Merge remote-tracking branch 'tpmdd/next'
[deliverable/linux.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
CommitLineData
86641094 1/* Intel(R) Ethernet Switch Host Interface Driver
9de6a1a6 2 * Copyright(c) 2013 - 2016 Intel Corporation.
b3890e30
AD
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include <linux/types.h>
22#include <linux/module.h>
23#include <net/ipv6.h>
24#include <net/ip.h>
25#include <net/tcp.h>
26#include <linux/if_macvlan.h>
b101c962 27#include <linux/prefetch.h>
b3890e30
AD
28
29#include "fm10k.h"
30
5264cc63 31#define DRV_VERSION "0.21.2-k"
2d0f76be 32#define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
b3890e30
AD
33const char fm10k_driver_version[] = DRV_VERSION;
34char fm10k_driver_name[] = "fm10k";
2d0f76be 35static const char fm10k_driver_string[] = DRV_SUMMARY;
b3890e30 36static const char fm10k_copyright[] =
86641094 37 "Copyright (c) 2013 - 2016 Intel Corporation.";
b3890e30
AD
38
39MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
2d0f76be 40MODULE_DESCRIPTION(DRV_SUMMARY);
b3890e30
AD
41MODULE_LICENSE("GPL");
42MODULE_VERSION(DRV_VERSION);
43
b382bb1b 44/* single workqueue for entire fm10k driver */
07146e2e 45struct workqueue_struct *fm10k_workqueue;
b382bb1b 46
6d2ce900
AD
47/**
48 * fm10k_init_module - Driver Registration Routine
b3890e30
AD
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53static int __init fm10k_init_module(void)
54{
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
b382bb1b 58 /* create driver workqueue */
4aa0bd54 59 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, fm10k_driver_name);
b382bb1b 60
7461fd91
AD
61 fm10k_dbg_init();
62
b3890e30
AD
63 return fm10k_register_pci_driver();
64}
65module_init(fm10k_init_module);
66
67/**
68 * fm10k_exit_module - Driver Exit Cleanup Routine
69 *
70 * fm10k_exit_module is called just before the driver is removed
71 * from memory.
72 **/
73static void __exit fm10k_exit_module(void)
74{
75 fm10k_unregister_pci_driver();
7461fd91
AD
76
77 fm10k_dbg_exit();
b382bb1b
JK
78
79 /* destroy driver workqueue */
b382bb1b 80 destroy_workqueue(fm10k_workqueue);
b3890e30
AD
81}
82module_exit(fm10k_exit_module);
18283cad 83
b101c962
AD
84static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
85 struct fm10k_rx_buffer *bi)
86{
87 struct page *page = bi->page;
88 dma_addr_t dma;
89
90 /* Only page will be NULL if buffer was consumed */
91 if (likely(page))
92 return true;
93
94 /* alloc new page for storage */
42b17f09 95 page = dev_alloc_page();
b101c962
AD
96 if (unlikely(!page)) {
97 rx_ring->rx_stats.alloc_failed++;
98 return false;
99 }
100
101 /* map page for use */
102 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
103
104 /* if mapping failed free memory back to system since
105 * there isn't much point in holding memory we can't use
106 */
107 if (dma_mapping_error(rx_ring->dev, dma)) {
108 __free_page(page);
b101c962
AD
109
110 rx_ring->rx_stats.alloc_failed++;
111 return false;
112 }
113
114 bi->dma = dma;
115 bi->page = page;
116 bi->page_offset = 0;
117
118 return true;
119}
120
121/**
122 * fm10k_alloc_rx_buffers - Replace used receive buffers
123 * @rx_ring: ring to place buffers on
124 * @cleaned_count: number of buffers to replace
125 **/
126void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
127{
128 union fm10k_rx_desc *rx_desc;
129 struct fm10k_rx_buffer *bi;
130 u16 i = rx_ring->next_to_use;
131
132 /* nothing to do */
133 if (!cleaned_count)
134 return;
135
136 rx_desc = FM10K_RX_DESC(rx_ring, i);
137 bi = &rx_ring->rx_buffer[i];
138 i -= rx_ring->count;
139
140 do {
141 if (!fm10k_alloc_mapped_page(rx_ring, bi))
142 break;
143
144 /* Refresh the desc even if buffer_addrs didn't change
145 * because each write-back erases this info.
146 */
147 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
148
149 rx_desc++;
150 bi++;
151 i++;
152 if (unlikely(!i)) {
153 rx_desc = FM10K_RX_DESC(rx_ring, 0);
154 bi = rx_ring->rx_buffer;
155 i -= rx_ring->count;
156 }
157
ba5b8dcd
AD
158 /* clear the status bits for the next_to_use descriptor */
159 rx_desc->d.staterr = 0;
b101c962
AD
160
161 cleaned_count--;
162 } while (cleaned_count);
163
164 i += rx_ring->count;
165
166 if (rx_ring->next_to_use != i) {
167 /* record the next descriptor to use */
168 rx_ring->next_to_use = i;
169
170 /* update next to alloc since we have filled the ring */
171 rx_ring->next_to_alloc = i;
172
173 /* Force memory writes to complete before letting h/w
174 * know there are new descriptors to fetch. (Only
175 * applicable for weak-ordered memory model archs,
176 * such as IA-64).
177 */
178 wmb();
179
180 /* notify hardware of new descriptors */
181 writel(i, rx_ring->tail);
182 }
183}
184
185/**
186 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
187 * @rx_ring: rx descriptor ring to store buffers on
188 * @old_buff: donor buffer to have page reused
189 *
190 * Synchronizes page for reuse by the interface
191 **/
192static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
193 struct fm10k_rx_buffer *old_buff)
194{
195 struct fm10k_rx_buffer *new_buff;
196 u16 nta = rx_ring->next_to_alloc;
197
198 new_buff = &rx_ring->rx_buffer[nta];
199
200 /* update, and store next to alloc */
201 nta++;
202 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
203
204 /* transfer page from old buffer to new buffer */
ba5b8dcd 205 *new_buff = *old_buff;
b101c962
AD
206
207 /* sync the buffer for use by the device */
208 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
209 old_buff->page_offset,
210 FM10K_RX_BUFSZ,
211 DMA_FROM_DEVICE);
212}
213
ba5b8dcd
AD
214static inline bool fm10k_page_is_reserved(struct page *page)
215{
2f064f34 216 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
ba5b8dcd
AD
217}
218
b101c962
AD
219static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
220 struct page *page,
de445199 221 unsigned int __maybe_unused truesize)
b101c962
AD
222{
223 /* avoid re-using remote pages */
ba5b8dcd 224 if (unlikely(fm10k_page_is_reserved(page)))
b101c962
AD
225 return false;
226
227#if (PAGE_SIZE < 8192)
228 /* if we are only owner of page we can reuse it */
229 if (unlikely(page_count(page) != 1))
230 return false;
231
232 /* flip page offset to other buffer */
233 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
b101c962
AD
234#else
235 /* move offset up to the next cache line */
236 rx_buffer->page_offset += truesize;
237
238 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
239 return false;
b101c962
AD
240#endif
241
ba5b8dcd
AD
242 /* Even if we own the page, we are not allowed to use atomic_set()
243 * This would break get_page_unless_zero() users.
244 */
fe896d18 245 page_ref_inc(page);
ba5b8dcd 246
b101c962
AD
247 return true;
248}
249
250/**
251 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
b101c962
AD
252 * @rx_buffer: buffer containing page to add
253 * @rx_desc: descriptor containing length of buffer written by hardware
254 * @skb: sk_buff to place the data into
255 *
256 * This function will add the data contained in rx_buffer->page to the skb.
257 * This is done either through a direct copy if the data in the buffer is
258 * less than the skb header size, otherwise it will just attach the page as
259 * a frag to the skb.
260 *
261 * The function will then update the page offset if necessary and return
262 * true if the buffer can be reused by the interface.
263 **/
de445199 264static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
b101c962
AD
265 union fm10k_rx_desc *rx_desc,
266 struct sk_buff *skb)
267{
268 struct page *page = rx_buffer->page;
1a8782e5 269 unsigned char *va = page_address(page) + rx_buffer->page_offset;
b101c962
AD
270 unsigned int size = le16_to_cpu(rx_desc->w.length);
271#if (PAGE_SIZE < 8192)
272 unsigned int truesize = FM10K_RX_BUFSZ;
273#else
fb5677aa 274 unsigned int truesize = ALIGN(size, 512);
b101c962 275#endif
1a8782e5 276 unsigned int pull_len;
b101c962 277
1a8782e5
AD
278 if (unlikely(skb_is_nonlinear(skb)))
279 goto add_tail_frag;
b101c962 280
1a8782e5 281 if (likely(size <= FM10K_RX_HDR_LEN)) {
b101c962
AD
282 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
283
ba5b8dcd
AD
284 /* page is not reserved, we can reuse buffer as-is */
285 if (likely(!fm10k_page_is_reserved(page)))
b101c962
AD
286 return true;
287
288 /* this page cannot be reused so discard it */
ba5b8dcd 289 __free_page(page);
b101c962
AD
290 return false;
291 }
292
1a8782e5
AD
293 /* we need the header to contain the greater of either ETH_HLEN or
294 * 60 bytes if the skb->len is less than 60 for skb_pad.
295 */
296 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
297
298 /* align pull length to size of long to optimize memcpy performance */
299 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
300
301 /* update all of the pointers */
302 va += pull_len;
303 size -= pull_len;
304
305add_tail_frag:
b101c962 306 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1a8782e5 307 (unsigned long)va & ~PAGE_MASK, size, truesize);
b101c962
AD
308
309 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
310}
311
312static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
313 union fm10k_rx_desc *rx_desc,
314 struct sk_buff *skb)
315{
316 struct fm10k_rx_buffer *rx_buffer;
317 struct page *page;
318
319 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
b101c962
AD
320 page = rx_buffer->page;
321 prefetchw(page);
322
323 if (likely(!skb)) {
324 void *page_addr = page_address(page) +
325 rx_buffer->page_offset;
326
327 /* prefetch first cache line of first page */
328 prefetch(page_addr);
329#if L1_CACHE_BYTES < 128
330 prefetch(page_addr + L1_CACHE_BYTES);
331#endif
332
333 /* allocate a skb to store the frags */
67fd893e
AD
334 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
335 FM10K_RX_HDR_LEN);
b101c962
AD
336 if (unlikely(!skb)) {
337 rx_ring->rx_stats.alloc_failed++;
338 return NULL;
339 }
340
341 /* we will be copying header into skb->data in
342 * pskb_may_pull so it is in our interest to prefetch
343 * it now to avoid a possible cache miss
344 */
345 prefetchw(skb->data);
346 }
347
348 /* we are reusing so sync this buffer for CPU use */
349 dma_sync_single_range_for_cpu(rx_ring->dev,
350 rx_buffer->dma,
351 rx_buffer->page_offset,
352 FM10K_RX_BUFSZ,
353 DMA_FROM_DEVICE);
354
355 /* pull page into skb */
de445199 356 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
b101c962
AD
357 /* hand second half of page back to the ring */
358 fm10k_reuse_rx_page(rx_ring, rx_buffer);
359 } else {
360 /* we are not reusing the buffer so unmap it */
361 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
362 PAGE_SIZE, DMA_FROM_DEVICE);
363 }
364
365 /* clear contents of rx_buffer */
366 rx_buffer->page = NULL;
367
368 return skb;
369}
370
76a540d4
AD
371static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
372 union fm10k_rx_desc *rx_desc,
373 struct sk_buff *skb)
374{
375 skb_checksum_none_assert(skb);
376
377 /* Rx checksum disabled via ethtool */
378 if (!(ring->netdev->features & NETIF_F_RXCSUM))
379 return;
380
381 /* TCP/UDP checksum error bit is set */
382 if (fm10k_test_staterr(rx_desc,
383 FM10K_RXD_STATUS_L4E |
384 FM10K_RXD_STATUS_L4E2 |
385 FM10K_RXD_STATUS_IPE |
386 FM10K_RXD_STATUS_IPE2)) {
387 ring->rx_stats.csum_err++;
388 return;
389 }
390
391 /* It must be a TCP or UDP packet with a valid checksum */
392 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
393 skb->encapsulation = true;
394 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
395 return;
396
397 skb->ip_summed = CHECKSUM_UNNECESSARY;
80043f3b
JK
398
399 ring->rx_stats.csum_good++;
76a540d4
AD
400}
401
402#define FM10K_RSS_L4_TYPES_MASK \
fcdb0a99
BA
403 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
404 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
405 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
406 BIT(FM10K_RSSTYPE_IPV6_UDP))
76a540d4
AD
407
408static inline void fm10k_rx_hash(struct fm10k_ring *ring,
409 union fm10k_rx_desc *rx_desc,
410 struct sk_buff *skb)
411{
412 u16 rss_type;
413
414 if (!(ring->netdev->features & NETIF_F_RXHASH))
415 return;
416
417 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
418 if (!rss_type)
419 return;
420
421 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
fcdb0a99 422 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
76a540d4
AD
423 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
424}
425
5cd5e2e9 426static void fm10k_type_trans(struct fm10k_ring *rx_ring,
de445199 427 union fm10k_rx_desc __maybe_unused *rx_desc,
5cd5e2e9
AD
428 struct sk_buff *skb)
429{
430 struct net_device *dev = rx_ring->netdev;
431 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
432
433 /* check to see if DGLORT belongs to a MACVLAN */
434 if (l2_accel) {
435 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
436
437 idx -= l2_accel->dglort;
438 if (idx < l2_accel->size && l2_accel->macvlan[idx])
439 dev = l2_accel->macvlan[idx];
440 else
441 l2_accel = NULL;
442 }
443
444 skb->protocol = eth_type_trans(skb, dev);
445
446 if (!l2_accel)
447 return;
448
449 /* update MACVLAN statistics */
450 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
451 !!(rx_desc->w.hdr_info &
452 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
453}
454
b101c962
AD
455/**
456 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
457 * @rx_ring: rx descriptor ring packet is being transacted on
458 * @rx_desc: pointer to the EOP Rx descriptor
459 * @skb: pointer to current skb being populated
460 *
461 * This function checks the ring, descriptor, and packet information in
462 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
463 * other fields within the skb.
464 **/
465static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
466 union fm10k_rx_desc *rx_desc,
467 struct sk_buff *skb)
468{
469 unsigned int len = skb->len;
470
76a540d4
AD
471 fm10k_rx_hash(rx_ring, rx_desc, skb);
472
473 fm10k_rx_checksum(rx_ring, rx_desc, skb);
474
b101c962
AD
475 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
476
477 skb_record_rx_queue(skb, rx_ring->queue_index);
478
479 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
480
481 if (rx_desc->w.vlan) {
482 u16 vid = le16_to_cpu(rx_desc->w.vlan);
483
e71c9318 484 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
b101c962 485 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
e71c9318
JK
486 else if (vid & VLAN_PRIO_MASK)
487 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
488 vid & VLAN_PRIO_MASK);
b101c962
AD
489 }
490
5cd5e2e9 491 fm10k_type_trans(rx_ring, rx_desc, skb);
b101c962
AD
492
493 return len;
494}
495
496/**
497 * fm10k_is_non_eop - process handling of non-EOP buffers
498 * @rx_ring: Rx ring being processed
499 * @rx_desc: Rx descriptor for current buffer
500 *
501 * This function updates next to clean. If the buffer is an EOP buffer
502 * this function exits returning false, otherwise it will place the
503 * sk_buff in the next buffer to be chained and return true indicating
504 * that this is in fact a non-EOP buffer.
505 **/
506static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
507 union fm10k_rx_desc *rx_desc)
508{
509 u32 ntc = rx_ring->next_to_clean + 1;
510
511 /* fetch, update, and store next to clean */
512 ntc = (ntc < rx_ring->count) ? ntc : 0;
513 rx_ring->next_to_clean = ntc;
514
515 prefetch(FM10K_RX_DESC(rx_ring, ntc));
516
517 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
518 return false;
519
520 return true;
521}
522
b101c962
AD
523/**
524 * fm10k_cleanup_headers - Correct corrupted or empty headers
525 * @rx_ring: rx descriptor ring packet is being transacted on
526 * @rx_desc: pointer to the EOP Rx descriptor
527 * @skb: pointer to current skb being fixed
528 *
529 * Address the case where we are pulling data in on pages only
530 * and as such no data is present in the skb header.
531 *
532 * In addition if skb is not at least 60 bytes we need to pad it so that
533 * it is large enough to qualify as a valid Ethernet frame.
534 *
535 * Returns true if an error was encountered and skb was freed.
536 **/
537static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
538 union fm10k_rx_desc *rx_desc,
539 struct sk_buff *skb)
540{
541 if (unlikely((fm10k_test_staterr(rx_desc,
542 FM10K_RXD_STATUS_RXE)))) {
80043f3b
JK
543#define FM10K_TEST_RXD_BIT(rxd, bit) \
544 ((rxd)->w.csum_err & cpu_to_le16(bit))
545 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
546 rx_ring->rx_stats.switch_errors++;
547 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
548 rx_ring->rx_stats.drops++;
549 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
550 rx_ring->rx_stats.pp_errors++;
551 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
552 rx_ring->rx_stats.link_errors++;
553 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
554 rx_ring->rx_stats.length_errors++;
b101c962
AD
555 dev_kfree_skb_any(skb);
556 rx_ring->rx_stats.errors++;
557 return true;
558 }
559
a94d9e22
AD
560 /* if eth_skb_pad returns an error the skb was freed */
561 if (eth_skb_pad(skb))
562 return true;
b101c962
AD
563
564 return false;
565}
566
567/**
568 * fm10k_receive_skb - helper function to handle rx indications
569 * @q_vector: structure containing interrupt and ring information
570 * @skb: packet to send up
571 **/
572static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
573 struct sk_buff *skb)
574{
575 napi_gro_receive(&q_vector->napi, skb);
576}
577
32b3e08f
JB
578static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
579 struct fm10k_ring *rx_ring,
580 int budget)
b101c962
AD
581{
582 struct sk_buff *skb = rx_ring->skb;
583 unsigned int total_bytes = 0, total_packets = 0;
584 u16 cleaned_count = fm10k_desc_unused(rx_ring);
585
59486329 586 while (likely(total_packets < budget)) {
b101c962
AD
587 union fm10k_rx_desc *rx_desc;
588
589 /* return some buffers to hardware, one at a time is too slow */
590 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
591 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
592 cleaned_count = 0;
593 }
594
595 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
596
124b74c1 597 if (!rx_desc->d.staterr)
b101c962
AD
598 break;
599
600 /* This memory barrier is needed to keep us from reading
601 * any other fields out of the rx_desc until we know the
124b74c1 602 * descriptor has been written back
b101c962 603 */
124b74c1 604 dma_rmb();
b101c962
AD
605
606 /* retrieve a buffer from the ring */
607 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
608
609 /* exit if we failed to retrieve a buffer */
610 if (!skb)
611 break;
612
613 cleaned_count++;
614
615 /* fetch next buffer in frame if non-eop */
616 if (fm10k_is_non_eop(rx_ring, rx_desc))
617 continue;
618
619 /* verify the packet layout is correct */
620 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
621 skb = NULL;
622 continue;
623 }
624
625 /* populate checksum, timestamp, VLAN, and protocol */
626 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
627
628 fm10k_receive_skb(q_vector, skb);
629
630 /* reset skb pointer */
631 skb = NULL;
632
633 /* update budget accounting */
634 total_packets++;
59486329 635 }
b101c962
AD
636
637 /* place incomplete frames back on ring for completion */
638 rx_ring->skb = skb;
639
640 u64_stats_update_begin(&rx_ring->syncp);
641 rx_ring->stats.packets += total_packets;
642 rx_ring->stats.bytes += total_bytes;
643 u64_stats_update_end(&rx_ring->syncp);
644 q_vector->rx.total_packets += total_packets;
645 q_vector->rx.total_bytes += total_bytes;
646
32b3e08f 647 return total_packets;
b101c962
AD
648}
649
76a540d4
AD
650#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
651static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
652{
653 struct fm10k_intfc *interface = netdev_priv(skb->dev);
f92e0e48 654 struct fm10k_udp_port *vxlan_port;
76a540d4
AD
655
656 /* we can only offload a vxlan if we recognize it as such */
657 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
f92e0e48 658 struct fm10k_udp_port, list);
76a540d4
AD
659
660 if (!vxlan_port)
661 return NULL;
662 if (vxlan_port->port != udp_hdr(skb)->dest)
663 return NULL;
664
665 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
666 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
667}
668
669#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
670#define NVGRE_TNI htons(0x2000)
671struct fm10k_nvgre_hdr {
672 __be16 flags;
673 __be16 proto;
674 __be32 tni;
675};
676
677static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
678{
679 struct fm10k_nvgre_hdr *nvgre_hdr;
680 int hlen = ip_hdrlen(skb);
681
682 /* currently only IPv4 is supported due to hlen above */
683 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
684 return NULL;
685
686 /* our transport header should be NVGRE */
687 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
688
689 /* verify all reserved flags are 0 */
690 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
691 return NULL;
692
76a540d4
AD
693 /* report start of ethernet header */
694 if (nvgre_hdr->flags & NVGRE_TNI)
695 return (struct ethhdr *)(nvgre_hdr + 1);
696
697 return (struct ethhdr *)(&nvgre_hdr->tni);
698}
699
5bf33dc6 700__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
76a540d4 701{
8c1a90aa 702 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
76a540d4 703 struct ethhdr *eth_hdr;
76a540d4 704
8c1a90aa
MV
705 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
706 skb->inner_protocol != htons(ETH_P_TEB))
b66b6d9f
JS
707 return 0;
708
76a540d4
AD
709 switch (vlan_get_protocol(skb)) {
710 case htons(ETH_P_IP):
711 l4_hdr = ip_hdr(skb)->protocol;
712 break;
713 case htons(ETH_P_IPV6):
714 l4_hdr = ipv6_hdr(skb)->nexthdr;
715 break;
716 default:
717 return 0;
718 }
719
720 switch (l4_hdr) {
721 case IPPROTO_UDP:
722 eth_hdr = fm10k_port_is_vxlan(skb);
723 break;
724 case IPPROTO_GRE:
725 eth_hdr = fm10k_gre_is_nvgre(skb);
726 break;
727 default:
728 return 0;
729 }
730
731 if (!eth_hdr)
732 return 0;
733
734 switch (eth_hdr->h_proto) {
735 case htons(ETH_P_IP):
8c1a90aa
MV
736 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
737 break;
76a540d4 738 case htons(ETH_P_IPV6):
8c1a90aa 739 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
76a540d4
AD
740 break;
741 default:
742 return 0;
743 }
744
8c1a90aa
MV
745 switch (inner_l4_hdr) {
746 case IPPROTO_TCP:
747 inner_l4_hlen = inner_tcp_hdrlen(skb);
748 break;
749 case IPPROTO_UDP:
750 inner_l4_hlen = 8;
751 break;
752 default:
753 return 0;
754 }
755
756 /* The hardware allows tunnel offloads only if the combined inner and
757 * outer header is 184 bytes or less
758 */
759 if (skb_inner_transport_header(skb) + inner_l4_hlen -
760 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
761 return 0;
762
76a540d4
AD
763 return eth_hdr->h_proto;
764}
765
766static int fm10k_tso(struct fm10k_ring *tx_ring,
767 struct fm10k_tx_buffer *first)
768{
769 struct sk_buff *skb = first->skb;
770 struct fm10k_tx_desc *tx_desc;
771 unsigned char *th;
772 u8 hdrlen;
773
774 if (skb->ip_summed != CHECKSUM_PARTIAL)
775 return 0;
776
777 if (!skb_is_gso(skb))
778 return 0;
779
780 /* compute header lengths */
781 if (skb->encapsulation) {
782 if (!fm10k_tx_encap_offload(skb))
783 goto err_vxlan;
784 th = skb_inner_transport_header(skb);
785 } else {
786 th = skb_transport_header(skb);
787 }
788
789 /* compute offset from SOF to transport header and add header len */
790 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
791
792 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
793
794 /* update gso size and bytecount with header size */
795 first->gso_segs = skb_shinfo(skb)->gso_segs;
796 first->bytecount += (first->gso_segs - 1) * hdrlen;
797
798 /* populate Tx descriptor header size and mss */
799 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
800 tx_desc->hdrlen = hdrlen;
801 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
802
803 return 1;
804err_vxlan:
805 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
806 if (!net_ratelimit())
807 netdev_err(tx_ring->netdev,
808 "TSO requested for unsupported tunnel, disabling offload\n");
809 return -1;
810}
811
812static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
813 struct fm10k_tx_buffer *first)
814{
815 struct sk_buff *skb = first->skb;
816 struct fm10k_tx_desc *tx_desc;
817 union {
818 struct iphdr *ipv4;
819 struct ipv6hdr *ipv6;
820 u8 *raw;
821 } network_hdr;
dc1b4c2b
JK
822 u8 *transport_hdr;
823 __be16 frag_off;
76a540d4
AD
824 __be16 protocol;
825 u8 l4_hdr = 0;
826
827 if (skb->ip_summed != CHECKSUM_PARTIAL)
828 goto no_csum;
829
830 if (skb->encapsulation) {
831 protocol = fm10k_tx_encap_offload(skb);
832 if (!protocol) {
833 if (skb_checksum_help(skb)) {
834 dev_warn(tx_ring->dev,
835 "failed to offload encap csum!\n");
836 tx_ring->tx_stats.csum_err++;
837 }
838 goto no_csum;
839 }
840 network_hdr.raw = skb_inner_network_header(skb);
dc1b4c2b 841 transport_hdr = skb_inner_transport_header(skb);
76a540d4
AD
842 } else {
843 protocol = vlan_get_protocol(skb);
844 network_hdr.raw = skb_network_header(skb);
dc1b4c2b 845 transport_hdr = skb_transport_header(skb);
76a540d4
AD
846 }
847
848 switch (protocol) {
849 case htons(ETH_P_IP):
850 l4_hdr = network_hdr.ipv4->protocol;
851 break;
852 case htons(ETH_P_IPV6):
853 l4_hdr = network_hdr.ipv6->nexthdr;
dc1b4c2b
JK
854 if (likely((transport_hdr - network_hdr.raw) ==
855 sizeof(struct ipv6hdr)))
856 break;
857 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
858 sizeof(struct ipv6hdr),
859 &l4_hdr, &frag_off);
860 if (unlikely(frag_off))
861 l4_hdr = NEXTHDR_FRAGMENT;
76a540d4
AD
862 break;
863 default:
dc1b4c2b 864 break;
76a540d4
AD
865 }
866
867 switch (l4_hdr) {
868 case IPPROTO_TCP:
869 case IPPROTO_UDP:
870 break;
871 case IPPROTO_GRE:
872 if (skb->encapsulation)
873 break;
874 default:
875 if (unlikely(net_ratelimit())) {
876 dev_warn(tx_ring->dev,
dc1b4c2b
JK
877 "partial checksum, version=%d l4 proto=%x\n",
878 protocol, l4_hdr);
76a540d4 879 }
dc1b4c2b 880 skb_checksum_help(skb);
76a540d4
AD
881 tx_ring->tx_stats.csum_err++;
882 goto no_csum;
883 }
884
885 /* update TX checksum flag */
886 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
80043f3b 887 tx_ring->tx_stats.csum_good++;
76a540d4
AD
888
889no_csum:
890 /* populate Tx descriptor header size and mss */
891 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
892 tx_desc->hdrlen = 0;
893 tx_desc->mss = 0;
894}
895
896#define FM10K_SET_FLAG(_input, _flag, _result) \
897 ((_flag <= _result) ? \
898 ((u32)(_input & _flag) * (_result / _flag)) : \
899 ((u32)(_input & _flag) / (_flag / _result)))
900
901static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
902{
903 /* set type for advanced descriptor with frame checksum insertion */
904 u32 desc_flags = 0;
905
906 /* set checksum offload bits */
907 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
908 FM10K_TXD_FLAG_CSUM);
909
910 return desc_flags;
911}
912
b101c962
AD
913static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
914 struct fm10k_tx_desc *tx_desc, u16 i,
915 dma_addr_t dma, unsigned int size, u8 desc_flags)
916{
917 /* set RS and INT for last frame in a cache line */
918 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
919 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
920
921 /* record values to descriptor */
922 tx_desc->buffer_addr = cpu_to_le64(dma);
923 tx_desc->flags = desc_flags;
924 tx_desc->buflen = cpu_to_le16(size);
925
926 /* return true if we just wrapped the ring */
927 return i == tx_ring->count;
928}
929
2c2b2f0c
AD
930static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
931{
932 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
933
eca32047 934 /* Memory barrier before checking head and tail */
2c2b2f0c
AD
935 smp_mb();
936
eca32047 937 /* Check again in a case another CPU has just made room available */
2c2b2f0c
AD
938 if (likely(fm10k_desc_unused(tx_ring) < size))
939 return -EBUSY;
940
941 /* A reprieve! - use start_queue because it doesn't call schedule */
942 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
943 ++tx_ring->tx_stats.restart_queue;
944 return 0;
945}
946
947static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
948{
949 if (likely(fm10k_desc_unused(tx_ring) >= size))
950 return 0;
951 return __fm10k_maybe_stop_tx(tx_ring, size);
952}
953
b101c962
AD
954static void fm10k_tx_map(struct fm10k_ring *tx_ring,
955 struct fm10k_tx_buffer *first)
956{
957 struct sk_buff *skb = first->skb;
958 struct fm10k_tx_buffer *tx_buffer;
959 struct fm10k_tx_desc *tx_desc;
960 struct skb_frag_struct *frag;
961 unsigned char *data;
962 dma_addr_t dma;
963 unsigned int data_len, size;
76a540d4 964 u32 tx_flags = first->tx_flags;
b101c962 965 u16 i = tx_ring->next_to_use;
76a540d4 966 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
b101c962
AD
967
968 tx_desc = FM10K_TX_DESC(tx_ring, i);
969
970 /* add HW VLAN tag */
df8a39de
JP
971 if (skb_vlan_tag_present(skb))
972 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
b101c962
AD
973 else
974 tx_desc->vlan = 0;
975
976 size = skb_headlen(skb);
977 data = skb->data;
978
979 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
980
981 data_len = skb->data_len;
982 tx_buffer = first;
983
984 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
985 if (dma_mapping_error(tx_ring->dev, dma))
986 goto dma_error;
987
988 /* record length, and DMA address */
989 dma_unmap_len_set(tx_buffer, len, size);
990 dma_unmap_addr_set(tx_buffer, dma, dma);
991
992 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
993 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
994 FM10K_MAX_DATA_PER_TXD, flags)) {
995 tx_desc = FM10K_TX_DESC(tx_ring, 0);
996 i = 0;
997 }
998
999 dma += FM10K_MAX_DATA_PER_TXD;
1000 size -= FM10K_MAX_DATA_PER_TXD;
1001 }
1002
1003 if (likely(!data_len))
1004 break;
1005
1006 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1007 dma, size, flags)) {
1008 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1009 i = 0;
1010 }
1011
1012 size = skb_frag_size(frag);
1013 data_len -= size;
1014
1015 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1016 DMA_TO_DEVICE);
1017
1018 tx_buffer = &tx_ring->tx_buffer[i];
1019 }
1020
1021 /* write last descriptor with LAST bit set */
1022 flags |= FM10K_TXD_FLAG_LAST;
1023
1024 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1025 i = 0;
1026
1027 /* record bytecount for BQL */
1028 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1029
1030 /* record SW timestamp if HW timestamp is not available */
1031 skb_tx_timestamp(first->skb);
1032
1033 /* Force memory writes to complete before letting h/w know there
1034 * are new descriptors to fetch. (Only applicable for weak-ordered
1035 * memory model archs, such as IA-64).
1036 *
1037 * We also need this memory barrier to make certain all of the
1038 * status bits have been updated before next_to_watch is written.
1039 */
1040 wmb();
1041
1042 /* set next_to_watch value indicating a packet is present */
1043 first->next_to_watch = tx_desc;
1044
1045 tx_ring->next_to_use = i;
1046
2c2b2f0c
AD
1047 /* Make sure there is space in the ring for the next send. */
1048 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1049
b101c962 1050 /* notify HW of packet */
2c2b2f0c
AD
1051 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1052 writel(i, tx_ring->tail);
b101c962 1053
2c2b2f0c
AD
1054 /* we need this if more than one processor can write to our tail
1055 * at a time, it synchronizes IO on IA64/Altix systems
1056 */
1057 mmiowb();
1058 }
b101c962
AD
1059
1060 return;
1061dma_error:
1062 dev_err(tx_ring->dev, "TX DMA map failed\n");
1063
1064 /* clear dma mappings for failed tx_buffer map */
1065 for (;;) {
1066 tx_buffer = &tx_ring->tx_buffer[i];
1067 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1068 if (tx_buffer == first)
1069 break;
1070 if (i == 0)
1071 i = tx_ring->count;
1072 i--;
1073 }
1074
1075 tx_ring->next_to_use = i;
1076}
1077
b101c962
AD
1078netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1079 struct fm10k_ring *tx_ring)
1080{
03d13a51 1081 u16 count = TXD_USE_COUNT(skb_headlen(skb));
b101c962 1082 struct fm10k_tx_buffer *first;
b101c962 1083 unsigned short f;
03d13a51
JK
1084 u32 tx_flags = 0;
1085 int tso;
b101c962
AD
1086
1087 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1088 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1089 * + 2 desc gap to keep tail from touching head
1090 * otherwise try next time
1091 */
b101c962
AD
1092 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1093 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
aae072e3 1094
b101c962
AD
1095 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1096 tx_ring->tx_stats.tx_busy++;
1097 return NETDEV_TX_BUSY;
1098 }
1099
1100 /* record the location of the first descriptor for this packet */
1101 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1102 first->skb = skb;
1103 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1104 first->gso_segs = 1;
1105
1106 /* record initial flags and protocol */
1107 first->tx_flags = tx_flags;
1108
76a540d4
AD
1109 tso = fm10k_tso(tx_ring, first);
1110 if (tso < 0)
1111 goto out_drop;
1112 else if (!tso)
1113 fm10k_tx_csum(tx_ring, first);
1114
b101c962
AD
1115 fm10k_tx_map(tx_ring, first);
1116
76a540d4
AD
1117 return NETDEV_TX_OK;
1118
1119out_drop:
1120 dev_kfree_skb_any(first->skb);
1121 first->skb = NULL;
1122
b101c962
AD
1123 return NETDEV_TX_OK;
1124}
1125
1126static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1127{
1128 return ring->stats.packets;
1129}
1130
5b9e4432
JK
1131/**
1132 * fm10k_get_tx_pending - how many Tx descriptors not processed
1133 * @ring: the ring structure
1134 * @in_sw: is tx_pending being checked in SW or in HW?
1135 */
1136u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
b101c962 1137{
34bad71c
JK
1138 struct fm10k_intfc *interface = ring->q_vector->interface;
1139 struct fm10k_hw *hw = &interface->hw;
5b9e4432 1140 u32 head, tail;
34bad71c 1141
5b9e4432
JK
1142 if (likely(in_sw)) {
1143 head = ring->next_to_clean;
1144 tail = ring->next_to_use;
1145 } else {
1146 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1147 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1148 }
b101c962
AD
1149
1150 return ((head <= tail) ? tail : tail + ring->count) - head;
1151}
1152
1153bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1154{
1155 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1156 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
5b9e4432 1157 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
b101c962
AD
1158
1159 clear_check_for_tx_hang(tx_ring);
1160
1161 /* Check for a hung queue, but be thorough. This verifies
1162 * that a transmit has been completed since the previous
1163 * check AND there is at least one packet pending. By
1164 * requiring this to fail twice we avoid races with
1165 * clearing the ARMED bit and conditions where we
1166 * run the check_tx_hang logic with a transmit completion
1167 * pending but without time to complete it yet.
1168 */
1169 if (!tx_pending || (tx_done_old != tx_done)) {
1170 /* update completed stats and continue */
1171 tx_ring->tx_stats.tx_done_old = tx_done;
1172 /* reset the countdown */
1173 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1174
1175 return false;
1176 }
1177
1178 /* make sure it is true for two checks in a row */
1179 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1180}
1181
1182/**
1183 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1184 * @interface: driver private struct
1185 **/
1186void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1187{
1188 /* Do the reset outside of interrupt context */
1189 if (!test_bit(__FM10K_DOWN, &interface->state)) {
b101c962
AD
1190 interface->tx_timeout_count++;
1191 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1192 fm10k_service_event_schedule(interface);
1193 }
1194}
1195
1196/**
1197 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1198 * @q_vector: structure containing interrupt and ring information
1199 * @tx_ring: tx ring to clean
144d8305 1200 * @napi_budget: Used to determine if we are in netpoll
b101c962
AD
1201 **/
1202static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
144d8305 1203 struct fm10k_ring *tx_ring, int napi_budget)
b101c962
AD
1204{
1205 struct fm10k_intfc *interface = q_vector->interface;
1206 struct fm10k_tx_buffer *tx_buffer;
1207 struct fm10k_tx_desc *tx_desc;
1208 unsigned int total_bytes = 0, total_packets = 0;
1209 unsigned int budget = q_vector->tx.work_limit;
1210 unsigned int i = tx_ring->next_to_clean;
1211
1212 if (test_bit(__FM10K_DOWN, &interface->state))
1213 return true;
1214
1215 tx_buffer = &tx_ring->tx_buffer[i];
1216 tx_desc = FM10K_TX_DESC(tx_ring, i);
1217 i -= tx_ring->count;
1218
1219 do {
1220 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1221
1222 /* if next_to_watch is not set then there is no work pending */
1223 if (!eop_desc)
1224 break;
1225
1226 /* prevent any other reads prior to eop_desc */
1227 read_barrier_depends();
1228
1229 /* if DD is not set pending work has not been completed */
1230 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1231 break;
1232
1233 /* clear next_to_watch to prevent false hangs */
1234 tx_buffer->next_to_watch = NULL;
1235
1236 /* update the statistics for this packet */
1237 total_bytes += tx_buffer->bytecount;
1238 total_packets += tx_buffer->gso_segs;
1239
1240 /* free the skb */
144d8305 1241 napi_consume_skb(tx_buffer->skb, napi_budget);
b101c962
AD
1242
1243 /* unmap skb header data */
1244 dma_unmap_single(tx_ring->dev,
1245 dma_unmap_addr(tx_buffer, dma),
1246 dma_unmap_len(tx_buffer, len),
1247 DMA_TO_DEVICE);
1248
1249 /* clear tx_buffer data */
1250 tx_buffer->skb = NULL;
1251 dma_unmap_len_set(tx_buffer, len, 0);
1252
1253 /* unmap remaining buffers */
1254 while (tx_desc != eop_desc) {
1255 tx_buffer++;
1256 tx_desc++;
1257 i++;
1258 if (unlikely(!i)) {
1259 i -= tx_ring->count;
1260 tx_buffer = tx_ring->tx_buffer;
1261 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1262 }
1263
1264 /* unmap any remaining paged data */
1265 if (dma_unmap_len(tx_buffer, len)) {
1266 dma_unmap_page(tx_ring->dev,
1267 dma_unmap_addr(tx_buffer, dma),
1268 dma_unmap_len(tx_buffer, len),
1269 DMA_TO_DEVICE);
1270 dma_unmap_len_set(tx_buffer, len, 0);
1271 }
1272 }
1273
1274 /* move us one more past the eop_desc for start of next pkt */
1275 tx_buffer++;
1276 tx_desc++;
1277 i++;
1278 if (unlikely(!i)) {
1279 i -= tx_ring->count;
1280 tx_buffer = tx_ring->tx_buffer;
1281 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1282 }
1283
1284 /* issue prefetch for next Tx descriptor */
1285 prefetch(tx_desc);
1286
1287 /* update budget accounting */
1288 budget--;
1289 } while (likely(budget));
1290
1291 i += tx_ring->count;
1292 tx_ring->next_to_clean = i;
1293 u64_stats_update_begin(&tx_ring->syncp);
1294 tx_ring->stats.bytes += total_bytes;
1295 tx_ring->stats.packets += total_packets;
1296 u64_stats_update_end(&tx_ring->syncp);
1297 q_vector->tx.total_bytes += total_bytes;
1298 q_vector->tx.total_packets += total_packets;
1299
1300 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1301 /* schedule immediate reset if we believe we hung */
1302 struct fm10k_hw *hw = &interface->hw;
1303
1304 netif_err(interface, drv, tx_ring->netdev,
1305 "Detected Tx Unit Hang\n"
1306 " Tx Queue <%d>\n"
1307 " TDH, TDT <%x>, <%x>\n"
1308 " next_to_use <%x>\n"
1309 " next_to_clean <%x>\n",
1310 tx_ring->queue_index,
1311 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1312 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1313 tx_ring->next_to_use, i);
1314
1315 netif_stop_subqueue(tx_ring->netdev,
1316 tx_ring->queue_index);
1317
1318 netif_info(interface, probe, tx_ring->netdev,
1319 "tx hang %d detected on queue %d, resetting interface\n",
1320 interface->tx_timeout_count + 1,
1321 tx_ring->queue_index);
1322
1323 fm10k_tx_timeout_reset(interface);
1324
1325 /* the netdev is about to reset, no point in enabling stuff */
1326 return true;
1327 }
1328
1329 /* notify netdev of completed buffers */
1330 netdev_tx_completed_queue(txring_txq(tx_ring),
1331 total_packets, total_bytes);
1332
1333#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1334 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1335 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1336 /* Make sure that anybody stopping the queue after this
1337 * sees the new next_to_clean.
1338 */
1339 smp_mb();
1340 if (__netif_subqueue_stopped(tx_ring->netdev,
1341 tx_ring->queue_index) &&
1342 !test_bit(__FM10K_DOWN, &interface->state)) {
1343 netif_wake_subqueue(tx_ring->netdev,
1344 tx_ring->queue_index);
1345 ++tx_ring->tx_stats.restart_queue;
1346 }
1347 }
1348
1349 return !!budget;
1350}
1351
18283cad
AD
1352/**
1353 * fm10k_update_itr - update the dynamic ITR value based on packet size
1354 *
1355 * Stores a new ITR value based on strictly on packet size. The
1356 * divisors and thresholds used by this function were determined based
1357 * on theoretical maximum wire speed and testing data, in order to
1358 * minimize response time while increasing bulk throughput.
1359 *
1360 * @ring_container: Container for rings to have ITR updated
1361 **/
1362static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1363{
242722dd 1364 unsigned int avg_wire_size, packets, itr_round;
18283cad
AD
1365
1366 /* Only update ITR if we are using adaptive setting */
584373f5 1367 if (!ITR_IS_ADAPTIVE(ring_container->itr))
18283cad
AD
1368 goto clear_counts;
1369
1370 packets = ring_container->total_packets;
1371 if (!packets)
1372 goto clear_counts;
1373
1374 avg_wire_size = ring_container->total_bytes / packets;
1375
242722dd
JK
1376 /* The following is a crude approximation of:
1377 * wmem_default / (size + overhead) = desired_pkts_per_int
1378 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1379 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1380 *
1381 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1382 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1383 * formula down to
1384 *
1385 * (34 * (size + 24)) / (size + 640) = ITR
1386 *
1387 * We first do some math on the packet size and then finally bitshift
1388 * by 8 after rounding up. We also have to account for PCIe link speed
1389 * difference as ITR scales based on this.
1390 */
1391 if (avg_wire_size <= 360) {
1392 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1393 avg_wire_size *= 8;
1394 avg_wire_size += 376;
1395 } else if (avg_wire_size <= 1152) {
1396 /* 77K ints/sec to 45K ints/sec */
1397 avg_wire_size *= 3;
1398 avg_wire_size += 2176;
1399 } else if (avg_wire_size <= 1920) {
1400 /* 45K ints/sec to 38K ints/sec */
1401 avg_wire_size += 4480;
1402 } else {
1403 /* plateau at a limit of 38K ints/sec */
1404 avg_wire_size = 6656;
1405 }
18283cad 1406
242722dd
JK
1407 /* Perform final bitshift for division after rounding up to ensure
1408 * that the calculation will never get below a 1. The bit shift
1409 * accounts for changes in the ITR due to PCIe link speed.
1410 */
ce4dad2c 1411 itr_round = READ_ONCE(ring_container->itr_scale) + 8;
fcdb0a99 1412 avg_wire_size += BIT(itr_round) - 1;
242722dd 1413 avg_wire_size >>= itr_round;
18283cad
AD
1414
1415 /* write back value and retain adaptive flag */
1416 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1417
1418clear_counts:
1419 ring_container->total_bytes = 0;
1420 ring_container->total_packets = 0;
1421}
1422
1423static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1424{
1425 /* Enable auto-mask and clear the current mask */
1426 u32 itr = FM10K_ITR_ENABLE;
1427
1428 /* Update Tx ITR */
1429 fm10k_update_itr(&q_vector->tx);
1430
1431 /* Update Rx ITR */
1432 fm10k_update_itr(&q_vector->rx);
1433
1434 /* Store Tx itr in timer slot 0 */
1435 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1436
1437 /* Shift Rx itr to timer slot 1 */
1438 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1439
1440 /* Write the final value to the ITR register */
1441 writel(itr, q_vector->itr);
1442}
1443
1444static int fm10k_poll(struct napi_struct *napi, int budget)
1445{
1446 struct fm10k_q_vector *q_vector =
1447 container_of(napi, struct fm10k_q_vector, napi);
b101c962 1448 struct fm10k_ring *ring;
32b3e08f 1449 int per_ring_budget, work_done = 0;
b101c962
AD
1450 bool clean_complete = true;
1451
144d8305
AD
1452 fm10k_for_each_ring(ring, q_vector->tx) {
1453 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1454 clean_complete = false;
1455 }
b101c962 1456
9f872986
AD
1457 /* Handle case where we are called by netpoll with a budget of 0 */
1458 if (budget <= 0)
1459 return budget;
1460
b101c962
AD
1461 /* attempt to distribute budget to each queue fairly, but don't
1462 * allow the budget to go below 1 because we'll exit polling
1463 */
1464 if (q_vector->rx.count > 1)
a4fcad65 1465 per_ring_budget = max(budget / q_vector->rx.count, 1);
b101c962
AD
1466 else
1467 per_ring_budget = budget;
1468
32b3e08f
JB
1469 fm10k_for_each_ring(ring, q_vector->rx) {
1470 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1471
1472 work_done += work;
144d8305
AD
1473 if (work >= per_ring_budget)
1474 clean_complete = false;
32b3e08f 1475 }
b101c962
AD
1476
1477 /* If all work not completed, return budget and keep polling */
1478 if (!clean_complete)
1479 return budget;
18283cad
AD
1480
1481 /* all work done, exit the polling mode */
32b3e08f 1482 napi_complete_done(napi, work_done);
18283cad
AD
1483
1484 /* re-enable the q_vector */
1485 fm10k_qv_enable(q_vector);
1486
e5fbfb78 1487 return min(work_done, budget - 1);
18283cad
AD
1488}
1489
aa3ac822
AD
1490/**
1491 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1492 * @interface: board private structure to initialize
1493 *
1494 * When QoS (Quality of Service) is enabled, allocate queues for
1495 * each traffic class. If multiqueue isn't available,then abort QoS
1496 * initialization.
1497 *
1498 * This function handles all combinations of Qos and RSS.
1499 *
1500 **/
1501static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1502{
1503 struct net_device *dev = interface->netdev;
1504 struct fm10k_ring_feature *f;
1505 int rss_i, i;
1506 int pcs;
1507
1508 /* Map queue offset and counts onto allocated tx queues */
1509 pcs = netdev_get_num_tc(dev);
1510
1511 if (pcs <= 1)
1512 return false;
1513
1514 /* set QoS mask and indices */
1515 f = &interface->ring_feature[RING_F_QOS];
1516 f->indices = pcs;
fcdb0a99 1517 f->mask = BIT(fls(pcs - 1)) - 1;
aa3ac822
AD
1518
1519 /* determine the upper limit for our current DCB mode */
1520 rss_i = interface->hw.mac.max_queues / pcs;
fcdb0a99 1521 rss_i = BIT(fls(rss_i) - 1);
aa3ac822
AD
1522
1523 /* set RSS mask and indices */
1524 f = &interface->ring_feature[RING_F_RSS];
1525 rss_i = min_t(u16, rss_i, f->limit);
1526 f->indices = rss_i;
fcdb0a99 1527 f->mask = BIT(fls(rss_i - 1)) - 1;
aa3ac822
AD
1528
1529 /* configure pause class to queue mapping */
1530 for (i = 0; i < pcs; i++)
1531 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1532
1533 interface->num_rx_queues = rss_i * pcs;
1534 interface->num_tx_queues = rss_i * pcs;
1535
1536 return true;
1537}
1538
1539/**
1540 * fm10k_set_rss_queues: Allocate queues for RSS
1541 * @interface: board private structure to initialize
1542 *
1543 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1544 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1545 *
1546 **/
1547static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1548{
1549 struct fm10k_ring_feature *f;
1550 u16 rss_i;
1551
1552 f = &interface->ring_feature[RING_F_RSS];
1553 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1554
1555 /* record indices and power of 2 mask for RSS */
1556 f->indices = rss_i;
fcdb0a99 1557 f->mask = BIT(fls(rss_i - 1)) - 1;
aa3ac822
AD
1558
1559 interface->num_rx_queues = rss_i;
1560 interface->num_tx_queues = rss_i;
1561
1562 return true;
1563}
1564
18283cad
AD
1565/**
1566 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1567 * @interface: board private structure to initialize
1568 *
1569 * This is the top level queue allocation routine. The order here is very
1570 * important, starting with the "most" number of features turned on at once,
1571 * and ending with the smallest set of features. This way large combinations
1572 * can be allocated if they're turned on, and smaller combinations are the
1573 * fallthrough conditions.
1574 *
1575 **/
1576static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1577{
b3525696 1578 /* Attempt to setup QoS and RSS first */
aa3ac822
AD
1579 if (fm10k_set_qos_queues(interface))
1580 return;
1581
b3525696 1582 /* If we don't have QoS, just fallback to only RSS. */
aa3ac822 1583 fm10k_set_rss_queues(interface);
18283cad
AD
1584}
1585
4be37c42
JK
1586/**
1587 * fm10k_reset_num_queues - Reset the number of queues to zero
1588 * @interface: board private structure
1589 *
1590 * This function should be called whenever we need to reset the number of
1591 * queues after an error condition.
1592 */
1593static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1594{
1595 interface->num_tx_queues = 0;
1596 interface->num_rx_queues = 0;
1597 interface->num_q_vectors = 0;
1598}
1599
18283cad
AD
1600/**
1601 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1602 * @interface: board private structure to initialize
1603 * @v_count: q_vectors allocated on interface, used for ring interleaving
1604 * @v_idx: index of vector in interface struct
1605 * @txr_count: total number of Tx rings to allocate
1606 * @txr_idx: index of first Tx ring to allocate
1607 * @rxr_count: total number of Rx rings to allocate
1608 * @rxr_idx: index of first Rx ring to allocate
1609 *
1610 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1611 **/
1612static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1613 unsigned int v_count, unsigned int v_idx,
1614 unsigned int txr_count, unsigned int txr_idx,
1615 unsigned int rxr_count, unsigned int rxr_idx)
1616{
1617 struct fm10k_q_vector *q_vector;
e27ef599 1618 struct fm10k_ring *ring;
18283cad
AD
1619 int ring_count, size;
1620
1621 ring_count = txr_count + rxr_count;
e27ef599
AD
1622 size = sizeof(struct fm10k_q_vector) +
1623 (sizeof(struct fm10k_ring) * ring_count);
18283cad
AD
1624
1625 /* allocate q_vector and rings */
1626 q_vector = kzalloc(size, GFP_KERNEL);
1627 if (!q_vector)
1628 return -ENOMEM;
1629
1630 /* initialize NAPI */
1631 netif_napi_add(interface->netdev, &q_vector->napi,
1632 fm10k_poll, NAPI_POLL_WEIGHT);
1633
1634 /* tie q_vector and interface together */
1635 interface->q_vector[v_idx] = q_vector;
1636 q_vector->interface = interface;
1637 q_vector->v_idx = v_idx;
1638
e27ef599
AD
1639 /* initialize pointer to rings */
1640 ring = q_vector->ring;
1641
18283cad 1642 /* save Tx ring container info */
e27ef599
AD
1643 q_vector->tx.ring = ring;
1644 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
18283cad 1645 q_vector->tx.itr = interface->tx_itr;
242722dd 1646 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
18283cad
AD
1647 q_vector->tx.count = txr_count;
1648
e27ef599
AD
1649 while (txr_count) {
1650 /* assign generic ring traits */
1651 ring->dev = &interface->pdev->dev;
1652 ring->netdev = interface->netdev;
1653
1654 /* configure backlink on ring */
1655 ring->q_vector = q_vector;
1656
1657 /* apply Tx specific ring traits */
1658 ring->count = interface->tx_ring_count;
1659 ring->queue_index = txr_idx;
1660
1661 /* assign ring to interface */
1662 interface->tx_ring[txr_idx] = ring;
1663
1664 /* update count and index */
1665 txr_count--;
1666 txr_idx += v_count;
1667
1668 /* push pointer to next ring */
1669 ring++;
1670 }
1671
18283cad 1672 /* save Rx ring container info */
e27ef599 1673 q_vector->rx.ring = ring;
18283cad 1674 q_vector->rx.itr = interface->rx_itr;
242722dd 1675 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
18283cad
AD
1676 q_vector->rx.count = rxr_count;
1677
e27ef599
AD
1678 while (rxr_count) {
1679 /* assign generic ring traits */
1680 ring->dev = &interface->pdev->dev;
1681 ring->netdev = interface->netdev;
5cd5e2e9 1682 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
e27ef599
AD
1683
1684 /* configure backlink on ring */
1685 ring->q_vector = q_vector;
1686
1687 /* apply Rx specific ring traits */
1688 ring->count = interface->rx_ring_count;
1689 ring->queue_index = rxr_idx;
1690
1691 /* assign ring to interface */
1692 interface->rx_ring[rxr_idx] = ring;
1693
1694 /* update count and index */
1695 rxr_count--;
1696 rxr_idx += v_count;
1697
1698 /* push pointer to next ring */
1699 ring++;
1700 }
1701
7461fd91
AD
1702 fm10k_dbg_q_vector_init(q_vector);
1703
18283cad
AD
1704 return 0;
1705}
1706
1707/**
1708 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1709 * @interface: board private structure to initialize
1710 * @v_idx: Index of vector to be freed
1711 *
1712 * This function frees the memory allocated to the q_vector. In addition if
1713 * NAPI is enabled it will delete any references to the NAPI struct prior
1714 * to freeing the q_vector.
1715 **/
1716static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1717{
1718 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
e27ef599
AD
1719 struct fm10k_ring *ring;
1720
7461fd91
AD
1721 fm10k_dbg_q_vector_exit(q_vector);
1722
e27ef599
AD
1723 fm10k_for_each_ring(ring, q_vector->tx)
1724 interface->tx_ring[ring->queue_index] = NULL;
1725
1726 fm10k_for_each_ring(ring, q_vector->rx)
1727 interface->rx_ring[ring->queue_index] = NULL;
18283cad
AD
1728
1729 interface->q_vector[v_idx] = NULL;
1730 netif_napi_del(&q_vector->napi);
1731 kfree_rcu(q_vector, rcu);
1732}
1733
1734/**
1735 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1736 * @interface: board private structure to initialize
1737 *
1738 * We allocate one q_vector per queue interrupt. If allocation fails we
1739 * return -ENOMEM.
1740 **/
1741static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1742{
1743 unsigned int q_vectors = interface->num_q_vectors;
1744 unsigned int rxr_remaining = interface->num_rx_queues;
1745 unsigned int txr_remaining = interface->num_tx_queues;
1746 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1747 int err;
1748
1749 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1750 for (; rxr_remaining; v_idx++) {
1751 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752 0, 0, 1, rxr_idx);
1753 if (err)
1754 goto err_out;
1755
1756 /* update counts and index */
1757 rxr_remaining--;
1758 rxr_idx++;
1759 }
1760 }
1761
1762 for (; v_idx < q_vectors; v_idx++) {
1763 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1764 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1765
1766 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1767 tqpv, txr_idx,
1768 rqpv, rxr_idx);
1769
1770 if (err)
1771 goto err_out;
1772
1773 /* update counts and index */
1774 rxr_remaining -= rqpv;
1775 txr_remaining -= tqpv;
1776 rxr_idx++;
1777 txr_idx++;
1778 }
1779
1780 return 0;
1781
1782err_out:
4be37c42 1783 fm10k_reset_num_queues(interface);
18283cad
AD
1784
1785 while (v_idx--)
1786 fm10k_free_q_vector(interface, v_idx);
1787
1788 return -ENOMEM;
1789}
1790
1791/**
1792 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1793 * @interface: board private structure to initialize
1794 *
1795 * This function frees the memory allocated to the q_vectors. In addition if
1796 * NAPI is enabled it will delete any references to the NAPI struct prior
1797 * to freeing the q_vector.
1798 **/
1799static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1800{
1801 int v_idx = interface->num_q_vectors;
1802
4be37c42 1803 fm10k_reset_num_queues(interface);
18283cad
AD
1804
1805 while (v_idx--)
1806 fm10k_free_q_vector(interface, v_idx);
1807}
1808
1809/**
1810 * f10k_reset_msix_capability - reset MSI-X capability
1811 * @interface: board private structure to initialize
1812 *
1813 * Reset the MSI-X capability back to its starting state
1814 **/
1815static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1816{
1817 pci_disable_msix(interface->pdev);
1818 kfree(interface->msix_entries);
1819 interface->msix_entries = NULL;
1820}
1821
1822/**
1823 * f10k_init_msix_capability - configure MSI-X capability
1824 * @interface: board private structure to initialize
1825 *
1826 * Attempt to configure the interrupts using the best available
1827 * capabilities of the hardware and the kernel.
1828 **/
1829static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1830{
1831 struct fm10k_hw *hw = &interface->hw;
1832 int v_budget, vector;
1833
1834 /* It's easy to be greedy for MSI-X vectors, but it really
1835 * doesn't do us much good if we have a lot more vectors
1836 * than CPU's. So let's be conservative and only ask for
1837 * (roughly) the same number of vectors as there are CPU's.
1838 * the default is to use pairs of vectors
1839 */
1840 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1841 v_budget = min_t(u16, v_budget, num_online_cpus());
1842
1843 /* account for vectors not related to queues */
1844 v_budget += NON_Q_VECTORS(hw);
1845
1846 /* At the same time, hardware can only support a maximum of
1847 * hw.mac->max_msix_vectors vectors. With features
1848 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1849 * descriptor queues supported by our device. Thus, we cap it off in
1850 * those rare cases where the cpu count also exceeds our vector limit.
1851 */
1852 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1853
1854 /* A failure in MSI-X entry allocation is fatal. */
1855 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1856 GFP_KERNEL);
1857 if (!interface->msix_entries)
1858 return -ENOMEM;
1859
1860 /* populate entry values */
1861 for (vector = 0; vector < v_budget; vector++)
1862 interface->msix_entries[vector].entry = vector;
1863
1864 /* Attempt to enable MSI-X with requested value */
1865 v_budget = pci_enable_msix_range(interface->pdev,
1866 interface->msix_entries,
1867 MIN_MSIX_COUNT(hw),
1868 v_budget);
1869 if (v_budget < 0) {
1870 kfree(interface->msix_entries);
1871 interface->msix_entries = NULL;
30e23b71 1872 return v_budget;
18283cad
AD
1873 }
1874
1875 /* record the number of queues available for q_vectors */
1876 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1877
1878 return 0;
1879}
1880
aa3ac822
AD
1881/**
1882 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1883 * @interface: Interface structure continaining rings and devices
1884 *
1885 * Cache the descriptor ring offsets for Qos
1886 **/
1887static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1888{
1889 struct net_device *dev = interface->netdev;
1890 int pc, offset, rss_i, i, q_idx;
1891 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1892 u8 num_pcs = netdev_get_num_tc(dev);
1893
1894 if (num_pcs <= 1)
1895 return false;
1896
1897 rss_i = interface->ring_feature[RING_F_RSS].indices;
1898
1899 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1900 q_idx = pc;
1901 for (i = 0; i < rss_i; i++) {
1902 interface->tx_ring[offset + i]->reg_idx = q_idx;
1903 interface->tx_ring[offset + i]->qos_pc = pc;
1904 interface->rx_ring[offset + i]->reg_idx = q_idx;
1905 interface->rx_ring[offset + i]->qos_pc = pc;
1906 q_idx += pc_stride;
1907 }
1908 }
1909
1910 return true;
1911}
1912
1913/**
1914 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1915 * @interface: Interface structure continaining rings and devices
1916 *
1917 * Cache the descriptor ring offsets for RSS
1918 **/
1919static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1920{
1921 int i;
1922
1923 for (i = 0; i < interface->num_rx_queues; i++)
1924 interface->rx_ring[i]->reg_idx = i;
1925
1926 for (i = 0; i < interface->num_tx_queues; i++)
1927 interface->tx_ring[i]->reg_idx = i;
1928}
1929
1930/**
1931 * fm10k_assign_rings - Map rings to network devices
1932 * @interface: Interface structure containing rings and devices
1933 *
1934 * This function is meant to go though and configure both the network
1935 * devices so that they contain rings, and configure the rings so that
1936 * they function with their network devices.
1937 **/
1938static void fm10k_assign_rings(struct fm10k_intfc *interface)
1939{
1940 if (fm10k_cache_ring_qos(interface))
1941 return;
1942
1943 fm10k_cache_ring_rss(interface);
1944}
1945
18283cad
AD
1946static void fm10k_init_reta(struct fm10k_intfc *interface)
1947{
1948 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
540a5d85 1949 u32 reta;
18283cad 1950
1012014e
KJ
1951 /* If the Rx flow indirection table has been configured manually, we
1952 * need to maintain it when possible.
1953 */
1954 if (netif_is_rxfh_configured(interface->netdev)) {
18283cad
AD
1955 for (i = FM10K_RETA_SIZE; i--;) {
1956 reta = interface->reta[i];
1957 if ((((reta << 24) >> 24) < rss_i) &&
1958 (((reta << 16) >> 24) < rss_i) &&
1959 (((reta << 8) >> 24) < rss_i) &&
1960 (((reta) >> 24) < rss_i))
1961 continue;
1012014e
KJ
1962
1963 /* this should never happen */
1964 dev_err(&interface->pdev->dev,
1965 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
18283cad
AD
1966 goto repopulate_reta;
1967 }
1968
1969 /* do nothing if all of the elements are in bounds */
1970 return;
1971 }
1972
1973repopulate_reta:
540a5d85 1974 fm10k_write_reta(interface, NULL);
18283cad
AD
1975}
1976
1977/**
1978 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1979 * @interface: board private structure to initialize
1980 *
1981 * We determine which queueing scheme to use based on...
1982 * - Hardware queue count (num_*_queues)
1983 * - defined by miscellaneous hardware support/features (RSS, etc.)
1984 **/
1985int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1986{
1987 int err;
1988
1989 /* Number of supported queues */
1990 fm10k_set_num_queues(interface);
1991
1992 /* Configure MSI-X capability */
1993 err = fm10k_init_msix_capability(interface);
1994 if (err) {
1995 dev_err(&interface->pdev->dev,
1996 "Unable to initialize MSI-X capability\n");
4be37c42 1997 goto err_init_msix;
18283cad
AD
1998 }
1999
2000 /* Allocate memory for queues */
2001 err = fm10k_alloc_q_vectors(interface);
587731e6 2002 if (err) {
4be37c42
JK
2003 dev_err(&interface->pdev->dev,
2004 "Unable to allocate queue vectors\n");
2005 goto err_alloc_q_vectors;
587731e6 2006 }
18283cad 2007
aa3ac822
AD
2008 /* Map rings to devices, and map devices to physical queues */
2009 fm10k_assign_rings(interface);
2010
18283cad
AD
2011 /* Initialize RSS redirection table */
2012 fm10k_init_reta(interface);
2013
2014 return 0;
4be37c42
JK
2015
2016err_alloc_q_vectors:
2017 fm10k_reset_msix_capability(interface);
2018err_init_msix:
2019 fm10k_reset_num_queues(interface);
2020 return err;
18283cad
AD
2021}
2022
2023/**
2024 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2025 * @interface: board private structure to clear queueing scheme on
2026 *
2027 * We go through and clear queueing specific resources and reset the structure
2028 * to pre-load conditions
2029 **/
2030void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2031{
2032 fm10k_free_q_vectors(interface);
2033 fm10k_reset_msix_capability(interface);
2034}
This page took 0.272029 seconds and 5 git commands to generate.