igb: use the correct i210 register for EEMNGCTL
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
0abb6eb1 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
3d41e30a 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
d0bb53e1 30#include <net/ip6_checksum.h>
5377a416 31#include <linux/io.h>
70c71606 32#include <linux/prefetch.h>
5622e404
JP
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
5377a416 35
1da177e4 36char e1000_driver_name[] = "e1000";
3ad2cc67 37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
ab08853f 38#define DRV_VERSION "7.3.21-k8-NAPI"
abec42a4
SH
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
1da177e4
LT
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
9baa3c34 49static const struct pci_device_id e1000_pci_tbl[] = {
1da177e4
LT
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
2648345f 69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
1da177e4
LT
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
b7ee49db 84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
b7ee49db 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
5377a416 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
1da177e4
LT
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
35574764
NN
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
35574764
NN
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
3ad2cc67 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
a48954c8 102 struct e1000_tx_ring *txdr);
3ad2cc67 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
a48954c8 104 struct e1000_rx_ring *rxdr);
3ad2cc67 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
a48954c8 106 struct e1000_tx_ring *tx_ring);
3ad2cc67 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
a48954c8 108 struct e1000_rx_ring *rx_ring);
35574764 109void e1000_update_stats(struct e1000_adapter *adapter);
1da177e4
LT
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
9f9a12f8 114static void e1000_remove(struct pci_dev *pdev);
581d708e 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
1da177e4
LT
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
581d708e
MC
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
a48954c8 125 struct e1000_tx_ring *tx_ring);
581d708e 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
a48954c8 127 struct e1000_rx_ring *rx_ring);
db0ce50d 128static void e1000_set_rx_mode(struct net_device *netdev);
5cf42fcd 129static void e1000_update_phy_info_task(struct work_struct *work);
a4010afe 130static void e1000_watchdog(struct work_struct *work);
5cf42fcd 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
3b29a56d
SH
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
a48954c8 134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
1da177e4
LT
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
7d12e780 137static irqreturn_t e1000_intr(int irq, void *data);
c3033b01
JP
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
bea3348e 140static int e1000_clean(struct napi_struct *napi, int budget);
c3033b01
JP
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
edbbb3ca
JB
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
08e83316
SD
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
581d708e 152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
edbbb3ca 153 struct e1000_rx_ring *rx_ring,
72d64a43 154 int cleaned_count);
edbbb3ca
JB
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
1da177e4
LT
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
1da177e4
LT
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
65f27f38 164static void e1000_reset_task(struct work_struct *work);
1da177e4 165static void e1000_smartspeed(struct e1000_adapter *adapter);
e619d523 166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
a48954c8 167 struct sk_buff *skb);
1da177e4 168
5622e404 169static bool e1000_vlan_used(struct e1000_adapter *adapter);
c8f44aff
MM
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
52f5509f
JP
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
80d5c368
PM
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
1da177e4
LT
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
6fdfef16 180#ifdef CONFIG_PM
b43fcd7d 181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
1da177e4
LT
182static int e1000_resume(struct pci_dev *pdev);
183#endif
c653e635 184static void e1000_shutdown(struct pci_dev *pdev);
1da177e4
LT
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
1f753861
JB
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
9026729b 197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
a48954c8 198 pci_channel_state_t state);
9026729b
AK
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
3646f0e5 202static const struct pci_error_handlers e1000_err_handler = {
9026729b
AK
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
24025e4e 207
1da177e4
LT
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
9f9a12f8 212 .remove = e1000_remove,
c4e24f01 213#ifdef CONFIG_PM
25985edc 214 /* Power Management Hooks */
1da177e4 215 .suspend = e1000_suspend,
c653e635 216 .resume = e1000_resume,
1da177e4 217#endif
9026729b
AK
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
1da177e4
LT
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
b3f4d599 227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
1da177e4
LT
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
675ad473
ET
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
1da177e4
LT
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
64798845 249static int __init e1000_init_module(void)
1da177e4
LT
250{
251 int ret;
675ad473 252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
1da177e4 253
675ad473 254 pr_info("%s\n", e1000_copyright);
1da177e4 255
29917620 256 ret = pci_register_driver(&e1000_driver);
1f753861
JB
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
675ad473 259 pr_info("copybreak disabled\n");
1f753861 260 else
675ad473
ET
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
1f753861 263 }
1da177e4
LT
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
64798845 275static void __exit e1000_exit_module(void)
1da177e4 276{
1da177e4
LT
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
2db10a08
AK
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
3e18826c 285 irq_handler_t handler = e1000_intr;
e94bd23f
AK
286 int irq_flags = IRQF_SHARED;
287 int err;
2db10a08 288
e94bd23f 289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
a48954c8 290 netdev);
e94bd23f 291 if (err) {
feb8f478 292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
e94bd23f 293 }
2db10a08
AK
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
2db10a08
AK
303}
304
1da177e4
LT
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
64798845 309static void e1000_irq_disable(struct e1000_adapter *adapter)
1da177e4 310{
1dc32918
JP
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
1da177e4
LT
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
64798845 322static void e1000_irq_enable(struct e1000_adapter *adapter)
1da177e4 323{
1dc32918
JP
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
1da177e4 328}
3ad2cc67 329
64798845 330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2d7edb92 331{
1dc32918 332 struct e1000_hw *hw = &adapter->hw;
2d7edb92 333 struct net_device *netdev = adapter->netdev;
1dc32918 334 u16 vid = hw->mng_cookie.vlan_id;
406874a7 335 u16 old_vid = adapter->mng_vlan_id;
96838a40 336
5622e404
JP
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
80d5c368 343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
c5f226fe 344 adapter->mng_vlan_id = vid;
5622e404
JP
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
80d5c368
PM
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
5622e404
JP
353 } else {
354 adapter->mng_vlan_id = vid;
2d7edb92
MC
355 }
356}
b55ccb35 357
64798845 358static void e1000_init_manageability(struct e1000_adapter *adapter)
0fccd0e9 359{
1dc32918
JP
360 struct e1000_hw *hw = &adapter->hw;
361
0fccd0e9 362 if (adapter->en_mng_pt) {
1dc32918 363 u32 manc = er32(MANC);
0fccd0e9
JG
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
1dc32918 368 ew32(MANC, manc);
0fccd0e9
JG
369 }
370}
371
64798845 372static void e1000_release_manageability(struct e1000_adapter *adapter)
0fccd0e9 373{
1dc32918
JP
374 struct e1000_hw *hw = &adapter->hw;
375
0fccd0e9 376 if (adapter->en_mng_pt) {
1dc32918 377 u32 manc = er32(MANC);
0fccd0e9
JG
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
1dc32918 382 ew32(MANC, manc);
0fccd0e9
JG
383 }
384}
385
e0aac5a2
AK
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
1da177e4
LT
391{
392 struct net_device *netdev = adapter->netdev;
2db10a08 393 int i;
1da177e4 394
db0ce50d 395 e1000_set_rx_mode(netdev);
1da177e4
LT
396
397 e1000_restore_vlan(adapter);
0fccd0e9 398 e1000_init_manageability(adapter);
1da177e4
LT
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
72d64a43
JK
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
6cfbd97b
JK
405 * next_to_use != next_to_clean
406 */
f56799ea 407 for (i = 0; i < adapter->num_rx_queues; i++) {
72d64a43 408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
a292ca6e 409 adapter->alloc_rx_buf(adapter, ring,
6cfbd97b 410 E1000_DESC_UNUSED(ring));
f56799ea 411 }
e0aac5a2
AK
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
1dc32918
JP
416 struct e1000_hw *hw = &adapter->hw;
417
e0aac5a2
AK
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
7bfa4816 422
bea3348e 423 napi_enable(&adapter->napi);
c3570acb 424
5de55624
MC
425 e1000_irq_enable(adapter);
426
4cb9be7a
JB
427 netif_wake_queue(adapter->netdev);
428
79f3d399 429 /* fire a link change interrupt to start the watchdog */
1dc32918 430 ew32(ICS, E1000_ICS_LSC);
1da177e4
LT
431 return 0;
432}
433
79f05bf0
AK
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
79f05bf0 441 **/
d658266e 442void e1000_power_up_phy(struct e1000_adapter *adapter)
79f05bf0 443{
1dc32918 444 struct e1000_hw *hw = &adapter->hw;
406874a7 445 u16 mii_reg = 0;
79f05bf0
AK
446
447 /* Just clear the power down bit to wake the phy back up */
1dc32918 448 if (hw->media_type == e1000_media_type_copper) {
79f05bf0 449 /* according to the manual, the phy will retain its
6cfbd97b
JK
450 * settings across a power-down/up cycle
451 */
1dc32918 452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
79f05bf0 453 mii_reg &= ~MII_CR_POWER_DOWN;
1dc32918 454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
79f05bf0
AK
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
1dc32918
JP
460 struct e1000_hw *hw = &adapter->hw;
461
61c2505f 462 /* Power down the PHY so no link is implied when interface is down *
c3033b01 463 * The PHY cannot be powered down if any of the following is true *
79f05bf0
AK
464 * (a) WoL is enabled
465 * (b) AMT is active
6cfbd97b
JK
466 * (c) SoL/IDER session is active
467 */
1dc32918
JP
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
406874a7 470 u16 mii_reg = 0;
61c2505f 471
1dc32918 472 switch (hw->mac_type) {
61c2505f
BA
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
5377a416 477 case e1000_ce4100:
61c2505f
BA
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
1dc32918 483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
61c2505f
BA
484 goto out;
485 break;
61c2505f
BA
486 default:
487 goto out;
488 }
1dc32918 489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
79f05bf0 490 mii_reg |= MII_CR_POWER_DOWN;
1dc32918 491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
4e0d8f7d 492 msleep(1);
79f05bf0 493 }
61c2505f
BA
494out:
495 return;
79f05bf0
AK
496}
497
a4010afe
JB
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
8ce6909f 501
a4010afe 502 cancel_delayed_work_sync(&adapter->watchdog_task);
74a1b1ea
VD
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
a4010afe
JB
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
74a1b1ea
VD
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
a4010afe
JB
516}
517
64798845 518void e1000_down(struct e1000_adapter *adapter)
1da177e4 519{
a6c42322 520 struct e1000_hw *hw = &adapter->hw;
1da177e4 521 struct net_device *netdev = adapter->netdev;
a6c42322 522 u32 rctl, tctl;
1da177e4 523
f9c029db 524 netif_carrier_off(netdev);
1314bbf3 525
a6c42322
JB
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
51851073 531 netif_tx_disable(netdev);
a6c42322
JB
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
bea3348e 541 napi_disable(&adapter->napi);
c3570acb 542
1da177e4 543 e1000_irq_disable(adapter);
c1605eb3 544
6cfbd97b 545 /* Setting DOWN must be after irq_disable to prevent
ab08853f 546 * a screaming interrupt. Setting DOWN also prevents
a4010afe 547 * tasks from rescheduling.
ab08853f 548 */
a4010afe 549 e1000_down_and_stop(adapter);
1da177e4 550
1da177e4
LT
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
1da177e4
LT
553
554 e1000_reset(adapter);
581d708e
MC
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
1da177e4 557}
1da177e4 558
64798845 559void e1000_reinit_locked(struct e1000_adapter *adapter)
2db10a08
AK
560{
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
1da177e4
LT
567}
568
64798845 569void e1000_reset(struct e1000_adapter *adapter)
1da177e4 570{
1dc32918 571 struct e1000_hw *hw = &adapter->hw;
406874a7 572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
c3033b01 573 bool legacy_pba_adjust = false;
b7cb8c2c 574 u16 hwm;
1da177e4
LT
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
1dc32918 580 switch (hw->mac_type) {
018ea44e
BA
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
c3033b01 588 legacy_pba_adjust = true;
018ea44e
BA
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
5377a416 594 case e1000_ce4100:
018ea44e
BA
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
2d7edb92 598 case e1000_82547:
0e6ef3e0 599 case e1000_82547_rev_2:
c3033b01 600 legacy_pba_adjust = true;
2d7edb92
MC
601 pba = E1000_PBA_30K;
602 break;
018ea44e
BA
603 case e1000_undefined:
604 case e1000_num_macs:
2d7edb92
MC
605 break;
606 }
607
c3033b01 608 if (legacy_pba_adjust) {
b7cb8c2c 609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
018ea44e 610 pba -= 8; /* allocate more FIFO for Tx */
2d7edb92 611
1dc32918 612 if (hw->mac_type == e1000_82547) {
018ea44e
BA
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
b7cb8c2c 619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
018ea44e 620 /* adjust PBA for jumbo frames */
1dc32918 621 ew32(PBA, pba);
018ea44e
BA
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
b7cb8c2c 624 * large enough to accommodate two full transmit packets,
018ea44e 625 * rounded up to the next 1KB and expressed in KB. Likewise,
b7cb8c2c 626 * the Rx FIFO should be large enough to accommodate at least
018ea44e 627 * one full receive packet and is similarly rounded up and
6cfbd97b
JK
628 * expressed in KB.
629 */
1dc32918 630 pba = er32(PBA);
018ea44e
BA
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
6cfbd97b 635 /* the Tx fifo also stores 16 bytes of information about the Tx
b7cb8c2c
JB
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
a48954c8
JW
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
9099cfb9 641 min_tx_space = ALIGN(min_tx_space, 1024);
018ea44e 642 min_tx_space >>= 10;
b7cb8c2c
JB
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
9099cfb9 645 min_rx_space = ALIGN(min_rx_space, 1024);
018ea44e
BA
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
6cfbd97b
JK
650 * allocation, take space away from current Rx allocation
651 */
018ea44e
BA
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
1dc32918 657 switch (hw->mac_type) {
018ea44e
BA
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
6cfbd97b
JK
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
1532ecea
JB
668 if (pba < min_rx_space)
669 pba = min_rx_space;
018ea44e 670 }
1da177e4 671 }
2d7edb92 672
1dc32918 673 ew32(PBA, pba);
1da177e4 674
6cfbd97b 675 /* flow control settings:
b7cb8c2c
JB
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
edbbb3ca 689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
1dc32918
JP
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
1da177e4 692
2d7edb92 693 /* Allow time for pending master requests to run */
1dc32918
JP
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
09ae3e88 697
1dc32918 698 if (e1000_init_hw(hw))
feb8f478 699 e_dev_err("Hardware Error\n");
2d7edb92 700 e1000_update_mng_vlan(adapter);
3d5460a0
JB
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
1dc32918 703 if (hw->mac_type >= e1000_82544 &&
1dc32918
JP
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
3d5460a0
JB
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
6cfbd97b
JK
709 * can cause a loss of link at power off or driver unload
710 */
3d5460a0 711 ctrl &= ~E1000_CTRL_SWDPIN3;
1dc32918 712 ew32(CTRL, ctrl);
3d5460a0
JB
713 }
714
1da177e4 715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1dc32918 716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
1da177e4 717
1dc32918
JP
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
9a53a202 720
0fccd0e9 721 e1000_release_manageability(adapter);
1da177e4
LT
722}
723
1aa8b471 724/* Dump the eeprom for users having checksum issues */
b4ea895d 725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
67b3c27c
AK
726{
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
e404decb 738 if (!data)
67b3c27c 739 return;
67b3c27c
AK
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
675ad473
ET
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
67b3c27c 752
675ad473
ET
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
67b3c27c
AK
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
675ad473
ET
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
67b3c27c
AK
768
769 kfree(data);
770}
771
81250297
TI
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806}
807
c8f44aff
MM
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
5622e404 810{
6cfbd97b
JK
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
5622e404 813 */
f646968f
PM
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
5622e404 816 else
f646968f 817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5622e404
JP
818
819 return features;
820}
821
c8f44aff
MM
822static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
e97d3207
MM
824{
825 struct e1000_adapter *adapter = netdev_priv(netdev);
c8f44aff 826 netdev_features_t changed = features ^ netdev->features;
e97d3207 827
f646968f 828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5622e404
JP
829 e1000_vlan_mode(netdev, features);
830
e825b731 831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
e97d3207
MM
832 return 0;
833
e825b731 834 netdev->features = features;
e97d3207
MM
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843}
844
0e7614bc
SH
845static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
00829823 848 .ndo_start_xmit = e1000_xmit_frame,
0e7614bc
SH
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
5622e404 852 .ndo_tx_timeout = e1000_tx_timeout,
0e7614bc
SH
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
0e7614bc
SH
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860#endif
5622e404
JP
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
0e7614bc
SH
863};
864
e508be17
JB
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878{
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927}
928
1da177e4
LT
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
1dd06ae8 940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
941{
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
1dc32918 944 struct e1000_hw *hw;
2d7edb92 945
a48954c8
JW
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
2d7edb92 948 int i, err, pci_using_dac;
406874a7 949 u16 eeprom_data = 0;
5377a416 950 u16 tmp = 0;
406874a7 951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
81250297 952 int bars, need_ioport;
0795af57 953
81250297
TI
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
4d7155b9 961 err = pci_enable_device_mem(pdev);
81250297 962 }
c7be73bc 963 if (err)
1da177e4
LT
964 return err;
965
81250297 966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
c7be73bc 967 if (err)
6dd62ab0 968 goto err_pci_reg;
1da177e4
LT
969
970 pci_set_master(pdev);
dbb5aaeb
NN
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
1da177e4 974
6dd62ab0 975 err = -ENOMEM;
1da177e4 976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6dd62ab0 977 if (!netdev)
1da177e4 978 goto err_alloc_etherdev;
1da177e4 979
1da177e4
LT
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
60490fe0 983 adapter = netdev_priv(netdev);
1da177e4
LT
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
b3f4d599 986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
81250297
TI
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
1da177e4 989
1dc32918
JP
990 hw = &adapter->hw;
991 hw->back = adapter;
992
6dd62ab0 993 err = -EIO;
275f165f 994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1dc32918 995 if (!hw->hw_addr)
1da177e4 996 goto err_ioremap;
1da177e4 997
81250297
TI
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1da177e4
LT
1006 }
1007 }
1008
e508be17
JB
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
6cfbd97b 1014 /* there is a workaround being applied below that limits
e508be17
JB
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
9931a26e 1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
e508be17 1021 pci_using_dac = 1;
e508be17 1022 } else {
9931a26e 1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
19a0b67a
DN
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
e508be17
JB
1028 }
1029
0e7614bc 1030 netdev->netdev_ops = &e1000_netdev_ops;
1da177e4 1031 e1000_set_ethtool_ops(netdev);
1da177e4 1032 netdev->watchdog_timeo = 5 * HZ;
bea3348e 1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
0e7614bc 1034
0eb5a34c 1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1da177e4 1036
1da177e4
LT
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
c7be73bc
JP
1041 err = e1000_sw_init(adapter);
1042 if (err)
1da177e4
LT
1043 goto err_sw_init;
1044
6dd62ab0 1045 err = -EIO;
5377a416 1046 if (hw->mac_type == e1000_ce4100) {
13acde8f
FF
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
a48954c8 1049 pci_resource_len(pdev, BAR_1));
5377a416 1050
13acde8f 1051 if (!hw->ce4100_gbe_mdio_base_virt)
5377a416
DB
1052 goto err_mdio_ioremap;
1053 }
2d7edb92 1054
1dc32918 1055 if (hw->mac_type >= e1000_82543) {
e97d3207 1056 netdev->hw_features = NETIF_F_SG |
5622e404 1057 NETIF_F_HW_CSUM |
f646968f
PM
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1da177e4
LT
1061 }
1062
1dc32918
JP
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
e97d3207
MM
1065 netdev->hw_features |= NETIF_F_TSO;
1066
11a78dcf
BG
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
e97d3207 1069 netdev->features |= netdev->hw_features;
7500673b
TD
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
2d7edb92 1073
7b872a55 1074 if (pci_using_dac) {
1da177e4 1075 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1da177e4 1078
7500673b
TD
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
20501a69 1082
a22bb0b9
FR
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
01789349 1087
1dc32918 1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
2d7edb92 1089
cd94dd0b 1090 /* initialize eeprom parameters */
1dc32918 1091 if (e1000_init_eeprom_params(hw)) {
feb8f478 1092 e_err(probe, "EEPROM initialization failed\n");
6dd62ab0 1093 goto err_eeprom;
cd94dd0b
AK
1094 }
1095
96838a40 1096 /* before reading the EEPROM, reset the controller to
6cfbd97b
JK
1097 * put the device in a known good starting state
1098 */
96838a40 1099
1dc32918 1100 e1000_reset_hw(hw);
1da177e4
LT
1101
1102 /* make sure the EEPROM is good */
1dc32918 1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
feb8f478 1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
67b3c27c 1105 e1000_dump_eeprom(adapter);
6cfbd97b 1106 /* set MAC address to all zeroes to invalidate and temporary
67b3c27c
AK
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1111 * `ip set address`
1112 */
1dc32918 1113 memset(hw->mac_addr, 0, netdev->addr_len);
67b3c27c
AK
1114 } else {
1115 /* copy the MAC address out of the EEPROM */
1dc32918 1116 if (e1000_read_mac_addr(hw))
feb8f478 1117 e_err(probe, "EEPROM Read Error\n");
1da177e4 1118 }
dbedd44e 1119 /* don't block initialization here due to bad MAC address */
1dc32918 1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1da177e4 1121
aaeb6cdf 1122 if (!is_valid_ether_addr(netdev->dev_addr))
feb8f478 1123 e_err(probe, "Invalid MAC Address\n");
1da177e4 1124
1da177e4 1125
a4010afe
JB
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
65f27f38 1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1da177e4 1131
1da177e4
LT
1132 e1000_check_options(adapter);
1133
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1137 */
1138
1dc32918 1139 switch (hw->mac_type) {
1da177e4
LT
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1142 case e1000_82543:
1143 break;
1144 case e1000_82544:
1dc32918 1145 e1000_read_eeprom(hw,
1da177e4
LT
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 break;
1149 case e1000_82546:
1150 case e1000_82546_rev_3:
a48954c8 1151 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1dc32918 1152 e1000_read_eeprom(hw,
1da177e4
LT
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 break;
1155 }
1156 /* Fall Through */
1157 default:
1dc32918 1158 e1000_read_eeprom(hw,
1da177e4
LT
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 break;
1161 }
96838a40 1162 if (eeprom_data & eeprom_apme_mask)
120cd576
JB
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
6cfbd97b
JK
1167 * wake on lan on a particular port
1168 */
120cd576
JB
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
120cd576 1175 /* Wake events only supported on port A for dual fiber
6cfbd97b
JK
1176 * regardless of eeprom setting
1177 */
1dc32918 1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
120cd576
JB
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1185 else
3db1cd5c 1186 adapter->quad_port_a = true;
120cd576
JB
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1190 break;
1191 }
1192
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
de126489 1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1da177e4 1196
5377a416
DB
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1200 hw->phy_addr = i;
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202 if (tmp == 0 || tmp == 0xFF) {
1203 if (i == 31)
1204 goto err_eeprom;
1205 continue;
1206 } else
1207 break;
1208 }
1209 }
1210
675ad473
ET
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1213
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1216 if (err)
1217 goto err_register;
1218
52f5509f 1219 e1000_vlan_filter_on_off(adapter, false);
5622e404 1220
fb3d47d4 1221 /* print bus type/speed/width info */
feb8f478 1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
7837e58c
JP
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 netdev->dev_addr);
1314bbf3 1230
eb62efd2
JB
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1233
feb8f478 1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1da177e4
LT
1235
1236 cards_found++;
1237 return 0;
1238
1239err_register:
6dd62ab0 1240err_eeprom:
1532ecea 1241 e1000_phy_hw_reset(hw);
6dd62ab0 1242
1dc32918
JP
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
6dd62ab0
VA
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
e508be17 1247err_dma:
1da177e4 1248err_sw_init:
5377a416 1249err_mdio_ioremap:
13acde8f 1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1dc32918 1251 iounmap(hw->hw_addr);
1da177e4
LT
1252err_ioremap:
1253 free_netdev(netdev);
1254err_alloc_etherdev:
81250297 1255 pci_release_selected_regions(pdev, bars);
6dd62ab0 1256err_pci_reg:
6dd62ab0 1257 pci_disable_device(pdev);
1da177e4
LT
1258 return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. The could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
9f9a12f8 1270static void e1000_remove(struct pci_dev *pdev)
1da177e4
LT
1271{
1272 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1274 struct e1000_hw *hw = &adapter->hw;
1da177e4 1275
a4010afe 1276 e1000_down_and_stop(adapter);
0fccd0e9 1277 e1000_release_manageability(adapter);
1da177e4 1278
bea3348e
SH
1279 unregister_netdev(netdev);
1280
1532ecea 1281 e1000_phy_hw_reset(hw);
1da177e4 1282
24025e4e
MC
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
24025e4e 1285
1c26750c 1286 if (hw->mac_type == e1000_ce4100)
13acde8f 1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1dc32918
JP
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
81250297 1291 pci_release_selected_regions(pdev, adapter->bars);
1da177e4
LT
1292
1293 free_netdev(netdev);
1294
1295 pci_disable_device(pdev);
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
e508be17 1303 * e1000_init_hw_struct MUST be called before this function
1da177e4 1304 **/
9f9a12f8 1305static int e1000_sw_init(struct e1000_adapter *adapter)
1da177e4 1306{
eb0f8054 1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1da177e4 1308
f56799ea
JK
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
581d708e
MC
1311
1312 if (e1000_alloc_queues(adapter)) {
feb8f478 1313 e_err(probe, "Unable to allocate memory for queues\n");
581d708e
MC
1314 return -ENOMEM;
1315 }
1316
47313054 1317 /* Explicitly disable IRQ since the NIC can be in any state. */
47313054
HX
1318 e1000_irq_disable(adapter);
1319
1da177e4 1320 spin_lock_init(&adapter->stats_lock);
1da177e4 1321
1314bbf3
AK
1322 set_bit(__E1000_DOWN, &adapter->flags);
1323
1da177e4
LT
1324 return 0;
1325}
1326
581d708e
MC
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
3e1d7cd2 1332 * number of queues at compile-time.
581d708e 1333 **/
9f9a12f8 1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
581d708e 1335{
1c7e5b12 1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
a48954c8 1337 sizeof(struct e1000_tx_ring), GFP_KERNEL);
581d708e
MC
1338 if (!adapter->tx_ring)
1339 return -ENOMEM;
581d708e 1340
1c7e5b12 1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
a48954c8 1342 sizeof(struct e1000_rx_ring), GFP_KERNEL);
581d708e
MC
1343 if (!adapter->rx_ring) {
1344 kfree(adapter->tx_ring);
1345 return -ENOMEM;
1346 }
581d708e 1347
581d708e
MC
1348 return E1000_SUCCESS;
1349}
1350
1da177e4
LT
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP). At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
a4010afe 1360 * handler is registered with the OS, the watchdog task is started,
1da177e4
LT
1361 * and the stack is notified that the interface is ready.
1362 **/
64798845 1363static int e1000_open(struct net_device *netdev)
1da177e4 1364{
60490fe0 1365 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1366 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
1367 int err;
1368
2db10a08 1369 /* disallow open during test */
1314bbf3 1370 if (test_bit(__E1000_TESTING, &adapter->flags))
2db10a08
AK
1371 return -EBUSY;
1372
eb62efd2
JB
1373 netif_carrier_off(netdev);
1374
1da177e4 1375 /* allocate transmit descriptors */
e0aac5a2
AK
1376 err = e1000_setup_all_tx_resources(adapter);
1377 if (err)
1da177e4
LT
1378 goto err_setup_tx;
1379
1380 /* allocate receive descriptors */
e0aac5a2 1381 err = e1000_setup_all_rx_resources(adapter);
b5bf28cd 1382 if (err)
e0aac5a2 1383 goto err_setup_rx;
b5bf28cd 1384
79f05bf0
AK
1385 e1000_power_up_phy(adapter);
1386
2d7edb92 1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1dc32918 1388 if ((hw->mng_cookie.status &
2d7edb92
MC
1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 e1000_update_mng_vlan(adapter);
1391 }
1da177e4 1392
e0aac5a2
AK
1393 /* before we allocate an interrupt, we must be ready to handle it.
1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 * as soon as we call pci_request_irq, so we have to setup our
6cfbd97b
JK
1396 * clean_rx handler before we do so.
1397 */
e0aac5a2
AK
1398 e1000_configure(adapter);
1399
1400 err = e1000_request_irq(adapter);
1401 if (err)
1402 goto err_req_irq;
1403
1404 /* From here on the code is the same as e1000_up() */
1405 clear_bit(__E1000_DOWN, &adapter->flags);
1406
bea3348e 1407 napi_enable(&adapter->napi);
47313054 1408
e0aac5a2
AK
1409 e1000_irq_enable(adapter);
1410
076152d5
BH
1411 netif_start_queue(netdev);
1412
e0aac5a2 1413 /* fire a link status change interrupt to start the watchdog */
1dc32918 1414 ew32(ICS, E1000_ICS_LSC);
e0aac5a2 1415
1da177e4
LT
1416 return E1000_SUCCESS;
1417
b5bf28cd 1418err_req_irq:
e0aac5a2 1419 e1000_power_down_phy(adapter);
581d708e 1420 e1000_free_all_rx_resources(adapter);
1da177e4 1421err_setup_rx:
581d708e 1422 e1000_free_all_tx_resources(adapter);
1da177e4
LT
1423err_setup_tx:
1424 e1000_reset(adapter);
1425
1426 return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS. The hardware is still under the drivers control, but
1437 * needs to be disabled. A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
64798845 1440static int e1000_close(struct net_device *netdev)
1da177e4 1441{
60490fe0 1442 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1443 struct e1000_hw *hw = &adapter->hw;
6a7d64e3 1444 int count = E1000_CHECK_RESET_COUNT;
1445
1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 usleep_range(10000, 20000);
1da177e4 1448
2db10a08 1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1da177e4 1450 e1000_down(adapter);
79f05bf0 1451 e1000_power_down_phy(adapter);
2db10a08 1452 e1000_free_irq(adapter);
1da177e4 1453
581d708e
MC
1454 e1000_free_all_tx_resources(adapter);
1455 e1000_free_all_rx_resources(adapter);
1da177e4 1456
4666560a 1457 /* kill manageability vlan ID if supported, but not if a vlan with
6cfbd97b
JK
1458 * the same ID is registered on the host OS (let 8021q kill it)
1459 */
1dc32918 1460 if ((hw->mng_cookie.status &
6cfbd97b
JK
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
80d5c368
PM
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 adapter->mng_vlan_id);
2d7edb92 1465 }
b55ccb35 1466
1da177e4
LT
1467 return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
2d7edb92
MC
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1da177e4 1475 **/
64798845
JP
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 unsigned long len)
1da177e4 1478{
1dc32918 1479 struct e1000_hw *hw = &adapter->hw;
e982f17c 1480 unsigned long begin = (unsigned long)start;
1da177e4
LT
1481 unsigned long end = begin + len;
1482
2648345f 1483 /* First rev 82545 and 82546 need to not allow any memory
6cfbd97b
JK
1484 * write location to cross 64k boundary due to errata 23
1485 */
1dc32918 1486 if (hw->mac_type == e1000_82545 ||
5377a416 1487 hw->mac_type == e1000_ce4100 ||
1dc32918 1488 hw->mac_type == e1000_82546) {
c3033b01 1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1da177e4
LT
1490 }
1491
c3033b01 1492 return true;
1da177e4
LT
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
581d708e 1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1da177e4
LT
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
64798845
JP
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 struct e1000_tx_ring *txdr)
1da177e4 1504{
1da177e4
LT
1505 struct pci_dev *pdev = adapter->pdev;
1506 int size;
1507
580f321d 1508 size = sizeof(struct e1000_tx_buffer) * txdr->count;
89bf67f1 1509 txdr->buffer_info = vzalloc(size);
14f8dc49 1510 if (!txdr->buffer_info)
1da177e4 1511 return -ENOMEM;
1da177e4
LT
1512
1513 /* round up to nearest 4K */
1514
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
9099cfb9 1516 txdr->size = ALIGN(txdr->size, 4096);
1da177e4 1517
b16f53be
NN
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 GFP_KERNEL);
96838a40 1520 if (!txdr->desc) {
1da177e4 1521setup_tx_desc_die:
1da177e4
LT
1522 vfree(txdr->buffer_info);
1523 return -ENOMEM;
1524 }
1525
2648345f 1526 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 void *olddesc = txdr->desc;
1529 dma_addr_t olddma = txdr->dma;
feb8f478 1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
675ad473 1531 txdr->size, txdr->desc);
2648345f 1532 /* Try again, without freeing the previous */
b16f53be
NN
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 &txdr->dma, GFP_KERNEL);
2648345f 1535 /* Failed allocation, critical failure */
96838a40 1536 if (!txdr->desc) {
b16f53be
NN
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 olddma);
1da177e4
LT
1539 goto setup_tx_desc_die;
1540 }
1541
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 /* give up */
b16f53be
NN
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 txdr->dma);
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
feb8f478 1548 e_err(probe, "Unable to allocate aligned memory "
675ad473 1549 "for the transmit descriptor ring\n");
1da177e4
LT
1550 vfree(txdr->buffer_info);
1551 return -ENOMEM;
1552 } else {
2648345f 1553 /* Free old allocation, new allocation was successful */
b16f53be
NN
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 olddma);
1da177e4
LT
1556 }
1557 }
1558 memset(txdr->desc, 0, txdr->size);
1559
1560 txdr->next_to_use = 0;
1561 txdr->next_to_clean = 0;
1562
1563 return 0;
1564}
1565
581d708e
MC
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
581d708e
MC
1571 * Return 0 on success, negative on failure
1572 **/
64798845 1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
581d708e
MC
1574{
1575 int i, err = 0;
1576
f56799ea 1577 for (i = 0; i < adapter->num_tx_queues; i++) {
581d708e
MC
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 if (err) {
feb8f478 1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
3fbbc72e
VA
1581 for (i-- ; i >= 0; i--)
1582 e1000_free_tx_resources(adapter,
1583 &adapter->tx_ring[i]);
581d708e
MC
1584 break;
1585 }
1586 }
1587
1588 return err;
1589}
1590
1da177e4
LT
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
64798845 1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1da177e4 1598{
406874a7 1599 u64 tdba;
581d708e 1600 struct e1000_hw *hw = &adapter->hw;
1532ecea 1601 u32 tdlen, tctl, tipg;
406874a7 1602 u32 ipgr1, ipgr2;
1da177e4
LT
1603
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1605
f56799ea 1606 switch (adapter->num_tx_queues) {
24025e4e
MC
1607 case 1:
1608 default:
581d708e
MC
1609 tdba = adapter->tx_ring[0].dma;
1610 tdlen = adapter->tx_ring[0].count *
1611 sizeof(struct e1000_tx_desc);
1dc32918
JP
1612 ew32(TDLEN, tdlen);
1613 ew32(TDBAH, (tdba >> 32));
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 ew32(TDT, 0);
1616 ew32(TDH, 0);
6cfbd97b
JK
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDH : E1000_82542_TDH);
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 E1000_TDT : E1000_82542_TDT);
24025e4e
MC
1621 break;
1622 }
1da177e4
LT
1623
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1532ecea 1625 if ((hw->media_type == e1000_media_type_fiber ||
d89b6c67 1626 hw->media_type == e1000_media_type_internal_serdes))
0fadb059
JK
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 else
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
581d708e 1631 switch (hw->mac_type) {
1da177e4
LT
1632 case e1000_82542_rev2_0:
1633 case e1000_82542_rev2_1:
1634 tipg = DEFAULT_82542_TIPG_IPGT;
0fadb059
JK
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1da177e4
LT
1637 break;
1638 default:
0fadb059
JK
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 break;
1da177e4 1642 }
0fadb059
JK
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1dc32918 1645 ew32(TIPG, tipg);
1da177e4
LT
1646
1647 /* Set the Tx Interrupt Delay register */
1648
1dc32918 1649 ew32(TIDV, adapter->tx_int_delay);
581d708e 1650 if (hw->mac_type >= e1000_82540)
1dc32918 1651 ew32(TADV, adapter->tx_abs_int_delay);
1da177e4
LT
1652
1653 /* Program the Transmit Control Register */
1654
1dc32918 1655 tctl = er32(TCTL);
1da177e4 1656 tctl &= ~E1000_TCTL_CT;
7e6c9861 1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1da177e4
LT
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
581d708e 1660 e1000_config_collision_dist(hw);
1da177e4
LT
1661
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
6a042dab
JB
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter->tx_int_delay)
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1da177e4 1668
581d708e 1669 if (hw->mac_type < e1000_82543)
1da177e4
LT
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 else
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674 /* Cache if we're 82544 running in PCI-X because we'll
6cfbd97b
JK
1675 * need this to apply a workaround later in the send path.
1676 */
581d708e
MC
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
3db1cd5c 1679 adapter->pcix_82544 = true;
7e6c9861 1680
1dc32918 1681 ew32(TCTL, tctl);
7e6c9861 1682
1da177e4
LT
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
581d708e 1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1da177e4
LT
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
64798845
JP
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 struct e1000_rx_ring *rxdr)
1da177e4 1694{
1da177e4 1695 struct pci_dev *pdev = adapter->pdev;
2d7edb92 1696 int size, desc_len;
1da177e4 1697
93f0afe9 1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
89bf67f1 1699 rxdr->buffer_info = vzalloc(size);
14f8dc49 1700 if (!rxdr->buffer_info)
1da177e4 1701 return -ENOMEM;
1da177e4 1702
1532ecea 1703 desc_len = sizeof(struct e1000_rx_desc);
2d7edb92 1704
1da177e4
LT
1705 /* Round up to nearest 4K */
1706
2d7edb92 1707 rxdr->size = rxdr->count * desc_len;
9099cfb9 1708 rxdr->size = ALIGN(rxdr->size, 4096);
1da177e4 1709
b16f53be
NN
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 GFP_KERNEL);
581d708e 1712 if (!rxdr->desc) {
1da177e4 1713setup_rx_desc_die:
1da177e4
LT
1714 vfree(rxdr->buffer_info);
1715 return -ENOMEM;
1716 }
1717
2648345f 1718 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 void *olddesc = rxdr->desc;
1721 dma_addr_t olddma = rxdr->dma;
feb8f478 1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
675ad473 1723 rxdr->size, rxdr->desc);
2648345f 1724 /* Try again, without freeing the previous */
b16f53be
NN
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 &rxdr->dma, GFP_KERNEL);
2648345f 1727 /* Failed allocation, critical failure */
581d708e 1728 if (!rxdr->desc) {
b16f53be
NN
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 olddma);
1da177e4
LT
1731 goto setup_rx_desc_die;
1732 }
1733
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 /* give up */
b16f53be
NN
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 rxdr->dma);
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 olddma);
feb8f478
ET
1740 e_err(probe, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
581d708e 1742 goto setup_rx_desc_die;
1da177e4 1743 } else {
2648345f 1744 /* Free old allocation, new allocation was successful */
b16f53be
NN
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1da177e4
LT
1747 }
1748 }
1749 memset(rxdr->desc, 0, rxdr->size);
1750
1751 rxdr->next_to_clean = 0;
1752 rxdr->next_to_use = 0;
edbbb3ca 1753 rxdr->rx_skb_top = NULL;
1da177e4
LT
1754
1755 return 0;
1756}
1757
581d708e
MC
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
581d708e
MC
1763 * Return 0 on success, negative on failure
1764 **/
64798845 1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
581d708e
MC
1766{
1767 int i, err = 0;
1768
f56799ea 1769 for (i = 0; i < adapter->num_rx_queues; i++) {
581d708e
MC
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 if (err) {
feb8f478 1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
3fbbc72e
VA
1773 for (i-- ; i >= 0; i--)
1774 e1000_free_rx_resources(adapter,
1775 &adapter->rx_ring[i]);
581d708e
MC
1776 break;
1777 }
1778 }
1779
1780 return err;
1781}
1782
1da177e4 1783/**
2648345f 1784 * e1000_setup_rctl - configure the receive control registers
1da177e4
LT
1785 * @adapter: Board private structure
1786 **/
64798845 1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1da177e4 1788{
1dc32918 1789 struct e1000_hw *hw = &adapter->hw;
630b25cd 1790 u32 rctl;
1da177e4 1791
1dc32918 1792 rctl = er32(RCTL);
1da177e4
LT
1793
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
d5bc77a2
DN
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 E1000_RCTL_RDMTS_HALF |
1dc32918 1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1da177e4 1799
1dc32918 1800 if (hw->tbi_compatibility_on == 1)
1da177e4
LT
1801 rctl |= E1000_RCTL_SBP;
1802 else
1803 rctl &= ~E1000_RCTL_SBP;
1804
2d7edb92
MC
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 rctl &= ~E1000_RCTL_LPE;
1807 else
1808 rctl |= E1000_RCTL_LPE;
1809
1da177e4 1810 /* Setup buffer sizes */
9e2feace
AK
1811 rctl &= ~E1000_RCTL_SZ_4096;
1812 rctl |= E1000_RCTL_BSEX;
1813 switch (adapter->rx_buffer_len) {
a48954c8
JW
1814 case E1000_RXBUFFER_2048:
1815 default:
1816 rctl |= E1000_RCTL_SZ_2048;
1817 rctl &= ~E1000_RCTL_BSEX;
1818 break;
1819 case E1000_RXBUFFER_4096:
1820 rctl |= E1000_RCTL_SZ_4096;
1821 break;
1822 case E1000_RXBUFFER_8192:
1823 rctl |= E1000_RCTL_SZ_8192;
1824 break;
1825 case E1000_RXBUFFER_16384:
1826 rctl |= E1000_RCTL_SZ_16384;
1827 break;
2d7edb92
MC
1828 }
1829
e825b731
BG
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter->netdev->features & NETIF_F_RXALL) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
6cfbd97b
JK
1833 * in e1000e_set_rx_mode
1834 */
e825b731
BG
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 E1000_RCTL_DPF | /* Allow filtered pause */
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1844 */
1845 }
1846
1dc32918 1847 ew32(RCTL, rctl);
1da177e4
LT
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
64798845 1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1da177e4 1857{
406874a7 1858 u64 rdba;
581d708e 1859 struct e1000_hw *hw = &adapter->hw;
1532ecea 1860 u32 rdlen, rctl, rxcsum;
2d7edb92 1861
edbbb3ca
JB
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 rdlen = adapter->rx_ring[0].count *
a48954c8 1864 sizeof(struct e1000_rx_desc);
edbbb3ca
JB
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 } else {
1868 rdlen = adapter->rx_ring[0].count *
a48954c8 1869 sizeof(struct e1000_rx_desc);
edbbb3ca
JB
1870 adapter->clean_rx = e1000_clean_rx_irq;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 }
1da177e4
LT
1873
1874 /* disable receives while setting up the descriptors */
1dc32918
JP
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1da177e4
LT
1877
1878 /* set the Receive Delay Timer Register */
1dc32918 1879 ew32(RDTR, adapter->rx_int_delay);
1da177e4 1880
581d708e 1881 if (hw->mac_type >= e1000_82540) {
1dc32918 1882 ew32(RADV, adapter->rx_abs_int_delay);
835bb129 1883 if (adapter->itr_setting != 0)
1dc32918 1884 ew32(ITR, 1000000000 / (adapter->itr * 256));
1da177e4
LT
1885 }
1886
581d708e 1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
6cfbd97b
JK
1888 * the Base and Length of the Rx Descriptor Ring
1889 */
f56799ea 1890 switch (adapter->num_rx_queues) {
24025e4e
MC
1891 case 1:
1892 default:
581d708e 1893 rdba = adapter->rx_ring[0].dma;
1dc32918
JP
1894 ew32(RDLEN, rdlen);
1895 ew32(RDBAH, (rdba >> 32));
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 ew32(RDT, 0);
1898 ew32(RDH, 0);
6cfbd97b
JK
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDH : E1000_82542_RDH);
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 E1000_RDT : E1000_82542_RDT);
581d708e 1903 break;
24025e4e
MC
1904 }
1905
1da177e4 1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
581d708e 1907 if (hw->mac_type >= e1000_82543) {
1dc32918 1908 rxcsum = er32(RXCSUM);
630b25cd 1909 if (adapter->rx_csum)
2d7edb92 1910 rxcsum |= E1000_RXCSUM_TUOFL;
630b25cd 1911 else
2d7edb92 1912 /* don't need to clear IPPCSE as it defaults to 0 */
630b25cd 1913 rxcsum &= ~E1000_RXCSUM_TUOFL;
1dc32918 1914 ew32(RXCSUM, rxcsum);
1da177e4
LT
1915 }
1916
1917 /* Enable Receives */
d5bc77a2 1918 ew32(RCTL, rctl | E1000_RCTL_EN);
1da177e4
LT
1919}
1920
1921/**
581d708e 1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1da177e4 1923 * @adapter: board private structure
581d708e 1924 * @tx_ring: Tx descriptor ring for a specific queue
1da177e4
LT
1925 *
1926 * Free all transmit software resources
1927 **/
64798845
JP
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 struct e1000_tx_ring *tx_ring)
1da177e4
LT
1930{
1931 struct pci_dev *pdev = adapter->pdev;
1932
581d708e 1933 e1000_clean_tx_ring(adapter, tx_ring);
1da177e4 1934
581d708e
MC
1935 vfree(tx_ring->buffer_info);
1936 tx_ring->buffer_info = NULL;
1da177e4 1937
b16f53be
NN
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 tx_ring->dma);
1da177e4 1940
581d708e
MC
1941 tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
64798845 1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
581d708e
MC
1951{
1952 int i;
1953
f56799ea 1954 for (i = 0; i < adapter->num_tx_queues; i++)
581d708e 1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1da177e4
LT
1956}
1957
580f321d
FW
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 struct e1000_tx_buffer *buffer_info)
1da177e4 1961{
602c0554
AD
1962 if (buffer_info->dma) {
1963 if (buffer_info->mapped_as_page)
b16f53be
NN
1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length, DMA_TO_DEVICE);
602c0554 1966 else
b16f53be 1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
602c0554 1968 buffer_info->length,
b16f53be 1969 DMA_TO_DEVICE);
602c0554
AD
1970 buffer_info->dma = 0;
1971 }
a9ebadd6 1972 if (buffer_info->skb) {
1da177e4 1973 dev_kfree_skb_any(buffer_info->skb);
a9ebadd6
JB
1974 buffer_info->skb = NULL;
1975 }
37e73df8 1976 buffer_info->time_stamp = 0;
a9ebadd6 1977 /* buffer_info must be completely set up in the transmit path */
1da177e4
LT
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
581d708e 1983 * @tx_ring: ring to be cleaned
1da177e4 1984 **/
64798845
JP
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 struct e1000_tx_ring *tx_ring)
1da177e4 1987{
1dc32918 1988 struct e1000_hw *hw = &adapter->hw;
580f321d 1989 struct e1000_tx_buffer *buffer_info;
1da177e4
LT
1990 unsigned long size;
1991 unsigned int i;
1992
1993 /* Free all the Tx ring sk_buffs */
1994
96838a40 1995 for (i = 0; i < tx_ring->count; i++) {
1da177e4
LT
1996 buffer_info = &tx_ring->buffer_info[i];
1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 }
1999
2f66fd36 2000 netdev_reset_queue(adapter->netdev);
580f321d 2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1da177e4
LT
2002 memset(tx_ring->buffer_info, 0, size);
2003
2004 /* Zero out the descriptor ring */
2005
2006 memset(tx_ring->desc, 0, tx_ring->size);
2007
2008 tx_ring->next_to_use = 0;
2009 tx_ring->next_to_clean = 0;
3db1cd5c 2010 tx_ring->last_tx_tso = false;
1da177e4 2011
1dc32918
JP
2012 writel(0, hw->hw_addr + tx_ring->tdh);
2013 writel(0, hw->hw_addr + tx_ring->tdt);
581d708e
MC
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
64798845 2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
581d708e
MC
2021{
2022 int i;
2023
f56799ea 2024 for (i = 0; i < adapter->num_tx_queues; i++)
581d708e 2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1da177e4
LT
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
581d708e 2031 * @rx_ring: ring to clean the resources from
1da177e4
LT
2032 *
2033 * Free all receive software resources
2034 **/
64798845
JP
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 struct e1000_rx_ring *rx_ring)
1da177e4 2037{
1da177e4
LT
2038 struct pci_dev *pdev = adapter->pdev;
2039
581d708e 2040 e1000_clean_rx_ring(adapter, rx_ring);
1da177e4
LT
2041
2042 vfree(rx_ring->buffer_info);
2043 rx_ring->buffer_info = NULL;
2044
b16f53be
NN
2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 rx_ring->dma);
1da177e4
LT
2047
2048 rx_ring->desc = NULL;
2049}
2050
2051/**
581d708e 2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1da177e4 2053 * @adapter: board private structure
581d708e
MC
2054 *
2055 * Free all receive software resources
2056 **/
64798845 2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
581d708e
MC
2058{
2059 int i;
2060
f56799ea 2061 for (i = 0; i < adapter->num_rx_queues; i++)
581d708e
MC
2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
13809609
FW
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074 unsigned int len = e1000_frag_len(a);
2075 u8 *data = netdev_alloc_frag(len);
2076
2077 if (likely(data))
2078 data += E1000_HEADROOM;
2079 return data;
2080}
2081
581d708e
MC
2082/**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
1da177e4 2086 **/
64798845
JP
2087static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 struct e1000_rx_ring *rx_ring)
1da177e4 2089{
1dc32918 2090 struct e1000_hw *hw = &adapter->hw;
93f0afe9 2091 struct e1000_rx_buffer *buffer_info;
1da177e4
LT
2092 struct pci_dev *pdev = adapter->pdev;
2093 unsigned long size;
630b25cd 2094 unsigned int i;
1da177e4 2095
13809609 2096 /* Free all the Rx netfrags */
96838a40 2097 for (i = 0; i < rx_ring->count; i++) {
1da177e4 2098 buffer_info = &rx_ring->buffer_info[i];
13809609
FW
2099 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 if (buffer_info->dma)
2101 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 adapter->rx_buffer_len,
2103 DMA_FROM_DEVICE);
2104 if (buffer_info->rxbuf.data) {
6bf93ba8 2105 skb_free_frag(buffer_info->rxbuf.data);
13809609
FW
2106 buffer_info->rxbuf.data = NULL;
2107 }
2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 if (buffer_info->dma)
2110 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 adapter->rx_buffer_len,
2112 DMA_FROM_DEVICE);
2113 if (buffer_info->rxbuf.page) {
2114 put_page(buffer_info->rxbuf.page);
2115 buffer_info->rxbuf.page = NULL;
2116 }
679be3ba 2117 }
1da177e4 2118
679be3ba 2119 buffer_info->dma = 0;
1da177e4
LT
2120 }
2121
edbbb3ca 2122 /* there also may be some cached data from a chained receive */
de591c78
FW
2123 napi_free_frags(&adapter->napi);
2124 rx_ring->rx_skb_top = NULL;
edbbb3ca 2125
93f0afe9 2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
1da177e4
LT
2127 memset(rx_ring->buffer_info, 0, size);
2128
2129 /* Zero out the descriptor ring */
1da177e4
LT
2130 memset(rx_ring->desc, 0, rx_ring->size);
2131
2132 rx_ring->next_to_clean = 0;
2133 rx_ring->next_to_use = 0;
2134
1dc32918
JP
2135 writel(0, hw->hw_addr + rx_ring->rdh);
2136 writel(0, hw->hw_addr + rx_ring->rdt);
581d708e
MC
2137}
2138
2139/**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
64798845 2143static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
581d708e
MC
2144{
2145 int i;
2146
f56799ea 2147 for (i = 0; i < adapter->num_rx_queues; i++)
581d708e 2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1da177e4
LT
2149}
2150
2151/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
64798845 2154static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
1da177e4 2155{
1dc32918 2156 struct e1000_hw *hw = &adapter->hw;
1da177e4 2157 struct net_device *netdev = adapter->netdev;
406874a7 2158 u32 rctl;
1da177e4 2159
1dc32918 2160 e1000_pci_clear_mwi(hw);
1da177e4 2161
1dc32918 2162 rctl = er32(RCTL);
1da177e4 2163 rctl |= E1000_RCTL_RST;
1dc32918
JP
2164 ew32(RCTL, rctl);
2165 E1000_WRITE_FLUSH();
1da177e4
LT
2166 mdelay(5);
2167
96838a40 2168 if (netif_running(netdev))
581d708e 2169 e1000_clean_all_rx_rings(adapter);
1da177e4
LT
2170}
2171
64798845 2172static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
1da177e4 2173{
1dc32918 2174 struct e1000_hw *hw = &adapter->hw;
1da177e4 2175 struct net_device *netdev = adapter->netdev;
406874a7 2176 u32 rctl;
1da177e4 2177
1dc32918 2178 rctl = er32(RCTL);
1da177e4 2179 rctl &= ~E1000_RCTL_RST;
1dc32918
JP
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
1da177e4
LT
2182 mdelay(5);
2183
1dc32918
JP
2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 e1000_pci_set_mwi(hw);
1da177e4 2186
96838a40 2187 if (netif_running(netdev)) {
72d64a43
JK
2188 /* No need to loop, because 82542 supports only 1 queue */
2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
7c4d3367 2190 e1000_configure_rx(adapter);
72d64a43 2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
1da177e4
LT
2192 }
2193}
2194
2195/**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
64798845 2202static int e1000_set_mac(struct net_device *netdev, void *p)
1da177e4 2203{
60490fe0 2204 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 2205 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
2206 struct sockaddr *addr = p;
2207
96838a40 2208 if (!is_valid_ether_addr(addr->sa_data))
1da177e4
LT
2209 return -EADDRNOTAVAIL;
2210
2211 /* 82542 2.0 needs to be in reset to write receive address registers */
2212
1dc32918 2213 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2214 e1000_enter_82542_rst(adapter);
2215
2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1dc32918 2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
1da177e4 2218
1dc32918 2219 e1000_rar_set(hw, hw->mac_addr, 0);
1da177e4 2220
1dc32918 2221 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2222 e1000_leave_82542_rst(adapter);
2223
2224 return 0;
2225}
2226
2227/**
db0ce50d 2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
1da177e4
LT
2229 * @netdev: network interface device structure
2230 *
db0ce50d
PM
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
1da177e4
LT
2234 * promiscuous mode, and all-multi behavior.
2235 **/
64798845 2236static void e1000_set_rx_mode(struct net_device *netdev)
1da177e4 2237{
60490fe0 2238 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 2239 struct e1000_hw *hw = &adapter->hw;
ccffad25
JP
2240 struct netdev_hw_addr *ha;
2241 bool use_uc = false;
406874a7
JP
2242 u32 rctl;
2243 u32 hash_value;
868d5309 2244 int i, rar_entries = E1000_RAR_ENTRIES;
1532ecea 2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
81c52285
JB
2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
14f8dc49 2248 if (!mcarray)
81c52285 2249 return;
cd94dd0b 2250
2648345f
MC
2251 /* Check for Promiscuous and All Multicast modes */
2252
1dc32918 2253 rctl = er32(RCTL);
1da177e4 2254
96838a40 2255 if (netdev->flags & IFF_PROMISC) {
1da177e4 2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2257 rctl &= ~E1000_RCTL_VFE;
1da177e4 2258 } else {
1532ecea 2259 if (netdev->flags & IFF_ALLMULTI)
746b9f02 2260 rctl |= E1000_RCTL_MPE;
1532ecea 2261 else
746b9f02 2262 rctl &= ~E1000_RCTL_MPE;
1532ecea 2263 /* Enable VLAN filter if there is a VLAN */
5622e404 2264 if (e1000_vlan_used(adapter))
1532ecea 2265 rctl |= E1000_RCTL_VFE;
db0ce50d
PM
2266 }
2267
32e7bfc4 2268 if (netdev_uc_count(netdev) > rar_entries - 1) {
db0ce50d
PM
2269 rctl |= E1000_RCTL_UPE;
2270 } else if (!(netdev->flags & IFF_PROMISC)) {
2271 rctl &= ~E1000_RCTL_UPE;
ccffad25 2272 use_uc = true;
1da177e4
LT
2273 }
2274
1dc32918 2275 ew32(RCTL, rctl);
1da177e4
LT
2276
2277 /* 82542 2.0 needs to be in reset to write receive address registers */
2278
96838a40 2279 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2280 e1000_enter_82542_rst(adapter);
2281
db0ce50d
PM
2282 /* load the first 14 addresses into the exact filters 1-14. Unicast
2283 * addresses take precedence to avoid disabling unicast filtering
2284 * when possible.
2285 *
b595076a 2286 * RAR 0 is used for the station MAC address
1da177e4
LT
2287 * if there are not 14 addresses, go ahead and clear the filters
2288 */
ccffad25
JP
2289 i = 1;
2290 if (use_uc)
32e7bfc4 2291 netdev_for_each_uc_addr(ha, netdev) {
ccffad25
JP
2292 if (i == rar_entries)
2293 break;
2294 e1000_rar_set(hw, ha->addr, i++);
2295 }
2296
22bedad3 2297 netdev_for_each_mc_addr(ha, netdev) {
7a81e9f3
JP
2298 if (i == rar_entries) {
2299 /* load any remaining addresses into the hash table */
2300 u32 hash_reg, hash_bit, mta;
22bedad3 2301 hash_value = e1000_hash_mc_addr(hw, ha->addr);
7a81e9f3
JP
2302 hash_reg = (hash_value >> 5) & 0x7F;
2303 hash_bit = hash_value & 0x1F;
2304 mta = (1 << hash_bit);
2305 mcarray[hash_reg] |= mta;
10886af5 2306 } else {
22bedad3 2307 e1000_rar_set(hw, ha->addr, i++);
1da177e4
LT
2308 }
2309 }
2310
7a81e9f3
JP
2311 for (; i < rar_entries; i++) {
2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 E1000_WRITE_FLUSH();
2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 E1000_WRITE_FLUSH();
1da177e4
LT
2316 }
2317
81c52285 2318 /* write the hash table completely, write from bottom to avoid
6cfbd97b
JK
2319 * both stupid write combining chipsets, and flushing each write
2320 */
81c52285 2321 for (i = mta_reg_count - 1; i >= 0 ; i--) {
6cfbd97b 2322 /* If we are on an 82544 has an errata where writing odd
81c52285
JB
2323 * offsets overwrites the previous even offset, but writing
2324 * backwards over the range solves the issue by always
2325 * writing the odd offset first
2326 */
2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328 }
2329 E1000_WRITE_FLUSH();
2330
96838a40 2331 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4 2332 e1000_leave_82542_rst(adapter);
81c52285
JB
2333
2334 kfree(mcarray);
1da177e4
LT
2335}
2336
a4010afe
JB
2337/**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
5cf42fcd
JB
2344static void e1000_update_phy_info_task(struct work_struct *work)
2345{
2346 struct e1000_adapter *adapter = container_of(work,
a4010afe
JB
2347 struct e1000_adapter,
2348 phy_info_task.work);
b2f963bf 2349
a4010afe 2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1da177e4
LT
2351}
2352
5cf42fcd
JB
2353/**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358{
2359 struct e1000_adapter *adapter = container_of(work,
a4010afe
JB
2360 struct e1000_adapter,
2361 fifo_stall_task.work);
1dc32918 2362 struct e1000_hw *hw = &adapter->hw;
1da177e4 2363 struct net_device *netdev = adapter->netdev;
406874a7 2364 u32 tctl;
1da177e4 2365
96838a40 2366 if (atomic_read(&adapter->tx_fifo_stall)) {
1dc32918
JP
2367 if ((er32(TDT) == er32(TDH)) &&
2368 (er32(TDFT) == er32(TDFH)) &&
2369 (er32(TDFTS) == er32(TDFHS))) {
2370 tctl = er32(TCTL);
2371 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 ew32(TDFT, adapter->tx_head_addr);
2373 ew32(TDFH, adapter->tx_head_addr);
2374 ew32(TDFTS, adapter->tx_head_addr);
2375 ew32(TDFHS, adapter->tx_head_addr);
2376 ew32(TCTL, tctl);
2377 E1000_WRITE_FLUSH();
1da177e4
LT
2378
2379 adapter->tx_fifo_head = 0;
2380 atomic_set(&adapter->tx_fifo_stall, 0);
2381 netif_wake_queue(netdev);
baa34745 2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
a4010afe 2383 schedule_delayed_work(&adapter->fifo_stall_task, 1);
1da177e4
LT
2384 }
2385 }
2386}
2387
b548192a 2388bool e1000_has_link(struct e1000_adapter *adapter)
be0f0719
JB
2389{
2390 struct e1000_hw *hw = &adapter->hw;
2391 bool link_active = false;
be0f0719 2392
6d9e5130
NS
2393 /* get_link_status is set on LSC (link status) interrupt or rx
2394 * sequence error interrupt (except on intel ce4100).
2395 * get_link_status will stay false until the
2396 * e1000_check_for_link establishes link for copper adapters
2397 * ONLY
be0f0719
JB
2398 */
2399 switch (hw->media_type) {
2400 case e1000_media_type_copper:
6d9e5130
NS
2401 if (hw->mac_type == e1000_ce4100)
2402 hw->get_link_status = 1;
be0f0719 2403 if (hw->get_link_status) {
120a5d0d 2404 e1000_check_for_link(hw);
be0f0719
JB
2405 link_active = !hw->get_link_status;
2406 } else {
2407 link_active = true;
2408 }
2409 break;
2410 case e1000_media_type_fiber:
120a5d0d 2411 e1000_check_for_link(hw);
be0f0719
JB
2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413 break;
2414 case e1000_media_type_internal_serdes:
120a5d0d 2415 e1000_check_for_link(hw);
be0f0719
JB
2416 link_active = hw->serdes_has_link;
2417 break;
2418 default:
2419 break;
2420 }
2421
2422 return link_active;
2423}
2424
1da177e4 2425/**
a4010afe
JB
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
1da177e4 2428 **/
a4010afe 2429static void e1000_watchdog(struct work_struct *work)
1da177e4 2430{
a4010afe
JB
2431 struct e1000_adapter *adapter = container_of(work,
2432 struct e1000_adapter,
2433 watchdog_task.work);
1dc32918 2434 struct e1000_hw *hw = &adapter->hw;
1da177e4 2435 struct net_device *netdev = adapter->netdev;
545c67c0 2436 struct e1000_tx_ring *txdr = adapter->tx_ring;
406874a7 2437 u32 link, tctl;
90fb5135 2438
be0f0719
JB
2439 link = e1000_has_link(adapter);
2440 if ((netif_carrier_ok(netdev)) && link)
2441 goto link_up;
1da177e4 2442
96838a40
JB
2443 if (link) {
2444 if (!netif_carrier_ok(netdev)) {
406874a7 2445 u32 ctrl;
c3033b01 2446 bool txb2b = true;
be0f0719 2447 /* update snapshot of PHY registers on LSC */
1dc32918 2448 e1000_get_speed_and_duplex(hw,
6cfbd97b
JK
2449 &adapter->link_speed,
2450 &adapter->link_duplex);
1da177e4 2451
1dc32918 2452 ctrl = er32(CTRL);
675ad473
ET
2453 pr_info("%s NIC Link is Up %d Mbps %s, "
2454 "Flow Control: %s\n",
2455 netdev->name,
2456 adapter->link_speed,
2457 adapter->link_duplex == FULL_DUPLEX ?
2458 "Full Duplex" : "Half Duplex",
2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462 E1000_CTRL_TFCE) ? "TX" : "None")));
1da177e4 2463
39ca5f03 2464 /* adjust timeout factor according to speed/duplex */
66a2b0a3 2465 adapter->tx_timeout_factor = 1;
7e6c9861
JK
2466 switch (adapter->link_speed) {
2467 case SPEED_10:
c3033b01 2468 txb2b = false;
be0f0719 2469 adapter->tx_timeout_factor = 16;
7e6c9861
JK
2470 break;
2471 case SPEED_100:
c3033b01 2472 txb2b = false;
7e6c9861
JK
2473 /* maybe add some timeout factor ? */
2474 break;
2475 }
2476
1532ecea 2477 /* enable transmits in the hardware */
1dc32918 2478 tctl = er32(TCTL);
7e6c9861 2479 tctl |= E1000_TCTL_EN;
1dc32918 2480 ew32(TCTL, tctl);
66a2b0a3 2481
1da177e4 2482 netif_carrier_on(netdev);
baa34745 2483 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe
JB
2484 schedule_delayed_work(&adapter->phy_info_task,
2485 2 * HZ);
1da177e4
LT
2486 adapter->smartspeed = 0;
2487 }
2488 } else {
96838a40 2489 if (netif_carrier_ok(netdev)) {
1da177e4
LT
2490 adapter->link_speed = 0;
2491 adapter->link_duplex = 0;
675ad473
ET
2492 pr_info("%s NIC Link is Down\n",
2493 netdev->name);
1da177e4 2494 netif_carrier_off(netdev);
baa34745
JB
2495
2496 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe
JB
2497 schedule_delayed_work(&adapter->phy_info_task,
2498 2 * HZ);
1da177e4
LT
2499 }
2500
2501 e1000_smartspeed(adapter);
2502 }
2503
be0f0719 2504link_up:
1da177e4
LT
2505 e1000_update_stats(adapter);
2506
1dc32918 2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1da177e4 2508 adapter->tpt_old = adapter->stats.tpt;
1dc32918 2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
1da177e4
LT
2510 adapter->colc_old = adapter->stats.colc;
2511
2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513 adapter->gorcl_old = adapter->stats.gorcl;
2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515 adapter->gotcl_old = adapter->stats.gotcl;
2516
1dc32918 2517 e1000_update_adaptive(hw);
1da177e4 2518
f56799ea 2519 if (!netif_carrier_ok(netdev)) {
581d708e 2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1da177e4
LT
2521 /* We've lost link, so the controller stops DMA,
2522 * but we've got queued Tx work that's never going
2523 * to get done, so reset controller to flush Tx.
6cfbd97b
JK
2524 * (Do the reset outside of interrupt context).
2525 */
87041639
JK
2526 adapter->tx_timeout_count++;
2527 schedule_work(&adapter->reset_task);
0ef4eedc 2528 /* exit immediately since reset is imminent */
b2f963bf 2529 return;
1da177e4
LT
2530 }
2531 }
2532
eab2abf5
JB
2533 /* Simple mode for Interrupt Throttle Rate (ITR) */
2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
6cfbd97b 2535 /* Symmetric Tx/Rx gets a reduced ITR=2000;
eab2abf5
JB
2536 * Total asymmetrical Tx or Rx gets ITR=8000;
2537 * everyone else is between 2000-8000.
2538 */
2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541 adapter->gotcl - adapter->gorcl :
2542 adapter->gorcl - adapter->gotcl) / 10000;
2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545 ew32(ITR, 1000000000 / (itr * 256));
2546 }
2547
1da177e4 2548 /* Cause software interrupt to ensure rx ring is cleaned */
1dc32918 2549 ew32(ICS, E1000_ICS_RXDMT0);
1da177e4 2550
2648345f 2551 /* Force detection of hung controller every watchdog period */
c3033b01 2552 adapter->detect_tx_hung = true;
1da177e4 2553
a4010afe 2554 /* Reschedule the task */
baa34745 2555 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe 2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
1da177e4
LT
2557}
2558
835bb129
JB
2559enum latency_range {
2560 lowest_latency = 0,
2561 low_latency = 1,
2562 bulk_latency = 2,
2563 latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
8fce4731
JB
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
835bb129
JB
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
835bb129
JB
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
64798845 2584 u16 itr_setting, int packets, int bytes)
835bb129
JB
2585{
2586 unsigned int retval = itr_setting;
2587 struct e1000_hw *hw = &adapter->hw;
2588
2589 if (unlikely(hw->mac_type < e1000_82540))
2590 goto update_itr_done;
2591
2592 if (packets == 0)
2593 goto update_itr_done;
2594
835bb129
JB
2595 switch (itr_setting) {
2596 case lowest_latency:
2b65326e
JB
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 5) && (bytes > 512))
835bb129
JB
2601 retval = low_latency;
2602 break;
2603 case low_latency: /* 50 usec aka 20000 ints/s */
2604 if (bytes > 10000) {
2b65326e
JB
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes/packets > 8000)
2607 retval = bulk_latency;
2608 else if ((packets < 10) || ((bytes/packets) > 1200))
835bb129
JB
2609 retval = bulk_latency;
2610 else if ((packets > 35))
2611 retval = lowest_latency;
2b65326e
JB
2612 } else if (bytes/packets > 2000)
2613 retval = bulk_latency;
2614 else if (packets <= 2 && bytes < 512)
835bb129
JB
2615 retval = lowest_latency;
2616 break;
2617 case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 if (bytes > 25000) {
2619 if (packets > 35)
2620 retval = low_latency;
2b65326e
JB
2621 } else if (bytes < 6000) {
2622 retval = low_latency;
835bb129
JB
2623 }
2624 break;
2625 }
2626
2627update_itr_done:
2628 return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
2634 u16 current_itr;
2635 u32 new_itr = adapter->itr;
835bb129
JB
2636
2637 if (unlikely(hw->mac_type < e1000_82540))
2638 return;
2639
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 current_itr = 0;
2643 new_itr = 4000;
2644 goto set_itr_now;
2645 }
2646
6cfbd97b
JK
2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648 adapter->total_tx_packets,
2649 adapter->total_tx_bytes);
2b65326e
JB
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652 adapter->tx_itr = low_latency;
2653
6cfbd97b
JK
2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655 adapter->total_rx_packets,
2656 adapter->total_rx_bytes);
2b65326e
JB
2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659 adapter->rx_itr = low_latency;
835bb129
JB
2660
2661 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
835bb129
JB
2663 switch (current_itr) {
2664 /* counts and packets in update_itr are dependent on these numbers */
2665 case lowest_latency:
2666 new_itr = 70000;
2667 break;
2668 case low_latency:
2669 new_itr = 20000; /* aka hwitr = ~200 */
2670 break;
2671 case bulk_latency:
2672 new_itr = 4000;
2673 break;
2674 default:
2675 break;
2676 }
2677
2678set_itr_now:
2679 if (new_itr != adapter->itr) {
2680 /* this attempts to bias the interrupt rate towards Bulk
2681 * by adding intermediate steps when interrupt rate is
6cfbd97b
JK
2682 * increasing
2683 */
835bb129 2684 new_itr = new_itr > adapter->itr ?
6cfbd97b
JK
2685 min(adapter->itr + (new_itr >> 2), new_itr) :
2686 new_itr;
835bb129 2687 adapter->itr = new_itr;
1dc32918 2688 ew32(ITR, 1000000000 / (new_itr * 256));
835bb129 2689 }
835bb129
JB
2690}
2691
1da177e4
LT
2692#define E1000_TX_FLAGS_CSUM 0x00000001
2693#define E1000_TX_FLAGS_VLAN 0x00000002
2694#define E1000_TX_FLAGS_TSO 0x00000004
2d7edb92 2695#define E1000_TX_FLAGS_IPV4 0x00000008
11a78dcf 2696#define E1000_TX_FLAGS_NO_FCS 0x00000010
1da177e4
LT
2697#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT 16
2699
64798845 2700static int e1000_tso(struct e1000_adapter *adapter,
06f4d033
VY
2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702 __be16 protocol)
1da177e4 2703{
1da177e4 2704 struct e1000_context_desc *context_desc;
580f321d 2705 struct e1000_tx_buffer *buffer_info;
1da177e4 2706 unsigned int i;
406874a7
JP
2707 u32 cmd_length = 0;
2708 u16 ipcse = 0, tucse, mss;
2709 u8 ipcss, ipcso, tucss, tucso, hdr_len;
1da177e4 2710
89114afd 2711 if (skb_is_gso(skb)) {
4a54b1e5
FR
2712 int err;
2713
2714 err = skb_cow_head(skb, 0);
2715 if (err < 0)
2716 return err;
1da177e4 2717
ab6a5bb6 2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
7967168c 2719 mss = skb_shinfo(skb)->gso_size;
06f4d033 2720 if (protocol == htons(ETH_P_IP)) {
eddc9ec5
ACM
2721 struct iphdr *iph = ip_hdr(skb);
2722 iph->tot_len = 0;
2723 iph->check = 0;
aa8223c7
ACM
2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 iph->daddr, 0,
2726 IPPROTO_TCP,
2727 0);
2d7edb92 2728 cmd_length = E1000_TXD_CMD_IP;
ea2ae17d 2729 ipcse = skb_transport_offset(skb) - 1;
06f4d033 2730 } else if (skb_is_gso_v6(skb)) {
0660e03f 2731 ipv6_hdr(skb)->payload_len = 0;
aa8223c7 2732 tcp_hdr(skb)->check =
0660e03f
ACM
2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 &ipv6_hdr(skb)->daddr,
2735 0, IPPROTO_TCP, 0);
2d7edb92 2736 ipcse = 0;
2d7edb92 2737 }
bbe735e4 2738 ipcss = skb_network_offset(skb);
eddc9ec5 2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
ea2ae17d 2740 tucss = skb_transport_offset(skb);
aa8223c7 2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
1da177e4
LT
2742 tucse = 0;
2743
2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2d7edb92 2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1da177e4 2746
581d708e
MC
2747 i = tx_ring->next_to_use;
2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
545c67c0 2749 buffer_info = &tx_ring->buffer_info[i];
1da177e4
LT
2750
2751 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2752 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2754 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
545c67c0 2761 buffer_info->time_stamp = jiffies;
a9ebadd6 2762 buffer_info->next_to_watch = i;
545c67c0 2763
a48954c8
JW
2764 if (++i == tx_ring->count)
2765 i = 0;
2766
581d708e 2767 tx_ring->next_to_use = i;
1da177e4 2768
c3033b01 2769 return true;
1da177e4 2770 }
c3033b01 2771 return false;
1da177e4
LT
2772}
2773
64798845 2774static bool e1000_tx_csum(struct e1000_adapter *adapter,
06f4d033
VY
2775 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776 __be16 protocol)
1da177e4
LT
2777{
2778 struct e1000_context_desc *context_desc;
580f321d 2779 struct e1000_tx_buffer *buffer_info;
1da177e4 2780 unsigned int i;
406874a7 2781 u8 css;
3ed30676 2782 u32 cmd_len = E1000_TXD_CMD_DEXT;
1da177e4 2783
3ed30676
DG
2784 if (skb->ip_summed != CHECKSUM_PARTIAL)
2785 return false;
1da177e4 2786
06f4d033 2787 switch (protocol) {
09640e63 2788 case cpu_to_be16(ETH_P_IP):
3ed30676
DG
2789 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790 cmd_len |= E1000_TXD_CMD_TCP;
2791 break;
09640e63 2792 case cpu_to_be16(ETH_P_IPV6):
3ed30676
DG
2793 /* XXX not handling all IPV6 headers */
2794 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795 cmd_len |= E1000_TXD_CMD_TCP;
2796 break;
2797 default:
2798 if (unlikely(net_ratelimit()))
feb8f478
ET
2799 e_warn(drv, "checksum_partial proto=%x!\n",
2800 skb->protocol);
3ed30676
DG
2801 break;
2802 }
1da177e4 2803
0d0b1672 2804 css = skb_checksum_start_offset(skb);
1da177e4 2805
3ed30676
DG
2806 i = tx_ring->next_to_use;
2807 buffer_info = &tx_ring->buffer_info[i];
2808 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
545c67c0 2809
3ed30676
DG
2810 context_desc->lower_setup.ip_config = 0;
2811 context_desc->upper_setup.tcp_fields.tucss = css;
2812 context_desc->upper_setup.tcp_fields.tucso =
2813 css + skb->csum_offset;
2814 context_desc->upper_setup.tcp_fields.tucse = 0;
2815 context_desc->tcp_seg_setup.data = 0;
2816 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
1da177e4 2817
3ed30676
DG
2818 buffer_info->time_stamp = jiffies;
2819 buffer_info->next_to_watch = i;
1da177e4 2820
a48954c8
JW
2821 if (unlikely(++i == tx_ring->count))
2822 i = 0;
2823
3ed30676
DG
2824 tx_ring->next_to_use = i;
2825
2826 return true;
1da177e4
LT
2827}
2828
2829#define E1000_MAX_TXD_PWR 12
2830#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2831
64798845
JP
2832static int e1000_tx_map(struct e1000_adapter *adapter,
2833 struct e1000_tx_ring *tx_ring,
2834 struct sk_buff *skb, unsigned int first,
2835 unsigned int max_per_txd, unsigned int nr_frags,
2836 unsigned int mss)
1da177e4 2837{
1dc32918 2838 struct e1000_hw *hw = &adapter->hw;
602c0554 2839 struct pci_dev *pdev = adapter->pdev;
580f321d 2840 struct e1000_tx_buffer *buffer_info;
d20b606c 2841 unsigned int len = skb_headlen(skb);
602c0554 2842 unsigned int offset = 0, size, count = 0, i;
31c15a2f 2843 unsigned int f, bytecount, segs;
1da177e4
LT
2844
2845 i = tx_ring->next_to_use;
2846
96838a40 2847 while (len) {
37e73df8 2848 buffer_info = &tx_ring->buffer_info[i];
1da177e4 2849 size = min(len, max_per_txd);
fd803241
JK
2850 /* Workaround for Controller erratum --
2851 * descriptor for non-tso packet in a linear SKB that follows a
2852 * tso gets written back prematurely before the data is fully
6cfbd97b
JK
2853 * DMA'd to the controller
2854 */
fd803241 2855 if (!skb->data_len && tx_ring->last_tx_tso &&
89114afd 2856 !skb_is_gso(skb)) {
3db1cd5c 2857 tx_ring->last_tx_tso = false;
fd803241
JK
2858 size -= 4;
2859 }
2860
1da177e4 2861 /* Workaround for premature desc write-backs
6cfbd97b
JK
2862 * in TSO mode. Append 4-byte sentinel desc
2863 */
96838a40 2864 if (unlikely(mss && !nr_frags && size == len && size > 8))
1da177e4 2865 size -= 4;
97338bde
MC
2866 /* work-around for errata 10 and it applies
2867 * to all controllers in PCI-X mode
2868 * The fix is to make sure that the first descriptor of a
2869 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870 */
1dc32918 2871 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
a48954c8
JW
2872 (size > 2015) && count == 0))
2873 size = 2015;
96838a40 2874
1da177e4 2875 /* Workaround for potential 82544 hang in PCI-X. Avoid
6cfbd97b
JK
2876 * terminating buffers within evenly-aligned dwords.
2877 */
96838a40 2878 if (unlikely(adapter->pcix_82544 &&
1da177e4
LT
2879 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880 size > 4))
2881 size -= 4;
2882
2883 buffer_info->length = size;
cdd7549e 2884 /* set time_stamp *before* dma to help avoid a possible race */
1da177e4 2885 buffer_info->time_stamp = jiffies;
602c0554 2886 buffer_info->mapped_as_page = false;
b16f53be
NN
2887 buffer_info->dma = dma_map_single(&pdev->dev,
2888 skb->data + offset,
6cfbd97b 2889 size, DMA_TO_DEVICE);
b16f53be 2890 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
602c0554 2891 goto dma_error;
a9ebadd6 2892 buffer_info->next_to_watch = i;
1da177e4
LT
2893
2894 len -= size;
2895 offset += size;
2896 count++;
37e73df8
AD
2897 if (len) {
2898 i++;
2899 if (unlikely(i == tx_ring->count))
2900 i = 0;
2901 }
1da177e4
LT
2902 }
2903
96838a40 2904 for (f = 0; f < nr_frags; f++) {
9e903e08 2905 const struct skb_frag_struct *frag;
1da177e4
LT
2906
2907 frag = &skb_shinfo(skb)->frags[f];
9e903e08 2908 len = skb_frag_size(frag);
877749bf 2909 offset = 0;
1da177e4 2910
96838a40 2911 while (len) {
877749bf 2912 unsigned long bufend;
37e73df8
AD
2913 i++;
2914 if (unlikely(i == tx_ring->count))
2915 i = 0;
2916
1da177e4
LT
2917 buffer_info = &tx_ring->buffer_info[i];
2918 size = min(len, max_per_txd);
1da177e4 2919 /* Workaround for premature desc write-backs
6cfbd97b
JK
2920 * in TSO mode. Append 4-byte sentinel desc
2921 */
2922 if (unlikely(mss && f == (nr_frags-1) &&
2923 size == len && size > 8))
1da177e4 2924 size -= 4;
1da177e4
LT
2925 /* Workaround for potential 82544 hang in PCI-X.
2926 * Avoid terminating buffers within evenly-aligned
6cfbd97b
JK
2927 * dwords.
2928 */
877749bf
IC
2929 bufend = (unsigned long)
2930 page_to_phys(skb_frag_page(frag));
2931 bufend += offset + size - 1;
96838a40 2932 if (unlikely(adapter->pcix_82544 &&
877749bf
IC
2933 !(bufend & 4) &&
2934 size > 4))
1da177e4
LT
2935 size -= 4;
2936
2937 buffer_info->length = size;
1da177e4 2938 buffer_info->time_stamp = jiffies;
602c0554 2939 buffer_info->mapped_as_page = true;
877749bf
IC
2940 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941 offset, size, DMA_TO_DEVICE);
b16f53be 2942 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
602c0554 2943 goto dma_error;
a9ebadd6 2944 buffer_info->next_to_watch = i;
1da177e4
LT
2945
2946 len -= size;
2947 offset += size;
2948 count++;
1da177e4
LT
2949 }
2950 }
2951
31c15a2f
DN
2952 segs = skb_shinfo(skb)->gso_segs ?: 1;
2953 /* multiply data chunks by size of headers */
2954 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
1da177e4 2956 tx_ring->buffer_info[i].skb = skb;
31c15a2f
DN
2957 tx_ring->buffer_info[i].segs = segs;
2958 tx_ring->buffer_info[i].bytecount = bytecount;
1da177e4
LT
2959 tx_ring->buffer_info[first].next_to_watch = i;
2960
2961 return count;
602c0554
AD
2962
2963dma_error:
2964 dev_err(&pdev->dev, "TX DMA map failed\n");
2965 buffer_info->dma = 0;
c1fa347f 2966 if (count)
602c0554 2967 count--;
c1fa347f
RK
2968
2969 while (count--) {
a48954c8 2970 if (i == 0)
602c0554 2971 i += tx_ring->count;
c1fa347f 2972 i--;
602c0554
AD
2973 buffer_info = &tx_ring->buffer_info[i];
2974 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975 }
2976
2977 return 0;
1da177e4
LT
2978}
2979
64798845
JP
2980static void e1000_tx_queue(struct e1000_adapter *adapter,
2981 struct e1000_tx_ring *tx_ring, int tx_flags,
2982 int count)
1da177e4 2983{
1da177e4 2984 struct e1000_tx_desc *tx_desc = NULL;
580f321d 2985 struct e1000_tx_buffer *buffer_info;
406874a7 2986 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1da177e4
LT
2987 unsigned int i;
2988
96838a40 2989 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1da177e4 2990 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
6cfbd97b 2991 E1000_TXD_CMD_TSE;
2d7edb92
MC
2992 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
96838a40 2994 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2d7edb92 2995 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
1da177e4
LT
2996 }
2997
96838a40 2998 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1da177e4
LT
2999 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001 }
3002
96838a40 3003 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1da177e4
LT
3004 txd_lower |= E1000_TXD_CMD_VLE;
3005 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006 }
3007
11a78dcf
BG
3008 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
1da177e4
LT
3011 i = tx_ring->next_to_use;
3012
96838a40 3013 while (count--) {
1da177e4
LT
3014 buffer_info = &tx_ring->buffer_info[i];
3015 tx_desc = E1000_TX_DESC(*tx_ring, i);
3016 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017 tx_desc->lower.data =
3018 cpu_to_le32(txd_lower | buffer_info->length);
3019 tx_desc->upper.data = cpu_to_le32(txd_upper);
a48954c8
JW
3020 if (unlikely(++i == tx_ring->count))
3021 i = 0;
1da177e4
LT
3022 }
3023
3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
11a78dcf
BG
3026 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
1da177e4
LT
3030 /* Force memory writes to complete before letting h/w
3031 * know there are new descriptors to fetch. (Only
3032 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
3033 * such as IA-64).
3034 */
1da177e4
LT
3035 wmb();
3036
3037 tx_ring->next_to_use = i;
1da177e4
LT
3038}
3039
1aa8b471 3040/* 82547 workaround to avoid controller hang in half-duplex environment.
1da177e4
LT
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time. This gives the Tx FIFO an opportunity to
3044 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
1aa8b471 3046 */
1da177e4
LT
3047
3048#define E1000_FIFO_HDR 0x10
3049#define E1000_82547_PAD_LEN 0x3E0
3050
64798845
JP
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 struct sk_buff *skb)
1da177e4 3053{
406874a7
JP
3054 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
1da177e4 3056
9099cfb9 3057 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
1da177e4 3058
96838a40 3059 if (adapter->link_duplex != HALF_DUPLEX)
1da177e4
LT
3060 goto no_fifo_stall_required;
3061
96838a40 3062 if (atomic_read(&adapter->tx_fifo_stall))
1da177e4
LT
3063 return 1;
3064
96838a40 3065 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1da177e4
LT
3066 atomic_set(&adapter->tx_fifo_stall, 1);
3067 return 1;
3068 }
3069
3070no_fifo_stall_required:
3071 adapter->tx_fifo_head += skb_fifo_len;
96838a40 3072 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1da177e4
LT
3073 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074 return 0;
3075}
3076
65c7973f
JB
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082 netif_stop_queue(netdev);
3083 /* Herbert's original patch had:
3084 * smp_mb__after_netif_stop_queue();
6cfbd97b
JK
3085 * but since that doesn't exist yet, just open code it.
3086 */
65c7973f
JB
3087 smp_mb();
3088
3089 /* We need to check again in a case another CPU has just
6cfbd97b
JK
3090 * made room available.
3091 */
65c7973f
JB
3092 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093 return -EBUSY;
3094
3095 /* A reprieve! */
3096 netif_start_queue(netdev);
fcfb1224 3097 ++adapter->restart_queue;
65c7973f
JB
3098 return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
6cfbd97b 3102 struct e1000_tx_ring *tx_ring, int size)
65c7973f
JB
3103{
3104 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105 return 0;
3106 return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
a48954c8 3109#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
3b29a56d
SH
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 struct net_device *netdev)
1da177e4 3112{
60490fe0 3113 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 3114 struct e1000_hw *hw = &adapter->hw;
581d708e 3115 struct e1000_tx_ring *tx_ring;
1da177e4
LT
3116 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 unsigned int tx_flags = 0;
e743d313 3119 unsigned int len = skb_headlen(skb);
6d1e3aa7
KK
3120 unsigned int nr_frags;
3121 unsigned int mss;
1da177e4 3122 int count = 0;
76c224bc 3123 int tso;
1da177e4 3124 unsigned int f;
06f4d033 3125 __be16 protocol = vlan_get_protocol(skb);
1da177e4 3126
6cfbd97b 3127 /* This goes back to the question of how to logically map a Tx queue
65c7973f 3128 * to a flow. Right now, performance is impacted slightly negatively
6cfbd97b
JK
3129 * if using multiple Tx queues. If the stack breaks away from a
3130 * single qdisc implementation, we can look at this again.
3131 */
581d708e 3132 tx_ring = adapter->tx_ring;
24025e4e 3133
59d86c76
TD
3134 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 * packets may get corrupted during padding by HW.
3136 * To WA this issue, pad all small packets manually.
3137 */
a94d9e22
AD
3138 if (eth_skb_pad(skb))
3139 return NETDEV_TX_OK;
59d86c76 3140
7967168c 3141 mss = skb_shinfo(skb)->gso_size;
76c224bc 3142 /* The controller does a simple calculation to
1da177e4
LT
3143 * make sure there is enough room in the FIFO before
3144 * initiating the DMA for each buffer. The calc is:
3145 * 4 = ceil(buffer len/mss). To make sure we don't
3146 * overrun the FIFO, adjust the max buffer len if mss
6cfbd97b
JK
3147 * drops.
3148 */
96838a40 3149 if (mss) {
406874a7 3150 u8 hdr_len;
1da177e4
LT
3151 max_per_txd = min(mss << 2, max_per_txd);
3152 max_txd_pwr = fls(max_per_txd) - 1;
9a3056da 3153
ab6a5bb6 3154 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
6d1e3aa7 3155 if (skb->data_len && hdr_len == len) {
1dc32918 3156 switch (hw->mac_type) {
9f687888 3157 unsigned int pull_size;
683a2aa3
HX
3158 case e1000_82544:
3159 /* Make sure we have room to chop off 4 bytes,
3160 * and that the end alignment will work out to
3161 * this hardware's requirements
3162 * NOTE: this is a TSO only workaround
3163 * if end byte alignment not correct move us
6cfbd97b
JK
3164 * into the next dword
3165 */
3166 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167 & 4)
683a2aa3
HX
3168 break;
3169 /* fall through */
9f687888
JK
3170 pull_size = min((unsigned int)4, skb->data_len);
3171 if (!__pskb_pull_tail(skb, pull_size)) {
feb8f478
ET
3172 e_err(drv, "__pskb_pull_tail "
3173 "failed.\n");
9f687888 3174 dev_kfree_skb_any(skb);
749dfc70 3175 return NETDEV_TX_OK;
9f687888 3176 }
e743d313 3177 len = skb_headlen(skb);
9f687888
JK
3178 break;
3179 default:
3180 /* do nothing */
3181 break;
d74bbd3b 3182 }
9a3056da 3183 }
1da177e4
LT
3184 }
3185
9a3056da 3186 /* reserve a descriptor for the offload context */
84fa7933 3187 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
1da177e4 3188 count++;
2648345f 3189 count++;
fd803241 3190
fd803241 3191 /* Controller Erratum workaround */
89114afd 3192 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
fd803241 3193 count++;
fd803241 3194
1da177e4
LT
3195 count += TXD_USE_COUNT(len, max_txd_pwr);
3196
96838a40 3197 if (adapter->pcix_82544)
1da177e4
LT
3198 count++;
3199
96838a40 3200 /* work-around for errata 10 and it applies to all controllers
97338bde
MC
3201 * in PCI-X mode, so add one more descriptor to the count
3202 */
1dc32918 3203 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
97338bde
MC
3204 (len > 2015)))
3205 count++;
3206
1da177e4 3207 nr_frags = skb_shinfo(skb)->nr_frags;
96838a40 3208 for (f = 0; f < nr_frags; f++)
9e903e08 3209 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
1da177e4 3210 max_txd_pwr);
96838a40 3211 if (adapter->pcix_82544)
1da177e4
LT
3212 count += nr_frags;
3213
1da177e4 3214 /* need: count + 2 desc gap to keep tail from touching
6cfbd97b
JK
3215 * head, otherwise try next time
3216 */
8017943e 3217 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
1da177e4 3218 return NETDEV_TX_BUSY;
1da177e4 3219
a4010afe
JB
3220 if (unlikely((hw->mac_type == e1000_82547) &&
3221 (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 netif_stop_queue(netdev);
3223 if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 return NETDEV_TX_BUSY;
1da177e4
LT
3226 }
3227
df8a39de 3228 if (skb_vlan_tag_present(skb)) {
1da177e4 3229 tx_flags |= E1000_TX_FLAGS_VLAN;
df8a39de
JP
3230 tx_flags |= (skb_vlan_tag_get(skb) <<
3231 E1000_TX_FLAGS_VLAN_SHIFT);
1da177e4
LT
3232 }
3233
581d708e 3234 first = tx_ring->next_to_use;
96838a40 3235
06f4d033 3236 tso = e1000_tso(adapter, tx_ring, skb, protocol);
1da177e4
LT
3237 if (tso < 0) {
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3240 }
3241
fd803241 3242 if (likely(tso)) {
8fce4731 3243 if (likely(hw->mac_type != e1000_82544))
3db1cd5c 3244 tx_ring->last_tx_tso = true;
1da177e4 3245 tx_flags |= E1000_TX_FLAGS_TSO;
06f4d033 3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
1da177e4
LT
3247 tx_flags |= E1000_TX_FLAGS_CSUM;
3248
06f4d033 3249 if (protocol == htons(ETH_P_IP))
2d7edb92
MC
3250 tx_flags |= E1000_TX_FLAGS_IPV4;
3251
11a78dcf
BG
3252 if (unlikely(skb->no_fcs))
3253 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
37e73df8 3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
6cfbd97b 3256 nr_frags, mss);
1da177e4 3257
37e73df8 3258 if (count) {
2f66fd36 3259 netdev_sent_queue(netdev, skb->len);
eab467f5
WB
3260 skb_tx_timestamp(skb);
3261
37e73df8 3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
37e73df8
AD
3263 /* Make sure there is space in the ring for the next send. */
3264 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
1da177e4 3265
8a4d0b93
FW
3266 if (!skb->xmit_more ||
3267 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3268 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3269 /* we need this if more than one processor can write to
3270 * our tail at a time, it synchronizes IO on IA64/Altix
3271 * systems
3272 */
3273 mmiowb();
3274 }
37e73df8
AD
3275 } else {
3276 dev_kfree_skb_any(skb);
3277 tx_ring->buffer_info[first].time_stamp = 0;
3278 tx_ring->next_to_use = first;
3279 }
1da177e4 3280
1da177e4
LT
3281 return NETDEV_TX_OK;
3282}
3283
b04e36ba
TD
3284#define NUM_REGS 38 /* 1 based count */
3285static void e1000_regdump(struct e1000_adapter *adapter)
3286{
3287 struct e1000_hw *hw = &adapter->hw;
3288 u32 regs[NUM_REGS];
3289 u32 *regs_buff = regs;
3290 int i = 0;
3291
e29b5d8f
TD
3292 static const char * const reg_name[] = {
3293 "CTRL", "STATUS",
3294 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296 "TIDV", "TXDCTL", "TADV", "TARC0",
3297 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298 "TXDCTL1", "TARC1",
3299 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
b04e36ba
TD
3302 };
3303
3304 regs_buff[0] = er32(CTRL);
3305 regs_buff[1] = er32(STATUS);
3306
3307 regs_buff[2] = er32(RCTL);
3308 regs_buff[3] = er32(RDLEN);
3309 regs_buff[4] = er32(RDH);
3310 regs_buff[5] = er32(RDT);
3311 regs_buff[6] = er32(RDTR);
3312
3313 regs_buff[7] = er32(TCTL);
3314 regs_buff[8] = er32(TDBAL);
3315 regs_buff[9] = er32(TDBAH);
3316 regs_buff[10] = er32(TDLEN);
3317 regs_buff[11] = er32(TDH);
3318 regs_buff[12] = er32(TDT);
3319 regs_buff[13] = er32(TIDV);
3320 regs_buff[14] = er32(TXDCTL);
3321 regs_buff[15] = er32(TADV);
3322 regs_buff[16] = er32(TARC0);
3323
3324 regs_buff[17] = er32(TDBAL1);
3325 regs_buff[18] = er32(TDBAH1);
3326 regs_buff[19] = er32(TDLEN1);
3327 regs_buff[20] = er32(TDH1);
3328 regs_buff[21] = er32(TDT1);
3329 regs_buff[22] = er32(TXDCTL1);
3330 regs_buff[23] = er32(TARC1);
3331 regs_buff[24] = er32(CTRL_EXT);
3332 regs_buff[25] = er32(ERT);
3333 regs_buff[26] = er32(RDBAL0);
3334 regs_buff[27] = er32(RDBAH0);
3335 regs_buff[28] = er32(TDFH);
3336 regs_buff[29] = er32(TDFT);
3337 regs_buff[30] = er32(TDFHS);
3338 regs_buff[31] = er32(TDFTS);
3339 regs_buff[32] = er32(TDFPC);
3340 regs_buff[33] = er32(RDFH);
3341 regs_buff[34] = er32(RDFT);
3342 regs_buff[35] = er32(RDFHS);
3343 regs_buff[36] = er32(RDFTS);
3344 regs_buff[37] = er32(RDFPC);
3345
3346 pr_info("Register dump\n");
e29b5d8f
TD
3347 for (i = 0; i < NUM_REGS; i++)
3348 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
b04e36ba
TD
3349}
3350
3351/*
3352 * e1000_dump: Print registers, tx ring and rx ring
3353 */
3354static void e1000_dump(struct e1000_adapter *adapter)
3355{
3356 /* this code doesn't handle multiple rings */
3357 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359 int i;
3360
3361 if (!netif_msg_hw(adapter))
3362 return;
3363
3364 /* Print Registers */
3365 e1000_regdump(adapter);
3366
6cfbd97b 3367 /* transmit dump */
b04e36ba
TD
3368 pr_info("TX Desc ring0 dump\n");
3369
3370 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371 *
3372 * Legacy Transmit Descriptor
3373 * +--------------------------------------------------------------+
3374 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3375 * +--------------------------------------------------------------+
3376 * 8 | Special | CSS | Status | CMD | CSO | Length |
3377 * +--------------------------------------------------------------+
3378 * 63 48 47 36 35 32 31 24 23 16 15 0
3379 *
3380 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381 * 63 48 47 40 39 32 31 16 15 8 7 0
3382 * +----------------------------------------------------------------+
3383 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3384 * +----------------------------------------------------------------+
3385 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3386 * +----------------------------------------------------------------+
3387 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3388 *
3389 * Extended Data Descriptor (DTYP=0x1)
3390 * +----------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] |
3392 * +----------------------------------------------------------------+
3393 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3394 * +----------------------------------------------------------------+
3395 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3396 */
e29b5d8f
TD
3397 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3398 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
b04e36ba
TD
3399
3400 if (!netif_msg_tx_done(adapter))
3401 goto rx_ring_summary;
3402
3403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
580f321d 3405 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
dd7f5c9e 3406 struct my_u { __le64 a; __le64 b; };
b04e36ba 3407 struct my_u *u = (struct my_u *)tx_desc;
e29b5d8f
TD
3408 const char *type;
3409
b04e36ba 3410 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
e29b5d8f 3411 type = "NTC/U";
b04e36ba 3412 else if (i == tx_ring->next_to_use)
e29b5d8f 3413 type = "NTU";
b04e36ba 3414 else if (i == tx_ring->next_to_clean)
e29b5d8f 3415 type = "NTC";
b04e36ba 3416 else
e29b5d8f 3417 type = "";
b04e36ba 3418
e29b5d8f
TD
3419 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3420 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421 le64_to_cpu(u->a), le64_to_cpu(u->b),
3422 (u64)buffer_info->dma, buffer_info->length,
3423 buffer_info->next_to_watch,
3424 (u64)buffer_info->time_stamp, buffer_info->skb, type);
b04e36ba
TD
3425 }
3426
3427rx_ring_summary:
6cfbd97b 3428 /* receive dump */
b04e36ba
TD
3429 pr_info("\nRX Desc ring dump\n");
3430
3431 /* Legacy Receive Descriptor Format
3432 *
3433 * +-----------------------------------------------------+
3434 * | Buffer Address [63:0] |
3435 * +-----------------------------------------------------+
3436 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437 * +-----------------------------------------------------+
3438 * 63 48 47 40 39 32 31 16 15 0
3439 */
e29b5d8f 3440 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
b04e36ba
TD
3441
3442 if (!netif_msg_rx_status(adapter))
3443 goto exit;
3444
3445 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
93f0afe9 3447 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
dd7f5c9e 3448 struct my_u { __le64 a; __le64 b; };
b04e36ba 3449 struct my_u *u = (struct my_u *)rx_desc;
e29b5d8f
TD
3450 const char *type;
3451
b04e36ba 3452 if (i == rx_ring->next_to_use)
e29b5d8f 3453 type = "NTU";
b04e36ba 3454 else if (i == rx_ring->next_to_clean)
e29b5d8f 3455 type = "NTC";
b04e36ba 3456 else
e29b5d8f 3457 type = "";
b04e36ba 3458
e29b5d8f
TD
3459 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3460 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
13809609 3461 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
b04e36ba
TD
3462 } /* for */
3463
3464 /* dump the descriptor caches */
3465 /* rx */
e29b5d8f 3466 pr_info("Rx descriptor cache in 64bit format\n");
b04e36ba 3467 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
e29b5d8f
TD
3468 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469 i,
3470 readl(adapter->hw.hw_addr + i+4),
3471 readl(adapter->hw.hw_addr + i),
3472 readl(adapter->hw.hw_addr + i+12),
3473 readl(adapter->hw.hw_addr + i+8));
b04e36ba
TD
3474 }
3475 /* tx */
e29b5d8f 3476 pr_info("Tx descriptor cache in 64bit format\n");
b04e36ba 3477 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
e29b5d8f
TD
3478 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479 i,
3480 readl(adapter->hw.hw_addr + i+4),
3481 readl(adapter->hw.hw_addr + i),
3482 readl(adapter->hw.hw_addr + i+12),
3483 readl(adapter->hw.hw_addr + i+8));
b04e36ba
TD
3484 }
3485exit:
3486 return;
3487}
3488
1da177e4
LT
3489/**
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
3492 **/
64798845 3493static void e1000_tx_timeout(struct net_device *netdev)
1da177e4 3494{
60490fe0 3495 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3496
3497 /* Do the reset outside of interrupt context */
87041639
JK
3498 adapter->tx_timeout_count++;
3499 schedule_work(&adapter->reset_task);
1da177e4
LT
3500}
3501
64798845 3502static void e1000_reset_task(struct work_struct *work)
1da177e4 3503{
65f27f38
DH
3504 struct e1000_adapter *adapter =
3505 container_of(work, struct e1000_adapter, reset_task);
1da177e4 3506
b04e36ba 3507 e_err(drv, "Reset adapter\n");
b2f963bf 3508 e1000_reinit_locked(adapter);
1da177e4
LT
3509}
3510
3511/**
3512 * e1000_get_stats - Get System Network Statistics
3513 * @netdev: network interface device structure
3514 *
3515 * Returns the address of the device statistics structure.
a4010afe 3516 * The statistics are actually updated from the watchdog.
1da177e4 3517 **/
64798845 3518static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
1da177e4 3519{
6b7660cd 3520 /* only return the current stats */
5fe31def 3521 return &netdev->stats;
1da177e4
LT
3522}
3523
3524/**
3525 * e1000_change_mtu - Change the Maximum Transfer Unit
3526 * @netdev: network interface device structure
3527 * @new_mtu: new value for maximum frame size
3528 *
3529 * Returns 0 on success, negative on failure
3530 **/
64798845 3531static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
1da177e4 3532{
60490fe0 3533 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 3534 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3535 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3536
96838a40
JB
3537 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3538 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
feb8f478 3539 e_err(probe, "Invalid MTU setting\n");
1da177e4 3540 return -EINVAL;
2d7edb92 3541 }
1da177e4 3542
997f5cbd 3543 /* Adapter-specific max frame size limits. */
1dc32918 3544 switch (hw->mac_type) {
9e2feace 3545 case e1000_undefined ... e1000_82542_rev2_1:
b7cb8c2c 3546 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
feb8f478 3547 e_err(probe, "Jumbo Frames not supported.\n");
2d7edb92 3548 return -EINVAL;
2d7edb92 3549 }
997f5cbd 3550 break;
997f5cbd
JK
3551 default:
3552 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3553 break;
1da177e4
LT
3554 }
3555
3d6114e7
JB
3556 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3557 msleep(1);
3558 /* e1000_down has a dependency on max_frame_size */
3559 hw->max_frame_size = max_frame;
08e83316
SD
3560 if (netif_running(netdev)) {
3561 /* prevent buffers from being reallocated */
3562 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3d6114e7 3563 e1000_down(adapter);
08e83316 3564 }
3d6114e7 3565
87f5032e 3566 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
9e2feace 3567 * means we reserve 2 more, this pushes us to allocate from the next
edbbb3ca
JB
3568 * larger slab size.
3569 * i.e. RXBUFFER_2048 --> size-4096 slab
6cfbd97b
JK
3570 * however with the new *_jumbo_rx* routines, jumbo receives will use
3571 * fragmented skbs
3572 */
9e2feace 3573
9926146b 3574 if (max_frame <= E1000_RXBUFFER_2048)
9e2feace 3575 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
edbbb3ca
JB
3576 else
3577#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
9e2feace 3578 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
edbbb3ca
JB
3579#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3580 adapter->rx_buffer_len = PAGE_SIZE;
3581#endif
9e2feace
AK
3582
3583 /* adjust allocation if LPE protects us, and we aren't using SBP */
1dc32918 3584 if (!hw->tbi_compatibility_on &&
b7cb8c2c 3585 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
9e2feace
AK
3586 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3587 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
997f5cbd 3588
675ad473
ET
3589 pr_info("%s changing MTU from %d to %d\n",
3590 netdev->name, netdev->mtu, new_mtu);
2d7edb92
MC
3591 netdev->mtu = new_mtu;
3592
2db10a08 3593 if (netif_running(netdev))
3d6114e7
JB
3594 e1000_up(adapter);
3595 else
3596 e1000_reset(adapter);
3597
3598 clear_bit(__E1000_RESETTING, &adapter->flags);
1da177e4 3599
1da177e4
LT
3600 return 0;
3601}
3602
3603/**
3604 * e1000_update_stats - Update the board statistics counters
3605 * @adapter: board private structure
3606 **/
64798845 3607void e1000_update_stats(struct e1000_adapter *adapter)
1da177e4 3608{
5fe31def 3609 struct net_device *netdev = adapter->netdev;
1da177e4 3610 struct e1000_hw *hw = &adapter->hw;
282f33c9 3611 struct pci_dev *pdev = adapter->pdev;
1da177e4 3612 unsigned long flags;
406874a7 3613 u16 phy_tmp;
1da177e4
LT
3614
3615#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3616
6cfbd97b 3617 /* Prevent stats update while adapter is being reset, or if the pci
282f33c9
LV
3618 * connection is down.
3619 */
9026729b 3620 if (adapter->link_speed == 0)
282f33c9 3621 return;
81b1955e 3622 if (pci_channel_offline(pdev))
9026729b
AK
3623 return;
3624
1da177e4
LT
3625 spin_lock_irqsave(&adapter->stats_lock, flags);
3626
828d055f 3627 /* these counters are modified from e1000_tbi_adjust_stats,
1da177e4
LT
3628 * called from the interrupt context, so they must only
3629 * be written while holding adapter->stats_lock
3630 */
3631
1dc32918
JP
3632 adapter->stats.crcerrs += er32(CRCERRS);
3633 adapter->stats.gprc += er32(GPRC);
3634 adapter->stats.gorcl += er32(GORCL);
3635 adapter->stats.gorch += er32(GORCH);
3636 adapter->stats.bprc += er32(BPRC);
3637 adapter->stats.mprc += er32(MPRC);
3638 adapter->stats.roc += er32(ROC);
3639
1532ecea
JB
3640 adapter->stats.prc64 += er32(PRC64);
3641 adapter->stats.prc127 += er32(PRC127);
3642 adapter->stats.prc255 += er32(PRC255);
3643 adapter->stats.prc511 += er32(PRC511);
3644 adapter->stats.prc1023 += er32(PRC1023);
3645 adapter->stats.prc1522 += er32(PRC1522);
1dc32918
JP
3646
3647 adapter->stats.symerrs += er32(SYMERRS);
3648 adapter->stats.mpc += er32(MPC);
3649 adapter->stats.scc += er32(SCC);
3650 adapter->stats.ecol += er32(ECOL);
3651 adapter->stats.mcc += er32(MCC);
3652 adapter->stats.latecol += er32(LATECOL);
3653 adapter->stats.dc += er32(DC);
3654 adapter->stats.sec += er32(SEC);
3655 adapter->stats.rlec += er32(RLEC);
3656 adapter->stats.xonrxc += er32(XONRXC);
3657 adapter->stats.xontxc += er32(XONTXC);
3658 adapter->stats.xoffrxc += er32(XOFFRXC);
3659 adapter->stats.xofftxc += er32(XOFFTXC);
3660 adapter->stats.fcruc += er32(FCRUC);
3661 adapter->stats.gptc += er32(GPTC);
3662 adapter->stats.gotcl += er32(GOTCL);
3663 adapter->stats.gotch += er32(GOTCH);
3664 adapter->stats.rnbc += er32(RNBC);
3665 adapter->stats.ruc += er32(RUC);
3666 adapter->stats.rfc += er32(RFC);
3667 adapter->stats.rjc += er32(RJC);
3668 adapter->stats.torl += er32(TORL);
3669 adapter->stats.torh += er32(TORH);
3670 adapter->stats.totl += er32(TOTL);
3671 adapter->stats.toth += er32(TOTH);
3672 adapter->stats.tpr += er32(TPR);
3673
1532ecea
JB
3674 adapter->stats.ptc64 += er32(PTC64);
3675 adapter->stats.ptc127 += er32(PTC127);
3676 adapter->stats.ptc255 += er32(PTC255);
3677 adapter->stats.ptc511 += er32(PTC511);
3678 adapter->stats.ptc1023 += er32(PTC1023);
3679 adapter->stats.ptc1522 += er32(PTC1522);
1dc32918
JP
3680
3681 adapter->stats.mptc += er32(MPTC);
3682 adapter->stats.bptc += er32(BPTC);
1da177e4
LT
3683
3684 /* used for adaptive IFS */
3685
1dc32918 3686 hw->tx_packet_delta = er32(TPT);
1da177e4 3687 adapter->stats.tpt += hw->tx_packet_delta;
1dc32918 3688 hw->collision_delta = er32(COLC);
1da177e4
LT
3689 adapter->stats.colc += hw->collision_delta;
3690
96838a40 3691 if (hw->mac_type >= e1000_82543) {
1dc32918
JP
3692 adapter->stats.algnerrc += er32(ALGNERRC);
3693 adapter->stats.rxerrc += er32(RXERRC);
3694 adapter->stats.tncrs += er32(TNCRS);
3695 adapter->stats.cexterr += er32(CEXTERR);
3696 adapter->stats.tsctc += er32(TSCTC);
3697 adapter->stats.tsctfc += er32(TSCTFC);
1da177e4
LT
3698 }
3699
3700 /* Fill out the OS statistics structure */
5fe31def
AK
3701 netdev->stats.multicast = adapter->stats.mprc;
3702 netdev->stats.collisions = adapter->stats.colc;
1da177e4
LT
3703
3704 /* Rx Errors */
3705
87041639 3706 /* RLEC on some newer hardware can be incorrect so build
6cfbd97b
JK
3707 * our own version based on RUC and ROC
3708 */
5fe31def 3709 netdev->stats.rx_errors = adapter->stats.rxerrc +
1da177e4 3710 adapter->stats.crcerrs + adapter->stats.algnerrc +
87041639
JK
3711 adapter->stats.ruc + adapter->stats.roc +
3712 adapter->stats.cexterr;
49559854 3713 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
5fe31def
AK
3714 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3715 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3716 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3717 netdev->stats.rx_missed_errors = adapter->stats.mpc;
1da177e4
LT
3718
3719 /* Tx Errors */
49559854 3720 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
5fe31def
AK
3721 netdev->stats.tx_errors = adapter->stats.txerrc;
3722 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3723 netdev->stats.tx_window_errors = adapter->stats.latecol;
3724 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
1dc32918 3725 if (hw->bad_tx_carr_stats_fd &&
167fb284 3726 adapter->link_duplex == FULL_DUPLEX) {
5fe31def 3727 netdev->stats.tx_carrier_errors = 0;
167fb284
JG
3728 adapter->stats.tncrs = 0;
3729 }
1da177e4
LT
3730
3731 /* Tx Dropped needs to be maintained elsewhere */
3732
3733 /* Phy Stats */
96838a40
JB
3734 if (hw->media_type == e1000_media_type_copper) {
3735 if ((adapter->link_speed == SPEED_1000) &&
1da177e4
LT
3736 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3737 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3738 adapter->phy_stats.idle_errors += phy_tmp;
3739 }
3740
96838a40 3741 if ((hw->mac_type <= e1000_82546) &&
1da177e4
LT
3742 (hw->phy_type == e1000_phy_m88) &&
3743 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3744 adapter->phy_stats.receive_errors += phy_tmp;
3745 }
3746
15e376b4 3747 /* Management Stats */
1dc32918
JP
3748 if (hw->has_smbus) {
3749 adapter->stats.mgptc += er32(MGTPTC);
3750 adapter->stats.mgprc += er32(MGTPRC);
3751 adapter->stats.mgpdc += er32(MGTPDC);
15e376b4
JG
3752 }
3753
1da177e4
LT
3754 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3755}
9ac98284 3756
1da177e4
LT
3757/**
3758 * e1000_intr - Interrupt Handler
3759 * @irq: interrupt number
3760 * @data: pointer to a network interface device structure
1da177e4 3761 **/
64798845 3762static irqreturn_t e1000_intr(int irq, void *data)
1da177e4
LT
3763{
3764 struct net_device *netdev = data;
60490fe0 3765 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 3766 struct e1000_hw *hw = &adapter->hw;
1532ecea 3767 u32 icr = er32(ICR);
c3570acb 3768
4c11b8ad 3769 if (unlikely((!icr)))
835bb129
JB
3770 return IRQ_NONE; /* Not our interrupt */
3771
6cfbd97b 3772 /* we might have caused the interrupt, but the above
4c11b8ad
JB
3773 * read cleared it, and just in case the driver is
3774 * down there is nothing to do so return handled
3775 */
3776 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3777 return IRQ_HANDLED;
3778
96838a40 3779 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
1da177e4 3780 hw->get_link_status = 1;
1314bbf3
AK
3781 /* guard against interrupt when we're going down */
3782 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe 3783 schedule_delayed_work(&adapter->watchdog_task, 1);
1da177e4
LT
3784 }
3785
1532ecea
JB
3786 /* disable interrupts, without the synchronize_irq bit */
3787 ew32(IMC, ~0);
3788 E1000_WRITE_FLUSH();
3789
288379f0 3790 if (likely(napi_schedule_prep(&adapter->napi))) {
835bb129
JB
3791 adapter->total_tx_bytes = 0;
3792 adapter->total_tx_packets = 0;
3793 adapter->total_rx_bytes = 0;
3794 adapter->total_rx_packets = 0;
288379f0 3795 __napi_schedule(&adapter->napi);
a6c42322 3796 } else {
90fb5135 3797 /* this really should not happen! if it does it is basically a
6cfbd97b
JK
3798 * bug, but not a hard error, so enable ints and continue
3799 */
a6c42322
JB
3800 if (!test_bit(__E1000_DOWN, &adapter->flags))
3801 e1000_irq_enable(adapter);
3802 }
1da177e4 3803
1da177e4
LT
3804 return IRQ_HANDLED;
3805}
3806
1da177e4
LT
3807/**
3808 * e1000_clean - NAPI Rx polling callback
3809 * @adapter: board private structure
3810 **/
64798845 3811static int e1000_clean(struct napi_struct *napi, int budget)
1da177e4 3812{
6cfbd97b
JK
3813 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3814 napi);
650b5a5c 3815 int tx_clean_complete = 0, work_done = 0;
581d708e 3816
650b5a5c 3817 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
581d708e 3818
650b5a5c 3819 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
581d708e 3820
650b5a5c 3821 if (!tx_clean_complete)
d2c7ddd6
DM
3822 work_done = budget;
3823
53e52c72
DM
3824 /* If budget not fully consumed, exit the polling mode */
3825 if (work_done < budget) {
835bb129
JB
3826 if (likely(adapter->itr_setting & 3))
3827 e1000_set_itr(adapter);
32b3e08f 3828 napi_complete_done(napi, work_done);
a6c42322
JB
3829 if (!test_bit(__E1000_DOWN, &adapter->flags))
3830 e1000_irq_enable(adapter);
1da177e4
LT
3831 }
3832
bea3348e 3833 return work_done;
1da177e4
LT
3834}
3835
1da177e4
LT
3836/**
3837 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3838 * @adapter: board private structure
3839 **/
64798845
JP
3840static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3841 struct e1000_tx_ring *tx_ring)
1da177e4 3842{
1dc32918 3843 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3844 struct net_device *netdev = adapter->netdev;
3845 struct e1000_tx_desc *tx_desc, *eop_desc;
580f321d 3846 struct e1000_tx_buffer *buffer_info;
1da177e4 3847 unsigned int i, eop;
2a1af5d7 3848 unsigned int count = 0;
a48954c8 3849 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
2f66fd36 3850 unsigned int bytes_compl = 0, pkts_compl = 0;
1da177e4
LT
3851
3852 i = tx_ring->next_to_clean;
3853 eop = tx_ring->buffer_info[i].next_to_watch;
3854 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3855
ccfb342c
AD
3856 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3857 (count < tx_ring->count)) {
843f4267 3858 bool cleaned = false;
837a1dba 3859 dma_rmb(); /* read buffer_info after eop_desc */
843f4267 3860 for ( ; !cleaned; count++) {
1da177e4
LT
3861 tx_desc = E1000_TX_DESC(*tx_ring, i);
3862 buffer_info = &tx_ring->buffer_info[i];
3863 cleaned = (i == eop);
3864
835bb129 3865 if (cleaned) {
31c15a2f
DN
3866 total_tx_packets += buffer_info->segs;
3867 total_tx_bytes += buffer_info->bytecount;
2f66fd36
OESC
3868 if (buffer_info->skb) {
3869 bytes_compl += buffer_info->skb->len;
3870 pkts_compl++;
3871 }
3872
835bb129 3873 }
fd803241 3874 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
a9ebadd6 3875 tx_desc->upper.data = 0;
1da177e4 3876
a48954c8
JW
3877 if (unlikely(++i == tx_ring->count))
3878 i = 0;
1da177e4 3879 }
581d708e 3880
1da177e4
LT
3881 eop = tx_ring->buffer_info[i].next_to_watch;
3882 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3883 }
3884
9eab46b7
DV
3885 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3886 * which will reuse the cleaned buffers.
3887 */
3888 smp_store_release(&tx_ring->next_to_clean, i);
1da177e4 3889
2f66fd36
OESC
3890 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3891
77b2aad5 3892#define TX_WAKE_THRESHOLD 32
843f4267 3893 if (unlikely(count && netif_carrier_ok(netdev) &&
65c7973f
JB
3894 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3895 /* Make sure that anybody stopping the queue after this
3896 * sees the new next_to_clean.
3897 */
3898 smp_mb();
cdd7549e
JB
3899
3900 if (netif_queue_stopped(netdev) &&
3901 !(test_bit(__E1000_DOWN, &adapter->flags))) {
77b2aad5 3902 netif_wake_queue(netdev);
fcfb1224
JB
3903 ++adapter->restart_queue;
3904 }
77b2aad5 3905 }
2648345f 3906
581d708e 3907 if (adapter->detect_tx_hung) {
2648345f 3908 /* Detect a transmit hang in hardware, this serializes the
6cfbd97b
JK
3909 * check with the clearing of time_stamp and movement of i
3910 */
c3033b01 3911 adapter->detect_tx_hung = false;
cdd7549e
JB
3912 if (tx_ring->buffer_info[eop].time_stamp &&
3913 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
6cfbd97b 3914 (adapter->tx_timeout_factor * HZ)) &&
8e95a202 3915 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
70b8f1e1
MC
3916
3917 /* detected Tx unit hang */
feb8f478 3918 e_err(drv, "Detected Tx Unit Hang\n"
675ad473
ET
3919 " Tx Queue <%lu>\n"
3920 " TDH <%x>\n"
3921 " TDT <%x>\n"
3922 " next_to_use <%x>\n"
3923 " next_to_clean <%x>\n"
3924 "buffer_info[next_to_clean]\n"
3925 " time_stamp <%lx>\n"
3926 " next_to_watch <%x>\n"
3927 " jiffies <%lx>\n"
3928 " next_to_watch.status <%x>\n",
49a45a06 3929 (unsigned long)(tx_ring - adapter->tx_ring),
1dc32918
JP
3930 readl(hw->hw_addr + tx_ring->tdh),
3931 readl(hw->hw_addr + tx_ring->tdt),
70b8f1e1 3932 tx_ring->next_to_use,
392137fa 3933 tx_ring->next_to_clean,
cdd7549e 3934 tx_ring->buffer_info[eop].time_stamp,
70b8f1e1
MC
3935 eop,
3936 jiffies,
3937 eop_desc->upper.fields.status);
b04e36ba 3938 e1000_dump(adapter);
1da177e4 3939 netif_stop_queue(netdev);
70b8f1e1 3940 }
1da177e4 3941 }
835bb129
JB
3942 adapter->total_tx_bytes += total_tx_bytes;
3943 adapter->total_tx_packets += total_tx_packets;
5fe31def
AK
3944 netdev->stats.tx_bytes += total_tx_bytes;
3945 netdev->stats.tx_packets += total_tx_packets;
807540ba 3946 return count < tx_ring->count;
1da177e4
LT
3947}
3948
3949/**
3950 * e1000_rx_checksum - Receive Checksum Offload for 82543
2d7edb92
MC
3951 * @adapter: board private structure
3952 * @status_err: receive descriptor status and error fields
3953 * @csum: receive descriptor csum field
3954 * @sk_buff: socket buffer with received data
1da177e4 3955 **/
64798845
JP
3956static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3957 u32 csum, struct sk_buff *skb)
1da177e4 3958{
1dc32918 3959 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
3960 u16 status = (u16)status_err;
3961 u8 errors = (u8)(status_err >> 24);
bc8acf2c
ED
3962
3963 skb_checksum_none_assert(skb);
2d7edb92 3964
1da177e4 3965 /* 82543 or newer only */
a48954c8
JW
3966 if (unlikely(hw->mac_type < e1000_82543))
3967 return;
1da177e4 3968 /* Ignore Checksum bit is set */
a48954c8
JW
3969 if (unlikely(status & E1000_RXD_STAT_IXSM))
3970 return;
2d7edb92 3971 /* TCP/UDP checksum error bit is set */
96838a40 3972 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
1da177e4 3973 /* let the stack verify checksum errors */
1da177e4 3974 adapter->hw_csum_err++;
2d7edb92
MC
3975 return;
3976 }
3977 /* TCP/UDP Checksum has not been calculated */
1532ecea
JB
3978 if (!(status & E1000_RXD_STAT_TCPCS))
3979 return;
3980
2d7edb92
MC
3981 /* It must be a TCP or UDP packet with a valid checksum */
3982 if (likely(status & E1000_RXD_STAT_TCPCS)) {
1da177e4
LT
3983 /* TCP checksum is good */
3984 skb->ip_summed = CHECKSUM_UNNECESSARY;
1da177e4 3985 }
2d7edb92 3986 adapter->hw_csum_good++;
1da177e4
LT
3987}
3988
edbbb3ca 3989/**
13809609 3990 * e1000_consume_page - helper function for jumbo Rx path
edbbb3ca 3991 **/
93f0afe9 3992static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
6cfbd97b 3993 u16 length)
edbbb3ca 3994{
13809609 3995 bi->rxbuf.page = NULL;
edbbb3ca
JB
3996 skb->len += length;
3997 skb->data_len += length;
ed64b3cc 3998 skb->truesize += PAGE_SIZE;
edbbb3ca
JB
3999}
4000
4001/**
4002 * e1000_receive_skb - helper function to handle rx indications
4003 * @adapter: board private structure
4004 * @status: descriptor status field as written by hardware
4005 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4006 * @skb: pointer to sk_buff to be indicated to stack
4007 */
4008static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4009 __le16 vlan, struct sk_buff *skb)
4010{
6a08d194
JB
4011 skb->protocol = eth_type_trans(skb, adapter->netdev);
4012
5622e404
JP
4013 if (status & E1000_RXD_STAT_VP) {
4014 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4015
86a9bad3 4016 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
5622e404
JP
4017 }
4018 napi_gro_receive(&adapter->napi, skb);
edbbb3ca
JB
4019}
4020
4f0aeb1e
FW
4021/**
4022 * e1000_tbi_adjust_stats
4023 * @hw: Struct containing variables accessed by shared code
4024 * @frame_len: The length of the frame in question
4025 * @mac_addr: The Ethernet destination address of the frame in question
4026 *
4027 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4028 */
4029static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4030 struct e1000_hw_stats *stats,
4031 u32 frame_len, const u8 *mac_addr)
4032{
4033 u64 carry_bit;
4034
4035 /* First adjust the frame length. */
4036 frame_len--;
4037 /* We need to adjust the statistics counters, since the hardware
4038 * counters overcount this packet as a CRC error and undercount
4039 * the packet as a good packet
4040 */
4041 /* This packet should not be counted as a CRC error. */
4042 stats->crcerrs--;
4043 /* This packet does count as a Good Packet Received. */
4044 stats->gprc++;
4045
4046 /* Adjust the Good Octets received counters */
4047 carry_bit = 0x80000000 & stats->gorcl;
4048 stats->gorcl += frame_len;
4049 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4050 * Received Count) was one before the addition,
4051 * AND it is zero after, then we lost the carry out,
4052 * need to add one to Gorch (Good Octets Received Count High).
4053 * This could be simplified if all environments supported
4054 * 64-bit integers.
4055 */
4056 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4057 stats->gorch++;
4058 /* Is this a broadcast or multicast? Check broadcast first,
4059 * since the test for a multicast frame will test positive on
4060 * a broadcast frame.
4061 */
4062 if (is_broadcast_ether_addr(mac_addr))
4063 stats->bprc++;
4064 else if (is_multicast_ether_addr(mac_addr))
4065 stats->mprc++;
4066
4067 if (frame_len == hw->max_frame_size) {
4068 /* In this case, the hardware has overcounted the number of
4069 * oversize frames.
4070 */
4071 if (stats->roc > 0)
4072 stats->roc--;
4073 }
4074
4075 /* Adjust the bin counters when the extra byte put the frame in the
4076 * wrong bin. Remember that the frame_len was adjusted above.
4077 */
4078 if (frame_len == 64) {
4079 stats->prc64++;
4080 stats->prc127--;
4081 } else if (frame_len == 127) {
4082 stats->prc127++;
4083 stats->prc255--;
4084 } else if (frame_len == 255) {
4085 stats->prc255++;
4086 stats->prc511--;
4087 } else if (frame_len == 511) {
4088 stats->prc511++;
4089 stats->prc1023--;
4090 } else if (frame_len == 1023) {
4091 stats->prc1023++;
4092 stats->prc1522--;
4093 } else if (frame_len == 1522) {
4094 stats->prc1522++;
4095 }
4096}
4097
2037110c
FW
4098static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4099 u8 status, u8 errors,
4100 u32 length, const u8 *data)
4101{
4102 struct e1000_hw *hw = &adapter->hw;
4103 u8 last_byte = *(data + length - 1);
4104
4105 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4106 unsigned long irq_flags;
4107
4108 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4109 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4110 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4111
4112 return true;
4113 }
4114
4115 return false;
4116}
4117
2b294b18
FW
4118static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4119 unsigned int bufsz)
4120{
67fd893e 4121 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
2b294b18
FW
4122
4123 if (unlikely(!skb))
4124 adapter->alloc_rx_buff_failed++;
4125 return skb;
4126}
4127
edbbb3ca
JB
4128/**
4129 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4130 * @adapter: board private structure
4131 * @rx_ring: ring to clean
4132 * @work_done: amount of napi work completed this call
4133 * @work_to_do: max amount of work allowed for this call to do
4134 *
4135 * the return value indicates whether actual cleaning was done, there
4136 * is no guarantee that everything was cleaned
4137 */
4138static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4139 struct e1000_rx_ring *rx_ring,
4140 int *work_done, int work_to_do)
4141{
edbbb3ca
JB
4142 struct net_device *netdev = adapter->netdev;
4143 struct pci_dev *pdev = adapter->pdev;
4144 struct e1000_rx_desc *rx_desc, *next_rxd;
93f0afe9 4145 struct e1000_rx_buffer *buffer_info, *next_buffer;
edbbb3ca
JB
4146 u32 length;
4147 unsigned int i;
4148 int cleaned_count = 0;
4149 bool cleaned = false;
a48954c8 4150 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
edbbb3ca
JB
4151
4152 i = rx_ring->next_to_clean;
4153 rx_desc = E1000_RX_DESC(*rx_ring, i);
4154 buffer_info = &rx_ring->buffer_info[i];
4155
4156 while (rx_desc->status & E1000_RXD_STAT_DD) {
4157 struct sk_buff *skb;
4158 u8 status;
4159
4160 if (*work_done >= work_to_do)
4161 break;
4162 (*work_done)++;
837a1dba 4163 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
edbbb3ca
JB
4164
4165 status = rx_desc->status;
edbbb3ca 4166
a48954c8
JW
4167 if (++i == rx_ring->count)
4168 i = 0;
4169
edbbb3ca
JB
4170 next_rxd = E1000_RX_DESC(*rx_ring, i);
4171 prefetch(next_rxd);
4172
4173 next_buffer = &rx_ring->buffer_info[i];
4174
4175 cleaned = true;
4176 cleaned_count++;
b16f53be 4177 dma_unmap_page(&pdev->dev, buffer_info->dma,
93f0afe9 4178 adapter->rx_buffer_len, DMA_FROM_DEVICE);
edbbb3ca
JB
4179 buffer_info->dma = 0;
4180
4181 length = le16_to_cpu(rx_desc->length);
4182
4183 /* errors is only valid for DD + EOP descriptors */
4184 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4185 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
13809609 4186 u8 *mapped = page_address(buffer_info->rxbuf.page);
2037110c
FW
4187
4188 if (e1000_tbi_should_accept(adapter, status,
4189 rx_desc->errors,
4190 length, mapped)) {
edbbb3ca 4191 length--;
2037110c
FW
4192 } else if (netdev->features & NETIF_F_RXALL) {
4193 goto process_skb;
edbbb3ca 4194 } else {
edbbb3ca 4195 /* an error means any chain goes out the window
6cfbd97b
JK
4196 * too
4197 */
edbbb3ca
JB
4198 if (rx_ring->rx_skb_top)
4199 dev_kfree_skb(rx_ring->rx_skb_top);
4200 rx_ring->rx_skb_top = NULL;
4201 goto next_desc;
4202 }
4203 }
4204
4205#define rxtop rx_ring->rx_skb_top
e825b731 4206process_skb:
edbbb3ca
JB
4207 if (!(status & E1000_RXD_STAT_EOP)) {
4208 /* this descriptor is only the beginning (or middle) */
4209 if (!rxtop) {
4210 /* this is the beginning of a chain */
de591c78 4211 rxtop = napi_get_frags(&adapter->napi);
13809609
FW
4212 if (!rxtop)
4213 break;
4214
4215 skb_fill_page_desc(rxtop, 0,
4216 buffer_info->rxbuf.page,
6cfbd97b 4217 0, length);
edbbb3ca
JB
4218 } else {
4219 /* this is the middle of a chain */
4220 skb_fill_page_desc(rxtop,
4221 skb_shinfo(rxtop)->nr_frags,
13809609 4222 buffer_info->rxbuf.page, 0, length);
edbbb3ca
JB
4223 }
4224 e1000_consume_page(buffer_info, rxtop, length);
4225 goto next_desc;
4226 } else {
4227 if (rxtop) {
4228 /* end of the chain */
4229 skb_fill_page_desc(rxtop,
4230 skb_shinfo(rxtop)->nr_frags,
13809609 4231 buffer_info->rxbuf.page, 0, length);
edbbb3ca
JB
4232 skb = rxtop;
4233 rxtop = NULL;
4234 e1000_consume_page(buffer_info, skb, length);
4235 } else {
13809609 4236 struct page *p;
edbbb3ca 4237 /* no chain, got EOP, this buf is the packet
6cfbd97b
JK
4238 * copybreak to save the put_page/alloc_page
4239 */
13809609 4240 p = buffer_info->rxbuf.page;
de591c78 4241 if (length <= copybreak) {
edbbb3ca 4242 u8 *vaddr;
13809609 4243
de591c78
FW
4244 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4245 length -= 4;
4246 skb = e1000_alloc_rx_skb(adapter,
4247 length);
4248 if (!skb)
4249 break;
4250
13809609 4251 vaddr = kmap_atomic(p);
6cfbd97b
JK
4252 memcpy(skb_tail_pointer(skb), vaddr,
4253 length);
4679026d 4254 kunmap_atomic(vaddr);
edbbb3ca 4255 /* re-use the page, so don't erase
13809609 4256 * buffer_info->rxbuf.page
6cfbd97b 4257 */
edbbb3ca 4258 skb_put(skb, length);
de591c78
FW
4259 e1000_rx_checksum(adapter,
4260 status | rx_desc->errors << 24,
4261 le16_to_cpu(rx_desc->csum), skb);
4262
4263 total_rx_bytes += skb->len;
4264 total_rx_packets++;
4265
4266 e1000_receive_skb(adapter, status,
4267 rx_desc->special, skb);
4268 goto next_desc;
edbbb3ca 4269 } else {
de591c78
FW
4270 skb = napi_get_frags(&adapter->napi);
4271 if (!skb) {
4272 adapter->alloc_rx_buff_failed++;
4273 break;
4274 }
13809609 4275 skb_fill_page_desc(skb, 0, p, 0,
6cfbd97b 4276 length);
edbbb3ca 4277 e1000_consume_page(buffer_info, skb,
6cfbd97b 4278 length);
edbbb3ca
JB
4279 }
4280 }
4281 }
4282
4283 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4284 e1000_rx_checksum(adapter,
6cfbd97b
JK
4285 (u32)(status) |
4286 ((u32)(rx_desc->errors) << 24),
4287 le16_to_cpu(rx_desc->csum), skb);
edbbb3ca 4288
b0d1562c
BG
4289 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4290 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4291 pskb_trim(skb, skb->len - 4);
edbbb3ca
JB
4292 total_rx_packets++;
4293
de591c78
FW
4294 if (status & E1000_RXD_STAT_VP) {
4295 __le16 vlan = rx_desc->special;
4296 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4297
4298 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
edbbb3ca
JB
4299 }
4300
de591c78 4301 napi_gro_frags(&adapter->napi);
edbbb3ca
JB
4302
4303next_desc:
4304 rx_desc->status = 0;
4305
4306 /* return some buffers to hardware, one at a time is too slow */
4307 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4308 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4309 cleaned_count = 0;
4310 }
4311
4312 /* use prefetched values */
4313 rx_desc = next_rxd;
4314 buffer_info = next_buffer;
4315 }
4316 rx_ring->next_to_clean = i;
4317
4318 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4319 if (cleaned_count)
4320 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4321
4322 adapter->total_rx_packets += total_rx_packets;
4323 adapter->total_rx_bytes += total_rx_bytes;
5fe31def
AK
4324 netdev->stats.rx_bytes += total_rx_bytes;
4325 netdev->stats.rx_packets += total_rx_packets;
edbbb3ca
JB
4326 return cleaned;
4327}
4328
6cfbd97b 4329/* this should improve performance for small packets with large amounts
57bf6eef
JP
4330 * of reassembly being done in the stack
4331 */
2b294b18 4332static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
93f0afe9 4333 struct e1000_rx_buffer *buffer_info,
2b294b18 4334 u32 length, const void *data)
57bf6eef 4335{
2b294b18 4336 struct sk_buff *skb;
57bf6eef
JP
4337
4338 if (length > copybreak)
2b294b18 4339 return NULL;
57bf6eef 4340
2b294b18
FW
4341 skb = e1000_alloc_rx_skb(adapter, length);
4342 if (!skb)
4343 return NULL;
4344
4345 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4346 length, DMA_FROM_DEVICE);
4347
4348 memcpy(skb_put(skb, length), data, length);
57bf6eef 4349
2b294b18 4350 return skb;
57bf6eef
JP
4351}
4352
1da177e4 4353/**
2d7edb92 4354 * e1000_clean_rx_irq - Send received data up the network stack; legacy
1da177e4 4355 * @adapter: board private structure
edbbb3ca
JB
4356 * @rx_ring: ring to clean
4357 * @work_done: amount of napi work completed this call
4358 * @work_to_do: max amount of work allowed for this call to do
4359 */
64798845
JP
4360static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4361 struct e1000_rx_ring *rx_ring,
4362 int *work_done, int work_to_do)
1da177e4 4363{
1da177e4
LT
4364 struct net_device *netdev = adapter->netdev;
4365 struct pci_dev *pdev = adapter->pdev;
86c3d59f 4366 struct e1000_rx_desc *rx_desc, *next_rxd;
93f0afe9 4367 struct e1000_rx_buffer *buffer_info, *next_buffer;
406874a7 4368 u32 length;
1da177e4 4369 unsigned int i;
72d64a43 4370 int cleaned_count = 0;
c3033b01 4371 bool cleaned = false;
a48954c8 4372 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1da177e4
LT
4373
4374 i = rx_ring->next_to_clean;
4375 rx_desc = E1000_RX_DESC(*rx_ring, i);
b92ff8ee 4376 buffer_info = &rx_ring->buffer_info[i];
1da177e4 4377
b92ff8ee 4378 while (rx_desc->status & E1000_RXD_STAT_DD) {
24f476ee 4379 struct sk_buff *skb;
13809609 4380 u8 *data;
a292ca6e 4381 u8 status;
90fb5135 4382
96838a40 4383 if (*work_done >= work_to_do)
1da177e4
LT
4384 break;
4385 (*work_done)++;
837a1dba 4386 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
c3570acb 4387
a292ca6e 4388 status = rx_desc->status;
2b294b18 4389 length = le16_to_cpu(rx_desc->length);
86c3d59f 4390
13809609
FW
4391 data = buffer_info->rxbuf.data;
4392 prefetch(data);
4393 skb = e1000_copybreak(adapter, buffer_info, length, data);
2b294b18 4394 if (!skb) {
13809609
FW
4395 unsigned int frag_len = e1000_frag_len(adapter);
4396
4397 skb = build_skb(data - E1000_HEADROOM, frag_len);
4398 if (!skb) {
4399 adapter->alloc_rx_buff_failed++;
4400 break;
4401 }
4402
4403 skb_reserve(skb, E1000_HEADROOM);
2b294b18 4404 dma_unmap_single(&pdev->dev, buffer_info->dma,
93f0afe9
FW
4405 adapter->rx_buffer_len,
4406 DMA_FROM_DEVICE);
2b294b18 4407 buffer_info->dma = 0;
13809609 4408 buffer_info->rxbuf.data = NULL;
2b294b18 4409 }
30320be8 4410
a48954c8
JW
4411 if (++i == rx_ring->count)
4412 i = 0;
4413
86c3d59f 4414 next_rxd = E1000_RX_DESC(*rx_ring, i);
30320be8
JK
4415 prefetch(next_rxd);
4416
86c3d59f 4417 next_buffer = &rx_ring->buffer_info[i];
86c3d59f 4418
c3033b01 4419 cleaned = true;
72d64a43 4420 cleaned_count++;
1da177e4 4421
ea30e119 4422 /* !EOP means multiple descriptors were used to store a single
40a14dea
JB
4423 * packet, if thats the case we need to toss it. In fact, we
4424 * to toss every packet with the EOP bit clear and the next
4425 * frame that _does_ have the EOP bit set, as it is by
4426 * definition only a frame fragment
4427 */
4428 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4429 adapter->discarding = true;
4430
4431 if (adapter->discarding) {
a1415ee6 4432 /* All receives must fit into a single buffer */
2037110c 4433 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
2b294b18 4434 dev_kfree_skb(skb);
40a14dea
JB
4435 if (status & E1000_RXD_STAT_EOP)
4436 adapter->discarding = false;
1da177e4
LT
4437 goto next_desc;
4438 }
4439
96838a40 4440 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2037110c
FW
4441 if (e1000_tbi_should_accept(adapter, status,
4442 rx_desc->errors,
13809609 4443 length, data)) {
1da177e4 4444 length--;
2037110c
FW
4445 } else if (netdev->features & NETIF_F_RXALL) {
4446 goto process_skb;
1da177e4 4447 } else {
2b294b18 4448 dev_kfree_skb(skb);
1da177e4
LT
4449 goto next_desc;
4450 }
1cb5821f 4451 }
1da177e4 4452
e825b731 4453process_skb:
b0d1562c 4454 total_rx_bytes += (length - 4); /* don't count FCS */
835bb129
JB
4455 total_rx_packets++;
4456
b0d1562c
BG
4457 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4458 /* adjust length to remove Ethernet CRC, this must be
4459 * done after the TBI_ACCEPT workaround above
4460 */
4461 length -= 4;
4462
13809609 4463 if (buffer_info->rxbuf.data == NULL)
2b294b18
FW
4464 skb_put(skb, length);
4465 else /* copybreak skb */
4466 skb_trim(skb, length);
1da177e4
LT
4467
4468 /* Receive Checksum Offload */
a292ca6e 4469 e1000_rx_checksum(adapter,
406874a7
JP
4470 (u32)(status) |
4471 ((u32)(rx_desc->errors) << 24),
c3d7a3a4 4472 le16_to_cpu(rx_desc->csum), skb);
96838a40 4473
edbbb3ca 4474 e1000_receive_skb(adapter, status, rx_desc->special, skb);
c3570acb 4475
1da177e4
LT
4476next_desc:
4477 rx_desc->status = 0;
1da177e4 4478
72d64a43
JK
4479 /* return some buffers to hardware, one at a time is too slow */
4480 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4481 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4482 cleaned_count = 0;
4483 }
4484
30320be8 4485 /* use prefetched values */
86c3d59f
JB
4486 rx_desc = next_rxd;
4487 buffer_info = next_buffer;
1da177e4 4488 }
1da177e4 4489 rx_ring->next_to_clean = i;
72d64a43
JK
4490
4491 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4492 if (cleaned_count)
4493 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
2d7edb92 4494
835bb129
JB
4495 adapter->total_rx_packets += total_rx_packets;
4496 adapter->total_rx_bytes += total_rx_bytes;
5fe31def
AK
4497 netdev->stats.rx_bytes += total_rx_bytes;
4498 netdev->stats.rx_packets += total_rx_packets;
2d7edb92
MC
4499 return cleaned;
4500}
4501
edbbb3ca
JB
4502/**
4503 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4504 * @adapter: address of board private structure
4505 * @rx_ring: pointer to receive ring structure
4506 * @cleaned_count: number of buffers to allocate this pass
4507 **/
edbbb3ca
JB
4508static void
4509e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
6cfbd97b 4510 struct e1000_rx_ring *rx_ring, int cleaned_count)
edbbb3ca 4511{
edbbb3ca
JB
4512 struct pci_dev *pdev = adapter->pdev;
4513 struct e1000_rx_desc *rx_desc;
93f0afe9 4514 struct e1000_rx_buffer *buffer_info;
edbbb3ca 4515 unsigned int i;
edbbb3ca
JB
4516
4517 i = rx_ring->next_to_use;
4518 buffer_info = &rx_ring->buffer_info[i];
4519
4520 while (cleaned_count--) {
edbbb3ca 4521 /* allocate a new page if necessary */
13809609
FW
4522 if (!buffer_info->rxbuf.page) {
4523 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4524 if (unlikely(!buffer_info->rxbuf.page)) {
edbbb3ca
JB
4525 adapter->alloc_rx_buff_failed++;
4526 break;
4527 }
4528 }
4529
b5abb028 4530 if (!buffer_info->dma) {
b16f53be 4531 buffer_info->dma = dma_map_page(&pdev->dev,
13809609
FW
4532 buffer_info->rxbuf.page, 0,
4533 adapter->rx_buffer_len,
b16f53be
NN
4534 DMA_FROM_DEVICE);
4535 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
13809609
FW
4536 put_page(buffer_info->rxbuf.page);
4537 buffer_info->rxbuf.page = NULL;
b5abb028
AB
4538 buffer_info->dma = 0;
4539 adapter->alloc_rx_buff_failed++;
13809609 4540 break;
b5abb028
AB
4541 }
4542 }
edbbb3ca
JB
4543
4544 rx_desc = E1000_RX_DESC(*rx_ring, i);
4545 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4546
4547 if (unlikely(++i == rx_ring->count))
4548 i = 0;
4549 buffer_info = &rx_ring->buffer_info[i];
4550 }
4551
4552 if (likely(rx_ring->next_to_use != i)) {
4553 rx_ring->next_to_use = i;
4554 if (unlikely(i-- == 0))
4555 i = (rx_ring->count - 1);
4556
4557 /* Force memory writes to complete before letting h/w
4558 * know there are new descriptors to fetch. (Only
4559 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
4560 * such as IA-64).
4561 */
edbbb3ca
JB
4562 wmb();
4563 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4564 }
4565}
4566
1da177e4 4567/**
2d7edb92 4568 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
1da177e4
LT
4569 * @adapter: address of board private structure
4570 **/
64798845
JP
4571static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4572 struct e1000_rx_ring *rx_ring,
4573 int cleaned_count)
1da177e4 4574{
1dc32918 4575 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4576 struct pci_dev *pdev = adapter->pdev;
4577 struct e1000_rx_desc *rx_desc;
93f0afe9 4578 struct e1000_rx_buffer *buffer_info;
2648345f 4579 unsigned int i;
89d71a66 4580 unsigned int bufsz = adapter->rx_buffer_len;
1da177e4
LT
4581
4582 i = rx_ring->next_to_use;
4583 buffer_info = &rx_ring->buffer_info[i];
4584
a292ca6e 4585 while (cleaned_count--) {
13809609
FW
4586 void *data;
4587
4588 if (buffer_info->rxbuf.data)
2b294b18 4589 goto skip;
a292ca6e 4590
13809609
FW
4591 data = e1000_alloc_frag(adapter);
4592 if (!data) {
1da177e4 4593 /* Better luck next round */
72d64a43 4594 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4595 break;
4596 }
4597
2648345f 4598 /* Fix for errata 23, can't cross 64kB boundary */
13809609
FW
4599 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4600 void *olddata = data;
feb8f478 4601 e_err(rx_err, "skb align check failed: %u bytes at "
13809609 4602 "%p\n", bufsz, data);
2648345f 4603 /* Try again, without freeing the previous */
13809609 4604 data = e1000_alloc_frag(adapter);
2648345f 4605 /* Failed allocation, critical failure */
13809609 4606 if (!data) {
6bf93ba8 4607 skb_free_frag(olddata);
edbbb3ca 4608 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4609 break;
4610 }
2648345f 4611
13809609 4612 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
1da177e4 4613 /* give up */
6bf93ba8
AD
4614 skb_free_frag(data);
4615 skb_free_frag(olddata);
edbbb3ca 4616 adapter->alloc_rx_buff_failed++;
13809609 4617 break;
1da177e4 4618 }
ca6f7224
CH
4619
4620 /* Use new allocation */
6bf93ba8 4621 skb_free_frag(olddata);
1da177e4 4622 }
b16f53be 4623 buffer_info->dma = dma_map_single(&pdev->dev,
13809609 4624 data,
93f0afe9 4625 adapter->rx_buffer_len,
b16f53be
NN
4626 DMA_FROM_DEVICE);
4627 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
6bf93ba8 4628 skb_free_frag(data);
b5abb028
AB
4629 buffer_info->dma = 0;
4630 adapter->alloc_rx_buff_failed++;
13809609 4631 break;
b5abb028 4632 }
1da177e4 4633
6cfbd97b 4634 /* XXX if it was allocated cleanly it will never map to a
edbbb3ca
JB
4635 * boundary crossing
4636 */
4637
2648345f
MC
4638 /* Fix for errata 23, can't cross 64kB boundary */
4639 if (!e1000_check_64k_bound(adapter,
4640 (void *)(unsigned long)buffer_info->dma,
4641 adapter->rx_buffer_len)) {
feb8f478
ET
4642 e_err(rx_err, "dma align check failed: %u bytes at "
4643 "%p\n", adapter->rx_buffer_len,
675ad473 4644 (void *)(unsigned long)buffer_info->dma);
1da177e4 4645
b16f53be 4646 dma_unmap_single(&pdev->dev, buffer_info->dma,
1da177e4 4647 adapter->rx_buffer_len,
b16f53be 4648 DMA_FROM_DEVICE);
13809609 4649
6bf93ba8 4650 skb_free_frag(data);
13809609 4651 buffer_info->rxbuf.data = NULL;
679be3ba 4652 buffer_info->dma = 0;
1da177e4 4653
edbbb3ca 4654 adapter->alloc_rx_buff_failed++;
13809609 4655 break;
1da177e4 4656 }
13809609
FW
4657 buffer_info->rxbuf.data = data;
4658 skip:
1da177e4
LT
4659 rx_desc = E1000_RX_DESC(*rx_ring, i);
4660 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4661
96838a40
JB
4662 if (unlikely(++i == rx_ring->count))
4663 i = 0;
1da177e4
LT
4664 buffer_info = &rx_ring->buffer_info[i];
4665 }
4666
b92ff8ee
JB
4667 if (likely(rx_ring->next_to_use != i)) {
4668 rx_ring->next_to_use = i;
4669 if (unlikely(i-- == 0))
4670 i = (rx_ring->count - 1);
4671
4672 /* Force memory writes to complete before letting h/w
4673 * know there are new descriptors to fetch. (Only
4674 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
4675 * such as IA-64).
4676 */
b92ff8ee 4677 wmb();
1dc32918 4678 writel(i, hw->hw_addr + rx_ring->rdt);
b92ff8ee 4679 }
1da177e4
LT
4680}
4681
4682/**
4683 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4684 * @adapter:
4685 **/
64798845 4686static void e1000_smartspeed(struct e1000_adapter *adapter)
1da177e4 4687{
1dc32918 4688 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
4689 u16 phy_status;
4690 u16 phy_ctrl;
1da177e4 4691
1dc32918
JP
4692 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4693 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
1da177e4
LT
4694 return;
4695
96838a40 4696 if (adapter->smartspeed == 0) {
1da177e4 4697 /* If Master/Slave config fault is asserted twice,
6cfbd97b
JK
4698 * we assume back-to-back
4699 */
1dc32918 4700 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
a48954c8
JW
4701 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4702 return;
1dc32918 4703 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
a48954c8
JW
4704 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4705 return;
1dc32918 4706 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
96838a40 4707 if (phy_ctrl & CR_1000T_MS_ENABLE) {
1da177e4 4708 phy_ctrl &= ~CR_1000T_MS_ENABLE;
1dc32918 4709 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1da177e4
LT
4710 phy_ctrl);
4711 adapter->smartspeed++;
1dc32918
JP
4712 if (!e1000_phy_setup_autoneg(hw) &&
4713 !e1000_read_phy_reg(hw, PHY_CTRL,
6cfbd97b 4714 &phy_ctrl)) {
1da177e4
LT
4715 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4716 MII_CR_RESTART_AUTO_NEG);
1dc32918 4717 e1000_write_phy_reg(hw, PHY_CTRL,
1da177e4
LT
4718 phy_ctrl);
4719 }
4720 }
4721 return;
96838a40 4722 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
1da177e4 4723 /* If still no link, perhaps using 2/3 pair cable */
1dc32918 4724 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
1da177e4 4725 phy_ctrl |= CR_1000T_MS_ENABLE;
1dc32918
JP
4726 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4727 if (!e1000_phy_setup_autoneg(hw) &&
4728 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
1da177e4
LT
4729 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4730 MII_CR_RESTART_AUTO_NEG);
1dc32918 4731 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
1da177e4
LT
4732 }
4733 }
4734 /* Restart process after E1000_SMARTSPEED_MAX iterations */
96838a40 4735 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
1da177e4
LT
4736 adapter->smartspeed = 0;
4737}
4738
4739/**
4740 * e1000_ioctl -
4741 * @netdev:
4742 * @ifreq:
4743 * @cmd:
4744 **/
64798845 4745static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1da177e4
LT
4746{
4747 switch (cmd) {
4748 case SIOCGMIIPHY:
4749 case SIOCGMIIREG:
4750 case SIOCSMIIREG:
4751 return e1000_mii_ioctl(netdev, ifr, cmd);
4752 default:
4753 return -EOPNOTSUPP;
4754 }
4755}
4756
4757/**
4758 * e1000_mii_ioctl -
4759 * @netdev:
4760 * @ifreq:
4761 * @cmd:
4762 **/
64798845
JP
4763static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4764 int cmd)
1da177e4 4765{
60490fe0 4766 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4767 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4768 struct mii_ioctl_data *data = if_mii(ifr);
4769 int retval;
406874a7 4770 u16 mii_reg;
97876fc6 4771 unsigned long flags;
1da177e4 4772
1dc32918 4773 if (hw->media_type != e1000_media_type_copper)
1da177e4
LT
4774 return -EOPNOTSUPP;
4775
4776 switch (cmd) {
4777 case SIOCGMIIPHY:
1dc32918 4778 data->phy_id = hw->phy_addr;
1da177e4
LT
4779 break;
4780 case SIOCGMIIREG:
97876fc6 4781 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4782 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
97876fc6
MC
4783 &data->val_out)) {
4784 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 4785 return -EIO;
97876fc6
MC
4786 }
4787 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4
LT
4788 break;
4789 case SIOCSMIIREG:
96838a40 4790 if (data->reg_num & ~(0x1F))
1da177e4
LT
4791 return -EFAULT;
4792 mii_reg = data->val_in;
97876fc6 4793 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4794 if (e1000_write_phy_reg(hw, data->reg_num,
97876fc6
MC
4795 mii_reg)) {
4796 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 4797 return -EIO;
97876fc6 4798 }
f0163ac4 4799 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1dc32918 4800 if (hw->media_type == e1000_media_type_copper) {
1da177e4
LT
4801 switch (data->reg_num) {
4802 case PHY_CTRL:
96838a40 4803 if (mii_reg & MII_CR_POWER_DOWN)
1da177e4 4804 break;
96838a40 4805 if (mii_reg & MII_CR_AUTO_NEG_EN) {
1dc32918
JP
4806 hw->autoneg = 1;
4807 hw->autoneg_advertised = 0x2F;
1da177e4 4808 } else {
14ad2513 4809 u32 speed;
1da177e4 4810 if (mii_reg & 0x40)
14ad2513 4811 speed = SPEED_1000;
1da177e4 4812 else if (mii_reg & 0x2000)
14ad2513 4813 speed = SPEED_100;
1da177e4 4814 else
14ad2513
DD
4815 speed = SPEED_10;
4816 retval = e1000_set_spd_dplx(
4817 adapter, speed,
4818 ((mii_reg & 0x100)
4819 ? DUPLEX_FULL :
4820 DUPLEX_HALF));
f0163ac4 4821 if (retval)
1da177e4
LT
4822 return retval;
4823 }
2db10a08
AK
4824 if (netif_running(adapter->netdev))
4825 e1000_reinit_locked(adapter);
4826 else
1da177e4
LT
4827 e1000_reset(adapter);
4828 break;
4829 case M88E1000_PHY_SPEC_CTRL:
4830 case M88E1000_EXT_PHY_SPEC_CTRL:
1dc32918 4831 if (e1000_phy_reset(hw))
1da177e4
LT
4832 return -EIO;
4833 break;
4834 }
4835 } else {
4836 switch (data->reg_num) {
4837 case PHY_CTRL:
96838a40 4838 if (mii_reg & MII_CR_POWER_DOWN)
1da177e4 4839 break;
2db10a08
AK
4840 if (netif_running(adapter->netdev))
4841 e1000_reinit_locked(adapter);
4842 else
1da177e4
LT
4843 e1000_reset(adapter);
4844 break;
4845 }
4846 }
4847 break;
4848 default:
4849 return -EOPNOTSUPP;
4850 }
4851 return E1000_SUCCESS;
4852}
4853
64798845 4854void e1000_pci_set_mwi(struct e1000_hw *hw)
1da177e4
LT
4855{
4856 struct e1000_adapter *adapter = hw->back;
2648345f 4857 int ret_val = pci_set_mwi(adapter->pdev);
1da177e4 4858
96838a40 4859 if (ret_val)
feb8f478 4860 e_err(probe, "Error in setting MWI\n");
1da177e4
LT
4861}
4862
64798845 4863void e1000_pci_clear_mwi(struct e1000_hw *hw)
1da177e4
LT
4864{
4865 struct e1000_adapter *adapter = hw->back;
4866
4867 pci_clear_mwi(adapter->pdev);
4868}
4869
64798845 4870int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
007755eb
PO
4871{
4872 struct e1000_adapter *adapter = hw->back;
4873 return pcix_get_mmrbc(adapter->pdev);
4874}
4875
64798845 4876void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
007755eb
PO
4877{
4878 struct e1000_adapter *adapter = hw->back;
4879 pcix_set_mmrbc(adapter->pdev, mmrbc);
4880}
4881
64798845 4882void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
1da177e4
LT
4883{
4884 outl(value, port);
4885}
4886
5622e404
JP
4887static bool e1000_vlan_used(struct e1000_adapter *adapter)
4888{
4889 u16 vid;
4890
4891 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4892 return true;
4893 return false;
4894}
4895
52f5509f
JP
4896static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4897 netdev_features_t features)
4898{
4899 struct e1000_hw *hw = &adapter->hw;
4900 u32 ctrl;
4901
4902 ctrl = er32(CTRL);
f646968f 4903 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
52f5509f
JP
4904 /* enable VLAN tag insert/strip */
4905 ctrl |= E1000_CTRL_VME;
4906 } else {
4907 /* disable VLAN tag insert/strip */
4908 ctrl &= ~E1000_CTRL_VME;
4909 }
4910 ew32(CTRL, ctrl);
4911}
5622e404
JP
4912static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4913 bool filter_on)
1da177e4 4914{
1dc32918 4915 struct e1000_hw *hw = &adapter->hw;
5622e404 4916 u32 rctl;
1da177e4 4917
9150b76a
JB
4918 if (!test_bit(__E1000_DOWN, &adapter->flags))
4919 e1000_irq_disable(adapter);
1da177e4 4920
52f5509f 4921 __e1000_vlan_mode(adapter, adapter->netdev->features);
5622e404 4922 if (filter_on) {
1532ecea
JB
4923 /* enable VLAN receive filtering */
4924 rctl = er32(RCTL);
4925 rctl &= ~E1000_RCTL_CFIEN;
5622e404 4926 if (!(adapter->netdev->flags & IFF_PROMISC))
1532ecea
JB
4927 rctl |= E1000_RCTL_VFE;
4928 ew32(RCTL, rctl);
4929 e1000_update_mng_vlan(adapter);
1da177e4 4930 } else {
1532ecea
JB
4931 /* disable VLAN receive filtering */
4932 rctl = er32(RCTL);
4933 rctl &= ~E1000_RCTL_VFE;
4934 ew32(RCTL, rctl);
5622e404 4935 }
fd38d7a0 4936
5622e404
JP
4937 if (!test_bit(__E1000_DOWN, &adapter->flags))
4938 e1000_irq_enable(adapter);
4939}
4940
c8f44aff 4941static void e1000_vlan_mode(struct net_device *netdev,
52f5509f 4942 netdev_features_t features)
5622e404
JP
4943{
4944 struct e1000_adapter *adapter = netdev_priv(netdev);
5622e404
JP
4945
4946 if (!test_bit(__E1000_DOWN, &adapter->flags))
4947 e1000_irq_disable(adapter);
4948
52f5509f 4949 __e1000_vlan_mode(adapter, features);
1da177e4 4950
9150b76a
JB
4951 if (!test_bit(__E1000_DOWN, &adapter->flags))
4952 e1000_irq_enable(adapter);
1da177e4
LT
4953}
4954
80d5c368
PM
4955static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4956 __be16 proto, u16 vid)
1da177e4 4957{
60490fe0 4958 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4959 struct e1000_hw *hw = &adapter->hw;
406874a7 4960 u32 vfta, index;
96838a40 4961
1dc32918 4962 if ((hw->mng_cookie.status &
96838a40
JB
4963 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4964 (vid == adapter->mng_vlan_id))
8e586137 4965 return 0;
5622e404
JP
4966
4967 if (!e1000_vlan_used(adapter))
4968 e1000_vlan_filter_on_off(adapter, true);
4969
1da177e4
LT
4970 /* add VID to filter table */
4971 index = (vid >> 5) & 0x7F;
1dc32918 4972 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
1da177e4 4973 vfta |= (1 << (vid & 0x1F));
1dc32918 4974 e1000_write_vfta(hw, index, vfta);
5622e404
JP
4975
4976 set_bit(vid, adapter->active_vlans);
8e586137
JP
4977
4978 return 0;
1da177e4
LT
4979}
4980
80d5c368
PM
4981static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4982 __be16 proto, u16 vid)
1da177e4 4983{
60490fe0 4984 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4985 struct e1000_hw *hw = &adapter->hw;
406874a7 4986 u32 vfta, index;
1da177e4 4987
9150b76a
JB
4988 if (!test_bit(__E1000_DOWN, &adapter->flags))
4989 e1000_irq_disable(adapter);
9150b76a
JB
4990 if (!test_bit(__E1000_DOWN, &adapter->flags))
4991 e1000_irq_enable(adapter);
1da177e4
LT
4992
4993 /* remove VID from filter table */
4994 index = (vid >> 5) & 0x7F;
1dc32918 4995 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
1da177e4 4996 vfta &= ~(1 << (vid & 0x1F));
1dc32918 4997 e1000_write_vfta(hw, index, vfta);
5622e404
JP
4998
4999 clear_bit(vid, adapter->active_vlans);
5000
5001 if (!e1000_vlan_used(adapter))
5002 e1000_vlan_filter_on_off(adapter, false);
8e586137
JP
5003
5004 return 0;
1da177e4
LT
5005}
5006
64798845 5007static void e1000_restore_vlan(struct e1000_adapter *adapter)
1da177e4 5008{
5622e404 5009 u16 vid;
1da177e4 5010
5622e404
JP
5011 if (!e1000_vlan_used(adapter))
5012 return;
5013
5014 e1000_vlan_filter_on_off(adapter, true);
5015 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 5016 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1da177e4
LT
5017}
5018
14ad2513 5019int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
1da177e4 5020{
1dc32918
JP
5021 struct e1000_hw *hw = &adapter->hw;
5022
5023 hw->autoneg = 0;
1da177e4 5024
14ad2513 5025 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6cfbd97b
JK
5026 * for the switch() below to work
5027 */
14ad2513
DD
5028 if ((spd & 1) || (dplx & ~1))
5029 goto err_inval;
5030
6921368f 5031 /* Fiber NICs only allow 1000 gbps Full duplex */
1dc32918 5032 if ((hw->media_type == e1000_media_type_fiber) &&
14ad2513
DD
5033 spd != SPEED_1000 &&
5034 dplx != DUPLEX_FULL)
5035 goto err_inval;
6921368f 5036
14ad2513 5037 switch (spd + dplx) {
1da177e4 5038 case SPEED_10 + DUPLEX_HALF:
1dc32918 5039 hw->forced_speed_duplex = e1000_10_half;
1da177e4
LT
5040 break;
5041 case SPEED_10 + DUPLEX_FULL:
1dc32918 5042 hw->forced_speed_duplex = e1000_10_full;
1da177e4
LT
5043 break;
5044 case SPEED_100 + DUPLEX_HALF:
1dc32918 5045 hw->forced_speed_duplex = e1000_100_half;
1da177e4
LT
5046 break;
5047 case SPEED_100 + DUPLEX_FULL:
1dc32918 5048 hw->forced_speed_duplex = e1000_100_full;
1da177e4
LT
5049 break;
5050 case SPEED_1000 + DUPLEX_FULL:
1dc32918
JP
5051 hw->autoneg = 1;
5052 hw->autoneg_advertised = ADVERTISE_1000_FULL;
1da177e4
LT
5053 break;
5054 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5055 default:
14ad2513 5056 goto err_inval;
1da177e4 5057 }
c819bbd5
JB
5058
5059 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5060 hw->mdix = AUTO_ALL_MODES;
5061
1da177e4 5062 return 0;
14ad2513
DD
5063
5064err_inval:
5065 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5066 return -EINVAL;
1da177e4
LT
5067}
5068
b43fcd7d 5069static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
1da177e4
LT
5070{
5071 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 5072 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5073 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
5074 u32 ctrl, ctrl_ext, rctl, status;
5075 u32 wufc = adapter->wol;
6fdfef16 5076#ifdef CONFIG_PM
240b1710 5077 int retval = 0;
6fdfef16 5078#endif
1da177e4
LT
5079
5080 netif_device_detach(netdev);
5081
2db10a08 5082 if (netif_running(netdev)) {
6a7d64e3 5083 int count = E1000_CHECK_RESET_COUNT;
5084
5085 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5086 usleep_range(10000, 20000);
5087
2db10a08 5088 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1da177e4 5089 e1000_down(adapter);
2db10a08 5090 }
1da177e4 5091
2f82665f 5092#ifdef CONFIG_PM
1d33e9c6 5093 retval = pci_save_state(pdev);
3a3847e0 5094 if (retval)
2f82665f
JB
5095 return retval;
5096#endif
5097
1dc32918 5098 status = er32(STATUS);
96838a40 5099 if (status & E1000_STATUS_LU)
1da177e4
LT
5100 wufc &= ~E1000_WUFC_LNKC;
5101
96838a40 5102 if (wufc) {
1da177e4 5103 e1000_setup_rctl(adapter);
db0ce50d 5104 e1000_set_rx_mode(netdev);
1da177e4 5105
b868179c
DN
5106 rctl = er32(RCTL);
5107
1da177e4 5108 /* turn on all-multi mode if wake on multicast is enabled */
b868179c 5109 if (wufc & E1000_WUFC_MC)
1da177e4 5110 rctl |= E1000_RCTL_MPE;
b868179c
DN
5111
5112 /* enable receives in the hardware */
5113 ew32(RCTL, rctl | E1000_RCTL_EN);
1da177e4 5114
1dc32918
JP
5115 if (hw->mac_type >= e1000_82540) {
5116 ctrl = er32(CTRL);
1da177e4
LT
5117 /* advertise wake from D3Cold */
5118 #define E1000_CTRL_ADVD3WUC 0x00100000
5119 /* phy power management enable */
5120 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5121 ctrl |= E1000_CTRL_ADVD3WUC |
5122 E1000_CTRL_EN_PHY_PWR_MGMT;
1dc32918 5123 ew32(CTRL, ctrl);
1da177e4
LT
5124 }
5125
1dc32918 5126 if (hw->media_type == e1000_media_type_fiber ||
1532ecea 5127 hw->media_type == e1000_media_type_internal_serdes) {
1da177e4 5128 /* keep the laser running in D3 */
1dc32918 5129 ctrl_ext = er32(CTRL_EXT);
1da177e4 5130 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
1dc32918 5131 ew32(CTRL_EXT, ctrl_ext);
1da177e4
LT
5132 }
5133
1dc32918
JP
5134 ew32(WUC, E1000_WUC_PME_EN);
5135 ew32(WUFC, wufc);
1da177e4 5136 } else {
1dc32918
JP
5137 ew32(WUC, 0);
5138 ew32(WUFC, 0);
1da177e4
LT
5139 }
5140
0fccd0e9
JG
5141 e1000_release_manageability(adapter);
5142
b43fcd7d
RW
5143 *enable_wake = !!wufc;
5144
0fccd0e9 5145 /* make sure adapter isn't asleep if manageability is enabled */
b43fcd7d
RW
5146 if (adapter->en_mng_pt)
5147 *enable_wake = true;
1da177e4 5148
edd106fc
AK
5149 if (netif_running(netdev))
5150 e1000_free_irq(adapter);
5151
1da177e4 5152 pci_disable_device(pdev);
240b1710 5153
1da177e4
LT
5154 return 0;
5155}
5156
2f82665f 5157#ifdef CONFIG_PM
b43fcd7d
RW
5158static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5159{
5160 int retval;
5161 bool wake;
5162
5163 retval = __e1000_shutdown(pdev, &wake);
5164 if (retval)
5165 return retval;
5166
5167 if (wake) {
5168 pci_prepare_to_sleep(pdev);
5169 } else {
5170 pci_wake_from_d3(pdev, false);
5171 pci_set_power_state(pdev, PCI_D3hot);
5172 }
5173
5174 return 0;
5175}
5176
64798845 5177static int e1000_resume(struct pci_dev *pdev)
1da177e4
LT
5178{
5179 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 5180 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5181 struct e1000_hw *hw = &adapter->hw;
406874a7 5182 u32 err;
1da177e4 5183
d0e027db 5184 pci_set_power_state(pdev, PCI_D0);
1d33e9c6 5185 pci_restore_state(pdev);
dbb5aaeb 5186 pci_save_state(pdev);
81250297
TI
5187
5188 if (adapter->need_ioport)
5189 err = pci_enable_device(pdev);
5190 else
5191 err = pci_enable_device_mem(pdev);
c7be73bc 5192 if (err) {
675ad473 5193 pr_err("Cannot enable PCI device from suspend\n");
3d1dd8cb
AK
5194 return err;
5195 }
a4cb847d 5196 pci_set_master(pdev);
1da177e4 5197
d0e027db
AK
5198 pci_enable_wake(pdev, PCI_D3hot, 0);
5199 pci_enable_wake(pdev, PCI_D3cold, 0);
1da177e4 5200
c7be73bc
JP
5201 if (netif_running(netdev)) {
5202 err = e1000_request_irq(adapter);
5203 if (err)
5204 return err;
5205 }
edd106fc
AK
5206
5207 e1000_power_up_phy(adapter);
1da177e4 5208 e1000_reset(adapter);
1dc32918 5209 ew32(WUS, ~0);
1da177e4 5210
0fccd0e9
JG
5211 e1000_init_manageability(adapter);
5212
96838a40 5213 if (netif_running(netdev))
1da177e4
LT
5214 e1000_up(adapter);
5215
5216 netif_device_attach(netdev);
5217
1da177e4
LT
5218 return 0;
5219}
5220#endif
c653e635
AK
5221
5222static void e1000_shutdown(struct pci_dev *pdev)
5223{
b43fcd7d
RW
5224 bool wake;
5225
5226 __e1000_shutdown(pdev, &wake);
5227
5228 if (system_state == SYSTEM_POWER_OFF) {
5229 pci_wake_from_d3(pdev, wake);
5230 pci_set_power_state(pdev, PCI_D3hot);
5231 }
c653e635
AK
5232}
5233
1da177e4 5234#ifdef CONFIG_NET_POLL_CONTROLLER
6cfbd97b 5235/* Polling 'interrupt' - used by things like netconsole to send skbs
1da177e4
LT
5236 * without having to re-enable interrupts. It's not called while
5237 * the interrupt routine is executing.
5238 */
64798845 5239static void e1000_netpoll(struct net_device *netdev)
1da177e4 5240{
60490fe0 5241 struct e1000_adapter *adapter = netdev_priv(netdev);
d3d9e484 5242
1da177e4 5243 disable_irq(adapter->pdev->irq);
7d12e780 5244 e1000_intr(adapter->pdev->irq, netdev);
1da177e4
LT
5245 enable_irq(adapter->pdev->irq);
5246}
5247#endif
5248
9026729b
AK
5249/**
5250 * e1000_io_error_detected - called when PCI error is detected
5251 * @pdev: Pointer to PCI device
120a5d0d 5252 * @state: The current pci connection state
9026729b
AK
5253 *
5254 * This function is called after a PCI bus error affecting
5255 * this device has been detected.
5256 */
64798845
JP
5257static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5258 pci_channel_state_t state)
9026729b
AK
5259{
5260 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5261 struct e1000_adapter *adapter = netdev_priv(netdev);
9026729b
AK
5262
5263 netif_device_detach(netdev);
5264
eab63302
AD
5265 if (state == pci_channel_io_perm_failure)
5266 return PCI_ERS_RESULT_DISCONNECT;
5267
9026729b
AK
5268 if (netif_running(netdev))
5269 e1000_down(adapter);
72e8d6bb 5270 pci_disable_device(pdev);
9026729b
AK
5271
5272 /* Request a slot slot reset. */
5273 return PCI_ERS_RESULT_NEED_RESET;
5274}
5275
5276/**
5277 * e1000_io_slot_reset - called after the pci bus has been reset.
5278 * @pdev: Pointer to PCI device
5279 *
5280 * Restart the card from scratch, as if from a cold-boot. Implementation
5281 * resembles the first-half of the e1000_resume routine.
5282 */
5283static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5284{
5285 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5286 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5287 struct e1000_hw *hw = &adapter->hw;
81250297 5288 int err;
9026729b 5289
81250297
TI
5290 if (adapter->need_ioport)
5291 err = pci_enable_device(pdev);
5292 else
5293 err = pci_enable_device_mem(pdev);
5294 if (err) {
675ad473 5295 pr_err("Cannot re-enable PCI device after reset.\n");
9026729b
AK
5296 return PCI_ERS_RESULT_DISCONNECT;
5297 }
5298 pci_set_master(pdev);
5299
dbf38c94
LV
5300 pci_enable_wake(pdev, PCI_D3hot, 0);
5301 pci_enable_wake(pdev, PCI_D3cold, 0);
9026729b 5302
9026729b 5303 e1000_reset(adapter);
1dc32918 5304 ew32(WUS, ~0);
9026729b
AK
5305
5306 return PCI_ERS_RESULT_RECOVERED;
5307}
5308
5309/**
5310 * e1000_io_resume - called when traffic can start flowing again.
5311 * @pdev: Pointer to PCI device
5312 *
5313 * This callback is called when the error recovery driver tells us that
5314 * its OK to resume normal operation. Implementation resembles the
5315 * second-half of the e1000_resume routine.
5316 */
5317static void e1000_io_resume(struct pci_dev *pdev)
5318{
5319 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5320 struct e1000_adapter *adapter = netdev_priv(netdev);
0fccd0e9
JG
5321
5322 e1000_init_manageability(adapter);
9026729b
AK
5323
5324 if (netif_running(netdev)) {
5325 if (e1000_up(adapter)) {
675ad473 5326 pr_info("can't bring device back up after reset\n");
9026729b
AK
5327 return;
5328 }
5329 }
5330
5331 netif_device_attach(netdev);
9026729b
AK
5332}
5333
1da177e4 5334/* e1000_main.c */
This page took 2.473926 seconds and 5 git commands to generate.