i40e: Enable Loopback for the FCOE vsi as well
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
af1a2a9c 4 * Copyright(c) 2013 - 2014 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0
PG
27#include <linux/prefetch.h>
28
7f12ad74 29#include "i40evf.h"
206812b5 30#include "i40e_prototype.h"
7f12ad74
GR
31
32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34{
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40}
41
42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43
44/**
45 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
46 * @ring: the ring that owns the buffer
47 * @tx_buffer: the buffer to free
48 **/
49static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
50 struct i40e_tx_buffer *tx_buffer)
51{
52 if (tx_buffer->skb) {
49d7d933
ASJ
53 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
54 kfree(tx_buffer->raw_buf);
55 else
56 dev_kfree_skb_any(tx_buffer->skb);
57
7f12ad74
GR
58 if (dma_unmap_len(tx_buffer, len))
59 dma_unmap_single(ring->dev,
60 dma_unmap_addr(tx_buffer, dma),
61 dma_unmap_len(tx_buffer, len),
62 DMA_TO_DEVICE);
63 } else if (dma_unmap_len(tx_buffer, len)) {
64 dma_unmap_page(ring->dev,
65 dma_unmap_addr(tx_buffer, dma),
66 dma_unmap_len(tx_buffer, len),
67 DMA_TO_DEVICE);
68 }
69 tx_buffer->next_to_watch = NULL;
70 tx_buffer->skb = NULL;
71 dma_unmap_len_set(tx_buffer, len, 0);
72 /* tx_buffer must be completely set up in the transmit path */
73}
74
75/**
76 * i40evf_clean_tx_ring - Free any empty Tx buffers
77 * @tx_ring: ring to be cleaned
78 **/
79void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
80{
81 unsigned long bi_size;
82 u16 i;
83
84 /* ring already cleared, nothing to do */
85 if (!tx_ring->tx_bi)
86 return;
87
88 /* Free all the Tx ring sk_buffs */
89 for (i = 0; i < tx_ring->count; i++)
90 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
91
92 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
93 memset(tx_ring->tx_bi, 0, bi_size);
94
95 /* Zero out the descriptor ring */
96 memset(tx_ring->desc, 0, tx_ring->size);
97
98 tx_ring->next_to_use = 0;
99 tx_ring->next_to_clean = 0;
100
101 if (!tx_ring->netdev)
102 return;
103
104 /* cleanup Tx queue statistics */
105 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
106 tx_ring->queue_index));
107}
108
109/**
110 * i40evf_free_tx_resources - Free Tx resources per queue
111 * @tx_ring: Tx descriptor ring for a specific queue
112 *
113 * Free all transmit software resources
114 **/
115void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116{
117 i40evf_clean_tx_ring(tx_ring);
118 kfree(tx_ring->tx_bi);
119 tx_ring->tx_bi = NULL;
120
121 if (tx_ring->desc) {
122 dma_free_coherent(tx_ring->dev, tx_ring->size,
123 tx_ring->desc, tx_ring->dma);
124 tx_ring->desc = NULL;
125 }
126}
127
128/**
129 * i40e_get_tx_pending - how many tx descriptors not processed
130 * @tx_ring: the ring of descriptors
131 *
132 * Since there is no access to the ring head register
133 * in XL710, we need to use our local copies
134 **/
135static u32 i40e_get_tx_pending(struct i40e_ring *ring)
136{
137 u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
138 ? ring->next_to_use
139 : ring->next_to_use + ring->count);
140 return ntu - ring->next_to_clean;
141}
142
143/**
144 * i40e_check_tx_hang - Is there a hang in the Tx queue
145 * @tx_ring: the ring of descriptors
146 **/
147static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
148{
149 u32 tx_pending = i40e_get_tx_pending(tx_ring);
150 bool ret = false;
151
152 clear_check_for_tx_hang(tx_ring);
153
154 /* Check for a hung queue, but be thorough. This verifies
155 * that a transmit has been completed since the previous
156 * check AND there is at least one packet pending. The
157 * ARMED bit is set to indicate a potential hang. The
158 * bit is cleared if a pause frame is received to remove
159 * false hang detection due to PFC or 802.3x frames. By
160 * requiring this to fail twice we avoid races with
161 * PFC clearing the ARMED bit and conditions where we
162 * run the check_tx_hang logic with a transmit completion
163 * pending but without time to complete it yet.
164 */
165 if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
810b3ae4 166 (tx_pending >= I40E_MIN_DESC_PENDING)) {
7f12ad74
GR
167 /* make sure it is true for two checks in a row */
168 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
169 &tx_ring->state);
810b3ae4
ASJ
170 } else if (!(tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) ||
171 !(tx_pending < I40E_MIN_DESC_PENDING) ||
172 !(tx_pending > 0)) {
7f12ad74
GR
173 /* update completed stats and disarm the hang check */
174 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
175 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
176 }
177
178 return ret;
179}
180
1943d8ba
JB
181/**
182 * i40e_get_head - Retrieve head from head writeback
183 * @tx_ring: tx ring to fetch head of
184 *
185 * Returns value of Tx ring head based on value stored
186 * in head write-back location
187 **/
188static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
189{
190 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
191
192 return le32_to_cpu(*(volatile __le32 *)head);
193}
194
c29af37f
ASJ
195#define WB_STRIDE 0x3
196
7f12ad74
GR
197/**
198 * i40e_clean_tx_irq - Reclaim resources after transmit completes
199 * @tx_ring: tx ring to clean
200 * @budget: how many cleans we're allowed
201 *
202 * Returns true if there's any budget left (e.g. the clean is finished)
203 **/
204static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
205{
206 u16 i = tx_ring->next_to_clean;
207 struct i40e_tx_buffer *tx_buf;
1943d8ba 208 struct i40e_tx_desc *tx_head;
7f12ad74
GR
209 struct i40e_tx_desc *tx_desc;
210 unsigned int total_packets = 0;
211 unsigned int total_bytes = 0;
212
213 tx_buf = &tx_ring->tx_bi[i];
214 tx_desc = I40E_TX_DESC(tx_ring, i);
215 i -= tx_ring->count;
216
1943d8ba
JB
217 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
218
7f12ad74
GR
219 do {
220 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
221
222 /* if next_to_watch is not set then there is no work pending */
223 if (!eop_desc)
224 break;
225
226 /* prevent any other reads prior to eop_desc */
227 read_barrier_depends();
228
1943d8ba
JB
229 /* we have caught up to head, no work left to do */
230 if (tx_head == tx_desc)
7f12ad74
GR
231 break;
232
233 /* clear next_to_watch to prevent false hangs */
234 tx_buf->next_to_watch = NULL;
235
236 /* update the statistics for this packet */
237 total_bytes += tx_buf->bytecount;
238 total_packets += tx_buf->gso_segs;
239
240 /* free the skb */
241 dev_kfree_skb_any(tx_buf->skb);
242
243 /* unmap skb header data */
244 dma_unmap_single(tx_ring->dev,
245 dma_unmap_addr(tx_buf, dma),
246 dma_unmap_len(tx_buf, len),
247 DMA_TO_DEVICE);
248
249 /* clear tx_buffer data */
250 tx_buf->skb = NULL;
251 dma_unmap_len_set(tx_buf, len, 0);
252
253 /* unmap remaining buffers */
254 while (tx_desc != eop_desc) {
255
256 tx_buf++;
257 tx_desc++;
258 i++;
259 if (unlikely(!i)) {
260 i -= tx_ring->count;
261 tx_buf = tx_ring->tx_bi;
262 tx_desc = I40E_TX_DESC(tx_ring, 0);
263 }
264
265 /* unmap any remaining paged data */
266 if (dma_unmap_len(tx_buf, len)) {
267 dma_unmap_page(tx_ring->dev,
268 dma_unmap_addr(tx_buf, dma),
269 dma_unmap_len(tx_buf, len),
270 DMA_TO_DEVICE);
271 dma_unmap_len_set(tx_buf, len, 0);
272 }
273 }
274
275 /* move us one more past the eop_desc for start of next pkt */
276 tx_buf++;
277 tx_desc++;
278 i++;
279 if (unlikely(!i)) {
280 i -= tx_ring->count;
281 tx_buf = tx_ring->tx_bi;
282 tx_desc = I40E_TX_DESC(tx_ring, 0);
283 }
284
285 /* update budget accounting */
286 budget--;
287 } while (likely(budget));
288
289 i += tx_ring->count;
290 tx_ring->next_to_clean = i;
291 u64_stats_update_begin(&tx_ring->syncp);
292 tx_ring->stats.bytes += total_bytes;
293 tx_ring->stats.packets += total_packets;
294 u64_stats_update_end(&tx_ring->syncp);
295 tx_ring->q_vector->tx.total_bytes += total_bytes;
296 tx_ring->q_vector->tx.total_packets += total_packets;
297
c29af37f
ASJ
298 if (budget &&
299 !((i & WB_STRIDE) == WB_STRIDE) &&
300 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
301 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
302 tx_ring->arm_wb = true;
303 else
304 tx_ring->arm_wb = false;
305
7f12ad74
GR
306 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
307 /* schedule immediate reset if we believe we hung */
308 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
309 " VSI <%d>\n"
310 " Tx Queue <%d>\n"
311 " next_to_use <%x>\n"
312 " next_to_clean <%x>\n",
313 tx_ring->vsi->seid,
314 tx_ring->queue_index,
315 tx_ring->next_to_use, i);
316 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
317 " time_stamp <%lx>\n"
318 " jiffies <%lx>\n",
319 tx_ring->tx_bi[i].time_stamp, jiffies);
320
321 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
322
323 dev_info(tx_ring->dev,
324 "tx hang detected on queue %d, resetting adapter\n",
325 tx_ring->queue_index);
326
327 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
328
329 /* the adapter is about to reset, no point in enabling stuff */
330 return true;
331 }
332
333 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
334 tx_ring->queue_index),
335 total_packets, total_bytes);
336
337#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
338 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
339 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
340 /* Make sure that anybody stopping the queue after this
341 * sees the new next_to_clean.
342 */
343 smp_mb();
344 if (__netif_subqueue_stopped(tx_ring->netdev,
345 tx_ring->queue_index) &&
346 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
347 netif_wake_subqueue(tx_ring->netdev,
348 tx_ring->queue_index);
349 ++tx_ring->tx_stats.restart_queue;
350 }
351 }
352
353 return budget > 0;
354}
355
c29af37f
ASJ
356/**
357 * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
358 * @vsi: the VSI we care about
359 * @q_vector: the vector on which to force writeback
360 *
361 **/
362static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
363{
364 u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
365 I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
366 I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
367 /* allow 00 to be written to the index */
368
369 wr32(&vsi->back->hw,
370 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
371 val);
372}
373
7f12ad74
GR
374/**
375 * i40e_set_new_dynamic_itr - Find new ITR level
376 * @rc: structure containing ring performance data
377 *
378 * Stores a new ITR value based on packets and byte counts during
379 * the last interrupt. The advantage of per interrupt computation
380 * is faster updates and more accurate ITR for the current traffic
381 * pattern. Constants in this function were computed based on
382 * theoretical maximum wire speed and thresholds were set based on
383 * testing data as well as attempting to minimize response time
384 * while increasing bulk throughput.
385 **/
386static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
387{
388 enum i40e_latency_range new_latency_range = rc->latency_range;
389 u32 new_itr = rc->itr;
390 int bytes_per_int;
391
392 if (rc->total_packets == 0 || !rc->itr)
393 return;
394
395 /* simple throttlerate management
396 * 0-10MB/s lowest (100000 ints/s)
397 * 10-20MB/s low (20000 ints/s)
398 * 20-1249MB/s bulk (8000 ints/s)
399 */
400 bytes_per_int = rc->total_bytes / rc->itr;
401 switch (rc->itr) {
402 case I40E_LOWEST_LATENCY:
403 if (bytes_per_int > 10)
404 new_latency_range = I40E_LOW_LATENCY;
405 break;
406 case I40E_LOW_LATENCY:
407 if (bytes_per_int > 20)
408 new_latency_range = I40E_BULK_LATENCY;
409 else if (bytes_per_int <= 10)
410 new_latency_range = I40E_LOWEST_LATENCY;
411 break;
412 case I40E_BULK_LATENCY:
413 if (bytes_per_int <= 20)
414 rc->latency_range = I40E_LOW_LATENCY;
415 break;
416 }
417
418 switch (new_latency_range) {
419 case I40E_LOWEST_LATENCY:
420 new_itr = I40E_ITR_100K;
421 break;
422 case I40E_LOW_LATENCY:
423 new_itr = I40E_ITR_20K;
424 break;
425 case I40E_BULK_LATENCY:
426 new_itr = I40E_ITR_8K;
427 break;
428 default:
429 break;
430 }
431
432 if (new_itr != rc->itr) {
433 /* do an exponential smoothing */
434 new_itr = (10 * new_itr * rc->itr) /
435 ((9 * new_itr) + rc->itr);
436 rc->itr = new_itr & I40E_MAX_ITR;
437 }
438
439 rc->total_bytes = 0;
440 rc->total_packets = 0;
441}
442
443/**
444 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
445 * @q_vector: the vector to adjust
446 **/
447static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
448{
449 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
450 struct i40e_hw *hw = &q_vector->vsi->back->hw;
451 u32 reg_addr;
452 u16 old_itr;
453
454 reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
455 old_itr = q_vector->rx.itr;
456 i40e_set_new_dynamic_itr(&q_vector->rx);
457 if (old_itr != q_vector->rx.itr)
458 wr32(hw, reg_addr, q_vector->rx.itr);
459
460 reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
461 old_itr = q_vector->tx.itr;
462 i40e_set_new_dynamic_itr(&q_vector->tx);
463 if (old_itr != q_vector->tx.itr)
464 wr32(hw, reg_addr, q_vector->tx.itr);
465}
466
467/**
468 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
469 * @tx_ring: the tx ring to set up
470 *
471 * Return 0 on success, negative on error
472 **/
473int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
474{
475 struct device *dev = tx_ring->dev;
476 int bi_size;
477
478 if (!dev)
479 return -ENOMEM;
480
481 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
482 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
483 if (!tx_ring->tx_bi)
484 goto err;
485
486 /* round up to nearest 4K */
487 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
488 /* add u32 for head writeback, align after this takes care of
489 * guaranteeing this is at least one cache line in size
490 */
491 tx_ring->size += sizeof(u32);
7f12ad74
GR
492 tx_ring->size = ALIGN(tx_ring->size, 4096);
493 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
494 &tx_ring->dma, GFP_KERNEL);
495 if (!tx_ring->desc) {
496 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
497 tx_ring->size);
498 goto err;
499 }
500
501 tx_ring->next_to_use = 0;
502 tx_ring->next_to_clean = 0;
503 return 0;
504
505err:
506 kfree(tx_ring->tx_bi);
507 tx_ring->tx_bi = NULL;
508 return -ENOMEM;
509}
510
511/**
512 * i40evf_clean_rx_ring - Free Rx buffers
513 * @rx_ring: ring to be cleaned
514 **/
515void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
516{
517 struct device *dev = rx_ring->dev;
518 struct i40e_rx_buffer *rx_bi;
519 unsigned long bi_size;
520 u16 i;
521
522 /* ring already cleared, nothing to do */
523 if (!rx_ring->rx_bi)
524 return;
525
526 /* Free all the Rx ring sk_buffs */
527 for (i = 0; i < rx_ring->count; i++) {
528 rx_bi = &rx_ring->rx_bi[i];
529 if (rx_bi->dma) {
530 dma_unmap_single(dev,
531 rx_bi->dma,
532 rx_ring->rx_buf_len,
533 DMA_FROM_DEVICE);
534 rx_bi->dma = 0;
535 }
536 if (rx_bi->skb) {
537 dev_kfree_skb(rx_bi->skb);
538 rx_bi->skb = NULL;
539 }
540 if (rx_bi->page) {
541 if (rx_bi->page_dma) {
542 dma_unmap_page(dev,
543 rx_bi->page_dma,
544 PAGE_SIZE / 2,
545 DMA_FROM_DEVICE);
546 rx_bi->page_dma = 0;
547 }
548 __free_page(rx_bi->page);
549 rx_bi->page = NULL;
550 rx_bi->page_offset = 0;
551 }
552 }
553
554 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
555 memset(rx_ring->rx_bi, 0, bi_size);
556
557 /* Zero out the descriptor ring */
558 memset(rx_ring->desc, 0, rx_ring->size);
559
560 rx_ring->next_to_clean = 0;
561 rx_ring->next_to_use = 0;
562}
563
564/**
565 * i40evf_free_rx_resources - Free Rx resources
566 * @rx_ring: ring to clean the resources from
567 *
568 * Free all receive software resources
569 **/
570void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
571{
572 i40evf_clean_rx_ring(rx_ring);
573 kfree(rx_ring->rx_bi);
574 rx_ring->rx_bi = NULL;
575
576 if (rx_ring->desc) {
577 dma_free_coherent(rx_ring->dev, rx_ring->size,
578 rx_ring->desc, rx_ring->dma);
579 rx_ring->desc = NULL;
580 }
581}
582
583/**
584 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
585 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
586 *
587 * Returns 0 on success, negative on failure
588 **/
589int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
590{
591 struct device *dev = rx_ring->dev;
592 int bi_size;
593
594 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
595 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
596 if (!rx_ring->rx_bi)
597 goto err;
598
599 /* Round up to nearest 4K */
600 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
601 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
602 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
603 rx_ring->size = ALIGN(rx_ring->size, 4096);
604 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
605 &rx_ring->dma, GFP_KERNEL);
606
607 if (!rx_ring->desc) {
608 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
609 rx_ring->size);
610 goto err;
611 }
612
613 rx_ring->next_to_clean = 0;
614 rx_ring->next_to_use = 0;
615
616 return 0;
617err:
618 kfree(rx_ring->rx_bi);
619 rx_ring->rx_bi = NULL;
620 return -ENOMEM;
621}
622
623/**
624 * i40e_release_rx_desc - Store the new tail and head values
625 * @rx_ring: ring to bump
626 * @val: new head index
627 **/
628static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
629{
630 rx_ring->next_to_use = val;
631 /* Force memory writes to complete before letting h/w
632 * know there are new descriptors to fetch. (Only
633 * applicable for weak-ordered memory model archs,
634 * such as IA-64).
635 */
636 wmb();
637 writel(val, rx_ring->tail);
638}
639
640/**
641 * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
642 * @rx_ring: ring to place buffers on
643 * @cleaned_count: number of buffers to replace
644 **/
645void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
646{
647 u16 i = rx_ring->next_to_use;
648 union i40e_rx_desc *rx_desc;
649 struct i40e_rx_buffer *bi;
650 struct sk_buff *skb;
651
652 /* do nothing if no valid netdev defined */
653 if (!rx_ring->netdev || !cleaned_count)
654 return;
655
656 while (cleaned_count--) {
657 rx_desc = I40E_RX_DESC(rx_ring, i);
658 bi = &rx_ring->rx_bi[i];
659 skb = bi->skb;
660
661 if (!skb) {
662 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
663 rx_ring->rx_buf_len);
664 if (!skb) {
665 rx_ring->rx_stats.alloc_buff_failed++;
666 goto no_buffers;
667 }
668 /* initialize queue mapping */
669 skb_record_rx_queue(skb, rx_ring->queue_index);
670 bi->skb = skb;
671 }
672
673 if (!bi->dma) {
674 bi->dma = dma_map_single(rx_ring->dev,
675 skb->data,
676 rx_ring->rx_buf_len,
677 DMA_FROM_DEVICE);
678 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
679 rx_ring->rx_stats.alloc_buff_failed++;
680 bi->dma = 0;
681 goto no_buffers;
682 }
683 }
684
685 if (ring_is_ps_enabled(rx_ring)) {
686 if (!bi->page) {
687 bi->page = alloc_page(GFP_ATOMIC);
688 if (!bi->page) {
689 rx_ring->rx_stats.alloc_page_failed++;
690 goto no_buffers;
691 }
692 }
693
694 if (!bi->page_dma) {
695 /* use a half page if we're re-using */
696 bi->page_offset ^= PAGE_SIZE / 2;
697 bi->page_dma = dma_map_page(rx_ring->dev,
698 bi->page,
699 bi->page_offset,
700 PAGE_SIZE / 2,
701 DMA_FROM_DEVICE);
702 if (dma_mapping_error(rx_ring->dev,
703 bi->page_dma)) {
704 rx_ring->rx_stats.alloc_page_failed++;
705 bi->page_dma = 0;
706 goto no_buffers;
707 }
708 }
709
710 /* Refresh the desc even if buffer_addrs didn't change
711 * because each write-back erases this info.
712 */
713 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
714 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
715 } else {
716 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
717 rx_desc->read.hdr_addr = 0;
718 }
719 i++;
720 if (i == rx_ring->count)
721 i = 0;
722 }
723
724no_buffers:
725 if (rx_ring->next_to_use != i)
726 i40e_release_rx_desc(rx_ring, i);
727}
728
729/**
730 * i40e_receive_skb - Send a completed packet up the stack
731 * @rx_ring: rx ring in play
732 * @skb: packet to send up
733 * @vlan_tag: vlan tag for packet
734 **/
735static void i40e_receive_skb(struct i40e_ring *rx_ring,
736 struct sk_buff *skb, u16 vlan_tag)
737{
738 struct i40e_q_vector *q_vector = rx_ring->q_vector;
739 struct i40e_vsi *vsi = rx_ring->vsi;
740 u64 flags = vsi->back->flags;
741
742 if (vlan_tag & VLAN_VID_MASK)
743 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
744
745 if (flags & I40E_FLAG_IN_NETPOLL)
746 netif_rx(skb);
747 else
748 napi_gro_receive(&q_vector->napi, skb);
749}
750
751/**
752 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
753 * @vsi: the VSI we care about
754 * @skb: skb currently being received and modified
755 * @rx_status: status value of last descriptor in packet
756 * @rx_error: error value of last descriptor in packet
757 * @rx_ptype: ptype value of last descriptor in packet
758 **/
759static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
760 struct sk_buff *skb,
761 u32 rx_status,
762 u32 rx_error,
763 u16 rx_ptype)
764{
8a3c91cc
JB
765 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
766 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
767 bool ipv4_tunnel, ipv6_tunnel;
768 __wsum rx_udp_csum;
7f12ad74 769 struct iphdr *iph;
8a3c91cc 770 __sum16 csum;
7f12ad74
GR
771
772 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
773 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
774 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
775 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
776
7f12ad74
GR
777 skb->ip_summed = CHECKSUM_NONE;
778
779 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
780 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
781 return;
782
783 /* did the hardware decode the packet and checksum? */
784 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
785 return;
786
787 /* both known and outer_ip must be set for the below code to work */
788 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
789 return;
790
8a3c91cc
JB
791 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
792 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
793 ipv4 = true;
794 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
795 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
796 ipv6 = true;
797
798 if (ipv4 &&
799 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
800 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
801 goto checksum_fail;
802
ddf1d0d7 803 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 804 if (ipv6 &&
8a3c91cc
JB
805 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
806 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
807 return;
808
8a3c91cc
JB
809 /* there was some L4 error, count error and punt packet to the stack */
810 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
811 goto checksum_fail;
812
813 /* handle packets that were not able to be checksummed due
814 * to arrival speed, in this case the stack can compute
815 * the csum.
816 */
817 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 818 return;
7f12ad74 819
8a3c91cc
JB
820 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
821 * it in the driver, hardware does not do it for us.
822 * Since L3L4P bit was set we assume a valid IHL value (>=5)
823 * so the total length of IPv4 header is IHL*4 bytes
824 * The UDP_0 bit *may* bet set if the *inner* header is UDP
825 */
7f12ad74 826 if (ipv4_tunnel &&
8a3c91cc 827 (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
7f12ad74 828 !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
7f12ad74
GR
829 skb->transport_header = skb->mac_header +
830 sizeof(struct ethhdr) +
831 (ip_hdr(skb)->ihl * 4);
832
833 /* Add 4 bytes for VLAN tagged packets */
834 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
835 skb->protocol == htons(ETH_P_8021AD))
836 ? VLAN_HLEN : 0;
837
838 rx_udp_csum = udp_csum(skb);
839 iph = ip_hdr(skb);
840 csum = csum_tcpudp_magic(
841 iph->saddr, iph->daddr,
842 (skb->len - skb_transport_offset(skb)),
843 IPPROTO_UDP, rx_udp_csum);
844
8a3c91cc
JB
845 if (udp_hdr(skb)->check != csum)
846 goto checksum_fail;
7f12ad74
GR
847 }
848
849 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 850 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
851
852 return;
853
854checksum_fail:
855 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
856}
857
858/**
859 * i40e_rx_hash - returns the hash value from the Rx descriptor
860 * @ring: descriptor ring
861 * @rx_desc: specific descriptor
862 **/
863static inline u32 i40e_rx_hash(struct i40e_ring *ring,
864 union i40e_rx_desc *rx_desc)
865{
866 const __le64 rss_mask =
867 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
868 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
869
870 if ((ring->netdev->features & NETIF_F_RXHASH) &&
871 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
872 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
873 else
874 return 0;
875}
876
206812b5
JB
877/**
878 * i40e_ptype_to_hash - get a hash type
879 * @ptype: the ptype value from the descriptor
880 *
881 * Returns a hash type to be used by skb_set_hash
882 **/
883static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
884{
885 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
886
887 if (!decoded.known)
888 return PKT_HASH_TYPE_NONE;
889
890 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
891 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
892 return PKT_HASH_TYPE_L4;
893 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
894 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
895 return PKT_HASH_TYPE_L3;
896 else
897 return PKT_HASH_TYPE_L2;
898}
899
7f12ad74
GR
900/**
901 * i40e_clean_rx_irq - Reclaim resources after receive completes
902 * @rx_ring: rx ring to clean
903 * @budget: how many cleans we're allowed
904 *
905 * Returns true if there's any budget left (e.g. the clean is finished)
906 **/
907static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
908{
909 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
910 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
911 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
912 const int current_node = numa_node_id();
913 struct i40e_vsi *vsi = rx_ring->vsi;
914 u16 i = rx_ring->next_to_clean;
915 union i40e_rx_desc *rx_desc;
916 u32 rx_error, rx_status;
206812b5 917 u8 rx_ptype;
7f12ad74 918 u64 qword;
7f12ad74
GR
919
920 rx_desc = I40E_RX_DESC(rx_ring, i);
921 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
af1a2a9c
JB
922 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
923 I40E_RXD_QW1_STATUS_SHIFT;
7f12ad74
GR
924
925 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
926 union i40e_rx_desc *next_rxd;
927 struct i40e_rx_buffer *rx_bi;
928 struct sk_buff *skb;
929 u16 vlan_tag;
930 rx_bi = &rx_ring->rx_bi[i];
931 skb = rx_bi->skb;
932 prefetch(skb->data);
933
934 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
935 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
936 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
937 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
938 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
939 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
940
941 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
942 I40E_RXD_QW1_ERROR_SHIFT;
943 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
944 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
945
946 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
947 I40E_RXD_QW1_PTYPE_SHIFT;
948 rx_bi->skb = NULL;
949
950 /* This memory barrier is needed to keep us from reading
951 * any other fields out of the rx_desc until we know the
952 * STATUS_DD bit is set
953 */
954 rmb();
955
956 /* Get the header and possibly the whole packet
957 * If this is an skb from previous receive dma will be 0
958 */
959 if (rx_bi->dma) {
960 u16 len;
961
962 if (rx_hbo)
963 len = I40E_RX_HDR_SIZE;
964 else if (rx_sph)
965 len = rx_header_len;
966 else if (rx_packet_len)
967 len = rx_packet_len; /* 1buf/no split found */
968 else
969 len = rx_header_len; /* split always mode */
970
971 skb_put(skb, len);
972 dma_unmap_single(rx_ring->dev,
973 rx_bi->dma,
974 rx_ring->rx_buf_len,
975 DMA_FROM_DEVICE);
976 rx_bi->dma = 0;
977 }
978
979 /* Get the rest of the data if this was a header split */
980 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
981
982 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
983 rx_bi->page,
984 rx_bi->page_offset,
985 rx_packet_len);
986
987 skb->len += rx_packet_len;
988 skb->data_len += rx_packet_len;
989 skb->truesize += rx_packet_len;
990
991 if ((page_count(rx_bi->page) == 1) &&
992 (page_to_nid(rx_bi->page) == current_node))
993 get_page(rx_bi->page);
994 else
995 rx_bi->page = NULL;
996
997 dma_unmap_page(rx_ring->dev,
998 rx_bi->page_dma,
999 PAGE_SIZE / 2,
1000 DMA_FROM_DEVICE);
1001 rx_bi->page_dma = 0;
1002 }
1003 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1004
1005 if (unlikely(
1006 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1007 struct i40e_rx_buffer *next_buffer;
1008
1009 next_buffer = &rx_ring->rx_bi[i];
1010
1011 if (ring_is_ps_enabled(rx_ring)) {
1012 rx_bi->skb = next_buffer->skb;
1013 rx_bi->dma = next_buffer->dma;
1014 next_buffer->skb = skb;
1015 next_buffer->dma = 0;
1016 }
1017 rx_ring->rx_stats.non_eop_descs++;
1018 goto next_desc;
1019 }
1020
1021 /* ERR_MASK will only have valid bits if EOP set */
1022 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1023 dev_kfree_skb_any(skb);
8a3c91cc
JB
1024 /* TODO: shouldn't we increment a counter indicating the
1025 * drop?
1026 */
7f12ad74
GR
1027 goto next_desc;
1028 }
1029
206812b5
JB
1030 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1031 i40e_ptype_to_hash(rx_ptype));
7f12ad74
GR
1032 /* probably a little skewed due to removing CRC */
1033 total_rx_bytes += skb->len;
1034 total_rx_packets++;
1035
1036 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1037
1038 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1039
1040 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1041 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1042 : 0;
1043 i40e_receive_skb(rx_ring, skb, vlan_tag);
1044
1045 rx_ring->netdev->last_rx = jiffies;
1046 budget--;
1047next_desc:
1048 rx_desc->wb.qword1.status_error_len = 0;
1049 if (!budget)
1050 break;
1051
1052 cleaned_count++;
1053 /* return some buffers to hardware, one at a time is too slow */
1054 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1055 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1056 cleaned_count = 0;
1057 }
1058
1059 /* use prefetched values */
1060 rx_desc = next_rxd;
1061 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1062 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1063 I40E_RXD_QW1_STATUS_SHIFT;
1064 }
1065
1066 rx_ring->next_to_clean = i;
1067 u64_stats_update_begin(&rx_ring->syncp);
1068 rx_ring->stats.packets += total_rx_packets;
1069 rx_ring->stats.bytes += total_rx_bytes;
1070 u64_stats_update_end(&rx_ring->syncp);
1071 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1072 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1073
1074 if (cleaned_count)
1075 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1076
1077 return budget > 0;
1078}
1079
1080/**
1081 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1082 * @napi: napi struct with our devices info in it
1083 * @budget: amount of work driver is allowed to do this pass, in packets
1084 *
1085 * This function will clean all queues associated with a q_vector.
1086 *
1087 * Returns the amount of work done
1088 **/
1089int i40evf_napi_poll(struct napi_struct *napi, int budget)
1090{
1091 struct i40e_q_vector *q_vector =
1092 container_of(napi, struct i40e_q_vector, napi);
1093 struct i40e_vsi *vsi = q_vector->vsi;
1094 struct i40e_ring *ring;
1095 bool clean_complete = true;
c29af37f 1096 bool arm_wb = false;
7f12ad74
GR
1097 int budget_per_ring;
1098
1099 if (test_bit(__I40E_DOWN, &vsi->state)) {
1100 napi_complete(napi);
1101 return 0;
1102 }
1103
1104 /* Since the actual Tx work is minimal, we can give the Tx a larger
1105 * budget and be more aggressive about cleaning up the Tx descriptors.
1106 */
c29af37f 1107 i40e_for_each_ring(ring, q_vector->tx) {
7f12ad74 1108 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
c29af37f
ASJ
1109 arm_wb |= ring->arm_wb;
1110 }
7f12ad74
GR
1111
1112 /* We attempt to distribute budget to each Rx queue fairly, but don't
1113 * allow the budget to go below 1 because that would exit polling early.
1114 */
1115 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1116
1117 i40e_for_each_ring(ring, q_vector->rx)
1118 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1119
1120 /* If work not completed, return budget and polling will return */
c29af37f
ASJ
1121 if (!clean_complete) {
1122 if (arm_wb)
1123 i40e_force_wb(vsi, q_vector);
7f12ad74 1124 return budget;
c29af37f 1125 }
7f12ad74
GR
1126
1127 /* Work is done so exit the polling mode and re-enable the interrupt */
1128 napi_complete(napi);
1129 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1130 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1131 i40e_update_dynamic_itr(q_vector);
1132
1133 if (!test_bit(__I40E_DOWN, &vsi->state))
1134 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1135
1136 return 0;
1137}
1138
1139/**
1140 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1141 * @skb: send buffer
1142 * @tx_ring: ring to send buffer on
1143 * @flags: the tx flags to be set
1144 *
1145 * Checks the skb and set up correspondingly several generic transmit flags
1146 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1147 *
1148 * Returns error code indicate the frame should be dropped upon error and the
1149 * otherwise returns 0 to indicate the flags has been set properly.
1150 **/
1151static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1152 struct i40e_ring *tx_ring,
1153 u32 *flags)
1154{
1155 __be16 protocol = skb->protocol;
1156 u32 tx_flags = 0;
1157
1158 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1159 if (skb_vlan_tag_present(skb)) {
1160 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1161 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1162 /* else if it is a SW VLAN, check the next protocol and store the tag */
1163 } else if (protocol == htons(ETH_P_8021Q)) {
1164 struct vlan_hdr *vhdr, _vhdr;
1165 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1166 if (!vhdr)
1167 return -EINVAL;
1168
1169 protocol = vhdr->h_vlan_encapsulated_proto;
1170 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1171 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1172 }
1173
1174 *flags = tx_flags;
1175 return 0;
1176}
1177
1178/**
1179 * i40e_tso - set up the tso context descriptor
1180 * @tx_ring: ptr to the ring to send
1181 * @skb: ptr to the skb we're sending
1182 * @tx_flags: the collected send information
1183 * @protocol: the send protocol
1184 * @hdr_len: ptr to the size of the packet header
1185 * @cd_tunneling: ptr to context descriptor bits
1186 *
1187 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1188 **/
1189static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1190 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1191 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1192{
1193 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1194 struct ipv6hdr *ipv6h;
7f12ad74
GR
1195 struct tcphdr *tcph;
1196 struct iphdr *iph;
1197 u32 l4len;
1198 int err;
7f12ad74
GR
1199
1200 if (!skb_is_gso(skb))
1201 return 0;
1202
fe6d4aa4
FR
1203 err = skb_cow_head(skb, 0);
1204 if (err < 0)
1205 return err;
7f12ad74
GR
1206
1207 if (protocol == htons(ETH_P_IP)) {
1208 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1209 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1210 iph->tot_len = 0;
1211 iph->check = 0;
1212 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1213 0, IPPROTO_TCP, 0);
1214 } else if (skb_is_gso_v6(skb)) {
1215
1216 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1217 : ipv6_hdr(skb);
1218 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1219 ipv6h->payload_len = 0;
1220 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1221 0, IPPROTO_TCP, 0);
1222 }
1223
1224 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1225 *hdr_len = (skb->encapsulation
1226 ? (skb_inner_transport_header(skb) - skb->data)
1227 : skb_transport_offset(skb)) + l4len;
1228
1229 /* find the field values */
1230 cd_cmd = I40E_TX_CTX_DESC_TSO;
1231 cd_tso_len = skb->len - *hdr_len;
1232 cd_mss = skb_shinfo(skb)->gso_size;
1233 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1234 ((u64)cd_tso_len <<
1235 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1236 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1237 return 1;
1238}
1239
1240/**
1241 * i40e_tx_enable_csum - Enable Tx checksum offloads
1242 * @skb: send buffer
1243 * @tx_flags: Tx flags currently set
1244 * @td_cmd: Tx descriptor command bits to set
1245 * @td_offset: Tx descriptor header offsets to set
1246 * @cd_tunneling: ptr to context desc bits
1247 **/
1248static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1249 u32 *td_cmd, u32 *td_offset,
1250 struct i40e_ring *tx_ring,
1251 u32 *cd_tunneling)
1252{
1253 struct ipv6hdr *this_ipv6_hdr;
1254 unsigned int this_tcp_hdrlen;
1255 struct iphdr *this_ip_hdr;
1256 u32 network_hdr_len;
1257 u8 l4_hdr = 0;
1258
1259 if (skb->encapsulation) {
1260 network_hdr_len = skb_inner_network_header_len(skb);
1261 this_ip_hdr = inner_ip_hdr(skb);
1262 this_ipv6_hdr = inner_ipv6_hdr(skb);
1263 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1264
1265 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1266
1267 if (tx_flags & I40E_TX_FLAGS_TSO) {
1268 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1269 ip_hdr(skb)->check = 0;
1270 } else {
1271 *cd_tunneling |=
1272 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1273 }
1274 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1275 if (tx_flags & I40E_TX_FLAGS_TSO) {
1276 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1277 ip_hdr(skb)->check = 0;
1278 } else {
1279 *cd_tunneling |=
1280 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1281 }
1282 }
1283
1284 /* Now set the ctx descriptor fields */
1285 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1286 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1287 I40E_TXD_CTX_UDP_TUNNELING |
1288 ((skb_inner_network_offset(skb) -
1289 skb_transport_offset(skb)) >> 1) <<
1290 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1291
1292 } else {
1293 network_hdr_len = skb_network_header_len(skb);
1294 this_ip_hdr = ip_hdr(skb);
1295 this_ipv6_hdr = ipv6_hdr(skb);
1296 this_tcp_hdrlen = tcp_hdrlen(skb);
1297 }
1298
1299 /* Enable IP checksum offloads */
1300 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1301 l4_hdr = this_ip_hdr->protocol;
1302 /* the stack computes the IP header already, the only time we
1303 * need the hardware to recompute it is in the case of TSO.
1304 */
1305 if (tx_flags & I40E_TX_FLAGS_TSO) {
1306 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1307 this_ip_hdr->check = 0;
1308 } else {
1309 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1310 }
1311 /* Now set the td_offset for IP header length */
1312 *td_offset = (network_hdr_len >> 2) <<
1313 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1314 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1315 l4_hdr = this_ipv6_hdr->nexthdr;
1316 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1317 /* Now set the td_offset for IP header length */
1318 *td_offset = (network_hdr_len >> 2) <<
1319 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1320 }
1321 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1322 *td_offset |= (skb_network_offset(skb) >> 1) <<
1323 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1324
1325 /* Enable L4 checksum offloads */
1326 switch (l4_hdr) {
1327 case IPPROTO_TCP:
1328 /* enable checksum offloads */
1329 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1330 *td_offset |= (this_tcp_hdrlen >> 2) <<
1331 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1332 break;
1333 case IPPROTO_SCTP:
1334 /* enable SCTP checksum offload */
1335 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1336 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1337 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1338 break;
1339 case IPPROTO_UDP:
1340 /* enable UDP checksum offload */
1341 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1342 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1343 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1344 break;
1345 default:
1346 break;
1347 }
1348}
1349
1350/**
1351 * i40e_create_tx_ctx Build the Tx context descriptor
1352 * @tx_ring: ring to create the descriptor on
1353 * @cd_type_cmd_tso_mss: Quad Word 1
1354 * @cd_tunneling: Quad Word 0 - bits 0-31
1355 * @cd_l2tag2: Quad Word 0 - bits 32-63
1356 **/
1357static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1358 const u64 cd_type_cmd_tso_mss,
1359 const u32 cd_tunneling, const u32 cd_l2tag2)
1360{
1361 struct i40e_tx_context_desc *context_desc;
1362 int i = tx_ring->next_to_use;
1363
ff40dd5d
JB
1364 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1365 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1366 return;
1367
1368 /* grab the next descriptor */
1369 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1370
1371 i++;
1372 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1373
1374 /* cpu_to_le32 and assign to struct fields */
1375 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1376 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1377 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1378 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1379}
1380
1381/**
1382 * i40e_tx_map - Build the Tx descriptor
1383 * @tx_ring: ring to send buffer on
1384 * @skb: send buffer
1385 * @first: first buffer info buffer to use
1386 * @tx_flags: collected send information
1387 * @hdr_len: size of the packet header
1388 * @td_cmd: the command field in the descriptor
1389 * @td_offset: offset for checksum or crc
1390 **/
1391static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1392 struct i40e_tx_buffer *first, u32 tx_flags,
1393 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1394{
1395 unsigned int data_len = skb->data_len;
1396 unsigned int size = skb_headlen(skb);
1397 struct skb_frag_struct *frag;
1398 struct i40e_tx_buffer *tx_bi;
1399 struct i40e_tx_desc *tx_desc;
1400 u16 i = tx_ring->next_to_use;
1401 u32 td_tag = 0;
1402 dma_addr_t dma;
1403 u16 gso_segs;
1404
1405 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1406 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1407 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1408 I40E_TX_FLAGS_VLAN_SHIFT;
1409 }
1410
1411 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1412 gso_segs = skb_shinfo(skb)->gso_segs;
1413 else
1414 gso_segs = 1;
1415
1416 /* multiply data chunks by size of headers */
1417 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1418 first->gso_segs = gso_segs;
1419 first->skb = skb;
1420 first->tx_flags = tx_flags;
1421
1422 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1423
1424 tx_desc = I40E_TX_DESC(tx_ring, i);
1425 tx_bi = first;
1426
1427 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1428 if (dma_mapping_error(tx_ring->dev, dma))
1429 goto dma_error;
1430
1431 /* record length, and DMA address */
1432 dma_unmap_len_set(tx_bi, len, size);
1433 dma_unmap_addr_set(tx_bi, dma, dma);
1434
1435 tx_desc->buffer_addr = cpu_to_le64(dma);
1436
1437 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1438 tx_desc->cmd_type_offset_bsz =
1439 build_ctob(td_cmd, td_offset,
1440 I40E_MAX_DATA_PER_TXD, td_tag);
1441
1442 tx_desc++;
1443 i++;
1444 if (i == tx_ring->count) {
1445 tx_desc = I40E_TX_DESC(tx_ring, 0);
1446 i = 0;
1447 }
1448
1449 dma += I40E_MAX_DATA_PER_TXD;
1450 size -= I40E_MAX_DATA_PER_TXD;
1451
1452 tx_desc->buffer_addr = cpu_to_le64(dma);
1453 }
1454
1455 if (likely(!data_len))
1456 break;
1457
1458 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1459 size, td_tag);
1460
1461 tx_desc++;
1462 i++;
1463 if (i == tx_ring->count) {
1464 tx_desc = I40E_TX_DESC(tx_ring, 0);
1465 i = 0;
1466 }
1467
1468 size = skb_frag_size(frag);
1469 data_len -= size;
1470
1471 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1472 DMA_TO_DEVICE);
1473
1474 tx_bi = &tx_ring->tx_bi[i];
1475 }
1476
1943d8ba
JB
1477 /* Place RS bit on last descriptor of any packet that spans across the
1478 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1479 */
1480#define WB_STRIDE 0x3
1481 if (((i & WB_STRIDE) != WB_STRIDE) &&
1482 (first <= &tx_ring->tx_bi[i]) &&
1483 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1484 tx_desc->cmd_type_offset_bsz =
1485 build_ctob(td_cmd, td_offset, size, td_tag) |
1486 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1487 I40E_TXD_QW1_CMD_SHIFT);
1488 } else {
1489 tx_desc->cmd_type_offset_bsz =
1490 build_ctob(td_cmd, td_offset, size, td_tag) |
1491 cpu_to_le64((u64)I40E_TXD_CMD <<
1492 I40E_TXD_QW1_CMD_SHIFT);
1493 }
7f12ad74
GR
1494
1495 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1496 tx_ring->queue_index),
1497 first->bytecount);
1498
1499 /* set the timestamp */
1500 first->time_stamp = jiffies;
1501
1502 /* Force memory writes to complete before letting h/w
1503 * know there are new descriptors to fetch. (Only
1504 * applicable for weak-ordered memory model archs,
1505 * such as IA-64).
1506 */
1507 wmb();
1508
1509 /* set next_to_watch value indicating a packet is present */
1510 first->next_to_watch = tx_desc;
1511
1512 i++;
1513 if (i == tx_ring->count)
1514 i = 0;
1515
1516 tx_ring->next_to_use = i;
1517
1518 /* notify HW of packet */
1519 writel(i, tx_ring->tail);
1520
1521 return;
1522
1523dma_error:
1524 dev_info(tx_ring->dev, "TX DMA map failed\n");
1525
1526 /* clear dma mappings for failed tx_bi map */
1527 for (;;) {
1528 tx_bi = &tx_ring->tx_bi[i];
1529 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1530 if (tx_bi == first)
1531 break;
1532 if (i == 0)
1533 i = tx_ring->count;
1534 i--;
1535 }
1536
1537 tx_ring->next_to_use = i;
1538}
1539
1540/**
1541 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1542 * @tx_ring: the ring to be checked
1543 * @size: the size buffer we want to assure is available
1544 *
1545 * Returns -EBUSY if a stop is needed, else 0
1546 **/
1547static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1548{
1549 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1550 /* Memory barrier before checking head and tail */
1551 smp_mb();
1552
1553 /* Check again in a case another CPU has just made room available. */
1554 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1555 return -EBUSY;
1556
1557 /* A reprieve! - use start_queue because it doesn't call schedule */
1558 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1559 ++tx_ring->tx_stats.restart_queue;
1560 return 0;
1561}
1562
1563/**
1564 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1565 * @tx_ring: the ring to be checked
1566 * @size: the size buffer we want to assure is available
1567 *
1568 * Returns 0 if stop is not needed
1569 **/
1570static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1571{
1572 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1573 return 0;
1574 return __i40e_maybe_stop_tx(tx_ring, size);
1575}
1576
1577/**
1578 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1579 * @skb: send buffer
1580 * @tx_ring: ring to send buffer on
1581 *
1582 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1583 * there is not enough descriptors available in this ring since we need at least
1584 * one descriptor.
1585 **/
1586static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1587 struct i40e_ring *tx_ring)
1588{
7f12ad74 1589 unsigned int f;
7f12ad74
GR
1590 int count = 0;
1591
1592 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1593 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 1594 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
1595 * + 1 desc for context descriptor,
1596 * otherwise try next time
1597 */
7f12ad74
GR
1598 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1599 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 1600
7f12ad74 1601 count += TXD_USE_COUNT(skb_headlen(skb));
be560521 1602 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
1603 tx_ring->tx_stats.tx_busy++;
1604 return 0;
1605 }
1606 return count;
1607}
1608
1609/**
1610 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1611 * @skb: send buffer
1612 * @tx_ring: ring to send buffer on
1613 *
1614 * Returns NETDEV_TX_OK if sent, else an error code
1615 **/
1616static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1617 struct i40e_ring *tx_ring)
1618{
1619 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1620 u32 cd_tunneling = 0, cd_l2tag2 = 0;
1621 struct i40e_tx_buffer *first;
1622 u32 td_offset = 0;
1623 u32 tx_flags = 0;
1624 __be16 protocol;
1625 u32 td_cmd = 0;
1626 u8 hdr_len = 0;
1627 int tso;
1628 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1629 return NETDEV_TX_BUSY;
1630
1631 /* prepare the xmit flags */
1632 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1633 goto out_drop;
1634
1635 /* obtain protocol of skb */
a12c4158 1636 protocol = vlan_get_protocol(skb);
7f12ad74
GR
1637
1638 /* record the location of the first descriptor for this packet */
1639 first = &tx_ring->tx_bi[tx_ring->next_to_use];
1640
1641 /* setup IPv4/IPv6 offloads */
1642 if (protocol == htons(ETH_P_IP))
1643 tx_flags |= I40E_TX_FLAGS_IPV4;
1644 else if (protocol == htons(ETH_P_IPV6))
1645 tx_flags |= I40E_TX_FLAGS_IPV6;
1646
1647 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1648 &cd_type_cmd_tso_mss, &cd_tunneling);
1649
1650 if (tso < 0)
1651 goto out_drop;
1652 else if (tso)
1653 tx_flags |= I40E_TX_FLAGS_TSO;
1654
1655 skb_tx_timestamp(skb);
1656
1657 /* always enable CRC insertion offload */
1658 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1659
1660 /* Always offload the checksum, since it's in the data descriptor */
1661 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1662 tx_flags |= I40E_TX_FLAGS_CSUM;
1663
1664 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1665 tx_ring, &cd_tunneling);
1666 }
1667
1668 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1669 cd_tunneling, cd_l2tag2);
1670
1671 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1672 td_cmd, td_offset);
1673
1674 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1675
1676 return NETDEV_TX_OK;
1677
1678out_drop:
1679 dev_kfree_skb_any(skb);
1680 return NETDEV_TX_OK;
1681}
1682
1683/**
1684 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1685 * @skb: send buffer
1686 * @netdev: network interface device structure
1687 *
1688 * Returns NETDEV_TX_OK if sent, else an error code
1689 **/
1690netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1691{
1692 struct i40evf_adapter *adapter = netdev_priv(netdev);
1693 struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1694
1695 /* hardware can't handle really short frames, hardware padding works
1696 * beyond this point
1697 */
1698 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1699 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1700 return NETDEV_TX_OK;
1701 skb->len = I40E_MIN_TX_LEN;
1702 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1703 }
1704
1705 return i40e_xmit_frame_ring(skb, tx_ring);
1706}
This page took 0.170152 seconds and 5 git commands to generate.