i40e: dump descriptor indexes in hex
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
a42e7a36 54 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
a42e7a36
KP
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
7f12ad74
GR
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d 129/**
9c6c1259
KP
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
a68de58d 132 *
9c6c1259
KP
133 * Since there is no access to the ring head register
134 * in XL710, we need to use our local copies
a68de58d 135 **/
9c6c1259 136u32 i40evf_get_tx_pending(struct i40e_ring *ring)
a68de58d 137{
9c6c1259 138 u32 head, tail;
a68de58d 139
9c6c1259
KP
140 head = i40e_get_head(ring);
141 tail = readl(ring->tail);
142
143 if (head != tail)
144 return (head < tail) ?
145 tail - head : (tail + ring->count - head);
146
147 return 0;
a68de58d
JB
148}
149
c29af37f
ASJ
150#define WB_STRIDE 0x3
151
7f12ad74
GR
152/**
153 * i40e_clean_tx_irq - Reclaim resources after transmit completes
154 * @tx_ring: tx ring to clean
155 * @budget: how many cleans we're allowed
156 *
157 * Returns true if there's any budget left (e.g. the clean is finished)
158 **/
159static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
160{
161 u16 i = tx_ring->next_to_clean;
162 struct i40e_tx_buffer *tx_buf;
1943d8ba 163 struct i40e_tx_desc *tx_head;
7f12ad74
GR
164 struct i40e_tx_desc *tx_desc;
165 unsigned int total_packets = 0;
166 unsigned int total_bytes = 0;
167
168 tx_buf = &tx_ring->tx_bi[i];
169 tx_desc = I40E_TX_DESC(tx_ring, i);
170 i -= tx_ring->count;
171
1943d8ba
JB
172 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
173
7f12ad74
GR
174 do {
175 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
176
177 /* if next_to_watch is not set then there is no work pending */
178 if (!eop_desc)
179 break;
180
181 /* prevent any other reads prior to eop_desc */
182 read_barrier_depends();
183
1943d8ba
JB
184 /* we have caught up to head, no work left to do */
185 if (tx_head == tx_desc)
7f12ad74
GR
186 break;
187
188 /* clear next_to_watch to prevent false hangs */
189 tx_buf->next_to_watch = NULL;
190
191 /* update the statistics for this packet */
192 total_bytes += tx_buf->bytecount;
193 total_packets += tx_buf->gso_segs;
194
195 /* free the skb */
196 dev_kfree_skb_any(tx_buf->skb);
197
198 /* unmap skb header data */
199 dma_unmap_single(tx_ring->dev,
200 dma_unmap_addr(tx_buf, dma),
201 dma_unmap_len(tx_buf, len),
202 DMA_TO_DEVICE);
203
204 /* clear tx_buffer data */
205 tx_buf->skb = NULL;
206 dma_unmap_len_set(tx_buf, len, 0);
207
208 /* unmap remaining buffers */
209 while (tx_desc != eop_desc) {
210
211 tx_buf++;
212 tx_desc++;
213 i++;
214 if (unlikely(!i)) {
215 i -= tx_ring->count;
216 tx_buf = tx_ring->tx_bi;
217 tx_desc = I40E_TX_DESC(tx_ring, 0);
218 }
219
220 /* unmap any remaining paged data */
221 if (dma_unmap_len(tx_buf, len)) {
222 dma_unmap_page(tx_ring->dev,
223 dma_unmap_addr(tx_buf, dma),
224 dma_unmap_len(tx_buf, len),
225 DMA_TO_DEVICE);
226 dma_unmap_len_set(tx_buf, len, 0);
227 }
228 }
229
230 /* move us one more past the eop_desc for start of next pkt */
231 tx_buf++;
232 tx_desc++;
233 i++;
234 if (unlikely(!i)) {
235 i -= tx_ring->count;
236 tx_buf = tx_ring->tx_bi;
237 tx_desc = I40E_TX_DESC(tx_ring, 0);
238 }
239
016890b9
JB
240 prefetch(tx_desc);
241
7f12ad74
GR
242 /* update budget accounting */
243 budget--;
244 } while (likely(budget));
245
246 i += tx_ring->count;
247 tx_ring->next_to_clean = i;
248 u64_stats_update_begin(&tx_ring->syncp);
249 tx_ring->stats.bytes += total_bytes;
250 tx_ring->stats.packets += total_packets;
251 u64_stats_update_end(&tx_ring->syncp);
252 tx_ring->q_vector->tx.total_bytes += total_bytes;
253 tx_ring->q_vector->tx.total_packets += total_packets;
254
f6d83d13
ASJ
255 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
256 unsigned int j = 0;
257 /* check to see if there are < 4 descriptors
258 * waiting to be written back, then kick the hardware to force
259 * them to be written back in case we stay in NAPI.
260 * In this mode on X722 we do not enable Interrupt.
261 */
262 j = i40evf_get_tx_pending(tx_ring);
263
264 if (budget &&
265 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
266 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
267 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
268 tx_ring->arm_wb = true;
269 }
270
7f12ad74
GR
271 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
272 tx_ring->queue_index),
273 total_packets, total_bytes);
274
275#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
276 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
277 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
278 /* Make sure that anybody stopping the queue after this
279 * sees the new next_to_clean.
280 */
281 smp_mb();
282 if (__netif_subqueue_stopped(tx_ring->netdev,
283 tx_ring->queue_index) &&
284 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
285 netif_wake_subqueue(tx_ring->netdev,
286 tx_ring->queue_index);
287 ++tx_ring->tx_stats.restart_queue;
288 }
289 }
290
b03a8c1f 291 return !!budget;
7f12ad74
GR
292}
293
c29af37f 294/**
ecc6a239 295 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 296 * @vsi: the VSI we care about
ecc6a239 297 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
298 *
299 **/
ecc6a239
ASJ
300static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
301 struct i40e_q_vector *q_vector)
c29af37f 302{
8e0764b4 303 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 304 u32 val;
8e0764b4 305
ecc6a239
ASJ
306 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
307 return;
308
309 if (q_vector->arm_wb_state)
310 return;
311
312 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
313 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
314
315 wr32(&vsi->back->hw,
316 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
317 vsi->base_vector - 1), val);
318 q_vector->arm_wb_state = true;
319}
320
321/**
322 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
323 * @vsi: the VSI we care about
324 * @q_vector: the vector on which to force writeback
325 *
326 **/
327void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
328{
329 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
330 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
331 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
332 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
333 /* allow 00 to be written to the index */;
334
335 wr32(&vsi->back->hw,
336 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
337 val);
c29af37f
ASJ
338}
339
7f12ad74
GR
340/**
341 * i40e_set_new_dynamic_itr - Find new ITR level
342 * @rc: structure containing ring performance data
343 *
8f5e39ce
JB
344 * Returns true if ITR changed, false if not
345 *
7f12ad74
GR
346 * Stores a new ITR value based on packets and byte counts during
347 * the last interrupt. The advantage of per interrupt computation
348 * is faster updates and more accurate ITR for the current traffic
349 * pattern. Constants in this function were computed based on
350 * theoretical maximum wire speed and thresholds were set based on
351 * testing data as well as attempting to minimize response time
352 * while increasing bulk throughput.
353 **/
8f5e39ce 354static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
355{
356 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 357 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
358 u32 new_itr = rc->itr;
359 int bytes_per_int;
51cc6d9f 360 int usecs;
7f12ad74
GR
361
362 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 363 return false;
7f12ad74
GR
364
365 /* simple throttlerate management
c56625d5 366 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 367 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
368 * 20-1249MB/s bulk (18000 ints/s)
369 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
370 *
371 * The math works out because the divisor is in 10^(-6) which
372 * turns the bytes/us input value into MB/s values, but
373 * make sure to use usecs, as the register values written
ee2319cf
JB
374 * are in 2 usec increments in the ITR registers, and make sure
375 * to use the smoothed values that the countdown timer gives us.
7f12ad74 376 */
ee2319cf 377 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 378 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 379
de32e3ef 380 switch (new_latency_range) {
7f12ad74
GR
381 case I40E_LOWEST_LATENCY:
382 if (bytes_per_int > 10)
383 new_latency_range = I40E_LOW_LATENCY;
384 break;
385 case I40E_LOW_LATENCY:
386 if (bytes_per_int > 20)
387 new_latency_range = I40E_BULK_LATENCY;
388 else if (bytes_per_int <= 10)
389 new_latency_range = I40E_LOWEST_LATENCY;
390 break;
391 case I40E_BULK_LATENCY:
c56625d5 392 case I40E_ULTRA_LATENCY:
de32e3ef
CW
393 default:
394 if (bytes_per_int <= 20)
395 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
396 break;
397 }
c56625d5
JB
398
399 /* this is to adjust RX more aggressively when streaming small
400 * packets. The value of 40000 was picked as it is just beyond
401 * what the hardware can receive per second if in low latency
402 * mode.
403 */
404#define RX_ULTRA_PACKET_RATE 40000
405
406 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
407 (&qv->rx == rc))
408 new_latency_range = I40E_ULTRA_LATENCY;
409
de32e3ef 410 rc->latency_range = new_latency_range;
7f12ad74
GR
411
412 switch (new_latency_range) {
413 case I40E_LOWEST_LATENCY:
c56625d5 414 new_itr = I40E_ITR_50K;
7f12ad74
GR
415 break;
416 case I40E_LOW_LATENCY:
417 new_itr = I40E_ITR_20K;
418 break;
419 case I40E_BULK_LATENCY:
c56625d5
JB
420 new_itr = I40E_ITR_18K;
421 break;
422 case I40E_ULTRA_LATENCY:
7f12ad74
GR
423 new_itr = I40E_ITR_8K;
424 break;
425 default:
426 break;
427 }
428
7f12ad74
GR
429 rc->total_bytes = 0;
430 rc->total_packets = 0;
8f5e39ce
JB
431
432 if (new_itr != rc->itr) {
433 rc->itr = new_itr;
434 return true;
435 }
436
437 return false;
7f12ad74
GR
438}
439
4eeb1fff 440/**
7f12ad74
GR
441 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
442 * @tx_ring: the tx ring to set up
443 *
444 * Return 0 on success, negative on error
445 **/
446int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
447{
448 struct device *dev = tx_ring->dev;
449 int bi_size;
450
451 if (!dev)
452 return -ENOMEM;
453
67c818a1
MW
454 /* warn if we are about to overwrite the pointer */
455 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
456 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
457 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
458 if (!tx_ring->tx_bi)
459 goto err;
460
461 /* round up to nearest 4K */
462 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
463 /* add u32 for head writeback, align after this takes care of
464 * guaranteeing this is at least one cache line in size
465 */
466 tx_ring->size += sizeof(u32);
7f12ad74
GR
467 tx_ring->size = ALIGN(tx_ring->size, 4096);
468 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
469 &tx_ring->dma, GFP_KERNEL);
470 if (!tx_ring->desc) {
471 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
472 tx_ring->size);
473 goto err;
474 }
475
476 tx_ring->next_to_use = 0;
477 tx_ring->next_to_clean = 0;
478 return 0;
479
480err:
481 kfree(tx_ring->tx_bi);
482 tx_ring->tx_bi = NULL;
483 return -ENOMEM;
484}
485
486/**
487 * i40evf_clean_rx_ring - Free Rx buffers
488 * @rx_ring: ring to be cleaned
489 **/
490void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
491{
492 struct device *dev = rx_ring->dev;
493 struct i40e_rx_buffer *rx_bi;
494 unsigned long bi_size;
495 u16 i;
496
497 /* ring already cleared, nothing to do */
498 if (!rx_ring->rx_bi)
499 return;
500
a132af24
MW
501 if (ring_is_ps_enabled(rx_ring)) {
502 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
503
504 rx_bi = &rx_ring->rx_bi[0];
505 if (rx_bi->hdr_buf) {
506 dma_free_coherent(dev,
507 bufsz,
508 rx_bi->hdr_buf,
509 rx_bi->dma);
510 for (i = 0; i < rx_ring->count; i++) {
511 rx_bi = &rx_ring->rx_bi[i];
512 rx_bi->dma = 0;
37a2973a 513 rx_bi->hdr_buf = NULL;
a132af24
MW
514 }
515 }
516 }
7f12ad74
GR
517 /* Free all the Rx ring sk_buffs */
518 for (i = 0; i < rx_ring->count; i++) {
519 rx_bi = &rx_ring->rx_bi[i];
520 if (rx_bi->dma) {
521 dma_unmap_single(dev,
522 rx_bi->dma,
523 rx_ring->rx_buf_len,
524 DMA_FROM_DEVICE);
525 rx_bi->dma = 0;
526 }
527 if (rx_bi->skb) {
528 dev_kfree_skb(rx_bi->skb);
529 rx_bi->skb = NULL;
530 }
531 if (rx_bi->page) {
532 if (rx_bi->page_dma) {
533 dma_unmap_page(dev,
534 rx_bi->page_dma,
535 PAGE_SIZE / 2,
536 DMA_FROM_DEVICE);
537 rx_bi->page_dma = 0;
538 }
539 __free_page(rx_bi->page);
540 rx_bi->page = NULL;
541 rx_bi->page_offset = 0;
542 }
543 }
544
545 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
546 memset(rx_ring->rx_bi, 0, bi_size);
547
548 /* Zero out the descriptor ring */
549 memset(rx_ring->desc, 0, rx_ring->size);
550
551 rx_ring->next_to_clean = 0;
552 rx_ring->next_to_use = 0;
553}
554
555/**
556 * i40evf_free_rx_resources - Free Rx resources
557 * @rx_ring: ring to clean the resources from
558 *
559 * Free all receive software resources
560 **/
561void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
562{
563 i40evf_clean_rx_ring(rx_ring);
564 kfree(rx_ring->rx_bi);
565 rx_ring->rx_bi = NULL;
566
567 if (rx_ring->desc) {
568 dma_free_coherent(rx_ring->dev, rx_ring->size,
569 rx_ring->desc, rx_ring->dma);
570 rx_ring->desc = NULL;
571 }
572}
573
a132af24
MW
574/**
575 * i40evf_alloc_rx_headers - allocate rx header buffers
576 * @rx_ring: ring to alloc buffers
577 *
578 * Allocate rx header buffers for the entire ring. As these are static,
579 * this is only called when setting up a new ring.
580 **/
581void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
582{
583 struct device *dev = rx_ring->dev;
584 struct i40e_rx_buffer *rx_bi;
585 dma_addr_t dma;
586 void *buffer;
587 int buf_size;
588 int i;
589
590 if (rx_ring->rx_bi[0].hdr_buf)
591 return;
592 /* Make sure the buffers don't cross cache line boundaries. */
593 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
594 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
595 &dma, GFP_KERNEL);
596 if (!buffer)
597 return;
598 for (i = 0; i < rx_ring->count; i++) {
599 rx_bi = &rx_ring->rx_bi[i];
600 rx_bi->dma = dma + (i * buf_size);
601 rx_bi->hdr_buf = buffer + (i * buf_size);
602 }
603}
604
7f12ad74
GR
605/**
606 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
607 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
608 *
609 * Returns 0 on success, negative on failure
610 **/
611int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
612{
613 struct device *dev = rx_ring->dev;
614 int bi_size;
615
67c818a1
MW
616 /* warn if we are about to overwrite the pointer */
617 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
618 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
619 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
620 if (!rx_ring->rx_bi)
621 goto err;
622
f217d6ca 623 u64_stats_init(&rx_ring->syncp);
638702bd 624
7f12ad74
GR
625 /* Round up to nearest 4K */
626 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
627 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
628 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
629 rx_ring->size = ALIGN(rx_ring->size, 4096);
630 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
631 &rx_ring->dma, GFP_KERNEL);
632
633 if (!rx_ring->desc) {
634 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
635 rx_ring->size);
636 goto err;
637 }
638
639 rx_ring->next_to_clean = 0;
640 rx_ring->next_to_use = 0;
641
642 return 0;
643err:
644 kfree(rx_ring->rx_bi);
645 rx_ring->rx_bi = NULL;
646 return -ENOMEM;
647}
648
649/**
650 * i40e_release_rx_desc - Store the new tail and head values
651 * @rx_ring: ring to bump
652 * @val: new head index
653 **/
654static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
655{
656 rx_ring->next_to_use = val;
657 /* Force memory writes to complete before letting h/w
658 * know there are new descriptors to fetch. (Only
659 * applicable for weak-ordered memory model archs,
660 * such as IA-64).
661 */
662 wmb();
663 writel(val, rx_ring->tail);
664}
665
666/**
a132af24
MW
667 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
668 * @rx_ring: ring to place buffers on
669 * @cleaned_count: number of buffers to replace
c2e245ab
JB
670 *
671 * Returns true if any errors on allocation
a132af24 672 **/
c2e245ab 673bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
a132af24
MW
674{
675 u16 i = rx_ring->next_to_use;
676 union i40e_rx_desc *rx_desc;
677 struct i40e_rx_buffer *bi;
678
679 /* do nothing if no valid netdev defined */
680 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 681 return false;
a132af24
MW
682
683 while (cleaned_count--) {
684 rx_desc = I40E_RX_DESC(rx_ring, i);
685 bi = &rx_ring->rx_bi[i];
686
687 if (bi->skb) /* desc is in use */
688 goto no_buffers;
689 if (!bi->page) {
690 bi->page = alloc_page(GFP_ATOMIC);
691 if (!bi->page) {
692 rx_ring->rx_stats.alloc_page_failed++;
693 goto no_buffers;
694 }
695 }
696
697 if (!bi->page_dma) {
698 /* use a half page if we're re-using */
699 bi->page_offset ^= PAGE_SIZE / 2;
700 bi->page_dma = dma_map_page(rx_ring->dev,
701 bi->page,
702 bi->page_offset,
703 PAGE_SIZE / 2,
704 DMA_FROM_DEVICE);
705 if (dma_mapping_error(rx_ring->dev,
706 bi->page_dma)) {
707 rx_ring->rx_stats.alloc_page_failed++;
708 bi->page_dma = 0;
709 goto no_buffers;
710 }
711 }
712
713 dma_sync_single_range_for_device(rx_ring->dev,
3578fa0a
JB
714 rx_ring->rx_bi[0].dma,
715 i * rx_ring->rx_hdr_len,
a132af24
MW
716 rx_ring->rx_hdr_len,
717 DMA_FROM_DEVICE);
718 /* Refresh the desc even if buffer_addrs didn't change
719 * because each write-back erases this info.
720 */
721 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
722 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
723 i++;
724 if (i == rx_ring->count)
725 i = 0;
726 }
727
c2e245ab
JB
728 if (rx_ring->next_to_use != i)
729 i40e_release_rx_desc(rx_ring, i);
730
731 return false;
732
a132af24
MW
733no_buffers:
734 if (rx_ring->next_to_use != i)
735 i40e_release_rx_desc(rx_ring, i);
c2e245ab
JB
736
737 /* make sure to come back via polling to try again after
738 * allocation failure
739 */
740 return true;
a132af24
MW
741}
742
743/**
744 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
7f12ad74
GR
745 * @rx_ring: ring to place buffers on
746 * @cleaned_count: number of buffers to replace
c2e245ab
JB
747 *
748 * Returns true if any errors on allocation
7f12ad74 749 **/
c2e245ab 750bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74
GR
751{
752 u16 i = rx_ring->next_to_use;
753 union i40e_rx_desc *rx_desc;
754 struct i40e_rx_buffer *bi;
755 struct sk_buff *skb;
756
757 /* do nothing if no valid netdev defined */
758 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 759 return false;
7f12ad74
GR
760
761 while (cleaned_count--) {
762 rx_desc = I40E_RX_DESC(rx_ring, i);
763 bi = &rx_ring->rx_bi[i];
764 skb = bi->skb;
765
766 if (!skb) {
767 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
768 rx_ring->rx_buf_len);
769 if (!skb) {
770 rx_ring->rx_stats.alloc_buff_failed++;
771 goto no_buffers;
772 }
773 /* initialize queue mapping */
774 skb_record_rx_queue(skb, rx_ring->queue_index);
775 bi->skb = skb;
776 }
777
778 if (!bi->dma) {
779 bi->dma = dma_map_single(rx_ring->dev,
780 skb->data,
781 rx_ring->rx_buf_len,
782 DMA_FROM_DEVICE);
783 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
784 rx_ring->rx_stats.alloc_buff_failed++;
785 bi->dma = 0;
c2e245ab
JB
786 dev_kfree_skb(bi->skb);
787 bi->skb = NULL;
7f12ad74
GR
788 goto no_buffers;
789 }
790 }
791
a132af24
MW
792 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
793 rx_desc->read.hdr_addr = 0;
7f12ad74
GR
794 i++;
795 if (i == rx_ring->count)
796 i = 0;
797 }
798
c2e245ab
JB
799 if (rx_ring->next_to_use != i)
800 i40e_release_rx_desc(rx_ring, i);
801
802 return false;
803
7f12ad74
GR
804no_buffers:
805 if (rx_ring->next_to_use != i)
806 i40e_release_rx_desc(rx_ring, i);
c2e245ab
JB
807
808 /* make sure to come back via polling to try again after
809 * allocation failure
810 */
811 return true;
7f12ad74
GR
812}
813
814/**
815 * i40e_receive_skb - Send a completed packet up the stack
816 * @rx_ring: rx ring in play
817 * @skb: packet to send up
818 * @vlan_tag: vlan tag for packet
819 **/
820static void i40e_receive_skb(struct i40e_ring *rx_ring,
821 struct sk_buff *skb, u16 vlan_tag)
822{
823 struct i40e_q_vector *q_vector = rx_ring->q_vector;
7f12ad74
GR
824
825 if (vlan_tag & VLAN_VID_MASK)
826 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
827
8b650359 828 napi_gro_receive(&q_vector->napi, skb);
7f12ad74
GR
829}
830
831/**
832 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
833 * @vsi: the VSI we care about
834 * @skb: skb currently being received and modified
835 * @rx_status: status value of last descriptor in packet
836 * @rx_error: error value of last descriptor in packet
837 * @rx_ptype: ptype value of last descriptor in packet
838 **/
839static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
840 struct sk_buff *skb,
841 u32 rx_status,
842 u32 rx_error,
843 u16 rx_ptype)
844{
8a3c91cc
JB
845 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
846 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
847 bool ipv4_tunnel, ipv6_tunnel;
848 __wsum rx_udp_csum;
7f12ad74 849 struct iphdr *iph;
8a3c91cc 850 __sum16 csum;
7f12ad74 851
f8faaa40
ASJ
852 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
853 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
854 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
855 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
7f12ad74 856
7f12ad74
GR
857 skb->ip_summed = CHECKSUM_NONE;
858
859 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
860 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
861 return;
862
863 /* did the hardware decode the packet and checksum? */
41a1d04b 864 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
865 return;
866
867 /* both known and outer_ip must be set for the below code to work */
868 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
869 return;
870
8a3c91cc
JB
871 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
872 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
873 ipv4 = true;
874 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
875 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
876 ipv6 = true;
877
878 if (ipv4 &&
41a1d04b
JB
879 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
880 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
881 goto checksum_fail;
882
ddf1d0d7 883 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 884 if (ipv6 &&
41a1d04b 885 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 886 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
887 return;
888
8a3c91cc 889 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 890 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
891 goto checksum_fail;
892
893 /* handle packets that were not able to be checksummed due
894 * to arrival speed, in this case the stack can compute
895 * the csum.
896 */
41a1d04b 897 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 898 return;
7f12ad74 899
8a3c91cc
JB
900 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
901 * it in the driver, hardware does not do it for us.
902 * Since L3L4P bit was set we assume a valid IHL value (>=5)
903 * so the total length of IPv4 header is IHL*4 bytes
904 * The UDP_0 bit *may* bet set if the *inner* header is UDP
905 */
818f2e7b 906 if (ipv4_tunnel) {
7f12ad74
GR
907 skb->transport_header = skb->mac_header +
908 sizeof(struct ethhdr) +
909 (ip_hdr(skb)->ihl * 4);
910
911 /* Add 4 bytes for VLAN tagged packets */
912 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
913 skb->protocol == htons(ETH_P_8021AD))
914 ? VLAN_HLEN : 0;
915
818f2e7b
ASJ
916 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
917 (udp_hdr(skb)->check != 0)) {
918 rx_udp_csum = udp_csum(skb);
919 iph = ip_hdr(skb);
920 csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
921 (skb->len -
922 skb_transport_offset(skb)),
923 IPPROTO_UDP, rx_udp_csum);
7f12ad74 924
818f2e7b
ASJ
925 if (udp_hdr(skb)->check != csum)
926 goto checksum_fail;
927
928 } /* else its GRE and so no outer UDP header */
7f12ad74
GR
929 }
930
931 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 932 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
933
934 return;
935
936checksum_fail:
937 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
938}
939
940/**
857942fd 941 * i40e_ptype_to_htype - get a hash type
206812b5
JB
942 * @ptype: the ptype value from the descriptor
943 *
944 * Returns a hash type to be used by skb_set_hash
945 **/
857942fd 946static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
206812b5
JB
947{
948 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
949
950 if (!decoded.known)
951 return PKT_HASH_TYPE_NONE;
952
953 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
954 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
955 return PKT_HASH_TYPE_L4;
956 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
957 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
958 return PKT_HASH_TYPE_L3;
959 else
960 return PKT_HASH_TYPE_L2;
961}
962
857942fd
ASJ
963/**
964 * i40e_rx_hash - set the hash value in the skb
965 * @ring: descriptor ring
966 * @rx_desc: specific descriptor
967 **/
968static inline void i40e_rx_hash(struct i40e_ring *ring,
969 union i40e_rx_desc *rx_desc,
970 struct sk_buff *skb,
971 u8 rx_ptype)
972{
973 u32 hash;
974 const __le64 rss_mask =
975 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
976 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
977
978 if (ring->netdev->features & NETIF_F_RXHASH)
979 return;
980
981 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
982 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
983 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
984 }
985}
986
7f12ad74 987/**
a132af24 988 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
7f12ad74
GR
989 * @rx_ring: rx ring to clean
990 * @budget: how many cleans we're allowed
991 *
992 * Returns true if there's any budget left (e.g. the clean is finished)
993 **/
c2e245ab 994static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
7f12ad74
GR
995{
996 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
997 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
998 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
27ca2753 999 const int current_node = numa_mem_id();
7f12ad74
GR
1000 struct i40e_vsi *vsi = rx_ring->vsi;
1001 u16 i = rx_ring->next_to_clean;
1002 union i40e_rx_desc *rx_desc;
1003 u32 rx_error, rx_status;
c2e245ab 1004 bool failure = false;
206812b5 1005 u8 rx_ptype;
7f12ad74 1006 u64 qword;
7f12ad74 1007
a132af24 1008 do {
7f12ad74
GR
1009 struct i40e_rx_buffer *rx_bi;
1010 struct sk_buff *skb;
1011 u16 vlan_tag;
a132af24
MW
1012 /* return some buffers to hardware, one at a time is too slow */
1013 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab
JB
1014 failure = failure ||
1015 i40evf_alloc_rx_buffers_ps(rx_ring,
1016 cleaned_count);
a132af24
MW
1017 cleaned_count = 0;
1018 }
1019
1020 i = rx_ring->next_to_clean;
1021 rx_desc = I40E_RX_DESC(rx_ring, i);
1022 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1023 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1024 I40E_RXD_QW1_STATUS_SHIFT;
1025
41a1d04b 1026 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1027 break;
1028
1029 /* This memory barrier is needed to keep us from reading
1030 * any other fields out of the rx_desc until we know the
1031 * DD bit is set.
1032 */
67317166 1033 dma_rmb();
7f12ad74
GR
1034 rx_bi = &rx_ring->rx_bi[i];
1035 skb = rx_bi->skb;
a132af24
MW
1036 if (likely(!skb)) {
1037 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1038 rx_ring->rx_hdr_len);
8b6ed9c2 1039 if (!skb) {
a132af24 1040 rx_ring->rx_stats.alloc_buff_failed++;
c2e245ab 1041 failure = true;
8b6ed9c2
JB
1042 break;
1043 }
1044
a132af24
MW
1045 /* initialize queue mapping */
1046 skb_record_rx_queue(skb, rx_ring->queue_index);
1047 /* we are reusing so sync this buffer for CPU use */
1048 dma_sync_single_range_for_cpu(rx_ring->dev,
3578fa0a
JB
1049 rx_ring->rx_bi[0].dma,
1050 i * rx_ring->rx_hdr_len,
a132af24
MW
1051 rx_ring->rx_hdr_len,
1052 DMA_FROM_DEVICE);
1053 }
7f12ad74
GR
1054 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1055 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1056 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1057 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1058 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1059 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1060
1061 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1062 I40E_RXD_QW1_ERROR_SHIFT;
41a1d04b
JB
1063 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1064 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
7f12ad74
GR
1065
1066 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1067 I40E_RXD_QW1_PTYPE_SHIFT;
a132af24 1068 prefetch(rx_bi->page);
7f12ad74 1069 rx_bi->skb = NULL;
a132af24
MW
1070 cleaned_count++;
1071 if (rx_hbo || rx_sph) {
1072 int len;
6995b36c 1073
7f12ad74
GR
1074 if (rx_hbo)
1075 len = I40E_RX_HDR_SIZE;
7f12ad74 1076 else
a132af24
MW
1077 len = rx_header_len;
1078 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1079 } else if (skb->len == 0) {
1080 int len;
1081
1082 len = (rx_packet_len > skb_headlen(skb) ?
1083 skb_headlen(skb) : rx_packet_len);
1084 memcpy(__skb_put(skb, len),
1085 rx_bi->page + rx_bi->page_offset,
1086 len);
1087 rx_bi->page_offset += len;
1088 rx_packet_len -= len;
7f12ad74
GR
1089 }
1090
1091 /* Get the rest of the data if this was a header split */
a132af24 1092 if (rx_packet_len) {
7f12ad74
GR
1093 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1094 rx_bi->page,
1095 rx_bi->page_offset,
1096 rx_packet_len);
1097
1098 skb->len += rx_packet_len;
1099 skb->data_len += rx_packet_len;
1100 skb->truesize += rx_packet_len;
1101
1102 if ((page_count(rx_bi->page) == 1) &&
1103 (page_to_nid(rx_bi->page) == current_node))
1104 get_page(rx_bi->page);
1105 else
1106 rx_bi->page = NULL;
1107
1108 dma_unmap_page(rx_ring->dev,
1109 rx_bi->page_dma,
1110 PAGE_SIZE / 2,
1111 DMA_FROM_DEVICE);
1112 rx_bi->page_dma = 0;
1113 }
a132af24 1114 I40E_RX_INCREMENT(rx_ring, i);
7f12ad74
GR
1115
1116 if (unlikely(
41a1d04b 1117 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
7f12ad74
GR
1118 struct i40e_rx_buffer *next_buffer;
1119
1120 next_buffer = &rx_ring->rx_bi[i];
a132af24 1121 next_buffer->skb = skb;
7f12ad74 1122 rx_ring->rx_stats.non_eop_descs++;
a132af24 1123 continue;
7f12ad74
GR
1124 }
1125
1126 /* ERR_MASK will only have valid bits if EOP set */
41a1d04b 1127 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
7f12ad74 1128 dev_kfree_skb_any(skb);
a132af24 1129 continue;
7f12ad74
GR
1130 }
1131
857942fd
ASJ
1132 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1133
7f12ad74
GR
1134 /* probably a little skewed due to removing CRC */
1135 total_rx_bytes += skb->len;
1136 total_rx_packets++;
1137
1138 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1139
1140 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1141
41a1d04b 1142 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
7f12ad74
GR
1143 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1144 : 0;
a132af24
MW
1145#ifdef I40E_FCOE
1146 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1147 dev_kfree_skb_any(skb);
1148 continue;
1149 }
1150#endif
7f12ad74
GR
1151 i40e_receive_skb(rx_ring, skb, vlan_tag);
1152
7f12ad74 1153 rx_desc->wb.qword1.status_error_len = 0;
7f12ad74 1154
a132af24
MW
1155 } while (likely(total_rx_packets < budget));
1156
1157 u64_stats_update_begin(&rx_ring->syncp);
1158 rx_ring->stats.packets += total_rx_packets;
1159 rx_ring->stats.bytes += total_rx_bytes;
1160 u64_stats_update_end(&rx_ring->syncp);
1161 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1162 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1163
c2e245ab 1164 return failure ? budget : total_rx_packets;
a132af24
MW
1165}
1166
1167/**
1168 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1169 * @rx_ring: rx ring to clean
1170 * @budget: how many cleans we're allowed
1171 *
1172 * Returns number of packets cleaned
1173 **/
1174static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1175{
1176 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1177 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1178 struct i40e_vsi *vsi = rx_ring->vsi;
1179 union i40e_rx_desc *rx_desc;
1180 u32 rx_error, rx_status;
1181 u16 rx_packet_len;
c2e245ab 1182 bool failure = false;
a132af24
MW
1183 u8 rx_ptype;
1184 u64 qword;
1185 u16 i;
1186
1187 do {
1188 struct i40e_rx_buffer *rx_bi;
1189 struct sk_buff *skb;
1190 u16 vlan_tag;
7f12ad74
GR
1191 /* return some buffers to hardware, one at a time is too slow */
1192 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab
JB
1193 failure = failure ||
1194 i40evf_alloc_rx_buffers_1buf(rx_ring,
1195 cleaned_count);
7f12ad74
GR
1196 cleaned_count = 0;
1197 }
1198
a132af24
MW
1199 i = rx_ring->next_to_clean;
1200 rx_desc = I40E_RX_DESC(rx_ring, i);
7f12ad74
GR
1201 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1202 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
a132af24
MW
1203 I40E_RXD_QW1_STATUS_SHIFT;
1204
41a1d04b 1205 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1206 break;
1207
1208 /* This memory barrier is needed to keep us from reading
1209 * any other fields out of the rx_desc until we know the
1210 * DD bit is set.
1211 */
67317166 1212 dma_rmb();
a132af24
MW
1213
1214 rx_bi = &rx_ring->rx_bi[i];
1215 skb = rx_bi->skb;
1216 prefetch(skb->data);
1217
1218 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1219 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1220
1221 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1222 I40E_RXD_QW1_ERROR_SHIFT;
41a1d04b 1223 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
a132af24
MW
1224
1225 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1226 I40E_RXD_QW1_PTYPE_SHIFT;
1227 rx_bi->skb = NULL;
1228 cleaned_count++;
1229
1230 /* Get the header and possibly the whole packet
1231 * If this is an skb from previous receive dma will be 0
1232 */
1233 skb_put(skb, rx_packet_len);
1234 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1235 DMA_FROM_DEVICE);
1236 rx_bi->dma = 0;
1237
1238 I40E_RX_INCREMENT(rx_ring, i);
1239
1240 if (unlikely(
41a1d04b 1241 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
a132af24
MW
1242 rx_ring->rx_stats.non_eop_descs++;
1243 continue;
1244 }
1245
1246 /* ERR_MASK will only have valid bits if EOP set */
41a1d04b 1247 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
a132af24 1248 dev_kfree_skb_any(skb);
a132af24
MW
1249 continue;
1250 }
1251
857942fd 1252 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
a132af24
MW
1253 /* probably a little skewed due to removing CRC */
1254 total_rx_bytes += skb->len;
1255 total_rx_packets++;
1256
1257 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1258
1259 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1260
41a1d04b 1261 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
a132af24
MW
1262 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1263 : 0;
1264 i40e_receive_skb(rx_ring, skb, vlan_tag);
1265
a132af24
MW
1266 rx_desc->wb.qword1.status_error_len = 0;
1267 } while (likely(total_rx_packets < budget));
7f12ad74 1268
7f12ad74
GR
1269 u64_stats_update_begin(&rx_ring->syncp);
1270 rx_ring->stats.packets += total_rx_packets;
1271 rx_ring->stats.bytes += total_rx_bytes;
1272 u64_stats_update_end(&rx_ring->syncp);
1273 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1274 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1275
c2e245ab 1276 return failure ? budget : total_rx_packets;
7f12ad74
GR
1277}
1278
8f5e39ce
JB
1279static u32 i40e_buildreg_itr(const int type, const u16 itr)
1280{
1281 u32 val;
1282
1283 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
40d72a50
JB
1284 /* Don't clear PBA because that can cause lost interrupts that
1285 * came in while we were cleaning/polling
1286 */
8f5e39ce
JB
1287 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1288 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1289
1290 return val;
1291}
1292
1293/* a small macro to shorten up some long lines */
1294#define INTREG I40E_VFINT_DYN_CTLN1
1295
de32e3ef
CW
1296/**
1297 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1298 * @vsi: the VSI we care about
1299 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1300 *
1301 **/
1302static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1303 struct i40e_q_vector *q_vector)
1304{
1305 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1306 bool rx = false, tx = false;
1307 u32 rxval, txval;
de32e3ef 1308 int vector;
de32e3ef
CW
1309
1310 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1311
1312 /* avoid dynamic calculation if in countdown mode OR if
1313 * all dynamic is disabled
1314 */
8f5e39ce
JB
1315 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1316
ee2319cf
JB
1317 if (q_vector->itr_countdown > 0 ||
1318 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1319 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1320 goto enable_int;
1321 }
1322
de32e3ef 1323 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
8f5e39ce
JB
1324 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1325 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1326 }
4eeb1fff 1327
de32e3ef 1328 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
8f5e39ce
JB
1329 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1330 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1331 }
4eeb1fff 1332
8f5e39ce
JB
1333 if (rx || tx) {
1334 /* get the higher of the two ITR adjustments and
1335 * use the same value for both ITR registers
1336 * when in adaptive mode (Rx and/or Tx)
1337 */
1338 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1339
1340 q_vector->tx.itr = q_vector->rx.itr = itr;
1341 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1342 tx = true;
1343 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1344 rx = true;
de32e3ef 1345 }
8f5e39ce
JB
1346
1347 /* only need to enable the interrupt once, but need
1348 * to possibly update both ITR values
1349 */
1350 if (rx) {
1351 /* set the INTENA_MSK_MASK so that this first write
1352 * won't actually enable the interrupt, instead just
1353 * updating the ITR (it's bit 31 PF and VF)
1354 */
1355 rxval |= BIT(31);
1356 /* don't check _DOWN because interrupt isn't being enabled */
1357 wr32(hw, INTREG(vector - 1), rxval);
1358 }
1359
ee2319cf 1360enable_int:
8f5e39ce
JB
1361 if (!test_bit(__I40E_DOWN, &vsi->state))
1362 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1363
1364 if (q_vector->itr_countdown)
1365 q_vector->itr_countdown--;
1366 else
1367 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1368}
1369
7f12ad74
GR
1370/**
1371 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1372 * @napi: napi struct with our devices info in it
1373 * @budget: amount of work driver is allowed to do this pass, in packets
1374 *
1375 * This function will clean all queues associated with a q_vector.
1376 *
1377 * Returns the amount of work done
1378 **/
1379int i40evf_napi_poll(struct napi_struct *napi, int budget)
1380{
1381 struct i40e_q_vector *q_vector =
1382 container_of(napi, struct i40e_q_vector, napi);
1383 struct i40e_vsi *vsi = q_vector->vsi;
1384 struct i40e_ring *ring;
1385 bool clean_complete = true;
c29af37f 1386 bool arm_wb = false;
7f12ad74 1387 int budget_per_ring;
32b3e08f 1388 int work_done = 0;
7f12ad74
GR
1389
1390 if (test_bit(__I40E_DOWN, &vsi->state)) {
1391 napi_complete(napi);
1392 return 0;
1393 }
1394
1395 /* Since the actual Tx work is minimal, we can give the Tx a larger
1396 * budget and be more aggressive about cleaning up the Tx descriptors.
1397 */
c29af37f 1398 i40e_for_each_ring(ring, q_vector->tx) {
7f12ad74 1399 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
44cdb791 1400 arm_wb = arm_wb || ring->arm_wb;
0deda868 1401 ring->arm_wb = false;
c29af37f 1402 }
7f12ad74 1403
c67caceb
AD
1404 /* Handle case where we are called by netpoll with a budget of 0 */
1405 if (budget <= 0)
1406 goto tx_only;
1407
7f12ad74
GR
1408 /* We attempt to distribute budget to each Rx queue fairly, but don't
1409 * allow the budget to go below 1 because that would exit polling early.
1410 */
1411 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1412
a132af24 1413 i40e_for_each_ring(ring, q_vector->rx) {
32b3e08f
JB
1414 int cleaned;
1415
a132af24
MW
1416 if (ring_is_ps_enabled(ring))
1417 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1418 else
1419 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
32b3e08f
JB
1420
1421 work_done += cleaned;
a132af24
MW
1422 /* if we didn't clean as many as budgeted, we must be done */
1423 clean_complete &= (budget_per_ring != cleaned);
1424 }
7f12ad74
GR
1425
1426 /* If work not completed, return budget and polling will return */
c29af37f 1427 if (!clean_complete) {
c67caceb 1428tx_only:
164c9f54
ASJ
1429 if (arm_wb) {
1430 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
ecc6a239 1431 i40e_enable_wb_on_itr(vsi, q_vector);
164c9f54 1432 }
7f12ad74 1433 return budget;
c29af37f 1434 }
7f12ad74 1435
8e0764b4
ASJ
1436 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1437 q_vector->arm_wb_state = false;
1438
7f12ad74 1439 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1440 napi_complete_done(napi, work_done);
de32e3ef 1441 i40e_update_enable_itr(vsi, q_vector);
7f12ad74
GR
1442 return 0;
1443}
1444
1445/**
3e587cf3 1446 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1447 * @skb: send buffer
1448 * @tx_ring: ring to send buffer on
1449 * @flags: the tx flags to be set
1450 *
1451 * Checks the skb and set up correspondingly several generic transmit flags
1452 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1453 *
1454 * Returns error code indicate the frame should be dropped upon error and the
1455 * otherwise returns 0 to indicate the flags has been set properly.
1456 **/
3e587cf3
JB
1457static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1458 struct i40e_ring *tx_ring,
1459 u32 *flags)
7f12ad74
GR
1460{
1461 __be16 protocol = skb->protocol;
1462 u32 tx_flags = 0;
1463
31eaaccf
GR
1464 if (protocol == htons(ETH_P_8021Q) &&
1465 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1466 /* When HW VLAN acceleration is turned off by the user the
1467 * stack sets the protocol to 8021q so that the driver
1468 * can take any steps required to support the SW only
1469 * VLAN handling. In our case the driver doesn't need
1470 * to take any further steps so just set the protocol
1471 * to the encapsulated ethertype.
1472 */
1473 skb->protocol = vlan_get_protocol(skb);
1474 goto out;
1475 }
1476
7f12ad74 1477 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1478 if (skb_vlan_tag_present(skb)) {
1479 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1480 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1481 /* else if it is a SW VLAN, check the next protocol and store the tag */
1482 } else if (protocol == htons(ETH_P_8021Q)) {
1483 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1484
7f12ad74
GR
1485 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1486 if (!vhdr)
1487 return -EINVAL;
1488
1489 protocol = vhdr->h_vlan_encapsulated_proto;
1490 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1491 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1492 }
1493
31eaaccf 1494out:
7f12ad74
GR
1495 *flags = tx_flags;
1496 return 0;
1497}
1498
1499/**
1500 * i40e_tso - set up the tso context descriptor
1501 * @tx_ring: ptr to the ring to send
1502 * @skb: ptr to the skb we're sending
7f12ad74 1503 * @hdr_len: ptr to the size of the packet header
9c883bd3 1504 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1505 *
1506 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1507 **/
1508static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
9c883bd3 1509 u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
7f12ad74
GR
1510{
1511 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1512 struct ipv6hdr *ipv6h;
7f12ad74
GR
1513 struct tcphdr *tcph;
1514 struct iphdr *iph;
1515 u32 l4len;
1516 int err;
7f12ad74 1517
e9f6563d
SN
1518 if (skb->ip_summed != CHECKSUM_PARTIAL)
1519 return 0;
1520
7f12ad74
GR
1521 if (!skb_is_gso(skb))
1522 return 0;
1523
fe6d4aa4
FR
1524 err = skb_cow_head(skb, 0);
1525 if (err < 0)
1526 return err;
7f12ad74 1527
85e76d03
AS
1528 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1529 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1530
1531 if (iph->version == 4) {
7f12ad74
GR
1532 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1533 iph->tot_len = 0;
1534 iph->check = 0;
1535 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1536 0, IPPROTO_TCP, 0);
85e76d03 1537 } else if (ipv6h->version == 6) {
7f12ad74
GR
1538 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1539 ipv6h->payload_len = 0;
1540 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1541 0, IPPROTO_TCP, 0);
1542 }
1543
1544 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1545 *hdr_len = (skb->encapsulation
1546 ? (skb_inner_transport_header(skb) - skb->data)
1547 : skb_transport_offset(skb)) + l4len;
1548
1549 /* find the field values */
1550 cd_cmd = I40E_TX_CTX_DESC_TSO;
1551 cd_tso_len = skb->len - *hdr_len;
1552 cd_mss = skb_shinfo(skb)->gso_size;
1553 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1554 ((u64)cd_tso_len <<
1555 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1556 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1557 return 1;
1558}
1559
1560/**
1561 * i40e_tx_enable_csum - Enable Tx checksum offloads
1562 * @skb: send buffer
89232c3b 1563 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1564 * @td_cmd: Tx descriptor command bits to set
1565 * @td_offset: Tx descriptor header offsets to set
1566 * @cd_tunneling: ptr to context desc bits
1567 **/
89232c3b 1568static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
7f12ad74
GR
1569 u32 *td_cmd, u32 *td_offset,
1570 struct i40e_ring *tx_ring,
1571 u32 *cd_tunneling)
1572{
1573 struct ipv6hdr *this_ipv6_hdr;
1574 unsigned int this_tcp_hdrlen;
1575 struct iphdr *this_ip_hdr;
1576 u32 network_hdr_len;
1577 u8 l4_hdr = 0;
527274c7
ASJ
1578 struct udphdr *oudph;
1579 struct iphdr *oiph;
45991204 1580 u32 l4_tunnel = 0;
7f12ad74
GR
1581
1582 if (skb->encapsulation) {
45991204
ASJ
1583 switch (ip_hdr(skb)->protocol) {
1584 case IPPROTO_UDP:
527274c7
ASJ
1585 oudph = udp_hdr(skb);
1586 oiph = ip_hdr(skb);
45991204 1587 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1588 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204
ASJ
1589 break;
1590 default:
1591 return;
1592 }
7f12ad74
GR
1593 network_hdr_len = skb_inner_network_header_len(skb);
1594 this_ip_hdr = inner_ip_hdr(skb);
1595 this_ipv6_hdr = inner_ipv6_hdr(skb);
1596 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1597
89232c3b
ASJ
1598 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1599 if (*tx_flags & I40E_TX_FLAGS_TSO) {
7f12ad74
GR
1600 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1601 ip_hdr(skb)->check = 0;
1602 } else {
1603 *cd_tunneling |=
1604 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1605 }
89232c3b 1606 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
85e76d03 1607 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
89232c3b 1608 if (*tx_flags & I40E_TX_FLAGS_TSO)
7f12ad74 1609 ip_hdr(skb)->check = 0;
7f12ad74
GR
1610 }
1611
1612 /* Now set the ctx descriptor fields */
1613 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
45991204
ASJ
1614 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1615 l4_tunnel |
7f12ad74
GR
1616 ((skb_inner_network_offset(skb) -
1617 skb_transport_offset(skb)) >> 1) <<
1618 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
85e76d03 1619 if (this_ip_hdr->version == 6) {
89232c3b
ASJ
1620 *tx_flags &= ~I40E_TX_FLAGS_IPV4;
1621 *tx_flags |= I40E_TX_FLAGS_IPV6;
85e76d03
AS
1622 }
1623
527274c7
ASJ
1624 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
1625 (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) &&
1626 (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
1627 oudph->check = ~csum_tcpudp_magic(oiph->saddr,
1628 oiph->daddr,
1629 (skb->len - skb_transport_offset(skb)),
1630 IPPROTO_UDP, 0);
1631 *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1632 }
7f12ad74
GR
1633 } else {
1634 network_hdr_len = skb_network_header_len(skb);
1635 this_ip_hdr = ip_hdr(skb);
1636 this_ipv6_hdr = ipv6_hdr(skb);
1637 this_tcp_hdrlen = tcp_hdrlen(skb);
1638 }
1639
1640 /* Enable IP checksum offloads */
89232c3b 1641 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
7f12ad74
GR
1642 l4_hdr = this_ip_hdr->protocol;
1643 /* the stack computes the IP header already, the only time we
1644 * need the hardware to recompute it is in the case of TSO.
1645 */
89232c3b 1646 if (*tx_flags & I40E_TX_FLAGS_TSO) {
7f12ad74
GR
1647 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1648 this_ip_hdr->check = 0;
1649 } else {
1650 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1651 }
1652 /* Now set the td_offset for IP header length */
1653 *td_offset = (network_hdr_len >> 2) <<
1654 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
89232c3b 1655 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
7f12ad74
GR
1656 l4_hdr = this_ipv6_hdr->nexthdr;
1657 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1658 /* Now set the td_offset for IP header length */
1659 *td_offset = (network_hdr_len >> 2) <<
1660 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1661 }
1662 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1663 *td_offset |= (skb_network_offset(skb) >> 1) <<
1664 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1665
1666 /* Enable L4 checksum offloads */
1667 switch (l4_hdr) {
1668 case IPPROTO_TCP:
1669 /* enable checksum offloads */
1670 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1671 *td_offset |= (this_tcp_hdrlen >> 2) <<
1672 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1673 break;
1674 case IPPROTO_SCTP:
1675 /* enable SCTP checksum offload */
1676 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1677 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1678 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1679 break;
1680 case IPPROTO_UDP:
1681 /* enable UDP checksum offload */
1682 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1683 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1684 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1685 break;
1686 default:
1687 break;
1688 }
1689}
1690
1691/**
1692 * i40e_create_tx_ctx Build the Tx context descriptor
1693 * @tx_ring: ring to create the descriptor on
1694 * @cd_type_cmd_tso_mss: Quad Word 1
1695 * @cd_tunneling: Quad Word 0 - bits 0-31
1696 * @cd_l2tag2: Quad Word 0 - bits 32-63
1697 **/
1698static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1699 const u64 cd_type_cmd_tso_mss,
1700 const u32 cd_tunneling, const u32 cd_l2tag2)
1701{
1702 struct i40e_tx_context_desc *context_desc;
1703 int i = tx_ring->next_to_use;
1704
ff40dd5d
JB
1705 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1706 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1707 return;
1708
1709 /* grab the next descriptor */
1710 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1711
1712 i++;
1713 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1714
1715 /* cpu_to_le32 and assign to struct fields */
1716 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1717 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1718 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1719 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1720}
1721
4eeb1fff 1722/**
71da6197
AS
1723 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1724 * @skb: send buffer
1725 * @tx_flags: collected send information
71da6197
AS
1726 *
1727 * Note: Our HW can't scatter-gather more than 8 fragments to build
1728 * a packet on the wire and so we need to figure out the cases where we
1729 * need to linearize the skb.
1730 **/
30520831 1731static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
71da6197
AS
1732{
1733 struct skb_frag_struct *frag;
1734 bool linearize = false;
1735 unsigned int size = 0;
1736 u16 num_frags;
1737 u16 gso_segs;
1738
1739 num_frags = skb_shinfo(skb)->nr_frags;
1740 gso_segs = skb_shinfo(skb)->gso_segs;
1741
1742 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
30520831 1743 u16 j = 0;
71da6197
AS
1744
1745 if (num_frags < (I40E_MAX_BUFFER_TXD))
1746 goto linearize_chk_done;
1747 /* try the simple math, if we have too many frags per segment */
1748 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1749 I40E_MAX_BUFFER_TXD) {
1750 linearize = true;
1751 goto linearize_chk_done;
1752 }
1753 frag = &skb_shinfo(skb)->frags[0];
71da6197
AS
1754 /* we might still have more fragments per segment */
1755 do {
1756 size += skb_frag_size(frag);
1757 frag++; j++;
30520831
ASJ
1758 if ((size >= skb_shinfo(skb)->gso_size) &&
1759 (j < I40E_MAX_BUFFER_TXD)) {
1760 size = (size % skb_shinfo(skb)->gso_size);
1761 j = (size) ? 1 : 0;
1762 }
71da6197 1763 if (j == I40E_MAX_BUFFER_TXD) {
30520831
ASJ
1764 linearize = true;
1765 break;
71da6197
AS
1766 }
1767 num_frags--;
1768 } while (num_frags);
1769 } else {
1770 if (num_frags >= I40E_MAX_BUFFER_TXD)
1771 linearize = true;
1772 }
1773
1774linearize_chk_done:
1775 return linearize;
1776}
1777
8f6a2b05
JB
1778/**
1779 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1780 * @tx_ring: the ring to be checked
1781 * @size: the size buffer we want to assure is available
1782 *
1783 * Returns -EBUSY if a stop is needed, else 0
1784 **/
1785static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1786{
1787 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1788 /* Memory barrier before checking head and tail */
1789 smp_mb();
1790
1791 /* Check again in a case another CPU has just made room available. */
1792 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1793 return -EBUSY;
1794
1795 /* A reprieve! - use start_queue because it doesn't call schedule */
1796 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1797 ++tx_ring->tx_stats.restart_queue;
1798 return 0;
1799}
1800
1801/**
1802 * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1803 * @tx_ring: the ring to be checked
1804 * @size: the size buffer we want to assure is available
1805 *
1806 * Returns 0 if stop is not needed
1807 **/
3e587cf3 1808static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1809{
1810 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1811 return 0;
1812 return __i40evf_maybe_stop_tx(tx_ring, size);
1813}
1814
7f12ad74 1815/**
3e587cf3 1816 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
1817 * @tx_ring: ring to send buffer on
1818 * @skb: send buffer
1819 * @first: first buffer info buffer to use
1820 * @tx_flags: collected send information
1821 * @hdr_len: size of the packet header
1822 * @td_cmd: the command field in the descriptor
1823 * @td_offset: offset for checksum or crc
1824 **/
3e587cf3
JB
1825static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1826 struct i40e_tx_buffer *first, u32 tx_flags,
1827 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
1828{
1829 unsigned int data_len = skb->data_len;
1830 unsigned int size = skb_headlen(skb);
1831 struct skb_frag_struct *frag;
1832 struct i40e_tx_buffer *tx_bi;
1833 struct i40e_tx_desc *tx_desc;
1834 u16 i = tx_ring->next_to_use;
1835 u32 td_tag = 0;
1836 dma_addr_t dma;
1837 u16 gso_segs;
6a7fded7
ASJ
1838 u16 desc_count = 0;
1839 bool tail_bump = true;
1840 bool do_rs = false;
7f12ad74
GR
1841
1842 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1843 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1844 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1845 I40E_TX_FLAGS_VLAN_SHIFT;
1846 }
1847
1848 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1849 gso_segs = skb_shinfo(skb)->gso_segs;
1850 else
1851 gso_segs = 1;
1852
1853 /* multiply data chunks by size of headers */
1854 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1855 first->gso_segs = gso_segs;
1856 first->skb = skb;
1857 first->tx_flags = tx_flags;
1858
1859 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1860
1861 tx_desc = I40E_TX_DESC(tx_ring, i);
1862 tx_bi = first;
1863
1864 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1865 if (dma_mapping_error(tx_ring->dev, dma))
1866 goto dma_error;
1867
1868 /* record length, and DMA address */
1869 dma_unmap_len_set(tx_bi, len, size);
1870 dma_unmap_addr_set(tx_bi, dma, dma);
1871
1872 tx_desc->buffer_addr = cpu_to_le64(dma);
1873
1874 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1875 tx_desc->cmd_type_offset_bsz =
1876 build_ctob(td_cmd, td_offset,
1877 I40E_MAX_DATA_PER_TXD, td_tag);
1878
1879 tx_desc++;
1880 i++;
6a7fded7
ASJ
1881 desc_count++;
1882
7f12ad74
GR
1883 if (i == tx_ring->count) {
1884 tx_desc = I40E_TX_DESC(tx_ring, 0);
1885 i = 0;
1886 }
1887
1888 dma += I40E_MAX_DATA_PER_TXD;
1889 size -= I40E_MAX_DATA_PER_TXD;
1890
1891 tx_desc->buffer_addr = cpu_to_le64(dma);
1892 }
1893
1894 if (likely(!data_len))
1895 break;
1896
1897 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1898 size, td_tag);
1899
1900 tx_desc++;
1901 i++;
6a7fded7
ASJ
1902 desc_count++;
1903
7f12ad74
GR
1904 if (i == tx_ring->count) {
1905 tx_desc = I40E_TX_DESC(tx_ring, 0);
1906 i = 0;
1907 }
1908
1909 size = skb_frag_size(frag);
1910 data_len -= size;
1911
1912 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1913 DMA_TO_DEVICE);
1914
1915 tx_bi = &tx_ring->tx_bi[i];
1916 }
1917
7f12ad74
GR
1918 /* set next_to_watch value indicating a packet is present */
1919 first->next_to_watch = tx_desc;
1920
1921 i++;
1922 if (i == tx_ring->count)
1923 i = 0;
1924
1925 tx_ring->next_to_use = i;
1926
6a7fded7
ASJ
1927 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1928 tx_ring->queue_index),
1929 first->bytecount);
8f6a2b05 1930 i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7
ASJ
1931
1932 /* Algorithm to optimize tail and RS bit setting:
1933 * if xmit_more is supported
1934 * if xmit_more is true
1935 * do not update tail and do not mark RS bit.
1936 * if xmit_more is false and last xmit_more was false
1937 * if every packet spanned less than 4 desc
1938 * then set RS bit on 4th packet and update tail
1939 * on every packet
1940 * else
1941 * update tail and set RS bit on every packet.
1942 * if xmit_more is false and last_xmit_more was true
1943 * update tail and set RS bit.
6a7fded7
ASJ
1944 *
1945 * Optimization: wmb to be issued only in case of tail update.
1946 * Also optimize the Descriptor WB path for RS bit with the same
1947 * algorithm.
1948 *
1949 * Note: If there are less than 4 packets
1950 * pending and interrupts were disabled the service task will
1951 * trigger a force WB.
1952 */
1953 if (skb->xmit_more &&
1954 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1955 tx_ring->queue_index))) {
1956 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
1957 tail_bump = false;
1958 } else if (!skb->xmit_more &&
1959 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1960 tx_ring->queue_index)) &&
1961 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
1962 (tx_ring->packet_stride < WB_STRIDE) &&
1963 (desc_count < WB_STRIDE)) {
1964 tx_ring->packet_stride++;
1965 } else {
1966 tx_ring->packet_stride = 0;
1967 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
1968 do_rs = true;
1969 }
1970 if (do_rs)
1971 tx_ring->packet_stride = 0;
1972
1973 tx_desc->cmd_type_offset_bsz =
1974 build_ctob(td_cmd, td_offset, size, td_tag) |
1975 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
1976 I40E_TX_DESC_CMD_EOP) <<
1977 I40E_TXD_QW1_CMD_SHIFT);
1978
7f12ad74 1979 /* notify HW of packet */
6a7fded7 1980 if (!tail_bump)
489ce7a4 1981 prefetchw(tx_desc + 1);
7f12ad74 1982
6a7fded7
ASJ
1983 if (tail_bump) {
1984 /* Force memory writes to complete before letting h/w
1985 * know there are new descriptors to fetch. (Only
1986 * applicable for weak-ordered memory model archs,
1987 * such as IA-64).
1988 */
1989 wmb();
1990 writel(i, tx_ring->tail);
1991 }
1992
7f12ad74
GR
1993 return;
1994
1995dma_error:
1996 dev_info(tx_ring->dev, "TX DMA map failed\n");
1997
1998 /* clear dma mappings for failed tx_bi map */
1999 for (;;) {
2000 tx_bi = &tx_ring->tx_bi[i];
2001 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2002 if (tx_bi == first)
2003 break;
2004 if (i == 0)
2005 i = tx_ring->count;
2006 i--;
2007 }
2008
2009 tx_ring->next_to_use = i;
2010}
2011
7f12ad74 2012/**
3e587cf3 2013 * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
7f12ad74
GR
2014 * @skb: send buffer
2015 * @tx_ring: ring to send buffer on
2016 *
2017 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2018 * there is not enough descriptors available in this ring since we need at least
2019 * one descriptor.
2020 **/
3e587cf3
JB
2021static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
2022 struct i40e_ring *tx_ring)
7f12ad74 2023{
7f12ad74 2024 unsigned int f;
7f12ad74
GR
2025 int count = 0;
2026
2027 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2028 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 2029 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
2030 * + 1 desc for context descriptor,
2031 * otherwise try next time
2032 */
7f12ad74
GR
2033 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2034 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 2035
7f12ad74 2036 count += TXD_USE_COUNT(skb_headlen(skb));
8f6a2b05 2037 if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
2038 tx_ring->tx_stats.tx_busy++;
2039 return 0;
2040 }
2041 return count;
2042}
2043
2044/**
2045 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2046 * @skb: send buffer
2047 * @tx_ring: ring to send buffer on
2048 *
2049 * Returns NETDEV_TX_OK if sent, else an error code
2050 **/
2051static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2052 struct i40e_ring *tx_ring)
2053{
2054 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2055 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2056 struct i40e_tx_buffer *first;
2057 u32 td_offset = 0;
2058 u32 tx_flags = 0;
2059 __be16 protocol;
2060 u32 td_cmd = 0;
2061 u8 hdr_len = 0;
2062 int tso;
6995b36c 2063
b74118f0
JB
2064 /* prefetch the data, we'll need it later */
2065 prefetch(skb->data);
2066
3e587cf3 2067 if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
7f12ad74
GR
2068 return NETDEV_TX_BUSY;
2069
2070 /* prepare the xmit flags */
3e587cf3 2071 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2072 goto out_drop;
2073
2074 /* obtain protocol of skb */
a12c4158 2075 protocol = vlan_get_protocol(skb);
7f12ad74
GR
2076
2077 /* record the location of the first descriptor for this packet */
2078 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2079
2080 /* setup IPv4/IPv6 offloads */
2081 if (protocol == htons(ETH_P_IP))
2082 tx_flags |= I40E_TX_FLAGS_IPV4;
2083 else if (protocol == htons(ETH_P_IPV6))
2084 tx_flags |= I40E_TX_FLAGS_IPV6;
2085
9c883bd3 2086 tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2087
2088 if (tso < 0)
2089 goto out_drop;
2090 else if (tso)
2091 tx_flags |= I40E_TX_FLAGS_TSO;
2092
2fc3d715 2093 if (i40e_chk_linearize(skb, tx_flags)) {
71da6197
AS
2094 if (skb_linearize(skb))
2095 goto out_drop;
2fc3d715
ASJ
2096 tx_ring->tx_stats.tx_linearize++;
2097 }
7f12ad74
GR
2098 skb_tx_timestamp(skb);
2099
2100 /* always enable CRC insertion offload */
2101 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2102
2103 /* Always offload the checksum, since it's in the data descriptor */
2104 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2105 tx_flags |= I40E_TX_FLAGS_CSUM;
2106
89232c3b 2107 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
7f12ad74
GR
2108 tx_ring, &cd_tunneling);
2109 }
2110
2111 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2112 cd_tunneling, cd_l2tag2);
2113
3e587cf3
JB
2114 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2115 td_cmd, td_offset);
7f12ad74 2116
7f12ad74
GR
2117 return NETDEV_TX_OK;
2118
2119out_drop:
2120 dev_kfree_skb_any(skb);
2121 return NETDEV_TX_OK;
2122}
2123
2124/**
2125 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2126 * @skb: send buffer
2127 * @netdev: network interface device structure
2128 *
2129 * Returns NETDEV_TX_OK if sent, else an error code
2130 **/
2131netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2132{
2133 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2134 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2135
2136 /* hardware can't handle really short frames, hardware padding works
2137 * beyond this point
2138 */
2139 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2140 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2141 return NETDEV_TX_OK;
2142 skb->len = I40E_MIN_TX_LEN;
2143 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2144 }
2145
2146 return i40e_xmit_frame_ring(skb, tx_ring);
2147}
This page took 0.273648 seconds and 5 git commands to generate.