i40e: trivial: cleanup use of pf->hw
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
a42e7a36 54 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
55 if (dma_unmap_len(tx_buffer, len))
56 dma_unmap_single(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 } else if (dma_unmap_len(tx_buffer, len)) {
61 dma_unmap_page(ring->dev,
62 dma_unmap_addr(tx_buffer, dma),
63 dma_unmap_len(tx_buffer, len),
64 DMA_TO_DEVICE);
65 }
a42e7a36
KP
66
67 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
68 kfree(tx_buffer->raw_buf);
69
7f12ad74
GR
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d 129/**
9c6c1259
KP
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
a68de58d 132 *
9c6c1259
KP
133 * Since there is no access to the ring head register
134 * in XL710, we need to use our local copies
a68de58d 135 **/
9c6c1259 136u32 i40evf_get_tx_pending(struct i40e_ring *ring)
a68de58d 137{
9c6c1259 138 u32 head, tail;
a68de58d 139
9c6c1259
KP
140 head = i40e_get_head(ring);
141 tail = readl(ring->tail);
142
143 if (head != tail)
144 return (head < tail) ?
145 tail - head : (tail + ring->count - head);
146
147 return 0;
a68de58d
JB
148}
149
c29af37f
ASJ
150#define WB_STRIDE 0x3
151
7f12ad74
GR
152/**
153 * i40e_clean_tx_irq - Reclaim resources after transmit completes
154 * @tx_ring: tx ring to clean
155 * @budget: how many cleans we're allowed
156 *
157 * Returns true if there's any budget left (e.g. the clean is finished)
158 **/
159static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
160{
161 u16 i = tx_ring->next_to_clean;
162 struct i40e_tx_buffer *tx_buf;
1943d8ba 163 struct i40e_tx_desc *tx_head;
7f12ad74
GR
164 struct i40e_tx_desc *tx_desc;
165 unsigned int total_packets = 0;
166 unsigned int total_bytes = 0;
167
168 tx_buf = &tx_ring->tx_bi[i];
169 tx_desc = I40E_TX_DESC(tx_ring, i);
170 i -= tx_ring->count;
171
1943d8ba
JB
172 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
173
7f12ad74
GR
174 do {
175 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
176
177 /* if next_to_watch is not set then there is no work pending */
178 if (!eop_desc)
179 break;
180
181 /* prevent any other reads prior to eop_desc */
182 read_barrier_depends();
183
1943d8ba
JB
184 /* we have caught up to head, no work left to do */
185 if (tx_head == tx_desc)
7f12ad74
GR
186 break;
187
188 /* clear next_to_watch to prevent false hangs */
189 tx_buf->next_to_watch = NULL;
190
191 /* update the statistics for this packet */
192 total_bytes += tx_buf->bytecount;
193 total_packets += tx_buf->gso_segs;
194
195 /* free the skb */
196 dev_kfree_skb_any(tx_buf->skb);
197
198 /* unmap skb header data */
199 dma_unmap_single(tx_ring->dev,
200 dma_unmap_addr(tx_buf, dma),
201 dma_unmap_len(tx_buf, len),
202 DMA_TO_DEVICE);
203
204 /* clear tx_buffer data */
205 tx_buf->skb = NULL;
206 dma_unmap_len_set(tx_buf, len, 0);
207
208 /* unmap remaining buffers */
209 while (tx_desc != eop_desc) {
210
211 tx_buf++;
212 tx_desc++;
213 i++;
214 if (unlikely(!i)) {
215 i -= tx_ring->count;
216 tx_buf = tx_ring->tx_bi;
217 tx_desc = I40E_TX_DESC(tx_ring, 0);
218 }
219
220 /* unmap any remaining paged data */
221 if (dma_unmap_len(tx_buf, len)) {
222 dma_unmap_page(tx_ring->dev,
223 dma_unmap_addr(tx_buf, dma),
224 dma_unmap_len(tx_buf, len),
225 DMA_TO_DEVICE);
226 dma_unmap_len_set(tx_buf, len, 0);
227 }
228 }
229
230 /* move us one more past the eop_desc for start of next pkt */
231 tx_buf++;
232 tx_desc++;
233 i++;
234 if (unlikely(!i)) {
235 i -= tx_ring->count;
236 tx_buf = tx_ring->tx_bi;
237 tx_desc = I40E_TX_DESC(tx_ring, 0);
238 }
239
016890b9
JB
240 prefetch(tx_desc);
241
7f12ad74
GR
242 /* update budget accounting */
243 budget--;
244 } while (likely(budget));
245
246 i += tx_ring->count;
247 tx_ring->next_to_clean = i;
248 u64_stats_update_begin(&tx_ring->syncp);
249 tx_ring->stats.bytes += total_bytes;
250 tx_ring->stats.packets += total_packets;
251 u64_stats_update_end(&tx_ring->syncp);
252 tx_ring->q_vector->tx.total_bytes += total_bytes;
253 tx_ring->q_vector->tx.total_packets += total_packets;
254
f6d83d13
ASJ
255 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
256 unsigned int j = 0;
257 /* check to see if there are < 4 descriptors
258 * waiting to be written back, then kick the hardware to force
259 * them to be written back in case we stay in NAPI.
260 * In this mode on X722 we do not enable Interrupt.
261 */
262 j = i40evf_get_tx_pending(tx_ring);
263
264 if (budget &&
265 ((j / (WB_STRIDE + 1)) == 0) && (j > 0) &&
266 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
267 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
268 tx_ring->arm_wb = true;
269 }
270
7f12ad74
GR
271 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
272 tx_ring->queue_index),
273 total_packets, total_bytes);
274
275#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
276 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
277 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
278 /* Make sure that anybody stopping the queue after this
279 * sees the new next_to_clean.
280 */
281 smp_mb();
282 if (__netif_subqueue_stopped(tx_ring->netdev,
283 tx_ring->queue_index) &&
284 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
285 netif_wake_subqueue(tx_ring->netdev,
286 tx_ring->queue_index);
287 ++tx_ring->tx_stats.restart_queue;
288 }
289 }
290
b03a8c1f 291 return !!budget;
7f12ad74
GR
292}
293
c29af37f 294/**
ecc6a239 295 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 296 * @vsi: the VSI we care about
ecc6a239 297 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
298 *
299 **/
ecc6a239
ASJ
300static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
301 struct i40e_q_vector *q_vector)
c29af37f 302{
8e0764b4 303 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 304 u32 val;
8e0764b4 305
ecc6a239
ASJ
306 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
307 return;
308
309 if (q_vector->arm_wb_state)
310 return;
311
312 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
313 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
314
315 wr32(&vsi->back->hw,
316 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
317 vsi->base_vector - 1), val);
318 q_vector->arm_wb_state = true;
319}
320
321/**
322 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
323 * @vsi: the VSI we care about
324 * @q_vector: the vector on which to force writeback
325 *
326 **/
327void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
328{
329 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
330 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
331 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
332 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
333 /* allow 00 to be written to the index */;
334
335 wr32(&vsi->back->hw,
336 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
337 val);
c29af37f
ASJ
338}
339
7f12ad74
GR
340/**
341 * i40e_set_new_dynamic_itr - Find new ITR level
342 * @rc: structure containing ring performance data
343 *
8f5e39ce
JB
344 * Returns true if ITR changed, false if not
345 *
7f12ad74
GR
346 * Stores a new ITR value based on packets and byte counts during
347 * the last interrupt. The advantage of per interrupt computation
348 * is faster updates and more accurate ITR for the current traffic
349 * pattern. Constants in this function were computed based on
350 * theoretical maximum wire speed and thresholds were set based on
351 * testing data as well as attempting to minimize response time
352 * while increasing bulk throughput.
353 **/
8f5e39ce 354static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
355{
356 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 357 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
358 u32 new_itr = rc->itr;
359 int bytes_per_int;
51cc6d9f 360 int usecs;
7f12ad74
GR
361
362 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 363 return false;
7f12ad74
GR
364
365 /* simple throttlerate management
c56625d5 366 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 367 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
368 * 20-1249MB/s bulk (18000 ints/s)
369 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
370 *
371 * The math works out because the divisor is in 10^(-6) which
372 * turns the bytes/us input value into MB/s values, but
373 * make sure to use usecs, as the register values written
ee2319cf
JB
374 * are in 2 usec increments in the ITR registers, and make sure
375 * to use the smoothed values that the countdown timer gives us.
7f12ad74 376 */
ee2319cf 377 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 378 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 379
de32e3ef 380 switch (new_latency_range) {
7f12ad74
GR
381 case I40E_LOWEST_LATENCY:
382 if (bytes_per_int > 10)
383 new_latency_range = I40E_LOW_LATENCY;
384 break;
385 case I40E_LOW_LATENCY:
386 if (bytes_per_int > 20)
387 new_latency_range = I40E_BULK_LATENCY;
388 else if (bytes_per_int <= 10)
389 new_latency_range = I40E_LOWEST_LATENCY;
390 break;
391 case I40E_BULK_LATENCY:
c56625d5 392 case I40E_ULTRA_LATENCY:
de32e3ef
CW
393 default:
394 if (bytes_per_int <= 20)
395 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
396 break;
397 }
c56625d5
JB
398
399 /* this is to adjust RX more aggressively when streaming small
400 * packets. The value of 40000 was picked as it is just beyond
401 * what the hardware can receive per second if in low latency
402 * mode.
403 */
404#define RX_ULTRA_PACKET_RATE 40000
405
406 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
407 (&qv->rx == rc))
408 new_latency_range = I40E_ULTRA_LATENCY;
409
de32e3ef 410 rc->latency_range = new_latency_range;
7f12ad74
GR
411
412 switch (new_latency_range) {
413 case I40E_LOWEST_LATENCY:
c56625d5 414 new_itr = I40E_ITR_50K;
7f12ad74
GR
415 break;
416 case I40E_LOW_LATENCY:
417 new_itr = I40E_ITR_20K;
418 break;
419 case I40E_BULK_LATENCY:
c56625d5
JB
420 new_itr = I40E_ITR_18K;
421 break;
422 case I40E_ULTRA_LATENCY:
7f12ad74
GR
423 new_itr = I40E_ITR_8K;
424 break;
425 default:
426 break;
427 }
428
7f12ad74
GR
429 rc->total_bytes = 0;
430 rc->total_packets = 0;
8f5e39ce
JB
431
432 if (new_itr != rc->itr) {
433 rc->itr = new_itr;
434 return true;
435 }
436
437 return false;
7f12ad74
GR
438}
439
4eeb1fff 440/**
7f12ad74
GR
441 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
442 * @tx_ring: the tx ring to set up
443 *
444 * Return 0 on success, negative on error
445 **/
446int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
447{
448 struct device *dev = tx_ring->dev;
449 int bi_size;
450
451 if (!dev)
452 return -ENOMEM;
453
67c818a1
MW
454 /* warn if we are about to overwrite the pointer */
455 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
456 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
457 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
458 if (!tx_ring->tx_bi)
459 goto err;
460
461 /* round up to nearest 4K */
462 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
463 /* add u32 for head writeback, align after this takes care of
464 * guaranteeing this is at least one cache line in size
465 */
466 tx_ring->size += sizeof(u32);
7f12ad74
GR
467 tx_ring->size = ALIGN(tx_ring->size, 4096);
468 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
469 &tx_ring->dma, GFP_KERNEL);
470 if (!tx_ring->desc) {
471 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
472 tx_ring->size);
473 goto err;
474 }
475
476 tx_ring->next_to_use = 0;
477 tx_ring->next_to_clean = 0;
478 return 0;
479
480err:
481 kfree(tx_ring->tx_bi);
482 tx_ring->tx_bi = NULL;
483 return -ENOMEM;
484}
485
486/**
487 * i40evf_clean_rx_ring - Free Rx buffers
488 * @rx_ring: ring to be cleaned
489 **/
490void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
491{
492 struct device *dev = rx_ring->dev;
493 struct i40e_rx_buffer *rx_bi;
494 unsigned long bi_size;
495 u16 i;
496
497 /* ring already cleared, nothing to do */
498 if (!rx_ring->rx_bi)
499 return;
500
a132af24
MW
501 if (ring_is_ps_enabled(rx_ring)) {
502 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
503
504 rx_bi = &rx_ring->rx_bi[0];
505 if (rx_bi->hdr_buf) {
506 dma_free_coherent(dev,
507 bufsz,
508 rx_bi->hdr_buf,
509 rx_bi->dma);
510 for (i = 0; i < rx_ring->count; i++) {
511 rx_bi = &rx_ring->rx_bi[i];
512 rx_bi->dma = 0;
37a2973a 513 rx_bi->hdr_buf = NULL;
a132af24
MW
514 }
515 }
516 }
7f12ad74
GR
517 /* Free all the Rx ring sk_buffs */
518 for (i = 0; i < rx_ring->count; i++) {
519 rx_bi = &rx_ring->rx_bi[i];
520 if (rx_bi->dma) {
521 dma_unmap_single(dev,
522 rx_bi->dma,
523 rx_ring->rx_buf_len,
524 DMA_FROM_DEVICE);
525 rx_bi->dma = 0;
526 }
527 if (rx_bi->skb) {
528 dev_kfree_skb(rx_bi->skb);
529 rx_bi->skb = NULL;
530 }
531 if (rx_bi->page) {
532 if (rx_bi->page_dma) {
533 dma_unmap_page(dev,
534 rx_bi->page_dma,
f16704e5 535 PAGE_SIZE,
7f12ad74
GR
536 DMA_FROM_DEVICE);
537 rx_bi->page_dma = 0;
538 }
539 __free_page(rx_bi->page);
540 rx_bi->page = NULL;
541 rx_bi->page_offset = 0;
542 }
543 }
544
545 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
546 memset(rx_ring->rx_bi, 0, bi_size);
547
548 /* Zero out the descriptor ring */
549 memset(rx_ring->desc, 0, rx_ring->size);
550
551 rx_ring->next_to_clean = 0;
552 rx_ring->next_to_use = 0;
553}
554
555/**
556 * i40evf_free_rx_resources - Free Rx resources
557 * @rx_ring: ring to clean the resources from
558 *
559 * Free all receive software resources
560 **/
561void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
562{
563 i40evf_clean_rx_ring(rx_ring);
564 kfree(rx_ring->rx_bi);
565 rx_ring->rx_bi = NULL;
566
567 if (rx_ring->desc) {
568 dma_free_coherent(rx_ring->dev, rx_ring->size,
569 rx_ring->desc, rx_ring->dma);
570 rx_ring->desc = NULL;
571 }
572}
573
a132af24
MW
574/**
575 * i40evf_alloc_rx_headers - allocate rx header buffers
576 * @rx_ring: ring to alloc buffers
577 *
578 * Allocate rx header buffers for the entire ring. As these are static,
579 * this is only called when setting up a new ring.
580 **/
581void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
582{
583 struct device *dev = rx_ring->dev;
584 struct i40e_rx_buffer *rx_bi;
585 dma_addr_t dma;
586 void *buffer;
587 int buf_size;
588 int i;
589
590 if (rx_ring->rx_bi[0].hdr_buf)
591 return;
592 /* Make sure the buffers don't cross cache line boundaries. */
593 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
594 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
595 &dma, GFP_KERNEL);
596 if (!buffer)
597 return;
598 for (i = 0; i < rx_ring->count; i++) {
599 rx_bi = &rx_ring->rx_bi[i];
600 rx_bi->dma = dma + (i * buf_size);
601 rx_bi->hdr_buf = buffer + (i * buf_size);
602 }
603}
604
7f12ad74
GR
605/**
606 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
607 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
608 *
609 * Returns 0 on success, negative on failure
610 **/
611int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
612{
613 struct device *dev = rx_ring->dev;
614 int bi_size;
615
67c818a1
MW
616 /* warn if we are about to overwrite the pointer */
617 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
618 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
619 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
620 if (!rx_ring->rx_bi)
621 goto err;
622
f217d6ca 623 u64_stats_init(&rx_ring->syncp);
638702bd 624
7f12ad74
GR
625 /* Round up to nearest 4K */
626 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
627 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
628 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
629 rx_ring->size = ALIGN(rx_ring->size, 4096);
630 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
631 &rx_ring->dma, GFP_KERNEL);
632
633 if (!rx_ring->desc) {
634 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
635 rx_ring->size);
636 goto err;
637 }
638
639 rx_ring->next_to_clean = 0;
640 rx_ring->next_to_use = 0;
641
642 return 0;
643err:
644 kfree(rx_ring->rx_bi);
645 rx_ring->rx_bi = NULL;
646 return -ENOMEM;
647}
648
649/**
650 * i40e_release_rx_desc - Store the new tail and head values
651 * @rx_ring: ring to bump
652 * @val: new head index
653 **/
654static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
655{
656 rx_ring->next_to_use = val;
657 /* Force memory writes to complete before letting h/w
658 * know there are new descriptors to fetch. (Only
659 * applicable for weak-ordered memory model archs,
660 * such as IA-64).
661 */
662 wmb();
663 writel(val, rx_ring->tail);
664}
665
666/**
a132af24
MW
667 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
668 * @rx_ring: ring to place buffers on
669 * @cleaned_count: number of buffers to replace
c2e245ab
JB
670 *
671 * Returns true if any errors on allocation
a132af24 672 **/
c2e245ab 673bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
a132af24
MW
674{
675 u16 i = rx_ring->next_to_use;
676 union i40e_rx_desc *rx_desc;
677 struct i40e_rx_buffer *bi;
f16704e5 678 const int current_node = numa_node_id();
a132af24
MW
679
680 /* do nothing if no valid netdev defined */
681 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 682 return false;
a132af24
MW
683
684 while (cleaned_count--) {
685 rx_desc = I40E_RX_DESC(rx_ring, i);
686 bi = &rx_ring->rx_bi[i];
687
688 if (bi->skb) /* desc is in use */
689 goto no_buffers;
f16704e5
MW
690
691 /* If we've been moved to a different NUMA node, release the
692 * page so we can get a new one on the current node.
693 */
694 if (bi->page && page_to_nid(bi->page) != current_node) {
695 dma_unmap_page(rx_ring->dev,
696 bi->page_dma,
697 PAGE_SIZE,
698 DMA_FROM_DEVICE);
699 __free_page(bi->page);
700 bi->page = NULL;
701 bi->page_dma = 0;
702 rx_ring->rx_stats.realloc_count++;
703 } else if (bi->page) {
704 rx_ring->rx_stats.page_reuse_count++;
705 }
706
a132af24
MW
707 if (!bi->page) {
708 bi->page = alloc_page(GFP_ATOMIC);
709 if (!bi->page) {
710 rx_ring->rx_stats.alloc_page_failed++;
711 goto no_buffers;
712 }
a132af24
MW
713 bi->page_dma = dma_map_page(rx_ring->dev,
714 bi->page,
f16704e5
MW
715 0,
716 PAGE_SIZE,
a132af24 717 DMA_FROM_DEVICE);
f16704e5 718 if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
a132af24 719 rx_ring->rx_stats.alloc_page_failed++;
f16704e5
MW
720 __free_page(bi->page);
721 bi->page = NULL;
a132af24 722 bi->page_dma = 0;
f16704e5 723 bi->page_offset = 0;
a132af24
MW
724 goto no_buffers;
725 }
f16704e5 726 bi->page_offset = 0;
a132af24
MW
727 }
728
a132af24
MW
729 /* Refresh the desc even if buffer_addrs didn't change
730 * because each write-back erases this info.
731 */
f16704e5
MW
732 rx_desc->read.pkt_addr =
733 cpu_to_le64(bi->page_dma + bi->page_offset);
a132af24
MW
734 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
735 i++;
736 if (i == rx_ring->count)
737 i = 0;
738 }
739
c2e245ab
JB
740 if (rx_ring->next_to_use != i)
741 i40e_release_rx_desc(rx_ring, i);
742
743 return false;
744
a132af24
MW
745no_buffers:
746 if (rx_ring->next_to_use != i)
747 i40e_release_rx_desc(rx_ring, i);
c2e245ab
JB
748
749 /* make sure to come back via polling to try again after
750 * allocation failure
751 */
752 return true;
a132af24
MW
753}
754
755/**
756 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
7f12ad74
GR
757 * @rx_ring: ring to place buffers on
758 * @cleaned_count: number of buffers to replace
c2e245ab
JB
759 *
760 * Returns true if any errors on allocation
7f12ad74 761 **/
c2e245ab 762bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74
GR
763{
764 u16 i = rx_ring->next_to_use;
765 union i40e_rx_desc *rx_desc;
766 struct i40e_rx_buffer *bi;
767 struct sk_buff *skb;
768
769 /* do nothing if no valid netdev defined */
770 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 771 return false;
7f12ad74
GR
772
773 while (cleaned_count--) {
774 rx_desc = I40E_RX_DESC(rx_ring, i);
775 bi = &rx_ring->rx_bi[i];
776 skb = bi->skb;
777
778 if (!skb) {
dd1a5df8
JB
779 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
780 rx_ring->rx_buf_len,
781 GFP_ATOMIC |
782 __GFP_NOWARN);
7f12ad74
GR
783 if (!skb) {
784 rx_ring->rx_stats.alloc_buff_failed++;
785 goto no_buffers;
786 }
787 /* initialize queue mapping */
788 skb_record_rx_queue(skb, rx_ring->queue_index);
789 bi->skb = skb;
790 }
791
792 if (!bi->dma) {
793 bi->dma = dma_map_single(rx_ring->dev,
794 skb->data,
795 rx_ring->rx_buf_len,
796 DMA_FROM_DEVICE);
797 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
798 rx_ring->rx_stats.alloc_buff_failed++;
799 bi->dma = 0;
c2e245ab
JB
800 dev_kfree_skb(bi->skb);
801 bi->skb = NULL;
7f12ad74
GR
802 goto no_buffers;
803 }
804 }
805
a132af24
MW
806 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
807 rx_desc->read.hdr_addr = 0;
7f12ad74
GR
808 i++;
809 if (i == rx_ring->count)
810 i = 0;
811 }
812
c2e245ab
JB
813 if (rx_ring->next_to_use != i)
814 i40e_release_rx_desc(rx_ring, i);
815
816 return false;
817
7f12ad74
GR
818no_buffers:
819 if (rx_ring->next_to_use != i)
820 i40e_release_rx_desc(rx_ring, i);
c2e245ab
JB
821
822 /* make sure to come back via polling to try again after
823 * allocation failure
824 */
825 return true;
7f12ad74
GR
826}
827
828/**
829 * i40e_receive_skb - Send a completed packet up the stack
830 * @rx_ring: rx ring in play
831 * @skb: packet to send up
832 * @vlan_tag: vlan tag for packet
833 **/
834static void i40e_receive_skb(struct i40e_ring *rx_ring,
835 struct sk_buff *skb, u16 vlan_tag)
836{
837 struct i40e_q_vector *q_vector = rx_ring->q_vector;
7f12ad74
GR
838
839 if (vlan_tag & VLAN_VID_MASK)
840 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
841
8b650359 842 napi_gro_receive(&q_vector->napi, skb);
7f12ad74
GR
843}
844
845/**
846 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
847 * @vsi: the VSI we care about
848 * @skb: skb currently being received and modified
849 * @rx_status: status value of last descriptor in packet
850 * @rx_error: error value of last descriptor in packet
851 * @rx_ptype: ptype value of last descriptor in packet
852 **/
853static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
854 struct sk_buff *skb,
855 u32 rx_status,
856 u32 rx_error,
857 u16 rx_ptype)
858{
8a3c91cc
JB
859 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
860 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
861 bool ipv4_tunnel, ipv6_tunnel;
862 __wsum rx_udp_csum;
7f12ad74 863 struct iphdr *iph;
8a3c91cc 864 __sum16 csum;
7f12ad74 865
f8faaa40
ASJ
866 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
867 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
868 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
869 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
7f12ad74 870
7f12ad74
GR
871 skb->ip_summed = CHECKSUM_NONE;
872
873 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
874 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
875 return;
876
877 /* did the hardware decode the packet and checksum? */
41a1d04b 878 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
879 return;
880
881 /* both known and outer_ip must be set for the below code to work */
882 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
883 return;
884
8a3c91cc
JB
885 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
886 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
887 ipv4 = true;
888 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
889 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
890 ipv6 = true;
891
892 if (ipv4 &&
41a1d04b
JB
893 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
894 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
895 goto checksum_fail;
896
ddf1d0d7 897 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 898 if (ipv6 &&
41a1d04b 899 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 900 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
901 return;
902
8a3c91cc 903 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 904 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
905 goto checksum_fail;
906
907 /* handle packets that were not able to be checksummed due
908 * to arrival speed, in this case the stack can compute
909 * the csum.
910 */
41a1d04b 911 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 912 return;
7f12ad74 913
8a3c91cc
JB
914 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
915 * it in the driver, hardware does not do it for us.
916 * Since L3L4P bit was set we assume a valid IHL value (>=5)
917 * so the total length of IPv4 header is IHL*4 bytes
918 * The UDP_0 bit *may* bet set if the *inner* header is UDP
919 */
818f2e7b 920 if (ipv4_tunnel) {
7f12ad74
GR
921 skb->transport_header = skb->mac_header +
922 sizeof(struct ethhdr) +
923 (ip_hdr(skb)->ihl * 4);
924
925 /* Add 4 bytes for VLAN tagged packets */
926 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
927 skb->protocol == htons(ETH_P_8021AD))
928 ? VLAN_HLEN : 0;
929
818f2e7b
ASJ
930 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
931 (udp_hdr(skb)->check != 0)) {
932 rx_udp_csum = udp_csum(skb);
933 iph = ip_hdr(skb);
934 csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
935 (skb->len -
936 skb_transport_offset(skb)),
937 IPPROTO_UDP, rx_udp_csum);
7f12ad74 938
818f2e7b
ASJ
939 if (udp_hdr(skb)->check != csum)
940 goto checksum_fail;
941
942 } /* else its GRE and so no outer UDP header */
7f12ad74
GR
943 }
944
945 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 946 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
947
948 return;
949
950checksum_fail:
951 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
952}
953
954/**
857942fd 955 * i40e_ptype_to_htype - get a hash type
206812b5
JB
956 * @ptype: the ptype value from the descriptor
957 *
958 * Returns a hash type to be used by skb_set_hash
959 **/
857942fd 960static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
206812b5
JB
961{
962 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
963
964 if (!decoded.known)
965 return PKT_HASH_TYPE_NONE;
966
967 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
968 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
969 return PKT_HASH_TYPE_L4;
970 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
971 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
972 return PKT_HASH_TYPE_L3;
973 else
974 return PKT_HASH_TYPE_L2;
975}
976
857942fd
ASJ
977/**
978 * i40e_rx_hash - set the hash value in the skb
979 * @ring: descriptor ring
980 * @rx_desc: specific descriptor
981 **/
982static inline void i40e_rx_hash(struct i40e_ring *ring,
983 union i40e_rx_desc *rx_desc,
984 struct sk_buff *skb,
985 u8 rx_ptype)
986{
987 u32 hash;
988 const __le64 rss_mask =
989 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
990 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
991
992 if (ring->netdev->features & NETIF_F_RXHASH)
993 return;
994
995 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
996 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
997 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
998 }
999}
1000
7f12ad74 1001/**
a132af24 1002 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
7f12ad74
GR
1003 * @rx_ring: rx ring to clean
1004 * @budget: how many cleans we're allowed
1005 *
1006 * Returns true if there's any budget left (e.g. the clean is finished)
1007 **/
c2e245ab 1008static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
7f12ad74
GR
1009{
1010 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1011 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1012 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
7f12ad74
GR
1013 struct i40e_vsi *vsi = rx_ring->vsi;
1014 u16 i = rx_ring->next_to_clean;
1015 union i40e_rx_desc *rx_desc;
1016 u32 rx_error, rx_status;
c2e245ab 1017 bool failure = false;
206812b5 1018 u8 rx_ptype;
7f12ad74 1019 u64 qword;
f16704e5 1020 u32 copysize;
7f12ad74 1021
a132af24 1022 do {
7f12ad74
GR
1023 struct i40e_rx_buffer *rx_bi;
1024 struct sk_buff *skb;
1025 u16 vlan_tag;
a132af24
MW
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab
JB
1028 failure = failure ||
1029 i40evf_alloc_rx_buffers_ps(rx_ring,
1030 cleaned_count);
a132af24
MW
1031 cleaned_count = 0;
1032 }
1033
1034 i = rx_ring->next_to_clean;
1035 rx_desc = I40E_RX_DESC(rx_ring, i);
1036 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1037 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1038 I40E_RXD_QW1_STATUS_SHIFT;
1039
41a1d04b 1040 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1041 break;
1042
1043 /* This memory barrier is needed to keep us from reading
1044 * any other fields out of the rx_desc until we know the
1045 * DD bit is set.
1046 */
67317166 1047 dma_rmb();
f16704e5
MW
1048 /* sync header buffer for reading */
1049 dma_sync_single_range_for_cpu(rx_ring->dev,
1050 rx_ring->rx_bi[0].dma,
1051 i * rx_ring->rx_hdr_len,
1052 rx_ring->rx_hdr_len,
1053 DMA_FROM_DEVICE);
7f12ad74
GR
1054 rx_bi = &rx_ring->rx_bi[i];
1055 skb = rx_bi->skb;
a132af24 1056 if (likely(!skb)) {
dd1a5df8
JB
1057 skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1058 rx_ring->rx_hdr_len,
1059 GFP_ATOMIC |
1060 __GFP_NOWARN);
8b6ed9c2 1061 if (!skb) {
a132af24 1062 rx_ring->rx_stats.alloc_buff_failed++;
c2e245ab 1063 failure = true;
8b6ed9c2
JB
1064 break;
1065 }
1066
a132af24
MW
1067 /* initialize queue mapping */
1068 skb_record_rx_queue(skb, rx_ring->queue_index);
1069 /* we are reusing so sync this buffer for CPU use */
1070 dma_sync_single_range_for_cpu(rx_ring->dev,
3578fa0a
JB
1071 rx_ring->rx_bi[0].dma,
1072 i * rx_ring->rx_hdr_len,
a132af24
MW
1073 rx_ring->rx_hdr_len,
1074 DMA_FROM_DEVICE);
1075 }
7f12ad74
GR
1076 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1077 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1078 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1079 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1080 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1081 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1082
1083 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1084 I40E_RXD_QW1_ERROR_SHIFT;
41a1d04b
JB
1085 rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1086 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
7f12ad74
GR
1087
1088 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1089 I40E_RXD_QW1_PTYPE_SHIFT;
f16704e5
MW
1090 /* sync half-page for reading */
1091 dma_sync_single_range_for_cpu(rx_ring->dev,
1092 rx_bi->page_dma,
1093 rx_bi->page_offset,
1094 PAGE_SIZE / 2,
1095 DMA_FROM_DEVICE);
1096 prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
7f12ad74 1097 rx_bi->skb = NULL;
a132af24 1098 cleaned_count++;
f16704e5 1099 copysize = 0;
a132af24
MW
1100 if (rx_hbo || rx_sph) {
1101 int len;
6995b36c 1102
7f12ad74
GR
1103 if (rx_hbo)
1104 len = I40E_RX_HDR_SIZE;
7f12ad74 1105 else
a132af24
MW
1106 len = rx_header_len;
1107 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1108 } else if (skb->len == 0) {
1109 int len;
f16704e5
MW
1110 unsigned char *va = page_address(rx_bi->page) +
1111 rx_bi->page_offset;
a132af24 1112
f16704e5
MW
1113 len = min(rx_packet_len, rx_ring->rx_hdr_len);
1114 memcpy(__skb_put(skb, len), va, len);
1115 copysize = len;
a132af24 1116 rx_packet_len -= len;
7f12ad74 1117 }
7f12ad74 1118 /* Get the rest of the data if this was a header split */
a132af24 1119 if (rx_packet_len) {
f16704e5
MW
1120 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1121 rx_bi->page,
1122 rx_bi->page_offset + copysize,
1123 rx_packet_len, I40E_RXBUFFER_2048);
1124
1125 get_page(rx_bi->page);
1126 /* switch to the other half-page here; the allocation
1127 * code programs the right addr into HW. If we haven't
1128 * used this half-page, the address won't be changed,
1129 * and HW can just use it next time through.
1130 */
1131 rx_bi->page_offset ^= PAGE_SIZE / 2;
1132 /* If the page count is more than 2, then both halves
1133 * of the page are used and we need to free it. Do it
1134 * here instead of in the alloc code. Otherwise one
1135 * of the half-pages might be released between now and
1136 * then, and we wouldn't know which one to use.
1137 */
1138 if (page_count(rx_bi->page) > 2) {
1139 dma_unmap_page(rx_ring->dev,
1140 rx_bi->page_dma,
1141 PAGE_SIZE,
1142 DMA_FROM_DEVICE);
1143 __free_page(rx_bi->page);
7f12ad74 1144 rx_bi->page = NULL;
f16704e5
MW
1145 rx_bi->page_dma = 0;
1146 rx_ring->rx_stats.realloc_count++;
1147 }
7f12ad74 1148
7f12ad74 1149 }
a132af24 1150 I40E_RX_INCREMENT(rx_ring, i);
7f12ad74
GR
1151
1152 if (unlikely(
41a1d04b 1153 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
7f12ad74
GR
1154 struct i40e_rx_buffer *next_buffer;
1155
1156 next_buffer = &rx_ring->rx_bi[i];
a132af24 1157 next_buffer->skb = skb;
7f12ad74 1158 rx_ring->rx_stats.non_eop_descs++;
a132af24 1159 continue;
7f12ad74
GR
1160 }
1161
1162 /* ERR_MASK will only have valid bits if EOP set */
41a1d04b 1163 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
7f12ad74 1164 dev_kfree_skb_any(skb);
a132af24 1165 continue;
7f12ad74
GR
1166 }
1167
857942fd
ASJ
1168 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1169
7f12ad74
GR
1170 /* probably a little skewed due to removing CRC */
1171 total_rx_bytes += skb->len;
1172 total_rx_packets++;
1173
1174 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1175
1176 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1177
41a1d04b 1178 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
7f12ad74
GR
1179 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1180 : 0;
a132af24
MW
1181#ifdef I40E_FCOE
1182 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1183 dev_kfree_skb_any(skb);
1184 continue;
1185 }
1186#endif
7f12ad74
GR
1187 i40e_receive_skb(rx_ring, skb, vlan_tag);
1188
7f12ad74 1189 rx_desc->wb.qword1.status_error_len = 0;
7f12ad74 1190
a132af24
MW
1191 } while (likely(total_rx_packets < budget));
1192
1193 u64_stats_update_begin(&rx_ring->syncp);
1194 rx_ring->stats.packets += total_rx_packets;
1195 rx_ring->stats.bytes += total_rx_bytes;
1196 u64_stats_update_end(&rx_ring->syncp);
1197 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1198 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1199
c2e245ab 1200 return failure ? budget : total_rx_packets;
a132af24
MW
1201}
1202
1203/**
1204 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1205 * @rx_ring: rx ring to clean
1206 * @budget: how many cleans we're allowed
1207 *
1208 * Returns number of packets cleaned
1209 **/
1210static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1211{
1212 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1213 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1214 struct i40e_vsi *vsi = rx_ring->vsi;
1215 union i40e_rx_desc *rx_desc;
1216 u32 rx_error, rx_status;
1217 u16 rx_packet_len;
c2e245ab 1218 bool failure = false;
a132af24
MW
1219 u8 rx_ptype;
1220 u64 qword;
1221 u16 i;
1222
1223 do {
1224 struct i40e_rx_buffer *rx_bi;
1225 struct sk_buff *skb;
1226 u16 vlan_tag;
7f12ad74
GR
1227 /* return some buffers to hardware, one at a time is too slow */
1228 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab
JB
1229 failure = failure ||
1230 i40evf_alloc_rx_buffers_1buf(rx_ring,
1231 cleaned_count);
7f12ad74
GR
1232 cleaned_count = 0;
1233 }
1234
a132af24
MW
1235 i = rx_ring->next_to_clean;
1236 rx_desc = I40E_RX_DESC(rx_ring, i);
7f12ad74
GR
1237 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1238 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
a132af24
MW
1239 I40E_RXD_QW1_STATUS_SHIFT;
1240
41a1d04b 1241 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
a132af24
MW
1242 break;
1243
1244 /* This memory barrier is needed to keep us from reading
1245 * any other fields out of the rx_desc until we know the
1246 * DD bit is set.
1247 */
67317166 1248 dma_rmb();
a132af24
MW
1249
1250 rx_bi = &rx_ring->rx_bi[i];
1251 skb = rx_bi->skb;
1252 prefetch(skb->data);
1253
1254 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1255 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1256
1257 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1258 I40E_RXD_QW1_ERROR_SHIFT;
41a1d04b 1259 rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
a132af24
MW
1260
1261 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1262 I40E_RXD_QW1_PTYPE_SHIFT;
1263 rx_bi->skb = NULL;
1264 cleaned_count++;
1265
1266 /* Get the header and possibly the whole packet
1267 * If this is an skb from previous receive dma will be 0
1268 */
1269 skb_put(skb, rx_packet_len);
1270 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1271 DMA_FROM_DEVICE);
1272 rx_bi->dma = 0;
1273
1274 I40E_RX_INCREMENT(rx_ring, i);
1275
1276 if (unlikely(
41a1d04b 1277 !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
a132af24
MW
1278 rx_ring->rx_stats.non_eop_descs++;
1279 continue;
1280 }
1281
1282 /* ERR_MASK will only have valid bits if EOP set */
41a1d04b 1283 if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
a132af24 1284 dev_kfree_skb_any(skb);
a132af24
MW
1285 continue;
1286 }
1287
857942fd 1288 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
a132af24
MW
1289 /* probably a little skewed due to removing CRC */
1290 total_rx_bytes += skb->len;
1291 total_rx_packets++;
1292
1293 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1294
1295 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1296
41a1d04b 1297 vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
a132af24
MW
1298 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1299 : 0;
1300 i40e_receive_skb(rx_ring, skb, vlan_tag);
1301
a132af24
MW
1302 rx_desc->wb.qword1.status_error_len = 0;
1303 } while (likely(total_rx_packets < budget));
7f12ad74 1304
7f12ad74
GR
1305 u64_stats_update_begin(&rx_ring->syncp);
1306 rx_ring->stats.packets += total_rx_packets;
1307 rx_ring->stats.bytes += total_rx_bytes;
1308 u64_stats_update_end(&rx_ring->syncp);
1309 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1310 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1311
c2e245ab 1312 return failure ? budget : total_rx_packets;
7f12ad74
GR
1313}
1314
8f5e39ce
JB
1315static u32 i40e_buildreg_itr(const int type, const u16 itr)
1316{
1317 u32 val;
1318
1319 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
40d72a50
JB
1320 /* Don't clear PBA because that can cause lost interrupts that
1321 * came in while we were cleaning/polling
1322 */
8f5e39ce
JB
1323 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1324 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1325
1326 return val;
1327}
1328
1329/* a small macro to shorten up some long lines */
1330#define INTREG I40E_VFINT_DYN_CTLN1
1331
de32e3ef
CW
1332/**
1333 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1334 * @vsi: the VSI we care about
1335 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1336 *
1337 **/
1338static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1339 struct i40e_q_vector *q_vector)
1340{
1341 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1342 bool rx = false, tx = false;
1343 u32 rxval, txval;
de32e3ef 1344 int vector;
de32e3ef
CW
1345
1346 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1347
1348 /* avoid dynamic calculation if in countdown mode OR if
1349 * all dynamic is disabled
1350 */
8f5e39ce
JB
1351 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1352
ee2319cf
JB
1353 if (q_vector->itr_countdown > 0 ||
1354 (!ITR_IS_DYNAMIC(vsi->rx_itr_setting) &&
1355 !ITR_IS_DYNAMIC(vsi->tx_itr_setting))) {
1356 goto enable_int;
1357 }
1358
de32e3ef 1359 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
8f5e39ce
JB
1360 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1361 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1362 }
4eeb1fff 1363
de32e3ef 1364 if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
8f5e39ce
JB
1365 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1366 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1367 }
4eeb1fff 1368
8f5e39ce
JB
1369 if (rx || tx) {
1370 /* get the higher of the two ITR adjustments and
1371 * use the same value for both ITR registers
1372 * when in adaptive mode (Rx and/or Tx)
1373 */
1374 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1375
1376 q_vector->tx.itr = q_vector->rx.itr = itr;
1377 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1378 tx = true;
1379 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1380 rx = true;
de32e3ef 1381 }
8f5e39ce
JB
1382
1383 /* only need to enable the interrupt once, but need
1384 * to possibly update both ITR values
1385 */
1386 if (rx) {
1387 /* set the INTENA_MSK_MASK so that this first write
1388 * won't actually enable the interrupt, instead just
1389 * updating the ITR (it's bit 31 PF and VF)
1390 */
1391 rxval |= BIT(31);
1392 /* don't check _DOWN because interrupt isn't being enabled */
1393 wr32(hw, INTREG(vector - 1), rxval);
1394 }
1395
ee2319cf 1396enable_int:
8f5e39ce
JB
1397 if (!test_bit(__I40E_DOWN, &vsi->state))
1398 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1399
1400 if (q_vector->itr_countdown)
1401 q_vector->itr_countdown--;
1402 else
1403 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1404}
1405
7f12ad74
GR
1406/**
1407 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1408 * @napi: napi struct with our devices info in it
1409 * @budget: amount of work driver is allowed to do this pass, in packets
1410 *
1411 * This function will clean all queues associated with a q_vector.
1412 *
1413 * Returns the amount of work done
1414 **/
1415int i40evf_napi_poll(struct napi_struct *napi, int budget)
1416{
1417 struct i40e_q_vector *q_vector =
1418 container_of(napi, struct i40e_q_vector, napi);
1419 struct i40e_vsi *vsi = q_vector->vsi;
1420 struct i40e_ring *ring;
1421 bool clean_complete = true;
c29af37f 1422 bool arm_wb = false;
7f12ad74 1423 int budget_per_ring;
32b3e08f 1424 int work_done = 0;
7f12ad74
GR
1425
1426 if (test_bit(__I40E_DOWN, &vsi->state)) {
1427 napi_complete(napi);
1428 return 0;
1429 }
1430
1431 /* Since the actual Tx work is minimal, we can give the Tx a larger
1432 * budget and be more aggressive about cleaning up the Tx descriptors.
1433 */
c29af37f 1434 i40e_for_each_ring(ring, q_vector->tx) {
1a36d7fa
MW
1435 clean_complete = clean_complete &&
1436 i40e_clean_tx_irq(ring, vsi->work_limit);
44cdb791 1437 arm_wb = arm_wb || ring->arm_wb;
0deda868 1438 ring->arm_wb = false;
c29af37f 1439 }
7f12ad74 1440
c67caceb
AD
1441 /* Handle case where we are called by netpoll with a budget of 0 */
1442 if (budget <= 0)
1443 goto tx_only;
1444
7f12ad74
GR
1445 /* We attempt to distribute budget to each Rx queue fairly, but don't
1446 * allow the budget to go below 1 because that would exit polling early.
1447 */
1448 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1449
a132af24 1450 i40e_for_each_ring(ring, q_vector->rx) {
32b3e08f
JB
1451 int cleaned;
1452
a132af24
MW
1453 if (ring_is_ps_enabled(ring))
1454 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1455 else
1456 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
32b3e08f
JB
1457
1458 work_done += cleaned;
a132af24 1459 /* if we didn't clean as many as budgeted, we must be done */
1a36d7fa 1460 clean_complete = clean_complete && (budget_per_ring > cleaned);
a132af24 1461 }
7f12ad74
GR
1462
1463 /* If work not completed, return budget and polling will return */
c29af37f 1464 if (!clean_complete) {
c67caceb 1465tx_only:
164c9f54
ASJ
1466 if (arm_wb) {
1467 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
ecc6a239 1468 i40e_enable_wb_on_itr(vsi, q_vector);
164c9f54 1469 }
7f12ad74 1470 return budget;
c29af37f 1471 }
7f12ad74 1472
8e0764b4
ASJ
1473 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1474 q_vector->arm_wb_state = false;
1475
7f12ad74 1476 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1477 napi_complete_done(napi, work_done);
de32e3ef 1478 i40e_update_enable_itr(vsi, q_vector);
7f12ad74
GR
1479 return 0;
1480}
1481
1482/**
3e587cf3 1483 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1484 * @skb: send buffer
1485 * @tx_ring: ring to send buffer on
1486 * @flags: the tx flags to be set
1487 *
1488 * Checks the skb and set up correspondingly several generic transmit flags
1489 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1490 *
1491 * Returns error code indicate the frame should be dropped upon error and the
1492 * otherwise returns 0 to indicate the flags has been set properly.
1493 **/
3e587cf3
JB
1494static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1495 struct i40e_ring *tx_ring,
1496 u32 *flags)
7f12ad74
GR
1497{
1498 __be16 protocol = skb->protocol;
1499 u32 tx_flags = 0;
1500
31eaaccf
GR
1501 if (protocol == htons(ETH_P_8021Q) &&
1502 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1503 /* When HW VLAN acceleration is turned off by the user the
1504 * stack sets the protocol to 8021q so that the driver
1505 * can take any steps required to support the SW only
1506 * VLAN handling. In our case the driver doesn't need
1507 * to take any further steps so just set the protocol
1508 * to the encapsulated ethertype.
1509 */
1510 skb->protocol = vlan_get_protocol(skb);
1511 goto out;
1512 }
1513
7f12ad74 1514 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1515 if (skb_vlan_tag_present(skb)) {
1516 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1517 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1518 /* else if it is a SW VLAN, check the next protocol and store the tag */
1519 } else if (protocol == htons(ETH_P_8021Q)) {
1520 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1521
7f12ad74
GR
1522 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1523 if (!vhdr)
1524 return -EINVAL;
1525
1526 protocol = vhdr->h_vlan_encapsulated_proto;
1527 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1528 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1529 }
1530
31eaaccf 1531out:
7f12ad74
GR
1532 *flags = tx_flags;
1533 return 0;
1534}
1535
1536/**
1537 * i40e_tso - set up the tso context descriptor
1538 * @tx_ring: ptr to the ring to send
1539 * @skb: ptr to the skb we're sending
7f12ad74 1540 * @hdr_len: ptr to the size of the packet header
9c883bd3 1541 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1542 *
1543 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1544 **/
1545static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
9c883bd3 1546 u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
7f12ad74
GR
1547{
1548 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1549 struct ipv6hdr *ipv6h;
7f12ad74
GR
1550 struct tcphdr *tcph;
1551 struct iphdr *iph;
1552 u32 l4len;
1553 int err;
7f12ad74 1554
e9f6563d
SN
1555 if (skb->ip_summed != CHECKSUM_PARTIAL)
1556 return 0;
1557
7f12ad74
GR
1558 if (!skb_is_gso(skb))
1559 return 0;
1560
fe6d4aa4
FR
1561 err = skb_cow_head(skb, 0);
1562 if (err < 0)
1563 return err;
7f12ad74 1564
85e76d03
AS
1565 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1566 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1567
1568 if (iph->version == 4) {
7f12ad74
GR
1569 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1570 iph->tot_len = 0;
1571 iph->check = 0;
1572 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1573 0, IPPROTO_TCP, 0);
85e76d03 1574 } else if (ipv6h->version == 6) {
7f12ad74
GR
1575 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1576 ipv6h->payload_len = 0;
1577 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1578 0, IPPROTO_TCP, 0);
1579 }
1580
1581 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1582 *hdr_len = (skb->encapsulation
1583 ? (skb_inner_transport_header(skb) - skb->data)
1584 : skb_transport_offset(skb)) + l4len;
1585
1586 /* find the field values */
1587 cd_cmd = I40E_TX_CTX_DESC_TSO;
1588 cd_tso_len = skb->len - *hdr_len;
1589 cd_mss = skb_shinfo(skb)->gso_size;
1590 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1591 ((u64)cd_tso_len <<
1592 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1593 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1594 return 1;
1595}
1596
1597/**
1598 * i40e_tx_enable_csum - Enable Tx checksum offloads
1599 * @skb: send buffer
89232c3b 1600 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1601 * @td_cmd: Tx descriptor command bits to set
1602 * @td_offset: Tx descriptor header offsets to set
1603 * @cd_tunneling: ptr to context desc bits
1604 **/
89232c3b 1605static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
7f12ad74
GR
1606 u32 *td_cmd, u32 *td_offset,
1607 struct i40e_ring *tx_ring,
1608 u32 *cd_tunneling)
1609{
1610 struct ipv6hdr *this_ipv6_hdr;
1611 unsigned int this_tcp_hdrlen;
1612 struct iphdr *this_ip_hdr;
1613 u32 network_hdr_len;
1614 u8 l4_hdr = 0;
527274c7
ASJ
1615 struct udphdr *oudph;
1616 struct iphdr *oiph;
45991204 1617 u32 l4_tunnel = 0;
7f12ad74
GR
1618
1619 if (skb->encapsulation) {
45991204
ASJ
1620 switch (ip_hdr(skb)->protocol) {
1621 case IPPROTO_UDP:
527274c7
ASJ
1622 oudph = udp_hdr(skb);
1623 oiph = ip_hdr(skb);
45991204 1624 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1625 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204
ASJ
1626 break;
1627 default:
1628 return;
1629 }
7f12ad74
GR
1630 network_hdr_len = skb_inner_network_header_len(skb);
1631 this_ip_hdr = inner_ip_hdr(skb);
1632 this_ipv6_hdr = inner_ipv6_hdr(skb);
1633 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1634
89232c3b
ASJ
1635 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1636 if (*tx_flags & I40E_TX_FLAGS_TSO) {
7f12ad74
GR
1637 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1638 ip_hdr(skb)->check = 0;
1639 } else {
1640 *cd_tunneling |=
1641 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1642 }
89232c3b 1643 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
85e76d03 1644 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
89232c3b 1645 if (*tx_flags & I40E_TX_FLAGS_TSO)
7f12ad74 1646 ip_hdr(skb)->check = 0;
7f12ad74
GR
1647 }
1648
1649 /* Now set the ctx descriptor fields */
1650 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
45991204
ASJ
1651 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1652 l4_tunnel |
7f12ad74
GR
1653 ((skb_inner_network_offset(skb) -
1654 skb_transport_offset(skb)) >> 1) <<
1655 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
85e76d03 1656 if (this_ip_hdr->version == 6) {
89232c3b
ASJ
1657 *tx_flags &= ~I40E_TX_FLAGS_IPV4;
1658 *tx_flags |= I40E_TX_FLAGS_IPV6;
85e76d03
AS
1659 }
1660
527274c7
ASJ
1661 if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
1662 (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) &&
1663 (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
1664 oudph->check = ~csum_tcpudp_magic(oiph->saddr,
1665 oiph->daddr,
1666 (skb->len - skb_transport_offset(skb)),
1667 IPPROTO_UDP, 0);
1668 *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1669 }
7f12ad74
GR
1670 } else {
1671 network_hdr_len = skb_network_header_len(skb);
1672 this_ip_hdr = ip_hdr(skb);
1673 this_ipv6_hdr = ipv6_hdr(skb);
1674 this_tcp_hdrlen = tcp_hdrlen(skb);
1675 }
1676
1677 /* Enable IP checksum offloads */
89232c3b 1678 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
7f12ad74
GR
1679 l4_hdr = this_ip_hdr->protocol;
1680 /* the stack computes the IP header already, the only time we
1681 * need the hardware to recompute it is in the case of TSO.
1682 */
89232c3b 1683 if (*tx_flags & I40E_TX_FLAGS_TSO) {
7f12ad74
GR
1684 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1685 this_ip_hdr->check = 0;
1686 } else {
1687 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1688 }
1689 /* Now set the td_offset for IP header length */
1690 *td_offset = (network_hdr_len >> 2) <<
1691 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
89232c3b 1692 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
7f12ad74
GR
1693 l4_hdr = this_ipv6_hdr->nexthdr;
1694 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1695 /* Now set the td_offset for IP header length */
1696 *td_offset = (network_hdr_len >> 2) <<
1697 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1698 }
1699 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1700 *td_offset |= (skb_network_offset(skb) >> 1) <<
1701 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1702
1703 /* Enable L4 checksum offloads */
1704 switch (l4_hdr) {
1705 case IPPROTO_TCP:
1706 /* enable checksum offloads */
1707 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1708 *td_offset |= (this_tcp_hdrlen >> 2) <<
1709 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1710 break;
1711 case IPPROTO_SCTP:
1712 /* enable SCTP checksum offload */
1713 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1714 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1715 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1716 break;
1717 case IPPROTO_UDP:
1718 /* enable UDP checksum offload */
1719 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1720 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1721 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1722 break;
1723 default:
1724 break;
1725 }
1726}
1727
1728/**
1729 * i40e_create_tx_ctx Build the Tx context descriptor
1730 * @tx_ring: ring to create the descriptor on
1731 * @cd_type_cmd_tso_mss: Quad Word 1
1732 * @cd_tunneling: Quad Word 0 - bits 0-31
1733 * @cd_l2tag2: Quad Word 0 - bits 32-63
1734 **/
1735static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1736 const u64 cd_type_cmd_tso_mss,
1737 const u32 cd_tunneling, const u32 cd_l2tag2)
1738{
1739 struct i40e_tx_context_desc *context_desc;
1740 int i = tx_ring->next_to_use;
1741
ff40dd5d
JB
1742 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1743 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1744 return;
1745
1746 /* grab the next descriptor */
1747 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1748
1749 i++;
1750 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1751
1752 /* cpu_to_le32 and assign to struct fields */
1753 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1754 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1755 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1756 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1757}
1758
4eeb1fff 1759/**
71da6197
AS
1760 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1761 * @skb: send buffer
1762 * @tx_flags: collected send information
71da6197
AS
1763 *
1764 * Note: Our HW can't scatter-gather more than 8 fragments to build
1765 * a packet on the wire and so we need to figure out the cases where we
1766 * need to linearize the skb.
1767 **/
30520831 1768static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
71da6197
AS
1769{
1770 struct skb_frag_struct *frag;
1771 bool linearize = false;
1772 unsigned int size = 0;
1773 u16 num_frags;
1774 u16 gso_segs;
1775
1776 num_frags = skb_shinfo(skb)->nr_frags;
1777 gso_segs = skb_shinfo(skb)->gso_segs;
1778
1779 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
30520831 1780 u16 j = 0;
71da6197
AS
1781
1782 if (num_frags < (I40E_MAX_BUFFER_TXD))
1783 goto linearize_chk_done;
1784 /* try the simple math, if we have too many frags per segment */
1785 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1786 I40E_MAX_BUFFER_TXD) {
1787 linearize = true;
1788 goto linearize_chk_done;
1789 }
1790 frag = &skb_shinfo(skb)->frags[0];
71da6197
AS
1791 /* we might still have more fragments per segment */
1792 do {
1793 size += skb_frag_size(frag);
1794 frag++; j++;
30520831
ASJ
1795 if ((size >= skb_shinfo(skb)->gso_size) &&
1796 (j < I40E_MAX_BUFFER_TXD)) {
1797 size = (size % skb_shinfo(skb)->gso_size);
1798 j = (size) ? 1 : 0;
1799 }
71da6197 1800 if (j == I40E_MAX_BUFFER_TXD) {
30520831
ASJ
1801 linearize = true;
1802 break;
71da6197
AS
1803 }
1804 num_frags--;
1805 } while (num_frags);
1806 } else {
1807 if (num_frags >= I40E_MAX_BUFFER_TXD)
1808 linearize = true;
1809 }
1810
1811linearize_chk_done:
1812 return linearize;
1813}
1814
8f6a2b05
JB
1815/**
1816 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1817 * @tx_ring: the ring to be checked
1818 * @size: the size buffer we want to assure is available
1819 *
1820 * Returns -EBUSY if a stop is needed, else 0
1821 **/
1822static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1823{
1824 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1825 /* Memory barrier before checking head and tail */
1826 smp_mb();
1827
1828 /* Check again in a case another CPU has just made room available. */
1829 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1830 return -EBUSY;
1831
1832 /* A reprieve! - use start_queue because it doesn't call schedule */
1833 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1834 ++tx_ring->tx_stats.restart_queue;
1835 return 0;
1836}
1837
1838/**
1839 * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1840 * @tx_ring: the ring to be checked
1841 * @size: the size buffer we want to assure is available
1842 *
1843 * Returns 0 if stop is not needed
1844 **/
3e587cf3 1845static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1846{
1847 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1848 return 0;
1849 return __i40evf_maybe_stop_tx(tx_ring, size);
1850}
1851
7f12ad74 1852/**
3e587cf3 1853 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
1854 * @tx_ring: ring to send buffer on
1855 * @skb: send buffer
1856 * @first: first buffer info buffer to use
1857 * @tx_flags: collected send information
1858 * @hdr_len: size of the packet header
1859 * @td_cmd: the command field in the descriptor
1860 * @td_offset: offset for checksum or crc
1861 **/
3e587cf3
JB
1862static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1863 struct i40e_tx_buffer *first, u32 tx_flags,
1864 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
1865{
1866 unsigned int data_len = skb->data_len;
1867 unsigned int size = skb_headlen(skb);
1868 struct skb_frag_struct *frag;
1869 struct i40e_tx_buffer *tx_bi;
1870 struct i40e_tx_desc *tx_desc;
1871 u16 i = tx_ring->next_to_use;
1872 u32 td_tag = 0;
1873 dma_addr_t dma;
1874 u16 gso_segs;
6a7fded7
ASJ
1875 u16 desc_count = 0;
1876 bool tail_bump = true;
1877 bool do_rs = false;
7f12ad74
GR
1878
1879 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1880 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1881 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1882 I40E_TX_FLAGS_VLAN_SHIFT;
1883 }
1884
1885 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1886 gso_segs = skb_shinfo(skb)->gso_segs;
1887 else
1888 gso_segs = 1;
1889
1890 /* multiply data chunks by size of headers */
1891 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1892 first->gso_segs = gso_segs;
1893 first->skb = skb;
1894 first->tx_flags = tx_flags;
1895
1896 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1897
1898 tx_desc = I40E_TX_DESC(tx_ring, i);
1899 tx_bi = first;
1900
1901 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1902 if (dma_mapping_error(tx_ring->dev, dma))
1903 goto dma_error;
1904
1905 /* record length, and DMA address */
1906 dma_unmap_len_set(tx_bi, len, size);
1907 dma_unmap_addr_set(tx_bi, dma, dma);
1908
1909 tx_desc->buffer_addr = cpu_to_le64(dma);
1910
1911 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1912 tx_desc->cmd_type_offset_bsz =
1913 build_ctob(td_cmd, td_offset,
1914 I40E_MAX_DATA_PER_TXD, td_tag);
1915
1916 tx_desc++;
1917 i++;
6a7fded7
ASJ
1918 desc_count++;
1919
7f12ad74
GR
1920 if (i == tx_ring->count) {
1921 tx_desc = I40E_TX_DESC(tx_ring, 0);
1922 i = 0;
1923 }
1924
1925 dma += I40E_MAX_DATA_PER_TXD;
1926 size -= I40E_MAX_DATA_PER_TXD;
1927
1928 tx_desc->buffer_addr = cpu_to_le64(dma);
1929 }
1930
1931 if (likely(!data_len))
1932 break;
1933
1934 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1935 size, td_tag);
1936
1937 tx_desc++;
1938 i++;
6a7fded7
ASJ
1939 desc_count++;
1940
7f12ad74
GR
1941 if (i == tx_ring->count) {
1942 tx_desc = I40E_TX_DESC(tx_ring, 0);
1943 i = 0;
1944 }
1945
1946 size = skb_frag_size(frag);
1947 data_len -= size;
1948
1949 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1950 DMA_TO_DEVICE);
1951
1952 tx_bi = &tx_ring->tx_bi[i];
1953 }
1954
7f12ad74
GR
1955 /* set next_to_watch value indicating a packet is present */
1956 first->next_to_watch = tx_desc;
1957
1958 i++;
1959 if (i == tx_ring->count)
1960 i = 0;
1961
1962 tx_ring->next_to_use = i;
1963
6a7fded7
ASJ
1964 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1965 tx_ring->queue_index),
1966 first->bytecount);
8f6a2b05 1967 i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7
ASJ
1968
1969 /* Algorithm to optimize tail and RS bit setting:
1970 * if xmit_more is supported
1971 * if xmit_more is true
1972 * do not update tail and do not mark RS bit.
1973 * if xmit_more is false and last xmit_more was false
1974 * if every packet spanned less than 4 desc
1975 * then set RS bit on 4th packet and update tail
1976 * on every packet
1977 * else
1978 * update tail and set RS bit on every packet.
1979 * if xmit_more is false and last_xmit_more was true
1980 * update tail and set RS bit.
6a7fded7
ASJ
1981 *
1982 * Optimization: wmb to be issued only in case of tail update.
1983 * Also optimize the Descriptor WB path for RS bit with the same
1984 * algorithm.
1985 *
1986 * Note: If there are less than 4 packets
1987 * pending and interrupts were disabled the service task will
1988 * trigger a force WB.
1989 */
1990 if (skb->xmit_more &&
1991 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1992 tx_ring->queue_index))) {
1993 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
1994 tail_bump = false;
1995 } else if (!skb->xmit_more &&
1996 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1997 tx_ring->queue_index)) &&
1998 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
1999 (tx_ring->packet_stride < WB_STRIDE) &&
2000 (desc_count < WB_STRIDE)) {
2001 tx_ring->packet_stride++;
2002 } else {
2003 tx_ring->packet_stride = 0;
2004 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2005 do_rs = true;
2006 }
2007 if (do_rs)
2008 tx_ring->packet_stride = 0;
2009
2010 tx_desc->cmd_type_offset_bsz =
2011 build_ctob(td_cmd, td_offset, size, td_tag) |
2012 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2013 I40E_TX_DESC_CMD_EOP) <<
2014 I40E_TXD_QW1_CMD_SHIFT);
2015
7f12ad74 2016 /* notify HW of packet */
6a7fded7 2017 if (!tail_bump)
489ce7a4 2018 prefetchw(tx_desc + 1);
7f12ad74 2019
6a7fded7
ASJ
2020 if (tail_bump) {
2021 /* Force memory writes to complete before letting h/w
2022 * know there are new descriptors to fetch. (Only
2023 * applicable for weak-ordered memory model archs,
2024 * such as IA-64).
2025 */
2026 wmb();
2027 writel(i, tx_ring->tail);
2028 }
2029
7f12ad74
GR
2030 return;
2031
2032dma_error:
2033 dev_info(tx_ring->dev, "TX DMA map failed\n");
2034
2035 /* clear dma mappings for failed tx_bi map */
2036 for (;;) {
2037 tx_bi = &tx_ring->tx_bi[i];
2038 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2039 if (tx_bi == first)
2040 break;
2041 if (i == 0)
2042 i = tx_ring->count;
2043 i--;
2044 }
2045
2046 tx_ring->next_to_use = i;
2047}
2048
7f12ad74 2049/**
3e587cf3 2050 * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
7f12ad74
GR
2051 * @skb: send buffer
2052 * @tx_ring: ring to send buffer on
2053 *
2054 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2055 * there is not enough descriptors available in this ring since we need at least
2056 * one descriptor.
2057 **/
3e587cf3
JB
2058static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
2059 struct i40e_ring *tx_ring)
7f12ad74 2060{
7f12ad74 2061 unsigned int f;
7f12ad74
GR
2062 int count = 0;
2063
2064 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2065 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 2066 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
2067 * + 1 desc for context descriptor,
2068 * otherwise try next time
2069 */
7f12ad74
GR
2070 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2071 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 2072
7f12ad74 2073 count += TXD_USE_COUNT(skb_headlen(skb));
8f6a2b05 2074 if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
2075 tx_ring->tx_stats.tx_busy++;
2076 return 0;
2077 }
2078 return count;
2079}
2080
2081/**
2082 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2083 * @skb: send buffer
2084 * @tx_ring: ring to send buffer on
2085 *
2086 * Returns NETDEV_TX_OK if sent, else an error code
2087 **/
2088static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2089 struct i40e_ring *tx_ring)
2090{
2091 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2092 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2093 struct i40e_tx_buffer *first;
2094 u32 td_offset = 0;
2095 u32 tx_flags = 0;
2096 __be16 protocol;
2097 u32 td_cmd = 0;
2098 u8 hdr_len = 0;
2099 int tso;
6995b36c 2100
b74118f0
JB
2101 /* prefetch the data, we'll need it later */
2102 prefetch(skb->data);
2103
3e587cf3 2104 if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
7f12ad74
GR
2105 return NETDEV_TX_BUSY;
2106
2107 /* prepare the xmit flags */
3e587cf3 2108 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2109 goto out_drop;
2110
2111 /* obtain protocol of skb */
a12c4158 2112 protocol = vlan_get_protocol(skb);
7f12ad74
GR
2113
2114 /* record the location of the first descriptor for this packet */
2115 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2116
2117 /* setup IPv4/IPv6 offloads */
2118 if (protocol == htons(ETH_P_IP))
2119 tx_flags |= I40E_TX_FLAGS_IPV4;
2120 else if (protocol == htons(ETH_P_IPV6))
2121 tx_flags |= I40E_TX_FLAGS_IPV6;
2122
9c883bd3 2123 tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2124
2125 if (tso < 0)
2126 goto out_drop;
2127 else if (tso)
2128 tx_flags |= I40E_TX_FLAGS_TSO;
2129
2fc3d715 2130 if (i40e_chk_linearize(skb, tx_flags)) {
71da6197
AS
2131 if (skb_linearize(skb))
2132 goto out_drop;
2fc3d715
ASJ
2133 tx_ring->tx_stats.tx_linearize++;
2134 }
7f12ad74
GR
2135 skb_tx_timestamp(skb);
2136
2137 /* always enable CRC insertion offload */
2138 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2139
2140 /* Always offload the checksum, since it's in the data descriptor */
2141 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2142 tx_flags |= I40E_TX_FLAGS_CSUM;
2143
89232c3b 2144 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
7f12ad74
GR
2145 tx_ring, &cd_tunneling);
2146 }
2147
2148 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2149 cd_tunneling, cd_l2tag2);
2150
3e587cf3
JB
2151 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2152 td_cmd, td_offset);
7f12ad74 2153
7f12ad74
GR
2154 return NETDEV_TX_OK;
2155
2156out_drop:
2157 dev_kfree_skb_any(skb);
2158 return NETDEV_TX_OK;
2159}
2160
2161/**
2162 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2163 * @skb: send buffer
2164 * @netdev: network interface device structure
2165 *
2166 * Returns NETDEV_TX_OK if sent, else an error code
2167 **/
2168netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2169{
2170 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2171 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2172
2173 /* hardware can't handle really short frames, hardware padding works
2174 * beyond this point
2175 */
2176 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2177 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2178 return NETDEV_TX_OK;
2179 skb->len = I40E_MIN_TX_LEN;
2180 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2181 }
2182
2183 return i40e_xmit_frame_ring(skb, tx_ring);
2184}
This page took 0.378073 seconds and 5 git commands to generate.