE_A;
4238 cnt_addr = MC_ECC_STATUS_A;
822dd8a8 4239 } else {
89c3a86c
HS
4240 addr = MC_P_INT_CAUSE_A;
4241 cnt_addr = MC_P_ECC_STATUS_A;
822dd8a8 4242 }
56d36be4 4243 } else {
89c3a86c
HS
4244 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4245 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
56d36be4
DM
4246 }
4247
4248 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
89c3a86c 4249 if (v & PERR_INT_CAUSE_F)
56d36be4
DM
4250 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4251 name[idx]);
89c3a86c
HS
4252 if (v & ECC_CE_INT_CAUSE_F) {
4253 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
56d36be4 4254
bf8ebb67
HS
4255 t4_edc_err_read(adapter, idx);
4256
89c3a86c 4257 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
56d36be4
DM
4258 if (printk_ratelimit())
4259 dev_warn(adapter->pdev_dev,
4260 "%u %s correctable ECC data error%s\n",
4261 cnt, name[idx], cnt > 1 ? "s" : "");
4262 }
89c3a86c 4263 if (v & ECC_UE_INT_CAUSE_F)
56d36be4
DM
4264 dev_alert(adapter->pdev_dev,
4265 "%s uncorrectable ECC data error\n", name[idx]);
4266
4267 t4_write_reg(adapter, addr, v);
89c3a86c 4268 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
56d36be4
DM
4269 t4_fatal_err(adapter);
4270}
4271
4272/*
4273 * MA interrupt handler.
4274 */
4275static void ma_intr_handler(struct adapter *adap)
4276{
89c3a86c 4277 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
56d36be4 4278
89c3a86c 4279 if (status & MEM_PERR_INT_CAUSE_F) {
56d36be4
DM
4280 dev_alert(adap->pdev_dev,
4281 "MA parity error, parity status %#x\n",
89c3a86c 4282 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
9bb59b96
HS
4283 if (is_t5(adap->params.chip))
4284 dev_alert(adap->pdev_dev,
4285 "MA parity error, parity status %#x\n",
4286 t4_read_reg(adap,
89c3a86c 4287 MA_PARITY_ERROR_STATUS2_A));
9bb59b96 4288 }
89c3a86c
HS
4289 if (status & MEM_WRAP_INT_CAUSE_F) {
4290 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
56d36be4
DM
4291 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4292 "client %u to address %#x\n",
89c3a86c
HS
4293 MEM_WRAP_CLIENT_NUM_G(v),
4294 MEM_WRAP_ADDRESS_G(v) << 4);
56d36be4 4295 }
89c3a86c 4296 t4_write_reg(adap, MA_INT_CAUSE_A, status);
56d36be4
DM
4297 t4_fatal_err(adap);
4298}
4299
4300/*
4301 * SMB interrupt handler.
4302 */
4303static void smb_intr_handler(struct adapter *adap)
4304{
005b5717 4305 static const struct intr_info smb_intr_info[] = {
0d804338
HS
4306 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4307 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4308 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
56d36be4
DM
4309 { 0 }
4310 };
4311
0d804338 4312 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
56d36be4
DM
4313 t4_fatal_err(adap);
4314}
4315
4316/*
4317 * NC-SI interrupt handler.
4318 */
4319static void ncsi_intr_handler(struct adapter *adap)
4320{
005b5717 4321 static const struct intr_info ncsi_intr_info[] = {
0d804338
HS
4322 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4323 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4324 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4325 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
56d36be4
DM
4326 { 0 }
4327 };
4328
0d804338 4329 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
56d36be4
DM
4330 t4_fatal_err(adap);
4331}
4332
4333/*
4334 * XGMAC interrupt handler.
4335 */
4336static void xgmac_intr_handler(struct adapter *adap, int port)
4337{
0a57a536
SR
4338 u32 v, int_cause_reg;
4339
d14807dd 4340 if (is_t4(adap->params.chip))
0d804338 4341 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
0a57a536 4342 else
0d804338 4343 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
0a57a536
SR
4344
4345 v = t4_read_reg(adap, int_cause_reg);
56d36be4 4346
0d804338 4347 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
56d36be4
DM
4348 if (!v)
4349 return;
4350
0d804338 4351 if (v & TXFIFO_PRTY_ERR_F)
56d36be4
DM
4352 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4353 port);
0d804338 4354 if (v & RXFIFO_PRTY_ERR_F)
56d36be4
DM
4355 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4356 port);
0d804338 4357 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
56d36be4
DM
4358 t4_fatal_err(adap);
4359}
4360
4361/*
4362 * PL interrupt handler.
4363 */
4364static void pl_intr_handler(struct adapter *adap)
4365{
005b5717 4366 static const struct intr_info pl_intr_info[] = {
0d804338
HS
4367 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4368 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
56d36be4
DM
4369 { 0 }
4370 };
4371
0d804338 4372 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
56d36be4
DM
4373 t4_fatal_err(adap);
4374}
4375
0d804338
HS
4376#define PF_INTR_MASK (PFSW_F)
4377#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4378 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4379 CPL_SWITCH_F | SGE_F | ULP_TX_F)
56d36be4
DM
4380
4381/**
4382 * t4_slow_intr_handler - control path interrupt handler
4383 * @adapter: the adapter
4384 *
4385 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4386 * The designation 'slow' is because it involves register reads, while
4387 * data interrupts typically don't involve any MMIOs.
4388 */
4389int t4_slow_intr_handler(struct adapter *adapter)
4390{
0d804338 4391 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
56d36be4
DM
4392
4393 if (!(cause & GLBL_INTR_MASK))
4394 return 0;
0d804338 4395 if (cause & CIM_F)
56d36be4 4396 cim_intr_handler(adapter);
0d804338 4397 if (cause & MPS_F)
56d36be4 4398 mps_intr_handler(adapter);
0d804338 4399 if (cause & NCSI_F)
56d36be4 4400 ncsi_intr_handler(adapter);
0d804338 4401 if (cause & PL_F)
56d36be4 4402 pl_intr_handler(adapter);
0d804338 4403 if (cause & SMB_F)
56d36be4 4404 smb_intr_handler(adapter);
0d804338 4405 if (cause & XGMAC0_F)
56d36be4 4406 xgmac_intr_handler(adapter, 0);
0d804338 4407 if (cause & XGMAC1_F)
56d36be4 4408 xgmac_intr_handler(adapter, 1);
0d804338 4409 if (cause & XGMAC_KR0_F)
56d36be4 4410 xgmac_intr_handler(adapter, 2);
0d804338 4411 if (cause & XGMAC_KR1_F)
56d36be4 4412 xgmac_intr_handler(adapter, 3);
0d804338 4413 if (cause & PCIE_F)
56d36be4 4414 pcie_intr_handler(adapter);
0d804338 4415 if (cause & MC_F)
56d36be4 4416 mem_intr_handler(adapter, MEM_MC);
3ccc6cf7 4417 if (is_t5(adapter->params.chip) && (cause & MC1_F))
822dd8a8 4418 mem_intr_handler(adapter, MEM_MC1);
0d804338 4419 if (cause & EDC0_F)
56d36be4 4420 mem_intr_handler(adapter, MEM_EDC0);
0d804338 4421 if (cause & EDC1_F)
56d36be4 4422 mem_intr_handler(adapter, MEM_EDC1);
0d804338 4423 if (cause & LE_F)
56d36be4 4424 le_intr_handler(adapter);
0d804338 4425 if (cause & TP_F)
56d36be4 4426 tp_intr_handler(adapter);
0d804338 4427 if (cause & MA_F)
56d36be4 4428 ma_intr_handler(adapter);
0d804338 4429 if (cause & PM_TX_F)
56d36be4 4430 pmtx_intr_handler(adapter);
0d804338 4431 if (cause & PM_RX_F)
56d36be4 4432 pmrx_intr_handler(adapter);
0d804338 4433 if (cause & ULP_RX_F)
56d36be4 4434 ulprx_intr_handler(adapter);
0d804338 4435 if (cause & CPL_SWITCH_F)
56d36be4 4436 cplsw_intr_handler(adapter);
0d804338 4437 if (cause & SGE_F)
56d36be4 4438 sge_intr_handler(adapter);
0d804338 4439 if (cause & ULP_TX_F)
56d36be4
DM
4440 ulptx_intr_handler(adapter);
4441
4442 /* Clear the interrupts just processed for which we are the master. */
0d804338
HS
4443 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4444 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
56d36be4
DM
4445 return 1;
4446}
4447
4448/**
4449 * t4_intr_enable - enable interrupts
4450 * @adapter: the adapter whose interrupts should be enabled
4451 *
4452 * Enable PF-specific interrupts for the calling function and the top-level
4453 * interrupt concentrator for global interrupts. Interrupts are already
4454 * enabled at each module, here we just enable the roots of the interrupt
4455 * hierarchies.
4456 *
4457 * Note: this function should be called only when the driver manages
4458 * non PF-specific interrupts from the various HW modules. Only one PCI
4459 * function at a time should be doing this.
4460 */
4461void t4_intr_enable(struct adapter *adapter)
4462{
3ccc6cf7 4463 u32 val = 0;
d86bd29e
HS
4464 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4465 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4466 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4467
3ccc6cf7
HS
4468 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4469 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
f612b815
HS
4470 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4471 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3ccc6cf7 4472 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
f612b815
HS
4473 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4474 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4475 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3ccc6cf7 4476 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
0d804338
HS
4477 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4478 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
56d36be4
DM
4479}
4480
4481/**
4482 * t4_intr_disable - disable interrupts
4483 * @adapter: the adapter whose interrupts should be disabled
4484 *
4485 * Disable interrupts. We only disable the top-level interrupt
4486 * concentrators. The caller must be a PCI function managing global
4487 * interrupts.
4488 */
4489void t4_intr_disable(struct adapter *adapter)
4490{
d86bd29e
HS
4491 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4492 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4493 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4494
0d804338
HS
4495 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4496 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
56d36be4
DM
4497}
4498
56d36be4
DM
4499/**
4500 * t4_config_rss_range - configure a portion of the RSS mapping table
4501 * @adapter: the adapter
4502 * @mbox: mbox to use for the FW command
4503 * @viid: virtual interface whose RSS subtable is to be written
4504 * @start: start entry in the table to write
4505 * @n: how many table entries to write
4506 * @rspq: values for the response queue lookup table
4507 * @nrspq: number of values in @rspq
4508 *
4509 * Programs the selected part of the VI's RSS mapping table with the
4510 * provided values. If @nrspq < @n the supplied values are used repeatedly
4511 * until the full table range is populated.
4512 *
4513 * The caller must ensure the values in @rspq are in the range allowed for
4514 * @viid.
4515 */
4516int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4517 int start, int n, const u16 *rspq, unsigned int nrspq)
4518{
4519 int ret;
4520 const u16 *rsp = rspq;
4521 const u16 *rsp_end = rspq + nrspq;
4522 struct fw_rss_ind_tbl_cmd cmd;
4523
4524 memset(&cmd, 0, sizeof(cmd));
f404f80c 4525 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
e2ac9628 4526 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2e1a3f0 4527 FW_RSS_IND_TBL_CMD_VIID_V(viid));
f404f80c 4528 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
56d36be4
DM
4529
4530 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4531 while (n > 0) {
4532 int nq = min(n, 32);
4533 __be32 *qp = &cmd.iq0_to_iq2;
4534
f404f80c
HS
4535 cmd.niqid = cpu_to_be16(nq);
4536 cmd.startidx = cpu_to_be16(start);
56d36be4
DM
4537
4538 start += nq;
4539 n -= nq;
4540
4541 while (nq > 0) {
4542 unsigned int v;
4543
b2e1a3f0 4544 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
56d36be4
DM
4545 if (++rsp >= rsp_end)
4546 rsp = rspq;
b2e1a3f0 4547 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
56d36be4
DM
4548 if (++rsp >= rsp_end)
4549 rsp = rspq;
b2e1a3f0 4550 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
56d36be4
DM
4551 if (++rsp >= rsp_end)
4552 rsp = rspq;
4553
f404f80c 4554 *qp++ = cpu_to_be32(v);
56d36be4
DM
4555 nq -= 3;
4556 }
4557
4558 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4559 if (ret)
4560 return ret;
4561 }
4562 return 0;
4563}
4564
4565/**
4566 * t4_config_glbl_rss - configure the global RSS mode
4567 * @adapter: the adapter
4568 * @mbox: mbox to use for the FW command
4569 * @mode: global RSS mode
4570 * @flags: mode-specific flags
4571 *
4572 * Sets the global RSS mode.
4573 */
4574int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4575 unsigned int flags)
4576{
4577 struct fw_rss_glb_config_cmd c;
4578
4579 memset(&c, 0, sizeof(c));
f404f80c
HS
4580 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4581 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4582 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
56d36be4 4583 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
f404f80c
HS
4584 c.u.manual.mode_pkd =
4585 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
56d36be4
DM
4586 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4587 c.u.basicvirtual.mode_pkd =
f404f80c
HS
4588 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4589 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
56d36be4
DM
4590 } else
4591 return -EINVAL;
4592 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4593}
4594
c035e183
HS
4595/**
4596 * t4_config_vi_rss - configure per VI RSS settings
4597 * @adapter: the adapter
4598 * @mbox: mbox to use for the FW command
4599 * @viid: the VI id
4600 * @flags: RSS flags
4601 * @defq: id of the default RSS queue for the VI.
4602 *
4603 * Configures VI-specific RSS properties.
4604 */
4605int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4606 unsigned int flags, unsigned int defq)
4607{
4608 struct fw_rss_vi_config_cmd c;
4609
4610 memset(&c, 0, sizeof(c));
4611 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4612 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4613 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4614 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4615 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4616 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4617 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4618}
4619
688ea5fe
HS
4620/* Read an RSS table row */
4621static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4622{
4623 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4624 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4625 5, 0, val);
4626}
4627
4628/**
4629 * t4_read_rss - read the contents of the RSS mapping table
4630 * @adapter: the adapter
4631 * @map: holds the contents of the RSS mapping table
4632 *
4633 * Reads the contents of the RSS hash->queue mapping table.
4634 */
4635int t4_read_rss(struct adapter *adapter, u16 *map)
4636{
4637 u32 val;
4638 int i, ret;
4639
4640 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4641 ret = rd_rss_row(adapter, i, &val);
4642 if (ret)
4643 return ret;
4644 *map++ = LKPTBLQUEUE0_G(val);
4645 *map++ = LKPTBLQUEUE1_G(val);
4646 }
4647 return 0;
4648}
4649
0b2c2a93
HS
4650static unsigned int t4_use_ldst(struct adapter *adap)
4651{
4652 return (adap->flags & FW_OK) || !adap->use_bd;
4653}
4654
c1e9af0c
HS
4655/**
4656 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4657 * @adap: the adapter
4658 * @vals: where the indirect register values are stored/written
4659 * @nregs: how many indirect registers to read/write
4660 * @start_idx: index of first indirect register to read/write
4661 * @rw: Read (1) or Write (0)
4662 *
4663 * Access TP PIO registers through LDST
4664 */
4665static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4666 unsigned int start_index, unsigned int rw)
4667{
4668 int ret, i;
4669 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4670 struct fw_ldst_cmd c;
4671
4672 for (i = 0 ; i < nregs; i++) {
4673 memset(&c, 0, sizeof(c));
4674 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4675 FW_CMD_REQUEST_F |
4676 (rw ? FW_CMD_READ_F :
4677 FW_CMD_WRITE_F) |
4678 FW_LDST_CMD_ADDRSPACE_V(cmd));
4679 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4680
4681 c.u.addrval.addr = cpu_to_be32(start_index + i);
4682 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4683 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4684 if (!ret && rw)
4685 vals[i] = be32_to_cpu(c.u.addrval.val);
4686 }
4687}
4688
688ea5fe
HS
4689/**
4690 * t4_read_rss_key - read the global RSS key
4691 * @adap: the adapter
4692 * @key: 10-entry array holding the 320-bit RSS key
4693 *
4694 * Reads the global 320-bit RSS key.
4695 */
4696void t4_read_rss_key(struct adapter *adap, u32 *key)
4697{
0b2c2a93 4698 if (t4_use_ldst(adap))
c1e9af0c
HS
4699 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4700 else
4701 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4702 TP_RSS_SECRET_KEY0_A);
688ea5fe
HS
4703}
4704
4705/**
4706 * t4_write_rss_key - program one of the RSS keys
4707 * @adap: the adapter
4708 * @key: 10-entry array holding the 320-bit RSS key
4709 * @idx: which RSS key to write
4710 *
4711 * Writes one of the RSS keys with the given 320-bit value. If @idx is
4712 * 0..15 the corresponding entry in the RSS key table is written,
4713 * otherwise the global RSS key is written.
4714 */
4715void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4716{
3ccc6cf7
HS
4717 u8 rss_key_addr_cnt = 16;
4718 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4719
4720 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4721 * allows access to key addresses 16-63 by using KeyWrAddrX
4722 * as index[5:4](upper 2) into key table
4723 */
4724 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4725 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4726 rss_key_addr_cnt = 32;
4727
0b2c2a93 4728 if (t4_use_ldst(adap))
c1e9af0c
HS
4729 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4730 else
4731 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4732 TP_RSS_SECRET_KEY0_A);
3ccc6cf7
HS
4733
4734 if (idx >= 0 && idx < rss_key_addr_cnt) {
4735 if (rss_key_addr_cnt > 16)
4736 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4737 KEYWRADDRX_V(idx >> 4) |
4738 T6_VFWRADDR_V(idx) | KEYWREN_F);
4739 else
4740 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4741 KEYWRADDR_V(idx) | KEYWREN_F);
4742 }
688ea5fe
HS
4743}
4744
4745/**
4746 * t4_read_rss_pf_config - read PF RSS Configuration Table
4747 * @adapter: the adapter
4748 * @index: the entry in the PF RSS table to read
4749 * @valp: where to store the returned value
4750 *
4751 * Reads the PF RSS Configuration Table at the specified index and returns
4752 * the value found there.
4753 */
4754void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4755 u32 *valp)
4756{
0b2c2a93 4757 if (t4_use_ldst(adapter))
c1e9af0c
HS
4758 t4_fw_tp_pio_rw(adapter, valp, 1,
4759 TP_RSS_PF0_CONFIG_A + index, 1);
4760 else
4761 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4762 valp, 1, TP_RSS_PF0_CONFIG_A + index);
688ea5fe
HS
4763}
4764
4765/**
4766 * t4_read_rss_vf_config - read VF RSS Configuration Table
4767 * @adapter: the adapter
4768 * @index: the entry in the VF RSS table to read
4769 * @vfl: where to store the returned VFL
4770 * @vfh: where to store the returned VFH
4771 *
4772 * Reads the VF RSS Configuration Table at the specified index and returns
4773 * the (VFL, VFH) values found there.
4774 */
4775void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4776 u32 *vfl, u32 *vfh)
4777{
4778 u32 vrt, mask, data;
4779
3ccc6cf7
HS
4780 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4781 mask = VFWRADDR_V(VFWRADDR_M);
4782 data = VFWRADDR_V(index);
4783 } else {
4784 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
4785 data = T6_VFWRADDR_V(index);
4786 }
688ea5fe
HS
4787
4788 /* Request that the index'th VF Table values be read into VFL/VFH.
4789 */
4790 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4791 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4792 vrt |= data | VFRDEN_F;
4793 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4794
4795 /* Grab the VFL/VFH values ...
4796 */
0b2c2a93 4797 if (t4_use_ldst(adapter)) {
c1e9af0c
HS
4798 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4799 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4800 } else {
4801 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4802 vfl, 1, TP_RSS_VFL_CONFIG_A);
4803 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4804 vfh, 1, TP_RSS_VFH_CONFIG_A);
4805 }
688ea5fe
HS
4806}
4807
4808/**
4809 * t4_read_rss_pf_map - read PF RSS Map
4810 * @adapter: the adapter
4811 *
4812 * Reads the PF RSS Map register and returns its value.
4813 */
4814u32 t4_read_rss_pf_map(struct adapter *adapter)
4815{
4816 u32 pfmap;
4817
0b2c2a93 4818 if (t4_use_ldst(adapter))
c1e9af0c
HS
4819 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4820 else
4821 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4822 &pfmap, 1, TP_RSS_PF_MAP_A);
688ea5fe
HS
4823 return pfmap;
4824}
4825
4826/**
4827 * t4_read_rss_pf_mask - read PF RSS Mask
4828 * @adapter: the adapter
4829 *
4830 * Reads the PF RSS Mask register and returns its value.
4831 */
4832u32 t4_read_rss_pf_mask(struct adapter *adapter)
4833{
4834 u32 pfmask;
4835
0b2c2a93 4836 if (t4_use_ldst(adapter))
c1e9af0c
HS
4837 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4838 else
4839 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4840 &pfmask, 1, TP_RSS_PF_MSK_A);
688ea5fe
HS
4841 return pfmask;
4842}
4843
56d36be4
DM
4844/**
4845 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
4846 * @adap: the adapter
4847 * @v4: holds the TCP/IP counter values
4848 * @v6: holds the TCP/IPv6 counter values
4849 *
4850 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4851 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4852 */
4853void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4854 struct tp_tcp_stats *v6)
4855{
837e4a42 4856 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
56d36be4 4857
837e4a42 4858#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
56d36be4
DM
4859#define STAT(x) val[STAT_IDX(x)]
4860#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4861
4862 if (v4) {
837e4a42
HS
4863 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4864 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
a4cfd929
HS
4865 v4->tcp_out_rsts = STAT(OUT_RST);
4866 v4->tcp_in_segs = STAT64(IN_SEG);
4867 v4->tcp_out_segs = STAT64(OUT_SEG);
4868 v4->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4869 }
4870 if (v6) {
837e4a42
HS
4871 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4872 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
a4cfd929
HS
4873 v6->tcp_out_rsts = STAT(OUT_RST);
4874 v6->tcp_in_segs = STAT64(IN_SEG);
4875 v6->tcp_out_segs = STAT64(OUT_SEG);
4876 v6->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4877 }
4878#undef STAT64
4879#undef STAT
4880#undef STAT_IDX
4881}
4882
a4cfd929
HS
4883/**
4884 * t4_tp_get_err_stats - read TP's error MIB counters
4885 * @adap: the adapter
4886 * @st: holds the counter values
4887 *
4888 * Returns the values of TP's error counters.
4889 */
4890void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4891{
df459ebc
HS
4892 int nchan = adap->params.arch.nchan;
4893
4894 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4895 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4896 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4897 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4898 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4899 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4900 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4901 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4902 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4903 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4904 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4905 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4906 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4907 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4908 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4909 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4910
a4cfd929
HS
4911 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4912 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4913}
4914
a6222975
HS
4915/**
4916 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4917 * @adap: the adapter
4918 * @st: holds the counter values
4919 *
4920 * Returns the values of TP's CPL counters.
4921 */
4922void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4923{
df459ebc
HS
4924 int nchan = adap->params.arch.nchan;
4925
4926 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4927 nchan, TP_MIB_CPL_IN_REQ_0_A);
4928 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4929 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4930
a6222975
HS
4931}
4932
a4cfd929
HS
4933/**
4934 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4935 * @adap: the adapter
4936 * @st: holds the counter values
4937 *
4938 * Returns the values of TP's RDMA counters.
4939 */
4940void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4941{
4942 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4943 2, TP_MIB_RQE_DFR_PKT_A);
4944}
4945
a6222975
HS
4946/**
4947 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4948 * @adap: the adapter
4949 * @idx: the port index
4950 * @st: holds the counter values
4951 *
4952 * Returns the values of TP's FCoE counters for the selected port.
4953 */
4954void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4955 struct tp_fcoe_stats *st)
4956{
4957 u32 val[2];
4958
4959 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4960 1, TP_MIB_FCOE_DDP_0_A + idx);
4961 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4962 1, TP_MIB_FCOE_DROP_0_A + idx);
4963 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4964 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4965 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4966}
4967
a4cfd929
HS
4968/**
4969 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4970 * @adap: the adapter
4971 * @st: holds the counter values
4972 *
4973 * Returns the values of TP's counters for non-TCP directly-placed packets.
4974 */
4975void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4976{
4977 u32 val[4];
4978
4979 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4980 TP_MIB_USM_PKTS_A);
4981 st->frames = val[0];
4982 st->drops = val[1];
4983 st->octets = ((u64)val[2] << 32) | val[3];
4984}
4985
56d36be4
DM
4986/**
4987 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4988 * @adap: the adapter
4989 * @mtus: where to store the MTU values
4990 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4991 *
4992 * Reads the HW path MTU table.
4993 */
4994void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4995{
4996 u32 v;
4997 int i;
4998
4999 for (i = 0; i < NMTUS; ++i) {
837e4a42
HS
5000 t4_write_reg(adap, TP_MTU_TABLE_A,
5001 MTUINDEX_V(0xff) | MTUVALUE_V(i));
5002 v = t4_read_reg(adap, TP_MTU_TABLE_A);
5003 mtus[i] = MTUVALUE_G(v);
56d36be4 5004 if (mtu_log)
837e4a42 5005 mtu_log[i] = MTUWIDTH_G(v);
56d36be4
DM
5006 }
5007}
5008
bad43792
HS
5009/**
5010 * t4_read_cong_tbl - reads the congestion control table
5011 * @adap: the adapter
5012 * @incr: where to store the alpha values
5013 *
5014 * Reads the additive increments programmed into the HW congestion
5015 * control table.
5016 */
5017void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5018{
5019 unsigned int mtu, w;
5020
5021 for (mtu = 0; mtu < NMTUS; ++mtu)
5022 for (w = 0; w < NCCTRL_WIN; ++w) {
5023 t4_write_reg(adap, TP_CCTRL_TABLE_A,
5024 ROWINDEX_V(0xffff) | (mtu << 5) | w);
5025 incr[mtu][w] = (u16)t4_read_reg(adap,
5026 TP_CCTRL_TABLE_A) & 0x1fff;
5027 }
5028}
5029
636f9d37
VP
5030/**
5031 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5032 * @adap: the adapter
5033 * @addr: the indirect TP register address
5034 * @mask: specifies the field within the register to modify
5035 * @val: new value for the field
5036 *
5037 * Sets a field of an indirect TP register to the given value.
5038 */
5039void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5040 unsigned int mask, unsigned int val)
5041{
837e4a42
HS
5042 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5043 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5044 t4_write_reg(adap, TP_PIO_DATA_A, val);
636f9d37
VP
5045}
5046
56d36be4
DM
5047/**
5048 * init_cong_ctrl - initialize congestion control parameters
5049 * @a: the alpha values for congestion control
5050 * @b: the beta values for congestion control
5051 *
5052 * Initialize the congestion control parameters.
5053 */
91744948 5054static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
5055{
5056 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5057 a[9] = 2;
5058 a[10] = 3;
5059 a[11] = 4;
5060 a[12] = 5;
5061 a[13] = 6;
5062 a[14] = 7;
5063 a[15] = 8;
5064 a[16] = 9;
5065 a[17] = 10;
5066 a[18] = 14;
5067 a[19] = 17;
5068 a[20] = 21;
5069 a[21] = 25;
5070 a[22] = 30;
5071 a[23] = 35;
5072 a[24] = 45;
5073 a[25] = 60;
5074 a[26] = 80;
5075 a[27] = 100;
5076 a[28] = 200;
5077 a[29] = 300;
5078 a[30] = 400;
5079 a[31] = 500;
5080
5081 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5082 b[9] = b[10] = 1;
5083 b[11] = b[12] = 2;
5084 b[13] = b[14] = b[15] = b[16] = 3;
5085 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5086 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5087 b[28] = b[29] = 6;
5088 b[30] = b[31] = 7;
5089}
5090
5091/* The minimum additive increment value for the congestion control table */
5092#define CC_MIN_INCR 2U
5093
5094/**
5095 * t4_load_mtus - write the MTU and congestion control HW tables
5096 * @adap: the adapter
5097 * @mtus: the values for the MTU table
5098 * @alpha: the values for the congestion control alpha parameter
5099 * @beta: the values for the congestion control beta parameter
5100 *
5101 * Write the HW MTU table with the supplied MTUs and the high-speed
5102 * congestion control table with the supplied alpha, beta, and MTUs.
5103 * We write the two tables together because the additive increments
5104 * depend on the MTUs.
5105 */
5106void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5107 const unsigned short *alpha, const unsigned short *beta)
5108{
5109 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5110 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5111 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5112 28672, 40960, 57344, 81920, 114688, 163840, 229376
5113 };
5114
5115 unsigned int i, w;
5116
5117 for (i = 0; i < NMTUS; ++i) {
5118 unsigned int mtu = mtus[i];
5119 unsigned int log2 = fls(mtu);
5120
5121 if (!(mtu & ((1 << log2) >> 2))) /* round */
5122 log2--;
837e4a42
HS
5123 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5124 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
56d36be4
DM
5125
5126 for (w = 0; w < NCCTRL_WIN; ++w) {
5127 unsigned int inc;
5128
5129 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5130 CC_MIN_INCR);
5131
837e4a42 5132 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
56d36be4
DM
5133 (w << 16) | (beta[w] << 13) | inc);
5134 }
5135 }
5136}
5137
7864026b
HS
5138/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5139 * clocks. The formula is
5140 *
5141 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5142 *
5143 * which is equivalent to
5144 *
5145 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5146 */
5147static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5148{
5149 u64 v = bytes256 * adap->params.vpd.cclk;
5150
5151 return v * 62 + v / 2;
5152}
5153
5154/**
5155 * t4_get_chan_txrate - get the current per channel Tx rates
5156 * @adap: the adapter
5157 * @nic_rate: rates for NIC traffic
5158 * @ofld_rate: rates for offloaded traffic
5159 *
5160 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5161 * for each channel.
5162 */
5163void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5164{
5165 u32 v;
5166
5167 v = t4_read_reg(adap, TP_TX_TRATE_A);
5168 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5169 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5170 if (adap->params.arch.nchan == NCHAN) {
5171 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5172 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5173 }
5174
5175 v = t4_read_reg(adap, TP_TX_ORATE_A);
5176 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5177 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5178 if (adap->params.arch.nchan == NCHAN) {
5179 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5180 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5181 }
5182}
5183
8e3d04fd
HS
5184/**
5185 * t4_set_trace_filter - configure one of the tracing filters
5186 * @adap: the adapter
5187 * @tp: the desired trace filter parameters
5188 * @idx: which filter to configure
5189 * @enable: whether to enable or disable the filter
5190 *
5191 * Configures one of the tracing filters available in HW. If @enable is
5192 * %0 @tp is not examined and may be %NULL. The user is responsible to
5193 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5194 */
5195int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5196 int idx, int enable)
5197{
5198 int i, ofst = idx * 4;
5199 u32 data_reg, mask_reg, cfg;
5200 u32 multitrc = TRCMULTIFILTER_F;
5201
5202 if (!enable) {
5203 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5204 return 0;
5205 }
5206
5207 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5208 if (cfg & TRCMULTIFILTER_F) {
5209 /* If multiple tracers are enabled, then maximum
5210 * capture size is 2.5KB (FIFO size of a single channel)
5211 * minus 2 flits for CPL_TRACE_PKT header.
5212 */
5213 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5214 return -EINVAL;
5215 } else {
5216 /* If multiple tracers are disabled, to avoid deadlocks
5217 * maximum packet capture size of 9600 bytes is recommended.
5218 * Also in this mode, only trace0 can be enabled and running.
5219 */
5220 multitrc = 0;
5221 if (tp->snap_len > 9600 || idx)
5222 return -EINVAL;
5223 }
5224
5225 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5226 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5227 tp->min_len > TFMINPKTSIZE_M)
5228 return -EINVAL;
5229
5230 /* stop the tracer we'll be changing */
5231 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5232
5233 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5234 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5235 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5236
5237 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5238 t4_write_reg(adap, data_reg, tp->data[i]);
5239 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5240 }
5241 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5242 TFCAPTUREMAX_V(tp->snap_len) |
5243 TFMINPKTSIZE_V(tp->min_len));
5244 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5245 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5246 (is_t4(adap->params.chip) ?
5247 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5248 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5249 T5_TFINVERTMATCH_V(tp->invert)));
5250
5251 return 0;
5252}
5253
5254/**
5255 * t4_get_trace_filter - query one of the tracing filters
5256 * @adap: the adapter
5257 * @tp: the current trace filter parameters
5258 * @idx: which trace filter to query
5259 * @enabled: non-zero if the filter is enabled
5260 *
5261 * Returns the current settings of one of the HW tracing filters.
5262 */
5263void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5264 int *enabled)
5265{
5266 u32 ctla, ctlb;
5267 int i, ofst = idx * 4;
5268 u32 data_reg, mask_reg;
5269
5270 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5271 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5272
5273 if (is_t4(adap->params.chip)) {
5274 *enabled = !!(ctla & TFEN_F);
5275 tp->port = TFPORT_G(ctla);
5276 tp->invert = !!(ctla & TFINVERTMATCH_F);
5277 } else {
5278 *enabled = !!(ctla & T5_TFEN_F);
5279 tp->port = T5_TFPORT_G(ctla);
5280 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5281 }
5282 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5283 tp->min_len = TFMINPKTSIZE_G(ctlb);
5284 tp->skip_ofst = TFOFFSET_G(ctla);
5285 tp->skip_len = TFLENGTH_G(ctla);
5286
5287 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5288 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5289 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5290
5291 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5292 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5293 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5294 }
5295}
5296
b3bbe36a
HS
5297/**
5298 * t4_pmtx_get_stats - returns the HW stats from PMTX
5299 * @adap: the adapter
5300 * @cnt: where to store the count statistics
5301 * @cycles: where to store the cycle statistics
5302 *
5303 * Returns performance statistics from PMTX.
5304 */
5305void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5306{
5307 int i;
5308 u32 data[2];
5309
44588560 5310 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5311 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5312 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5313 if (is_t4(adap->params.chip)) {
5314 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5315 } else {
5316 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5317 PM_TX_DBG_DATA_A, data, 2,
5318 PM_TX_DBG_STAT_MSB_A);
5319 cycles[i] = (((u64)data[0] << 32) | data[1]);
5320 }
5321 }
5322}
5323
5324/**
5325 * t4_pmrx_get_stats - returns the HW stats from PMRX
5326 * @adap: the adapter
5327 * @cnt: where to store the count statistics
5328 * @cycles: where to store the cycle statistics
5329 *
5330 * Returns performance statistics from PMRX.
5331 */
5332void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5333{
5334 int i;
5335 u32 data[2];
5336
44588560 5337 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5338 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5339 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5340 if (is_t4(adap->params.chip)) {
5341 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5342 } else {
5343 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5344 PM_RX_DBG_DATA_A, data, 2,
5345 PM_RX_DBG_STAT_MSB_A);
5346 cycles[i] = (((u64)data[0] << 32) | data[1]);
5347 }
5348 }
5349}
5350
56d36be4 5351/**
145ef8a5 5352 * t4_get_mps_bg_map - return the buffer groups associated with a port
56d36be4
DM
5353 * @adap: the adapter
5354 * @idx: the port index
5355 *
5356 * Returns a bitmap indicating which MPS buffer groups are associated
5357 * with the given port. Bit i is set if buffer group i is used by the
5358 * port.
5359 */
145ef8a5 5360unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
56d36be4 5361{
837e4a42 5362 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
56d36be4
DM
5363
5364 if (n == 0)
5365 return idx == 0 ? 0xf : 0;
e9faeab8
HS
5366 /* In T6 (which is a 2 port card),
5367 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5368 * For 2 port T4/T5 adapter,
5369 * port 0 is mapped to channel 0 and 1,
5370 * port 1 is mapped to channel 2 and 3.
5371 */
5372 if ((n == 1) &&
5373 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
56d36be4
DM
5374 return idx < 2 ? (3 << (2 * idx)) : 0;
5375 return 1 << idx;
5376}
5377
72aca4bf
KS
5378/**
5379 * t4_get_port_type_description - return Port Type string description
5380 * @port_type: firmware Port Type enumeration
5381 */
5382const char *t4_get_port_type_description(enum fw_port_type port_type)
5383{
5384 static const char *const port_type_description[] = {
5385 "R XFI",
5386 "R XAUI",
5387 "T SGMII",
5388 "T XFI",
5389 "T XAUI",
5390 "KX4",
5391 "CX4",
5392 "KX",
5393 "KR",
5394 "R SFP+",
5395 "KR/KX",
5396 "KR/KX/KX4",
5397 "R QSFP_10G",
5aa80e51 5398 "R QSA",
72aca4bf
KS
5399 "R QSFP",
5400 "R BP40_BA",
5401 };
5402
5403 if (port_type < ARRAY_SIZE(port_type_description))
5404 return port_type_description[port_type];
5405 return "UNKNOWN";
5406}
5407
a4cfd929
HS
5408/**
5409 * t4_get_port_stats_offset - collect port stats relative to a previous
5410 * snapshot
5411 * @adap: The adapter
5412 * @idx: The port
5413 * @stats: Current stats to fill
5414 * @offset: Previous stats snapshot
5415 */
5416void t4_get_port_stats_offset(struct adapter *adap, int idx,
5417 struct port_stats *stats,
5418 struct port_stats *offset)
5419{
5420 u64 *s, *o;
5421 int i;
5422
5423 t4_get_port_stats(adap, idx, stats);
5424 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5425 i < (sizeof(struct port_stats) / sizeof(u64));
5426 i++, s++, o++)
5427 *s -= *o;
5428}
5429
56d36be4
DM
5430/**
5431 * t4_get_port_stats - collect port statistics
5432 * @adap: the adapter
5433 * @idx: the port index
5434 * @p: the stats structure to fill
5435 *
5436 * Collect statistics related to the given port from HW.
5437 */
5438void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5439{
145ef8a5 5440 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4
DM
5441
5442#define GET_STAT(name) \
0a57a536 5443 t4_read_reg64(adap, \
d14807dd 5444 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 5445 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
5446#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5447
5448 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5449 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5450 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5451 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5452 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5453 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5454 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5455 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5456 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5457 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5458 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5459 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5460 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5461 p->tx_drop = GET_STAT(TX_PORT_DROP);
5462 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5463 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5464 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5465 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5466 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5467 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5468 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5469 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5470 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5471
5472 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5473 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5474 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5475 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5476 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5477 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5478 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5479 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5480 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5481 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5482 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5483 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5484 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5485 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5486 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5487 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5488 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5489 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5490 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5491 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5492 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5493 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5494 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5495 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5496 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5497 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5498 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5499
5500 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5501 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5502 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5503 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5504 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5505 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5506 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5507 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5508
5509#undef GET_STAT
5510#undef GET_STAT_COM
5511}
5512
56d36be4 5513/**
65046e84 5514 * t4_get_lb_stats - collect loopback port statistics
56d36be4 5515 * @adap: the adapter
65046e84
HS
5516 * @idx: the loopback port index
5517 * @p: the stats structure to fill
56d36be4 5518 *
65046e84 5519 * Return HW statistics for the given loopback port.
56d36be4 5520 */
65046e84 5521void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
56d36be4 5522{
65046e84 5523 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4 5524
65046e84
HS
5525#define GET_STAT(name) \
5526 t4_read_reg64(adap, \
0d804338 5527 (is_t4(adap->params.chip) ? \
65046e84
HS
5528 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5529 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5530#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
56d36be4 5531
65046e84
HS
5532 p->octets = GET_STAT(BYTES);
5533 p->frames = GET_STAT(FRAMES);
5534 p->bcast_frames = GET_STAT(BCAST);
5535 p->mcast_frames = GET_STAT(MCAST);
5536 p->ucast_frames = GET_STAT(UCAST);
5537 p->error_frames = GET_STAT(ERROR);
5538
5539 p->frames_64 = GET_STAT(64B);
5540 p->frames_65_127 = GET_STAT(65B_127B);
5541 p->frames_128_255 = GET_STAT(128B_255B);
5542 p->frames_256_511 = GET_STAT(256B_511B);
5543 p->frames_512_1023 = GET_STAT(512B_1023B);
5544 p->frames_1024_1518 = GET_STAT(1024B_1518B);
5545 p->frames_1519_max = GET_STAT(1519B_MAX);
5546 p->drop = GET_STAT(DROP_FRAMES);
5547
5548 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5549 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5550 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5551 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5552 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5553 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5554 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5555 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
56d36be4 5556
65046e84
HS
5557#undef GET_STAT
5558#undef GET_STAT_COM
56d36be4
DM
5559}
5560
f2b7e78d
VP
5561/* t4_mk_filtdelwr - create a delete filter WR
5562 * @ftid: the filter ID
5563 * @wr: the filter work request to populate
5564 * @qid: ingress queue to receive the delete notification
5565 *
5566 * Creates a filter work request to delete the supplied filter. If @qid is
5567 * negative the delete notification is suppressed.
5568 */
5569void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5570{
5571 memset(wr, 0, sizeof(*wr));
f404f80c
HS
5572 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5573 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5574 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5575 FW_FILTER_WR_NOREPLY_V(qid < 0));
5576 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
f2b7e78d 5577 if (qid >= 0)
f404f80c
HS
5578 wr->rx_chan_rx_rpl_iq =
5579 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
f2b7e78d
VP
5580}
5581
56d36be4 5582#define INIT_CMD(var, cmd, rd_wr) do { \
f404f80c
HS
5583 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5584 FW_CMD_REQUEST_F | \
5585 FW_CMD_##rd_wr##_F); \
5586 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
56d36be4
DM
5587} while (0)
5588
8caa1e84
VP
5589int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5590 u32 addr, u32 val)
5591{
f404f80c 5592 u32 ldst_addrspace;
8caa1e84
VP
5593 struct fw_ldst_cmd c;
5594
5595 memset(&c, 0, sizeof(c));
f404f80c
HS
5596 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5597 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5598 FW_CMD_REQUEST_F |
5599 FW_CMD_WRITE_F |
5600 ldst_addrspace);
5601 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5602 c.u.addrval.addr = cpu_to_be32(addr);
5603 c.u.addrval.val = cpu_to_be32(val);
8caa1e84
VP
5604
5605 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5606}
5607
56d36be4
DM
5608/**
5609 * t4_mdio_rd - read a PHY register through MDIO
5610 * @adap: the adapter
5611 * @mbox: mailbox to use for the FW command
5612 * @phy_addr: the PHY address
5613 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5614 * @reg: the register to read
5615 * @valp: where to store the value
5616 *
5617 * Issues a FW command through the given mailbox to read a PHY register.
5618 */
5619int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5620 unsigned int mmd, unsigned int reg, u16 *valp)
5621{
5622 int ret;
f404f80c 5623 u32 ldst_addrspace;
56d36be4
DM
5624 struct fw_ldst_cmd c;
5625
5626 memset(&c, 0, sizeof(c));
f404f80c
HS
5627 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5628 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5629 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5630 ldst_addrspace);
5631 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5632 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5633 FW_LDST_CMD_MMD_V(mmd));
5634 c.u.mdio.raddr = cpu_to_be16(reg);
56d36be4
DM
5635
5636 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5637 if (ret == 0)
f404f80c 5638 *valp = be16_to_cpu(c.u.mdio.rval);
56d36be4
DM
5639 return ret;
5640}
5641
5642/**
5643 * t4_mdio_wr - write a PHY register through MDIO
5644 * @adap: the adapter
5645 * @mbox: mailbox to use for the FW command
5646 * @phy_addr: the PHY address
5647 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5648 * @reg: the register to write
5649 * @valp: value to write
5650 *
5651 * Issues a FW command through the given mailbox to write a PHY register.
5652 */
5653int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5654 unsigned int mmd, unsigned int reg, u16 val)
5655{
f404f80c 5656 u32 ldst_addrspace;
56d36be4
DM
5657 struct fw_ldst_cmd c;
5658
5659 memset(&c, 0, sizeof(c));
f404f80c
HS
5660 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5661 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5662 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5663 ldst_addrspace);
5664 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5665 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5666 FW_LDST_CMD_MMD_V(mmd));
5667 c.u.mdio.raddr = cpu_to_be16(reg);
5668 c.u.mdio.rval = cpu_to_be16(val);
56d36be4
DM
5669
5670 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5671}
5672
68bce192
KS
5673/**
5674 * t4_sge_decode_idma_state - decode the idma state
5675 * @adap: the adapter
5676 * @state: the state idma is stuck in
5677 */
5678void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5679{
5680 static const char * const t4_decode[] = {
5681 "IDMA_IDLE",
5682 "IDMA_PUSH_MORE_CPL_FIFO",
5683 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5684 "Not used",
5685 "IDMA_PHYSADDR_SEND_PCIEHDR",
5686 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5687 "IDMA_PHYSADDR_SEND_PAYLOAD",
5688 "IDMA_SEND_FIFO_TO_IMSG",
5689 "IDMA_FL_REQ_DATA_FL_PREP",
5690 "IDMA_FL_REQ_DATA_FL",
5691 "IDMA_FL_DROP",
5692 "IDMA_FL_H_REQ_HEADER_FL",
5693 "IDMA_FL_H_SEND_PCIEHDR",
5694 "IDMA_FL_H_PUSH_CPL_FIFO",
5695 "IDMA_FL_H_SEND_CPL",
5696 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5697 "IDMA_FL_H_SEND_IP_HDR",
5698 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5699 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5700 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5701 "IDMA_FL_D_SEND_PCIEHDR",
5702 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5703 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5704 "IDMA_FL_SEND_PCIEHDR",
5705 "IDMA_FL_PUSH_CPL_FIFO",
5706 "IDMA_FL_SEND_CPL",
5707 "IDMA_FL_SEND_PAYLOAD_FIRST",
5708 "IDMA_FL_SEND_PAYLOAD",
5709 "IDMA_FL_REQ_NEXT_DATA_FL",
5710 "IDMA_FL_SEND_NEXT_PCIEHDR",
5711 "IDMA_FL_SEND_PADDING",
5712 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5713 "IDMA_FL_SEND_FIFO_TO_IMSG",
5714 "IDMA_FL_REQ_DATAFL_DONE",
5715 "IDMA_FL_REQ_HEADERFL_DONE",
5716 };
5717 static const char * const t5_decode[] = {
5718 "IDMA_IDLE",
5719 "IDMA_ALMOST_IDLE",
5720 "IDMA_PUSH_MORE_CPL_FIFO",
5721 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5722 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5723 "IDMA_PHYSADDR_SEND_PCIEHDR",
5724 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5725 "IDMA_PHYSADDR_SEND_PAYLOAD",
5726 "IDMA_SEND_FIFO_TO_IMSG",
5727 "IDMA_FL_REQ_DATA_FL",
5728 "IDMA_FL_DROP",
5729 "IDMA_FL_DROP_SEND_INC",
5730 "IDMA_FL_H_REQ_HEADER_FL",
5731 "IDMA_FL_H_SEND_PCIEHDR",
5732 "IDMA_FL_H_PUSH_CPL_FIFO",
5733 "IDMA_FL_H_SEND_CPL",
5734 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5735 "IDMA_FL_H_SEND_IP_HDR",
5736 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5737 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5738 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5739 "IDMA_FL_D_SEND_PCIEHDR",
5740 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5741 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5742 "IDMA_FL_SEND_PCIEHDR",
5743 "IDMA_FL_PUSH_CPL_FIFO",
5744 "IDMA_FL_SEND_CPL",
5745 "IDMA_FL_SEND_PAYLOAD_FIRST",
5746 "IDMA_FL_SEND_PAYLOAD",
5747 "IDMA_FL_REQ_NEXT_DATA_FL",
5748 "IDMA_FL_SEND_NEXT_PCIEHDR",
5749 "IDMA_FL_SEND_PADDING",
5750 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5751 };
6df39753
HS
5752 static const char * const t6_decode[] = {
5753 "IDMA_IDLE",
5754 "IDMA_PUSH_MORE_CPL_FIFO",
5755 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5756 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5757 "IDMA_PHYSADDR_SEND_PCIEHDR",
5758 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5759 "IDMA_PHYSADDR_SEND_PAYLOAD",
5760 "IDMA_FL_REQ_DATA_FL",
5761 "IDMA_FL_DROP",
5762 "IDMA_FL_DROP_SEND_INC",
5763 "IDMA_FL_H_REQ_HEADER_FL",
5764 "IDMA_FL_H_SEND_PCIEHDR",
5765 "IDMA_FL_H_PUSH_CPL_FIFO",
5766 "IDMA_FL_H_SEND_CPL",
5767 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5768 "IDMA_FL_H_SEND_IP_HDR",
5769 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5770 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5771 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5772 "IDMA_FL_D_SEND_PCIEHDR",
5773 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5774 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5775 "IDMA_FL_SEND_PCIEHDR",
5776 "IDMA_FL_PUSH_CPL_FIFO",
5777 "IDMA_FL_SEND_CPL",
5778 "IDMA_FL_SEND_PAYLOAD_FIRST",
5779 "IDMA_FL_SEND_PAYLOAD",
5780 "IDMA_FL_REQ_NEXT_DATA_FL",
5781 "IDMA_FL_SEND_NEXT_PCIEHDR",
5782 "IDMA_FL_SEND_PADDING",
5783 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5784 };
68bce192 5785 static const u32 sge_regs[] = {
f061de42
HS
5786 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5787 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5788 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
68bce192
KS
5789 };
5790 const char **sge_idma_decode;
5791 int sge_idma_decode_nstates;
5792 int i;
6df39753
HS
5793 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5794
5795 /* Select the right set of decode strings to dump depending on the
5796 * adapter chip type.
5797 */
5798 switch (chip_version) {
5799 case CHELSIO_T4:
5800 sge_idma_decode = (const char **)t4_decode;
5801 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5802 break;
5803
5804 case CHELSIO_T5:
5805 sge_idma_decode = (const char **)t5_decode;
5806 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5807 break;
5808
5809 case CHELSIO_T6:
5810 sge_idma_decode = (const char **)t6_decode;
5811 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5812 break;
5813
5814 default:
5815 dev_err(adapter->pdev_dev,
5816 "Unsupported chip version %d\n", chip_version);
5817 return;
5818 }
68bce192
KS
5819
5820 if (is_t4(adapter->params.chip)) {
5821 sge_idma_decode = (const char **)t4_decode;
5822 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5823 } else {
5824 sge_idma_decode = (const char **)t5_decode;
5825 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5826 }
5827
5828 if (state < sge_idma_decode_nstates)
5829 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5830 else
5831 CH_WARN(adapter, "idma state %d unknown\n", state);
5832
5833 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5834 CH_WARN(adapter, "SGE register %#x value %#x\n",
5835 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5836}
5837
5d700ecb
HS
5838/**
5839 * t4_sge_ctxt_flush - flush the SGE context cache
5840 * @adap: the adapter
5841 * @mbox: mailbox to use for the FW command
5842 *
5843 * Issues a FW command through the given mailbox to flush the
5844 * SGE context cache.
5845 */
5846int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5847{
5848 int ret;
5849 u32 ldst_addrspace;
5850 struct fw_ldst_cmd c;
5851
5852 memset(&c, 0, sizeof(c));
5853 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5854 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5855 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5856 ldst_addrspace);
5857 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5858 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5859
5860 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5861 return ret;
5862}
5863
56d36be4 5864/**
636f9d37
VP
5865 * t4_fw_hello - establish communication with FW
5866 * @adap: the adapter
5867 * @mbox: mailbox to use for the FW command
5868 * @evt_mbox: mailbox to receive async FW events
5869 * @master: specifies the caller's willingness to be the device master
5870 * @state: returns the current device state (if non-NULL)
56d36be4 5871 *
636f9d37
VP
5872 * Issues a command to establish communication with FW. Returns either
5873 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
5874 */
5875int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5876 enum dev_master master, enum dev_state *state)
5877{
5878 int ret;
5879 struct fw_hello_cmd c;
636f9d37
VP
5880 u32 v;
5881 unsigned int master_mbox;
5882 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 5883
636f9d37
VP
5884retry:
5885 memset(&c, 0, sizeof(c));
56d36be4 5886 INIT_CMD(c, HELLO, WRITE);
f404f80c 5887 c.err_to_clearinit = cpu_to_be32(
5167865a
HS
5888 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5889 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
f404f80c
HS
5890 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5891 mbox : FW_HELLO_CMD_MBMASTER_M) |
5167865a
HS
5892 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5893 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5894 FW_HELLO_CMD_CLEARINIT_F);
56d36be4 5895
636f9d37
VP
5896 /*
5897 * Issue the HELLO command to the firmware. If it's not successful
5898 * but indicates that we got a "busy" or "timeout" condition, retry
31d55c2d
HS
5899 * the HELLO until we exhaust our retry limit. If we do exceed our
5900 * retry limit, check to see if the firmware left us any error
5901 * information and report that if so.
636f9d37 5902 */
56d36be4 5903 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
5904 if (ret < 0) {
5905 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5906 goto retry;
f061de42 5907 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d 5908 t4_report_fw_error(adap);
636f9d37
VP
5909 return ret;
5910 }
5911
f404f80c 5912 v = be32_to_cpu(c.err_to_clearinit);
5167865a 5913 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
636f9d37 5914 if (state) {
5167865a 5915 if (v & FW_HELLO_CMD_ERR_F)
56d36be4 5916 *state = DEV_STATE_ERR;
5167865a 5917 else if (v & FW_HELLO_CMD_INIT_F)
636f9d37 5918 *state = DEV_STATE_INIT;
56d36be4
DM
5919 else
5920 *state = DEV_STATE_UNINIT;
5921 }
636f9d37
VP
5922
5923 /*
5924 * If we're not the Master PF then we need to wait around for the
5925 * Master PF Driver to finish setting up the adapter.
5926 *
5927 * Note that we also do this wait if we're a non-Master-capable PF and
5928 * there is no current Master PF; a Master PF may show up momentarily
5929 * and we wouldn't want to fail pointlessly. (This can happen when an
5930 * OS loads lots of different drivers rapidly at the same time). In
5931 * this case, the Master PF returned by the firmware will be
b2e1a3f0 5932 * PCIE_FW_MASTER_M so the test below will work ...
636f9d37 5933 */
5167865a 5934 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
636f9d37
VP
5935 master_mbox != mbox) {
5936 int waiting = FW_CMD_HELLO_TIMEOUT;
5937
5938 /*
5939 * Wait for the firmware to either indicate an error or
5940 * initialized state. If we see either of these we bail out
5941 * and report the issue to the caller. If we exhaust the
5942 * "hello timeout" and we haven't exhausted our retries, try
5943 * again. Otherwise bail with a timeout error.
5944 */
5945 for (;;) {
5946 u32 pcie_fw;
5947
5948 msleep(50);
5949 waiting -= 50;
5950
5951 /*
5952 * If neither Error nor Initialialized are indicated
5953 * by the firmware keep waiting till we exaust our
5954 * timeout ... and then retry if we haven't exhausted
5955 * our retries ...
5956 */
f061de42
HS
5957 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5958 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
636f9d37
VP
5959 if (waiting <= 0) {
5960 if (retries-- > 0)
5961 goto retry;
5962
5963 return -ETIMEDOUT;
5964 }
5965 continue;
5966 }
5967
5968 /*
5969 * We either have an Error or Initialized condition
5970 * report errors preferentially.
5971 */
5972 if (state) {
f061de42 5973 if (pcie_fw & PCIE_FW_ERR_F)
636f9d37 5974 *state = DEV_STATE_ERR;
f061de42 5975 else if (pcie_fw & PCIE_FW_INIT_F)
636f9d37
VP
5976 *state = DEV_STATE_INIT;
5977 }
5978
5979 /*
5980 * If we arrived before a Master PF was selected and
5981 * there's not a valid Master PF, grab its identity
5982 * for our caller.
5983 */
b2e1a3f0 5984 if (master_mbox == PCIE_FW_MASTER_M &&
f061de42 5985 (pcie_fw & PCIE_FW_MASTER_VLD_F))
b2e1a3f0 5986 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
636f9d37
VP
5987 break;
5988 }
5989 }
5990
5991 return master_mbox;
56d36be4
DM
5992}
5993
5994/**
5995 * t4_fw_bye - end communication with FW
5996 * @adap: the adapter
5997 * @mbox: mailbox to use for the FW command
5998 *
5999 * Issues a command to terminate communication with FW.
6000 */
6001int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6002{
6003 struct fw_bye_cmd c;
6004
0062b15c 6005 memset(&c, 0, sizeof(c));
56d36be4
DM
6006 INIT_CMD(c, BYE, WRITE);
6007 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6008}
6009
6010/**
6011 * t4_init_cmd - ask FW to initialize the device
6012 * @adap: the adapter
6013 * @mbox: mailbox to use for the FW command
6014 *
6015 * Issues a command to FW to partially initialize the device. This
6016 * performs initialization that generally doesn't depend on user input.
6017 */
6018int t4_early_init(struct adapter *adap, unsigned int mbox)
6019{
6020 struct fw_initialize_cmd c;
6021
0062b15c 6022 memset(&c, 0, sizeof(c));
56d36be4
DM
6023 INIT_CMD(c, INITIALIZE, WRITE);
6024 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6025}
6026
6027/**
6028 * t4_fw_reset - issue a reset to FW
6029 * @adap: the adapter
6030 * @mbox: mailbox to use for the FW command
6031 * @reset: specifies the type of reset to perform
6032 *
6033 * Issues a reset command of the specified type to FW.
6034 */
6035int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6036{
6037 struct fw_reset_cmd c;
6038
0062b15c 6039 memset(&c, 0, sizeof(c));
56d36be4 6040 INIT_CMD(c, RESET, WRITE);
f404f80c 6041 c.val = cpu_to_be32(reset);
56d36be4
DM
6042 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6043}
6044
26f7cbc0
VP
6045/**
6046 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6047 * @adap: the adapter
6048 * @mbox: mailbox to use for the FW RESET command (if desired)
6049 * @force: force uP into RESET even if FW RESET command fails
6050 *
6051 * Issues a RESET command to firmware (if desired) with a HALT indication
6052 * and then puts the microprocessor into RESET state. The RESET command
6053 * will only be issued if a legitimate mailbox is provided (mbox <=
b2e1a3f0 6054 * PCIE_FW_MASTER_M).
26f7cbc0
VP
6055 *
6056 * This is generally used in order for the host to safely manipulate the
6057 * adapter without fear of conflicting with whatever the firmware might
6058 * be doing. The only way out of this state is to RESTART the firmware
6059 * ...
6060 */
de5b8677 6061static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
26f7cbc0
VP
6062{
6063 int ret = 0;
6064
6065 /*
6066 * If a legitimate mailbox is provided, issue a RESET command
6067 * with a HALT indication.
6068 */
b2e1a3f0 6069 if (mbox <= PCIE_FW_MASTER_M) {
26f7cbc0
VP
6070 struct fw_reset_cmd c;
6071
6072 memset(&c, 0, sizeof(c));
6073 INIT_CMD(c, RESET, WRITE);
f404f80c
HS
6074 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6075 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
26f7cbc0
VP
6076 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6077 }
6078
6079 /*
6080 * Normally we won't complete the operation if the firmware RESET
6081 * command fails but if our caller insists we'll go ahead and put the
6082 * uP into RESET. This can be useful if the firmware is hung or even
6083 * missing ... We'll have to take the risk of putting the uP into
6084 * RESET without the cooperation of firmware in that case.
6085 *
6086 * We also force the firmware's HALT flag to be on in case we bypassed
6087 * the firmware RESET command above or we're dealing with old firmware
6088 * which doesn't have the HALT capability. This will serve as a flag
6089 * for the incoming firmware to know that it's coming out of a HALT
6090 * rather than a RESET ... if it's new enough to understand that ...
6091 */
6092 if (ret == 0 || force) {
89c3a86c 6093 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
f061de42 6094 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
b2e1a3f0 6095 PCIE_FW_HALT_F);
26f7cbc0
VP
6096 }
6097
6098 /*
6099 * And we always return the result of the firmware RESET command
6100 * even when we force the uP into RESET ...
6101 */
6102 return ret;
6103}
6104
6105/**
6106 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6107 * @adap: the adapter
6108 * @reset: if we want to do a RESET to restart things
6109 *
6110 * Restart firmware previously halted by t4_fw_halt(). On successful
6111 * return the previous PF Master remains as the new PF Master and there
6112 * is no need to issue a new HELLO command, etc.
6113 *
6114 * We do this in two ways:
6115 *
6116 * 1. If we're dealing with newer firmware we'll simply want to take
6117 * the chip's microprocessor out of RESET. This will cause the
6118 * firmware to start up from its start vector. And then we'll loop
6119 * until the firmware indicates it's started again (PCIE_FW.HALT
6120 * reset to 0) or we timeout.
6121 *
6122 * 2. If we're dealing with older firmware then we'll need to RESET
6123 * the chip since older firmware won't recognize the PCIE_FW.HALT
6124 * flag and automatically RESET itself on startup.
6125 */
de5b8677 6126static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
26f7cbc0
VP
6127{
6128 if (reset) {
6129 /*
6130 * Since we're directing the RESET instead of the firmware
6131 * doing it automatically, we need to clear the PCIE_FW.HALT
6132 * bit.
6133 */
f061de42 6134 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
26f7cbc0
VP
6135
6136 /*
6137 * If we've been given a valid mailbox, first try to get the
6138 * firmware to do the RESET. If that works, great and we can
6139 * return success. Otherwise, if we haven't been given a
6140 * valid mailbox or the RESET command failed, fall back to
6141 * hitting the chip with a hammer.
6142 */
b2e1a3f0 6143 if (mbox <= PCIE_FW_MASTER_M) {
89c3a86c 6144 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0
VP
6145 msleep(100);
6146 if (t4_fw_reset(adap, mbox,
0d804338 6147 PIORST_F | PIORSTMODE_F) == 0)
26f7cbc0
VP
6148 return 0;
6149 }
6150
0d804338 6151 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
26f7cbc0
VP
6152 msleep(2000);
6153 } else {
6154 int ms;
6155
89c3a86c 6156 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0 6157 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
f061de42 6158 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
26f7cbc0
VP
6159 return 0;
6160 msleep(100);
6161 ms += 100;
6162 }
6163 return -ETIMEDOUT;
6164 }
6165 return 0;
6166}
6167
6168/**
6169 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6170 * @adap: the adapter
6171 * @mbox: mailbox to use for the FW RESET command (if desired)
6172 * @fw_data: the firmware image to write
6173 * @size: image size
6174 * @force: force upgrade even if firmware doesn't cooperate
6175 *
6176 * Perform all of the steps necessary for upgrading an adapter's
6177 * firmware image. Normally this requires the cooperation of the
6178 * existing firmware in order to halt all existing activities
6179 * but if an invalid mailbox token is passed in we skip that step
6180 * (though we'll still put the adapter microprocessor into RESET in
6181 * that case).
6182 *
6183 * On successful return the new firmware will have been loaded and
6184 * the adapter will have been fully RESET losing all previous setup
6185 * state. On unsuccessful return the adapter may be completely hosed ...
6186 * positive errno indicates that the adapter is ~probably~ intact, a
6187 * negative errno indicates that things are looking bad ...
6188 */
22c0b963
HS
6189int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6190 const u8 *fw_data, unsigned int size, int force)
26f7cbc0
VP
6191{
6192 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6193 int reset, ret;
6194
79af221d
HS
6195 if (!t4_fw_matches_chip(adap, fw_hdr))
6196 return -EINVAL;
6197
26f7cbc0
VP
6198 ret = t4_fw_halt(adap, mbox, force);
6199 if (ret < 0 && !force)
6200 return ret;
6201
6202 ret = t4_load_fw(adap, fw_data, size);
6203 if (ret < 0)
6204 return ret;
6205
6206 /*
6207 * Older versions of the firmware don't understand the new
6208 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6209 * restart. So for newly loaded older firmware we'll have to do the
6210 * RESET for it so it starts up on a clean slate. We can tell if
6211 * the newly loaded firmware will handle this right by checking
6212 * its header flags to see if it advertises the capability.
6213 */
f404f80c 6214 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
26f7cbc0
VP
6215 return t4_fw_restart(adap, mbox, reset);
6216}
6217
acac5962
HS
6218/**
6219 * t4_fl_pkt_align - return the fl packet alignment
6220 * @adap: the adapter
6221 *
6222 * T4 has a single field to specify the packing and padding boundary.
6223 * T5 onwards has separate fields for this and hence the alignment for
6224 * next packet offset is maximum of these two.
6225 *
6226 */
6227int t4_fl_pkt_align(struct adapter *adap)
6228{
6229 u32 sge_control, sge_control2;
6230 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6231
6232 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6233
6234 /* T4 uses a single control field to specify both the PCIe Padding and
6235 * Packing Boundary. T5 introduced the ability to specify these
6236 * separately. The actual Ingress Packet Data alignment boundary
6237 * within Packed Buffer Mode is the maximum of these two
6238 * specifications. (Note that it makes no real practical sense to
6239 * have the Pading Boudary be larger than the Packing Boundary but you
6240 * could set the chip up that way and, in fact, legacy T4 code would
6241 * end doing this because it would initialize the Padding Boundary and
6242 * leave the Packing Boundary initialized to 0 (16 bytes).)
6243 * Padding Boundary values in T6 starts from 8B,
6244 * where as it is 32B for T4 and T5.
6245 */
6246 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6247 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6248 else
6249 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6250
6251 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6252
6253 fl_align = ingpadboundary;
6254 if (!is_t4(adap->params.chip)) {
6255 /* T5 has a weird interpretation of one of the PCIe Packing
6256 * Boundary values. No idea why ...
6257 */
6258 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6259 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6260 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6261 ingpackboundary = 16;
6262 else
6263 ingpackboundary = 1 << (ingpackboundary +
6264 INGPACKBOUNDARY_SHIFT_X);
6265
6266 fl_align = max(ingpadboundary, ingpackboundary);
6267 }
6268 return fl_align;
6269}
6270
636f9d37
VP
6271/**
6272 * t4_fixup_host_params - fix up host-dependent parameters
6273 * @adap: the adapter
6274 * @page_size: the host's Base Page Size
6275 * @cache_line_size: the host's Cache Line Size
6276 *
6277 * Various registers in T4 contain values which are dependent on the
6278 * host's Base Page and Cache Line Sizes. This function will fix all of
6279 * those registers with the appropriate values as passed in ...
6280 */
6281int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6282 unsigned int cache_line_size)
6283{
6284 unsigned int page_shift = fls(page_size) - 1;
6285 unsigned int sge_hps = page_shift - 10;
6286 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6287 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6288 unsigned int fl_align_log = fls(fl_align) - 1;
acac5962 6289 unsigned int ingpad;
636f9d37 6290
f612b815
HS
6291 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6292 HOSTPAGESIZEPF0_V(sge_hps) |
6293 HOSTPAGESIZEPF1_V(sge_hps) |
6294 HOSTPAGESIZEPF2_V(sge_hps) |
6295 HOSTPAGESIZEPF3_V(sge_hps) |
6296 HOSTPAGESIZEPF4_V(sge_hps) |
6297 HOSTPAGESIZEPF5_V(sge_hps) |
6298 HOSTPAGESIZEPF6_V(sge_hps) |
6299 HOSTPAGESIZEPF7_V(sge_hps));
636f9d37 6300
ce8f407a 6301 if (is_t4(adap->params.chip)) {
f612b815
HS
6302 t4_set_reg_field(adap, SGE_CONTROL_A,
6303 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6304 EGRSTATUSPAGESIZE_F,
6305 INGPADBOUNDARY_V(fl_align_log -
6306 INGPADBOUNDARY_SHIFT_X) |
6307 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6308 } else {
6309 /* T5 introduced the separation of the Free List Padding and
6310 * Packing Boundaries. Thus, we can select a smaller Padding
6311 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6312 * Bandwidth, and use a Packing Boundary which is large enough
6313 * to avoid false sharing between CPUs, etc.
6314 *
6315 * For the PCI Link, the smaller the Padding Boundary the
6316 * better. For the Memory Controller, a smaller Padding
6317 * Boundary is better until we cross under the Memory Line
6318 * Size (the minimum unit of transfer to/from Memory). If we
6319 * have a Padding Boundary which is smaller than the Memory
6320 * Line Size, that'll involve a Read-Modify-Write cycle on the
6321 * Memory Controller which is never good. For T5 the smallest
6322 * Padding Boundary which we can select is 32 bytes which is
6323 * larger than any known Memory Controller Line Size so we'll
6324 * use that.
6325 *
6326 * T5 has a different interpretation of the "0" value for the
6327 * Packing Boundary. This corresponds to 16 bytes instead of
6328 * the expected 32 bytes. We never have a Packing Boundary
6329 * less than 32 bytes so we can't use that special value but
6330 * on the other hand, if we wanted 32 bytes, the best we can
6331 * really do is 64 bytes.
6332 */
6333 if (fl_align <= 32) {
6334 fl_align = 64;
6335 fl_align_log = 6;
6336 }
acac5962
HS
6337
6338 if (is_t5(adap->params.chip))
6339 ingpad = INGPCIEBOUNDARY_32B_X;
6340 else
6341 ingpad = T6_INGPADBOUNDARY_32B_X;
6342
f612b815
HS
6343 t4_set_reg_field(adap, SGE_CONTROL_A,
6344 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6345 EGRSTATUSPAGESIZE_F,
acac5962 6346 INGPADBOUNDARY_V(ingpad) |
f612b815 6347 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6348 t4_set_reg_field(adap, SGE_CONTROL2_A,
6349 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6350 INGPACKBOUNDARY_V(fl_align_log -
f612b815 6351 INGPACKBOUNDARY_SHIFT_X));
ce8f407a 6352 }
636f9d37
VP
6353 /*
6354 * Adjust various SGE Free List Host Buffer Sizes.
6355 *
6356 * This is something of a crock since we're using fixed indices into
6357 * the array which are also known by the sge.c code and the T4
6358 * Firmware Configuration File. We need to come up with a much better
6359 * approach to managing this array. For now, the first four entries
6360 * are:
6361 *
6362 * 0: Host Page Size
6363 * 1: 64KB
6364 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6365 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6366 *
6367 * For the single-MTU buffers in unpacked mode we need to include
6368 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6369 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
dbedd44e 6370 * Padding boundary. All of these are accommodated in the Factory
636f9d37
VP
6371 * Default Firmware Configuration File but we need to adjust it for
6372 * this host's cache line size.
6373 */
f612b815
HS
6374 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6375 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6376 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
636f9d37 6377 & ~(fl_align-1));
f612b815
HS
6378 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6379 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
636f9d37
VP
6380 & ~(fl_align-1));
6381
0d804338 6382 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
636f9d37
VP
6383
6384 return 0;
6385}
6386
6387/**
6388 * t4_fw_initialize - ask FW to initialize the device
6389 * @adap: the adapter
6390 * @mbox: mailbox to use for the FW command
6391 *
6392 * Issues a command to FW to partially initialize the device. This
6393 * performs initialization that generally doesn't depend on user input.
6394 */
6395int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6396{
6397 struct fw_initialize_cmd c;
6398
6399 memset(&c, 0, sizeof(c));
6400 INIT_CMD(c, INITIALIZE, WRITE);
6401 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6402}
6403
56d36be4 6404/**
01b69614 6405 * t4_query_params_rw - query FW or device parameters
56d36be4
DM
6406 * @adap: the adapter
6407 * @mbox: mailbox to use for the FW command
6408 * @pf: the PF
6409 * @vf: the VF
6410 * @nparams: the number of parameters
6411 * @params: the parameter names
6412 * @val: the parameter values
01b69614 6413 * @rw: Write and read flag
56d36be4
DM
6414 *
6415 * Reads the value of FW or device parameters. Up to 7 parameters can be
6416 * queried at once.
6417 */
01b69614
HS
6418int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6419 unsigned int vf, unsigned int nparams, const u32 *params,
6420 u32 *val, int rw)
56d36be4
DM
6421{
6422 int i, ret;
6423 struct fw_params_cmd c;
6424 __be32 *p = &c.param[0].mnem;
6425
6426 if (nparams > 7)
6427 return -EINVAL;
6428
6429 memset(&c, 0, sizeof(c));
f404f80c
HS
6430 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6431 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6432 FW_PARAMS_CMD_PFN_V(pf) |
6433 FW_PARAMS_CMD_VFN_V(vf));
6434 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6435
01b69614
HS
6436 for (i = 0; i < nparams; i++) {
6437 *p++ = cpu_to_be32(*params++);
6438 if (rw)
6439 *p = cpu_to_be32(*(val + i));
6440 p++;
6441 }
56d36be4
DM
6442
6443 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6444 if (ret == 0)
6445 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
f404f80c 6446 *val++ = be32_to_cpu(*p);
56d36be4
DM
6447 return ret;
6448}
6449
01b69614
HS
6450int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6451 unsigned int vf, unsigned int nparams, const u32 *params,
6452 u32 *val)
6453{
6454 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6455}
6456
688848b1 6457/**
01b69614 6458 * t4_set_params_timeout - sets FW or device parameters
688848b1
AB
6459 * @adap: the adapter
6460 * @mbox: mailbox to use for the FW command
6461 * @pf: the PF
6462 * @vf: the VF
6463 * @nparams: the number of parameters
6464 * @params: the parameter names
6465 * @val: the parameter values
01b69614 6466 * @timeout: the timeout time
688848b1 6467 *
688848b1
AB
6468 * Sets the value of FW or device parameters. Up to 7 parameters can be
6469 * specified at once.
6470 */
01b69614 6471int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
688848b1
AB
6472 unsigned int pf, unsigned int vf,
6473 unsigned int nparams, const u32 *params,
01b69614 6474 const u32 *val, int timeout)
688848b1
AB
6475{
6476 struct fw_params_cmd c;
6477 __be32 *p = &c.param[0].mnem;
6478
6479 if (nparams > 7)
6480 return -EINVAL;
6481
6482 memset(&c, 0, sizeof(c));
e2ac9628 6483 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
01b69614
HS
6484 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6485 FW_PARAMS_CMD_PFN_V(pf) |
6486 FW_PARAMS_CMD_VFN_V(vf));
688848b1
AB
6487 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6488
6489 while (nparams--) {
6490 *p++ = cpu_to_be32(*params++);
6491 *p++ = cpu_to_be32(*val++);
6492 }
6493
01b69614 6494 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
688848b1
AB
6495}
6496
56d36be4
DM
6497/**
6498 * t4_set_params - sets FW or device parameters
6499 * @adap: the adapter
6500 * @mbox: mailbox to use for the FW command
6501 * @pf: the PF
6502 * @vf: the VF
6503 * @nparams: the number of parameters
6504 * @params: the parameter names
6505 * @val: the parameter values
6506 *
6507 * Sets the value of FW or device parameters. Up to 7 parameters can be
6508 * specified at once.
6509 */
6510int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6511 unsigned int vf, unsigned int nparams, const u32 *params,
6512 const u32 *val)
6513{
01b69614
HS
6514 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6515 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
6516}
6517
6518/**
6519 * t4_cfg_pfvf - configure PF/VF resource limits
6520 * @adap: the adapter
6521 * @mbox: mailbox to use for the FW command
6522 * @pf: the PF being configured
6523 * @vf: the VF being configured
6524 * @txq: the max number of egress queues
6525 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
6526 * @rxqi: the max number of interrupt-capable ingress queues
6527 * @rxq: the max number of interruptless ingress queues
6528 * @tc: the PCI traffic class
6529 * @vi: the max number of virtual interfaces
6530 * @cmask: the channel access rights mask for the PF/VF
6531 * @pmask: the port access rights mask for the PF/VF
6532 * @nexact: the maximum number of exact MPS filters
6533 * @rcaps: read capabilities
6534 * @wxcaps: write/execute capabilities
6535 *
6536 * Configures resource limits and capabilities for a physical or virtual
6537 * function.
6538 */
6539int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6540 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6541 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6542 unsigned int vi, unsigned int cmask, unsigned int pmask,
6543 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6544{
6545 struct fw_pfvf_cmd c;
6546
6547 memset(&c, 0, sizeof(c));
f404f80c
HS
6548 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6549 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6550 FW_PFVF_CMD_VFN_V(vf));
6551 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6552 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6553 FW_PFVF_CMD_NIQ_V(rxq));
6554 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6555 FW_PFVF_CMD_PMASK_V(pmask) |
6556 FW_PFVF_CMD_NEQ_V(txq));
6557 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6558 FW_PFVF_CMD_NVI_V(vi) |
6559 FW_PFVF_CMD_NEXACTF_V(nexact));
6560 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6561 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6562 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
56d36be4
DM
6563 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6564}
6565
6566/**
6567 * t4_alloc_vi - allocate a virtual interface
6568 * @adap: the adapter
6569 * @mbox: mailbox to use for the FW command
6570 * @port: physical port associated with the VI
6571 * @pf: the PF owning the VI
6572 * @vf: the VF owning the VI
6573 * @nmac: number of MAC addresses needed (1 to 5)
6574 * @mac: the MAC addresses of the VI
6575 * @rss_size: size of RSS table slice associated with this VI
6576 *
6577 * Allocates a virtual interface for the given physical port. If @mac is
6578 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
6579 * @mac should be large enough to hold @nmac Ethernet addresses, they are
6580 * stored consecutively so the space needed is @nmac * 6 bytes.
6581 * Returns a negative error number or the non-negative VI id.
6582 */
6583int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6584 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6585 unsigned int *rss_size)
6586{
6587 int ret;
6588 struct fw_vi_cmd c;
6589
6590 memset(&c, 0, sizeof(c));
f404f80c
HS
6591 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6592 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6593 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6594 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
2b5fb1f2 6595 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
56d36be4
DM
6596 c.nmac = nmac - 1;
6597
6598 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6599 if (ret)
6600 return ret;
6601
6602 if (mac) {
6603 memcpy(mac, c.mac, sizeof(c.mac));
6604 switch (nmac) {
6605 case 5:
6606 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6607 case 4:
6608 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6609 case 3:
6610 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6611 case 2:
6612 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
6613 }
6614 }
6615 if (rss_size)
f404f80c
HS
6616 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6617 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
56d36be4
DM
6618}
6619
4f3a0fcf
HS
6620/**
6621 * t4_free_vi - free a virtual interface
6622 * @adap: the adapter
6623 * @mbox: mailbox to use for the FW command
6624 * @pf: the PF owning the VI
6625 * @vf: the VF owning the VI
6626 * @viid: virtual interface identifiler
6627 *
6628 * Free a previously allocated virtual interface.
6629 */
6630int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6631 unsigned int vf, unsigned int viid)
6632{
6633 struct fw_vi_cmd c;
6634
6635 memset(&c, 0, sizeof(c));
6636 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6637 FW_CMD_REQUEST_F |
6638 FW_CMD_EXEC_F |
6639 FW_VI_CMD_PFN_V(pf) |
6640 FW_VI_CMD_VFN_V(vf));
6641 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6642 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6643
6644 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
56d36be4
DM
6645}
6646
56d36be4
DM
6647/**
6648 * t4_set_rxmode - set Rx properties of a virtual interface
6649 * @adap: the adapter
6650 * @mbox: mailbox to use for the FW command
6651 * @viid: the VI id
6652 * @mtu: the new MTU or -1
6653 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6654 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6655 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 6656 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
6657 * @sleep_ok: if true we may sleep while awaiting command completion
6658 *
6659 * Sets Rx properties of a virtual interface.
6660 */
6661int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
6662 int mtu, int promisc, int all_multi, int bcast, int vlanex,
6663 bool sleep_ok)
56d36be4
DM
6664{
6665 struct fw_vi_rxmode_cmd c;
6666
6667 /* convert to FW values */
6668 if (mtu < 0)
6669 mtu = FW_RXMODE_MTU_NO_CHG;
6670 if (promisc < 0)
2b5fb1f2 6671 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
56d36be4 6672 if (all_multi < 0)
2b5fb1f2 6673 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
56d36be4 6674 if (bcast < 0)
2b5fb1f2 6675 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
f8f5aafa 6676 if (vlanex < 0)
2b5fb1f2 6677 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
56d36be4
DM
6678
6679 memset(&c, 0, sizeof(c));
f404f80c
HS
6680 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6681 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6682 FW_VI_RXMODE_CMD_VIID_V(viid));
6683 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6684 c.mtu_to_vlanexen =
6685 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6686 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6687 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6688 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6689 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
56d36be4
DM
6690 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6691}
6692
6693/**
6694 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6695 * @adap: the adapter
6696 * @mbox: mailbox to use for the FW command
6697 * @viid: the VI id
6698 * @free: if true any existing filters for this VI id are first removed
6699 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6700 * @addr: the MAC address(es)
6701 * @idx: where to store the index of each allocated filter
6702 * @hash: pointer to hash address filter bitmap
6703 * @sleep_ok: call is allowed to sleep
6704 *
6705 * Allocates an exact-match filter for each of the supplied addresses and
6706 * sets it to the corresponding address. If @idx is not %NULL it should
6707 * have at least @naddr entries, each of which will be set to the index of
6708 * the filter allocated for the corresponding MAC address. If a filter
6709 * could not be allocated for an address its index is set to 0xffff.
6710 * If @hash is not %NULL addresses that fail to allocate an exact filter
6711 * are hashed and update the hash filter bitmap pointed at by @hash.
6712 *
6713 * Returns a negative error number or the number of filters allocated.
6714 */
6715int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6716 unsigned int viid, bool free, unsigned int naddr,
6717 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6718{
3ccc6cf7 6719 int offset, ret = 0;
56d36be4 6720 struct fw_vi_mac_cmd c;
3ccc6cf7
HS
6721 unsigned int nfilters = 0;
6722 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6723 unsigned int rem = naddr;
56d36be4 6724
3ccc6cf7 6725 if (naddr > max_naddr)
56d36be4
DM
6726 return -EINVAL;
6727
3ccc6cf7
HS
6728 for (offset = 0; offset < naddr ; /**/) {
6729 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6730 rem : ARRAY_SIZE(c.u.exact));
6731 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6732 u.exact[fw_naddr]), 16);
6733 struct fw_vi_mac_exact *p;
6734 int i;
56d36be4 6735
3ccc6cf7
HS
6736 memset(&c, 0, sizeof(c));
6737 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6738 FW_CMD_REQUEST_F |
6739 FW_CMD_WRITE_F |
6740 FW_CMD_EXEC_V(free) |
6741 FW_VI_MAC_CMD_VIID_V(viid));
6742 c.freemacs_to_len16 =
6743 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6744 FW_CMD_LEN16_V(len16));
6745
6746 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6747 p->valid_to_idx =
6748 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6749 FW_VI_MAC_CMD_IDX_V(
6750 FW_VI_MAC_ADD_MAC));
6751 memcpy(p->macaddr, addr[offset + i],
6752 sizeof(p->macaddr));
6753 }
56d36be4 6754
3ccc6cf7
HS
6755 /* It's okay if we run out of space in our MAC address arena.
6756 * Some of the addresses we submit may get stored so we need
6757 * to run through the reply to see what the results were ...
6758 */
6759 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6760 if (ret && ret != -FW_ENOMEM)
6761 break;
56d36be4 6762
3ccc6cf7
HS
6763 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6764 u16 index = FW_VI_MAC_CMD_IDX_G(
6765 be16_to_cpu(p->valid_to_idx));
6766
6767 if (idx)
6768 idx[offset + i] = (index >= max_naddr ?
6769 0xffff : index);
6770 if (index < max_naddr)
6771 nfilters++;
6772 else if (hash)
6773 *hash |= (1ULL <<
6774 hash_mac_addr(addr[offset + i]));
6775 }
56d36be4 6776
3ccc6cf7
HS
6777 free = false;
6778 offset += fw_naddr;
6779 rem -= fw_naddr;
56d36be4 6780 }
3ccc6cf7
HS
6781
6782 if (ret == 0 || ret == -FW_ENOMEM)
6783 ret = nfilters;
56d36be4
DM
6784 return ret;
6785}
6786
fc08a01a
HS
6787/**
6788 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
6789 * @adap: the adapter
6790 * @mbox: mailbox to use for the FW command
6791 * @viid: the VI id
6792 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6793 * @addr: the MAC address(es)
6794 * @sleep_ok: call is allowed to sleep
6795 *
6796 * Frees the exact-match filter for each of the supplied addresses
6797 *
6798 * Returns a negative error number or the number of filters freed.
6799 */
6800int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6801 unsigned int viid, unsigned int naddr,
6802 const u8 **addr, bool sleep_ok)
6803{
6804 int offset, ret = 0;
6805 struct fw_vi_mac_cmd c;
6806 unsigned int nfilters = 0;
6807 unsigned int max_naddr = is_t4(adap->params.chip) ?
6808 NUM_MPS_CLS_SRAM_L_INSTANCES :
6809 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6810 unsigned int rem = naddr;
6811
6812 if (naddr > max_naddr)
6813 return -EINVAL;
6814
6815 for (offset = 0; offset < (int)naddr ; /**/) {
6816 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6817 ? rem
6818 : ARRAY_SIZE(c.u.exact));
6819 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6820 u.exact[fw_naddr]), 16);
6821 struct fw_vi_mac_exact *p;
6822 int i;
6823
6824 memset(&c, 0, sizeof(c));
6825 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6826 FW_CMD_REQUEST_F |
6827 FW_CMD_WRITE_F |
6828 FW_CMD_EXEC_V(0) |
6829 FW_VI_MAC_CMD_VIID_V(viid));
6830 c.freemacs_to_len16 =
6831 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6832 FW_CMD_LEN16_V(len16));
6833
6834 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6835 p->valid_to_idx = cpu_to_be16(
6836 FW_VI_MAC_CMD_VALID_F |
6837 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6838 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6839 }
6840
6841 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6842 if (ret)
6843 break;
6844
6845 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6846 u16 index = FW_VI_MAC_CMD_IDX_G(
6847 be16_to_cpu(p->valid_to_idx));
6848
6849 if (index < max_naddr)
6850 nfilters++;
6851 }
6852
6853 offset += fw_naddr;
6854 rem -= fw_naddr;
6855 }
6856
6857 if (ret == 0)
6858 ret = nfilters;
6859 return ret;
6860}
6861
56d36be4
DM
6862/**
6863 * t4_change_mac - modifies the exact-match filter for a MAC address
6864 * @adap: the adapter
6865 * @mbox: mailbox to use for the FW command
6866 * @viid: the VI id
6867 * @idx: index of existing filter for old value of MAC address, or -1
6868 * @addr: the new MAC address value
6869 * @persist: whether a new MAC allocation should be persistent
6870 * @add_smt: if true also add the address to the HW SMT
6871 *
6872 * Modifies an exact-match filter and sets it to the new MAC address.
6873 * Note that in general it is not possible to modify the value of a given
6874 * filter so the generic way to modify an address filter is to free the one
6875 * being used by the old address value and allocate a new filter for the
6876 * new address value. @idx can be -1 if the address is a new addition.
6877 *
6878 * Returns a negative error number or the index of the filter with the new
6879 * MAC value.
6880 */
6881int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6882 int idx, const u8 *addr, bool persist, bool add_smt)
6883{
6884 int ret, mode;
6885 struct fw_vi_mac_cmd c;
6886 struct fw_vi_mac_exact *p = c.u.exact;
3ccc6cf7 6887 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
56d36be4
DM
6888
6889 if (idx < 0) /* new allocation */
6890 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6891 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6892
6893 memset(&c, 0, sizeof(c));
f404f80c
HS
6894 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6895 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6896 FW_VI_MAC_CMD_VIID_V(viid));
6897 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6898 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6899 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6900 FW_VI_MAC_CMD_IDX_V(idx));
56d36be4
DM
6901 memcpy(p->macaddr, addr, sizeof(p->macaddr));
6902
6903 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6904 if (ret == 0) {
f404f80c 6905 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
0a57a536 6906 if (ret >= max_mac_addr)
56d36be4
DM
6907 ret = -ENOMEM;
6908 }
6909 return ret;
6910}
6911
6912/**
6913 * t4_set_addr_hash - program the MAC inexact-match hash filter
6914 * @adap: the adapter
6915 * @mbox: mailbox to use for the FW command
6916 * @viid: the VI id
6917 * @ucast: whether the hash filter should also match unicast addresses
6918 * @vec: the value to be written to the hash filter
6919 * @sleep_ok: call is allowed to sleep
6920 *
6921 * Sets the 64-bit inexact-match hash filter for a virtual interface.
6922 */
6923int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6924 bool ucast, u64 vec, bool sleep_ok)
6925{
6926 struct fw_vi_mac_cmd c;
6927
6928 memset(&c, 0, sizeof(c));
f404f80c
HS
6929 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6930 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6931 FW_VI_ENABLE_CMD_VIID_V(viid));
6932 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6933 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6934 FW_CMD_LEN16_V(1));
56d36be4
DM
6935 c.u.hash.hashvec = cpu_to_be64(vec);
6936 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6937}
6938
688848b1
AB
6939/**
6940 * t4_enable_vi_params - enable/disable a virtual interface
6941 * @adap: the adapter
6942 * @mbox: mailbox to use for the FW command
6943 * @viid: the VI id
6944 * @rx_en: 1=enable Rx, 0=disable Rx
6945 * @tx_en: 1=enable Tx, 0=disable Tx
6946 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
6947 *
6948 * Enables/disables a virtual interface. Note that setting DCB Enable
6949 * only makes sense when enabling a Virtual Interface ...
6950 */
6951int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6952 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6953{
6954 struct fw_vi_enable_cmd c;
6955
6956 memset(&c, 0, sizeof(c));
f404f80c
HS
6957 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6958 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6959 FW_VI_ENABLE_CMD_VIID_V(viid));
6960 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6961 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6962 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6963 FW_LEN16(c));
30f00847 6964 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
688848b1
AB
6965}
6966
56d36be4
DM
6967/**
6968 * t4_enable_vi - enable/disable a virtual interface
6969 * @adap: the adapter
6970 * @mbox: mailbox to use for the FW command
6971 * @viid: the VI id
6972 * @rx_en: 1=enable Rx, 0=disable Rx
6973 * @tx_en: 1=enable Tx, 0=disable Tx
6974 *
6975 * Enables/disables a virtual interface.
6976 */
6977int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6978 bool rx_en, bool tx_en)
6979{
688848b1 6980 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
56d36be4
DM
6981}
6982
6983/**
6984 * t4_identify_port - identify a VI's port by blinking its LED
6985 * @adap: the adapter
6986 * @mbox: mailbox to use for the FW command
6987 * @viid: the VI id
6988 * @nblinks: how many times to blink LED at 2.5 Hz
6989 *
6990 * Identifies a VI's port by blinking its LED.
6991 */
6992int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6993 unsigned int nblinks)
6994{
6995 struct fw_vi_enable_cmd c;
6996
0062b15c 6997 memset(&c, 0, sizeof(c));
f404f80c
HS
6998 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6999 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7000 FW_VI_ENABLE_CMD_VIID_V(viid));
7001 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7002 c.blinkdur = cpu_to_be16(nblinks);
56d36be4 7003 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
7004}
7005
ebf4dc2b
HS
7006/**
7007 * t4_iq_stop - stop an ingress queue and its FLs
7008 * @adap: the adapter
7009 * @mbox: mailbox to use for the FW command
7010 * @pf: the PF owning the queues
7011 * @vf: the VF owning the queues
7012 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7013 * @iqid: ingress queue id
7014 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7015 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7016 *
7017 * Stops an ingress queue and its associated FLs, if any. This causes
7018 * any current or future data/messages destined for these queues to be
7019 * tossed.
7020 */
7021int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7022 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7023 unsigned int fl0id, unsigned int fl1id)
7024{
7025 struct fw_iq_cmd c;
7026
7027 memset(&c, 0, sizeof(c));
7028 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7029 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7030 FW_IQ_CMD_VFN_V(vf));
7031 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7032 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7033 c.iqid = cpu_to_be16(iqid);
7034 c.fl0id = cpu_to_be16(fl0id);
7035 c.fl1id = cpu_to_be16(fl1id);
7036 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7037}
7038
56d36be4
DM
7039/**
7040 * t4_iq_free - free an ingress queue and its FLs
7041 * @adap: the adapter
7042 * @mbox: mailbox to use for the FW command
7043 * @pf: the PF owning the queues
7044 * @vf: the VF owning the queues
7045 * @iqtype: the ingress queue type
7046 * @iqid: ingress queue id
7047 * @fl0id: FL0 queue id or 0xffff if no attached FL0
7048 * @fl1id: FL1 queue id or 0xffff if no attached FL1
7049 *
7050 * Frees an ingress queue and its associated FLs, if any.
7051 */
7052int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7053 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7054 unsigned int fl0id, unsigned int fl1id)
7055{
7056 struct fw_iq_cmd c;
7057
7058 memset(&c, 0, sizeof(c));
f404f80c
HS
7059 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7060 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7061 FW_IQ_CMD_VFN_V(vf));
7062 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7063 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7064 c.iqid = cpu_to_be16(iqid);
7065 c.fl0id = cpu_to_be16(fl0id);
7066 c.fl1id = cpu_to_be16(fl1id);
56d36be4
DM
7067 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7068}
7069
7070/**
7071 * t4_eth_eq_free - free an Ethernet egress queue
7072 * @adap: the adapter
7073 * @mbox: mailbox to use for the FW command
7074 * @pf: the PF owning the queue
7075 * @vf: the VF owning the queue
7076 * @eqid: egress queue id
7077 *
7078 * Frees an Ethernet egress queue.
7079 */
7080int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7081 unsigned int vf, unsigned int eqid)
7082{
7083 struct fw_eq_eth_cmd c;
7084
7085 memset(&c, 0, sizeof(c));
f404f80c
HS
7086 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7087 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7088 FW_EQ_ETH_CMD_PFN_V(pf) |
7089 FW_EQ_ETH_CMD_VFN_V(vf));
7090 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7091 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
56d36be4
DM
7092 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7093}
7094
7095/**
7096 * t4_ctrl_eq_free - free a control egress queue
7097 * @adap: the adapter
7098 * @mbox: mailbox to use for the FW command
7099 * @pf: the PF owning the queue
7100 * @vf: the VF owning the queue
7101 * @eqid: egress queue id
7102 *
7103 * Frees a control egress queue.
7104 */
7105int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7106 unsigned int vf, unsigned int eqid)
7107{
7108 struct fw_eq_ctrl_cmd c;
7109
7110 memset(&c, 0, sizeof(c));
f404f80c
HS
7111 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7112 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7113 FW_EQ_CTRL_CMD_PFN_V(pf) |
7114 FW_EQ_CTRL_CMD_VFN_V(vf));
7115 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7116 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
56d36be4
DM
7117 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7118}
7119
7120/**
7121 * t4_ofld_eq_free - free an offload egress queue
7122 * @adap: the adapter
7123 * @mbox: mailbox to use for the FW command
7124 * @pf: the PF owning the queue
7125 * @vf: the VF owning the queue
7126 * @eqid: egress queue id
7127 *
7128 * Frees a control egress queue.
7129 */
7130int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7131 unsigned int vf, unsigned int eqid)
7132{
7133 struct fw_eq_ofld_cmd c;
7134
7135 memset(&c, 0, sizeof(c));
f404f80c
HS
7136 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7137 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7138 FW_EQ_OFLD_CMD_PFN_V(pf) |
7139 FW_EQ_OFLD_CMD_VFN_V(vf));
7140 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7141 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
56d36be4
DM
7142 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7143}
7144
ddc7740d
HS
7145/**
7146 * t4_link_down_rc_str - return a string for a Link Down Reason Code
7147 * @adap: the adapter
7148 * @link_down_rc: Link Down Reason Code
7149 *
7150 * Returns a string representation of the Link Down Reason Code.
7151 */
7152static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7153{
7154 static const char * const reason[] = {
7155 "Link Down",
7156 "Remote Fault",
7157 "Auto-negotiation Failure",
7158 "Reserved",
7159 "Insufficient Airflow",
7160 "Unable To Determine Reason",
7161 "No RX Signal Detected",
7162 "Reserved",
7163 };
7164
7165 if (link_down_rc >= ARRAY_SIZE(reason))
7166 return "Bad Reason Code";
7167
7168 return reason[link_down_rc];
7169}
7170
56d36be4 7171/**
23853a0a
HS
7172 * t4_handle_get_port_info - process a FW reply message
7173 * @pi: the port info
56d36be4
DM
7174 * @rpl: start of the FW message
7175 *
23853a0a
HS
7176 * Processes a GET_PORT_INFO FW reply message.
7177 */
7178void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7179{
7180 const struct fw_port_cmd *p = (const void *)rpl;
7181 struct adapter *adap = pi->adapter;
7182
7183 /* link/module state change message */
7184 int speed = 0, fc = 0;
7185 struct link_config *lc;
7186 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7187 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7188 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7189
7190 if (stat & FW_PORT_CMD_RXPAUSE_F)
7191 fc |= PAUSE_RX;
7192 if (stat & FW_PORT_CMD_TXPAUSE_F)
7193 fc |= PAUSE_TX;
7194 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7195 speed = 100;
7196 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7197 speed = 1000;
7198 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7199 speed = 10000;
9b86a8d1
HS
7200 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7201 speed = 25000;
23853a0a
HS
7202 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7203 speed = 40000;
9b86a8d1
HS
7204 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7205 speed = 100000;
23853a0a
HS
7206
7207 lc = &pi->link_cfg;
7208
7209 if (mod != pi->mod_type) {
7210 pi->mod_type = mod;
7211 t4_os_portmod_changed(adap, pi->port_id);
7212 }
7213 if (link_ok != lc->link_ok || speed != lc->speed ||
7214 fc != lc->fc) { /* something changed */
ddc7740d
HS
7215 if (!link_ok && lc->link_ok) {
7216 unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7217
7218 lc->link_down_rc = rc;
7219 dev_warn(adap->pdev_dev,
7220 "Port %d link down, reason: %s\n",
7221 pi->port_id, t4_link_down_rc_str(rc));
7222 }
23853a0a
HS
7223 lc->link_ok = link_ok;
7224 lc->speed = speed;
7225 lc->fc = fc;
7226 lc->supported = be16_to_cpu(p->u.info.pcap);
eb97ad99 7227 lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
23853a0a
HS
7228 t4_os_link_changed(adap, pi->port_id, link_ok);
7229 }
7230}
7231
7232/**
7233 * t4_handle_fw_rpl - process a FW reply message
7234 * @adap: the adapter
7235 * @rpl: start of the FW message
7236 *
7237 * Processes a FW message, such as link state change messages.
56d36be4
DM
7238 */
7239int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7240{
7241 u8 opcode = *(const u8 *)rpl;
7242
23853a0a
HS
7243 /* This might be a port command ... this simplifies the following
7244 * conditionals ... We can get away with pre-dereferencing
7245 * action_to_len16 because it's in the first 16 bytes and all messages
7246 * will be at least that long.
7247 */
7248 const struct fw_port_cmd *p = (const void *)rpl;
7249 unsigned int action =
7250 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7251
7252 if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7253 int i;
f404f80c 7254 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
23853a0a
HS
7255 struct port_info *pi = NULL;
7256
7257 for_each_port(adap, i) {
7258 pi = adap2pinfo(adap, i);
7259 if (pi->tx_chan == chan)
7260 break;
56d36be4 7261 }
23853a0a
HS
7262
7263 t4_handle_get_port_info(pi, rpl);
7264 } else {
7265 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7266 return -EINVAL;
56d36be4
DM
7267 }
7268 return 0;
7269}
7270
1dd06ae8 7271static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
7272{
7273 u16 val;
56d36be4 7274
e5c8ae5f
JL
7275 if (pci_is_pcie(adapter->pdev)) {
7276 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
7277 p->speed = val & PCI_EXP_LNKSTA_CLS;
7278 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7279 }
7280}
7281
7282/**
7283 * init_link_config - initialize a link's SW state
7284 * @lc: structure holding the link state
7285 * @caps: link capabilities
7286 *
7287 * Initializes the SW state maintained for each link, including the link's
7288 * capabilities and default speed/flow-control/autonegotiation settings.
7289 */
1dd06ae8 7290static void init_link_config(struct link_config *lc, unsigned int caps)
56d36be4
DM
7291{
7292 lc->supported = caps;
eb97ad99 7293 lc->lp_advertising = 0;
56d36be4
DM
7294 lc->requested_speed = 0;
7295 lc->speed = 0;
7296 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7297 if (lc->supported & FW_PORT_CAP_ANEG) {
7298 lc->advertising = lc->supported & ADVERT_MASK;
7299 lc->autoneg = AUTONEG_ENABLE;
7300 lc->requested_fc |= PAUSE_AUTONEG;
7301 } else {
7302 lc->advertising = 0;
7303 lc->autoneg = AUTONEG_DISABLE;
7304 }
7305}
7306
8203b509
HS
7307#define CIM_PF_NOACCESS 0xeeeeeeee
7308
7309int t4_wait_dev_ready(void __iomem *regs)
56d36be4 7310{
8203b509
HS
7311 u32 whoami;
7312
0d804338 7313 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7314 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
56d36be4 7315 return 0;
8203b509 7316
56d36be4 7317 msleep(500);
0d804338 7318 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7319 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
56d36be4
DM
7320}
7321
fe2ee139
HS
7322struct flash_desc {
7323 u32 vendor_and_model_id;
7324 u32 size_mb;
7325};
7326
91744948 7327static int get_flash_params(struct adapter *adap)
900a6596 7328{
fe2ee139
HS
7329 /* Table for non-Numonix supported flash parts. Numonix parts are left
7330 * to the preexisting code. All flash parts have 64KB sectors.
7331 */
7332 static struct flash_desc supported_flash[] = {
7333 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
7334 };
7335
900a6596
DM
7336 int ret;
7337 u32 info;
7338
7339 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7340 if (!ret)
7341 ret = sf1_read(adap, 3, 0, 1, &info);
0d804338 7342 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
900a6596
DM
7343 if (ret)
7344 return ret;
7345
fe2ee139
HS
7346 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7347 if (supported_flash[ret].vendor_and_model_id == info) {
7348 adap->params.sf_size = supported_flash[ret].size_mb;
7349 adap->params.sf_nsec =
7350 adap->params.sf_size / SF_SEC_SIZE;
7351 return 0;
7352 }
7353
900a6596
DM
7354 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7355 return -EINVAL;
7356 info >>= 16; /* log2 of size */
7357 if (info >= 0x14 && info < 0x18)
7358 adap->params.sf_nsec = 1 << (info - 16);
7359 else if (info == 0x18)
7360 adap->params.sf_nsec = 64;
7361 else
7362 return -EINVAL;
7363 adap->params.sf_size = 1 << info;
7364 adap->params.sf_fw_start =
89c3a86c 7365 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
c290607e
HS
7366
7367 if (adap->params.sf_size < FLASH_MIN_SIZE)
7368 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7369 adap->params.sf_size, FLASH_MIN_SIZE);
900a6596
DM
7370 return 0;
7371}
7372
eca0f6ee
HS
7373static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7374{
7375 u16 val;
7376 u32 pcie_cap;
7377
7378 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7379 if (pcie_cap) {
7380 pci_read_config_word(adapter->pdev,
7381 pcie_cap + PCI_EXP_DEVCTL2, &val);
7382 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7383 val |= range;
7384 pci_write_config_word(adapter->pdev,
7385 pcie_cap + PCI_EXP_DEVCTL2, val);
7386 }
7387}
7388
56d36be4
DM
7389/**
7390 * t4_prep_adapter - prepare SW and HW for operation
7391 * @adapter: the adapter
7392 * @reset: if true perform a HW reset
7393 *
7394 * Initialize adapter SW state for the various HW modules, set initial
7395 * values for some adapter tunables, take PHYs out of reset, and
7396 * initialize the MDIO interface.
7397 */
91744948 7398int t4_prep_adapter(struct adapter *adapter)
56d36be4 7399{
0a57a536
SR
7400 int ret, ver;
7401 uint16_t device_id;
d14807dd 7402 u32 pl_rev;
56d36be4 7403
56d36be4 7404 get_pci_mode(adapter, &adapter->params.pci);
0d804338 7405 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
56d36be4 7406
900a6596
DM
7407 ret = get_flash_params(adapter);
7408 if (ret < 0) {
7409 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7410 return ret;
7411 }
7412
0a57a536
SR
7413 /* Retrieve adapter's device ID
7414 */
7415 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7416 ver = device_id >> 12;
d14807dd 7417 adapter->params.chip = 0;
0a57a536
SR
7418 switch (ver) {
7419 case CHELSIO_T4:
d14807dd 7420 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
3ccc6cf7
HS
7421 adapter->params.arch.sge_fl_db = DBPRIO_F;
7422 adapter->params.arch.mps_tcam_size =
7423 NUM_MPS_CLS_SRAM_L_INSTANCES;
7424 adapter->params.arch.mps_rplc_size = 128;
7425 adapter->params.arch.nchan = NCHAN;
44588560 7426 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7427 adapter->params.arch.vfcount = 128;
2216d014
HS
7428 /* Congestion map is for 4 channels so that
7429 * MPS can have 4 priority per port.
7430 */
7431 adapter->params.arch.cng_ch_bits_log = 2;
0a57a536
SR
7432 break;
7433 case CHELSIO_T5:
d14807dd 7434 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3ccc6cf7
HS
7435 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7436 adapter->params.arch.mps_tcam_size =
7437 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7438 adapter->params.arch.mps_rplc_size = 128;
7439 adapter->params.arch.nchan = NCHAN;
44588560 7440 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7441 adapter->params.arch.vfcount = 128;
2216d014 7442 adapter->params.arch.cng_ch_bits_log = 2;
3ccc6cf7
HS
7443 break;
7444 case CHELSIO_T6:
7445 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7446 adapter->params.arch.sge_fl_db = 0;
7447 adapter->params.arch.mps_tcam_size =
7448 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7449 adapter->params.arch.mps_rplc_size = 256;
7450 adapter->params.arch.nchan = 2;
44588560 7451 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
3ccc6cf7 7452 adapter->params.arch.vfcount = 256;
2216d014
HS
7453 /* Congestion map will be for 2 channels so that
7454 * MPS can have 8 priority per port.
7455 */
7456 adapter->params.arch.cng_ch_bits_log = 3;
0a57a536
SR
7457 break;
7458 default:
7459 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7460 device_id);
7461 return -EINVAL;
7462 }
7463
f1ff24aa 7464 adapter->params.cim_la_size = CIMLA_SIZE;
56d36be4
DM
7465 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7466
7467 /*
7468 * Default port for debugging in case we can't reach FW.
7469 */
7470 adapter->params.nports = 1;
7471 adapter->params.portvec = 1;
636f9d37 7472 adapter->params.vpd.cclk = 50000;
eca0f6ee
HS
7473
7474 /* Set pci completion timeout value to 4 seconds. */
7475 set_pcie_completion_timeout(adapter, 0xd);
56d36be4
DM
7476 return 0;
7477}
7478
e85c9a7a 7479/**
b2612722 7480 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
7481 * @adapter: the adapter
7482 * @qid: the Queue ID
7483 * @qtype: the Ingress or Egress type for @qid
66cf188e 7484 * @user: true if this request is for a user mode queue
e85c9a7a
HS
7485 * @pbar2_qoffset: BAR2 Queue Offset
7486 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7487 *
7488 * Returns the BAR2 SGE Queue Registers information associated with the
7489 * indicated Absolute Queue ID. These are passed back in return value
7490 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7491 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7492 *
7493 * This may return an error which indicates that BAR2 SGE Queue
7494 * registers aren't available. If an error is not returned, then the
7495 * following values are returned:
7496 *
7497 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7498 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7499 *
7500 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7501 * require the "Inferred Queue ID" ability may be used. E.g. the
7502 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7503 * then these "Inferred Queue ID" register may not be used.
7504 */
b2612722 7505int t4_bar2_sge_qregs(struct adapter *adapter,
e85c9a7a
HS
7506 unsigned int qid,
7507 enum t4_bar2_qtype qtype,
66cf188e 7508 int user,
e85c9a7a
HS
7509 u64 *pbar2_qoffset,
7510 unsigned int *pbar2_qid)
7511{
7512 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7513 u64 bar2_page_offset, bar2_qoffset;
7514 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7515
66cf188e
H
7516 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7517 if (!user && is_t4(adapter->params.chip))
e85c9a7a
HS
7518 return -EINVAL;
7519
7520 /* Get our SGE Page Size parameters.
7521 */
7522 page_shift = adapter->params.sge.hps + 10;
7523 page_size = 1 << page_shift;
7524
7525 /* Get the right Queues per Page parameters for our Queue.
7526 */
7527 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7528 ? adapter->params.sge.eq_qpp
7529 : adapter->params.sge.iq_qpp);
7530 qpp_mask = (1 << qpp_shift) - 1;
7531
7532 /* Calculate the basics of the BAR2 SGE Queue register area:
7533 * o The BAR2 page the Queue registers will be in.
7534 * o The BAR2 Queue ID.
7535 * o The BAR2 Queue ID Offset into the BAR2 page.
7536 */
513d1a1d 7537 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
7538 bar2_qid = qid & qpp_mask;
7539 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7540
7541 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7542 * hardware will infer the Absolute Queue ID simply from the writes to
7543 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7544 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
7545 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7546 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7547 * from the BAR2 Page and BAR2 Queue ID.
7548 *
7549 * One important censequence of this is that some BAR2 SGE registers
7550 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7551 * there. But other registers synthesize the SGE Queue ID purely
7552 * from the writes to the registers -- the Write Combined Doorbell
7553 * Buffer is a good example. These BAR2 SGE Registers are only
7554 * available for those BAR2 SGE Register areas where the SGE Absolute
7555 * Queue ID can be inferred from simple writes.
7556 */
7557 bar2_qoffset = bar2_page_offset;
7558 bar2_qinferred = (bar2_qid_offset < page_size);
7559 if (bar2_qinferred) {
7560 bar2_qoffset += bar2_qid_offset;
7561 bar2_qid = 0;
7562 }
7563
7564 *pbar2_qoffset = bar2_qoffset;
7565 *pbar2_qid = bar2_qid;
7566 return 0;
7567}
7568
ae469b68
HS
7569/**
7570 * t4_init_devlog_params - initialize adapter->params.devlog
7571 * @adap: the adapter
7572 *
7573 * Initialize various fields of the adapter's Firmware Device Log
7574 * Parameters structure.
7575 */
7576int t4_init_devlog_params(struct adapter *adap)
7577{
7578 struct devlog_params *dparams = &adap->params.devlog;
7579 u32 pf_dparams;
7580 unsigned int devlog_meminfo;
7581 struct fw_devlog_cmd devlog_cmd;
7582 int ret;
7583
7584 /* If we're dealing with newer firmware, the Device Log Paramerters
7585 * are stored in a designated register which allows us to access the
7586 * Device Log even if we can't talk to the firmware.
7587 */
7588 pf_dparams =
7589 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7590 if (pf_dparams) {
7591 unsigned int nentries, nentries128;
7592
7593 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7594 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7595
7596 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7597 nentries = (nentries128 + 1) * 128;
7598 dparams->size = nentries * sizeof(struct fw_devlog_e);
7599
7600 return 0;
7601 }
7602
7603 /* Otherwise, ask the firmware for it's Device Log Parameters.
7604 */
7605 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
f404f80c
HS
7606 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7607 FW_CMD_REQUEST_F | FW_CMD_READ_F);
7608 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ae469b68
HS
7609 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7610 &devlog_cmd);
7611 if (ret)
7612 return ret;
7613
f404f80c
HS
7614 devlog_meminfo =
7615 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
ae469b68
HS
7616 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7617 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
f404f80c 7618 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
ae469b68
HS
7619
7620 return 0;
7621}
7622
e85c9a7a
HS
7623/**
7624 * t4_init_sge_params - initialize adap->params.sge
7625 * @adapter: the adapter
7626 *
7627 * Initialize various fields of the adapter's SGE Parameters structure.
7628 */
7629int t4_init_sge_params(struct adapter *adapter)
7630{
7631 struct sge_params *sge_params = &adapter->params.sge;
7632 u32 hps, qpp;
7633 unsigned int s_hps, s_qpp;
7634
7635 /* Extract the SGE Page Size for our PF.
7636 */
f612b815 7637 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
e85c9a7a 7638 s_hps = (HOSTPAGESIZEPF0_S +
b2612722 7639 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
e85c9a7a
HS
7640 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7641
7642 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7643 */
7644 s_qpp = (QUEUESPERPAGEPF0_S +
b2612722 7645 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
f612b815
HS
7646 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7647 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
f061de42 7648 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
f612b815 7649 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
e85c9a7a
HS
7650
7651 return 0;
7652}
7653
dcf7b6f5
KS
7654/**
7655 * t4_init_tp_params - initialize adap->params.tp
7656 * @adap: the adapter
7657 *
7658 * Initialize various fields of the adapter's TP Parameters structure.
7659 */
7660int t4_init_tp_params(struct adapter *adap)
7661{
7662 int chan;
7663 u32 v;
7664
837e4a42
HS
7665 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7666 adap->params.tp.tre = TIMERRESOLUTION_G(v);
7667 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
dcf7b6f5
KS
7668
7669 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7670 for (chan = 0; chan < NCHAN; chan++)
7671 adap->params.tp.tx_modq[chan] = chan;
7672
7673 /* Cache the adapter's Compressed Filter Mode and global Incress
7674 * Configuration.
7675 */
0b2c2a93 7676 if (t4_use_ldst(adap)) {
c1e9af0c
HS
7677 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7678 TP_VLAN_PRI_MAP_A, 1);
7679 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7680 TP_INGRESS_CONFIG_A, 1);
7681 } else {
7682 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7683 &adap->params.tp.vlan_pri_map, 1,
7684 TP_VLAN_PRI_MAP_A);
7685 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7686 &adap->params.tp.ingress_config, 1,
7687 TP_INGRESS_CONFIG_A);
7688 }
dcf7b6f5
KS
7689
7690 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7691 * shift positions of several elements of the Compressed Filter Tuple
7692 * for this adapter which we need frequently ...
7693 */
0d804338
HS
7694 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7695 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7696 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
dcf7b6f5 7697 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
0d804338 7698 PROTOCOL_F);
dcf7b6f5
KS
7699
7700 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
dbedd44e 7701 * represents the presence of an Outer VLAN instead of a VNIC ID.
dcf7b6f5 7702 */
0d804338 7703 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
dcf7b6f5
KS
7704 adap->params.tp.vnic_shift = -1;
7705
7706 return 0;
7707}
7708
7709/**
7710 * t4_filter_field_shift - calculate filter field shift
7711 * @adap: the adapter
7712 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7713 *
7714 * Return the shift position of a filter field within the Compressed
7715 * Filter Tuple. The filter field is specified via its selection bit
7716 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
7717 */
7718int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7719{
7720 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7721 unsigned int sel;
7722 int field_shift;
7723
7724 if ((filter_mode & filter_sel) == 0)
7725 return -1;
7726
7727 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7728 switch (filter_mode & sel) {
0d804338
HS
7729 case FCOE_F:
7730 field_shift += FT_FCOE_W;
dcf7b6f5 7731 break;
0d804338
HS
7732 case PORT_F:
7733 field_shift += FT_PORT_W;
dcf7b6f5 7734 break;
0d804338
HS
7735 case VNIC_ID_F:
7736 field_shift += FT_VNIC_ID_W;
dcf7b6f5 7737 break;
0d804338
HS
7738 case VLAN_F:
7739 field_shift += FT_VLAN_W;
dcf7b6f5 7740 break;
0d804338
HS
7741 case TOS_F:
7742 field_shift += FT_TOS_W;
dcf7b6f5 7743 break;
0d804338
HS
7744 case PROTOCOL_F:
7745 field_shift += FT_PROTOCOL_W;
dcf7b6f5 7746 break;
0d804338
HS
7747 case ETHERTYPE_F:
7748 field_shift += FT_ETHERTYPE_W;
dcf7b6f5 7749 break;
0d804338
HS
7750 case MACMATCH_F:
7751 field_shift += FT_MACMATCH_W;
dcf7b6f5 7752 break;
0d804338
HS
7753 case MPSHITTYPE_F:
7754 field_shift += FT_MPSHITTYPE_W;
dcf7b6f5 7755 break;
0d804338
HS
7756 case FRAGMENTATION_F:
7757 field_shift += FT_FRAGMENTATION_W;
dcf7b6f5
KS
7758 break;
7759 }
7760 }
7761 return field_shift;
7762}
7763
c035e183
HS
7764int t4_init_rss_mode(struct adapter *adap, int mbox)
7765{
7766 int i, ret;
7767 struct fw_rss_vi_config_cmd rvc;
7768
7769 memset(&rvc, 0, sizeof(rvc));
7770
7771 for_each_port(adap, i) {
7772 struct port_info *p = adap2pinfo(adap, i);
7773
f404f80c
HS
7774 rvc.op_to_viid =
7775 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7776 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7777 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7778 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
c035e183
HS
7779 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7780 if (ret)
7781 return ret;
f404f80c 7782 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
c035e183
HS
7783 }
7784 return 0;
7785}
7786
c3e324e3
HS
7787/**
7788 * t4_init_portinfo - allocate a virtual interface amd initialize port_info
7789 * @pi: the port_info
7790 * @mbox: mailbox to use for the FW command
7791 * @port: physical port associated with the VI
7792 * @pf: the PF owning the VI
7793 * @vf: the VF owning the VI
7794 * @mac: the MAC address of the VI
7795 *
7796 * Allocates a virtual interface for the given physical port. If @mac is
7797 * not %NULL it contains the MAC address of the VI as assigned by FW.
7798 * @mac should be large enough to hold an Ethernet address.
7799 * Returns < 0 on error.
7800 */
7801int t4_init_portinfo(struct port_info *pi, int mbox,
7802 int port, int pf, int vf, u8 mac[])
56d36be4 7803{
c3e324e3 7804 int ret;
56d36be4 7805 struct fw_port_cmd c;
c3e324e3 7806 unsigned int rss_size;
56d36be4
DM
7807
7808 memset(&c, 0, sizeof(c));
c3e324e3
HS
7809 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7810 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7811 FW_PORT_CMD_PORTID_V(port));
7812 c.action_to_len16 = cpu_to_be32(
7813 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7814 FW_LEN16(c));
7815 ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7816 if (ret)
7817 return ret;
7818
7819 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
7820 if (ret < 0)
7821 return ret;
7822
7823 pi->viid = ret;
7824 pi->tx_chan = port;
7825 pi->lport = port;
7826 pi->rss_size = rss_size;
7827
7828 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7829 pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7830 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7831 pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
7832 pi->mod_type = FW_PORT_MOD_TYPE_NA;
7833
7834 init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap));
7835 return 0;
7836}
7837
7838int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7839{
7840 u8 addr[6];
7841 int ret, i, j = 0;
56d36be4
DM
7842
7843 for_each_port(adap, i) {
c3e324e3 7844 struct port_info *pi = adap2pinfo(adap, i);
56d36be4
DM
7845
7846 while ((adap->params.portvec & (1 << j)) == 0)
7847 j++;
7848
c3e324e3 7849 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
56d36be4
DM
7850 if (ret)
7851 return ret;
7852
56d36be4 7853 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
40c9f8ab 7854 adap->port[i]->dev_port = j;
56d36be4
DM
7855 j++;
7856 }
7857 return 0;
7858}
f1ff24aa 7859
74b3092c
HS
7860/**
7861 * t4_read_cimq_cfg - read CIM queue configuration
7862 * @adap: the adapter
7863 * @base: holds the queue base addresses in bytes
7864 * @size: holds the queue sizes in bytes
7865 * @thres: holds the queue full thresholds in bytes
7866 *
7867 * Returns the current configuration of the CIM queues, starting with
7868 * the IBQs, then the OBQs.
7869 */
7870void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7871{
7872 unsigned int i, v;
7873 int cim_num_obq = is_t4(adap->params.chip) ?
7874 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7875
7876 for (i = 0; i < CIM_NUM_IBQ; i++) {
7877 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7878 QUENUMSELECT_V(i));
7879 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7880 /* value is in 256-byte units */
7881 *base++ = CIMQBASE_G(v) * 256;
7882 *size++ = CIMQSIZE_G(v) * 256;
7883 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7884 }
7885 for (i = 0; i < cim_num_obq; i++) {
7886 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7887 QUENUMSELECT_V(i));
7888 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7889 /* value is in 256-byte units */
7890 *base++ = CIMQBASE_G(v) * 256;
7891 *size++ = CIMQSIZE_G(v) * 256;
7892 }
7893}
7894
e5f0e43b
HS
7895/**
7896 * t4_read_cim_ibq - read the contents of a CIM inbound queue
7897 * @adap: the adapter
7898 * @qid: the queue index
7899 * @data: where to store the queue contents
7900 * @n: capacity of @data in 32-bit words
7901 *
7902 * Reads the contents of the selected CIM queue starting at address 0 up
7903 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7904 * error and the number of 32-bit words actually read on success.
7905 */
7906int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7907{
7908 int i, err, attempts;
7909 unsigned int addr;
7910 const unsigned int nwords = CIM_IBQ_SIZE * 4;
7911
7912 if (qid > 5 || (n & 3))
7913 return -EINVAL;
7914
7915 addr = qid * nwords;
7916 if (n > nwords)
7917 n = nwords;
7918
7919 /* It might take 3-10ms before the IBQ debug read access is allowed.
7920 * Wait for 1 Sec with a delay of 1 usec.
7921 */
7922 attempts = 1000000;
7923
7924 for (i = 0; i < n; i++, addr++) {
7925 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7926 IBQDBGEN_F);
7927 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7928 attempts, 1);
7929 if (err)
7930 return err;
7931 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7932 }
7933 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
c778af7d
HS
7934 return i;
7935}
7936
7937/**
7938 * t4_read_cim_obq - read the contents of a CIM outbound queue
7939 * @adap: the adapter
7940 * @qid: the queue index
7941 * @data: where to store the queue contents
7942 * @n: capacity of @data in 32-bit words
7943 *
7944 * Reads the contents of the selected CIM queue starting at address 0 up
7945 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7946 * error and the number of 32-bit words actually read on success.
7947 */
7948int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7949{
7950 int i, err;
7951 unsigned int addr, v, nwords;
7952 int cim_num_obq = is_t4(adap->params.chip) ?
7953 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7954
7955 if ((qid > (cim_num_obq - 1)) || (n & 3))
7956 return -EINVAL;
7957
7958 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7959 QUENUMSELECT_V(qid));
7960 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7961
7962 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
7963 nwords = CIMQSIZE_G(v) * 64; /* same */
7964 if (n > nwords)
7965 n = nwords;
7966
7967 for (i = 0; i < n; i++, addr++) {
7968 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7969 OBQDBGEN_F);
7970 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7971 2, 1);
7972 if (err)
7973 return err;
7974 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7975 }
7976 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
e5f0e43b
HS
7977 return i;
7978}
7979
f1ff24aa
HS
7980/**
7981 * t4_cim_read - read a block from CIM internal address space
7982 * @adap: the adapter
7983 * @addr: the start address within the CIM address space
7984 * @n: number of words to read
7985 * @valp: where to store the result
7986 *
7987 * Reads a block of 4-byte words from the CIM intenal address space.
7988 */
7989int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7990 unsigned int *valp)
7991{
7992 int ret = 0;
7993
7994 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7995 return -EBUSY;
7996
7997 for ( ; !ret && n--; addr += 4) {
7998 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7999 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8000 0, 5, 2);
8001 if (!ret)
8002 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8003 }
8004 return ret;
8005}
8006
8007/**
8008 * t4_cim_write - write a block into CIM internal address space
8009 * @adap: the adapter
8010 * @addr: the start address within the CIM address space
8011 * @n: number of words to write
8012 * @valp: set of values to write
8013 *
8014 * Writes a block of 4-byte words into the CIM intenal address space.
8015 */
8016int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8017 const unsigned int *valp)
8018{
8019 int ret = 0;
8020
8021 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8022 return -EBUSY;
8023
8024 for ( ; !ret && n--; addr += 4) {
8025 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8026 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8027 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8028 0, 5, 2);
8029 }
8030 return ret;
8031}
8032
8033static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8034 unsigned int val)
8035{
8036 return t4_cim_write(adap, addr, 1, &val);
8037}
8038
8039/**
8040 * t4_cim_read_la - read CIM LA capture buffer
8041 * @adap: the adapter
8042 * @la_buf: where to store the LA data
8043 * @wrptr: the HW write pointer within the capture buffer
8044 *
8045 * Reads the contents of the CIM LA buffer with the most recent entry at
8046 * the end of the returned data and with the entry at @wrptr first.
8047 * We try to leave the LA in the running state we find it in.
8048 */
8049int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8050{
8051 int i, ret;
8052 unsigned int cfg, val, idx;
8053
8054 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8055 if (ret)
8056 return ret;
8057
8058 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
8059 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8060 if (ret)
8061 return ret;
8062 }
8063
8064 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8065 if (ret)
8066 goto restart;
8067
8068 idx = UPDBGLAWRPTR_G(val);
8069 if (wrptr)
8070 *wrptr = idx;
8071
8072 for (i = 0; i < adap->params.cim_la_size; i++) {
8073 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8074 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8075 if (ret)
8076 break;
8077 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8078 if (ret)
8079 break;
8080 if (val & UPDBGLARDEN_F) {
8081 ret = -ETIMEDOUT;
8082 break;
8083 }
8084 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8085 if (ret)
8086 break;
8087 idx = (idx + 1) & UPDBGLARDPTR_M;
8088 }
8089restart:
8090 if (cfg & UPDBGLAEN_F) {
8091 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8092 cfg & ~UPDBGLARDEN_F);
8093 if (!ret)
8094 ret = r;
8095 }
8096 return ret;
8097}
2d277b3b
HS
8098
8099/**
8100 * t4_tp_read_la - read TP LA capture buffer
8101 * @adap: the adapter
8102 * @la_buf: where to store the LA data
8103 * @wrptr: the HW write pointer within the capture buffer
8104 *
8105 * Reads the contents of the TP LA buffer with the most recent entry at
8106 * the end of the returned data and with the entry at @wrptr first.
8107 * We leave the LA in the running state we find it in.
8108 */
8109void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8110{
8111 bool last_incomplete;
8112 unsigned int i, cfg, val, idx;
8113
8114 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8115 if (cfg & DBGLAENABLE_F) /* freeze LA */
8116 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8117 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8118
8119 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8120 idx = DBGLAWPTR_G(val);
8121 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8122 if (last_incomplete)
8123 idx = (idx + 1) & DBGLARPTR_M;
8124 if (wrptr)
8125 *wrptr = idx;
8126
8127 val &= 0xffff;
8128 val &= ~DBGLARPTR_V(DBGLARPTR_M);
8129 val |= adap->params.tp.la_mask;
8130
8131 for (i = 0; i < TPLA_SIZE; i++) {
8132 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8133 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8134 idx = (idx + 1) & DBGLARPTR_M;
8135 }
8136
8137 /* Wipe out last entry if it isn't valid */
8138 if (last_incomplete)
8139 la_buf[TPLA_SIZE - 1] = ~0ULL;
8140
8141 if (cfg & DBGLAENABLE_F) /* restore running state */
8142 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8143 cfg | adap->params.tp.la_mask);
8144}
a3bfb617
HS
8145
8146/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8147 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
8148 * state for more than the Warning Threshold then we'll issue a warning about
8149 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
8150 * appears to be hung every Warning Repeat second till the situation clears.
8151 * If the situation clears, we'll note that as well.
8152 */
8153#define SGE_IDMA_WARN_THRESH 1
8154#define SGE_IDMA_WARN_REPEAT 300
8155
8156/**
8157 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8158 * @adapter: the adapter
8159 * @idma: the adapter IDMA Monitor state
8160 *
8161 * Initialize the state of an SGE Ingress DMA Monitor.
8162 */
8163void t4_idma_monitor_init(struct adapter *adapter,
8164 struct sge_idma_monitor_state *idma)
8165{
8166 /* Initialize the state variables for detecting an SGE Ingress DMA
8167 * hang. The SGE has internal counters which count up on each clock
8168 * tick whenever the SGE finds its Ingress DMA State Engines in the
8169 * same state they were on the previous clock tick. The clock used is
8170 * the Core Clock so we have a limit on the maximum "time" they can
8171 * record; typically a very small number of seconds. For instance,
8172 * with a 600MHz Core Clock, we can only count up to a bit more than
8173 * 7s. So we'll synthesize a larger counter in order to not run the
8174 * risk of having the "timers" overflow and give us the flexibility to
8175 * maintain a Hung SGE State Machine of our own which operates across
8176 * a longer time frame.
8177 */
8178 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8179 idma->idma_stalled[0] = 0;
8180 idma->idma_stalled[1] = 0;
8181}
8182
8183/**
8184 * t4_idma_monitor - monitor SGE Ingress DMA state
8185 * @adapter: the adapter
8186 * @idma: the adapter IDMA Monitor state
8187 * @hz: number of ticks/second
8188 * @ticks: number of ticks since the last IDMA Monitor call
8189 */
8190void t4_idma_monitor(struct adapter *adapter,
8191 struct sge_idma_monitor_state *idma,
8192 int hz, int ticks)
8193{
8194 int i, idma_same_state_cnt[2];
8195
8196 /* Read the SGE Debug Ingress DMA Same State Count registers. These
8197 * are counters inside the SGE which count up on each clock when the
8198 * SGE finds its Ingress DMA State Engines in the same states they
8199 * were in the previous clock. The counters will peg out at
8200 * 0xffffffff without wrapping around so once they pass the 1s
8201 * threshold they'll stay above that till the IDMA state changes.
8202 */
8203 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8204 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8205 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8206
8207 for (i = 0; i < 2; i++) {
8208 u32 debug0, debug11;
8209
8210 /* If the Ingress DMA Same State Counter ("timer") is less
8211 * than 1s, then we can reset our synthesized Stall Timer and
8212 * continue. If we have previously emitted warnings about a
8213 * potential stalled Ingress Queue, issue a note indicating
8214 * that the Ingress Queue has resumed forward progress.
8215 */
8216 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8217 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8218 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8219 "resumed after %d seconds\n",
8220 i, idma->idma_qid[i],
8221 idma->idma_stalled[i] / hz);
8222 idma->idma_stalled[i] = 0;
8223 continue;
8224 }
8225
8226 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8227 * domain. The first time we get here it'll be because we
8228 * passed the 1s Threshold; each additional time it'll be
8229 * because the RX Timer Callback is being fired on its regular
8230 * schedule.
8231 *
8232 * If the stall is below our Potential Hung Ingress Queue
8233 * Warning Threshold, continue.
8234 */
8235 if (idma->idma_stalled[i] == 0) {
8236 idma->idma_stalled[i] = hz;
8237 idma->idma_warn[i] = 0;
8238 } else {
8239 idma->idma_stalled[i] += ticks;
8240 idma->idma_warn[i] -= ticks;
8241 }
8242
8243 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8244 continue;
8245
8246 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8247 */
8248 if (idma->idma_warn[i] > 0)
8249 continue;
8250 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8251
8252 /* Read and save the SGE IDMA State and Queue ID information.
8253 * We do this every time in case it changes across time ...
8254 * can't be too careful ...
8255 */
8256 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8257 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8258 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8259
8260 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8261 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8262 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8263
8264 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8265 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8266 i, idma->idma_qid[i], idma->idma_state[i],
8267 idma->idma_stalled[i] / hz,
8268 debug0, debug11);
8269 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8270 }
8271}
This page took 0.964679 seconds and 5 git commands to generate.