fq_codel: Fair Queue Codel AQM
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / e1000_82575.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
6e861326 4 Copyright(c) 2007-2012 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
82bbcdeb
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
9d5c8243 34#include <linux/types.h>
2d064c06 35#include <linux/if_ether.h>
9d5c8243
AK
36
37#include "e1000_mac.h"
38#include "e1000_82575.h"
39
40static s32 igb_get_invariants_82575(struct e1000_hw *);
41static s32 igb_acquire_phy_82575(struct e1000_hw *);
42static void igb_release_phy_82575(struct e1000_hw *);
43static s32 igb_acquire_nvm_82575(struct e1000_hw *);
44static void igb_release_nvm_82575(struct e1000_hw *);
45static s32 igb_check_for_link_82575(struct e1000_hw *);
46static s32 igb_get_cfg_done_82575(struct e1000_hw *);
47static s32 igb_init_hw_82575(struct e1000_hw *);
48static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
49static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
bb2ac47b
AD
50static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
51static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
9d5c8243 52static s32 igb_reset_hw_82575(struct e1000_hw *);
bb2ac47b 53static s32 igb_reset_hw_82580(struct e1000_hw *);
9d5c8243
AK
54static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
55static s32 igb_setup_copper_link_82575(struct e1000_hw *);
2fb02a26 56static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
9d5c8243
AK
57static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
9d5c8243
AK
60static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 u16 *);
62static s32 igb_get_phy_id_82575(struct e1000_hw *);
63static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64static bool igb_sgmii_active_82575(struct e1000_hw *);
65static s32 igb_reset_init_script_82575(struct e1000_hw *);
66static s32 igb_read_mac_addr_82575(struct e1000_hw *);
009bc06e 67static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
99870a73 68static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
4322e561
CW
69static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
4322e561
CW
71static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
bb2ac47b
AD
73static const u16 e1000_82580_rxpbs_table[] =
74 { 36, 72, 144, 1, 2, 4, 8, 16,
75 35, 70, 140 };
76#define E1000_82580_RXPBS_TABLE_SIZE \
77 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
78
4085f746
NN
79/**
80 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
81 * @hw: pointer to the HW structure
82 *
83 * Called to determine if the I2C pins are being used for I2C or as an
84 * external MDIO interface since the two options are mutually exclusive.
85 **/
86static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
87{
88 u32 reg = 0;
89 bool ext_mdio = false;
90
91 switch (hw->mac.type) {
92 case e1000_82575:
93 case e1000_82576:
94 reg = rd32(E1000_MDIC);
95 ext_mdio = !!(reg & E1000_MDIC_DEST);
96 break;
97 case e1000_82580:
98 case e1000_i350:
99 reg = rd32(E1000_MDICNFG);
100 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 break;
102 default:
103 break;
104 }
105 return ext_mdio;
106}
107
9d5c8243
AK
108static s32 igb_get_invariants_82575(struct e1000_hw *hw)
109{
110 struct e1000_phy_info *phy = &hw->phy;
111 struct e1000_nvm_info *nvm = &hw->nvm;
112 struct e1000_mac_info *mac = &hw->mac;
c1889bfe 113 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
9d5c8243
AK
114 u32 eecd;
115 s32 ret_val;
116 u16 size;
117 u32 ctrl_ext = 0;
118
119 switch (hw->device_id) {
120 case E1000_DEV_ID_82575EB_COPPER:
121 case E1000_DEV_ID_82575EB_FIBER_SERDES:
122 case E1000_DEV_ID_82575GB_QUAD_COPPER:
123 mac->type = e1000_82575;
124 break;
2d064c06 125 case E1000_DEV_ID_82576:
9eb2341d 126 case E1000_DEV_ID_82576_NS:
747d49ba 127 case E1000_DEV_ID_82576_NS_SERDES:
2d064c06
AD
128 case E1000_DEV_ID_82576_FIBER:
129 case E1000_DEV_ID_82576_SERDES:
c8ea5ea9 130 case E1000_DEV_ID_82576_QUAD_COPPER:
b894fa26 131 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
4703bf73 132 case E1000_DEV_ID_82576_SERDES_QUAD:
2d064c06
AD
133 mac->type = e1000_82576;
134 break;
bb2ac47b
AD
135 case E1000_DEV_ID_82580_COPPER:
136 case E1000_DEV_ID_82580_FIBER:
6493d24f 137 case E1000_DEV_ID_82580_QUAD_FIBER:
bb2ac47b
AD
138 case E1000_DEV_ID_82580_SERDES:
139 case E1000_DEV_ID_82580_SGMII:
140 case E1000_DEV_ID_82580_COPPER_DUAL:
308fb39a
JG
141 case E1000_DEV_ID_DH89XXCC_SGMII:
142 case E1000_DEV_ID_DH89XXCC_SERDES:
1b5dda33
GJ
143 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
144 case E1000_DEV_ID_DH89XXCC_SFP:
bb2ac47b
AD
145 mac->type = e1000_82580;
146 break;
d2ba2ed8
AD
147 case E1000_DEV_ID_I350_COPPER:
148 case E1000_DEV_ID_I350_FIBER:
149 case E1000_DEV_ID_I350_SERDES:
150 case E1000_DEV_ID_I350_SGMII:
151 mac->type = e1000_i350;
152 break;
9d5c8243
AK
153 default:
154 return -E1000_ERR_MAC_INIT;
155 break;
156 }
157
9d5c8243
AK
158 /* Set media type */
159 /*
160 * The 82575 uses bits 22:23 for link mode. The mode can be changed
161 * based on the EEPROM. We cannot rely upon device ID. There
162 * is no distinguishable difference between fiber and internal
163 * SerDes mode on the 82575. There can be an external PHY attached
164 * on the SGMII interface. For this, we'll set sgmii_active to true.
165 */
166 phy->media_type = e1000_media_type_copper;
167 dev_spec->sgmii_active = false;
168
169 ctrl_ext = rd32(E1000_CTRL_EXT);
2fb02a26
AD
170 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
171 case E1000_CTRL_EXT_LINK_MODE_SGMII:
9d5c8243 172 dev_spec->sgmii_active = true;
2fb02a26 173 break;
bb2ac47b 174 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
2fb02a26
AD
175 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
176 hw->phy.media_type = e1000_media_type_internal_serdes;
2fb02a26
AD
177 break;
178 default:
2fb02a26 179 break;
9d5c8243 180 }
2fb02a26 181
9d5c8243
AK
182 /* Set mta register count */
183 mac->mta_reg_count = 128;
184 /* Set rar entry count */
185 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
2d064c06
AD
186 if (mac->type == e1000_82576)
187 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
bb2ac47b
AD
188 if (mac->type == e1000_82580)
189 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
d2ba2ed8
AD
190 if (mac->type == e1000_i350)
191 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
bb2ac47b 192 /* reset */
d2ba2ed8 193 if (mac->type >= e1000_82580)
bb2ac47b
AD
194 mac->ops.reset_hw = igb_reset_hw_82580;
195 else
196 mac->ops.reset_hw = igb_reset_hw_82575;
9d5c8243
AK
197 /* Set if part includes ASF firmware */
198 mac->asf_firmware_present = true;
199 /* Set if manageability features are enabled. */
200 mac->arc_subsystem_valid =
201 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
202 ? true : false;
09b068d4
CW
203 /* enable EEE on i350 parts */
204 if (mac->type == e1000_i350)
205 dev_spec->eee_disable = false;
206 else
207 dev_spec->eee_disable = true;
9d5c8243
AK
208 /* physical interface link setup */
209 mac->ops.setup_physical_interface =
210 (hw->phy.media_type == e1000_media_type_copper)
211 ? igb_setup_copper_link_82575
2fb02a26 212 : igb_setup_serdes_link_82575;
9d5c8243
AK
213
214 /* NVM initialization */
215 eecd = rd32(E1000_EECD);
216
217 nvm->opcode_bits = 8;
218 nvm->delay_usec = 1;
219 switch (nvm->override) {
220 case e1000_nvm_override_spi_large:
221 nvm->page_size = 32;
222 nvm->address_bits = 16;
223 break;
224 case e1000_nvm_override_spi_small:
225 nvm->page_size = 8;
226 nvm->address_bits = 8;
227 break;
228 default:
229 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
230 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
231 break;
232 }
233
234 nvm->type = e1000_nvm_eeprom_spi;
235
236 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237 E1000_EECD_SIZE_EX_SHIFT);
238
239 /*
240 * Added to a constant, "size" becomes the left-shift value
241 * for setting word_size.
242 */
243 size += NVM_WORD_SIZE_BASE_SHIFT;
5c3cad75 244
f6b1bfd1
CW
245 /*
246 * Check for invalid size
247 */
248 if ((hw->mac.type == e1000_82576) && (size > 15)) {
82bbcdeb 249 pr_notice("The NVM size is not valid, defaulting to 32K\n");
f6b1bfd1
CW
250 size = 15;
251 }
9d5c8243 252 nvm->word_size = 1 << size;
4322e561
CW
253 if (nvm->word_size == (1 << 15))
254 nvm->page_size = 128;
255
256 /* NVM Function Pointers */
257 nvm->ops.acquire = igb_acquire_nvm_82575;
258 if (nvm->word_size < (1 << 15))
259 nvm->ops.read = igb_read_nvm_eerd;
260 else
261 nvm->ops.read = igb_read_nvm_spi;
262
263 nvm->ops.release = igb_release_nvm_82575;
264 switch (hw->mac.type) {
265 case e1000_82580:
266 nvm->ops.validate = igb_validate_nvm_checksum_82580;
267 nvm->ops.update = igb_update_nvm_checksum_82580;
268 break;
269 case e1000_i350:
270 nvm->ops.validate = igb_validate_nvm_checksum_i350;
271 nvm->ops.update = igb_update_nvm_checksum_i350;
272 break;
273 default:
274 nvm->ops.validate = igb_validate_nvm_checksum;
275 nvm->ops.update = igb_update_nvm_checksum;
276 }
277 nvm->ops.write = igb_write_nvm_spi;
9d5c8243 278
6b78bb1d
CW
279 /* if part supports SR-IOV then initialize mailbox parameters */
280 switch (mac->type) {
281 case e1000_82576:
282 case e1000_i350:
a0c98605 283 igb_init_mbx_params_pf(hw);
6b78bb1d
CW
284 break;
285 default:
286 break;
287 }
a0c98605 288
9d5c8243
AK
289 /* setup PHY parameters */
290 if (phy->media_type != e1000_media_type_copper) {
291 phy->type = e1000_phy_none;
292 return 0;
293 }
294
295 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
296 phy->reset_delay_us = 100;
297
99870a73
AD
298 ctrl_ext = rd32(E1000_CTRL_EXT);
299
9d5c8243 300 /* PHY function pointers */
99870a73 301 if (igb_sgmii_active_82575(hw)) {
4085f746 302 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
99870a73
AD
303 ctrl_ext |= E1000_CTRL_I2C_ENA;
304 } else {
4085f746 305 phy->ops.reset = igb_phy_hw_reset;
99870a73
AD
306 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
307 }
308
309 wr32(E1000_CTRL_EXT, ctrl_ext);
310 igb_reset_mdicnfg_82580(hw);
4085f746
NN
311
312 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
313 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
314 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
d2ba2ed8 315 } else if (hw->mac.type >= e1000_82580) {
4085f746
NN
316 phy->ops.read_reg = igb_read_phy_reg_82580;
317 phy->ops.write_reg = igb_write_phy_reg_82580;
9d5c8243 318 } else {
4085f746
NN
319 phy->ops.read_reg = igb_read_phy_reg_igp;
320 phy->ops.write_reg = igb_write_phy_reg_igp;
9d5c8243
AK
321 }
322
19e588e7
AD
323 /* set lan id */
324 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
325 E1000_STATUS_FUNC_SHIFT;
326
9d5c8243
AK
327 /* Set phy->phy_addr and phy->id. */
328 ret_val = igb_get_phy_id_82575(hw);
329 if (ret_val)
330 return ret_val;
331
332 /* Verify phy id and set remaining function pointers */
333 switch (phy->id) {
308fb39a
JG
334 case I347AT4_E_PHY_ID:
335 case M88E1112_E_PHY_ID:
9d5c8243
AK
336 case M88E1111_I_PHY_ID:
337 phy->type = e1000_phy_m88;
338 phy->ops.get_phy_info = igb_get_phy_info_m88;
308fb39a
JG
339
340 if (phy->id == I347AT4_E_PHY_ID ||
341 phy->id == M88E1112_E_PHY_ID)
342 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
343 else
344 phy->ops.get_cable_length = igb_get_cable_length_m88;
345
9d5c8243
AK
346 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
347 break;
348 case IGP03E1000_E_PHY_ID:
349 phy->type = e1000_phy_igp_3;
350 phy->ops.get_phy_info = igb_get_phy_info_igp;
351 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
352 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
353 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
354 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
355 break;
bb2ac47b 356 case I82580_I_PHY_ID:
d2ba2ed8 357 case I350_I_PHY_ID:
bb2ac47b
AD
358 phy->type = e1000_phy_82580;
359 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
360 phy->ops.get_cable_length = igb_get_cable_length_82580;
361 phy->ops.get_phy_info = igb_get_phy_info_82580;
362 break;
9d5c8243
AK
363 default:
364 return -E1000_ERR_PHY;
365 }
366
367 return 0;
368}
369
370/**
733596be 371 * igb_acquire_phy_82575 - Acquire rights to access PHY
9d5c8243
AK
372 * @hw: pointer to the HW structure
373 *
374 * Acquire access rights to the correct PHY. This is a
375 * function pointer entry point called by the api module.
376 **/
377static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
378{
008c3422 379 u16 mask = E1000_SWFW_PHY0_SM;
9d5c8243 380
008c3422
AD
381 if (hw->bus.func == E1000_FUNC_1)
382 mask = E1000_SWFW_PHY1_SM;
ede3ef0d
NN
383 else if (hw->bus.func == E1000_FUNC_2)
384 mask = E1000_SWFW_PHY2_SM;
385 else if (hw->bus.func == E1000_FUNC_3)
386 mask = E1000_SWFW_PHY3_SM;
9d5c8243
AK
387
388 return igb_acquire_swfw_sync_82575(hw, mask);
389}
390
391/**
733596be 392 * igb_release_phy_82575 - Release rights to access PHY
9d5c8243
AK
393 * @hw: pointer to the HW structure
394 *
395 * A wrapper to release access rights to the correct PHY. This is a
396 * function pointer entry point called by the api module.
397 **/
398static void igb_release_phy_82575(struct e1000_hw *hw)
399{
008c3422
AD
400 u16 mask = E1000_SWFW_PHY0_SM;
401
402 if (hw->bus.func == E1000_FUNC_1)
403 mask = E1000_SWFW_PHY1_SM;
ede3ef0d
NN
404 else if (hw->bus.func == E1000_FUNC_2)
405 mask = E1000_SWFW_PHY2_SM;
406 else if (hw->bus.func == E1000_FUNC_3)
407 mask = E1000_SWFW_PHY3_SM;
9d5c8243 408
9d5c8243
AK
409 igb_release_swfw_sync_82575(hw, mask);
410}
411
412/**
733596be 413 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
9d5c8243
AK
414 * @hw: pointer to the HW structure
415 * @offset: register offset to be read
416 * @data: pointer to the read data
417 *
418 * Reads the PHY register at offset using the serial gigabit media independent
419 * interface and stores the retrieved information in data.
420 **/
421static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
422 u16 *data)
423{
bf6f7a92 424 s32 ret_val = -E1000_ERR_PARAM;
9d5c8243
AK
425
426 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 427 hw_dbg("PHY Address %u is out of range\n", offset);
bf6f7a92 428 goto out;
9d5c8243
AK
429 }
430
bf6f7a92
AD
431 ret_val = hw->phy.ops.acquire(hw);
432 if (ret_val)
433 goto out;
9d5c8243 434
bf6f7a92 435 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
9d5c8243 436
bf6f7a92
AD
437 hw->phy.ops.release(hw);
438
439out:
440 return ret_val;
9d5c8243
AK
441}
442
443/**
733596be 444 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
9d5c8243
AK
445 * @hw: pointer to the HW structure
446 * @offset: register offset to write to
447 * @data: data to write at register offset
448 *
449 * Writes the data to PHY register at the offset using the serial gigabit
450 * media independent interface.
451 **/
452static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
453 u16 data)
454{
bf6f7a92
AD
455 s32 ret_val = -E1000_ERR_PARAM;
456
9d5c8243
AK
457
458 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 459 hw_dbg("PHY Address %d is out of range\n", offset);
bf6f7a92 460 goto out;
9d5c8243
AK
461 }
462
bf6f7a92
AD
463 ret_val = hw->phy.ops.acquire(hw);
464 if (ret_val)
465 goto out;
9d5c8243 466
bf6f7a92 467 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
9d5c8243 468
bf6f7a92
AD
469 hw->phy.ops.release(hw);
470
471out:
472 return ret_val;
9d5c8243
AK
473}
474
475/**
733596be 476 * igb_get_phy_id_82575 - Retrieve PHY addr and id
9d5c8243
AK
477 * @hw: pointer to the HW structure
478 *
652fff32 479 * Retrieves the PHY address and ID for both PHY's which do and do not use
9d5c8243
AK
480 * sgmi interface.
481 **/
482static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
483{
484 struct e1000_phy_info *phy = &hw->phy;
485 s32 ret_val = 0;
486 u16 phy_id;
2fb02a26 487 u32 ctrl_ext;
4085f746 488 u32 mdic;
9d5c8243
AK
489
490 /*
491 * For SGMII PHYs, we try the list of possible addresses until
492 * we find one that works. For non-SGMII PHYs
493 * (e.g. integrated copper PHYs), an address of 1 should
494 * work. The result of this function should mean phy->phy_addr
495 * and phy->id are set correctly.
496 */
497 if (!(igb_sgmii_active_82575(hw))) {
498 phy->addr = 1;
499 ret_val = igb_get_phy_id(hw);
500 goto out;
501 }
502
4085f746
NN
503 if (igb_sgmii_uses_mdio_82575(hw)) {
504 switch (hw->mac.type) {
505 case e1000_82575:
506 case e1000_82576:
507 mdic = rd32(E1000_MDIC);
508 mdic &= E1000_MDIC_PHY_MASK;
509 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
510 break;
511 case e1000_82580:
512 case e1000_i350:
513 mdic = rd32(E1000_MDICNFG);
514 mdic &= E1000_MDICNFG_PHY_MASK;
515 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
516 break;
517 default:
518 ret_val = -E1000_ERR_PHY;
519 goto out;
520 break;
521 }
522 ret_val = igb_get_phy_id(hw);
523 goto out;
524 }
525
2fb02a26
AD
526 /* Power on sgmii phy if it is disabled */
527 ctrl_ext = rd32(E1000_CTRL_EXT);
528 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
529 wrfl();
530 msleep(300);
531
9d5c8243
AK
532 /*
533 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
534 * Therefore, we need to test 1-7
535 */
536 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
537 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
538 if (ret_val == 0) {
652fff32
AK
539 hw_dbg("Vendor ID 0x%08X read at address %u\n",
540 phy_id, phy->addr);
9d5c8243
AK
541 /*
542 * At the time of this writing, The M88 part is
543 * the only supported SGMII PHY product.
544 */
545 if (phy_id == M88_VENDOR)
546 break;
547 } else {
652fff32 548 hw_dbg("PHY address %u was unreadable\n", phy->addr);
9d5c8243
AK
549 }
550 }
551
552 /* A valid PHY type couldn't be found. */
553 if (phy->addr == 8) {
554 phy->addr = 0;
555 ret_val = -E1000_ERR_PHY;
556 goto out;
2fb02a26
AD
557 } else {
558 ret_val = igb_get_phy_id(hw);
9d5c8243
AK
559 }
560
2fb02a26
AD
561 /* restore previous sfp cage power state */
562 wr32(E1000_CTRL_EXT, ctrl_ext);
9d5c8243
AK
563
564out:
565 return ret_val;
566}
567
568/**
733596be 569 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
9d5c8243
AK
570 * @hw: pointer to the HW structure
571 *
572 * Resets the PHY using the serial gigabit media independent interface.
573 **/
574static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
575{
576 s32 ret_val;
577
578 /*
579 * This isn't a true "hard" reset, but is the only reset
580 * available to us at this time.
581 */
582
652fff32 583 hw_dbg("Soft resetting SGMII attached PHY...\n");
9d5c8243
AK
584
585 /*
586 * SFP documentation requires the following to configure the SPF module
587 * to work on SGMII. No further documentation is given.
588 */
a8d2a0c2 589 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
9d5c8243
AK
590 if (ret_val)
591 goto out;
592
593 ret_val = igb_phy_sw_reset(hw);
594
595out:
596 return ret_val;
597}
598
599/**
733596be 600 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
9d5c8243
AK
601 * @hw: pointer to the HW structure
602 * @active: true to enable LPLU, false to disable
603 *
604 * Sets the LPLU D0 state according to the active flag. When
605 * activating LPLU this function also disables smart speed
606 * and vice versa. LPLU will not be activated unless the
607 * device autonegotiation advertisement meets standards of
608 * either 10 or 10/100 or 10/100/1000 at all duplexes.
609 * This is a function pointer entry point only called by
610 * PHY setup routines.
611 **/
612static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
613{
614 struct e1000_phy_info *phy = &hw->phy;
615 s32 ret_val;
616 u16 data;
617
a8d2a0c2 618 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
9d5c8243
AK
619 if (ret_val)
620 goto out;
621
622 if (active) {
623 data |= IGP02E1000_PM_D0_LPLU;
a8d2a0c2 624 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
652fff32 625 data);
9d5c8243
AK
626 if (ret_val)
627 goto out;
628
629 /* When LPLU is enabled, we should disable SmartSpeed */
a8d2a0c2 630 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
652fff32 631 &data);
9d5c8243 632 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 633 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
652fff32 634 data);
9d5c8243
AK
635 if (ret_val)
636 goto out;
637 } else {
638 data &= ~IGP02E1000_PM_D0_LPLU;
a8d2a0c2 639 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
652fff32 640 data);
9d5c8243
AK
641 /*
642 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
643 * during Dx states where the power conservation is most
644 * important. During driver activity we should enable
645 * SmartSpeed, so performance is maintained.
646 */
647 if (phy->smart_speed == e1000_smart_speed_on) {
a8d2a0c2 648 ret_val = phy->ops.read_reg(hw,
652fff32 649 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
650 if (ret_val)
651 goto out;
652
653 data |= IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 654 ret_val = phy->ops.write_reg(hw,
652fff32 655 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
656 if (ret_val)
657 goto out;
658 } else if (phy->smart_speed == e1000_smart_speed_off) {
a8d2a0c2 659 ret_val = phy->ops.read_reg(hw,
652fff32 660 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
661 if (ret_val)
662 goto out;
663
664 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 665 ret_val = phy->ops.write_reg(hw,
652fff32 666 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
667 if (ret_val)
668 goto out;
669 }
670 }
671
672out:
673 return ret_val;
674}
675
676/**
733596be 677 * igb_acquire_nvm_82575 - Request for access to EEPROM
9d5c8243
AK
678 * @hw: pointer to the HW structure
679 *
652fff32 680 * Acquire the necessary semaphores for exclusive access to the EEPROM.
9d5c8243
AK
681 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
682 * Return successful if access grant bit set, else clear the request for
683 * EEPROM access and return -E1000_ERR_NVM (-1).
684 **/
685static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
686{
687 s32 ret_val;
688
689 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
690 if (ret_val)
691 goto out;
692
693 ret_val = igb_acquire_nvm(hw);
694
695 if (ret_val)
696 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
697
698out:
699 return ret_val;
700}
701
702/**
733596be 703 * igb_release_nvm_82575 - Release exclusive access to EEPROM
9d5c8243
AK
704 * @hw: pointer to the HW structure
705 *
706 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
707 * then release the semaphores acquired.
708 **/
709static void igb_release_nvm_82575(struct e1000_hw *hw)
710{
711 igb_release_nvm(hw);
712 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
713}
714
715/**
733596be 716 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
9d5c8243
AK
717 * @hw: pointer to the HW structure
718 * @mask: specifies which semaphore to acquire
719 *
720 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
721 * will also specify which port we're acquiring the lock for.
722 **/
723static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
724{
725 u32 swfw_sync;
726 u32 swmask = mask;
727 u32 fwmask = mask << 16;
728 s32 ret_val = 0;
729 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
730
731 while (i < timeout) {
732 if (igb_get_hw_semaphore(hw)) {
733 ret_val = -E1000_ERR_SWFW_SYNC;
734 goto out;
735 }
736
737 swfw_sync = rd32(E1000_SW_FW_SYNC);
738 if (!(swfw_sync & (fwmask | swmask)))
739 break;
740
741 /*
742 * Firmware currently using resource (fwmask)
743 * or other software thread using resource (swmask)
744 */
745 igb_put_hw_semaphore(hw);
746 mdelay(5);
747 i++;
748 }
749
750 if (i == timeout) {
652fff32 751 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
9d5c8243
AK
752 ret_val = -E1000_ERR_SWFW_SYNC;
753 goto out;
754 }
755
756 swfw_sync |= swmask;
757 wr32(E1000_SW_FW_SYNC, swfw_sync);
758
759 igb_put_hw_semaphore(hw);
760
761out:
762 return ret_val;
763}
764
765/**
733596be 766 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
9d5c8243
AK
767 * @hw: pointer to the HW structure
768 * @mask: specifies which semaphore to acquire
769 *
770 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
771 * will also specify which port we're releasing the lock for.
772 **/
773static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
774{
775 u32 swfw_sync;
776
777 while (igb_get_hw_semaphore(hw) != 0);
778 /* Empty */
779
780 swfw_sync = rd32(E1000_SW_FW_SYNC);
781 swfw_sync &= ~mask;
782 wr32(E1000_SW_FW_SYNC, swfw_sync);
783
784 igb_put_hw_semaphore(hw);
785}
786
787/**
733596be 788 * igb_get_cfg_done_82575 - Read config done bit
9d5c8243
AK
789 * @hw: pointer to the HW structure
790 *
791 * Read the management control register for the config done bit for
792 * completion status. NOTE: silicon which is EEPROM-less will fail trying
793 * to read the config done bit, so an error is *ONLY* logged and returns
794 * 0. If we were to return with error, EEPROM-less silicon
795 * would not be able to be reset or change link.
796 **/
797static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
798{
799 s32 timeout = PHY_CFG_TIMEOUT;
800 s32 ret_val = 0;
801 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
802
803 if (hw->bus.func == 1)
804 mask = E1000_NVM_CFG_DONE_PORT_1;
bb2ac47b
AD
805 else if (hw->bus.func == E1000_FUNC_2)
806 mask = E1000_NVM_CFG_DONE_PORT_2;
807 else if (hw->bus.func == E1000_FUNC_3)
808 mask = E1000_NVM_CFG_DONE_PORT_3;
9d5c8243
AK
809
810 while (timeout) {
811 if (rd32(E1000_EEMNGCTL) & mask)
812 break;
813 msleep(1);
814 timeout--;
815 }
816 if (!timeout)
652fff32 817 hw_dbg("MNG configuration cycle has not completed.\n");
9d5c8243
AK
818
819 /* If EEPROM is not marked present, init the PHY manually */
820 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
821 (hw->phy.type == e1000_phy_igp_3))
822 igb_phy_init_script_igp3(hw);
823
824 return ret_val;
825}
826
827/**
733596be 828 * igb_check_for_link_82575 - Check for link
9d5c8243
AK
829 * @hw: pointer to the HW structure
830 *
831 * If sgmii is enabled, then use the pcs register to determine link, otherwise
832 * use the generic interface for determining link.
833 **/
834static s32 igb_check_for_link_82575(struct e1000_hw *hw)
835{
836 s32 ret_val;
837 u16 speed, duplex;
838
70d92f86 839 if (hw->phy.media_type != e1000_media_type_copper) {
9d5c8243 840 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
2d064c06 841 &duplex);
5d0932a5
AD
842 /*
843 * Use this flag to determine if link needs to be checked or
844 * not. If we have link clear the flag so that we do not
845 * continue to check for link.
846 */
847 hw->mac.get_link_status = !hw->mac.serdes_has_link;
848 } else {
9d5c8243 849 ret_val = igb_check_for_copper_link(hw);
5d0932a5 850 }
9d5c8243
AK
851
852 return ret_val;
853}
70d92f86 854
88a268c1
NN
855/**
856 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
857 * @hw: pointer to the HW structure
858 **/
859void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
860{
861 u32 reg;
862
863
864 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
865 !igb_sgmii_active_82575(hw))
866 return;
867
868 /* Enable PCS to turn on link */
869 reg = rd32(E1000_PCS_CFG0);
870 reg |= E1000_PCS_CFG_PCS_EN;
871 wr32(E1000_PCS_CFG0, reg);
872
873 /* Power up the laser */
874 reg = rd32(E1000_CTRL_EXT);
875 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
876 wr32(E1000_CTRL_EXT, reg);
877
878 /* flush the write to verify completion */
879 wrfl();
880 msleep(1);
881}
882
9d5c8243 883/**
733596be 884 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
9d5c8243
AK
885 * @hw: pointer to the HW structure
886 * @speed: stores the current speed
887 * @duplex: stores the current duplex
888 *
652fff32 889 * Using the physical coding sub-layer (PCS), retrieve the current speed and
9d5c8243
AK
890 * duplex, then store the values in the pointers provided.
891 **/
892static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
893 u16 *duplex)
894{
895 struct e1000_mac_info *mac = &hw->mac;
896 u32 pcs;
897
898 /* Set up defaults for the return values of this function */
899 mac->serdes_has_link = false;
900 *speed = 0;
901 *duplex = 0;
902
903 /*
904 * Read the PCS Status register for link state. For non-copper mode,
905 * the status register is not accurate. The PCS status register is
906 * used instead.
907 */
908 pcs = rd32(E1000_PCS_LSTAT);
909
910 /*
911 * The link up bit determines when link is up on autoneg. The sync ok
912 * gets set once both sides sync up and agree upon link. Stable link
913 * can be determined by checking for both link up and link sync ok
914 */
915 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
916 mac->serdes_has_link = true;
917
918 /* Detect and store PCS speed */
919 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
920 *speed = SPEED_1000;
921 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
922 *speed = SPEED_100;
923 } else {
924 *speed = SPEED_10;
925 }
926
927 /* Detect and store PCS duplex */
928 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
929 *duplex = FULL_DUPLEX;
930 } else {
931 *duplex = HALF_DUPLEX;
932 }
933 }
934
935 return 0;
936}
937
2d064c06 938/**
2fb02a26 939 * igb_shutdown_serdes_link_82575 - Remove link during power down
9d5c8243 940 * @hw: pointer to the HW structure
9d5c8243 941 *
2d064c06
AD
942 * In the case of fiber serdes, shut down optics and PCS on driver unload
943 * when management pass thru is not enabled.
9d5c8243 944 **/
2fb02a26 945void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 946{
2d064c06
AD
947 u32 reg;
948
53c992fa 949 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
2fb02a26 950 igb_sgmii_active_82575(hw))
2d064c06
AD
951 return;
952
53c992fa 953 if (!igb_enable_mng_pass_thru(hw)) {
2d064c06
AD
954 /* Disable PCS to turn off link */
955 reg = rd32(E1000_PCS_CFG0);
956 reg &= ~E1000_PCS_CFG_PCS_EN;
957 wr32(E1000_PCS_CFG0, reg);
958
959 /* shutdown the laser */
960 reg = rd32(E1000_CTRL_EXT);
2fb02a26 961 reg |= E1000_CTRL_EXT_SDP3_DATA;
2d064c06
AD
962 wr32(E1000_CTRL_EXT, reg);
963
964 /* flush the write to verify completion */
965 wrfl();
966 msleep(1);
967 }
9d5c8243
AK
968}
969
970/**
733596be 971 * igb_reset_hw_82575 - Reset hardware
9d5c8243
AK
972 * @hw: pointer to the HW structure
973 *
974 * This resets the hardware into a known state. This is a
975 * function pointer entry point called by the api module.
976 **/
977static s32 igb_reset_hw_82575(struct e1000_hw *hw)
978{
979 u32 ctrl, icr;
980 s32 ret_val;
981
982 /*
983 * Prevent the PCI-E bus from sticking if there is no TLP connection
984 * on the last TLP read/write transaction when MAC is reset.
985 */
986 ret_val = igb_disable_pcie_master(hw);
987 if (ret_val)
652fff32 988 hw_dbg("PCI-E Master disable polling has failed.\n");
9d5c8243 989
009bc06e
AD
990 /* set the completion timeout for interface */
991 ret_val = igb_set_pcie_completion_timeout(hw);
992 if (ret_val) {
993 hw_dbg("PCI-E Set completion timeout has failed.\n");
994 }
995
652fff32 996 hw_dbg("Masking off all interrupts\n");
9d5c8243
AK
997 wr32(E1000_IMC, 0xffffffff);
998
999 wr32(E1000_RCTL, 0);
1000 wr32(E1000_TCTL, E1000_TCTL_PSP);
1001 wrfl();
1002
1003 msleep(10);
1004
1005 ctrl = rd32(E1000_CTRL);
1006
652fff32 1007 hw_dbg("Issuing a global reset to MAC\n");
9d5c8243
AK
1008 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1009
1010 ret_val = igb_get_auto_rd_done(hw);
1011 if (ret_val) {
1012 /*
1013 * When auto config read does not complete, do not
1014 * return with an error. This can happen in situations
1015 * where there is no eeprom and prevents getting link.
1016 */
652fff32 1017 hw_dbg("Auto Read Done did not complete\n");
9d5c8243
AK
1018 }
1019
1020 /* If EEPROM is not present, run manual init scripts */
1021 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1022 igb_reset_init_script_82575(hw);
1023
1024 /* Clear any pending interrupt events. */
1025 wr32(E1000_IMC, 0xffffffff);
1026 icr = rd32(E1000_ICR);
1027
5ac16659
AD
1028 /* Install any alternate MAC address into RAR0 */
1029 ret_val = igb_check_alt_mac_addr(hw);
9d5c8243
AK
1030
1031 return ret_val;
1032}
1033
1034/**
733596be 1035 * igb_init_hw_82575 - Initialize hardware
9d5c8243
AK
1036 * @hw: pointer to the HW structure
1037 *
1038 * This inits the hardware readying it for operation.
1039 **/
1040static s32 igb_init_hw_82575(struct e1000_hw *hw)
1041{
1042 struct e1000_mac_info *mac = &hw->mac;
1043 s32 ret_val;
1044 u16 i, rar_count = mac->rar_entry_count;
1045
1046 /* Initialize identification LED */
1047 ret_val = igb_id_led_init(hw);
1048 if (ret_val) {
652fff32 1049 hw_dbg("Error initializing identification LED\n");
9d5c8243
AK
1050 /* This is not fatal and we should not stop init due to this */
1051 }
1052
1053 /* Disabling VLAN filtering */
652fff32 1054 hw_dbg("Initializing the IEEE VLAN\n");
1128c756
CW
1055 if (hw->mac.type == e1000_i350)
1056 igb_clear_vfta_i350(hw);
1057 else
1058 igb_clear_vfta(hw);
9d5c8243
AK
1059
1060 /* Setup the receive address */
5ac16659
AD
1061 igb_init_rx_addrs(hw, rar_count);
1062
9d5c8243 1063 /* Zero out the Multicast HASH table */
652fff32 1064 hw_dbg("Zeroing the MTA\n");
9d5c8243
AK
1065 for (i = 0; i < mac->mta_reg_count; i++)
1066 array_wr32(E1000_MTA, i, 0);
1067
68d480c4
AD
1068 /* Zero out the Unicast HASH table */
1069 hw_dbg("Zeroing the UTA\n");
1070 for (i = 0; i < mac->uta_reg_count; i++)
1071 array_wr32(E1000_UTA, i, 0);
1072
9d5c8243
AK
1073 /* Setup link and flow control */
1074 ret_val = igb_setup_link(hw);
1075
1076 /*
1077 * Clear all of the statistics registers (clear on read). It is
1078 * important that we do this after we have tried to establish link
1079 * because the symbol error count will increment wildly if there
1080 * is no link.
1081 */
1082 igb_clear_hw_cntrs_82575(hw);
1083
1084 return ret_val;
1085}
1086
1087/**
733596be 1088 * igb_setup_copper_link_82575 - Configure copper link settings
9d5c8243
AK
1089 * @hw: pointer to the HW structure
1090 *
1091 * Configures the link for auto-neg or forced speed and duplex. Then we check
1092 * for link, once link is established calls to configure collision distance
1093 * and flow control are called.
1094 **/
1095static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1096{
12645a19 1097 u32 ctrl;
9d5c8243 1098 s32 ret_val;
9d5c8243
AK
1099
1100 ctrl = rd32(E1000_CTRL);
1101 ctrl |= E1000_CTRL_SLU;
1102 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1103 wr32(E1000_CTRL, ctrl);
1104
2fb02a26
AD
1105 ret_val = igb_setup_serdes_link_82575(hw);
1106 if (ret_val)
1107 goto out;
1108
1109 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
bb2ac47b
AD
1110 /* allow time for SFP cage time to power up phy */
1111 msleep(300);
1112
2fb02a26
AD
1113 ret_val = hw->phy.ops.reset(hw);
1114 if (ret_val) {
1115 hw_dbg("Error resetting the PHY.\n");
1116 goto out;
1117 }
1118 }
9d5c8243
AK
1119 switch (hw->phy.type) {
1120 case e1000_phy_m88:
308fb39a
JG
1121 if (hw->phy.id == I347AT4_E_PHY_ID ||
1122 hw->phy.id == M88E1112_E_PHY_ID)
1123 ret_val = igb_copper_link_setup_m88_gen2(hw);
1124 else
1125 ret_val = igb_copper_link_setup_m88(hw);
9d5c8243
AK
1126 break;
1127 case e1000_phy_igp_3:
1128 ret_val = igb_copper_link_setup_igp(hw);
9d5c8243 1129 break;
bb2ac47b
AD
1130 case e1000_phy_82580:
1131 ret_val = igb_copper_link_setup_82580(hw);
1132 break;
9d5c8243
AK
1133 default:
1134 ret_val = -E1000_ERR_PHY;
1135 break;
1136 }
1137
1138 if (ret_val)
1139 goto out;
1140
81fadd81 1141 ret_val = igb_setup_copper_link(hw);
9d5c8243
AK
1142out:
1143 return ret_val;
1144}
1145
1146/**
70d92f86 1147 * igb_setup_serdes_link_82575 - Setup link for serdes
9d5c8243
AK
1148 * @hw: pointer to the HW structure
1149 *
70d92f86
AD
1150 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1151 * used on copper connections where the serialized gigabit media independent
1152 * interface (sgmii), or serdes fiber is being used. Configures the link
1153 * for auto-negotiation or forces speed/duplex.
9d5c8243 1154 **/
2fb02a26 1155static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 1156{
bb2ac47b
AD
1157 u32 ctrl_ext, ctrl_reg, reg;
1158 bool pcs_autoneg;
2c670b5b
CW
1159 s32 ret_val = E1000_SUCCESS;
1160 u16 data;
2fb02a26
AD
1161
1162 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1163 !igb_sgmii_active_82575(hw))
2c670b5b
CW
1164 return ret_val;
1165
9d5c8243
AK
1166
1167 /*
1168 * On the 82575, SerDes loopback mode persists until it is
1169 * explicitly turned off or a power cycle is performed. A read to
1170 * the register does not indicate its status. Therefore, we ensure
1171 * loopback mode is disabled during initialization.
1172 */
1173 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1174
2fb02a26 1175 /* power on the sfp cage if present */
bb2ac47b
AD
1176 ctrl_ext = rd32(E1000_CTRL_EXT);
1177 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1178 wr32(E1000_CTRL_EXT, ctrl_ext);
2fb02a26
AD
1179
1180 ctrl_reg = rd32(E1000_CTRL);
1181 ctrl_reg |= E1000_CTRL_SLU;
1182
1183 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1184 /* set both sw defined pins */
1185 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1186
1187 /* Set switch control to serdes energy detect */
1188 reg = rd32(E1000_CONNSW);
1189 reg |= E1000_CONNSW_ENRGSRC;
1190 wr32(E1000_CONNSW, reg);
1191 }
1192
1193 reg = rd32(E1000_PCS_LCTL);
1194
bb2ac47b
AD
1195 /* default pcs_autoneg to the same setting as mac autoneg */
1196 pcs_autoneg = hw->mac.autoneg;
2fb02a26 1197
bb2ac47b
AD
1198 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1199 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1200 /* sgmii mode lets the phy handle forcing speed/duplex */
1201 pcs_autoneg = true;
1202 /* autoneg time out should be disabled for SGMII mode */
2fb02a26 1203 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
bb2ac47b
AD
1204 break;
1205 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1206 /* disable PCS autoneg and support parallel detect only */
1207 pcs_autoneg = false;
1208 default:
2c670b5b
CW
1209 if (hw->mac.type == e1000_82575 ||
1210 hw->mac.type == e1000_82576) {
1211 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1212 if (ret_val) {
1213 printk(KERN_DEBUG "NVM Read Error\n\n");
1214 return ret_val;
1215 }
1216
1217 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1218 pcs_autoneg = false;
1219 }
1220
bb2ac47b
AD
1221 /*
1222 * non-SGMII modes only supports a speed of 1000/Full for the
1223 * link so it is best to just force the MAC and let the pcs
1224 * link either autoneg or be forced to 1000/Full
1225 */
2fb02a26
AD
1226 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1227 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
bb2ac47b
AD
1228
1229 /* set speed of 1000/Full if speed/duplex is forced */
1230 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1231 break;
921aa749
AD
1232 }
1233
2fb02a26 1234 wr32(E1000_CTRL, ctrl_reg);
9d5c8243
AK
1235
1236 /*
1237 * New SerDes mode allows for forcing speed or autonegotiating speed
1238 * at 1gb. Autoneg should be default set by most drivers. This is the
1239 * mode that will be compatible with older link partners and switches.
1240 * However, both are supported by the hardware and some drivers/tools.
1241 */
9d5c8243
AK
1242 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1243 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1244
2fb02a26
AD
1245 /*
1246 * We force flow control to prevent the CTRL register values from being
1247 * overwritten by the autonegotiated flow control values
1248 */
1249 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1250
bb2ac47b 1251 if (pcs_autoneg) {
9d5c8243 1252 /* Set PCS register for autoneg */
bb2ac47b 1253 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
70d92f86 1254 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
bb2ac47b 1255 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
9d5c8243 1256 } else {
bb2ac47b 1257 /* Set PCS register for forced link */
d68caec6 1258 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
bb2ac47b
AD
1259
1260 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
9d5c8243 1261 }
726c09e7 1262
9d5c8243
AK
1263 wr32(E1000_PCS_LCTL, reg);
1264
2fb02a26
AD
1265 if (!igb_sgmii_active_82575(hw))
1266 igb_force_mac_fc(hw);
9d5c8243 1267
2c670b5b 1268 return ret_val;
9d5c8243
AK
1269}
1270
1271/**
733596be 1272 * igb_sgmii_active_82575 - Return sgmii state
9d5c8243
AK
1273 * @hw: pointer to the HW structure
1274 *
1275 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1276 * which can be enabled for use in the embedded applications. Simply
1277 * return the current state of the sgmii interface.
1278 **/
1279static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1280{
c1889bfe 1281 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
c1889bfe 1282 return dev_spec->sgmii_active;
9d5c8243
AK
1283}
1284
1285/**
733596be 1286 * igb_reset_init_script_82575 - Inits HW defaults after reset
9d5c8243
AK
1287 * @hw: pointer to the HW structure
1288 *
1289 * Inits recommended HW defaults after a reset when there is no EEPROM
1290 * detected. This is only for the 82575.
1291 **/
1292static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1293{
1294 if (hw->mac.type == e1000_82575) {
652fff32 1295 hw_dbg("Running reset init script for 82575\n");
9d5c8243
AK
1296 /* SerDes configuration via SERDESCTRL */
1297 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1298 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1299 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1300 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1301
1302 /* CCM configuration via CCMCTL register */
1303 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1304 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1305
1306 /* PCIe lanes configuration */
1307 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1308 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1309 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1310 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1311
1312 /* PCIe PLL Configuration */
1313 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1314 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1315 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1316 }
1317
1318 return 0;
1319}
1320
1321/**
733596be 1322 * igb_read_mac_addr_82575 - Read device MAC address
9d5c8243
AK
1323 * @hw: pointer to the HW structure
1324 **/
1325static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1326{
1327 s32 ret_val = 0;
1328
22896639
AD
1329 /*
1330 * If there's an alternate MAC address place it in RAR0
1331 * so that it will override the Si installed default perm
1332 * address.
1333 */
1334 ret_val = igb_check_alt_mac_addr(hw);
1335 if (ret_val)
1336 goto out;
1337
1338 ret_val = igb_read_mac_addr(hw);
9d5c8243 1339
22896639 1340out:
9d5c8243
AK
1341 return ret_val;
1342}
1343
88a268c1
NN
1344/**
1345 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1346 * @hw: pointer to the HW structure
1347 *
1348 * In the case of a PHY power down to save power, or to turn off link during a
1349 * driver unload, or wake on lan is not enabled, remove the link.
1350 **/
1351void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1352{
1353 /* If the management interface is not enabled, then power down */
1354 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1355 igb_power_down_phy_copper(hw);
88a268c1
NN
1356}
1357
9d5c8243 1358/**
733596be 1359 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
9d5c8243
AK
1360 * @hw: pointer to the HW structure
1361 *
1362 * Clears the hardware counters by reading the counter registers.
1363 **/
1364static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1365{
9d5c8243
AK
1366 igb_clear_hw_cntrs_base(hw);
1367
cc9073bb
AD
1368 rd32(E1000_PRC64);
1369 rd32(E1000_PRC127);
1370 rd32(E1000_PRC255);
1371 rd32(E1000_PRC511);
1372 rd32(E1000_PRC1023);
1373 rd32(E1000_PRC1522);
1374 rd32(E1000_PTC64);
1375 rd32(E1000_PTC127);
1376 rd32(E1000_PTC255);
1377 rd32(E1000_PTC511);
1378 rd32(E1000_PTC1023);
1379 rd32(E1000_PTC1522);
1380
1381 rd32(E1000_ALGNERRC);
1382 rd32(E1000_RXERRC);
1383 rd32(E1000_TNCRS);
1384 rd32(E1000_CEXTERR);
1385 rd32(E1000_TSCTC);
1386 rd32(E1000_TSCTFC);
1387
1388 rd32(E1000_MGTPRC);
1389 rd32(E1000_MGTPDC);
1390 rd32(E1000_MGTPTC);
1391
1392 rd32(E1000_IAC);
1393 rd32(E1000_ICRXOC);
1394
1395 rd32(E1000_ICRXPTC);
1396 rd32(E1000_ICRXATC);
1397 rd32(E1000_ICTXPTC);
1398 rd32(E1000_ICTXATC);
1399 rd32(E1000_ICTXQEC);
1400 rd32(E1000_ICTXQMTC);
1401 rd32(E1000_ICRXDMTC);
1402
1403 rd32(E1000_CBTMPC);
1404 rd32(E1000_HTDPMC);
1405 rd32(E1000_CBRMPC);
1406 rd32(E1000_RPTHC);
1407 rd32(E1000_HGPTC);
1408 rd32(E1000_HTCBDPC);
1409 rd32(E1000_HGORCL);
1410 rd32(E1000_HGORCH);
1411 rd32(E1000_HGOTCL);
1412 rd32(E1000_HGOTCH);
1413 rd32(E1000_LENERRS);
9d5c8243
AK
1414
1415 /* This register should not be read in copper configurations */
2fb02a26
AD
1416 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1417 igb_sgmii_active_82575(hw))
cc9073bb 1418 rd32(E1000_SCVPC);
9d5c8243
AK
1419}
1420
662d7205
AD
1421/**
1422 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1423 * @hw: pointer to the HW structure
1424 *
1425 * After rx enable if managability is enabled then there is likely some
1426 * bad data at the start of the fifo and possibly in the DMA fifo. This
1427 * function clears the fifos and flushes any packets that came in as rx was
1428 * being enabled.
1429 **/
1430void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1431{
1432 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1433 int i, ms_wait;
1434
1435 if (hw->mac.type != e1000_82575 ||
1436 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1437 return;
1438
1439 /* Disable all RX queues */
1440 for (i = 0; i < 4; i++) {
1441 rxdctl[i] = rd32(E1000_RXDCTL(i));
1442 wr32(E1000_RXDCTL(i),
1443 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1444 }
1445 /* Poll all queues to verify they have shut down */
1446 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1447 msleep(1);
1448 rx_enabled = 0;
1449 for (i = 0; i < 4; i++)
1450 rx_enabled |= rd32(E1000_RXDCTL(i));
1451 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1452 break;
1453 }
1454
1455 if (ms_wait == 10)
1456 hw_dbg("Queue disable timed out after 10ms\n");
1457
1458 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1459 * incoming packets are rejected. Set enable and wait 2ms so that
1460 * any packet that was coming in as RCTL.EN was set is flushed
1461 */
1462 rfctl = rd32(E1000_RFCTL);
1463 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1464
1465 rlpml = rd32(E1000_RLPML);
1466 wr32(E1000_RLPML, 0);
1467
1468 rctl = rd32(E1000_RCTL);
1469 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1470 temp_rctl |= E1000_RCTL_LPE;
1471
1472 wr32(E1000_RCTL, temp_rctl);
1473 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1474 wrfl();
1475 msleep(2);
1476
1477 /* Enable RX queues that were previously enabled and restore our
1478 * previous state
1479 */
1480 for (i = 0; i < 4; i++)
1481 wr32(E1000_RXDCTL(i), rxdctl[i]);
1482 wr32(E1000_RCTL, rctl);
1483 wrfl();
1484
1485 wr32(E1000_RLPML, rlpml);
1486 wr32(E1000_RFCTL, rfctl);
1487
1488 /* Flush receive errors generated by workaround */
1489 rd32(E1000_ROC);
1490 rd32(E1000_RNBC);
1491 rd32(E1000_MPC);
1492}
1493
009bc06e
AD
1494/**
1495 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1496 * @hw: pointer to the HW structure
1497 *
1498 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1499 * however the hardware default for these parts is 500us to 1ms which is less
1500 * than the 10ms recommended by the pci-e spec. To address this we need to
1501 * increase the value to either 10ms to 200ms for capability version 1 config,
1502 * or 16ms to 55ms for version 2.
1503 **/
1504static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1505{
1506 u32 gcr = rd32(E1000_GCR);
1507 s32 ret_val = 0;
1508 u16 pcie_devctl2;
1509
1510 /* only take action if timeout value is defaulted to 0 */
1511 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1512 goto out;
1513
1514 /*
1515 * if capababilities version is type 1 we can write the
1516 * timeout of 10ms to 200ms through the GCR register
1517 */
1518 if (!(gcr & E1000_GCR_CAP_VER2)) {
1519 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1520 goto out;
1521 }
1522
1523 /*
1524 * for version 2 capabilities we need to write the config space
1525 * directly in order to set the completion timeout value for
1526 * 16ms to 55ms
1527 */
1528 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1529 &pcie_devctl2);
1530 if (ret_val)
1531 goto out;
1532
1533 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1534
1535 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1536 &pcie_devctl2);
1537out:
1538 /* disable completion timeout resend */
1539 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1540
1541 wr32(E1000_GCR, gcr);
1542 return ret_val;
1543}
1544
13800469
GR
1545/**
1546 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1547 * @hw: pointer to the hardware struct
1548 * @enable: state to enter, either enabled or disabled
1549 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1550 *
1551 * enables/disables L2 switch anti-spoofing functionality.
1552 **/
1553void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1554{
1555 u32 dtxswc;
1556
1557 switch (hw->mac.type) {
1558 case e1000_82576:
1559 case e1000_i350:
1560 dtxswc = rd32(E1000_DTXSWC);
1561 if (enable) {
1562 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1563 E1000_DTXSWC_VLAN_SPOOF_MASK);
1564 /* The PF can spoof - it has to in order to
1565 * support emulation mode NICs */
1566 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1567 } else {
1568 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1569 E1000_DTXSWC_VLAN_SPOOF_MASK);
1570 }
1571 wr32(E1000_DTXSWC, dtxswc);
1572 break;
1573 default:
1574 break;
1575 }
1576}
1577
4ae196df
AD
1578/**
1579 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1580 * @hw: pointer to the hardware struct
1581 * @enable: state to enter, either enabled or disabled
1582 *
1583 * enables/disables L2 switch loopback functionality.
1584 **/
1585void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1586{
ca2e3e7e
AA
1587 u32 dtxswc;
1588
1589 switch (hw->mac.type) {
1590 case e1000_82576:
1591 dtxswc = rd32(E1000_DTXSWC);
1592 if (enable)
1593 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1594 else
1595 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1596 wr32(E1000_DTXSWC, dtxswc);
1597 break;
1598 case e1000_i350:
1599 dtxswc = rd32(E1000_TXSWC);
1600 if (enable)
1601 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1602 else
1603 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1604 wr32(E1000_TXSWC, dtxswc);
1605 break;
1606 default:
1607 /* Currently no other hardware supports loopback */
1608 break;
1609 }
4ae196df 1610
4ae196df 1611
4ae196df
AD
1612}
1613
1614/**
1615 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1616 * @hw: pointer to the hardware struct
1617 * @enable: state to enter, either enabled or disabled
1618 *
1619 * enables/disables replication of packets across multiple pools.
1620 **/
1621void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1622{
1623 u32 vt_ctl = rd32(E1000_VT_CTL);
1624
1625 if (enable)
1626 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1627 else
1628 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1629
1630 wr32(E1000_VT_CTL, vt_ctl);
1631}
1632
bb2ac47b
AD
1633/**
1634 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1635 * @hw: pointer to the HW structure
1636 * @offset: register offset to be read
1637 * @data: pointer to the read data
1638 *
1639 * Reads the MDI control register in the PHY at offset and stores the
1640 * information read to data.
1641 **/
1642static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1643{
bb2ac47b
AD
1644 s32 ret_val;
1645
1646
1647 ret_val = hw->phy.ops.acquire(hw);
1648 if (ret_val)
1649 goto out;
1650
bb2ac47b
AD
1651 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1652
1653 hw->phy.ops.release(hw);
1654
1655out:
1656 return ret_val;
1657}
1658
1659/**
1660 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1661 * @hw: pointer to the HW structure
1662 * @offset: register offset to write to
1663 * @data: data to write to register at offset
1664 *
1665 * Writes data to MDI control register in the PHY at offset.
1666 **/
1667static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1668{
bb2ac47b
AD
1669 s32 ret_val;
1670
1671
1672 ret_val = hw->phy.ops.acquire(hw);
1673 if (ret_val)
1674 goto out;
1675
bb2ac47b
AD
1676 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1677
1678 hw->phy.ops.release(hw);
1679
1680out:
1681 return ret_val;
1682}
1683
08451e25
NN
1684/**
1685 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1686 * @hw: pointer to the HW structure
1687 *
1688 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1689 * the values found in the EEPROM. This addresses an issue in which these
1690 * bits are not restored from EEPROM after reset.
1691 **/
1692static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1693{
1694 s32 ret_val = 0;
1695 u32 mdicnfg;
1b5dda33 1696 u16 nvm_data = 0;
08451e25
NN
1697
1698 if (hw->mac.type != e1000_82580)
1699 goto out;
1700 if (!igb_sgmii_active_82575(hw))
1701 goto out;
1702
1703 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1704 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1705 &nvm_data);
1706 if (ret_val) {
1707 hw_dbg("NVM Read Error\n");
1708 goto out;
1709 }
1710
1711 mdicnfg = rd32(E1000_MDICNFG);
1712 if (nvm_data & NVM_WORD24_EXT_MDIO)
1713 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1714 if (nvm_data & NVM_WORD24_COM_MDIO)
1715 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1716 wr32(E1000_MDICNFG, mdicnfg);
1717out:
1718 return ret_val;
1719}
1720
bb2ac47b
AD
1721/**
1722 * igb_reset_hw_82580 - Reset hardware
1723 * @hw: pointer to the HW structure
1724 *
1725 * This resets function or entire device (all ports, etc.)
1726 * to a known state.
1727 **/
1728static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1729{
1730 s32 ret_val = 0;
1731 /* BH SW mailbox bit in SW_FW_SYNC */
1732 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1733 u32 ctrl, icr;
1734 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1735
1736
1737 hw->dev_spec._82575.global_device_reset = false;
1738
1739 /* Get current control state. */
1740 ctrl = rd32(E1000_CTRL);
1741
1742 /*
1743 * Prevent the PCI-E bus from sticking if there is no TLP connection
1744 * on the last TLP read/write transaction when MAC is reset.
1745 */
1746 ret_val = igb_disable_pcie_master(hw);
1747 if (ret_val)
1748 hw_dbg("PCI-E Master disable polling has failed.\n");
1749
1750 hw_dbg("Masking off all interrupts\n");
1751 wr32(E1000_IMC, 0xffffffff);
1752 wr32(E1000_RCTL, 0);
1753 wr32(E1000_TCTL, E1000_TCTL_PSP);
1754 wrfl();
1755
1756 msleep(10);
1757
1758 /* Determine whether or not a global dev reset is requested */
1759 if (global_device_reset &&
1760 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1761 global_device_reset = false;
1762
1763 if (global_device_reset &&
1764 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1765 ctrl |= E1000_CTRL_DEV_RST;
1766 else
1767 ctrl |= E1000_CTRL_RST;
1768
1769 wr32(E1000_CTRL, ctrl);
064b4330 1770 wrfl();
bb2ac47b
AD
1771
1772 /* Add delay to insure DEV_RST has time to complete */
1773 if (global_device_reset)
1774 msleep(5);
1775
1776 ret_val = igb_get_auto_rd_done(hw);
1777 if (ret_val) {
1778 /*
1779 * When auto config read does not complete, do not
1780 * return with an error. This can happen in situations
1781 * where there is no eeprom and prevents getting link.
1782 */
1783 hw_dbg("Auto Read Done did not complete\n");
1784 }
1785
1786 /* If EEPROM is not present, run manual init scripts */
1787 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1788 igb_reset_init_script_82575(hw);
1789
1790 /* clear global device reset status bit */
1791 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1792
1793 /* Clear any pending interrupt events. */
1794 wr32(E1000_IMC, 0xffffffff);
1795 icr = rd32(E1000_ICR);
1796
08451e25
NN
1797 ret_val = igb_reset_mdicnfg_82580(hw);
1798 if (ret_val)
1799 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1800
bb2ac47b
AD
1801 /* Install any alternate MAC address into RAR0 */
1802 ret_val = igb_check_alt_mac_addr(hw);
1803
1804 /* Release semaphore */
1805 if (global_device_reset)
1806 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1807
1808 return ret_val;
1809}
1810
1811/**
1812 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1813 * @data: data received by reading RXPBS register
1814 *
1815 * The 82580 uses a table based approach for packet buffer allocation sizes.
1816 * This function converts the retrieved value into the correct table value
1817 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1818 * 0x0 36 72 144 1 2 4 8 16
1819 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1820 */
1821u16 igb_rxpbs_adjust_82580(u32 data)
1822{
1823 u16 ret_val = 0;
1824
1825 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1826 ret_val = e1000_82580_rxpbs_table[data];
1827
1828 return ret_val;
1829}
1830
4322e561
CW
1831/**
1832 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
1833 * checksum
1834 * @hw: pointer to the HW structure
1835 * @offset: offset in words of the checksum protected region
1836 *
1837 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1838 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
1839 **/
bed45a6e
ET
1840static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
1841 u16 offset)
4322e561
CW
1842{
1843 s32 ret_val = 0;
1844 u16 checksum = 0;
1845 u16 i, nvm_data;
1846
1847 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1848 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1849 if (ret_val) {
1850 hw_dbg("NVM Read Error\n");
1851 goto out;
1852 }
1853 checksum += nvm_data;
1854 }
1855
1856 if (checksum != (u16) NVM_SUM) {
1857 hw_dbg("NVM Checksum Invalid\n");
1858 ret_val = -E1000_ERR_NVM;
1859 goto out;
1860 }
1861
1862out:
1863 return ret_val;
1864}
1865
1866/**
1867 * igb_update_nvm_checksum_with_offset - Update EEPROM
1868 * checksum
1869 * @hw: pointer to the HW structure
1870 * @offset: offset in words of the checksum protected region
1871 *
1872 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
1873 * up to the checksum. Then calculates the EEPROM checksum and writes the
1874 * value to the EEPROM.
1875 **/
bed45a6e 1876static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
4322e561
CW
1877{
1878 s32 ret_val;
1879 u16 checksum = 0;
1880 u16 i, nvm_data;
1881
1882 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1883 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1884 if (ret_val) {
1885 hw_dbg("NVM Read Error while updating checksum.\n");
1886 goto out;
1887 }
1888 checksum += nvm_data;
1889 }
1890 checksum = (u16) NVM_SUM - checksum;
1891 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1892 &checksum);
1893 if (ret_val)
1894 hw_dbg("NVM Write Error while updating checksum.\n");
1895
1896out:
1897 return ret_val;
1898}
1899
1900/**
1901 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1902 * @hw: pointer to the HW structure
1903 *
1904 * Calculates the EEPROM section checksum by reading/adding each word of
1905 * the EEPROM and then verifies that the sum of the EEPROM is
1906 * equal to 0xBABA.
1907 **/
1908static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1909{
1910 s32 ret_val = 0;
1911 u16 eeprom_regions_count = 1;
1912 u16 j, nvm_data;
1913 u16 nvm_offset;
1914
1915 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1916 if (ret_val) {
1917 hw_dbg("NVM Read Error\n");
1918 goto out;
1919 }
1920
1921 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
34a0326e 1922 /* if checksums compatibility bit is set validate checksums
4322e561
CW
1923 * for all 4 ports. */
1924 eeprom_regions_count = 4;
1925 }
1926
1927 for (j = 0; j < eeprom_regions_count; j++) {
1928 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1929 ret_val = igb_validate_nvm_checksum_with_offset(hw,
1930 nvm_offset);
1931 if (ret_val != 0)
1932 goto out;
1933 }
1934
1935out:
1936 return ret_val;
1937}
1938
1939/**
1940 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
1941 * @hw: pointer to the HW structure
1942 *
1943 * Updates the EEPROM section checksums for all 4 ports by reading/adding
1944 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
1945 * checksum and writes the value to the EEPROM.
1946 **/
1947static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1948{
1949 s32 ret_val;
1950 u16 j, nvm_data;
1951 u16 nvm_offset;
1952
1953 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1954 if (ret_val) {
1955 hw_dbg("NVM Read Error while updating checksum"
1956 " compatibility bit.\n");
1957 goto out;
1958 }
1959
1960 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1961 /* set compatibility bit to validate checksums appropriately */
1962 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1963 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1964 &nvm_data);
1965 if (ret_val) {
1966 hw_dbg("NVM Write Error while updating checksum"
1967 " compatibility bit.\n");
1968 goto out;
1969 }
1970 }
1971
1972 for (j = 0; j < 4; j++) {
1973 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1974 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1975 if (ret_val)
1976 goto out;
1977 }
1978
1979out:
1980 return ret_val;
1981}
1982
1983/**
1984 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1985 * @hw: pointer to the HW structure
1986 *
1987 * Calculates the EEPROM section checksum by reading/adding each word of
1988 * the EEPROM and then verifies that the sum of the EEPROM is
1989 * equal to 0xBABA.
1990 **/
1991static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1992{
1993 s32 ret_val = 0;
1994 u16 j;
1995 u16 nvm_offset;
1996
1997 for (j = 0; j < 4; j++) {
1998 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1999 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2000 nvm_offset);
2001 if (ret_val != 0)
2002 goto out;
2003 }
2004
2005out:
2006 return ret_val;
2007}
2008
2009/**
2010 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2011 * @hw: pointer to the HW structure
2012 *
2013 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2014 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2015 * checksum and writes the value to the EEPROM.
2016 **/
2017static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2018{
2019 s32 ret_val = 0;
2020 u16 j;
2021 u16 nvm_offset;
2022
2023 for (j = 0; j < 4; j++) {
2024 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2025 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2026 if (ret_val != 0)
2027 goto out;
2028 }
2029
2030out:
2031 return ret_val;
2032}
34a0326e 2033
09b068d4
CW
2034/**
2035 * igb_set_eee_i350 - Enable/disable EEE support
2036 * @hw: pointer to the HW structure
2037 *
2038 * Enable/disable EEE based on setting in dev_spec structure.
2039 *
2040 **/
2041s32 igb_set_eee_i350(struct e1000_hw *hw)
2042{
2043 s32 ret_val = 0;
2044 u32 ipcnfg, eeer, ctrl_ext;
2045
2046 ctrl_ext = rd32(E1000_CTRL_EXT);
2047 if ((hw->mac.type != e1000_i350) ||
2048 (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2049 goto out;
2050 ipcnfg = rd32(E1000_IPCNFG);
2051 eeer = rd32(E1000_EEER);
2052
2053 /* enable or disable per user setting */
2054 if (!(hw->dev_spec._82575.eee_disable)) {
2055 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2056 E1000_IPCNFG_EEE_100M_AN);
2057 eeer |= (E1000_EEER_TX_LPI_EN |
2058 E1000_EEER_RX_LPI_EN |
2059 E1000_EEER_LPI_FC);
2060
2061 } else {
2062 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2063 E1000_IPCNFG_EEE_100M_AN);
2064 eeer &= ~(E1000_EEER_TX_LPI_EN |
2065 E1000_EEER_RX_LPI_EN |
2066 E1000_EEER_LPI_FC);
2067 }
2068 wr32(E1000_IPCNFG, ipcnfg);
2069 wr32(E1000_EEER, eeer);
2070out:
2071
2072 return ret_val;
2073}
4322e561 2074
9d5c8243 2075static struct e1000_mac_operations e1000_mac_ops_82575 = {
9d5c8243
AK
2076 .init_hw = igb_init_hw_82575,
2077 .check_for_link = igb_check_for_link_82575,
2d064c06 2078 .rar_set = igb_rar_set,
9d5c8243
AK
2079 .read_mac_addr = igb_read_mac_addr_82575,
2080 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2081};
2082
2083static struct e1000_phy_operations e1000_phy_ops_82575 = {
a8d2a0c2 2084 .acquire = igb_acquire_phy_82575,
9d5c8243 2085 .get_cfg_done = igb_get_cfg_done_82575,
a8d2a0c2 2086 .release = igb_release_phy_82575,
9d5c8243
AK
2087};
2088
2089static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
312c75ae
AD
2090 .acquire = igb_acquire_nvm_82575,
2091 .read = igb_read_nvm_eerd,
2092 .release = igb_release_nvm_82575,
2093 .write = igb_write_nvm_spi,
9d5c8243
AK
2094};
2095
2096const struct e1000_info e1000_82575_info = {
2097 .get_invariants = igb_get_invariants_82575,
2098 .mac_ops = &e1000_mac_ops_82575,
2099 .phy_ops = &e1000_phy_ops_82575,
2100 .nvm_ops = &e1000_nvm_ops_82575,
2101};
2102
This page took 0.613878 seconds and 5 git commands to generate.