Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
e52c0f96
CW
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
9d5c8243 23
876d2d6f
JK
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
9d5c8243
AK
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
b2cb09b1 29#include <linux/bitops.h>
9d5c8243
AK
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
9d5c8243 33#include <linux/ipv6.h>
5a0e3ad6 34#include <linux/slab.h>
9d5c8243
AK
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
01789349 40#include <linux/if.h>
9d5c8243
AK
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
7d13a7d0
AD
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
9d5c8243 49#include <linux/if_ether.h>
40a914fa 50#include <linux/aer.h>
70c71606 51#include <linux/prefetch.h>
749ab2cd 52#include <linux/pm_runtime.h>
806ffb1d 53#include <linux/etherdevice.h>
421e02f0 54#ifdef CONFIG_IGB_DCA
fe4506b6
JC
55#include <linux/dca.h>
56#endif
441fc6fd 57#include <linux/i2c.h>
9d5c8243
AK
58#include "igb.h"
59
67b1b903 60#define MAJ 5
6fb46902
TF
61#define MIN 3
62#define BUILD 0
0d1fe82d 63#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 64__stringify(BUILD) "-k"
9d5c8243
AK
65char igb_driver_name[] = "igb";
66char igb_driver_version[] = DRV_VERSION;
67static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462 69static const char igb_copyright[] =
74cfb2e1 70 "Copyright (c) 2007-2014 Intel Corporation.";
9d5c8243 71
9d5c8243
AK
72static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74};
75
cd1631ce 76static const struct pci_device_id igb_pci_tbl[] = {
ceb5f13b
CW
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
53b87ce3
CW
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
d2ba2ed8
AD
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114};
115
116MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
9d5c8243
AK
118static int igb_setup_all_tx_resources(struct igb_adapter *);
119static int igb_setup_all_rx_resources(struct igb_adapter *);
120static void igb_free_all_tx_resources(struct igb_adapter *);
121static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 122static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 123static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 124static void igb_remove(struct pci_dev *pdev);
9d5c8243 125static int igb_sw_init(struct igb_adapter *);
46eafa59
SA
126int igb_open(struct net_device *);
127int igb_close(struct net_device *);
53c7d064 128static void igb_configure(struct igb_adapter *);
9d5c8243
AK
129static void igb_configure_tx(struct igb_adapter *);
130static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
131static void igb_clean_all_tx_rings(struct igb_adapter *);
132static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
133static void igb_clean_tx_ring(struct igb_ring *);
134static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 135static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
136static void igb_update_phy_info(unsigned long);
137static void igb_watchdog(unsigned long);
138static void igb_watchdog_task(struct work_struct *);
cd392f5c 139static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b 140static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
c502ea2e 141 struct rtnl_link_stats64 *stats);
9d5c8243
AK
142static int igb_change_mtu(struct net_device *, int);
143static int igb_set_mac(struct net_device *, void *);
bf456abb 144static void igb_set_uta(struct igb_adapter *adapter, bool set);
9d5c8243
AK
145static irqreturn_t igb_intr(int irq, void *);
146static irqreturn_t igb_intr_msi(int irq, void *);
147static irqreturn_t igb_msix_other(int irq, void *);
047e0030 148static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 149#ifdef CONFIG_IGB_DCA
047e0030 150static void igb_update_dca(struct igb_q_vector *);
fe4506b6 151static void igb_setup_dca(struct igb_adapter *);
421e02f0 152#endif /* CONFIG_IGB_DCA */
661086df 153static int igb_poll(struct napi_struct *, int);
7f0ba845 154static bool igb_clean_tx_irq(struct igb_q_vector *, int);
32b3e08f 155static int igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
156static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157static void igb_tx_timeout(struct net_device *);
158static void igb_reset_task(struct work_struct *);
c502ea2e
CW
159static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
80d5c368
PM
161static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 163static void igb_restore_vlan(struct igb_adapter *);
26ad9178 164static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
165static void igb_ping_all_vfs(struct igb_adapter *);
166static void igb_msg_task(struct igb_adapter *);
4ae196df 167static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 168static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 169static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
170static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
171static int igb_ndo_set_vf_vlan(struct net_device *netdev,
172 int vf, u16 vlan, u8 qos);
ed616689 173static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
70ea4783
LL
174static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
175 bool setting);
8151d294
WM
176static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
177 struct ifla_vf_info *ivi);
17dc566c 178static void igb_check_vf_rate_limit(struct igb_adapter *);
0e71def2
GH
179static void igb_nfc_filter_exit(struct igb_adapter *adapter);
180static void igb_nfc_filter_restore(struct igb_adapter *adapter);
46a01698
RL
181
182#ifdef CONFIG_PCI_IOV
0224d663 183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
781798a1 184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
ceee3450
TF
185static int igb_disable_sriov(struct pci_dev *dev);
186static int igb_pci_disable_sriov(struct pci_dev *dev);
46a01698 187#endif
9d5c8243 188
9d5c8243 189#ifdef CONFIG_PM
d9dd966d 190#ifdef CONFIG_PM_SLEEP
749ab2cd 191static int igb_suspend(struct device *);
d9dd966d 192#endif
749ab2cd 193static int igb_resume(struct device *);
749ab2cd
YZ
194static int igb_runtime_suspend(struct device *dev);
195static int igb_runtime_resume(struct device *dev);
196static int igb_runtime_idle(struct device *dev);
749ab2cd
YZ
197static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201};
9d5c8243
AK
202#endif
203static void igb_shutdown(struct pci_dev *);
fa44f2f1 204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 205#ifdef CONFIG_IGB_DCA
fe4506b6
JC
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211};
212#endif
9d5c8243
AK
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
37680117 217#ifdef CONFIG_PCI_IOV
6dd6d2b7 218static unsigned int max_vfs;
2a3abf6d 219module_param(max_vfs, uint, 0);
c75c4edf 220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
2a3abf6d
AD
221#endif /* CONFIG_PCI_IOV */
222
9d5c8243
AK
223static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 pci_channel_state_t);
225static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226static void igb_io_resume(struct pci_dev *);
227
3646f0e5 228static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
229 .error_detected = igb_io_error_detected,
230 .slot_reset = igb_io_slot_reset,
231 .resume = igb_io_resume,
232};
233
b6e0c419 234static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
235
236static struct pci_driver igb_driver = {
237 .name = igb_driver_name,
238 .id_table = igb_pci_tbl,
239 .probe = igb_probe,
9f9a12f8 240 .remove = igb_remove,
9d5c8243 241#ifdef CONFIG_PM
749ab2cd 242 .driver.pm = &igb_pm_ops,
9d5c8243
AK
243#endif
244 .shutdown = igb_shutdown,
fa44f2f1 245 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
246 .err_handler = &igb_err_handler
247};
248
249MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251MODULE_LICENSE("GPL");
252MODULE_VERSION(DRV_VERSION);
253
b3f4d599 254#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255static int debug = -1;
256module_param(debug, int, 0);
257MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
c97ec42a
TI
259struct igb_reg_info {
260 u32 ofs;
261 char *name;
262};
263
264static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266 /* General Registers */
267 {E1000_CTRL, "CTRL"},
268 {E1000_STATUS, "STATUS"},
269 {E1000_CTRL_EXT, "CTRL_EXT"},
270
271 /* Interrupt Registers */
272 {E1000_ICR, "ICR"},
273
274 /* RX Registers */
275 {E1000_RCTL, "RCTL"},
276 {E1000_RDLEN(0), "RDLEN"},
277 {E1000_RDH(0), "RDH"},
278 {E1000_RDT(0), "RDT"},
279 {E1000_RXDCTL(0), "RXDCTL"},
280 {E1000_RDBAL(0), "RDBAL"},
281 {E1000_RDBAH(0), "RDBAH"},
282
283 /* TX Registers */
284 {E1000_TCTL, "TCTL"},
285 {E1000_TDBAL(0), "TDBAL"},
286 {E1000_TDBAH(0), "TDBAH"},
287 {E1000_TDLEN(0), "TDLEN"},
288 {E1000_TDH(0), "TDH"},
289 {E1000_TDT(0), "TDT"},
290 {E1000_TXDCTL(0), "TXDCTL"},
291 {E1000_TDFH, "TDFH"},
292 {E1000_TDFT, "TDFT"},
293 {E1000_TDFHS, "TDFHS"},
294 {E1000_TDFPC, "TDFPC"},
295
296 /* List Terminator */
297 {}
298};
299
b980ac18 300/* igb_regdump - register printout routine */
c97ec42a
TI
301static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302{
303 int n = 0;
304 char rname[16];
305 u32 regs[8];
306
307 switch (reginfo->ofs) {
308 case E1000_RDLEN(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDLEN(n));
311 break;
312 case E1000_RDH(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDH(n));
315 break;
316 case E1000_RDT(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDT(n));
319 break;
320 case E1000_RXDCTL(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RXDCTL(n));
323 break;
324 case E1000_RDBAL(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAL(n));
327 break;
328 case E1000_RDBAH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDBAH(n));
331 break;
332 case E1000_TDBAL(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDBAL(n));
335 break;
336 case E1000_TDBAH(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDBAH(n));
339 break;
340 case E1000_TDLEN(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDLEN(n));
343 break;
344 case E1000_TDH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TDH(n));
347 break;
348 case E1000_TDT(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_TDT(n));
351 break;
352 case E1000_TXDCTL(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TXDCTL(n));
355 break;
356 default:
876d2d6f 357 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
358 return;
359 }
360
361 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
362 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 regs[2], regs[3]);
c97ec42a
TI
364}
365
b980ac18 366/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
367static void igb_dump(struct igb_adapter *adapter)
368{
369 struct net_device *netdev = adapter->netdev;
370 struct e1000_hw *hw = &adapter->hw;
371 struct igb_reg_info *reginfo;
c97ec42a
TI
372 struct igb_ring *tx_ring;
373 union e1000_adv_tx_desc *tx_desc;
374 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
375 struct igb_ring *rx_ring;
376 union e1000_adv_rx_desc *rx_desc;
377 u32 staterr;
6ad4edfc 378 u16 i, n;
c97ec42a
TI
379
380 if (!netif_msg_hw(adapter))
381 return;
382
383 /* Print netdevice Info */
384 if (netdev) {
385 dev_info(&adapter->pdev->dev, "Net device Info\n");
c75c4edf 386 pr_info("Device Name state trans_start last_rx\n");
876d2d6f 387 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
4d0e9657 388 netdev->state, dev_trans_start(netdev), netdev->last_rx);
c97ec42a
TI
389 }
390
391 /* Print Registers */
392 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 393 pr_info(" Register Name Value\n");
c97ec42a
TI
394 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
395 reginfo->name; reginfo++) {
396 igb_regdump(hw, reginfo);
397 }
398
399 /* Print TX Ring Summary */
400 if (!netdev || !netif_running(netdev))
401 goto exit;
402
403 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 404 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 405 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 406 struct igb_tx_buffer *buffer_info;
c97ec42a 407 tx_ring = adapter->tx_ring[n];
06034649 408 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
409 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
410 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
411 (u64)dma_unmap_addr(buffer_info, dma),
412 dma_unmap_len(buffer_info, len),
876d2d6f
JK
413 buffer_info->next_to_watch,
414 (u64)buffer_info->time_stamp);
c97ec42a
TI
415 }
416
417 /* Print TX Rings */
418 if (!netif_msg_tx_done(adapter))
419 goto rx_ring_summary;
420
421 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
422
423 /* Transmit Descriptor Formats
424 *
425 * Advanced Transmit Descriptor
426 * +--------------------------------------------------------------+
427 * 0 | Buffer Address [63:0] |
428 * +--------------------------------------------------------------+
429 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
430 * +--------------------------------------------------------------+
431 * 63 46 45 40 39 38 36 35 32 31 24 15 0
432 */
433
434 for (n = 0; n < adapter->num_tx_queues; n++) {
435 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
436 pr_info("------------------------------------\n");
437 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
438 pr_info("------------------------------------\n");
c75c4edf 439 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
c97ec42a
TI
440
441 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 442 const char *next_desc;
06034649 443 struct igb_tx_buffer *buffer_info;
60136906 444 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 445 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 446 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
447 if (i == tx_ring->next_to_use &&
448 i == tx_ring->next_to_clean)
449 next_desc = " NTC/U";
450 else if (i == tx_ring->next_to_use)
451 next_desc = " NTU";
452 else if (i == tx_ring->next_to_clean)
453 next_desc = " NTC";
454 else
455 next_desc = "";
456
c75c4edf
CW
457 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
458 i, le64_to_cpu(u0->a),
c97ec42a 459 le64_to_cpu(u0->b),
c9f14bf3
AD
460 (u64)dma_unmap_addr(buffer_info, dma),
461 dma_unmap_len(buffer_info, len),
c97ec42a
TI
462 buffer_info->next_to_watch,
463 (u64)buffer_info->time_stamp,
876d2d6f 464 buffer_info->skb, next_desc);
c97ec42a 465
b669588a 466 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
467 print_hex_dump(KERN_INFO, "",
468 DUMP_PREFIX_ADDRESS,
b669588a 469 16, 1, buffer_info->skb->data,
c9f14bf3
AD
470 dma_unmap_len(buffer_info, len),
471 true);
c97ec42a
TI
472 }
473 }
474
475 /* Print RX Rings Summary */
476rx_ring_summary:
477 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 478 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
479 for (n = 0; n < adapter->num_rx_queues; n++) {
480 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
481 pr_info(" %5d %5X %5X\n",
482 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
483 }
484
485 /* Print RX Rings */
486 if (!netif_msg_rx_status(adapter))
487 goto exit;
488
489 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
490
491 /* Advanced Receive Descriptor (Read) Format
492 * 63 1 0
493 * +-----------------------------------------------------+
494 * 0 | Packet Buffer Address [63:1] |A0/NSE|
495 * +----------------------------------------------+------+
496 * 8 | Header Buffer Address [63:1] | DD |
497 * +-----------------------------------------------------+
498 *
499 *
500 * Advanced Receive Descriptor (Write-Back) Format
501 *
502 * 63 48 47 32 31 30 21 20 17 16 4 3 0
503 * +------------------------------------------------------+
504 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
505 * | Checksum Ident | | | | Type | Type |
506 * +------------------------------------------------------+
507 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
508 * +------------------------------------------------------+
509 * 63 48 47 32 31 20 19 0
510 */
511
512 for (n = 0; n < adapter->num_rx_queues; n++) {
513 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
514 pr_info("------------------------------------\n");
515 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
516 pr_info("------------------------------------\n");
c75c4edf
CW
517 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
518 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
519
520 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 521 const char *next_desc;
06034649
AD
522 struct igb_rx_buffer *buffer_info;
523 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 524 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
525 u0 = (struct my_u0 *)rx_desc;
526 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
527
528 if (i == rx_ring->next_to_use)
529 next_desc = " NTU";
530 else if (i == rx_ring->next_to_clean)
531 next_desc = " NTC";
532 else
533 next_desc = "";
534
c97ec42a
TI
535 if (staterr & E1000_RXD_STAT_DD) {
536 /* Descriptor Done */
1a1c225b
AD
537 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
538 "RWB", i,
c97ec42a
TI
539 le64_to_cpu(u0->a),
540 le64_to_cpu(u0->b),
1a1c225b 541 next_desc);
c97ec42a 542 } else {
1a1c225b
AD
543 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
544 "R ", i,
c97ec42a
TI
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 (u64)buffer_info->dma,
1a1c225b 548 next_desc);
c97ec42a 549
b669588a 550 if (netif_msg_pktdata(adapter) &&
1a1c225b 551 buffer_info->dma && buffer_info->page) {
44390ca6
AD
552 print_hex_dump(KERN_INFO, "",
553 DUMP_PREFIX_ADDRESS,
554 16, 1,
b669588a
ET
555 page_address(buffer_info->page) +
556 buffer_info->page_offset,
de78d1f9 557 IGB_RX_BUFSZ, true);
c97ec42a
TI
558 }
559 }
c97ec42a
TI
560 }
561 }
562
563exit:
564 return;
565}
566
b980ac18
JK
567/**
568 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
569 * @hw: pointer to hardware structure
570 * @i2cctl: Current value of I2CCTL register
571 *
572 * Returns the I2C data bit value
b980ac18 573 **/
441fc6fd
CW
574static int igb_get_i2c_data(void *data)
575{
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
da1f1dfe 580 return !!(i2cctl & E1000_I2C_DATA_IN);
441fc6fd
CW
581}
582
b980ac18
JK
583/**
584 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
585 * @data: pointer to hardware structure
586 * @state: I2C data value (0 or 1) to set
587 *
588 * Sets the I2C data bit
b980ac18 589 **/
441fc6fd
CW
590static void igb_set_i2c_data(void *data, int state)
591{
592 struct igb_adapter *adapter = (struct igb_adapter *)data;
593 struct e1000_hw *hw = &adapter->hw;
594 s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596 if (state)
597 i2cctl |= E1000_I2C_DATA_OUT;
598 else
599 i2cctl &= ~E1000_I2C_DATA_OUT;
600
601 i2cctl &= ~E1000_I2C_DATA_OE_N;
602 i2cctl |= E1000_I2C_CLK_OE_N;
603 wr32(E1000_I2CPARAMS, i2cctl);
604 wrfl();
605
606}
607
b980ac18
JK
608/**
609 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
610 * @data: pointer to hardware structure
611 * @state: state to set clock
612 *
613 * Sets the I2C clock line to state
b980ac18 614 **/
441fc6fd
CW
615static void igb_set_i2c_clk(void *data, int state)
616{
617 struct igb_adapter *adapter = (struct igb_adapter *)data;
618 struct e1000_hw *hw = &adapter->hw;
619 s32 i2cctl = rd32(E1000_I2CPARAMS);
620
621 if (state) {
622 i2cctl |= E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 } else {
625 i2cctl &= ~E1000_I2C_CLK_OUT;
626 i2cctl &= ~E1000_I2C_CLK_OE_N;
627 }
628 wr32(E1000_I2CPARAMS, i2cctl);
629 wrfl();
630}
631
b980ac18
JK
632/**
633 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
634 * @data: pointer to hardware structure
635 *
636 * Gets the I2C clock state
b980ac18 637 **/
441fc6fd
CW
638static int igb_get_i2c_clk(void *data)
639{
640 struct igb_adapter *adapter = (struct igb_adapter *)data;
641 struct e1000_hw *hw = &adapter->hw;
642 s32 i2cctl = rd32(E1000_I2CPARAMS);
643
da1f1dfe 644 return !!(i2cctl & E1000_I2C_CLK_IN);
441fc6fd
CW
645}
646
647static const struct i2c_algo_bit_data igb_i2c_algo = {
648 .setsda = igb_set_i2c_data,
649 .setscl = igb_set_i2c_clk,
650 .getsda = igb_get_i2c_data,
651 .getscl = igb_get_i2c_clk,
652 .udelay = 5,
653 .timeout = 20,
654};
655
9d5c8243 656/**
b980ac18
JK
657 * igb_get_hw_dev - return device
658 * @hw: pointer to hardware structure
659 *
660 * used by hardware layer to print debugging information
9d5c8243 661 **/
c041076a 662struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
663{
664 struct igb_adapter *adapter = hw->back;
c041076a 665 return adapter->netdev;
9d5c8243 666}
38c845c7 667
9d5c8243 668/**
b980ac18 669 * igb_init_module - Driver Registration Routine
9d5c8243 670 *
b980ac18
JK
671 * igb_init_module is the first routine called when the driver is
672 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
673 **/
674static int __init igb_init_module(void)
675{
676 int ret;
9005df38 677
876d2d6f 678 pr_info("%s - version %s\n",
9d5c8243 679 igb_driver_string, igb_driver_version);
876d2d6f 680 pr_info("%s\n", igb_copyright);
9d5c8243 681
421e02f0 682#ifdef CONFIG_IGB_DCA
fe4506b6
JC
683 dca_register_notify(&dca_notifier);
684#endif
bbd98fe4 685 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
686 return ret;
687}
688
689module_init(igb_init_module);
690
691/**
b980ac18 692 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 693 *
b980ac18
JK
694 * igb_exit_module is called just before the driver is removed
695 * from memory.
9d5c8243
AK
696 **/
697static void __exit igb_exit_module(void)
698{
421e02f0 699#ifdef CONFIG_IGB_DCA
fe4506b6
JC
700 dca_unregister_notify(&dca_notifier);
701#endif
9d5c8243
AK
702 pci_unregister_driver(&igb_driver);
703}
704
705module_exit(igb_exit_module);
706
26bc19ec
AD
707#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
708/**
b980ac18
JK
709 * igb_cache_ring_register - Descriptor ring to register mapping
710 * @adapter: board private structure to initialize
26bc19ec 711 *
b980ac18
JK
712 * Once we know the feature-set enabled for the device, we'll cache
713 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
714 **/
715static void igb_cache_ring_register(struct igb_adapter *adapter)
716{
ee1b9f06 717 int i = 0, j = 0;
047e0030 718 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
719
720 switch (adapter->hw.mac.type) {
721 case e1000_82576:
722 /* The queues are allocated for virtualization such that VF 0
723 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
724 * In order to avoid collision we start at the first free queue
725 * and continue consuming queues in the same sequence
726 */
ee1b9f06 727 if (adapter->vfs_allocated_count) {
a99955fc 728 for (; i < adapter->rss_queues; i++)
3025a446 729 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 730 Q_IDX_82576(i);
ee1b9f06 731 }
b26141d4 732 /* Fall through */
26bc19ec 733 case e1000_82575:
55cac248 734 case e1000_82580:
d2ba2ed8 735 case e1000_i350:
ceb5f13b 736 case e1000_i354:
f96a8a0b
CW
737 case e1000_i210:
738 case e1000_i211:
b26141d4 739 /* Fall through */
26bc19ec 740 default:
ee1b9f06 741 for (; i < adapter->num_rx_queues; i++)
3025a446 742 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 743 for (; j < adapter->num_tx_queues; j++)
3025a446 744 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
745 break;
746 }
747}
748
22a8b291
FT
749u32 igb_rd32(struct e1000_hw *hw, u32 reg)
750{
751 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
752 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
753 u32 value = 0;
754
755 if (E1000_REMOVED(hw_addr))
756 return ~value;
757
758 value = readl(&hw_addr[reg]);
759
760 /* reads should not return all F's */
761 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
762 struct net_device *netdev = igb->netdev;
763 hw->hw_addr = NULL;
764 netif_device_detach(netdev);
765 netdev_err(netdev, "PCIe link lost, device now detached\n");
766 }
767
768 return value;
769}
770
4be000c8
AD
771/**
772 * igb_write_ivar - configure ivar for given MSI-X vector
773 * @hw: pointer to the HW structure
774 * @msix_vector: vector number we are allocating to a given ring
775 * @index: row index of IVAR register to write within IVAR table
776 * @offset: column offset of in IVAR, should be multiple of 8
777 *
778 * This function is intended to handle the writing of the IVAR register
779 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
780 * each containing an cause allocation for an Rx and Tx ring, and a
781 * variable number of rows depending on the number of queues supported.
782 **/
783static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
784 int index, int offset)
785{
786 u32 ivar = array_rd32(E1000_IVAR0, index);
787
788 /* clear any bits that are currently set */
789 ivar &= ~((u32)0xFF << offset);
790
791 /* write vector and valid bit */
792 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
793
794 array_wr32(E1000_IVAR0, index, ivar);
795}
796
9d5c8243 797#define IGB_N0_QUEUE -1
047e0030 798static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 799{
047e0030 800 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 801 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
802 int rx_queue = IGB_N0_QUEUE;
803 int tx_queue = IGB_N0_QUEUE;
4be000c8 804 u32 msixbm = 0;
047e0030 805
0ba82994
AD
806 if (q_vector->rx.ring)
807 rx_queue = q_vector->rx.ring->reg_idx;
808 if (q_vector->tx.ring)
809 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
810
811 switch (hw->mac.type) {
812 case e1000_82575:
9d5c8243 813 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
814 * bitmask for the EICR/EIMS/EIMC registers. To assign one
815 * or more queues to a vector, we write the appropriate bits
816 * into the MSIXBM register for that vector.
817 */
047e0030 818 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 819 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 820 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 821 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
cd14ef54 822 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
feeb2721 823 msixbm |= E1000_EIMS_OTHER;
9d5c8243 824 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 825 q_vector->eims_value = msixbm;
2d064c06
AD
826 break;
827 case e1000_82576:
b980ac18 828 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
829 * with 8 rows. The ordering is column-major so we use the
830 * lower 3 bits as the row index, and the 4th bit as the
831 * column offset.
832 */
833 if (rx_queue > IGB_N0_QUEUE)
834 igb_write_ivar(hw, msix_vector,
835 rx_queue & 0x7,
836 (rx_queue & 0x8) << 1);
837 if (tx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 tx_queue & 0x7,
840 ((tx_queue & 0x8) << 1) + 8);
a51d8c21 841 q_vector->eims_value = BIT(msix_vector);
2d064c06 842 break;
55cac248 843 case e1000_82580:
d2ba2ed8 844 case e1000_i350:
ceb5f13b 845 case e1000_i354:
f96a8a0b
CW
846 case e1000_i210:
847 case e1000_i211:
b980ac18 848 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
849 * however instead of ordering column-major we have things
850 * ordered row-major. So we traverse the table by using
851 * bit 0 as the column offset, and the remaining bits as the
852 * row index.
853 */
854 if (rx_queue > IGB_N0_QUEUE)
855 igb_write_ivar(hw, msix_vector,
856 rx_queue >> 1,
857 (rx_queue & 0x1) << 4);
858 if (tx_queue > IGB_N0_QUEUE)
859 igb_write_ivar(hw, msix_vector,
860 tx_queue >> 1,
861 ((tx_queue & 0x1) << 4) + 8);
a51d8c21 862 q_vector->eims_value = BIT(msix_vector);
55cac248 863 break;
2d064c06
AD
864 default:
865 BUG();
866 break;
867 }
26b39276
AD
868
869 /* add q_vector eims value to global eims_enable_mask */
870 adapter->eims_enable_mask |= q_vector->eims_value;
871
872 /* configure q_vector to set itr on first interrupt */
873 q_vector->set_itr = 1;
9d5c8243
AK
874}
875
876/**
b980ac18
JK
877 * igb_configure_msix - Configure MSI-X hardware
878 * @adapter: board private structure to initialize
9d5c8243 879 *
b980ac18
JK
880 * igb_configure_msix sets up the hardware to properly
881 * generate MSI-X interrupts.
9d5c8243
AK
882 **/
883static void igb_configure_msix(struct igb_adapter *adapter)
884{
885 u32 tmp;
886 int i, vector = 0;
887 struct e1000_hw *hw = &adapter->hw;
888
889 adapter->eims_enable_mask = 0;
9d5c8243
AK
890
891 /* set vector for other causes, i.e. link changes */
2d064c06
AD
892 switch (hw->mac.type) {
893 case e1000_82575:
9d5c8243
AK
894 tmp = rd32(E1000_CTRL_EXT);
895 /* enable MSI-X PBA support*/
896 tmp |= E1000_CTRL_EXT_PBA_CLR;
897
898 /* Auto-Mask interrupts upon ICR read. */
899 tmp |= E1000_CTRL_EXT_EIAME;
900 tmp |= E1000_CTRL_EXT_IRCA;
901
902 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
903
904 /* enable msix_other interrupt */
b980ac18 905 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 906 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 907
2d064c06
AD
908 break;
909
910 case e1000_82576:
55cac248 911 case e1000_82580:
d2ba2ed8 912 case e1000_i350:
ceb5f13b 913 case e1000_i354:
f96a8a0b
CW
914 case e1000_i210:
915 case e1000_i211:
047e0030 916 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
917 * won't stick. And it will take days to debug.
918 */
047e0030 919 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
920 E1000_GPIE_PBA | E1000_GPIE_EIAME |
921 E1000_GPIE_NSICR);
047e0030
AD
922
923 /* enable msix_other interrupt */
a51d8c21 924 adapter->eims_other = BIT(vector);
2d064c06 925 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 926
047e0030 927 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
928 break;
929 default:
930 /* do nothing, since nothing else supports MSI-X */
931 break;
932 } /* switch (hw->mac.type) */
047e0030
AD
933
934 adapter->eims_enable_mask |= adapter->eims_other;
935
26b39276
AD
936 for (i = 0; i < adapter->num_q_vectors; i++)
937 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 938
9d5c8243
AK
939 wrfl();
940}
941
942/**
b980ac18
JK
943 * igb_request_msix - Initialize MSI-X interrupts
944 * @adapter: board private structure to initialize
9d5c8243 945 *
b980ac18
JK
946 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
947 * kernel.
9d5c8243
AK
948 **/
949static int igb_request_msix(struct igb_adapter *adapter)
950{
951 struct net_device *netdev = adapter->netdev;
52285b76 952 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 953
047e0030 954 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 955 igb_msix_other, 0, netdev->name, adapter);
047e0030 956 if (err)
52285b76 957 goto err_out;
047e0030
AD
958
959 for (i = 0; i < adapter->num_q_vectors; i++) {
960 struct igb_q_vector *q_vector = adapter->q_vector[i];
961
52285b76
SA
962 vector++;
963
7b06a690 964 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
047e0030 965
0ba82994 966 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 967 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
968 q_vector->rx.ring->queue_index);
969 else if (q_vector->tx.ring)
047e0030 970 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
971 q_vector->tx.ring->queue_index);
972 else if (q_vector->rx.ring)
047e0030 973 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 974 q_vector->rx.ring->queue_index);
9d5c8243 975 else
047e0030
AD
976 sprintf(q_vector->name, "%s-unused", netdev->name);
977
9d5c8243 978 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
979 igb_msix_ring, 0, q_vector->name,
980 q_vector);
9d5c8243 981 if (err)
52285b76 982 goto err_free;
9d5c8243
AK
983 }
984
9d5c8243
AK
985 igb_configure_msix(adapter);
986 return 0;
52285b76
SA
987
988err_free:
989 /* free already assigned IRQs */
990 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
991
992 vector--;
993 for (i = 0; i < vector; i++) {
994 free_irq(adapter->msix_entries[free_vector++].vector,
995 adapter->q_vector[i]);
996 }
997err_out:
9d5c8243
AK
998 return err;
999}
1000
5536d210 1001/**
b980ac18
JK
1002 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1003 * @adapter: board private structure to initialize
1004 * @v_idx: Index of vector to be freed
5536d210 1005 *
02ef6e1d 1006 * This function frees the memory allocated to the q_vector.
5536d210
AD
1007 **/
1008static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1009{
1010 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1011
02ef6e1d
CW
1012 adapter->q_vector[v_idx] = NULL;
1013
1014 /* igb_get_stats64() might access the rings on this vector,
1015 * we must wait a grace period before freeing it.
1016 */
17a402a0
CW
1017 if (q_vector)
1018 kfree_rcu(q_vector, rcu);
02ef6e1d
CW
1019}
1020
1021/**
1022 * igb_reset_q_vector - Reset config for interrupt vector
1023 * @adapter: board private structure to initialize
1024 * @v_idx: Index of vector to be reset
1025 *
1026 * If NAPI is enabled it will delete any references to the
1027 * NAPI struct. This is preparation for igb_free_q_vector.
1028 **/
1029static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1030{
1031 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1032
cb06d102
CP
1033 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1034 * allocated. So, q_vector is NULL so we should stop here.
1035 */
1036 if (!q_vector)
1037 return;
1038
5536d210
AD
1039 if (q_vector->tx.ring)
1040 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1041
1042 if (q_vector->rx.ring)
2439fc4d 1043 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
5536d210 1044
5536d210
AD
1045 netif_napi_del(&q_vector->napi);
1046
02ef6e1d
CW
1047}
1048
1049static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1050{
1051 int v_idx = adapter->num_q_vectors;
1052
cd14ef54 1053 if (adapter->flags & IGB_FLAG_HAS_MSIX)
02ef6e1d 1054 pci_disable_msix(adapter->pdev);
cd14ef54 1055 else if (adapter->flags & IGB_FLAG_HAS_MSI)
02ef6e1d 1056 pci_disable_msi(adapter->pdev);
02ef6e1d
CW
1057
1058 while (v_idx--)
1059 igb_reset_q_vector(adapter, v_idx);
5536d210
AD
1060}
1061
047e0030 1062/**
b980ac18
JK
1063 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1064 * @adapter: board private structure to initialize
047e0030 1065 *
b980ac18
JK
1066 * This function frees the memory allocated to the q_vectors. In addition if
1067 * NAPI is enabled it will delete any references to the NAPI struct prior
1068 * to freeing the q_vector.
047e0030
AD
1069 **/
1070static void igb_free_q_vectors(struct igb_adapter *adapter)
1071{
5536d210
AD
1072 int v_idx = adapter->num_q_vectors;
1073
1074 adapter->num_tx_queues = 0;
1075 adapter->num_rx_queues = 0;
047e0030 1076 adapter->num_q_vectors = 0;
5536d210 1077
02ef6e1d
CW
1078 while (v_idx--) {
1079 igb_reset_q_vector(adapter, v_idx);
5536d210 1080 igb_free_q_vector(adapter, v_idx);
02ef6e1d 1081 }
047e0030
AD
1082}
1083
1084/**
b980ac18
JK
1085 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1086 * @adapter: board private structure to initialize
047e0030 1087 *
b980ac18
JK
1088 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1089 * MSI-X interrupts allocated.
047e0030
AD
1090 */
1091static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1092{
047e0030
AD
1093 igb_free_q_vectors(adapter);
1094 igb_reset_interrupt_capability(adapter);
1095}
9d5c8243
AK
1096
1097/**
b980ac18
JK
1098 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1099 * @adapter: board private structure to initialize
1100 * @msix: boolean value of MSIX capability
9d5c8243 1101 *
b980ac18
JK
1102 * Attempt to configure interrupts using the best available
1103 * capabilities of the hardware and kernel.
9d5c8243 1104 **/
53c7d064 1105static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1106{
1107 int err;
1108 int numvecs, i;
1109
53c7d064
SA
1110 if (!msix)
1111 goto msi_only;
cd14ef54 1112 adapter->flags |= IGB_FLAG_HAS_MSIX;
53c7d064 1113
83b7180d 1114 /* Number of supported queues. */
a99955fc 1115 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1116 if (adapter->vfs_allocated_count)
1117 adapter->num_tx_queues = 1;
1118 else
1119 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1120
b980ac18 1121 /* start with one vector for every Rx queue */
047e0030
AD
1122 numvecs = adapter->num_rx_queues;
1123
b980ac18 1124 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1125 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1126 numvecs += adapter->num_tx_queues;
047e0030
AD
1127
1128 /* store the number of vectors reserved for queues */
1129 adapter->num_q_vectors = numvecs;
1130
1131 /* add 1 vector for link status interrupts */
1132 numvecs++;
9d5c8243
AK
1133 for (i = 0; i < numvecs; i++)
1134 adapter->msix_entries[i].entry = i;
1135
479d02df
AG
1136 err = pci_enable_msix_range(adapter->pdev,
1137 adapter->msix_entries,
1138 numvecs,
1139 numvecs);
1140 if (err > 0)
0c2cc02e 1141 return;
9d5c8243
AK
1142
1143 igb_reset_interrupt_capability(adapter);
1144
1145 /* If we can't do MSI-X, try MSI */
1146msi_only:
b709323d 1147 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
2a3abf6d
AD
1148#ifdef CONFIG_PCI_IOV
1149 /* disable SR-IOV for non MSI-X configurations */
1150 if (adapter->vf_data) {
1151 struct e1000_hw *hw = &adapter->hw;
1152 /* disable iov and allow time for transactions to clear */
1153 pci_disable_sriov(adapter->pdev);
1154 msleep(500);
1155
1156 kfree(adapter->vf_data);
1157 adapter->vf_data = NULL;
1158 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1159 wrfl();
2a3abf6d
AD
1160 msleep(100);
1161 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1162 }
1163#endif
4fc82adf 1164 adapter->vfs_allocated_count = 0;
a99955fc 1165 adapter->rss_queues = 1;
4fc82adf 1166 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1167 adapter->num_rx_queues = 1;
661086df 1168 adapter->num_tx_queues = 1;
047e0030 1169 adapter->num_q_vectors = 1;
9d5c8243 1170 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1171 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1172}
1173
5536d210
AD
1174static void igb_add_ring(struct igb_ring *ring,
1175 struct igb_ring_container *head)
1176{
1177 head->ring = ring;
1178 head->count++;
1179}
1180
047e0030 1181/**
b980ac18
JK
1182 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1183 * @adapter: board private structure to initialize
1184 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1185 * @v_idx: index of vector in adapter struct
1186 * @txr_count: total number of Tx rings to allocate
1187 * @txr_idx: index of first Tx ring to allocate
1188 * @rxr_count: total number of Rx rings to allocate
1189 * @rxr_idx: index of first Rx ring to allocate
047e0030 1190 *
b980ac18 1191 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1192 **/
5536d210
AD
1193static int igb_alloc_q_vector(struct igb_adapter *adapter,
1194 int v_count, int v_idx,
1195 int txr_count, int txr_idx,
1196 int rxr_count, int rxr_idx)
047e0030
AD
1197{
1198 struct igb_q_vector *q_vector;
5536d210
AD
1199 struct igb_ring *ring;
1200 int ring_count, size;
047e0030 1201
5536d210
AD
1202 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1203 if (txr_count > 1 || rxr_count > 1)
1204 return -ENOMEM;
1205
1206 ring_count = txr_count + rxr_count;
1207 size = sizeof(struct igb_q_vector) +
1208 (sizeof(struct igb_ring) * ring_count);
1209
1210 /* allocate q_vector and rings */
02ef6e1d 1211 q_vector = adapter->q_vector[v_idx];
72ddef05 1212 if (!q_vector) {
02ef6e1d 1213 q_vector = kzalloc(size, GFP_KERNEL);
72ddef05
SS
1214 } else if (size > ksize(q_vector)) {
1215 kfree_rcu(q_vector, rcu);
1216 q_vector = kzalloc(size, GFP_KERNEL);
1217 } else {
c0a06ee1 1218 memset(q_vector, 0, size);
72ddef05 1219 }
5536d210
AD
1220 if (!q_vector)
1221 return -ENOMEM;
1222
1223 /* initialize NAPI */
1224 netif_napi_add(adapter->netdev, &q_vector->napi,
1225 igb_poll, 64);
1226
1227 /* tie q_vector and adapter together */
1228 adapter->q_vector[v_idx] = q_vector;
1229 q_vector->adapter = adapter;
1230
1231 /* initialize work limits */
1232 q_vector->tx.work_limit = adapter->tx_work_limit;
1233
1234 /* initialize ITR configuration */
7b06a690 1235 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
5536d210
AD
1236 q_vector->itr_val = IGB_START_ITR;
1237
1238 /* initialize pointer to rings */
1239 ring = q_vector->ring;
1240
4e227667
AD
1241 /* intialize ITR */
1242 if (rxr_count) {
1243 /* rx or rx/tx vector */
1244 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1245 q_vector->itr_val = adapter->rx_itr_setting;
1246 } else {
1247 /* tx only vector */
1248 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1249 q_vector->itr_val = adapter->tx_itr_setting;
1250 }
1251
5536d210
AD
1252 if (txr_count) {
1253 /* assign generic ring traits */
1254 ring->dev = &adapter->pdev->dev;
1255 ring->netdev = adapter->netdev;
1256
1257 /* configure backlink on ring */
1258 ring->q_vector = q_vector;
1259
1260 /* update q_vector Tx values */
1261 igb_add_ring(ring, &q_vector->tx);
1262
1263 /* For 82575, context index must be unique per ring. */
1264 if (adapter->hw.mac.type == e1000_82575)
1265 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1266
1267 /* apply Tx specific ring traits */
1268 ring->count = adapter->tx_ring_count;
1269 ring->queue_index = txr_idx;
1270
827da44c
JS
1271 u64_stats_init(&ring->tx_syncp);
1272 u64_stats_init(&ring->tx_syncp2);
1273
5536d210
AD
1274 /* assign ring to adapter */
1275 adapter->tx_ring[txr_idx] = ring;
1276
1277 /* push pointer to next ring */
1278 ring++;
047e0030 1279 }
81c2fc22 1280
5536d210
AD
1281 if (rxr_count) {
1282 /* assign generic ring traits */
1283 ring->dev = &adapter->pdev->dev;
1284 ring->netdev = adapter->netdev;
047e0030 1285
5536d210
AD
1286 /* configure backlink on ring */
1287 ring->q_vector = q_vector;
047e0030 1288
5536d210
AD
1289 /* update q_vector Rx values */
1290 igb_add_ring(ring, &q_vector->rx);
047e0030 1291
5536d210
AD
1292 /* set flag indicating ring supports SCTP checksum offload */
1293 if (adapter->hw.mac.type >= e1000_82576)
1294 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1295
e52c0f96 1296 /* On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1297 * have the tag byte-swapped.
b980ac18 1298 */
5536d210
AD
1299 if (adapter->hw.mac.type >= e1000_i350)
1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1301
5536d210
AD
1302 /* apply Rx specific ring traits */
1303 ring->count = adapter->rx_ring_count;
1304 ring->queue_index = rxr_idx;
1305
827da44c
JS
1306 u64_stats_init(&ring->rx_syncp);
1307
5536d210
AD
1308 /* assign ring to adapter */
1309 adapter->rx_ring[rxr_idx] = ring;
1310 }
1311
1312 return 0;
047e0030
AD
1313}
1314
5536d210 1315
047e0030 1316/**
b980ac18
JK
1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
047e0030 1319 *
b980ac18
JK
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
047e0030 1322 **/
5536d210 1323static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1324{
5536d210
AD
1325 int q_vectors = adapter->num_q_vectors;
1326 int rxr_remaining = adapter->num_rx_queues;
1327 int txr_remaining = adapter->num_tx_queues;
1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 int err;
047e0030 1330
5536d210
AD
1331 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 for (; rxr_remaining; v_idx++) {
1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 0, 0, 1, rxr_idx);
047e0030 1335
5536d210
AD
1336 if (err)
1337 goto err_out;
1338
1339 /* update counts and index */
1340 rxr_remaining--;
1341 rxr_idx++;
047e0030 1342 }
047e0030 1343 }
5536d210
AD
1344
1345 for (; v_idx < q_vectors; v_idx++) {
1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
9005df38 1348
5536d210
AD
1349 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350 tqpv, txr_idx, rqpv, rxr_idx);
1351
1352 if (err)
1353 goto err_out;
1354
1355 /* update counts and index */
1356 rxr_remaining -= rqpv;
1357 txr_remaining -= tqpv;
1358 rxr_idx++;
1359 txr_idx++;
1360 }
1361
047e0030 1362 return 0;
5536d210
AD
1363
1364err_out:
1365 adapter->num_tx_queues = 0;
1366 adapter->num_rx_queues = 0;
1367 adapter->num_q_vectors = 0;
1368
1369 while (v_idx--)
1370 igb_free_q_vector(adapter, v_idx);
1371
1372 return -ENOMEM;
047e0030
AD
1373}
1374
1375/**
b980ac18
JK
1376 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377 * @adapter: board private structure to initialize
1378 * @msix: boolean value of MSIX capability
047e0030 1379 *
b980ac18 1380 * This function initializes the interrupts and allocates all of the queues.
047e0030 1381 **/
53c7d064 1382static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1383{
1384 struct pci_dev *pdev = adapter->pdev;
1385 int err;
1386
53c7d064 1387 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1388
1389 err = igb_alloc_q_vectors(adapter);
1390 if (err) {
1391 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392 goto err_alloc_q_vectors;
1393 }
1394
5536d210 1395 igb_cache_ring_register(adapter);
047e0030
AD
1396
1397 return 0;
5536d210 1398
047e0030
AD
1399err_alloc_q_vectors:
1400 igb_reset_interrupt_capability(adapter);
1401 return err;
1402}
1403
9d5c8243 1404/**
b980ac18
JK
1405 * igb_request_irq - initialize interrupts
1406 * @adapter: board private structure to initialize
9d5c8243 1407 *
b980ac18
JK
1408 * Attempts to configure interrupts using the best available
1409 * capabilities of the hardware and kernel.
9d5c8243
AK
1410 **/
1411static int igb_request_irq(struct igb_adapter *adapter)
1412{
1413 struct net_device *netdev = adapter->netdev;
047e0030 1414 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1415 int err = 0;
1416
cd14ef54 1417 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243 1418 err = igb_request_msix(adapter);
844290e5 1419 if (!err)
9d5c8243 1420 goto request_done;
9d5c8243 1421 /* fall back to MSI */
5536d210
AD
1422 igb_free_all_tx_resources(adapter);
1423 igb_free_all_rx_resources(adapter);
53c7d064 1424
047e0030 1425 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1426 err = igb_init_interrupt_scheme(adapter, false);
1427 if (err)
047e0030 1428 goto request_done;
53c7d064 1429
047e0030
AD
1430 igb_setup_all_tx_resources(adapter);
1431 igb_setup_all_rx_resources(adapter);
53c7d064 1432 igb_configure(adapter);
9d5c8243 1433 }
844290e5 1434
c74d588e
AD
1435 igb_assign_vector(adapter->q_vector[0], 0);
1436
7dfc16fa 1437 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1438 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1439 netdev->name, adapter);
9d5c8243
AK
1440 if (!err)
1441 goto request_done;
047e0030 1442
9d5c8243
AK
1443 /* fall back to legacy interrupts */
1444 igb_reset_interrupt_capability(adapter);
7dfc16fa 1445 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1446 }
1447
c74d588e 1448 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1449 netdev->name, adapter);
9d5c8243 1450
6cb5e577 1451 if (err)
c74d588e 1452 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1453 err);
9d5c8243
AK
1454
1455request_done:
1456 return err;
1457}
1458
1459static void igb_free_irq(struct igb_adapter *adapter)
1460{
cd14ef54 1461 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243
AK
1462 int vector = 0, i;
1463
047e0030 1464 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1465
0d1ae7f4 1466 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1467 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1468 adapter->q_vector[i]);
047e0030
AD
1469 } else {
1470 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1471 }
9d5c8243
AK
1472}
1473
1474/**
b980ac18
JK
1475 * igb_irq_disable - Mask off interrupt generation on the NIC
1476 * @adapter: board private structure
9d5c8243
AK
1477 **/
1478static void igb_irq_disable(struct igb_adapter *adapter)
1479{
1480 struct e1000_hw *hw = &adapter->hw;
1481
b980ac18 1482 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1483 * mapped into these registers and so clearing the bits can cause
1484 * issues on the VF drivers so we only need to clear what we set
1485 */
cd14ef54 1486 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2dfd1212 1487 u32 regval = rd32(E1000_EIAM);
9005df38 1488
2dfd1212
AD
1489 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490 wr32(E1000_EIMC, adapter->eims_enable_mask);
1491 regval = rd32(E1000_EIAC);
1492 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1493 }
844290e5
PW
1494
1495 wr32(E1000_IAM, 0);
9d5c8243
AK
1496 wr32(E1000_IMC, ~0);
1497 wrfl();
cd14ef54 1498 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
81a61859 1499 int i;
9005df38 1500
81a61859
ET
1501 for (i = 0; i < adapter->num_q_vectors; i++)
1502 synchronize_irq(adapter->msix_entries[i].vector);
1503 } else {
1504 synchronize_irq(adapter->pdev->irq);
1505 }
9d5c8243
AK
1506}
1507
1508/**
b980ac18
JK
1509 * igb_irq_enable - Enable default interrupt generation settings
1510 * @adapter: board private structure
9d5c8243
AK
1511 **/
1512static void igb_irq_enable(struct igb_adapter *adapter)
1513{
1514 struct e1000_hw *hw = &adapter->hw;
1515
cd14ef54 1516 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
06218a8d 1517 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212 1518 u32 regval = rd32(E1000_EIAC);
9005df38 1519
2dfd1212
AD
1520 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521 regval = rd32(E1000_EIAM);
1522 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1523 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1524 if (adapter->vfs_allocated_count) {
4ae196df 1525 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1526 ims |= E1000_IMS_VMMB;
1527 }
1528 wr32(E1000_IMS, ims);
844290e5 1529 } else {
55cac248
AD
1530 wr32(E1000_IMS, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 wr32(E1000_IAM, IMS_ENABLE_MASK |
1533 E1000_IMS_DRSTA);
844290e5 1534 }
9d5c8243
AK
1535}
1536
1537static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538{
51466239 1539 struct e1000_hw *hw = &adapter->hw;
8b77c6b2 1540 u16 pf_id = adapter->vfs_allocated_count;
9d5c8243
AK
1541 u16 vid = adapter->hw.mng_cookie.vlan_id;
1542 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1543
1544 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545 /* add VID to filter table */
8b77c6b2 1546 igb_vfta_set(hw, vid, pf_id, true, true);
51466239
AD
1547 adapter->mng_vlan_id = vid;
1548 } else {
1549 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550 }
1551
1552 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553 (vid != old_vid) &&
b2cb09b1 1554 !test_bit(old_vid, adapter->active_vlans)) {
51466239 1555 /* remove VID from filter table */
8b77c6b2 1556 igb_vfta_set(hw, vid, pf_id, false, true);
9d5c8243
AK
1557 }
1558}
1559
1560/**
b980ac18
JK
1561 * igb_release_hw_control - release control of the h/w to f/w
1562 * @adapter: address of board private structure
9d5c8243 1563 *
b980ac18
JK
1564 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565 * For ASF and Pass Through versions of f/w this means that the
1566 * driver is no longer loaded.
9d5c8243
AK
1567 **/
1568static void igb_release_hw_control(struct igb_adapter *adapter)
1569{
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 ctrl_ext;
1572
1573 /* Let firmware take over control of h/w */
1574 ctrl_ext = rd32(E1000_CTRL_EXT);
1575 wr32(E1000_CTRL_EXT,
1576 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577}
1578
9d5c8243 1579/**
b980ac18
JK
1580 * igb_get_hw_control - get control of the h/w from f/w
1581 * @adapter: address of board private structure
9d5c8243 1582 *
b980ac18
JK
1583 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584 * For ASF and Pass Through versions of f/w this means that
1585 * the driver is loaded.
9d5c8243
AK
1586 **/
1587static void igb_get_hw_control(struct igb_adapter *adapter)
1588{
1589 struct e1000_hw *hw = &adapter->hw;
1590 u32 ctrl_ext;
1591
1592 /* Let firmware know the driver has taken over */
1593 ctrl_ext = rd32(E1000_CTRL_EXT);
1594 wr32(E1000_CTRL_EXT,
1595 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596}
1597
9d5c8243 1598/**
b980ac18
JK
1599 * igb_configure - configure the hardware for RX and TX
1600 * @adapter: private board structure
9d5c8243
AK
1601 **/
1602static void igb_configure(struct igb_adapter *adapter)
1603{
1604 struct net_device *netdev = adapter->netdev;
1605 int i;
1606
1607 igb_get_hw_control(adapter);
ff41f8dc 1608 igb_set_rx_mode(netdev);
9d5c8243
AK
1609
1610 igb_restore_vlan(adapter);
9d5c8243 1611
85b430b4 1612 igb_setup_tctl(adapter);
06cf2666 1613 igb_setup_mrqc(adapter);
9d5c8243 1614 igb_setup_rctl(adapter);
85b430b4 1615
0e71def2 1616 igb_nfc_filter_restore(adapter);
85b430b4 1617 igb_configure_tx(adapter);
9d5c8243 1618 igb_configure_rx(adapter);
662d7205
AD
1619
1620 igb_rx_fifo_flush_82575(&adapter->hw);
1621
c493ea45 1622 /* call igb_desc_unused which always leaves
9d5c8243 1623 * at least 1 descriptor unused to make sure
b980ac18
JK
1624 * next_to_use != next_to_clean
1625 */
9d5c8243 1626 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1627 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1628 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1629 }
9d5c8243
AK
1630}
1631
88a268c1 1632/**
b980ac18
JK
1633 * igb_power_up_link - Power up the phy/serdes link
1634 * @adapter: address of board private structure
88a268c1
NN
1635 **/
1636void igb_power_up_link(struct igb_adapter *adapter)
1637{
76886596
AA
1638 igb_reset_phy(&adapter->hw);
1639
88a268c1
NN
1640 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1641 igb_power_up_phy_copper(&adapter->hw);
1642 else
1643 igb_power_up_serdes_link_82575(&adapter->hw);
aec653c4
TF
1644
1645 igb_setup_link(&adapter->hw);
88a268c1
NN
1646}
1647
1648/**
b980ac18
JK
1649 * igb_power_down_link - Power down the phy/serdes link
1650 * @adapter: address of board private structure
88a268c1
NN
1651 */
1652static void igb_power_down_link(struct igb_adapter *adapter)
1653{
1654 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1655 igb_power_down_phy_copper_82575(&adapter->hw);
1656 else
1657 igb_shutdown_serdes_link_82575(&adapter->hw);
1658}
9d5c8243 1659
56cec249
CW
1660/**
1661 * Detect and switch function for Media Auto Sense
1662 * @adapter: address of the board private structure
1663 **/
1664static void igb_check_swap_media(struct igb_adapter *adapter)
1665{
1666 struct e1000_hw *hw = &adapter->hw;
1667 u32 ctrl_ext, connsw;
1668 bool swap_now = false;
1669
1670 ctrl_ext = rd32(E1000_CTRL_EXT);
1671 connsw = rd32(E1000_CONNSW);
1672
1673 /* need to live swap if current media is copper and we have fiber/serdes
1674 * to go to.
1675 */
1676
1677 if ((hw->phy.media_type == e1000_media_type_copper) &&
1678 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1679 swap_now = true;
1680 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1681 /* copper signal takes time to appear */
1682 if (adapter->copper_tries < 4) {
1683 adapter->copper_tries++;
1684 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1685 wr32(E1000_CONNSW, connsw);
1686 return;
1687 } else {
1688 adapter->copper_tries = 0;
1689 if ((connsw & E1000_CONNSW_PHYSD) &&
1690 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1691 swap_now = true;
1692 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1693 wr32(E1000_CONNSW, connsw);
1694 }
1695 }
1696 }
1697
1698 if (!swap_now)
1699 return;
1700
1701 switch (hw->phy.media_type) {
1702 case e1000_media_type_copper:
1703 netdev_info(adapter->netdev,
1704 "MAS: changing media to fiber/serdes\n");
1705 ctrl_ext |=
1706 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1707 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1708 adapter->copper_tries = 0;
1709 break;
1710 case e1000_media_type_internal_serdes:
1711 case e1000_media_type_fiber:
1712 netdev_info(adapter->netdev,
1713 "MAS: changing media to copper\n");
1714 ctrl_ext &=
1715 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1716 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1717 break;
1718 default:
1719 /* shouldn't get here during regular operation */
1720 netdev_err(adapter->netdev,
1721 "AMS: Invalid media type found, returning\n");
1722 break;
1723 }
1724 wr32(E1000_CTRL_EXT, ctrl_ext);
1725}
1726
9d5c8243 1727/**
b980ac18
JK
1728 * igb_up - Open the interface and prepare it to handle traffic
1729 * @adapter: board private structure
9d5c8243 1730 **/
9d5c8243
AK
1731int igb_up(struct igb_adapter *adapter)
1732{
1733 struct e1000_hw *hw = &adapter->hw;
1734 int i;
1735
1736 /* hardware has been reset, we need to reload some things */
1737 igb_configure(adapter);
1738
1739 clear_bit(__IGB_DOWN, &adapter->state);
1740
0d1ae7f4
AD
1741 for (i = 0; i < adapter->num_q_vectors; i++)
1742 napi_enable(&(adapter->q_vector[i]->napi));
1743
cd14ef54 1744 if (adapter->flags & IGB_FLAG_HAS_MSIX)
9d5c8243 1745 igb_configure_msix(adapter);
feeb2721
AD
1746 else
1747 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1748
1749 /* Clear any pending interrupts. */
1750 rd32(E1000_ICR);
1751 igb_irq_enable(adapter);
1752
d4960307
AD
1753 /* notify VFs that reset has been completed */
1754 if (adapter->vfs_allocated_count) {
1755 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 1756
d4960307
AD
1757 reg_data |= E1000_CTRL_EXT_PFRSTD;
1758 wr32(E1000_CTRL_EXT, reg_data);
1759 }
1760
4cb9be7a
JB
1761 netif_tx_start_all_queues(adapter->netdev);
1762
25568a53
AD
1763 /* start the watchdog. */
1764 hw->mac.get_link_status = 1;
1765 schedule_work(&adapter->watchdog_task);
1766
f4c01e96
CW
1767 if ((adapter->flags & IGB_FLAG_EEE) &&
1768 (!hw->dev_spec._82575.eee_disable))
1769 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1770
9d5c8243
AK
1771 return 0;
1772}
1773
1774void igb_down(struct igb_adapter *adapter)
1775{
9d5c8243 1776 struct net_device *netdev = adapter->netdev;
330a6d6a 1777 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1778 u32 tctl, rctl;
1779 int i;
1780
1781 /* signal that we're down so the interrupt handler does not
b980ac18
JK
1782 * reschedule our watchdog timer
1783 */
9d5c8243
AK
1784 set_bit(__IGB_DOWN, &adapter->state);
1785
1786 /* disable receives in the hardware */
1787 rctl = rd32(E1000_RCTL);
1788 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1789 /* flush and sleep below */
1790
f28ea083 1791 netif_carrier_off(netdev);
fd2ea0a7 1792 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1793
1794 /* disable transmits in the hardware */
1795 tctl = rd32(E1000_TCTL);
1796 tctl &= ~E1000_TCTL_EN;
1797 wr32(E1000_TCTL, tctl);
1798 /* flush both disables and wait for them to finish */
1799 wrfl();
0d451e79 1800 usleep_range(10000, 11000);
9d5c8243 1801
41f149a2
CW
1802 igb_irq_disable(adapter);
1803
aa9b8cc4
AA
1804 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1805
41f149a2 1806 for (i = 0; i < adapter->num_q_vectors; i++) {
17a402a0
CW
1807 if (adapter->q_vector[i]) {
1808 napi_synchronize(&adapter->q_vector[i]->napi);
1809 napi_disable(&adapter->q_vector[i]->napi);
1810 }
41f149a2 1811 }
9d5c8243 1812
9d5c8243
AK
1813 del_timer_sync(&adapter->watchdog_timer);
1814 del_timer_sync(&adapter->phy_info_timer);
1815
04fe6358 1816 /* record the stats before reset*/
12dcd86b
ED
1817 spin_lock(&adapter->stats64_lock);
1818 igb_update_stats(adapter, &adapter->stats64);
1819 spin_unlock(&adapter->stats64_lock);
04fe6358 1820
9d5c8243
AK
1821 adapter->link_speed = 0;
1822 adapter->link_duplex = 0;
1823
3023682e
JK
1824 if (!pci_channel_offline(adapter->pdev))
1825 igb_reset(adapter);
16903caa
AD
1826
1827 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1828 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1829
9d5c8243
AK
1830 igb_clean_all_tx_rings(adapter);
1831 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1832#ifdef CONFIG_IGB_DCA
1833
1834 /* since we reset the hardware DCA settings were cleared */
1835 igb_setup_dca(adapter);
1836#endif
9d5c8243
AK
1837}
1838
1839void igb_reinit_locked(struct igb_adapter *adapter)
1840{
1841 WARN_ON(in_interrupt());
1842 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 1843 usleep_range(1000, 2000);
9d5c8243
AK
1844 igb_down(adapter);
1845 igb_up(adapter);
1846 clear_bit(__IGB_RESETTING, &adapter->state);
1847}
1848
56cec249
CW
1849/** igb_enable_mas - Media Autosense re-enable after swap
1850 *
1851 * @adapter: adapter struct
1852 **/
8cfb879d 1853static void igb_enable_mas(struct igb_adapter *adapter)
56cec249
CW
1854{
1855 struct e1000_hw *hw = &adapter->hw;
8cfb879d 1856 u32 connsw = rd32(E1000_CONNSW);
56cec249
CW
1857
1858 /* configure for SerDes media detect */
8cfb879d
TF
1859 if ((hw->phy.media_type == e1000_media_type_copper) &&
1860 (!(connsw & E1000_CONNSW_SERDESD))) {
56cec249
CW
1861 connsw |= E1000_CONNSW_ENRGSRC;
1862 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1863 wr32(E1000_CONNSW, connsw);
1864 wrfl();
56cec249 1865 }
56cec249
CW
1866}
1867
9d5c8243
AK
1868void igb_reset(struct igb_adapter *adapter)
1869{
090b1795 1870 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1871 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1872 struct e1000_mac_info *mac = &hw->mac;
1873 struct e1000_fc_info *fc = &hw->fc;
45693bcb 1874 u32 pba, hwm;
9d5c8243
AK
1875
1876 /* Repartition Pba for greater than 9k mtu
1877 * To take effect CTRL.RST is required.
1878 */
fa4dfae0 1879 switch (mac->type) {
d2ba2ed8 1880 case e1000_i350:
ceb5f13b 1881 case e1000_i354:
55cac248
AD
1882 case e1000_82580:
1883 pba = rd32(E1000_RXPBS);
1884 pba = igb_rxpbs_adjust_82580(pba);
1885 break;
fa4dfae0 1886 case e1000_82576:
d249be54
AD
1887 pba = rd32(E1000_RXPBS);
1888 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1889 break;
1890 case e1000_82575:
f96a8a0b
CW
1891 case e1000_i210:
1892 case e1000_i211:
fa4dfae0
AD
1893 default:
1894 pba = E1000_PBA_34K;
1895 break;
2d064c06 1896 }
9d5c8243 1897
45693bcb
AD
1898 if (mac->type == e1000_82575) {
1899 u32 min_rx_space, min_tx_space, needed_tx_space;
1900
1901 /* write Rx PBA so that hardware can report correct Tx PBA */
9d5c8243
AK
1902 wr32(E1000_PBA, pba);
1903
1904 /* To maintain wire speed transmits, the Tx FIFO should be
1905 * large enough to accommodate two full transmit packets,
1906 * rounded up to the next 1KB and expressed in KB. Likewise,
1907 * the Rx FIFO should be large enough to accommodate at least
1908 * one full receive packet and is similarly rounded up and
b980ac18
JK
1909 * expressed in KB.
1910 */
45693bcb
AD
1911 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1912
1913 /* The Tx FIFO also stores 16 bytes of information about the Tx
1914 * but don't include Ethernet FCS because hardware appends it.
1915 * We only need to round down to the nearest 512 byte block
1916 * count since the value we care about is 2 frames, not 1.
b980ac18 1917 */
45693bcb
AD
1918 min_tx_space = adapter->max_frame_size;
1919 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1920 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1921
1922 /* upper 16 bits has Tx packet buffer allocation size in KB */
1923 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
9d5c8243
AK
1924
1925 /* If current Tx allocation is less than the min Tx FIFO size,
1926 * and the min Tx FIFO size is less than the current Rx FIFO
45693bcb 1927 * allocation, take space away from current Rx allocation.
b980ac18 1928 */
45693bcb
AD
1929 if (needed_tx_space < pba) {
1930 pba -= needed_tx_space;
9d5c8243 1931
b980ac18
JK
1932 /* if short on Rx space, Rx wins and must trump Tx
1933 * adjustment
1934 */
9d5c8243
AK
1935 if (pba < min_rx_space)
1936 pba = min_rx_space;
1937 }
45693bcb
AD
1938
1939 /* adjust PBA for jumbo frames */
2d064c06 1940 wr32(E1000_PBA, pba);
9d5c8243 1941 }
9d5c8243 1942
45693bcb
AD
1943 /* flow control settings
1944 * The high water mark must be low enough to fit one full frame
1945 * after transmitting the pause frame. As such we must have enough
1946 * space to allow for us to complete our current transmit and then
1947 * receive the frame that is in progress from the link partner.
1948 * Set it to:
1949 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
b980ac18 1950 */
45693bcb 1951 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
9d5c8243 1952
d48507fe 1953 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1954 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1955 fc->pause_time = 0xFFFF;
1956 fc->send_xon = 1;
0cce119a 1957 fc->current_mode = fc->requested_mode;
9d5c8243 1958
4ae196df
AD
1959 /* disable receive for all VFs and wait one second */
1960 if (adapter->vfs_allocated_count) {
1961 int i;
9005df38 1962
4ae196df 1963 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1964 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1965
1966 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1967 igb_ping_all_vfs(adapter);
4ae196df
AD
1968
1969 /* disable transmits and receives */
1970 wr32(E1000_VFRE, 0);
1971 wr32(E1000_VFTE, 0);
1972 }
1973
9d5c8243 1974 /* Allow time for pending master requests to run */
330a6d6a 1975 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1976 wr32(E1000_WUC, 0);
1977
56cec249
CW
1978 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 /* need to resetup here after media swap */
1980 adapter->ei.get_invariants(hw);
1981 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 }
8cfb879d
TF
1983 if ((mac->type == e1000_82575) &&
1984 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1985 igb_enable_mas(adapter);
56cec249 1986 }
330a6d6a 1987 if (hw->mac.ops.init_hw(hw))
090b1795 1988 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1989
b980ac18 1990 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
1991 * control is off when forcing speed.
1992 */
1993 if (!hw->mac.autoneg)
1994 igb_force_mac_fc(hw);
1995
b6e0c419 1996 igb_init_dmac(adapter, pba);
e428893b
CW
1997#ifdef CONFIG_IGB_HWMON
1998 /* Re-initialize the thermal sensor on i350 devices. */
1999 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2000 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2001 /* If present, re-initialize the external thermal sensor
2002 * interface.
2003 */
2004 if (adapter->ets)
2005 mac->ops.init_thermal_sensor_thresh(hw);
2006 }
2007 }
2008#endif
b936136d 2009 /* Re-establish EEE setting */
f4c01e96
CW
2010 if (hw->phy.media_type == e1000_media_type_copper) {
2011 switch (mac->type) {
2012 case e1000_i350:
2013 case e1000_i210:
2014 case e1000_i211:
c4c112f1 2015 igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2016 break;
2017 case e1000_i354:
c4c112f1 2018 igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2019 break;
2020 default:
2021 break;
2022 }
2023 }
88a268c1
NN
2024 if (!netif_running(adapter->netdev))
2025 igb_power_down_link(adapter);
2026
9d5c8243
AK
2027 igb_update_mng_vlan(adapter);
2028
2029 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2030 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2031
1f6e8178 2032 /* Re-enable PTP, where applicable. */
4f3ce71b
JK
2033 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2034 igb_ptp_reset(adapter);
1f6e8178 2035
330a6d6a 2036 igb_get_phy_info(hw);
9d5c8243
AK
2037}
2038
c8f44aff
MM
2039static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 netdev_features_t features)
b2cb09b1 2041{
b980ac18
JK
2042 /* Since there is no support for separate Rx/Tx vlan accel
2043 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 2044 */
f646968f
PM
2045 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 2047 else
f646968f 2048 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
2049
2050 return features;
2051}
2052
c8f44aff
MM
2053static int igb_set_features(struct net_device *netdev,
2054 netdev_features_t features)
ac52caa3 2055{
c8f44aff 2056 netdev_features_t changed = netdev->features ^ features;
89eaefb6 2057 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 2058
f646968f 2059 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
2060 igb_vlan_mode(netdev, features);
2061
16903caa 2062 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
89eaefb6
BG
2063 return 0;
2064
0e71def2
GH
2065 if (!(features & NETIF_F_NTUPLE)) {
2066 struct hlist_node *node2;
2067 struct igb_nfc_filter *rule;
2068
2069 spin_lock(&adapter->nfc_lock);
2070 hlist_for_each_entry_safe(rule, node2,
2071 &adapter->nfc_filter_list, nfc_node) {
2072 igb_erase_filter(adapter, rule);
2073 hlist_del(&rule->nfc_node);
2074 kfree(rule);
2075 }
2076 spin_unlock(&adapter->nfc_lock);
2077 adapter->nfc_filter_count = 0;
2078 }
2079
89eaefb6
BG
2080 netdev->features = features;
2081
2082 if (netif_running(netdev))
2083 igb_reinit_locked(adapter);
2084 else
2085 igb_reset(adapter);
2086
ac52caa3
MM
2087 return 0;
2088}
2089
268f9d33
AD
2090static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2091 struct net_device *dev,
2092 const unsigned char *addr, u16 vid,
2093 u16 flags)
2094{
2095 /* guarantee we can provide a unique filter for the unicast address */
2096 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2097 struct igb_adapter *adapter = netdev_priv(dev);
2098 struct e1000_hw *hw = &adapter->hw;
2099 int vfn = adapter->vfs_allocated_count;
2100 int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2101
2102 if (netdev_uc_count(dev) >= rar_entries)
2103 return -ENOMEM;
2104 }
2105
2106 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2107}
2108
e10715d3
AD
2109#define IGB_MAX_MAC_HDR_LEN 127
2110#define IGB_MAX_NETWORK_HDR_LEN 511
2111
2112static netdev_features_t
2113igb_features_check(struct sk_buff *skb, struct net_device *dev,
2114 netdev_features_t features)
2115{
2116 unsigned int network_hdr_len, mac_hdr_len;
2117
2118 /* Make certain the headers can be described by a context descriptor */
2119 mac_hdr_len = skb_network_header(skb) - skb->data;
2120 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2121 return features & ~(NETIF_F_HW_CSUM |
2122 NETIF_F_SCTP_CRC |
2123 NETIF_F_HW_VLAN_CTAG_TX |
2124 NETIF_F_TSO |
2125 NETIF_F_TSO6);
2126
2127 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2128 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2129 return features & ~(NETIF_F_HW_CSUM |
2130 NETIF_F_SCTP_CRC |
2131 NETIF_F_TSO |
2132 NETIF_F_TSO6);
2133
2134 /* We can only support IPV4 TSO in tunnels if we can mangle the
2135 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2136 */
2137 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2138 features &= ~NETIF_F_TSO;
2139
2140 return features;
2141}
2142
2e5c6922 2143static const struct net_device_ops igb_netdev_ops = {
559e9c49 2144 .ndo_open = igb_open,
2e5c6922 2145 .ndo_stop = igb_close,
cd392f5c 2146 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 2147 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 2148 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
2149 .ndo_set_mac_address = igb_set_mac,
2150 .ndo_change_mtu = igb_change_mtu,
2151 .ndo_do_ioctl = igb_ioctl,
2152 .ndo_tx_timeout = igb_tx_timeout,
2153 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
2154 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2155 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
2156 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2157 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
ed616689 2158 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
70ea4783 2159 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
8151d294 2160 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
2161#ifdef CONFIG_NET_POLL_CONTROLLER
2162 .ndo_poll_controller = igb_netpoll,
2163#endif
b2cb09b1
JP
2164 .ndo_fix_features = igb_fix_features,
2165 .ndo_set_features = igb_set_features,
268f9d33 2166 .ndo_fdb_add = igb_ndo_fdb_add,
e10715d3 2167 .ndo_features_check = igb_features_check,
2e5c6922
SH
2168};
2169
d67974f0
CW
2170/**
2171 * igb_set_fw_version - Configure version string for ethtool
2172 * @adapter: adapter struct
d67974f0
CW
2173 **/
2174void igb_set_fw_version(struct igb_adapter *adapter)
2175{
2176 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
2177 struct e1000_fw_version fw;
2178
2179 igb_get_fw_version(hw, &fw);
2180
2181 switch (hw->mac.type) {
7dc98a62 2182 case e1000_i210:
0b1a6f2e 2183 case e1000_i211:
7dc98a62
CW
2184 if (!(igb_get_flash_presence_i210(hw))) {
2185 snprintf(adapter->fw_version,
2186 sizeof(adapter->fw_version),
2187 "%2d.%2d-%d",
2188 fw.invm_major, fw.invm_minor,
2189 fw.invm_img_type);
2190 break;
2191 }
2192 /* fall through */
0b1a6f2e
CW
2193 default:
2194 /* if option is rom valid, display its version too */
2195 if (fw.or_valid) {
2196 snprintf(adapter->fw_version,
2197 sizeof(adapter->fw_version),
2198 "%d.%d, 0x%08x, %d.%d.%d",
2199 fw.eep_major, fw.eep_minor, fw.etrack_id,
2200 fw.or_major, fw.or_build, fw.or_patch);
2201 /* no option rom */
7dc98a62 2202 } else if (fw.etrack_id != 0X0000) {
0b1a6f2e 2203 snprintf(adapter->fw_version,
7dc98a62
CW
2204 sizeof(adapter->fw_version),
2205 "%d.%d, 0x%08x",
2206 fw.eep_major, fw.eep_minor, fw.etrack_id);
2207 } else {
2208 snprintf(adapter->fw_version,
2209 sizeof(adapter->fw_version),
2210 "%d.%d.%d",
2211 fw.eep_major, fw.eep_minor, fw.eep_build);
0b1a6f2e
CW
2212 }
2213 break;
d67974f0 2214 }
d67974f0
CW
2215}
2216
56cec249
CW
2217/**
2218 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2219 *
2220 * @adapter: adapter struct
2221 **/
2222static void igb_init_mas(struct igb_adapter *adapter)
2223{
2224 struct e1000_hw *hw = &adapter->hw;
2225 u16 eeprom_data;
2226
2227 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2228 switch (hw->bus.func) {
2229 case E1000_FUNC_0:
2230 if (eeprom_data & IGB_MAS_ENABLE_0) {
2231 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2232 netdev_info(adapter->netdev,
2233 "MAS: Enabling Media Autosense for port %d\n",
2234 hw->bus.func);
2235 }
2236 break;
2237 case E1000_FUNC_1:
2238 if (eeprom_data & IGB_MAS_ENABLE_1) {
2239 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2240 netdev_info(adapter->netdev,
2241 "MAS: Enabling Media Autosense for port %d\n",
2242 hw->bus.func);
2243 }
2244 break;
2245 case E1000_FUNC_2:
2246 if (eeprom_data & IGB_MAS_ENABLE_2) {
2247 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2248 netdev_info(adapter->netdev,
2249 "MAS: Enabling Media Autosense for port %d\n",
2250 hw->bus.func);
2251 }
2252 break;
2253 case E1000_FUNC_3:
2254 if (eeprom_data & IGB_MAS_ENABLE_3) {
2255 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2256 netdev_info(adapter->netdev,
2257 "MAS: Enabling Media Autosense for port %d\n",
2258 hw->bus.func);
2259 }
2260 break;
2261 default:
2262 /* Shouldn't get here */
2263 netdev_err(adapter->netdev,
2264 "MAS: Invalid port configuration, returning\n");
2265 break;
2266 }
2267}
2268
b980ac18
JK
2269/**
2270 * igb_init_i2c - Init I2C interface
441fc6fd 2271 * @adapter: pointer to adapter structure
b980ac18 2272 **/
441fc6fd
CW
2273static s32 igb_init_i2c(struct igb_adapter *adapter)
2274{
23d87824 2275 s32 status = 0;
441fc6fd
CW
2276
2277 /* I2C interface supported on i350 devices */
2278 if (adapter->hw.mac.type != e1000_i350)
23d87824 2279 return 0;
441fc6fd
CW
2280
2281 /* Initialize the i2c bus which is controlled by the registers.
2282 * This bus will use the i2c_algo_bit structue that implements
2283 * the protocol through toggling of the 4 bits in the register.
2284 */
2285 adapter->i2c_adap.owner = THIS_MODULE;
2286 adapter->i2c_algo = igb_i2c_algo;
2287 adapter->i2c_algo.data = adapter;
2288 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2289 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2290 strlcpy(adapter->i2c_adap.name, "igb BB",
2291 sizeof(adapter->i2c_adap.name));
2292 status = i2c_bit_add_bus(&adapter->i2c_adap);
2293 return status;
2294}
2295
9d5c8243 2296/**
b980ac18
JK
2297 * igb_probe - Device Initialization Routine
2298 * @pdev: PCI device information struct
2299 * @ent: entry in igb_pci_tbl
9d5c8243 2300 *
b980ac18 2301 * Returns 0 on success, negative on failure
9d5c8243 2302 *
b980ac18
JK
2303 * igb_probe initializes an adapter identified by a pci_dev structure.
2304 * The OS initialization, configuring of the adapter private structure,
2305 * and a hardware reset occur.
9d5c8243 2306 **/
1dd06ae8 2307static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
2308{
2309 struct net_device *netdev;
2310 struct igb_adapter *adapter;
2311 struct e1000_hw *hw;
4337e993 2312 u16 eeprom_data = 0;
9835fd73 2313 s32 ret_val;
4337e993 2314 static int global_quad_port_a; /* global quad port a indication */
9d5c8243 2315 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2d6a5e95 2316 int err, pci_using_dac;
9835fd73 2317 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2318
bded64a7
AG
2319 /* Catch broken hardware that put the wrong VF device ID in
2320 * the PCIe SR-IOV capability.
2321 */
2322 if (pdev->is_virtfn) {
2323 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2324 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2325 return -EINVAL;
2326 }
2327
aed5dec3 2328 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2329 if (err)
2330 return err;
2331
2332 pci_using_dac = 0;
dc4ff9bb 2333 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2334 if (!err) {
dc4ff9bb 2335 pci_using_dac = 1;
9d5c8243 2336 } else {
dc4ff9bb 2337 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2338 if (err) {
dc4ff9bb
RK
2339 dev_err(&pdev->dev,
2340 "No usable DMA configuration, aborting\n");
2341 goto err_dma;
9d5c8243
AK
2342 }
2343 }
2344
56d766d6 2345 err = pci_request_mem_regions(pdev, igb_driver_name);
9d5c8243
AK
2346 if (err)
2347 goto err_pci_reg;
2348
19d5afd4 2349 pci_enable_pcie_error_reporting(pdev);
40a914fa 2350
9d5c8243 2351 pci_set_master(pdev);
c682fc23 2352 pci_save_state(pdev);
9d5c8243
AK
2353
2354 err = -ENOMEM;
1bfaf07b 2355 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2356 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2357 if (!netdev)
2358 goto err_alloc_etherdev;
2359
2360 SET_NETDEV_DEV(netdev, &pdev->dev);
2361
2362 pci_set_drvdata(pdev, netdev);
2363 adapter = netdev_priv(netdev);
2364 adapter->netdev = netdev;
2365 adapter->pdev = pdev;
2366 hw = &adapter->hw;
2367 hw->back = adapter;
b3f4d599 2368 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243 2369
9d5c8243 2370 err = -EIO;
73bf8048
JW
2371 adapter->io_addr = pci_iomap(pdev, 0, 0);
2372 if (!adapter->io_addr)
9d5c8243 2373 goto err_ioremap;
73bf8048
JW
2374 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2375 hw->hw_addr = adapter->io_addr;
9d5c8243 2376
2e5c6922 2377 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2378 igb_set_ethtool_ops(netdev);
9d5c8243 2379 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2380
2381 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2382
89dbefb2
AS
2383 netdev->mem_start = pci_resource_start(pdev, 0);
2384 netdev->mem_end = pci_resource_end(pdev, 0);
9d5c8243 2385
9d5c8243
AK
2386 /* PCI config space info */
2387 hw->vendor_id = pdev->vendor;
2388 hw->device_id = pdev->device;
2389 hw->revision_id = pdev->revision;
2390 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2391 hw->subsystem_device_id = pdev->subsystem_device;
2392
9d5c8243
AK
2393 /* Copy the default MAC, PHY and NVM function pointers */
2394 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2395 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2396 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2397 /* Initialize skew-specific constants */
2398 err = ei->get_invariants(hw);
2399 if (err)
450c87c8 2400 goto err_sw_init;
9d5c8243 2401
450c87c8 2402 /* setup the private structure */
9d5c8243
AK
2403 err = igb_sw_init(adapter);
2404 if (err)
2405 goto err_sw_init;
2406
2407 igb_get_bus_info_pcie(hw);
2408
2409 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2410
2411 /* Copper options */
2412 if (hw->phy.media_type == e1000_media_type_copper) {
2413 hw->phy.mdix = AUTO_ALL_MODES;
2414 hw->phy.disable_polarity_correction = false;
2415 hw->phy.ms_type = e1000_ms_hw_default;
2416 }
2417
2418 if (igb_check_reset_block(hw))
2419 dev_info(&pdev->dev,
2420 "PHY reset is blocked due to SOL/IDER session.\n");
2421
b980ac18 2422 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2423 * set by igb_sw_init so we should use an or instead of an
2424 * assignment.
2425 */
2426 netdev->features |= NETIF_F_SG |
077887c3
AD
2427 NETIF_F_TSO |
2428 NETIF_F_TSO6 |
2429 NETIF_F_RXHASH |
2430 NETIF_F_RXCSUM |
e10715d3 2431 NETIF_F_HW_CSUM;
077887c3 2432
6e033700
AD
2433 if (hw->mac.type >= e1000_82576)
2434 netdev->features |= NETIF_F_SCTP_CRC;
2435
e10715d3
AD
2436#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2437 NETIF_F_GSO_GRE_CSUM | \
7e13318d 2438 NETIF_F_GSO_IPXIP4 | \
bf2d1df3 2439 NETIF_F_GSO_IPXIP6 | \
e10715d3
AD
2440 NETIF_F_GSO_UDP_TUNNEL | \
2441 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2442
2443 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2444 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2445
077887c3 2446 /* copy netdev features into list of user selectable features */
e10715d3
AD
2447 netdev->hw_features |= netdev->features |
2448 NETIF_F_HW_VLAN_CTAG_RX |
2449 NETIF_F_HW_VLAN_CTAG_TX |
2450 NETIF_F_RXALL;
077887c3 2451
6e033700
AD
2452 if (hw->mac.type >= e1000_i350)
2453 netdev->hw_features |= NETIF_F_NTUPLE;
2454
e10715d3
AD
2455 if (pci_using_dac)
2456 netdev->features |= NETIF_F_HIGHDMA;
6e033700 2457
e10715d3 2458 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6e033700 2459 netdev->mpls_features |= NETIF_F_HW_CSUM;
e10715d3 2460 netdev->hw_enc_features |= netdev->vlan_features;
48f29ffc 2461
e10715d3
AD
2462 /* set this bit last since it cannot be part of vlan_features */
2463 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2464 NETIF_F_HW_VLAN_CTAG_RX |
2465 NETIF_F_HW_VLAN_CTAG_TX;
6b8f0922 2466
e10715d3 2467 netdev->priv_flags |= IFF_SUPP_NOFCS;
9d5c8243 2468
01789349
JP
2469 netdev->priv_flags |= IFF_UNICAST_FLT;
2470
330a6d6a 2471 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2472
2473 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2474 * known good starting state
2475 */
9d5c8243
AK
2476 hw->mac.ops.reset_hw(hw);
2477
ef3a0092
CW
2478 /* make sure the NVM is good , i211/i210 parts can have special NVM
2479 * that doesn't contain a checksum
f96a8a0b 2480 */
ef3a0092
CW
2481 switch (hw->mac.type) {
2482 case e1000_i210:
2483 case e1000_i211:
2484 if (igb_get_flash_presence_i210(hw)) {
2485 if (hw->nvm.ops.validate(hw) < 0) {
2486 dev_err(&pdev->dev,
2487 "The NVM Checksum Is Not Valid\n");
2488 err = -EIO;
2489 goto err_eeprom;
2490 }
2491 }
2492 break;
2493 default:
f96a8a0b
CW
2494 if (hw->nvm.ops.validate(hw) < 0) {
2495 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2496 err = -EIO;
2497 goto err_eeprom;
2498 }
ef3a0092 2499 break;
9d5c8243
AK
2500 }
2501
806ffb1d
JH
2502 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2503 /* copy the MAC address out of the NVM */
2504 if (hw->mac.ops.read_mac_addr(hw))
2505 dev_err(&pdev->dev, "NVM Read Error\n");
2506 }
9d5c8243
AK
2507
2508 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2509
aaeb6cdf 2510 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2511 dev_err(&pdev->dev, "Invalid MAC Address\n");
2512 err = -EIO;
2513 goto err_eeprom;
2514 }
2515
d67974f0
CW
2516 /* get firmware version for ethtool -i */
2517 igb_set_fw_version(adapter);
2518
27dff8b2
TF
2519 /* configure RXPBSIZE and TXPBSIZE */
2520 if (hw->mac.type == e1000_i210) {
2521 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2522 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2523 }
2524
c061b18d 2525 setup_timer(&adapter->watchdog_timer, igb_watchdog,
b980ac18 2526 (unsigned long) adapter);
c061b18d 2527 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
b980ac18 2528 (unsigned long) adapter);
9d5c8243
AK
2529
2530 INIT_WORK(&adapter->reset_task, igb_reset_task);
2531 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2532
450c87c8 2533 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2534 adapter->fc_autoneg = true;
2535 hw->mac.autoneg = true;
2536 hw->phy.autoneg_advertised = 0x2f;
2537
0cce119a
AD
2538 hw->fc.requested_mode = e1000_fc_default;
2539 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2540
9d5c8243
AK
2541 igb_validate_mdi_setting(hw);
2542
63d4a8f9 2543 /* By default, support wake on port A */
a2cf8b6c 2544 if (hw->bus.func == 0)
63d4a8f9
MV
2545 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2546
2547 /* Check the NVM for wake support on non-port A ports */
2548 if (hw->mac.type >= e1000_82580)
55cac248 2549 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2550 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2551 &eeprom_data);
a2cf8b6c
AD
2552 else if (hw->bus.func == 1)
2553 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2554
63d4a8f9
MV
2555 if (eeprom_data & IGB_EEPROM_APME)
2556 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2557
2558 /* now that we have the eeprom settings, apply the special cases where
2559 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2560 * lan on a particular port
2561 */
9d5c8243
AK
2562 switch (pdev->device) {
2563 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2564 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2565 break;
2566 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2567 case E1000_DEV_ID_82576_FIBER:
2568 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2569 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2570 * regardless of eeprom setting
2571 */
9d5c8243 2572 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2573 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2574 break;
c8ea5ea9 2575 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2576 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2577 /* if quad port adapter, disable WoL on all but port A */
2578 if (global_quad_port_a != 0)
63d4a8f9 2579 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2580 else
2581 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2582 /* Reset for multiple quad port adapters */
2583 if (++global_quad_port_a == 4)
2584 global_quad_port_a = 0;
2585 break;
63d4a8f9
MV
2586 default:
2587 /* If the device can't wake, don't set software support */
2588 if (!device_can_wakeup(&adapter->pdev->dev))
2589 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2590 }
2591
2592 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2593 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2594 adapter->wol |= E1000_WUFC_MAG;
2595
2596 /* Some vendors want WoL disabled by default, but still supported */
2597 if ((hw->mac.type == e1000_i350) &&
2598 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2599 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2600 adapter->wol = 0;
2601 }
2602
5e350b92
TF
2603 /* Some vendors want the ability to Use the EEPROM setting as
2604 * enable/disable only, and not for capability
2605 */
2606 if (((hw->mac.type == e1000_i350) ||
2607 (hw->mac.type == e1000_i354)) &&
2608 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2609 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2610 adapter->wol = 0;
2611 }
2612 if (hw->mac.type == e1000_i350) {
2613 if (((pdev->subsystem_device == 0x5001) ||
2614 (pdev->subsystem_device == 0x5002)) &&
2615 (hw->bus.func == 0)) {
2616 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2617 adapter->wol = 0;
2618 }
2619 if (pdev->subsystem_device == 0x1F52)
2620 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2621 }
2622
63d4a8f9
MV
2623 device_set_wakeup_enable(&adapter->pdev->dev,
2624 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2625
2626 /* reset the hardware with the new settings */
2627 igb_reset(adapter);
2628
441fc6fd
CW
2629 /* Init the I2C interface */
2630 err = igb_init_i2c(adapter);
2631 if (err) {
2632 dev_err(&pdev->dev, "failed to init i2c interface\n");
2633 goto err_eeprom;
2634 }
2635
9d5c8243 2636 /* let the f/w know that the h/w is now under the control of the
e52c0f96
CW
2637 * driver.
2638 */
9d5c8243
AK
2639 igb_get_hw_control(adapter);
2640
9d5c8243
AK
2641 strcpy(netdev->name, "eth%d");
2642 err = register_netdev(netdev);
2643 if (err)
2644 goto err_register;
2645
b168dfc5
JB
2646 /* carrier off reporting is important to ethtool even BEFORE open */
2647 netif_carrier_off(netdev);
2648
421e02f0 2649#ifdef CONFIG_IGB_DCA
bbd98fe4 2650 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2651 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2652 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2653 igb_setup_dca(adapter);
2654 }
fe4506b6 2655
38c845c7 2656#endif
e428893b
CW
2657#ifdef CONFIG_IGB_HWMON
2658 /* Initialize the thermal sensor on i350 devices. */
2659 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2660 u16 ets_word;
3c89f6d0 2661
b980ac18 2662 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
2663 * external thermal sensor.
2664 */
2665 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2666 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2667 adapter->ets = true;
2668 else
2669 adapter->ets = false;
2670 if (igb_sysfs_init(adapter))
2671 dev_err(&pdev->dev,
2672 "failed to allocate sysfs resources\n");
2673 } else {
2674 adapter->ets = false;
2675 }
2676#endif
56cec249
CW
2677 /* Check if Media Autosense is enabled */
2678 adapter->ei = *ei;
2679 if (hw->dev_spec._82575.mas_capable)
2680 igb_init_mas(adapter);
2681
673b8b70 2682 /* do hw tstamp init after resetting */
7ebae817 2683 igb_ptp_init(adapter);
673b8b70 2684
9d5c8243 2685 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
2686 /* print bus type/speed/width info, not applicable to i354 */
2687 if (hw->mac.type != e1000_i354) {
2688 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2689 netdev->name,
2690 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2691 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2692 "unknown"),
2693 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2694 "Width x4" :
2695 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2696 "Width x2" :
2697 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2698 "Width x1" : "unknown"), netdev->dev_addr);
2699 }
9d5c8243 2700
53ea6c7e
TF
2701 if ((hw->mac.type >= e1000_i210 ||
2702 igb_get_flash_presence_i210(hw))) {
2703 ret_val = igb_read_part_string(hw, part_str,
2704 E1000_PBANUM_LENGTH);
2705 } else {
2706 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2707 }
2708
9835fd73
CW
2709 if (ret_val)
2710 strcpy(part_str, "Unknown");
2711 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2712 dev_info(&pdev->dev,
2713 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
cd14ef54 2714 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
7dfc16fa 2715 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2716 adapter->num_rx_queues, adapter->num_tx_queues);
f4c01e96
CW
2717 if (hw->phy.media_type == e1000_media_type_copper) {
2718 switch (hw->mac.type) {
2719 case e1000_i350:
2720 case e1000_i210:
2721 case e1000_i211:
2722 /* Enable EEE for internal copper PHY devices */
c4c112f1 2723 err = igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2724 if ((!err) &&
2725 (!hw->dev_spec._82575.eee_disable)) {
2726 adapter->eee_advert =
2727 MDIO_EEE_100TX | MDIO_EEE_1000T;
2728 adapter->flags |= IGB_FLAG_EEE;
2729 }
2730 break;
2731 case e1000_i354:
ceb5f13b 2732 if ((rd32(E1000_CTRL_EXT) &
f4c01e96 2733 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
c4c112f1 2734 err = igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2735 if ((!err) &&
2736 (!hw->dev_spec._82575.eee_disable)) {
2737 adapter->eee_advert =
2738 MDIO_EEE_100TX | MDIO_EEE_1000T;
2739 adapter->flags |= IGB_FLAG_EEE;
2740 }
2741 }
2742 break;
2743 default:
2744 break;
ceb5f13b 2745 }
09b068d4 2746 }
749ab2cd 2747 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2748 return 0;
2749
2750err_register:
2751 igb_release_hw_control(adapter);
441fc6fd 2752 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2753err_eeprom:
2754 if (!igb_check_reset_block(hw))
f5f4cf08 2755 igb_reset_phy(hw);
9d5c8243
AK
2756
2757 if (hw->flash_address)
2758 iounmap(hw->flash_address);
9d5c8243 2759err_sw_init:
42ad1a03 2760 kfree(adapter->shadow_vfta);
047e0030 2761 igb_clear_interrupt_scheme(adapter);
ceee3450
TF
2762#ifdef CONFIG_PCI_IOV
2763 igb_disable_sriov(pdev);
2764#endif
73bf8048 2765 pci_iounmap(pdev, adapter->io_addr);
9d5c8243
AK
2766err_ioremap:
2767 free_netdev(netdev);
2768err_alloc_etherdev:
56d766d6 2769 pci_release_mem_regions(pdev);
9d5c8243
AK
2770err_pci_reg:
2771err_dma:
2772 pci_disable_device(pdev);
2773 return err;
2774}
2775
fa44f2f1 2776#ifdef CONFIG_PCI_IOV
781798a1 2777static int igb_disable_sriov(struct pci_dev *pdev)
fa44f2f1
GR
2778{
2779 struct net_device *netdev = pci_get_drvdata(pdev);
2780 struct igb_adapter *adapter = netdev_priv(netdev);
2781 struct e1000_hw *hw = &adapter->hw;
2782
2783 /* reclaim resources allocated to VFs */
2784 if (adapter->vf_data) {
2785 /* disable iov and allow time for transactions to clear */
b09186d2 2786 if (pci_vfs_assigned(pdev)) {
fa44f2f1
GR
2787 dev_warn(&pdev->dev,
2788 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2789 return -EPERM;
2790 } else {
2791 pci_disable_sriov(pdev);
2792 msleep(500);
2793 }
2794
2795 kfree(adapter->vf_data);
2796 adapter->vf_data = NULL;
2797 adapter->vfs_allocated_count = 0;
2798 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2799 wrfl();
2800 msleep(100);
2801 dev_info(&pdev->dev, "IOV Disabled\n");
2802
2803 /* Re-enable DMA Coalescing flag since IOV is turned off */
2804 adapter->flags |= IGB_FLAG_DMAC;
2805 }
2806
2807 return 0;
2808}
2809
2810static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2811{
2812 struct net_device *netdev = pci_get_drvdata(pdev);
2813 struct igb_adapter *adapter = netdev_priv(netdev);
2814 int old_vfs = pci_num_vf(pdev);
2815 int err = 0;
2816 int i;
2817
cd14ef54 2818 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
50267196
MW
2819 err = -EPERM;
2820 goto out;
2821 }
fa44f2f1
GR
2822 if (!num_vfs)
2823 goto out;
fa44f2f1 2824
781798a1
SA
2825 if (old_vfs) {
2826 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2827 old_vfs, max_vfs);
2828 adapter->vfs_allocated_count = old_vfs;
2829 } else
2830 adapter->vfs_allocated_count = num_vfs;
fa44f2f1
GR
2831
2832 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2833 sizeof(struct vf_data_storage), GFP_KERNEL);
2834
2835 /* if allocation failed then we do not support SR-IOV */
2836 if (!adapter->vf_data) {
2837 adapter->vfs_allocated_count = 0;
2838 dev_err(&pdev->dev,
2839 "Unable to allocate memory for VF Data Storage\n");
2840 err = -ENOMEM;
2841 goto out;
2842 }
2843
781798a1
SA
2844 /* only call pci_enable_sriov() if no VFs are allocated already */
2845 if (!old_vfs) {
2846 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2847 if (err)
2848 goto err_out;
2849 }
fa44f2f1
GR
2850 dev_info(&pdev->dev, "%d VFs allocated\n",
2851 adapter->vfs_allocated_count);
2852 for (i = 0; i < adapter->vfs_allocated_count; i++)
2853 igb_vf_configure(adapter, i);
2854
2855 /* DMA Coalescing is not supported in IOV mode. */
2856 adapter->flags &= ~IGB_FLAG_DMAC;
2857 goto out;
2858
2859err_out:
2860 kfree(adapter->vf_data);
2861 adapter->vf_data = NULL;
2862 adapter->vfs_allocated_count = 0;
2863out:
2864 return err;
2865}
2866
2867#endif
b980ac18 2868/**
441fc6fd
CW
2869 * igb_remove_i2c - Cleanup I2C interface
2870 * @adapter: pointer to adapter structure
b980ac18 2871 **/
441fc6fd
CW
2872static void igb_remove_i2c(struct igb_adapter *adapter)
2873{
441fc6fd
CW
2874 /* free the adapter bus structure */
2875 i2c_del_adapter(&adapter->i2c_adap);
2876}
2877
9d5c8243 2878/**
b980ac18
JK
2879 * igb_remove - Device Removal Routine
2880 * @pdev: PCI device information struct
9d5c8243 2881 *
b980ac18
JK
2882 * igb_remove is called by the PCI subsystem to alert the driver
2883 * that it should release a PCI device. The could be caused by a
2884 * Hot-Plug event, or because the driver is going to be removed from
2885 * memory.
9d5c8243 2886 **/
9f9a12f8 2887static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2888{
2889 struct net_device *netdev = pci_get_drvdata(pdev);
2890 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2891 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2892
749ab2cd 2893 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2894#ifdef CONFIG_IGB_HWMON
2895 igb_sysfs_exit(adapter);
2896#endif
441fc6fd 2897 igb_remove_i2c(adapter);
a79f4f88 2898 igb_ptp_stop(adapter);
b980ac18 2899 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
2900 * disable watchdog from being rescheduled.
2901 */
9d5c8243
AK
2902 set_bit(__IGB_DOWN, &adapter->state);
2903 del_timer_sync(&adapter->watchdog_timer);
2904 del_timer_sync(&adapter->phy_info_timer);
2905
760141a5
TH
2906 cancel_work_sync(&adapter->reset_task);
2907 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2908
421e02f0 2909#ifdef CONFIG_IGB_DCA
7dfc16fa 2910 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2911 dev_info(&pdev->dev, "DCA disabled\n");
2912 dca_remove_requester(&pdev->dev);
7dfc16fa 2913 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2914 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2915 }
2916#endif
2917
9d5c8243 2918 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
2919 * would have already happened in close and is redundant.
2920 */
9d5c8243
AK
2921 igb_release_hw_control(adapter);
2922
37680117 2923#ifdef CONFIG_PCI_IOV
fa44f2f1 2924 igb_disable_sriov(pdev);
37680117 2925#endif
559e9c49 2926
c23d92b8
AW
2927 unregister_netdev(netdev);
2928
2929 igb_clear_interrupt_scheme(adapter);
2930
73bf8048 2931 pci_iounmap(pdev, adapter->io_addr);
28b0759c
AD
2932 if (hw->flash_address)
2933 iounmap(hw->flash_address);
56d766d6 2934 pci_release_mem_regions(pdev);
9d5c8243 2935
1128c756 2936 kfree(adapter->shadow_vfta);
9d5c8243
AK
2937 free_netdev(netdev);
2938
19d5afd4 2939 pci_disable_pcie_error_reporting(pdev);
40a914fa 2940
9d5c8243
AK
2941 pci_disable_device(pdev);
2942}
2943
a6b623e0 2944/**
b980ac18
JK
2945 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2946 * @adapter: board private structure to initialize
a6b623e0 2947 *
b980ac18
JK
2948 * This function initializes the vf specific data storage and then attempts to
2949 * allocate the VFs. The reason for ordering it this way is because it is much
2950 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2951 * the memory for the VFs.
a6b623e0 2952 **/
9f9a12f8 2953static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2954{
2955#ifdef CONFIG_PCI_IOV
2956 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2957 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2958
f96a8a0b
CW
2959 /* Virtualization features not supported on i210 family. */
2960 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2961 return;
2962
be06998f
JB
2963 /* Of the below we really only want the effect of getting
2964 * IGB_FLAG_HAS_MSIX set (if available), without which
2965 * igb_enable_sriov() has no effect.
2966 */
2967 igb_set_interrupt_capability(adapter, true);
2968 igb_reset_interrupt_capability(adapter);
2969
fa44f2f1 2970 pci_sriov_set_totalvfs(pdev, 7);
6423fc34 2971 igb_enable_sriov(pdev, max_vfs);
0224d663 2972
a6b623e0
AD
2973#endif /* CONFIG_PCI_IOV */
2974}
2975
fa44f2f1 2976static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2977{
2978 struct e1000_hw *hw = &adapter->hw;
374a542d 2979 u32 max_rss_queues;
9d5c8243 2980
374a542d 2981 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2982 switch (hw->mac.type) {
374a542d
MV
2983 case e1000_i211:
2984 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2985 break;
2986 case e1000_82575:
f96a8a0b 2987 case e1000_i210:
374a542d
MV
2988 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2989 break;
2990 case e1000_i350:
2991 /* I350 cannot do RSS and SR-IOV at the same time */
2992 if (!!adapter->vfs_allocated_count) {
2993 max_rss_queues = 1;
2994 break;
2995 }
2996 /* fall through */
2997 case e1000_82576:
2998 if (!!adapter->vfs_allocated_count) {
2999 max_rss_queues = 2;
3000 break;
3001 }
3002 /* fall through */
3003 case e1000_82580:
ceb5f13b 3004 case e1000_i354:
374a542d
MV
3005 default:
3006 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 3007 break;
374a542d
MV
3008 }
3009
3010 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3011
72ddef05
SS
3012 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3013}
3014
3015void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3016 const u32 max_rss_queues)
3017{
3018 struct e1000_hw *hw = &adapter->hw;
3019
374a542d
MV
3020 /* Determine if we need to pair queues. */
3021 switch (hw->mac.type) {
3022 case e1000_82575:
f96a8a0b 3023 case e1000_i211:
374a542d 3024 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 3025 break;
374a542d 3026 case e1000_82576:
374a542d
MV
3027 case e1000_82580:
3028 case e1000_i350:
ceb5f13b 3029 case e1000_i354:
374a542d 3030 case e1000_i210:
f96a8a0b 3031 default:
b980ac18 3032 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
3033 * order to conserve interrupts due to limited supply.
3034 */
3035 if (adapter->rss_queues > (max_rss_queues / 2))
3036 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
37a5d163
SS
3037 else
3038 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
3039 break;
3040 }
fa44f2f1
GR
3041}
3042
3043/**
b980ac18
JK
3044 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3045 * @adapter: board private structure to initialize
fa44f2f1 3046 *
b980ac18
JK
3047 * igb_sw_init initializes the Adapter private data structure.
3048 * Fields are initialized based on PCI device information and
3049 * OS network device settings (MTU size).
fa44f2f1
GR
3050 **/
3051static int igb_sw_init(struct igb_adapter *adapter)
3052{
3053 struct e1000_hw *hw = &adapter->hw;
3054 struct net_device *netdev = adapter->netdev;
3055 struct pci_dev *pdev = adapter->pdev;
3056
3057 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3058
3059 /* set default ring sizes */
3060 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3061 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3062
3063 /* set default ITR values */
3064 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3065 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3066
3067 /* set default work limits */
3068 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3069
3070 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3071 VLAN_HLEN;
3072 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3073
0e71def2 3074 spin_lock_init(&adapter->nfc_lock);
fa44f2f1
GR
3075 spin_lock_init(&adapter->stats64_lock);
3076#ifdef CONFIG_PCI_IOV
3077 switch (hw->mac.type) {
3078 case e1000_82576:
3079 case e1000_i350:
3080 if (max_vfs > 7) {
3081 dev_warn(&pdev->dev,
3082 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 3083 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
3084 } else
3085 adapter->vfs_allocated_count = max_vfs;
3086 if (adapter->vfs_allocated_count)
3087 dev_warn(&pdev->dev,
3088 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3089 break;
3090 default:
3091 break;
3092 }
3093#endif /* CONFIG_PCI_IOV */
3094
cbfe360a
SA
3095 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3096 adapter->flags |= IGB_FLAG_HAS_MSIX;
3097
ceee3450
TF
3098 igb_probe_vfs(adapter);
3099
fa44f2f1 3100 igb_init_queue_configuration(adapter);
a99955fc 3101
1128c756 3102 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
3103 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3104 GFP_ATOMIC);
1128c756 3105
a6b623e0 3106 /* This call may decrease the number of queues */
53c7d064 3107 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
3108 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3109 return -ENOMEM;
3110 }
3111
3112 /* Explicitly disable IRQ since the NIC can be in any state. */
3113 igb_irq_disable(adapter);
3114
f96a8a0b 3115 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
3116 adapter->flags &= ~IGB_FLAG_DMAC;
3117
9d5c8243
AK
3118 set_bit(__IGB_DOWN, &adapter->state);
3119 return 0;
3120}
3121
3122/**
b980ac18
JK
3123 * igb_open - Called when a network interface is made active
3124 * @netdev: network interface device structure
9d5c8243 3125 *
b980ac18 3126 * Returns 0 on success, negative value on failure
9d5c8243 3127 *
b980ac18
JK
3128 * The open entry point is called when a network interface is made
3129 * active by the system (IFF_UP). At this point all resources needed
3130 * for transmit and receive operations are allocated, the interrupt
3131 * handler is registered with the OS, the watchdog timer is started,
3132 * and the stack is notified that the interface is ready.
9d5c8243 3133 **/
749ab2cd 3134static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
3135{
3136 struct igb_adapter *adapter = netdev_priv(netdev);
3137 struct e1000_hw *hw = &adapter->hw;
749ab2cd 3138 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3139 int err;
3140 int i;
3141
3142 /* disallow open during test */
749ab2cd
YZ
3143 if (test_bit(__IGB_TESTING, &adapter->state)) {
3144 WARN_ON(resuming);
9d5c8243 3145 return -EBUSY;
749ab2cd
YZ
3146 }
3147
3148 if (!resuming)
3149 pm_runtime_get_sync(&pdev->dev);
9d5c8243 3150
b168dfc5
JB
3151 netif_carrier_off(netdev);
3152
9d5c8243
AK
3153 /* allocate transmit descriptors */
3154 err = igb_setup_all_tx_resources(adapter);
3155 if (err)
3156 goto err_setup_tx;
3157
3158 /* allocate receive descriptors */
3159 err = igb_setup_all_rx_resources(adapter);
3160 if (err)
3161 goto err_setup_rx;
3162
88a268c1 3163 igb_power_up_link(adapter);
9d5c8243 3164
9d5c8243
AK
3165 /* before we allocate an interrupt, we must be ready to handle it.
3166 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3167 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
3168 * clean_rx handler before we do so.
3169 */
9d5c8243
AK
3170 igb_configure(adapter);
3171
3172 err = igb_request_irq(adapter);
3173 if (err)
3174 goto err_req_irq;
3175
0c2cc02e
AD
3176 /* Notify the stack of the actual queue counts. */
3177 err = netif_set_real_num_tx_queues(adapter->netdev,
3178 adapter->num_tx_queues);
3179 if (err)
3180 goto err_set_queues;
3181
3182 err = netif_set_real_num_rx_queues(adapter->netdev,
3183 adapter->num_rx_queues);
3184 if (err)
3185 goto err_set_queues;
3186
9d5c8243
AK
3187 /* From here on the code is the same as igb_up() */
3188 clear_bit(__IGB_DOWN, &adapter->state);
3189
0d1ae7f4
AD
3190 for (i = 0; i < adapter->num_q_vectors; i++)
3191 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
3192
3193 /* Clear any pending interrupts. */
3194 rd32(E1000_ICR);
844290e5
PW
3195
3196 igb_irq_enable(adapter);
3197
d4960307
AD
3198 /* notify VFs that reset has been completed */
3199 if (adapter->vfs_allocated_count) {
3200 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 3201
d4960307
AD
3202 reg_data |= E1000_CTRL_EXT_PFRSTD;
3203 wr32(E1000_CTRL_EXT, reg_data);
3204 }
3205
d55b53ff
JK
3206 netif_tx_start_all_queues(netdev);
3207
749ab2cd
YZ
3208 if (!resuming)
3209 pm_runtime_put(&pdev->dev);
3210
25568a53
AD
3211 /* start the watchdog. */
3212 hw->mac.get_link_status = 1;
3213 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
3214
3215 return 0;
3216
0c2cc02e
AD
3217err_set_queues:
3218 igb_free_irq(adapter);
9d5c8243
AK
3219err_req_irq:
3220 igb_release_hw_control(adapter);
88a268c1 3221 igb_power_down_link(adapter);
9d5c8243
AK
3222 igb_free_all_rx_resources(adapter);
3223err_setup_rx:
3224 igb_free_all_tx_resources(adapter);
3225err_setup_tx:
3226 igb_reset(adapter);
749ab2cd
YZ
3227 if (!resuming)
3228 pm_runtime_put(&pdev->dev);
9d5c8243
AK
3229
3230 return err;
3231}
3232
46eafa59 3233int igb_open(struct net_device *netdev)
749ab2cd
YZ
3234{
3235 return __igb_open(netdev, false);
3236}
3237
9d5c8243 3238/**
b980ac18
JK
3239 * igb_close - Disables a network interface
3240 * @netdev: network interface device structure
9d5c8243 3241 *
b980ac18 3242 * Returns 0, this is not allowed to fail
9d5c8243 3243 *
b980ac18
JK
3244 * The close entry point is called when an interface is de-activated
3245 * by the OS. The hardware is still under the driver's control, but
3246 * needs to be disabled. A global MAC reset is issued to stop the
3247 * hardware, and all transmit and receive resources are freed.
9d5c8243 3248 **/
749ab2cd 3249static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
3250{
3251 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 3252 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3253
3254 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 3255
749ab2cd
YZ
3256 if (!suspending)
3257 pm_runtime_get_sync(&pdev->dev);
3258
3259 igb_down(adapter);
9d5c8243
AK
3260 igb_free_irq(adapter);
3261
0e71def2
GH
3262 igb_nfc_filter_exit(adapter);
3263
9d5c8243
AK
3264 igb_free_all_tx_resources(adapter);
3265 igb_free_all_rx_resources(adapter);
3266
749ab2cd
YZ
3267 if (!suspending)
3268 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
3269 return 0;
3270}
3271
46eafa59 3272int igb_close(struct net_device *netdev)
749ab2cd
YZ
3273{
3274 return __igb_close(netdev, false);
3275}
3276
9d5c8243 3277/**
b980ac18
JK
3278 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3279 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 3280 *
b980ac18 3281 * Return 0 on success, negative on failure
9d5c8243 3282 **/
80785298 3283int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3284{
59d71989 3285 struct device *dev = tx_ring->dev;
9d5c8243
AK
3286 int size;
3287
06034649 3288 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
3289
3290 tx_ring->tx_buffer_info = vzalloc(size);
06034649 3291 if (!tx_ring->tx_buffer_info)
9d5c8243 3292 goto err;
9d5c8243
AK
3293
3294 /* round up to nearest 4K */
85e8d004 3295 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
3296 tx_ring->size = ALIGN(tx_ring->size, 4096);
3297
5536d210
AD
3298 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3299 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3300 if (!tx_ring->desc)
3301 goto err;
3302
9d5c8243
AK
3303 tx_ring->next_to_use = 0;
3304 tx_ring->next_to_clean = 0;
81c2fc22 3305
9d5c8243
AK
3306 return 0;
3307
3308err:
06034649 3309 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
3310 tx_ring->tx_buffer_info = NULL;
3311 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
3312 return -ENOMEM;
3313}
3314
3315/**
b980ac18
JK
3316 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3317 * (Descriptors) for all queues
3318 * @adapter: board private structure
9d5c8243 3319 *
b980ac18 3320 * Return 0 on success, negative on failure
9d5c8243
AK
3321 **/
3322static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3323{
439705e1 3324 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3325 int i, err = 0;
3326
3327 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3328 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 3329 if (err) {
439705e1 3330 dev_err(&pdev->dev,
9d5c8243
AK
3331 "Allocation for Tx Queue %u failed\n", i);
3332 for (i--; i >= 0; i--)
3025a446 3333 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3334 break;
3335 }
3336 }
3337
3338 return err;
3339}
3340
3341/**
b980ac18
JK
3342 * igb_setup_tctl - configure the transmit control registers
3343 * @adapter: Board private structure
9d5c8243 3344 **/
d7ee5b3a 3345void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 3346{
9d5c8243
AK
3347 struct e1000_hw *hw = &adapter->hw;
3348 u32 tctl;
9d5c8243 3349
85b430b4
AD
3350 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3351 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
3352
3353 /* Program the Transmit Control Register */
9d5c8243
AK
3354 tctl = rd32(E1000_TCTL);
3355 tctl &= ~E1000_TCTL_CT;
3356 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3357 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3358
3359 igb_config_collision_dist(hw);
3360
9d5c8243
AK
3361 /* Enable transmits */
3362 tctl |= E1000_TCTL_EN;
3363
3364 wr32(E1000_TCTL, tctl);
3365}
3366
85b430b4 3367/**
b980ac18
JK
3368 * igb_configure_tx_ring - Configure transmit ring after Reset
3369 * @adapter: board private structure
3370 * @ring: tx ring to configure
85b430b4 3371 *
b980ac18 3372 * Configure a transmit ring after a reset.
85b430b4 3373 **/
d7ee5b3a 3374void igb_configure_tx_ring(struct igb_adapter *adapter,
9005df38 3375 struct igb_ring *ring)
85b430b4
AD
3376{
3377 struct e1000_hw *hw = &adapter->hw;
a74420e0 3378 u32 txdctl = 0;
85b430b4
AD
3379 u64 tdba = ring->dma;
3380 int reg_idx = ring->reg_idx;
3381
3382 /* disable the queue */
a74420e0 3383 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
3384 wrfl();
3385 mdelay(10);
3386
3387 wr32(E1000_TDLEN(reg_idx),
b980ac18 3388 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 3389 wr32(E1000_TDBAL(reg_idx),
b980ac18 3390 tdba & 0x00000000ffffffffULL);
85b430b4
AD
3391 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3392
fce99e34 3393 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 3394 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3395 writel(0, ring->tail);
85b430b4
AD
3396
3397 txdctl |= IGB_TX_PTHRESH;
3398 txdctl |= IGB_TX_HTHRESH << 8;
3399 txdctl |= IGB_TX_WTHRESH << 16;
3400
3401 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3402 wr32(E1000_TXDCTL(reg_idx), txdctl);
3403}
3404
3405/**
b980ac18
JK
3406 * igb_configure_tx - Configure transmit Unit after Reset
3407 * @adapter: board private structure
85b430b4 3408 *
b980ac18 3409 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3410 **/
3411static void igb_configure_tx(struct igb_adapter *adapter)
3412{
3413 int i;
3414
3415 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3416 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3417}
3418
9d5c8243 3419/**
b980ac18
JK
3420 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3421 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3422 *
b980ac18 3423 * Returns 0 on success, negative on failure
9d5c8243 3424 **/
80785298 3425int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3426{
59d71989 3427 struct device *dev = rx_ring->dev;
f33005a6 3428 int size;
9d5c8243 3429
06034649 3430 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
3431
3432 rx_ring->rx_buffer_info = vzalloc(size);
06034649 3433 if (!rx_ring->rx_buffer_info)
9d5c8243 3434 goto err;
9d5c8243 3435
9d5c8243 3436 /* Round up to nearest 4K */
f33005a6 3437 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3438 rx_ring->size = ALIGN(rx_ring->size, 4096);
3439
5536d210
AD
3440 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3441 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3442 if (!rx_ring->desc)
3443 goto err;
3444
cbc8e55f 3445 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3446 rx_ring->next_to_clean = 0;
3447 rx_ring->next_to_use = 0;
9d5c8243 3448
9d5c8243
AK
3449 return 0;
3450
3451err:
06034649
AD
3452 vfree(rx_ring->rx_buffer_info);
3453 rx_ring->rx_buffer_info = NULL;
f33005a6 3454 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3455 return -ENOMEM;
3456}
3457
3458/**
b980ac18
JK
3459 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3460 * (Descriptors) for all queues
3461 * @adapter: board private structure
9d5c8243 3462 *
b980ac18 3463 * Return 0 on success, negative on failure
9d5c8243
AK
3464 **/
3465static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3466{
439705e1 3467 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3468 int i, err = 0;
3469
3470 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3471 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3472 if (err) {
439705e1 3473 dev_err(&pdev->dev,
9d5c8243
AK
3474 "Allocation for Rx Queue %u failed\n", i);
3475 for (i--; i >= 0; i--)
3025a446 3476 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3477 break;
3478 }
3479 }
3480
3481 return err;
3482}
3483
06cf2666 3484/**
b980ac18
JK
3485 * igb_setup_mrqc - configure the multiple receive queue control registers
3486 * @adapter: Board private structure
06cf2666
AD
3487 **/
3488static void igb_setup_mrqc(struct igb_adapter *adapter)
3489{
3490 struct e1000_hw *hw = &adapter->hw;
3491 u32 mrqc, rxcsum;
ed12cc9a 3492 u32 j, num_rx_queues;
eb31f849 3493 u32 rss_key[10];
06cf2666 3494
eb31f849 3495 netdev_rss_key_fill(rss_key, sizeof(rss_key));
a57fe23e 3496 for (j = 0; j < 10; j++)
eb31f849 3497 wr32(E1000_RSSRK(j), rss_key[j]);
06cf2666 3498
a99955fc 3499 num_rx_queues = adapter->rss_queues;
06cf2666 3500
797fd4be 3501 switch (hw->mac.type) {
797fd4be
AD
3502 case e1000_82576:
3503 /* 82576 supports 2 RSS queues for SR-IOV */
ed12cc9a 3504 if (adapter->vfs_allocated_count)
06cf2666 3505 num_rx_queues = 2;
797fd4be
AD
3506 break;
3507 default:
3508 break;
06cf2666
AD
3509 }
3510
ed12cc9a
LMV
3511 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3512 for (j = 0; j < IGB_RETA_SIZE; j++)
c502ea2e
CW
3513 adapter->rss_indir_tbl[j] =
3514 (j * num_rx_queues) / IGB_RETA_SIZE;
ed12cc9a 3515 adapter->rss_indir_tbl_init = num_rx_queues;
06cf2666 3516 }
ed12cc9a 3517 igb_write_rss_indir_tbl(adapter);
06cf2666 3518
b980ac18 3519 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3520 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3521 * offloads as they are enabled by default
3522 */
3523 rxcsum = rd32(E1000_RXCSUM);
3524 rxcsum |= E1000_RXCSUM_PCSD;
3525
3526 if (adapter->hw.mac.type >= e1000_82576)
3527 /* Enable Receive Checksum Offload for SCTP */
3528 rxcsum |= E1000_RXCSUM_CRCOFL;
3529
3530 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3531 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3532
039454a8
AA
3533 /* Generate RSS hash based on packet types, TCP/UDP
3534 * port numbers and/or IPv4/v6 src and dst addresses
3535 */
f96a8a0b
CW
3536 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3537 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3538 E1000_MRQC_RSS_FIELD_IPV6 |
3539 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3540 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3541
039454a8
AA
3542 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3543 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3544 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3545 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3546
06cf2666
AD
3547 /* If VMDq is enabled then we set the appropriate mode for that, else
3548 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3549 * if we are only using one queue
3550 */
06cf2666
AD
3551 if (adapter->vfs_allocated_count) {
3552 if (hw->mac.type > e1000_82575) {
3553 /* Set the default pool for the PF's first queue */
3554 u32 vtctl = rd32(E1000_VT_CTL);
9005df38 3555
06cf2666
AD
3556 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3557 E1000_VT_CTL_DISABLE_DEF_POOL);
3558 vtctl |= adapter->vfs_allocated_count <<
3559 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3560 wr32(E1000_VT_CTL, vtctl);
3561 }
a99955fc 3562 if (adapter->rss_queues > 1)
c883de9f 3563 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
06cf2666 3564 else
f96a8a0b 3565 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3566 } else {
f96a8a0b 3567 if (hw->mac.type != e1000_i211)
c883de9f 3568 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
06cf2666
AD
3569 }
3570 igb_vmm_control(adapter);
3571
06cf2666
AD
3572 wr32(E1000_MRQC, mrqc);
3573}
3574
9d5c8243 3575/**
b980ac18
JK
3576 * igb_setup_rctl - configure the receive control registers
3577 * @adapter: Board private structure
9d5c8243 3578 **/
d7ee5b3a 3579void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3580{
3581 struct e1000_hw *hw = &adapter->hw;
3582 u32 rctl;
9d5c8243
AK
3583
3584 rctl = rd32(E1000_RCTL);
3585
3586 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3587 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3588
69d728ba 3589 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3590 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3591
b980ac18 3592 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
3593 * redirection as it did with e1000. Newer features require
3594 * that the HW strips the CRC.
73cd78f1 3595 */
87cb7e8c 3596 rctl |= E1000_RCTL_SECRC;
9d5c8243 3597
559e9c49 3598 /* disable store bad packets and clear size bits. */
ec54d7d6 3599 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3600
45693bcb 3601 /* enable LPE to allow for reception of jumbo frames */
6ec43fe6 3602 rctl |= E1000_RCTL_LPE;
9d5c8243 3603
952f72a8
AD
3604 /* disable queue 0 to prevent tail write w/o re-config */
3605 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3606
e1739522
AD
3607 /* Attention!!! For SR-IOV PF driver operations you must enable
3608 * queue drop for all VF and PF queues to prevent head of line blocking
3609 * if an un-trusted VF does not provide descriptors to hardware.
3610 */
3611 if (adapter->vfs_allocated_count) {
e1739522
AD
3612 /* set all queue drop enable bits */
3613 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3614 }
3615
89eaefb6
BG
3616 /* This is useful for sniffing bad packets. */
3617 if (adapter->netdev->features & NETIF_F_RXALL) {
3618 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
3619 * in e1000e_set_rx_mode
3620 */
89eaefb6
BG
3621 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3622 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3623 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3624
16903caa 3625 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
89eaefb6
BG
3626 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3627 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3628 * and that breaks VLANs.
3629 */
3630 }
3631
9d5c8243
AK
3632 wr32(E1000_RCTL, rctl);
3633}
3634
7d5753f0 3635static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
9005df38 3636 int vfn)
7d5753f0
AD
3637{
3638 struct e1000_hw *hw = &adapter->hw;
3639 u32 vmolr;
3640
d3836f8e
AD
3641 if (size > MAX_JUMBO_FRAME_SIZE)
3642 size = MAX_JUMBO_FRAME_SIZE;
7d5753f0
AD
3643
3644 vmolr = rd32(E1000_VMOLR(vfn));
3645 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3646 vmolr |= size | E1000_VMOLR_LPE;
3647 wr32(E1000_VMOLR(vfn), vmolr);
3648
3649 return 0;
3650}
3651
030f9f52
CV
3652static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3653 int vfn, bool enable)
e1739522 3654{
e1739522 3655 struct e1000_hw *hw = &adapter->hw;
030f9f52 3656 u32 val, reg;
e1739522 3657
030f9f52
CV
3658 if (hw->mac.type < e1000_82576)
3659 return;
e1739522 3660
030f9f52
CV
3661 if (hw->mac.type == e1000_i350)
3662 reg = E1000_DVMOLR(vfn);
3663 else
3664 reg = E1000_VMOLR(vfn);
3665
3666 val = rd32(reg);
3667 if (enable)
3668 val |= E1000_VMOLR_STRVLAN;
3669 else
3670 val &= ~(E1000_VMOLR_STRVLAN);
3671 wr32(reg, val);
e1739522
AD
3672}
3673
8151d294
WM
3674static inline void igb_set_vmolr(struct igb_adapter *adapter,
3675 int vfn, bool aupe)
7d5753f0
AD
3676{
3677 struct e1000_hw *hw = &adapter->hw;
3678 u32 vmolr;
3679
b980ac18 3680 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
3681 * we should exit and do nothing
3682 */
3683 if (hw->mac.type < e1000_82576)
3684 return;
3685
3686 vmolr = rd32(E1000_VMOLR(vfn));
8151d294 3687 if (aupe)
b980ac18 3688 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
3689 else
3690 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3691
3692 /* clear all bits that might not be set */
3693 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3694
a99955fc 3695 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 3696 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 3697 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
3698 * multicast packets
3699 */
3700 if (vfn <= adapter->vfs_allocated_count)
b980ac18 3701 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
3702
3703 wr32(E1000_VMOLR(vfn), vmolr);
3704}
3705
85b430b4 3706/**
b980ac18
JK
3707 * igb_configure_rx_ring - Configure a receive ring after Reset
3708 * @adapter: board private structure
3709 * @ring: receive ring to be configured
85b430b4 3710 *
b980ac18 3711 * Configure the Rx unit of the MAC after a reset.
85b430b4 3712 **/
d7ee5b3a 3713void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 3714 struct igb_ring *ring)
85b430b4
AD
3715{
3716 struct e1000_hw *hw = &adapter->hw;
3717 u64 rdba = ring->dma;
3718 int reg_idx = ring->reg_idx;
a74420e0 3719 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3720
3721 /* disable the queue */
a74420e0 3722 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3723
3724 /* Set DMA base address registers */
3725 wr32(E1000_RDBAL(reg_idx),
3726 rdba & 0x00000000ffffffffULL);
3727 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3728 wr32(E1000_RDLEN(reg_idx),
b980ac18 3729 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
3730
3731 /* initialize head and tail */
fce99e34 3732 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3733 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3734 writel(0, ring->tail);
85b430b4 3735
952f72a8 3736 /* set descriptor configuration */
44390ca6 3737 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3738 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3739 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3740 if (hw->mac.type >= e1000_82580)
757b77e2 3741 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3742 /* Only set Drop Enable if we are supporting multiple queues */
3743 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3744 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3745
3746 wr32(E1000_SRRCTL(reg_idx), srrctl);
3747
7d5753f0 3748 /* set filtering for VMDQ pools */
8151d294 3749 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3750
85b430b4
AD
3751 rxdctl |= IGB_RX_PTHRESH;
3752 rxdctl |= IGB_RX_HTHRESH << 8;
3753 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3754
3755 /* enable receive descriptor fetching */
3756 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3757 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3758}
3759
9d5c8243 3760/**
b980ac18
JK
3761 * igb_configure_rx - Configure receive Unit after Reset
3762 * @adapter: board private structure
9d5c8243 3763 *
b980ac18 3764 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
3765 **/
3766static void igb_configure_rx(struct igb_adapter *adapter)
3767{
9107584e 3768 int i;
9d5c8243 3769
26ad9178
AD
3770 /* set the correct pool for the PF default MAC address in entry 0 */
3771 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
b980ac18 3772 adapter->vfs_allocated_count);
26ad9178 3773
06cf2666 3774 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
3775 * the Base and Length of the Rx Descriptor Ring
3776 */
f9d40f6a
AD
3777 for (i = 0; i < adapter->num_rx_queues; i++)
3778 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3779}
3780
3781/**
b980ac18
JK
3782 * igb_free_tx_resources - Free Tx Resources per Queue
3783 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 3784 *
b980ac18 3785 * Free all transmit software resources
9d5c8243 3786 **/
68fd9910 3787void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3788{
3b644cf6 3789 igb_clean_tx_ring(tx_ring);
9d5c8243 3790
06034649
AD
3791 vfree(tx_ring->tx_buffer_info);
3792 tx_ring->tx_buffer_info = NULL;
9d5c8243 3793
439705e1
AD
3794 /* if not set, then don't free */
3795 if (!tx_ring->desc)
3796 return;
3797
59d71989
AD
3798 dma_free_coherent(tx_ring->dev, tx_ring->size,
3799 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3800
3801 tx_ring->desc = NULL;
3802}
3803
3804/**
b980ac18
JK
3805 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3806 * @adapter: board private structure
9d5c8243 3807 *
b980ac18 3808 * Free all transmit software resources
9d5c8243
AK
3809 **/
3810static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3811{
3812 int i;
3813
3814 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
3815 if (adapter->tx_ring[i])
3816 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3817}
3818
ebe42d16
AD
3819void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3820 struct igb_tx_buffer *tx_buffer)
3821{
3822 if (tx_buffer->skb) {
3823 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3824 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3825 dma_unmap_single(ring->dev,
c9f14bf3
AD
3826 dma_unmap_addr(tx_buffer, dma),
3827 dma_unmap_len(tx_buffer, len),
ebe42d16 3828 DMA_TO_DEVICE);
c9f14bf3 3829 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3830 dma_unmap_page(ring->dev,
c9f14bf3
AD
3831 dma_unmap_addr(tx_buffer, dma),
3832 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3833 DMA_TO_DEVICE);
3834 }
3835 tx_buffer->next_to_watch = NULL;
3836 tx_buffer->skb = NULL;
c9f14bf3 3837 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3838 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3839}
3840
3841/**
b980ac18
JK
3842 * igb_clean_tx_ring - Free Tx Buffers
3843 * @tx_ring: ring to be cleaned
9d5c8243 3844 **/
3b644cf6 3845static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3846{
06034649 3847 struct igb_tx_buffer *buffer_info;
9d5c8243 3848 unsigned long size;
6ad4edfc 3849 u16 i;
9d5c8243 3850
06034649 3851 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3852 return;
3853 /* Free all the Tx ring sk_buffs */
3854
3855 for (i = 0; i < tx_ring->count; i++) {
06034649 3856 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3857 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3858 }
3859
dad8a3b3
JF
3860 netdev_tx_reset_queue(txring_txq(tx_ring));
3861
06034649
AD
3862 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3863 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3864
3865 /* Zero out the descriptor ring */
9d5c8243
AK
3866 memset(tx_ring->desc, 0, tx_ring->size);
3867
3868 tx_ring->next_to_use = 0;
3869 tx_ring->next_to_clean = 0;
9d5c8243
AK
3870}
3871
3872/**
b980ac18
JK
3873 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3874 * @adapter: board private structure
9d5c8243
AK
3875 **/
3876static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3877{
3878 int i;
3879
3880 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
3881 if (adapter->tx_ring[i])
3882 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3883}
3884
3885/**
b980ac18
JK
3886 * igb_free_rx_resources - Free Rx Resources
3887 * @rx_ring: ring to clean the resources from
9d5c8243 3888 *
b980ac18 3889 * Free all receive software resources
9d5c8243 3890 **/
68fd9910 3891void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3892{
3b644cf6 3893 igb_clean_rx_ring(rx_ring);
9d5c8243 3894
06034649
AD
3895 vfree(rx_ring->rx_buffer_info);
3896 rx_ring->rx_buffer_info = NULL;
9d5c8243 3897
439705e1
AD
3898 /* if not set, then don't free */
3899 if (!rx_ring->desc)
3900 return;
3901
59d71989
AD
3902 dma_free_coherent(rx_ring->dev, rx_ring->size,
3903 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3904
3905 rx_ring->desc = NULL;
3906}
3907
3908/**
b980ac18
JK
3909 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3910 * @adapter: board private structure
9d5c8243 3911 *
b980ac18 3912 * Free all receive software resources
9d5c8243
AK
3913 **/
3914static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3915{
3916 int i;
3917
3918 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
3919 if (adapter->rx_ring[i])
3920 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3921}
3922
3923/**
b980ac18
JK
3924 * igb_clean_rx_ring - Free Rx Buffers per Queue
3925 * @rx_ring: ring to free buffers from
9d5c8243 3926 **/
3b644cf6 3927static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3928{
9d5c8243 3929 unsigned long size;
c023cd88 3930 u16 i;
9d5c8243 3931
1a1c225b
AD
3932 if (rx_ring->skb)
3933 dev_kfree_skb(rx_ring->skb);
3934 rx_ring->skb = NULL;
3935
06034649 3936 if (!rx_ring->rx_buffer_info)
9d5c8243 3937 return;
439705e1 3938
9d5c8243
AK
3939 /* Free all the Rx ring sk_buffs */
3940 for (i = 0; i < rx_ring->count; i++) {
06034649 3941 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3942
cbc8e55f
AD
3943 if (!buffer_info->page)
3944 continue;
3945
3946 dma_unmap_page(rx_ring->dev,
3947 buffer_info->dma,
3948 PAGE_SIZE,
3949 DMA_FROM_DEVICE);
3950 __free_page(buffer_info->page);
3951
1a1c225b 3952 buffer_info->page = NULL;
9d5c8243
AK
3953 }
3954
06034649
AD
3955 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3956 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3957
3958 /* Zero out the descriptor ring */
3959 memset(rx_ring->desc, 0, rx_ring->size);
3960
cbc8e55f 3961 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3962 rx_ring->next_to_clean = 0;
3963 rx_ring->next_to_use = 0;
9d5c8243
AK
3964}
3965
3966/**
b980ac18
JK
3967 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3968 * @adapter: board private structure
9d5c8243
AK
3969 **/
3970static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3971{
3972 int i;
3973
3974 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
3975 if (adapter->rx_ring[i])
3976 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3977}
3978
3979/**
b980ac18
JK
3980 * igb_set_mac - Change the Ethernet Address of the NIC
3981 * @netdev: network interface device structure
3982 * @p: pointer to an address structure
9d5c8243 3983 *
b980ac18 3984 * Returns 0 on success, negative on failure
9d5c8243
AK
3985 **/
3986static int igb_set_mac(struct net_device *netdev, void *p)
3987{
3988 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3989 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3990 struct sockaddr *addr = p;
3991
3992 if (!is_valid_ether_addr(addr->sa_data))
3993 return -EADDRNOTAVAIL;
3994
3995 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3996 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3997
26ad9178
AD
3998 /* set the correct pool for the new PF MAC address in entry 0 */
3999 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
b980ac18 4000 adapter->vfs_allocated_count);
e1739522 4001
9d5c8243
AK
4002 return 0;
4003}
4004
4005/**
b980ac18
JK
4006 * igb_write_mc_addr_list - write multicast addresses to MTA
4007 * @netdev: network interface device structure
9d5c8243 4008 *
b980ac18
JK
4009 * Writes multicast address list to the MTA hash table.
4010 * Returns: -ENOMEM on failure
4011 * 0 on no addresses written
4012 * X on writing X addresses to MTA
9d5c8243 4013 **/
68d480c4 4014static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
4015{
4016 struct igb_adapter *adapter = netdev_priv(netdev);
4017 struct e1000_hw *hw = &adapter->hw;
22bedad3 4018 struct netdev_hw_addr *ha;
68d480c4 4019 u8 *mta_list;
9d5c8243
AK
4020 int i;
4021
4cd24eaf 4022 if (netdev_mc_empty(netdev)) {
68d480c4
AD
4023 /* nothing to program, so clear mc list */
4024 igb_update_mc_addr_list(hw, NULL, 0);
4025 igb_restore_vf_multicasts(adapter);
4026 return 0;
4027 }
9d5c8243 4028
4cd24eaf 4029 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
4030 if (!mta_list)
4031 return -ENOMEM;
ff41f8dc 4032
68d480c4 4033 /* The shared function expects a packed array of only addresses. */
48e2f183 4034 i = 0;
22bedad3
JP
4035 netdev_for_each_mc_addr(ha, netdev)
4036 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 4037
68d480c4
AD
4038 igb_update_mc_addr_list(hw, mta_list, i);
4039 kfree(mta_list);
4040
4cd24eaf 4041 return netdev_mc_count(netdev);
68d480c4
AD
4042}
4043
4044/**
b980ac18
JK
4045 * igb_write_uc_addr_list - write unicast addresses to RAR table
4046 * @netdev: network interface device structure
68d480c4 4047 *
b980ac18
JK
4048 * Writes unicast address list to the RAR table.
4049 * Returns: -ENOMEM on failure/insufficient address space
4050 * 0 on no addresses written
4051 * X on writing X addresses to the RAR table
68d480c4
AD
4052 **/
4053static int igb_write_uc_addr_list(struct net_device *netdev)
4054{
4055 struct igb_adapter *adapter = netdev_priv(netdev);
4056 struct e1000_hw *hw = &adapter->hw;
4057 unsigned int vfn = adapter->vfs_allocated_count;
4058 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
4059 int count = 0;
4060
4061 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 4062 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 4063 return -ENOMEM;
9d5c8243 4064
32e7bfc4 4065 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 4066 struct netdev_hw_addr *ha;
32e7bfc4
JP
4067
4068 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
4069 if (!rar_entries)
4070 break;
26ad9178 4071 igb_rar_set_qsel(adapter, ha->addr,
b980ac18
JK
4072 rar_entries--,
4073 vfn);
68d480c4 4074 count++;
ff41f8dc
AD
4075 }
4076 }
4077 /* write the addresses in reverse order to avoid write combining */
4078 for (; rar_entries > 0 ; rar_entries--) {
4079 wr32(E1000_RAH(rar_entries), 0);
4080 wr32(E1000_RAL(rar_entries), 0);
4081 }
4082 wrfl();
4083
68d480c4
AD
4084 return count;
4085}
4086
16903caa
AD
4087static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4088{
4089 struct e1000_hw *hw = &adapter->hw;
4090 u32 i, pf_id;
4091
4092 switch (hw->mac.type) {
4093 case e1000_i210:
4094 case e1000_i211:
4095 case e1000_i350:
4096 /* VLAN filtering needed for VLAN prio filter */
4097 if (adapter->netdev->features & NETIF_F_NTUPLE)
4098 break;
4099 /* fall through */
4100 case e1000_82576:
4101 case e1000_82580:
4102 case e1000_i354:
4103 /* VLAN filtering needed for pool filtering */
4104 if (adapter->vfs_allocated_count)
4105 break;
4106 /* fall through */
4107 default:
4108 return 1;
4109 }
4110
4111 /* We are already in VLAN promisc, nothing to do */
4112 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4113 return 0;
4114
4115 if (!adapter->vfs_allocated_count)
4116 goto set_vfta;
4117
4118 /* Add PF to all active pools */
4119 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4120
4121 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4122 u32 vlvf = rd32(E1000_VLVF(i));
4123
a51d8c21 4124 vlvf |= BIT(pf_id);
16903caa
AD
4125 wr32(E1000_VLVF(i), vlvf);
4126 }
4127
4128set_vfta:
4129 /* Set all bits in the VLAN filter table array */
4130 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4131 hw->mac.ops.write_vfta(hw, i, ~0U);
4132
4133 /* Set flag so we don't redo unnecessary work */
4134 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4135
4136 return 0;
4137}
4138
4139#define VFTA_BLOCK_SIZE 8
4140static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4141{
4142 struct e1000_hw *hw = &adapter->hw;
4143 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4144 u32 vid_start = vfta_offset * 32;
4145 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4146 u32 i, vid, word, bits, pf_id;
4147
4148 /* guarantee that we don't scrub out management VLAN */
4149 vid = adapter->mng_vlan_id;
4150 if (vid >= vid_start && vid < vid_end)
a51d8c21 4151 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
16903caa
AD
4152
4153 if (!adapter->vfs_allocated_count)
4154 goto set_vfta;
4155
4156 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4157
4158 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4159 u32 vlvf = rd32(E1000_VLVF(i));
4160
4161 /* pull VLAN ID from VLVF */
4162 vid = vlvf & VLAN_VID_MASK;
4163
4164 /* only concern ourselves with a certain range */
4165 if (vid < vid_start || vid >= vid_end)
4166 continue;
4167
4168 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4169 /* record VLAN ID in VFTA */
a51d8c21 4170 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
16903caa
AD
4171
4172 /* if PF is part of this then continue */
4173 if (test_bit(vid, adapter->active_vlans))
4174 continue;
4175 }
4176
4177 /* remove PF from the pool */
a51d8c21 4178 bits = ~BIT(pf_id);
16903caa
AD
4179 bits &= rd32(E1000_VLVF(i));
4180 wr32(E1000_VLVF(i), bits);
4181 }
4182
4183set_vfta:
4184 /* extract values from active_vlans and write back to VFTA */
4185 for (i = VFTA_BLOCK_SIZE; i--;) {
4186 vid = (vfta_offset + i) * 32;
4187 word = vid / BITS_PER_LONG;
4188 bits = vid % BITS_PER_LONG;
4189
4190 vfta[i] |= adapter->active_vlans[word] >> bits;
4191
4192 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4193 }
4194}
4195
4196static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4197{
4198 u32 i;
4199
4200 /* We are not in VLAN promisc, nothing to do */
4201 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4202 return;
4203
4204 /* Set flag so we don't redo unnecessary work */
4205 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4206
4207 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4208 igb_scrub_vfta(adapter, i);
4209}
4210
68d480c4 4211/**
b980ac18
JK
4212 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4213 * @netdev: network interface device structure
68d480c4 4214 *
b980ac18
JK
4215 * The set_rx_mode entry point is called whenever the unicast or multicast
4216 * address lists or the network interface flags are updated. This routine is
4217 * responsible for configuring the hardware for proper unicast, multicast,
4218 * promiscuous mode, and all-multi behavior.
68d480c4
AD
4219 **/
4220static void igb_set_rx_mode(struct net_device *netdev)
4221{
4222 struct igb_adapter *adapter = netdev_priv(netdev);
4223 struct e1000_hw *hw = &adapter->hw;
4224 unsigned int vfn = adapter->vfs_allocated_count;
16903caa 4225 u32 rctl = 0, vmolr = 0;
68d480c4
AD
4226 int count;
4227
4228 /* Check for Promiscuous and All Multicast modes */
68d480c4 4229 if (netdev->flags & IFF_PROMISC) {
16903caa 4230 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
bf456abb
AD
4231 vmolr |= E1000_VMOLR_MPME;
4232
4233 /* enable use of UTA filter to force packets to default pool */
4234 if (hw->mac.type == e1000_82576)
4235 vmolr |= E1000_VMOLR_ROPE;
68d480c4
AD
4236 } else {
4237 if (netdev->flags & IFF_ALLMULTI) {
4238 rctl |= E1000_RCTL_MPE;
4239 vmolr |= E1000_VMOLR_MPME;
4240 } else {
b980ac18 4241 /* Write addresses to the MTA, if the attempt fails
25985edc 4242 * then we should just turn on promiscuous mode so
68d480c4
AD
4243 * that we can at least receive multicast traffic
4244 */
4245 count = igb_write_mc_addr_list(netdev);
4246 if (count < 0) {
4247 rctl |= E1000_RCTL_MPE;
4248 vmolr |= E1000_VMOLR_MPME;
4249 } else if (count) {
4250 vmolr |= E1000_VMOLR_ROMPE;
4251 }
4252 }
28fc06f5 4253 }
268f9d33
AD
4254
4255 /* Write addresses to available RAR registers, if there is not
4256 * sufficient space to store all the addresses then enable
4257 * unicast promiscuous mode
4258 */
4259 count = igb_write_uc_addr_list(netdev);
4260 if (count < 0) {
4261 rctl |= E1000_RCTL_UPE;
4262 vmolr |= E1000_VMOLR_ROPE;
28fc06f5 4263 }
16903caa
AD
4264
4265 /* enable VLAN filtering by default */
4266 rctl |= E1000_RCTL_VFE;
4267
4268 /* disable VLAN filtering for modes that require it */
4269 if ((netdev->flags & IFF_PROMISC) ||
4270 (netdev->features & NETIF_F_RXALL)) {
4271 /* if we fail to set all rules then just clear VFE */
4272 if (igb_vlan_promisc_enable(adapter))
4273 rctl &= ~E1000_RCTL_VFE;
4274 } else {
4275 igb_vlan_promisc_disable(adapter);
4276 }
4277
4278 /* update state of unicast, multicast, and VLAN filtering modes */
4279 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4280 E1000_RCTL_VFE);
68d480c4 4281 wr32(E1000_RCTL, rctl);
28fc06f5 4282
b980ac18 4283 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
4284 * the VMOLR to enable the appropriate modes. Without this workaround
4285 * we will have issues with VLAN tag stripping not being done for frames
4286 * that are only arriving because we are the default pool
4287 */
f96a8a0b 4288 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 4289 return;
9d5c8243 4290
bf456abb
AD
4291 /* set UTA to appropriate mode */
4292 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4293
68d480c4 4294 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 4295 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
45693bcb
AD
4296
4297 /* enable Rx jumbo frames, no need for restriction */
4298 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4299 vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
4300
68d480c4 4301 wr32(E1000_VMOLR(vfn), vmolr);
45693bcb
AD
4302 wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4303
28fc06f5 4304 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
4305}
4306
13800469
GR
4307static void igb_check_wvbr(struct igb_adapter *adapter)
4308{
4309 struct e1000_hw *hw = &adapter->hw;
4310 u32 wvbr = 0;
4311
4312 switch (hw->mac.type) {
4313 case e1000_82576:
4314 case e1000_i350:
81ad807b
CW
4315 wvbr = rd32(E1000_WVBR);
4316 if (!wvbr)
13800469
GR
4317 return;
4318 break;
4319 default:
4320 break;
4321 }
4322
4323 adapter->wvbr |= wvbr;
4324}
4325
4326#define IGB_STAGGERED_QUEUE_OFFSET 8
4327
4328static void igb_spoof_check(struct igb_adapter *adapter)
4329{
4330 int j;
4331
4332 if (!adapter->wvbr)
4333 return;
4334
9005df38 4335 for (j = 0; j < adapter->vfs_allocated_count; j++) {
a51d8c21
JK
4336 if (adapter->wvbr & BIT(j) ||
4337 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
13800469
GR
4338 dev_warn(&adapter->pdev->dev,
4339 "Spoof event(s) detected on VF %d\n", j);
4340 adapter->wvbr &=
a51d8c21
JK
4341 ~(BIT(j) |
4342 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
13800469
GR
4343 }
4344 }
4345}
4346
9d5c8243 4347/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
4348 * the phy
4349 */
9d5c8243
AK
4350static void igb_update_phy_info(unsigned long data)
4351{
4352 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 4353 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
4354}
4355
4d6b725e 4356/**
b980ac18
JK
4357 * igb_has_link - check shared code for link and determine up/down
4358 * @adapter: pointer to driver private info
4d6b725e 4359 **/
3145535a 4360bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
4361{
4362 struct e1000_hw *hw = &adapter->hw;
4363 bool link_active = false;
4d6b725e
AD
4364
4365 /* get_link_status is set on LSC (link status) interrupt or
4366 * rx sequence error interrupt. get_link_status will stay
4367 * false until the e1000_check_for_link establishes link
4368 * for copper adapters ONLY
4369 */
4370 switch (hw->phy.media_type) {
4371 case e1000_media_type_copper:
e5c3370f
AA
4372 if (!hw->mac.get_link_status)
4373 return true;
4d6b725e 4374 case e1000_media_type_internal_serdes:
e5c3370f
AA
4375 hw->mac.ops.check_for_link(hw);
4376 link_active = !hw->mac.get_link_status;
4d6b725e
AD
4377 break;
4378 default:
4379 case e1000_media_type_unknown:
4380 break;
4381 }
4382
aa9b8cc4
AA
4383 if (((hw->mac.type == e1000_i210) ||
4384 (hw->mac.type == e1000_i211)) &&
4385 (hw->phy.id == I210_I_PHY_ID)) {
4386 if (!netif_carrier_ok(adapter->netdev)) {
4387 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4388 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4389 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4390 adapter->link_check_timeout = jiffies;
4391 }
4392 }
4393
4d6b725e
AD
4394 return link_active;
4395}
4396
563988dc
SA
4397static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4398{
4399 bool ret = false;
4400 u32 ctrl_ext, thstat;
4401
f96a8a0b 4402 /* check for thermal sensor event on i350 copper only */
563988dc
SA
4403 if (hw->mac.type == e1000_i350) {
4404 thstat = rd32(E1000_THSTAT);
4405 ctrl_ext = rd32(E1000_CTRL_EXT);
4406
4407 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 4408 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 4409 ret = !!(thstat & event);
563988dc
SA
4410 }
4411
4412 return ret;
4413}
4414
1516f0a6
CW
4415/**
4416 * igb_check_lvmmc - check for malformed packets received
4417 * and indicated in LVMMC register
4418 * @adapter: pointer to adapter
4419 **/
4420static void igb_check_lvmmc(struct igb_adapter *adapter)
4421{
4422 struct e1000_hw *hw = &adapter->hw;
4423 u32 lvmmc;
4424
4425 lvmmc = rd32(E1000_LVMMC);
4426 if (lvmmc) {
4427 if (unlikely(net_ratelimit())) {
4428 netdev_warn(adapter->netdev,
4429 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4430 lvmmc);
4431 }
4432 }
4433}
4434
9d5c8243 4435/**
b980ac18
JK
4436 * igb_watchdog - Timer Call-back
4437 * @data: pointer to adapter cast into an unsigned long
9d5c8243
AK
4438 **/
4439static void igb_watchdog(unsigned long data)
4440{
4441 struct igb_adapter *adapter = (struct igb_adapter *)data;
4442 /* Do the rest outside of interrupt context */
4443 schedule_work(&adapter->watchdog_task);
4444}
4445
4446static void igb_watchdog_task(struct work_struct *work)
4447{
4448 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
4449 struct igb_adapter,
4450 watchdog_task);
9d5c8243 4451 struct e1000_hw *hw = &adapter->hw;
c0ba4778 4452 struct e1000_phy_info *phy = &hw->phy;
9d5c8243 4453 struct net_device *netdev = adapter->netdev;
563988dc 4454 u32 link;
7a6ea550 4455 int i;
56cec249 4456 u32 connsw;
b72f3f72 4457 u16 phy_data, retry_count = 20;
9d5c8243 4458
4d6b725e 4459 link = igb_has_link(adapter);
aa9b8cc4
AA
4460
4461 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4462 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4463 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4464 else
4465 link = false;
4466 }
4467
56cec249
CW
4468 /* Force link down if we have fiber to swap to */
4469 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4470 if (hw->phy.media_type == e1000_media_type_copper) {
4471 connsw = rd32(E1000_CONNSW);
4472 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4473 link = 0;
4474 }
4475 }
9d5c8243 4476 if (link) {
2bdfc4e2
CW
4477 /* Perform a reset if the media type changed. */
4478 if (hw->dev_spec._82575.media_changed) {
4479 hw->dev_spec._82575.media_changed = false;
4480 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4481 igb_reset(adapter);
4482 }
749ab2cd
YZ
4483 /* Cancel scheduled suspend requests. */
4484 pm_runtime_resume(netdev->dev.parent);
4485
9d5c8243
AK
4486 if (!netif_carrier_ok(netdev)) {
4487 u32 ctrl;
9005df38 4488
330a6d6a 4489 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
4490 &adapter->link_speed,
4491 &adapter->link_duplex);
9d5c8243
AK
4492
4493 ctrl = rd32(E1000_CTRL);
527d47c1 4494 /* Links status message must follow this format */
c75c4edf
CW
4495 netdev_info(netdev,
4496 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
559e9c49
AD
4497 netdev->name,
4498 adapter->link_speed,
4499 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
4500 "Full" : "Half",
4501 (ctrl & E1000_CTRL_TFCE) &&
4502 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4503 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4504 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 4505
f4c01e96
CW
4506 /* disable EEE if enabled */
4507 if ((adapter->flags & IGB_FLAG_EEE) &&
4508 (adapter->link_duplex == HALF_DUPLEX)) {
4509 dev_info(&adapter->pdev->dev,
4510 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4511 adapter->hw.dev_spec._82575.eee_disable = true;
4512 adapter->flags &= ~IGB_FLAG_EEE;
4513 }
4514
c0ba4778
KS
4515 /* check if SmartSpeed worked */
4516 igb_check_downshift(hw);
4517 if (phy->speed_downgraded)
4518 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4519
563988dc 4520 /* check for thermal sensor event */
876d2d6f 4521 if (igb_thermal_sensor_event(hw,
d34a15ab 4522 E1000_THSTAT_LINK_THROTTLE))
c75c4edf 4523 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
563988dc 4524
d07f3e37 4525 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
4526 adapter->tx_timeout_factor = 1;
4527 switch (adapter->link_speed) {
4528 case SPEED_10:
9d5c8243
AK
4529 adapter->tx_timeout_factor = 14;
4530 break;
4531 case SPEED_100:
9d5c8243
AK
4532 /* maybe add some timeout factor ? */
4533 break;
4534 }
4535
b72f3f72
TU
4536 if (adapter->link_speed != SPEED_1000)
4537 goto no_wait;
4538
4539 /* wait for Remote receiver status OK */
4540retry_read_status:
4541 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4542 &phy_data)) {
4543 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4544 retry_count) {
4545 msleep(100);
4546 retry_count--;
4547 goto retry_read_status;
4548 } else if (!retry_count) {
4549 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4550 }
4551 } else {
4552 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4553 }
4554no_wait:
9d5c8243 4555 netif_carrier_on(netdev);
9d5c8243 4556
4ae196df 4557 igb_ping_all_vfs(adapter);
17dc566c 4558 igb_check_vf_rate_limit(adapter);
4ae196df 4559
4b1a9877 4560 /* link state has changed, schedule phy info update */
9d5c8243
AK
4561 if (!test_bit(__IGB_DOWN, &adapter->state))
4562 mod_timer(&adapter->phy_info_timer,
4563 round_jiffies(jiffies + 2 * HZ));
4564 }
4565 } else {
4566 if (netif_carrier_ok(netdev)) {
4567 adapter->link_speed = 0;
4568 adapter->link_duplex = 0;
563988dc
SA
4569
4570 /* check for thermal sensor event */
876d2d6f
JK
4571 if (igb_thermal_sensor_event(hw,
4572 E1000_THSTAT_PWR_DOWN)) {
c75c4edf 4573 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
7ef5ed1c 4574 }
563988dc 4575
527d47c1 4576 /* Links status message must follow this format */
c75c4edf 4577 netdev_info(netdev, "igb: %s NIC Link is Down\n",
527d47c1 4578 netdev->name);
9d5c8243 4579 netif_carrier_off(netdev);
4b1a9877 4580
4ae196df
AD
4581 igb_ping_all_vfs(adapter);
4582
4b1a9877 4583 /* link state has changed, schedule phy info update */
9d5c8243
AK
4584 if (!test_bit(__IGB_DOWN, &adapter->state))
4585 mod_timer(&adapter->phy_info_timer,
4586 round_jiffies(jiffies + 2 * HZ));
749ab2cd 4587
56cec249
CW
4588 /* link is down, time to check for alternate media */
4589 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4590 igb_check_swap_media(adapter);
4591 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4592 schedule_work(&adapter->reset_task);
4593 /* return immediately */
4594 return;
4595 }
4596 }
749ab2cd
YZ
4597 pm_schedule_suspend(netdev->dev.parent,
4598 MSEC_PER_SEC * 5);
56cec249
CW
4599
4600 /* also check for alternate media here */
4601 } else if (!netif_carrier_ok(netdev) &&
4602 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4603 igb_check_swap_media(adapter);
4604 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4605 schedule_work(&adapter->reset_task);
4606 /* return immediately */
4607 return;
4608 }
9d5c8243
AK
4609 }
4610 }
4611
12dcd86b
ED
4612 spin_lock(&adapter->stats64_lock);
4613 igb_update_stats(adapter, &adapter->stats64);
4614 spin_unlock(&adapter->stats64_lock);
9d5c8243 4615
dbabb065 4616 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4617 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 4618 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
4619 /* We've lost link, so the controller stops DMA,
4620 * but we've got queued Tx work that's never going
4621 * to get done, so reset controller to flush Tx.
b980ac18
JK
4622 * (Do the reset outside of interrupt context).
4623 */
dbabb065
AD
4624 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4625 adapter->tx_timeout_count++;
4626 schedule_work(&adapter->reset_task);
4627 /* return immediately since reset is imminent */
4628 return;
4629 }
9d5c8243 4630 }
9d5c8243 4631
dbabb065 4632 /* Force detection of hung controller every watchdog period */
6d095fa8 4633 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 4634 }
f7ba205e 4635
b980ac18 4636 /* Cause software interrupt to ensure Rx ring is cleaned */
cd14ef54 4637 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
047e0030 4638 u32 eics = 0;
9005df38 4639
0d1ae7f4
AD
4640 for (i = 0; i < adapter->num_q_vectors; i++)
4641 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4642 wr32(E1000_EICS, eics);
4643 } else {
4644 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4645 }
9d5c8243 4646
13800469 4647 igb_spoof_check(adapter);
fc580751 4648 igb_ptp_rx_hang(adapter);
13800469 4649
1516f0a6
CW
4650 /* Check LVMMC register on i350/i354 only */
4651 if ((adapter->hw.mac.type == e1000_i350) ||
4652 (adapter->hw.mac.type == e1000_i354))
4653 igb_check_lvmmc(adapter);
4654
9d5c8243 4655 /* Reset the timer */
aa9b8cc4
AA
4656 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4657 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4658 mod_timer(&adapter->watchdog_timer,
4659 round_jiffies(jiffies + HZ));
4660 else
4661 mod_timer(&adapter->watchdog_timer,
4662 round_jiffies(jiffies + 2 * HZ));
4663 }
9d5c8243
AK
4664}
4665
4666enum latency_range {
4667 lowest_latency = 0,
4668 low_latency = 1,
4669 bulk_latency = 2,
4670 latency_invalid = 255
4671};
4672
6eb5a7f1 4673/**
b980ac18
JK
4674 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4675 * @q_vector: pointer to q_vector
6eb5a7f1 4676 *
b980ac18
JK
4677 * Stores a new ITR value based on strictly on packet size. This
4678 * algorithm is less sophisticated than that used in igb_update_itr,
4679 * due to the difficulty of synchronizing statistics across multiple
4680 * receive rings. The divisors and thresholds used by this function
4681 * were determined based on theoretical maximum wire speed and testing
4682 * data, in order to minimize response time while increasing bulk
4683 * throughput.
406d4965 4684 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4685 * NOTE: This function is called only when operating in a multiqueue
4686 * receive environment.
6eb5a7f1 4687 **/
047e0030 4688static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4689{
047e0030 4690 int new_val = q_vector->itr_val;
6eb5a7f1 4691 int avg_wire_size = 0;
047e0030 4692 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4693 unsigned int packets;
9d5c8243 4694
6eb5a7f1
AD
4695 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4696 * ints/sec - ITR timer value of 120 ticks.
4697 */
4698 if (adapter->link_speed != SPEED_1000) {
0ba82994 4699 new_val = IGB_4K_ITR;
6eb5a7f1 4700 goto set_itr_val;
9d5c8243 4701 }
047e0030 4702
0ba82994
AD
4703 packets = q_vector->rx.total_packets;
4704 if (packets)
4705 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4706
0ba82994
AD
4707 packets = q_vector->tx.total_packets;
4708 if (packets)
4709 avg_wire_size = max_t(u32, avg_wire_size,
4710 q_vector->tx.total_bytes / packets);
047e0030
AD
4711
4712 /* if avg_wire_size isn't set no work was done */
4713 if (!avg_wire_size)
4714 goto clear_counts;
9d5c8243 4715
6eb5a7f1
AD
4716 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4717 avg_wire_size += 24;
4718
4719 /* Don't starve jumbo frames */
4720 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4721
6eb5a7f1
AD
4722 /* Give a little boost to mid-size frames */
4723 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4724 new_val = avg_wire_size / 3;
4725 else
4726 new_val = avg_wire_size / 2;
9d5c8243 4727
0ba82994
AD
4728 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4729 if (new_val < IGB_20K_ITR &&
4730 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4731 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4732 new_val = IGB_20K_ITR;
abe1c363 4733
6eb5a7f1 4734set_itr_val:
047e0030
AD
4735 if (new_val != q_vector->itr_val) {
4736 q_vector->itr_val = new_val;
4737 q_vector->set_itr = 1;
9d5c8243 4738 }
6eb5a7f1 4739clear_counts:
0ba82994
AD
4740 q_vector->rx.total_bytes = 0;
4741 q_vector->rx.total_packets = 0;
4742 q_vector->tx.total_bytes = 0;
4743 q_vector->tx.total_packets = 0;
9d5c8243
AK
4744}
4745
4746/**
b980ac18
JK
4747 * igb_update_itr - update the dynamic ITR value based on statistics
4748 * @q_vector: pointer to q_vector
4749 * @ring_container: ring info to update the itr for
4750 *
4751 * Stores a new ITR value based on packets and byte
4752 * counts during the last interrupt. The advantage of per interrupt
4753 * computation is faster updates and more accurate ITR for the current
4754 * traffic pattern. Constants in this function were computed
4755 * based on theoretical maximum wire speed and thresholds were set based
4756 * on testing data as well as attempting to minimize response time
4757 * while increasing bulk throughput.
406d4965 4758 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4759 * NOTE: These calculations are only valid when operating in a single-
4760 * queue environment.
9d5c8243 4761 **/
0ba82994
AD
4762static void igb_update_itr(struct igb_q_vector *q_vector,
4763 struct igb_ring_container *ring_container)
9d5c8243 4764{
0ba82994
AD
4765 unsigned int packets = ring_container->total_packets;
4766 unsigned int bytes = ring_container->total_bytes;
4767 u8 itrval = ring_container->itr;
9d5c8243 4768
0ba82994 4769 /* no packets, exit with status unchanged */
9d5c8243 4770 if (packets == 0)
0ba82994 4771 return;
9d5c8243 4772
0ba82994 4773 switch (itrval) {
9d5c8243
AK
4774 case lowest_latency:
4775 /* handle TSO and jumbo frames */
4776 if (bytes/packets > 8000)
0ba82994 4777 itrval = bulk_latency;
9d5c8243 4778 else if ((packets < 5) && (bytes > 512))
0ba82994 4779 itrval = low_latency;
9d5c8243
AK
4780 break;
4781 case low_latency: /* 50 usec aka 20000 ints/s */
4782 if (bytes > 10000) {
4783 /* this if handles the TSO accounting */
d34a15ab 4784 if (bytes/packets > 8000)
0ba82994 4785 itrval = bulk_latency;
d34a15ab 4786 else if ((packets < 10) || ((bytes/packets) > 1200))
0ba82994 4787 itrval = bulk_latency;
d34a15ab 4788 else if ((packets > 35))
0ba82994 4789 itrval = lowest_latency;
9d5c8243 4790 } else if (bytes/packets > 2000) {
0ba82994 4791 itrval = bulk_latency;
9d5c8243 4792 } else if (packets <= 2 && bytes < 512) {
0ba82994 4793 itrval = lowest_latency;
9d5c8243
AK
4794 }
4795 break;
4796 case bulk_latency: /* 250 usec aka 4000 ints/s */
4797 if (bytes > 25000) {
4798 if (packets > 35)
0ba82994 4799 itrval = low_latency;
1e5c3d21 4800 } else if (bytes < 1500) {
0ba82994 4801 itrval = low_latency;
9d5c8243
AK
4802 }
4803 break;
4804 }
4805
0ba82994
AD
4806 /* clear work counters since we have the values we need */
4807 ring_container->total_bytes = 0;
4808 ring_container->total_packets = 0;
4809
4810 /* write updated itr to ring container */
4811 ring_container->itr = itrval;
9d5c8243
AK
4812}
4813
0ba82994 4814static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4815{
0ba82994 4816 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4817 u32 new_itr = q_vector->itr_val;
0ba82994 4818 u8 current_itr = 0;
9d5c8243
AK
4819
4820 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4821 if (adapter->link_speed != SPEED_1000) {
4822 current_itr = 0;
0ba82994 4823 new_itr = IGB_4K_ITR;
9d5c8243
AK
4824 goto set_itr_now;
4825 }
4826
0ba82994
AD
4827 igb_update_itr(q_vector, &q_vector->tx);
4828 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4829
0ba82994 4830 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4831
6eb5a7f1 4832 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4833 if (current_itr == lowest_latency &&
4834 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4835 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4836 current_itr = low_latency;
4837
9d5c8243
AK
4838 switch (current_itr) {
4839 /* counts and packets in update_itr are dependent on these numbers */
4840 case lowest_latency:
0ba82994 4841 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4842 break;
4843 case low_latency:
0ba82994 4844 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4845 break;
4846 case bulk_latency:
0ba82994 4847 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4848 break;
4849 default:
4850 break;
4851 }
4852
4853set_itr_now:
047e0030 4854 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4855 /* this attempts to bias the interrupt rate towards Bulk
4856 * by adding intermediate steps when interrupt rate is
b980ac18
JK
4857 * increasing
4858 */
047e0030 4859 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
4860 max((new_itr * q_vector->itr_val) /
4861 (new_itr + (q_vector->itr_val >> 2)),
4862 new_itr) : new_itr;
9d5c8243
AK
4863 /* Don't write the value here; it resets the adapter's
4864 * internal timer, and causes us to delay far longer than
4865 * we should between interrupts. Instead, we write the ITR
4866 * value at the beginning of the next interrupt so the timing
4867 * ends up being correct.
4868 */
047e0030
AD
4869 q_vector->itr_val = new_itr;
4870 q_vector->set_itr = 1;
9d5c8243 4871 }
9d5c8243
AK
4872}
4873
c50b52a0
SH
4874static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4875 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4876{
4877 struct e1000_adv_tx_context_desc *context_desc;
4878 u16 i = tx_ring->next_to_use;
4879
4880 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4881
4882 i++;
4883 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4884
4885 /* set bits to identify this as an advanced context descriptor */
4886 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4887
4888 /* For 82575, context index must be unique per ring. */
866cff06 4889 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4890 mss_l4len_idx |= tx_ring->reg_idx << 4;
4891
4892 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4893 context_desc->seqnum_seed = 0;
4894 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4895 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4896}
4897
7af40ad9
AD
4898static int igb_tso(struct igb_ring *tx_ring,
4899 struct igb_tx_buffer *first,
4900 u8 *hdr_len)
9d5c8243 4901{
e10715d3 4902 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
7af40ad9 4903 struct sk_buff *skb = first->skb;
e10715d3
AD
4904 union {
4905 struct iphdr *v4;
4906 struct ipv6hdr *v6;
4907 unsigned char *hdr;
4908 } ip;
4909 union {
4910 struct tcphdr *tcp;
4911 unsigned char *hdr;
4912 } l4;
4913 u32 paylen, l4_offset;
06c14e5a 4914 int err;
7d13a7d0 4915
ed6aa105
AD
4916 if (skb->ip_summed != CHECKSUM_PARTIAL)
4917 return 0;
4918
7d13a7d0
AD
4919 if (!skb_is_gso(skb))
4920 return 0;
9d5c8243 4921
06c14e5a
FR
4922 err = skb_cow_head(skb, 0);
4923 if (err < 0)
4924 return err;
9d5c8243 4925
e10715d3
AD
4926 ip.hdr = skb_network_header(skb);
4927 l4.hdr = skb_checksum_start(skb);
4928
7d13a7d0
AD
4929 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4930 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4931
e10715d3
AD
4932 /* initialize outer IP header fields */
4933 if (ip.v4->version == 4) {
4934 /* IP header will have to cancel out any data that
4935 * is not a part of the outer IP header
4936 */
4937 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
4938 csum_unfold(l4.tcp->check)));
7d13a7d0 4939 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
e10715d3
AD
4940
4941 ip.v4->tot_len = 0;
7af40ad9
AD
4942 first->tx_flags |= IGB_TX_FLAGS_TSO |
4943 IGB_TX_FLAGS_CSUM |
4944 IGB_TX_FLAGS_IPV4;
e10715d3
AD
4945 } else {
4946 ip.v6->payload_len = 0;
7af40ad9
AD
4947 first->tx_flags |= IGB_TX_FLAGS_TSO |
4948 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4949 }
4950
e10715d3
AD
4951 /* determine offset of inner transport header */
4952 l4_offset = l4.hdr - skb->data;
4953
4954 /* compute length of segmentation header */
4955 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
4956
4957 /* remove payload length from inner checksum */
4958 paylen = skb->len - l4_offset;
4959 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
9d5c8243 4960
7af40ad9
AD
4961 /* update gso size and bytecount with header size */
4962 first->gso_segs = skb_shinfo(skb)->gso_segs;
4963 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4964
9d5c8243 4965 /* MSS L4LEN IDX */
e10715d3 4966 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
7d13a7d0 4967 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4968
7d13a7d0 4969 /* VLAN MACLEN IPLEN */
e10715d3
AD
4970 vlan_macip_lens = l4.hdr - ip.hdr;
4971 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4972 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4973
7d13a7d0 4974 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4975
7d13a7d0 4976 return 1;
9d5c8243
AK
4977}
4978
6e033700
AD
4979static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4980{
4981 unsigned int offset = 0;
4982
4983 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4984
4985 return offset == skb_checksum_start_offset(skb);
4986}
4987
7af40ad9 4988static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4989{
7af40ad9 4990 struct sk_buff *skb = first->skb;
7d13a7d0 4991 u32 vlan_macip_lens = 0;
7d13a7d0 4992 u32 type_tucmd = 0;
9d5c8243 4993
7d13a7d0 4994 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6e033700 4995csum_failed:
7af40ad9
AD
4996 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4997 return;
6e033700
AD
4998 goto no_csum;
4999 }
fa4a7ef3 5000
6e033700
AD
5001 switch (skb->csum_offset) {
5002 case offsetof(struct tcphdr, check):
5003 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5004 /* fall through */
5005 case offsetof(struct udphdr, check):
5006 break;
5007 case offsetof(struct sctphdr, checksum):
5008 /* validate that this is actually an SCTP request */
5009 if (((first->protocol == htons(ETH_P_IP)) &&
5010 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5011 ((first->protocol == htons(ETH_P_IPV6)) &&
5012 igb_ipv6_csum_is_sctp(skb))) {
5013 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
7d13a7d0 5014 break;
9d5c8243 5015 }
6e033700
AD
5016 default:
5017 skb_checksum_help(skb);
5018 goto csum_failed;
7d13a7d0 5019 }
9d5c8243 5020
6e033700
AD
5021 /* update TX checksum flag */
5022 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5023 vlan_macip_lens = skb_checksum_start_offset(skb) -
5024 skb_network_offset(skb);
5025no_csum:
7d13a7d0 5026 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 5027 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 5028
6e033700 5029 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
9d5c8243
AK
5030}
5031
1d9daf45
AD
5032#define IGB_SET_FLAG(_input, _flag, _result) \
5033 ((_flag <= _result) ? \
5034 ((u32)(_input & _flag) * (_result / _flag)) : \
5035 ((u32)(_input & _flag) / (_flag / _result)))
5036
5037static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
5038{
5039 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
5040 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5041 E1000_ADVTXD_DCMD_DEXT |
5042 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
5043
5044 /* set HW vlan bit if vlan is present */
1d9daf45
AD
5045 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5046 (E1000_ADVTXD_DCMD_VLE));
5047
5048 /* set segmentation bits for TSO */
5049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5050 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
5051
5052 /* set timestamp bit if present */
1d9daf45
AD
5053 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5054 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 5055
1d9daf45
AD
5056 /* insert frame checksum */
5057 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
5058
5059 return cmd_type;
5060}
5061
7af40ad9
AD
5062static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5063 union e1000_adv_tx_desc *tx_desc,
5064 u32 tx_flags, unsigned int paylen)
e032afc8
AD
5065{
5066 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5067
1d9daf45
AD
5068 /* 82575 requires a unique index per ring */
5069 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
5070 olinfo_status |= tx_ring->reg_idx << 4;
5071
5072 /* insert L4 checksum */
1d9daf45
AD
5073 olinfo_status |= IGB_SET_FLAG(tx_flags,
5074 IGB_TX_FLAGS_CSUM,
5075 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 5076
1d9daf45
AD
5077 /* insert IPv4 checksum */
5078 olinfo_status |= IGB_SET_FLAG(tx_flags,
5079 IGB_TX_FLAGS_IPV4,
5080 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 5081
7af40ad9 5082 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
5083}
5084
6f19e12f
DM
5085static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5086{
5087 struct net_device *netdev = tx_ring->netdev;
5088
5089 netif_stop_subqueue(netdev, tx_ring->queue_index);
5090
5091 /* Herbert's original patch had:
5092 * smp_mb__after_netif_stop_queue();
5093 * but since that doesn't exist yet, just open code it.
5094 */
5095 smp_mb();
5096
5097 /* We need to check again in a case another CPU has just
5098 * made room available.
5099 */
5100 if (igb_desc_unused(tx_ring) < size)
5101 return -EBUSY;
5102
5103 /* A reprieve! */
5104 netif_wake_subqueue(netdev, tx_ring->queue_index);
5105
5106 u64_stats_update_begin(&tx_ring->tx_syncp2);
5107 tx_ring->tx_stats.restart_queue2++;
5108 u64_stats_update_end(&tx_ring->tx_syncp2);
5109
5110 return 0;
5111}
5112
5113static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5114{
5115 if (igb_desc_unused(tx_ring) >= size)
5116 return 0;
5117 return __igb_maybe_stop_tx(tx_ring, size);
5118}
5119
7af40ad9
AD
5120static void igb_tx_map(struct igb_ring *tx_ring,
5121 struct igb_tx_buffer *first,
ebe42d16 5122 const u8 hdr_len)
9d5c8243 5123{
7af40ad9 5124 struct sk_buff *skb = first->skb;
c9f14bf3 5125 struct igb_tx_buffer *tx_buffer;
ebe42d16 5126 union e1000_adv_tx_desc *tx_desc;
80d0759e 5127 struct skb_frag_struct *frag;
ebe42d16 5128 dma_addr_t dma;
80d0759e 5129 unsigned int data_len, size;
7af40ad9 5130 u32 tx_flags = first->tx_flags;
1d9daf45 5131 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 5132 u16 i = tx_ring->next_to_use;
ebe42d16
AD
5133
5134 tx_desc = IGB_TX_DESC(tx_ring, i);
5135
80d0759e
AD
5136 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5137
5138 size = skb_headlen(skb);
5139 data_len = skb->data_len;
ebe42d16
AD
5140
5141 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 5142
80d0759e
AD
5143 tx_buffer = first;
5144
5145 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5146 if (dma_mapping_error(tx_ring->dev, dma))
5147 goto dma_error;
5148
5149 /* record length, and DMA address */
5150 dma_unmap_len_set(tx_buffer, len, size);
5151 dma_unmap_addr_set(tx_buffer, dma, dma);
5152
5153 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 5154
ebe42d16
AD
5155 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5156 tx_desc->read.cmd_type_len =
1d9daf45 5157 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
5158
5159 i++;
5160 tx_desc++;
5161 if (i == tx_ring->count) {
5162 tx_desc = IGB_TX_DESC(tx_ring, 0);
5163 i = 0;
5164 }
80d0759e 5165 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
5166
5167 dma += IGB_MAX_DATA_PER_TXD;
5168 size -= IGB_MAX_DATA_PER_TXD;
5169
ebe42d16
AD
5170 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5171 }
5172
5173 if (likely(!data_len))
5174 break;
2bbfebe2 5175
1d9daf45 5176 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 5177
65689fef 5178 i++;
ebe42d16
AD
5179 tx_desc++;
5180 if (i == tx_ring->count) {
5181 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 5182 i = 0;
ebe42d16 5183 }
80d0759e 5184 tx_desc->read.olinfo_status = 0;
65689fef 5185
9e903e08 5186 size = skb_frag_size(frag);
ebe42d16
AD
5187 data_len -= size;
5188
5189 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 5190 size, DMA_TO_DEVICE);
6366ad33 5191
c9f14bf3 5192 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
5193 }
5194
ebe42d16 5195 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
5196 cmd_type |= size | IGB_TXD_DCMD;
5197 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 5198
80d0759e
AD
5199 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5200
8542db05
AD
5201 /* set the timestamp */
5202 first->time_stamp = jiffies;
5203
b980ac18 5204 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
5205 * are new descriptors to fetch. (Only applicable for weak-ordered
5206 * memory model archs, such as IA-64).
5207 *
5208 * We also need this memory barrier to make certain all of the
5209 * status bits have been updated before next_to_watch is written.
5210 */
5211 wmb();
5212
8542db05 5213 /* set next_to_watch value indicating a packet is present */
ebe42d16 5214 first->next_to_watch = tx_desc;
9d5c8243 5215
ebe42d16
AD
5216 i++;
5217 if (i == tx_ring->count)
5218 i = 0;
6366ad33 5219
ebe42d16 5220 tx_ring->next_to_use = i;
6366ad33 5221
6f19e12f
DM
5222 /* Make sure there is space in the ring for the next send. */
5223 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5224
5225 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
0b725a2c
DM
5226 writel(i, tx_ring->tail);
5227
5228 /* we need this if more than one processor can write to our tail
5229 * at a time, it synchronizes IO on IA64/Altix systems
5230 */
5231 mmiowb();
5232 }
ebe42d16
AD
5233 return;
5234
5235dma_error:
5236 dev_err(tx_ring->dev, "TX DMA map failed\n");
5237
5238 /* clear dma mappings for failed tx_buffer_info map */
5239 for (;;) {
c9f14bf3
AD
5240 tx_buffer = &tx_ring->tx_buffer_info[i];
5241 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5242 if (tx_buffer == first)
ebe42d16 5243 break;
a77ff709
NN
5244 if (i == 0)
5245 i = tx_ring->count;
6366ad33 5246 i--;
6366ad33
AD
5247 }
5248
9d5c8243 5249 tx_ring->next_to_use = i;
9d5c8243
AK
5250}
5251
cd392f5c
AD
5252netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5253 struct igb_ring *tx_ring)
9d5c8243 5254{
8542db05 5255 struct igb_tx_buffer *first;
ebe42d16 5256 int tso;
91d4ee33 5257 u32 tx_flags = 0;
2ee52ad4 5258 unsigned short f;
21ba6fe1 5259 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 5260 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 5261 u8 hdr_len = 0;
9d5c8243 5262
21ba6fe1
AD
5263 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5264 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 5265 * + 2 desc gap to keep tail from touching head,
9d5c8243 5266 * + 1 desc for context descriptor,
21ba6fe1
AD
5267 * otherwise try next time
5268 */
2ee52ad4
AD
5269 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5270 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
21ba6fe1
AD
5271
5272 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 5273 /* this is a hard error */
9d5c8243
AK
5274 return NETDEV_TX_BUSY;
5275 }
33af6bcc 5276
7af40ad9
AD
5277 /* record the location of the first descriptor for this packet */
5278 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5279 first->skb = skb;
5280 first->bytecount = skb->len;
5281 first->gso_segs = 1;
5282
b646c22e
AD
5283 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5284 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 5285
ed4420a3
JK
5286 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5287 &adapter->state)) {
b646c22e
AD
5288 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5289 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5290
5291 adapter->ptp_tx_skb = skb_get(skb);
5292 adapter->ptp_tx_start = jiffies;
5293 if (adapter->hw.mac.type == e1000_82576)
5294 schedule_work(&adapter->ptp_tx_work);
5295 }
33af6bcc 5296 }
9d5c8243 5297
afc835d1
JK
5298 skb_tx_timestamp(skb);
5299
df8a39de 5300 if (skb_vlan_tag_present(skb)) {
9d5c8243 5301 tx_flags |= IGB_TX_FLAGS_VLAN;
df8a39de 5302 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
9d5c8243
AK
5303 }
5304
7af40ad9
AD
5305 /* record initial flags and protocol */
5306 first->tx_flags = tx_flags;
5307 first->protocol = protocol;
cdfd01fc 5308
7af40ad9
AD
5309 tso = igb_tso(tx_ring, first, &hdr_len);
5310 if (tso < 0)
7d13a7d0 5311 goto out_drop;
7af40ad9
AD
5312 else if (!tso)
5313 igb_tx_csum(tx_ring, first);
9d5c8243 5314
7af40ad9 5315 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2 5316
9d5c8243 5317 return NETDEV_TX_OK;
7d13a7d0
AD
5318
5319out_drop:
7af40ad9
AD
5320 igb_unmap_and_free_tx_resource(tx_ring, first);
5321
7d13a7d0 5322 return NETDEV_TX_OK;
9d5c8243
AK
5323}
5324
0b725a2c
DM
5325static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5326 struct sk_buff *skb)
1cc3bd87 5327{
0b725a2c
DM
5328 unsigned int r_idx = skb->queue_mapping;
5329
1cc3bd87
AD
5330 if (r_idx >= adapter->num_tx_queues)
5331 r_idx = r_idx % adapter->num_tx_queues;
5332
5333 return adapter->tx_ring[r_idx];
5334}
5335
cd392f5c
AD
5336static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5337 struct net_device *netdev)
9d5c8243
AK
5338{
5339 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3 5340
b980ac18 5341 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
5342 * in order to meet this minimum size requirement.
5343 */
a94d9e22
AD
5344 if (skb_put_padto(skb, 17))
5345 return NETDEV_TX_OK;
9d5c8243 5346
1cc3bd87 5347 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
5348}
5349
5350/**
b980ac18
JK
5351 * igb_tx_timeout - Respond to a Tx Hang
5352 * @netdev: network interface device structure
9d5c8243
AK
5353 **/
5354static void igb_tx_timeout(struct net_device *netdev)
5355{
5356 struct igb_adapter *adapter = netdev_priv(netdev);
5357 struct e1000_hw *hw = &adapter->hw;
5358
5359 /* Do the reset outside of interrupt context */
5360 adapter->tx_timeout_count++;
f7ba205e 5361
06218a8d 5362 if (hw->mac.type >= e1000_82580)
55cac248
AD
5363 hw->dev_spec._82575.global_device_reset = true;
5364
9d5c8243 5365 schedule_work(&adapter->reset_task);
265de409
AD
5366 wr32(E1000_EICS,
5367 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
5368}
5369
5370static void igb_reset_task(struct work_struct *work)
5371{
5372 struct igb_adapter *adapter;
5373 adapter = container_of(work, struct igb_adapter, reset_task);
5374
c97ec42a
TI
5375 igb_dump(adapter);
5376 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
5377 igb_reinit_locked(adapter);
5378}
5379
5380/**
b980ac18
JK
5381 * igb_get_stats64 - Get System Network Statistics
5382 * @netdev: network interface device structure
5383 * @stats: rtnl_link_stats64 pointer
9d5c8243 5384 **/
12dcd86b 5385static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
b980ac18 5386 struct rtnl_link_stats64 *stats)
9d5c8243 5387{
12dcd86b
ED
5388 struct igb_adapter *adapter = netdev_priv(netdev);
5389
5390 spin_lock(&adapter->stats64_lock);
5391 igb_update_stats(adapter, &adapter->stats64);
5392 memcpy(stats, &adapter->stats64, sizeof(*stats));
5393 spin_unlock(&adapter->stats64_lock);
5394
5395 return stats;
9d5c8243
AK
5396}
5397
5398/**
b980ac18
JK
5399 * igb_change_mtu - Change the Maximum Transfer Unit
5400 * @netdev: network interface device structure
5401 * @new_mtu: new value for maximum frame size
9d5c8243 5402 *
b980ac18 5403 * Returns 0 on success, negative on failure
9d5c8243
AK
5404 **/
5405static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5406{
5407 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5408 struct pci_dev *pdev = adapter->pdev;
153285f9 5409 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 5410
c809d227 5411 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 5412 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
5413 return -EINVAL;
5414 }
5415
153285f9 5416#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 5417 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 5418 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
5419 return -EINVAL;
5420 }
5421
2ccd994c
AD
5422 /* adjust max frame to be at least the size of a standard frame */
5423 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5424 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5425
9d5c8243 5426 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 5427 usleep_range(1000, 2000);
73cd78f1 5428
9d5c8243
AK
5429 /* igb_down has a dependency on max_frame_size */
5430 adapter->max_frame_size = max_frame;
559e9c49 5431
4c844851
AD
5432 if (netif_running(netdev))
5433 igb_down(adapter);
9d5c8243 5434
090b1795 5435 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
5436 netdev->mtu, new_mtu);
5437 netdev->mtu = new_mtu;
5438
5439 if (netif_running(netdev))
5440 igb_up(adapter);
5441 else
5442 igb_reset(adapter);
5443
5444 clear_bit(__IGB_RESETTING, &adapter->state);
5445
5446 return 0;
5447}
5448
5449/**
b980ac18
JK
5450 * igb_update_stats - Update the board statistics counters
5451 * @adapter: board private structure
9d5c8243 5452 **/
12dcd86b
ED
5453void igb_update_stats(struct igb_adapter *adapter,
5454 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
5455{
5456 struct e1000_hw *hw = &adapter->hw;
5457 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 5458 u32 reg, mpc;
3f9c0164
AD
5459 int i;
5460 u64 bytes, packets;
12dcd86b
ED
5461 unsigned int start;
5462 u64 _bytes, _packets;
9d5c8243 5463
b980ac18 5464 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
5465 * connection is down.
5466 */
5467 if (adapter->link_speed == 0)
5468 return;
5469 if (pci_channel_offline(pdev))
5470 return;
5471
3f9c0164
AD
5472 bytes = 0;
5473 packets = 0;
7f90128e
AA
5474
5475 rcu_read_lock();
3f9c0164 5476 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 5477 struct igb_ring *ring = adapter->rx_ring[i];
e66c083a
TF
5478 u32 rqdpc = rd32(E1000_RQDPC(i));
5479 if (hw->mac.type >= e1000_i210)
5480 wr32(E1000_RQDPC(i), 0);
12dcd86b 5481
ae1c07a6
AD
5482 if (rqdpc) {
5483 ring->rx_stats.drops += rqdpc;
5484 net_stats->rx_fifo_errors += rqdpc;
5485 }
12dcd86b
ED
5486
5487 do {
57a7744e 5488 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
12dcd86b
ED
5489 _bytes = ring->rx_stats.bytes;
5490 _packets = ring->rx_stats.packets;
57a7744e 5491 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
12dcd86b
ED
5492 bytes += _bytes;
5493 packets += _packets;
3f9c0164
AD
5494 }
5495
128e45eb
AD
5496 net_stats->rx_bytes = bytes;
5497 net_stats->rx_packets = packets;
3f9c0164
AD
5498
5499 bytes = 0;
5500 packets = 0;
5501 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 5502 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b 5503 do {
57a7744e 5504 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
12dcd86b
ED
5505 _bytes = ring->tx_stats.bytes;
5506 _packets = ring->tx_stats.packets;
57a7744e 5507 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
12dcd86b
ED
5508 bytes += _bytes;
5509 packets += _packets;
3f9c0164 5510 }
128e45eb
AD
5511 net_stats->tx_bytes = bytes;
5512 net_stats->tx_packets = packets;
7f90128e 5513 rcu_read_unlock();
3f9c0164
AD
5514
5515 /* read stats registers */
9d5c8243
AK
5516 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5517 adapter->stats.gprc += rd32(E1000_GPRC);
5518 adapter->stats.gorc += rd32(E1000_GORCL);
5519 rd32(E1000_GORCH); /* clear GORCL */
5520 adapter->stats.bprc += rd32(E1000_BPRC);
5521 adapter->stats.mprc += rd32(E1000_MPRC);
5522 adapter->stats.roc += rd32(E1000_ROC);
5523
5524 adapter->stats.prc64 += rd32(E1000_PRC64);
5525 adapter->stats.prc127 += rd32(E1000_PRC127);
5526 adapter->stats.prc255 += rd32(E1000_PRC255);
5527 adapter->stats.prc511 += rd32(E1000_PRC511);
5528 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5529 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5530 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5531 adapter->stats.sec += rd32(E1000_SEC);
5532
fa3d9a6d
MW
5533 mpc = rd32(E1000_MPC);
5534 adapter->stats.mpc += mpc;
5535 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
5536 adapter->stats.scc += rd32(E1000_SCC);
5537 adapter->stats.ecol += rd32(E1000_ECOL);
5538 adapter->stats.mcc += rd32(E1000_MCC);
5539 adapter->stats.latecol += rd32(E1000_LATECOL);
5540 adapter->stats.dc += rd32(E1000_DC);
5541 adapter->stats.rlec += rd32(E1000_RLEC);
5542 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5543 adapter->stats.xontxc += rd32(E1000_XONTXC);
5544 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5545 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5546 adapter->stats.fcruc += rd32(E1000_FCRUC);
5547 adapter->stats.gptc += rd32(E1000_GPTC);
5548 adapter->stats.gotc += rd32(E1000_GOTCL);
5549 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 5550 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
5551 adapter->stats.ruc += rd32(E1000_RUC);
5552 adapter->stats.rfc += rd32(E1000_RFC);
5553 adapter->stats.rjc += rd32(E1000_RJC);
5554 adapter->stats.tor += rd32(E1000_TORH);
5555 adapter->stats.tot += rd32(E1000_TOTH);
5556 adapter->stats.tpr += rd32(E1000_TPR);
5557
5558 adapter->stats.ptc64 += rd32(E1000_PTC64);
5559 adapter->stats.ptc127 += rd32(E1000_PTC127);
5560 adapter->stats.ptc255 += rd32(E1000_PTC255);
5561 adapter->stats.ptc511 += rd32(E1000_PTC511);
5562 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5563 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5564
5565 adapter->stats.mptc += rd32(E1000_MPTC);
5566 adapter->stats.bptc += rd32(E1000_BPTC);
5567
2d0b0f69
NN
5568 adapter->stats.tpt += rd32(E1000_TPT);
5569 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
5570
5571 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
5572 /* read internal phy specific stats */
5573 reg = rd32(E1000_CTRL_EXT);
5574 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5575 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
5576
5577 /* this stat has invalid values on i210/i211 */
5578 if ((hw->mac.type != e1000_i210) &&
5579 (hw->mac.type != e1000_i211))
5580 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
5581 }
5582
9d5c8243
AK
5583 adapter->stats.tsctc += rd32(E1000_TSCTC);
5584 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5585
5586 adapter->stats.iac += rd32(E1000_IAC);
5587 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5588 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5589 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5590 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5591 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5592 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5593 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5594 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5595
5596 /* Fill out the OS statistics structure */
128e45eb
AD
5597 net_stats->multicast = adapter->stats.mprc;
5598 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
5599
5600 /* Rx Errors */
5601
5602 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
5603 * our own version based on RUC and ROC
5604 */
128e45eb 5605 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
5606 adapter->stats.crcerrs + adapter->stats.algnerrc +
5607 adapter->stats.ruc + adapter->stats.roc +
5608 adapter->stats.cexterr;
128e45eb
AD
5609 net_stats->rx_length_errors = adapter->stats.ruc +
5610 adapter->stats.roc;
5611 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5612 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5613 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
5614
5615 /* Tx Errors */
128e45eb
AD
5616 net_stats->tx_errors = adapter->stats.ecol +
5617 adapter->stats.latecol;
5618 net_stats->tx_aborted_errors = adapter->stats.ecol;
5619 net_stats->tx_window_errors = adapter->stats.latecol;
5620 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
5621
5622 /* Tx Dropped needs to be maintained elsewhere */
5623
9d5c8243
AK
5624 /* Management Stats */
5625 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5626 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5627 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
5628
5629 /* OS2BMC Stats */
5630 reg = rd32(E1000_MANC);
5631 if (reg & E1000_MANC_EN_BMC2OS) {
5632 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5633 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5634 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5635 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5636 }
9d5c8243
AK
5637}
5638
61d7f75f
RC
5639static void igb_tsync_interrupt(struct igb_adapter *adapter)
5640{
5641 struct e1000_hw *hw = &adapter->hw;
00c65578 5642 struct ptp_clock_event event;
40c9b079 5643 struct timespec64 ts;
720db4ff 5644 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
00c65578
RC
5645
5646 if (tsicr & TSINTR_SYS_WRAP) {
5647 event.type = PTP_CLOCK_PPS;
5648 if (adapter->ptp_caps.pps)
5649 ptp_clock_event(adapter->ptp_clock, &event);
5650 else
5651 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5652 ack |= TSINTR_SYS_WRAP;
5653 }
61d7f75f
RC
5654
5655 if (tsicr & E1000_TSICR_TXTS) {
61d7f75f
RC
5656 /* retrieve hardware timestamp */
5657 schedule_work(&adapter->ptp_tx_work);
00c65578 5658 ack |= E1000_TSICR_TXTS;
61d7f75f 5659 }
00c65578 5660
720db4ff
RC
5661 if (tsicr & TSINTR_TT0) {
5662 spin_lock(&adapter->tmreg_lock);
40c9b079
AB
5663 ts = timespec64_add(adapter->perout[0].start,
5664 adapter->perout[0].period);
5665 /* u32 conversion of tv_sec is safe until y2106 */
720db4ff 5666 wr32(E1000_TRGTTIML0, ts.tv_nsec);
40c9b079 5667 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
720db4ff
RC
5668 tsauxc = rd32(E1000_TSAUXC);
5669 tsauxc |= TSAUXC_EN_TT0;
5670 wr32(E1000_TSAUXC, tsauxc);
5671 adapter->perout[0].start = ts;
5672 spin_unlock(&adapter->tmreg_lock);
5673 ack |= TSINTR_TT0;
5674 }
5675
5676 if (tsicr & TSINTR_TT1) {
5677 spin_lock(&adapter->tmreg_lock);
40c9b079
AB
5678 ts = timespec64_add(adapter->perout[1].start,
5679 adapter->perout[1].period);
720db4ff 5680 wr32(E1000_TRGTTIML1, ts.tv_nsec);
40c9b079 5681 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
720db4ff
RC
5682 tsauxc = rd32(E1000_TSAUXC);
5683 tsauxc |= TSAUXC_EN_TT1;
5684 wr32(E1000_TSAUXC, tsauxc);
5685 adapter->perout[1].start = ts;
5686 spin_unlock(&adapter->tmreg_lock);
5687 ack |= TSINTR_TT1;
5688 }
5689
5690 if (tsicr & TSINTR_AUTT0) {
5691 nsec = rd32(E1000_AUXSTMPL0);
5692 sec = rd32(E1000_AUXSTMPH0);
5693 event.type = PTP_CLOCK_EXTTS;
5694 event.index = 0;
5695 event.timestamp = sec * 1000000000ULL + nsec;
5696 ptp_clock_event(adapter->ptp_clock, &event);
5697 ack |= TSINTR_AUTT0;
5698 }
5699
5700 if (tsicr & TSINTR_AUTT1) {
5701 nsec = rd32(E1000_AUXSTMPL1);
5702 sec = rd32(E1000_AUXSTMPH1);
5703 event.type = PTP_CLOCK_EXTTS;
5704 event.index = 1;
5705 event.timestamp = sec * 1000000000ULL + nsec;
5706 ptp_clock_event(adapter->ptp_clock, &event);
5707 ack |= TSINTR_AUTT1;
5708 }
5709
00c65578
RC
5710 /* acknowledge the interrupts */
5711 wr32(E1000_TSICR, ack);
61d7f75f
RC
5712}
5713
9d5c8243
AK
5714static irqreturn_t igb_msix_other(int irq, void *data)
5715{
047e0030 5716 struct igb_adapter *adapter = data;
9d5c8243 5717 struct e1000_hw *hw = &adapter->hw;
844290e5 5718 u32 icr = rd32(E1000_ICR);
844290e5 5719 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5720
7f081d40
AD
5721 if (icr & E1000_ICR_DRSTA)
5722 schedule_work(&adapter->reset_task);
5723
047e0030 5724 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5725 /* HW is reporting DMA is out of sync */
5726 adapter->stats.doosync++;
13800469
GR
5727 /* The DMA Out of Sync is also indication of a spoof event
5728 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
5729 * see if it is really a spoof event.
5730 */
13800469 5731 igb_check_wvbr(adapter);
dda0e083 5732 }
eebbbdba 5733
4ae196df
AD
5734 /* Check for a mailbox event */
5735 if (icr & E1000_ICR_VMMB)
5736 igb_msg_task(adapter);
5737
5738 if (icr & E1000_ICR_LSC) {
5739 hw->mac.get_link_status = 1;
5740 /* guard against interrupt when we're going down */
5741 if (!test_bit(__IGB_DOWN, &adapter->state))
5742 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5743 }
5744
61d7f75f
RC
5745 if (icr & E1000_ICR_TS)
5746 igb_tsync_interrupt(adapter);
1f6e8178 5747
844290e5 5748 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5749
5750 return IRQ_HANDLED;
5751}
5752
047e0030 5753static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5754{
26b39276 5755 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5756 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5757
047e0030
AD
5758 if (!q_vector->set_itr)
5759 return;
73cd78f1 5760
047e0030
AD
5761 if (!itr_val)
5762 itr_val = 0x4;
661086df 5763
26b39276
AD
5764 if (adapter->hw.mac.type == e1000_82575)
5765 itr_val |= itr_val << 16;
661086df 5766 else
0ba82994 5767 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5768
047e0030
AD
5769 writel(itr_val, q_vector->itr_register);
5770 q_vector->set_itr = 0;
6eb5a7f1
AD
5771}
5772
047e0030 5773static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5774{
047e0030 5775 struct igb_q_vector *q_vector = data;
9d5c8243 5776
047e0030
AD
5777 /* Write the ITR value calculated from the previous interrupt. */
5778 igb_write_itr(q_vector);
9d5c8243 5779
047e0030 5780 napi_schedule(&q_vector->napi);
844290e5 5781
047e0030 5782 return IRQ_HANDLED;
fe4506b6
JC
5783}
5784
421e02f0 5785#ifdef CONFIG_IGB_DCA
6a05004a
AD
5786static void igb_update_tx_dca(struct igb_adapter *adapter,
5787 struct igb_ring *tx_ring,
5788 int cpu)
5789{
5790 struct e1000_hw *hw = &adapter->hw;
5791 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5792
5793 if (hw->mac.type != e1000_82575)
5794 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5795
b980ac18 5796 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5797 * DCA is enabled. This is due to a known issue in some chipsets
5798 * which will cause the DCA tag to be cleared.
5799 */
5800 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5801 E1000_DCA_TXCTRL_DATA_RRO_EN |
5802 E1000_DCA_TXCTRL_DESC_DCA_EN;
5803
5804 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5805}
5806
5807static void igb_update_rx_dca(struct igb_adapter *adapter,
5808 struct igb_ring *rx_ring,
5809 int cpu)
5810{
5811 struct e1000_hw *hw = &adapter->hw;
5812 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5813
5814 if (hw->mac.type != e1000_82575)
5815 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5816
b980ac18 5817 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5818 * DCA is enabled. This is due to a known issue in some chipsets
5819 * which will cause the DCA tag to be cleared.
5820 */
5821 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5822 E1000_DCA_RXCTRL_DESC_DCA_EN;
5823
5824 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5825}
5826
047e0030 5827static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5828{
047e0030 5829 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5830 int cpu = get_cpu();
fe4506b6 5831
047e0030
AD
5832 if (q_vector->cpu == cpu)
5833 goto out_no_update;
5834
6a05004a
AD
5835 if (q_vector->tx.ring)
5836 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5837
5838 if (q_vector->rx.ring)
5839 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5840
047e0030
AD
5841 q_vector->cpu = cpu;
5842out_no_update:
fe4506b6
JC
5843 put_cpu();
5844}
5845
5846static void igb_setup_dca(struct igb_adapter *adapter)
5847{
7e0e99ef 5848 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5849 int i;
5850
7dfc16fa 5851 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5852 return;
5853
7e0e99ef
AD
5854 /* Always use CB2 mode, difference is masked in the CB driver. */
5855 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5856
047e0030 5857 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5858 adapter->q_vector[i]->cpu = -1;
5859 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5860 }
5861}
5862
5863static int __igb_notify_dca(struct device *dev, void *data)
5864{
5865 struct net_device *netdev = dev_get_drvdata(dev);
5866 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5867 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5868 struct e1000_hw *hw = &adapter->hw;
5869 unsigned long event = *(unsigned long *)data;
5870
5871 switch (event) {
5872 case DCA_PROVIDER_ADD:
5873 /* if already enabled, don't do it again */
7dfc16fa 5874 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5875 break;
fe4506b6 5876 if (dca_add_requester(dev) == 0) {
bbd98fe4 5877 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5878 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5879 igb_setup_dca(adapter);
5880 break;
5881 }
5882 /* Fall Through since DCA is disabled. */
5883 case DCA_PROVIDER_REMOVE:
7dfc16fa 5884 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5885 /* without this a class_device is left
b980ac18
JK
5886 * hanging around in the sysfs model
5887 */
fe4506b6 5888 dca_remove_requester(dev);
090b1795 5889 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5890 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5891 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5892 }
5893 break;
5894 }
bbd98fe4 5895
fe4506b6 5896 return 0;
9d5c8243
AK
5897}
5898
fe4506b6 5899static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 5900 void *p)
fe4506b6
JC
5901{
5902 int ret_val;
5903
5904 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 5905 __igb_notify_dca);
fe4506b6
JC
5906
5907 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5908}
421e02f0 5909#endif /* CONFIG_IGB_DCA */
9d5c8243 5910
0224d663
GR
5911#ifdef CONFIG_PCI_IOV
5912static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5913{
5914 unsigned char mac_addr[ETH_ALEN];
0224d663 5915
5ac6f91d 5916 eth_zero_addr(mac_addr);
0224d663
GR
5917 igb_set_vf_mac(adapter, vf, mac_addr);
5918
70ea4783
LL
5919 /* By default spoof check is enabled for all VFs */
5920 adapter->vf_data[vf].spoofchk_enabled = true;
5921
f557147c 5922 return 0;
0224d663
GR
5923}
5924
0224d663 5925#endif
4ae196df
AD
5926static void igb_ping_all_vfs(struct igb_adapter *adapter)
5927{
5928 struct e1000_hw *hw = &adapter->hw;
5929 u32 ping;
5930 int i;
5931
5932 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5933 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5934 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5935 ping |= E1000_VT_MSGTYPE_CTS;
5936 igb_write_mbx(hw, &ping, 1, i);
5937 }
5938}
5939
7d5753f0
AD
5940static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5941{
5942 struct e1000_hw *hw = &adapter->hw;
5943 u32 vmolr = rd32(E1000_VMOLR(vf));
5944 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5945
d85b9004 5946 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 5947 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
5948 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5949
5950 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5951 vmolr |= E1000_VMOLR_MPME;
d85b9004 5952 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5953 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5954 } else {
b980ac18 5955 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
5956 * flag we need to write the hashes to the MTA as this step
5957 * was previously skipped
5958 */
5959 if (vf_data->num_vf_mc_hashes > 30) {
5960 vmolr |= E1000_VMOLR_MPME;
5961 } else if (vf_data->num_vf_mc_hashes) {
5962 int j;
9005df38 5963
7d5753f0
AD
5964 vmolr |= E1000_VMOLR_ROMPE;
5965 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5966 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5967 }
5968 }
5969
5970 wr32(E1000_VMOLR(vf), vmolr);
5971
5972 /* there are flags left unprocessed, likely not supported */
5973 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5974 return -EINVAL;
5975
5976 return 0;
7d5753f0
AD
5977}
5978
4ae196df
AD
5979static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5980 u32 *msgbuf, u32 vf)
5981{
5982 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5983 u16 *hash_list = (u16 *)&msgbuf[1];
5984 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5985 int i;
5986
7d5753f0 5987 /* salt away the number of multicast addresses assigned
4ae196df
AD
5988 * to this VF for later use to restore when the PF multi cast
5989 * list changes
5990 */
5991 vf_data->num_vf_mc_hashes = n;
5992
7d5753f0
AD
5993 /* only up to 30 hash values supported */
5994 if (n > 30)
5995 n = 30;
5996
5997 /* store the hashes for later use */
4ae196df 5998 for (i = 0; i < n; i++)
a419aef8 5999 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
6000
6001 /* Flush and reset the mta with the new values */
ff41f8dc 6002 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
6003
6004 return 0;
6005}
6006
6007static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6008{
6009 struct e1000_hw *hw = &adapter->hw;
6010 struct vf_data_storage *vf_data;
6011 int i, j;
6012
6013 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0 6014 u32 vmolr = rd32(E1000_VMOLR(i));
9005df38 6015
7d5753f0
AD
6016 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6017
4ae196df 6018 vf_data = &adapter->vf_data[i];
7d5753f0
AD
6019
6020 if ((vf_data->num_vf_mc_hashes > 30) ||
6021 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6022 vmolr |= E1000_VMOLR_MPME;
6023 } else if (vf_data->num_vf_mc_hashes) {
6024 vmolr |= E1000_VMOLR_ROMPE;
6025 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6026 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6027 }
6028 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
6029 }
6030}
6031
6032static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6033{
6034 struct e1000_hw *hw = &adapter->hw;
16903caa 6035 u32 pool_mask, vlvf_mask, i;
4ae196df 6036
16903caa
AD
6037 /* create mask for VF and other pools */
6038 pool_mask = E1000_VLVF_POOLSEL_MASK;
a51d8c21 6039 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
16903caa
AD
6040
6041 /* drop PF from pool bits */
a51d8c21
JK
6042 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6043 adapter->vfs_allocated_count);
4ae196df
AD
6044
6045 /* Find the vlan filter for this id */
16903caa
AD
6046 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6047 u32 vlvf = rd32(E1000_VLVF(i));
6048 u32 vfta_mask, vid, vfta;
4ae196df
AD
6049
6050 /* remove the vf from the pool */
16903caa
AD
6051 if (!(vlvf & vlvf_mask))
6052 continue;
6053
6054 /* clear out bit from VLVF */
6055 vlvf ^= vlvf_mask;
6056
6057 /* if other pools are present, just remove ourselves */
6058 if (vlvf & pool_mask)
6059 goto update_vlvfb;
4ae196df 6060
16903caa
AD
6061 /* if PF is present, leave VFTA */
6062 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6063 goto update_vlvf;
4ae196df 6064
16903caa 6065 vid = vlvf & E1000_VLVF_VLANID_MASK;
a51d8c21 6066 vfta_mask = BIT(vid % 32);
16903caa
AD
6067
6068 /* clear bit from VFTA */
6069 vfta = adapter->shadow_vfta[vid / 32];
6070 if (vfta & vfta_mask)
6071 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6072update_vlvf:
6073 /* clear pool selection enable */
6074 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6075 vlvf &= E1000_VLVF_POOLSEL_MASK;
6076 else
6077 vlvf = 0;
6078update_vlvfb:
6079 /* clear pool bits */
6080 wr32(E1000_VLVF(i), vlvf);
4ae196df
AD
6081 }
6082}
ae641bdc 6083
16903caa 6084static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6f3dc319 6085{
16903caa
AD
6086 u32 vlvf;
6087 int idx;
6f3dc319 6088
16903caa
AD
6089 /* short cut the special case */
6090 if (vlan == 0)
6091 return 0;
6092
6093 /* Search for the VLAN id in the VLVF entries */
6094 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6095 vlvf = rd32(E1000_VLVF(idx));
6096 if ((vlvf & VLAN_VID_MASK) == vlan)
6f3dc319
GR
6097 break;
6098 }
6099
16903caa 6100 return idx;
4ae196df
AD
6101}
6102
8008f68c 6103static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
4ae196df
AD
6104{
6105 struct e1000_hw *hw = &adapter->hw;
16903caa
AD
6106 u32 bits, pf_id;
6107 int idx;
51466239 6108
16903caa
AD
6109 idx = igb_find_vlvf_entry(hw, vid);
6110 if (!idx)
6111 return;
4ae196df 6112
16903caa
AD
6113 /* See if any other pools are set for this VLAN filter
6114 * entry other than the PF.
6115 */
6116 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
a51d8c21 6117 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
16903caa
AD
6118 bits &= rd32(E1000_VLVF(idx));
6119
6120 /* Disable the filter so this falls into the default pool. */
6121 if (!bits) {
6122 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
a51d8c21 6123 wr32(E1000_VLVF(idx), BIT(pf_id));
16903caa
AD
6124 else
6125 wr32(E1000_VLVF(idx), 0);
4ae196df 6126 }
6f3dc319 6127}
4ae196df 6128
a15d9259
AD
6129static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6130 bool add, u32 vf)
4ae196df 6131{
a15d9259 6132 int pf_id = adapter->vfs_allocated_count;
6f3dc319 6133 struct e1000_hw *hw = &adapter->hw;
a15d9259 6134 int err;
ae641bdc 6135
a15d9259
AD
6136 /* If VLAN overlaps with one the PF is currently monitoring make
6137 * sure that we are able to allocate a VLVF entry. This may be
6138 * redundant but it guarantees PF will maintain visibility to
6139 * the VLAN.
6f3dc319 6140 */
16903caa 6141 if (add && test_bit(vid, adapter->active_vlans)) {
a15d9259
AD
6142 err = igb_vfta_set(hw, vid, pf_id, true, false);
6143 if (err)
6144 return err;
4ae196df 6145 }
6f3dc319 6146
a15d9259 6147 err = igb_vfta_set(hw, vid, vf, add, false);
6f3dc319 6148
16903caa
AD
6149 if (add && !err)
6150 return err;
6f3dc319 6151
16903caa
AD
6152 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6153 * we may need to drop the PF pool bit in order to allow us to free
6154 * up the VLVF resources.
6f3dc319 6155 */
16903caa
AD
6156 if (test_bit(vid, adapter->active_vlans) ||
6157 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6158 igb_update_pf_vlvf(adapter, vid);
6f3dc319 6159
6f3dc319 6160 return err;
8151d294
WM
6161}
6162
6163static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6164{
6165 struct e1000_hw *hw = &adapter->hw;
6166
6167 if (vid)
6168 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6169 else
6170 wr32(E1000_VMVIR(vf), 0);
6171}
6172
a15d9259
AD
6173static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6174 u16 vlan, u8 qos)
8151d294 6175{
a15d9259 6176 int err;
8151d294 6177
a15d9259
AD
6178 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6179 if (err)
6180 return err;
6181
6182 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6183 igb_set_vmolr(adapter, vf, !vlan);
6184
6185 /* revoke access to previous VLAN */
6186 if (vlan != adapter->vf_data[vf].pf_vlan)
6187 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6188 false, vf);
6189
6190 adapter->vf_data[vf].pf_vlan = vlan;
6191 adapter->vf_data[vf].pf_qos = qos;
030f9f52 6192 igb_set_vf_vlan_strip(adapter, vf, true);
a15d9259
AD
6193 dev_info(&adapter->pdev->dev,
6194 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6195 if (test_bit(__IGB_DOWN, &adapter->state)) {
6196 dev_warn(&adapter->pdev->dev,
6197 "The VF VLAN has been set, but the PF device is not up.\n");
6198 dev_warn(&adapter->pdev->dev,
6199 "Bring the PF device up before attempting to use the VF device.\n");
b980ac18 6200 }
a15d9259 6201
b980ac18 6202 return err;
4ae196df
AD
6203}
6204
a15d9259 6205static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6f3dc319 6206{
a15d9259
AD
6207 /* Restore tagless access via VLAN 0 */
6208 igb_set_vf_vlan(adapter, 0, true, vf);
6f3dc319 6209
a15d9259 6210 igb_set_vmvir(adapter, 0, vf);
8151d294 6211 igb_set_vmolr(adapter, vf, true);
4ae196df 6212
a15d9259
AD
6213 /* Remove any PF assigned VLAN */
6214 if (adapter->vf_data[vf].pf_vlan)
6215 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6216 false, vf);
6f3dc319 6217
a15d9259
AD
6218 adapter->vf_data[vf].pf_vlan = 0;
6219 adapter->vf_data[vf].pf_qos = 0;
030f9f52 6220 igb_set_vf_vlan_strip(adapter, vf, false);
6f3dc319 6221
a15d9259 6222 return 0;
6f3dc319
GR
6223}
6224
a15d9259
AD
6225static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6226 int vf, u16 vlan, u8 qos)
4ae196df 6227{
a15d9259 6228 struct igb_adapter *adapter = netdev_priv(netdev);
4ae196df 6229
a15d9259
AD
6230 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6231 return -EINVAL;
6f3dc319 6232
a15d9259
AD
6233 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6234 igb_disable_port_vlan(adapter, vf);
6235}
6f3dc319 6236
a15d9259
AD
6237static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6238{
6239 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6240 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
030f9f52 6241 int ret;
6f3dc319 6242
a15d9259
AD
6243 if (adapter->vf_data[vf].pf_vlan)
6244 return -1;
6f3dc319 6245
a15d9259
AD
6246 /* VLAN 0 is a special case, don't allow it to be removed */
6247 if (!vid && !add)
6248 return 0;
6249
030f9f52
CV
6250 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6251 if (!ret)
6252 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6253 return ret;
4ae196df
AD
6254}
6255
f2ca0dbe 6256static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 6257{
a15d9259 6258 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df 6259
a15d9259
AD
6260 /* clear flags - except flag that indicates PF has set the MAC */
6261 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6262 vf_data->last_nack = jiffies;
4ae196df
AD
6263
6264 /* reset vlans for device */
6265 igb_clear_vf_vfta(adapter, vf);
a15d9259
AD
6266 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6267 igb_set_vmvir(adapter, vf_data->pf_vlan |
6268 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6269 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
030f9f52 6270 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
4ae196df
AD
6271
6272 /* reset multicast table array for vf */
6273 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6274
6275 /* Flush and reset the mta with the new values */
ff41f8dc 6276 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
6277}
6278
f2ca0dbe
AD
6279static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6280{
6281 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6282
5ac6f91d 6283 /* clear mac address as we were hotplug removed/added */
8151d294 6284 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 6285 eth_zero_addr(vf_mac);
f2ca0dbe
AD
6286
6287 /* process remaining reset events */
6288 igb_vf_reset(adapter, vf);
6289}
6290
6291static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
6292{
6293 struct e1000_hw *hw = &adapter->hw;
6294 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 6295 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
6296 u32 reg, msgbuf[3];
6297 u8 *addr = (u8 *)(&msgbuf[1]);
6298
6299 /* process all the same items cleared in a function level reset */
f2ca0dbe 6300 igb_vf_reset(adapter, vf);
4ae196df
AD
6301
6302 /* set vf mac address */
26ad9178 6303 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
6304
6305 /* enable transmit and receive for vf */
6306 reg = rd32(E1000_VFTE);
a51d8c21 6307 wr32(E1000_VFTE, reg | BIT(vf));
4ae196df 6308 reg = rd32(E1000_VFRE);
a51d8c21 6309 wr32(E1000_VFRE, reg | BIT(vf));
4ae196df 6310
8fa7e0f7 6311 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
6312
6313 /* reply to reset with ack and vf mac address */
6ddbc4cf
AG
6314 if (!is_zero_ether_addr(vf_mac)) {
6315 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6316 memcpy(addr, vf_mac, ETH_ALEN);
6317 } else {
6318 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6319 }
4ae196df
AD
6320 igb_write_mbx(hw, msgbuf, 3, vf);
6321}
6322
6323static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6324{
b980ac18 6325 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
6326 * starting at the second 32 bit word of the msg array
6327 */
f2ca0dbe
AD
6328 unsigned char *addr = (char *)&msg[1];
6329 int err = -1;
4ae196df 6330
f2ca0dbe
AD
6331 if (is_valid_ether_addr(addr))
6332 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 6333
f2ca0dbe 6334 return err;
4ae196df
AD
6335}
6336
6337static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6338{
6339 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6340 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6341 u32 msg = E1000_VT_MSGTYPE_NACK;
6342
6343 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
6344 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6345 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 6346 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 6347 vf_data->last_nack = jiffies;
4ae196df
AD
6348 }
6349}
6350
f2ca0dbe 6351static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 6352{
f2ca0dbe
AD
6353 struct pci_dev *pdev = adapter->pdev;
6354 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 6355 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6356 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6357 s32 retval;
6358
f2ca0dbe 6359 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 6360
fef45f4c
AD
6361 if (retval) {
6362 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 6363 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
6364 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6365 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6366 return;
6367 goto out;
6368 }
4ae196df
AD
6369
6370 /* this is a message we already processed, do nothing */
6371 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 6372 return;
4ae196df 6373
b980ac18 6374 /* until the vf completes a reset it should not be
4ae196df
AD
6375 * allowed to start any configuration.
6376 */
4ae196df
AD
6377 if (msgbuf[0] == E1000_VF_RESET) {
6378 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 6379 return;
4ae196df
AD
6380 }
6381
f2ca0dbe 6382 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
6383 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6384 return;
6385 retval = -1;
6386 goto out;
4ae196df
AD
6387 }
6388
6389 switch ((msgbuf[0] & 0xFFFF)) {
6390 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
6391 retval = -EINVAL;
6392 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6393 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6394 else
6395 dev_warn(&pdev->dev,
b980ac18
JK
6396 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6397 vf);
4ae196df 6398 break;
7d5753f0
AD
6399 case E1000_VF_SET_PROMISC:
6400 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6401 break;
4ae196df
AD
6402 case E1000_VF_SET_MULTICAST:
6403 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6404 break;
6405 case E1000_VF_SET_LPE:
6406 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6407 break;
6408 case E1000_VF_SET_VLAN:
a6b5ea35
GR
6409 retval = -1;
6410 if (vf_data->pf_vlan)
6411 dev_warn(&pdev->dev,
b980ac18
JK
6412 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6413 vf);
8151d294 6414 else
a15d9259 6415 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
4ae196df
AD
6416 break;
6417 default:
090b1795 6418 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
6419 retval = -1;
6420 break;
6421 }
6422
fef45f4c
AD
6423 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6424out:
4ae196df
AD
6425 /* notify the VF of the results of what it sent us */
6426 if (retval)
6427 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6428 else
6429 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6430
4ae196df 6431 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 6432}
4ae196df 6433
f2ca0dbe
AD
6434static void igb_msg_task(struct igb_adapter *adapter)
6435{
6436 struct e1000_hw *hw = &adapter->hw;
6437 u32 vf;
6438
6439 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6440 /* process any reset requests */
6441 if (!igb_check_for_rst(hw, vf))
6442 igb_vf_reset_event(adapter, vf);
6443
6444 /* process any messages pending */
6445 if (!igb_check_for_msg(hw, vf))
6446 igb_rcv_msg_from_vf(adapter, vf);
6447
6448 /* process any acks */
6449 if (!igb_check_for_ack(hw, vf))
6450 igb_rcv_ack_from_vf(adapter, vf);
6451 }
4ae196df
AD
6452}
6453
68d480c4
AD
6454/**
6455 * igb_set_uta - Set unicast filter table address
6456 * @adapter: board private structure
bf456abb 6457 * @set: boolean indicating if we are setting or clearing bits
68d480c4
AD
6458 *
6459 * The unicast table address is a register array of 32-bit registers.
6460 * The table is meant to be used in a way similar to how the MTA is used
6461 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
6462 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6463 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4 6464 **/
bf456abb 6465static void igb_set_uta(struct igb_adapter *adapter, bool set)
68d480c4
AD
6466{
6467 struct e1000_hw *hw = &adapter->hw;
bf456abb 6468 u32 uta = set ? ~0 : 0;
68d480c4
AD
6469 int i;
6470
68d480c4
AD
6471 /* we only need to do this if VMDq is enabled */
6472 if (!adapter->vfs_allocated_count)
6473 return;
6474
bf456abb
AD
6475 for (i = hw->mac.uta_reg_count; i--;)
6476 array_wr32(E1000_UTA, i, uta);
68d480c4
AD
6477}
6478
9d5c8243 6479/**
b980ac18
JK
6480 * igb_intr_msi - Interrupt Handler
6481 * @irq: interrupt number
6482 * @data: pointer to a network interface device structure
9d5c8243
AK
6483 **/
6484static irqreturn_t igb_intr_msi(int irq, void *data)
6485{
047e0030
AD
6486 struct igb_adapter *adapter = data;
6487 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6488 struct e1000_hw *hw = &adapter->hw;
6489 /* read ICR disables interrupts using IAM */
6490 u32 icr = rd32(E1000_ICR);
6491
047e0030 6492 igb_write_itr(q_vector);
9d5c8243 6493
7f081d40
AD
6494 if (icr & E1000_ICR_DRSTA)
6495 schedule_work(&adapter->reset_task);
6496
047e0030 6497 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6498 /* HW is reporting DMA is out of sync */
6499 adapter->stats.doosync++;
6500 }
6501
9d5c8243
AK
6502 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6503 hw->mac.get_link_status = 1;
6504 if (!test_bit(__IGB_DOWN, &adapter->state))
6505 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6506 }
6507
61d7f75f
RC
6508 if (icr & E1000_ICR_TS)
6509 igb_tsync_interrupt(adapter);
1f6e8178 6510
047e0030 6511 napi_schedule(&q_vector->napi);
9d5c8243
AK
6512
6513 return IRQ_HANDLED;
6514}
6515
6516/**
b980ac18
JK
6517 * igb_intr - Legacy Interrupt Handler
6518 * @irq: interrupt number
6519 * @data: pointer to a network interface device structure
9d5c8243
AK
6520 **/
6521static irqreturn_t igb_intr(int irq, void *data)
6522{
047e0030
AD
6523 struct igb_adapter *adapter = data;
6524 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6525 struct e1000_hw *hw = &adapter->hw;
6526 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
6527 * need for the IMC write
6528 */
9d5c8243 6529 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
6530
6531 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
6532 * not set, then the adapter didn't send an interrupt
6533 */
9d5c8243
AK
6534 if (!(icr & E1000_ICR_INT_ASSERTED))
6535 return IRQ_NONE;
6536
0ba82994
AD
6537 igb_write_itr(q_vector);
6538
7f081d40
AD
6539 if (icr & E1000_ICR_DRSTA)
6540 schedule_work(&adapter->reset_task);
6541
047e0030 6542 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6543 /* HW is reporting DMA is out of sync */
6544 adapter->stats.doosync++;
6545 }
6546
9d5c8243
AK
6547 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6548 hw->mac.get_link_status = 1;
6549 /* guard against interrupt when we're going down */
6550 if (!test_bit(__IGB_DOWN, &adapter->state))
6551 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6552 }
6553
61d7f75f
RC
6554 if (icr & E1000_ICR_TS)
6555 igb_tsync_interrupt(adapter);
1f6e8178 6556
047e0030 6557 napi_schedule(&q_vector->napi);
9d5c8243
AK
6558
6559 return IRQ_HANDLED;
6560}
6561
c50b52a0 6562static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 6563{
047e0030 6564 struct igb_adapter *adapter = q_vector->adapter;
46544258 6565 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6566
0ba82994
AD
6567 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6568 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6569 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6570 igb_set_itr(q_vector);
46544258 6571 else
047e0030 6572 igb_update_ring_itr(q_vector);
9d5c8243
AK
6573 }
6574
46544258 6575 if (!test_bit(__IGB_DOWN, &adapter->state)) {
cd14ef54 6576 if (adapter->flags & IGB_FLAG_HAS_MSIX)
047e0030 6577 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
6578 else
6579 igb_irq_enable(adapter);
6580 }
9d5c8243
AK
6581}
6582
46544258 6583/**
b980ac18
JK
6584 * igb_poll - NAPI Rx polling callback
6585 * @napi: napi polling structure
6586 * @budget: count of how many packets we should handle
46544258
AD
6587 **/
6588static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 6589{
047e0030 6590 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
6591 struct igb_q_vector,
6592 napi);
16eb8815 6593 bool clean_complete = true;
32b3e08f 6594 int work_done = 0;
9d5c8243 6595
421e02f0 6596#ifdef CONFIG_IGB_DCA
047e0030
AD
6597 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6598 igb_update_dca(q_vector);
fe4506b6 6599#endif
0ba82994 6600 if (q_vector->tx.ring)
7f0ba845 6601 clean_complete = igb_clean_tx_irq(q_vector, budget);
9d5c8243 6602
32b3e08f
JB
6603 if (q_vector->rx.ring) {
6604 int cleaned = igb_clean_rx_irq(q_vector, budget);
6605
6606 work_done += cleaned;
7f0ba845
AD
6607 if (cleaned >= budget)
6608 clean_complete = false;
32b3e08f 6609 }
047e0030 6610
16eb8815
AD
6611 /* If all work not completed, return budget and keep polling */
6612 if (!clean_complete)
6613 return budget;
46544258 6614
9d5c8243 6615 /* If not enough Rx work done, exit the polling mode */
32b3e08f 6616 napi_complete_done(napi, work_done);
16eb8815 6617 igb_ring_irq_enable(q_vector);
9d5c8243 6618
16eb8815 6619 return 0;
9d5c8243 6620}
6d8126f9 6621
9d5c8243 6622/**
b980ac18
JK
6623 * igb_clean_tx_irq - Reclaim resources after transmit completes
6624 * @q_vector: pointer to q_vector containing needed info
7f0ba845 6625 * @napi_budget: Used to determine if we are in netpoll
49ce9c2c 6626 *
b980ac18 6627 * returns true if ring is completely cleaned
9d5c8243 6628 **/
7f0ba845 6629static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
9d5c8243 6630{
047e0030 6631 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 6632 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 6633 struct igb_tx_buffer *tx_buffer;
f4128785 6634 union e1000_adv_tx_desc *tx_desc;
9d5c8243 6635 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 6636 unsigned int budget = q_vector->tx.work_limit;
8542db05 6637 unsigned int i = tx_ring->next_to_clean;
9d5c8243 6638
13fde97a
AD
6639 if (test_bit(__IGB_DOWN, &adapter->state))
6640 return true;
0e014cb1 6641
06034649 6642 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 6643 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 6644 i -= tx_ring->count;
9d5c8243 6645
f4128785
AD
6646 do {
6647 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
6648
6649 /* if next_to_watch is not set then there is no work pending */
6650 if (!eop_desc)
6651 break;
13fde97a 6652
f4128785 6653 /* prevent any other reads prior to eop_desc */
70d289bc 6654 read_barrier_depends();
f4128785 6655
13fde97a
AD
6656 /* if DD is not set pending work has not been completed */
6657 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6658 break;
6659
8542db05
AD
6660 /* clear next_to_watch to prevent false hangs */
6661 tx_buffer->next_to_watch = NULL;
9d5c8243 6662
ebe42d16
AD
6663 /* update the statistics for this packet */
6664 total_bytes += tx_buffer->bytecount;
6665 total_packets += tx_buffer->gso_segs;
13fde97a 6666
ebe42d16 6667 /* free the skb */
7f0ba845 6668 napi_consume_skb(tx_buffer->skb, napi_budget);
13fde97a 6669
ebe42d16
AD
6670 /* unmap skb header data */
6671 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
6672 dma_unmap_addr(tx_buffer, dma),
6673 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
6674 DMA_TO_DEVICE);
6675
c9f14bf3
AD
6676 /* clear tx_buffer data */
6677 tx_buffer->skb = NULL;
6678 dma_unmap_len_set(tx_buffer, len, 0);
6679
ebe42d16
AD
6680 /* clear last DMA location and unmap remaining buffers */
6681 while (tx_desc != eop_desc) {
13fde97a
AD
6682 tx_buffer++;
6683 tx_desc++;
9d5c8243 6684 i++;
8542db05
AD
6685 if (unlikely(!i)) {
6686 i -= tx_ring->count;
06034649 6687 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
6688 tx_desc = IGB_TX_DESC(tx_ring, 0);
6689 }
ebe42d16
AD
6690
6691 /* unmap any remaining paged data */
c9f14bf3 6692 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 6693 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
6694 dma_unmap_addr(tx_buffer, dma),
6695 dma_unmap_len(tx_buffer, len),
ebe42d16 6696 DMA_TO_DEVICE);
c9f14bf3 6697 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
6698 }
6699 }
6700
ebe42d16
AD
6701 /* move us one more past the eop_desc for start of next pkt */
6702 tx_buffer++;
6703 tx_desc++;
6704 i++;
6705 if (unlikely(!i)) {
6706 i -= tx_ring->count;
6707 tx_buffer = tx_ring->tx_buffer_info;
6708 tx_desc = IGB_TX_DESC(tx_ring, 0);
6709 }
f4128785
AD
6710
6711 /* issue prefetch for next Tx descriptor */
6712 prefetch(tx_desc);
6713
6714 /* update budget accounting */
6715 budget--;
6716 } while (likely(budget));
0e014cb1 6717
bdbc0631
ED
6718 netdev_tx_completed_queue(txring_txq(tx_ring),
6719 total_packets, total_bytes);
8542db05 6720 i += tx_ring->count;
9d5c8243 6721 tx_ring->next_to_clean = i;
13fde97a
AD
6722 u64_stats_update_begin(&tx_ring->tx_syncp);
6723 tx_ring->tx_stats.bytes += total_bytes;
6724 tx_ring->tx_stats.packets += total_packets;
6725 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6726 q_vector->tx.total_bytes += total_bytes;
6727 q_vector->tx.total_packets += total_packets;
9d5c8243 6728
6d095fa8 6729 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6730 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6731
9d5c8243 6732 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
6733 * check with the clearing of time_stamp and movement of i
6734 */
6d095fa8 6735 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6736 if (tx_buffer->next_to_watch &&
8542db05 6737 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6738 (adapter->tx_timeout_factor * HZ)) &&
6739 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6740
9d5c8243 6741 /* detected Tx unit hang */
59d71989 6742 dev_err(tx_ring->dev,
9d5c8243 6743 "Detected Tx Unit Hang\n"
2d064c06 6744 " Tx Queue <%d>\n"
9d5c8243
AK
6745 " TDH <%x>\n"
6746 " TDT <%x>\n"
6747 " next_to_use <%x>\n"
6748 " next_to_clean <%x>\n"
9d5c8243
AK
6749 "buffer_info[next_to_clean]\n"
6750 " time_stamp <%lx>\n"
8542db05 6751 " next_to_watch <%p>\n"
9d5c8243
AK
6752 " jiffies <%lx>\n"
6753 " desc.status <%x>\n",
2d064c06 6754 tx_ring->queue_index,
238ac817 6755 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6756 readl(tx_ring->tail),
9d5c8243
AK
6757 tx_ring->next_to_use,
6758 tx_ring->next_to_clean,
8542db05 6759 tx_buffer->time_stamp,
f4128785 6760 tx_buffer->next_to_watch,
9d5c8243 6761 jiffies,
f4128785 6762 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6763 netif_stop_subqueue(tx_ring->netdev,
6764 tx_ring->queue_index);
6765
6766 /* we are about to reset, no point in enabling stuff */
6767 return true;
9d5c8243
AK
6768 }
6769 }
13fde97a 6770
21ba6fe1 6771#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 6772 if (unlikely(total_packets &&
b980ac18
JK
6773 netif_carrier_ok(tx_ring->netdev) &&
6774 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6775 /* Make sure that anybody stopping the queue after this
6776 * sees the new next_to_clean.
6777 */
6778 smp_mb();
6779 if (__netif_subqueue_stopped(tx_ring->netdev,
6780 tx_ring->queue_index) &&
6781 !(test_bit(__IGB_DOWN, &adapter->state))) {
6782 netif_wake_subqueue(tx_ring->netdev,
6783 tx_ring->queue_index);
6784
6785 u64_stats_update_begin(&tx_ring->tx_syncp);
6786 tx_ring->tx_stats.restart_queue++;
6787 u64_stats_update_end(&tx_ring->tx_syncp);
6788 }
6789 }
6790
6791 return !!budget;
9d5c8243
AK
6792}
6793
cbc8e55f 6794/**
b980ac18
JK
6795 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6796 * @rx_ring: rx descriptor ring to store buffers on
6797 * @old_buff: donor buffer to have page reused
cbc8e55f 6798 *
b980ac18 6799 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
6800 **/
6801static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6802 struct igb_rx_buffer *old_buff)
6803{
6804 struct igb_rx_buffer *new_buff;
6805 u16 nta = rx_ring->next_to_alloc;
6806
6807 new_buff = &rx_ring->rx_buffer_info[nta];
6808
6809 /* update, and store next to alloc */
6810 nta++;
6811 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6812
6813 /* transfer page from old buffer to new buffer */
a1f63473 6814 *new_buff = *old_buff;
cbc8e55f
AD
6815
6816 /* sync the buffer for use by the device */
6817 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6818 old_buff->page_offset,
de78d1f9 6819 IGB_RX_BUFSZ,
cbc8e55f
AD
6820 DMA_FROM_DEVICE);
6821}
6822
95dd44b4
AD
6823static inline bool igb_page_is_reserved(struct page *page)
6824{
2f064f34 6825 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
95dd44b4
AD
6826}
6827
74e238ea
AD
6828static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6829 struct page *page,
6830 unsigned int truesize)
6831{
6832 /* avoid re-using remote pages */
95dd44b4 6833 if (unlikely(igb_page_is_reserved(page)))
bc16e47f
RG
6834 return false;
6835
74e238ea
AD
6836#if (PAGE_SIZE < 8192)
6837 /* if we are only owner of page we can reuse it */
6838 if (unlikely(page_count(page) != 1))
6839 return false;
6840
6841 /* flip page offset to other buffer */
6842 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
74e238ea
AD
6843#else
6844 /* move offset up to the next cache line */
6845 rx_buffer->page_offset += truesize;
6846
6847 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6848 return false;
74e238ea
AD
6849#endif
6850
95dd44b4
AD
6851 /* Even if we own the page, we are not allowed to use atomic_set()
6852 * This would break get_page_unless_zero() users.
6853 */
fe896d18 6854 page_ref_inc(page);
95dd44b4 6855
74e238ea
AD
6856 return true;
6857}
6858
cbc8e55f 6859/**
b980ac18
JK
6860 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6861 * @rx_ring: rx descriptor ring to transact packets on
6862 * @rx_buffer: buffer containing page to add
6863 * @rx_desc: descriptor containing length of buffer written by hardware
6864 * @skb: sk_buff to place the data into
cbc8e55f 6865 *
b980ac18
JK
6866 * This function will add the data contained in rx_buffer->page to the skb.
6867 * This is done either through a direct copy if the data in the buffer is
6868 * less than the skb header size, otherwise it will just attach the page as
6869 * a frag to the skb.
cbc8e55f 6870 *
b980ac18
JK
6871 * The function will then update the page offset if necessary and return
6872 * true if the buffer can be reused by the adapter.
cbc8e55f
AD
6873 **/
6874static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6875 struct igb_rx_buffer *rx_buffer,
64f2525c 6876 unsigned int size,
cbc8e55f
AD
6877 union e1000_adv_rx_desc *rx_desc,
6878 struct sk_buff *skb)
6879{
6880 struct page *page = rx_buffer->page;
f56e7bba 6881 unsigned char *va = page_address(page) + rx_buffer->page_offset;
74e238ea
AD
6882#if (PAGE_SIZE < 8192)
6883 unsigned int truesize = IGB_RX_BUFSZ;
6884#else
f56e7bba 6885 unsigned int truesize = SKB_DATA_ALIGN(size);
74e238ea 6886#endif
f56e7bba 6887 unsigned int pull_len;
cbc8e55f 6888
f56e7bba
AD
6889 if (unlikely(skb_is_nonlinear(skb)))
6890 goto add_tail_frag;
cbc8e55f 6891
f56e7bba
AD
6892 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6893 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6894 va += IGB_TS_HDR_LEN;
6895 size -= IGB_TS_HDR_LEN;
6896 }
cbc8e55f 6897
f56e7bba 6898 if (likely(size <= IGB_RX_HDR_LEN)) {
cbc8e55f
AD
6899 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6900
95dd44b4
AD
6901 /* page is not reserved, we can reuse buffer as-is */
6902 if (likely(!igb_page_is_reserved(page)))
cbc8e55f
AD
6903 return true;
6904
6905 /* this page cannot be reused so discard it */
95dd44b4 6906 __free_page(page);
cbc8e55f
AD
6907 return false;
6908 }
6909
f56e7bba
AD
6910 /* we need the header to contain the greater of either ETH_HLEN or
6911 * 60 bytes if the skb->len is less than 60 for skb_pad.
6912 */
6913 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6914
6915 /* align pull length to size of long to optimize memcpy performance */
6916 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6917
6918 /* update all of the pointers */
6919 va += pull_len;
6920 size -= pull_len;
6921
6922add_tail_frag:
cbc8e55f 6923 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
f56e7bba 6924 (unsigned long)va & ~PAGE_MASK, size, truesize);
cbc8e55f 6925
74e238ea
AD
6926 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6927}
cbc8e55f 6928
2e334eee
AD
6929static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6930 union e1000_adv_rx_desc *rx_desc,
6931 struct sk_buff *skb)
6932{
64f2525c 6933 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
2e334eee
AD
6934 struct igb_rx_buffer *rx_buffer;
6935 struct page *page;
6936
6937 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
2e334eee
AD
6938 page = rx_buffer->page;
6939 prefetchw(page);
6940
6941 if (likely(!skb)) {
6942 void *page_addr = page_address(page) +
6943 rx_buffer->page_offset;
6944
6945 /* prefetch first cache line of first page */
6946 prefetch(page_addr);
6947#if L1_CACHE_BYTES < 128
6948 prefetch(page_addr + L1_CACHE_BYTES);
6949#endif
6950
6951 /* allocate a skb to store the frags */
67fd893e 6952 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
2e334eee
AD
6953 if (unlikely(!skb)) {
6954 rx_ring->rx_stats.alloc_failed++;
6955 return NULL;
6956 }
6957
b980ac18 6958 /* we will be copying header into skb->data in
2e334eee
AD
6959 * pskb_may_pull so it is in our interest to prefetch
6960 * it now to avoid a possible cache miss
6961 */
6962 prefetchw(skb->data);
6963 }
6964
6965 /* we are reusing so sync this buffer for CPU use */
6966 dma_sync_single_range_for_cpu(rx_ring->dev,
6967 rx_buffer->dma,
6968 rx_buffer->page_offset,
64f2525c 6969 size,
2e334eee
AD
6970 DMA_FROM_DEVICE);
6971
6972 /* pull page into skb */
64f2525c 6973 if (igb_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) {
2e334eee
AD
6974 /* hand second half of page back to the ring */
6975 igb_reuse_rx_page(rx_ring, rx_buffer);
6976 } else {
6977 /* we are not reusing the buffer so unmap it */
6978 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6979 PAGE_SIZE, DMA_FROM_DEVICE);
6980 }
6981
6982 /* clear contents of rx_buffer */
6983 rx_buffer->page = NULL;
6984
6985 return skb;
6986}
6987
cd392f5c 6988static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6989 union e1000_adv_rx_desc *rx_desc,
6990 struct sk_buff *skb)
9d5c8243 6991{
bc8acf2c 6992 skb_checksum_none_assert(skb);
9d5c8243 6993
294e7d78 6994 /* Ignore Checksum bit is set */
3ceb90fd 6995 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6996 return;
6997
6998 /* Rx checksum disabled via ethtool */
6999 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 7000 return;
85ad76b2 7001
9d5c8243 7002 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
7003 if (igb_test_staterr(rx_desc,
7004 E1000_RXDEXT_STATERR_TCPE |
7005 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 7006 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
7007 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7008 * packets, (aka let the stack check the crc32c)
7009 */
866cff06
AD
7010 if (!((skb->len == 60) &&
7011 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 7012 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 7013 ring->rx_stats.csum_err++;
12dcd86b
ED
7014 u64_stats_update_end(&ring->rx_syncp);
7015 }
9d5c8243 7016 /* let the stack verify checksum errors */
9d5c8243
AK
7017 return;
7018 }
7019 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
7020 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7021 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
7022 skb->ip_summed = CHECKSUM_UNNECESSARY;
7023
3ceb90fd
AD
7024 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7025 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
7026}
7027
077887c3
AD
7028static inline void igb_rx_hash(struct igb_ring *ring,
7029 union e1000_adv_rx_desc *rx_desc,
7030 struct sk_buff *skb)
7031{
7032 if (ring->netdev->features & NETIF_F_RXHASH)
42bdf083
TH
7033 skb_set_hash(skb,
7034 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7035 PKT_HASH_TYPE_L3);
077887c3
AD
7036}
7037
2e334eee 7038/**
b980ac18
JK
7039 * igb_is_non_eop - process handling of non-EOP buffers
7040 * @rx_ring: Rx ring being processed
7041 * @rx_desc: Rx descriptor for current buffer
7042 * @skb: current socket buffer containing buffer in progress
2e334eee 7043 *
b980ac18
JK
7044 * This function updates next to clean. If the buffer is an EOP buffer
7045 * this function exits returning false, otherwise it will place the
7046 * sk_buff in the next buffer to be chained and return true indicating
7047 * that this is in fact a non-EOP buffer.
2e334eee
AD
7048 **/
7049static bool igb_is_non_eop(struct igb_ring *rx_ring,
7050 union e1000_adv_rx_desc *rx_desc)
7051{
7052 u32 ntc = rx_ring->next_to_clean + 1;
7053
7054 /* fetch, update, and store next to clean */
7055 ntc = (ntc < rx_ring->count) ? ntc : 0;
7056 rx_ring->next_to_clean = ntc;
7057
7058 prefetch(IGB_RX_DESC(rx_ring, ntc));
7059
7060 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7061 return false;
7062
7063 return true;
7064}
7065
1a1c225b 7066/**
b980ac18
JK
7067 * igb_cleanup_headers - Correct corrupted or empty headers
7068 * @rx_ring: rx descriptor ring packet is being transacted on
7069 * @rx_desc: pointer to the EOP Rx descriptor
7070 * @skb: pointer to current skb being fixed
1a1c225b 7071 *
b980ac18
JK
7072 * Address the case where we are pulling data in on pages only
7073 * and as such no data is present in the skb header.
1a1c225b 7074 *
b980ac18
JK
7075 * In addition if skb is not at least 60 bytes we need to pad it so that
7076 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 7077 *
b980ac18 7078 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
7079 **/
7080static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7081 union e1000_adv_rx_desc *rx_desc,
7082 struct sk_buff *skb)
7083{
1a1c225b
AD
7084 if (unlikely((igb_test_staterr(rx_desc,
7085 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7086 struct net_device *netdev = rx_ring->netdev;
7087 if (!(netdev->features & NETIF_F_RXALL)) {
7088 dev_kfree_skb_any(skb);
7089 return true;
7090 }
7091 }
7092
a94d9e22
AD
7093 /* if eth_skb_pad returns an error the skb was freed */
7094 if (eth_skb_pad(skb))
7095 return true;
1a1c225b
AD
7096
7097 return false;
2d94d8ab
AD
7098}
7099
db2ee5bd 7100/**
b980ac18
JK
7101 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7102 * @rx_ring: rx descriptor ring packet is being transacted on
7103 * @rx_desc: pointer to the EOP Rx descriptor
7104 * @skb: pointer to current skb being populated
db2ee5bd 7105 *
b980ac18
JK
7106 * This function checks the ring, descriptor, and packet information in
7107 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7108 * other fields within the skb.
db2ee5bd
AD
7109 **/
7110static void igb_process_skb_fields(struct igb_ring *rx_ring,
7111 union e1000_adv_rx_desc *rx_desc,
7112 struct sk_buff *skb)
7113{
7114 struct net_device *dev = rx_ring->netdev;
7115
7116 igb_rx_hash(rx_ring, rx_desc, skb);
7117
7118 igb_rx_checksum(rx_ring, rx_desc, skb);
7119
5499a968
JK
7120 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7121 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7122 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
db2ee5bd 7123
f646968f 7124 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
7125 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7126 u16 vid;
9005df38 7127
db2ee5bd
AD
7128 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7129 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7130 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7131 else
7132 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7133
86a9bad3 7134 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
7135 }
7136
7137 skb_record_rx_queue(skb, rx_ring->queue_index);
7138
7139 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7140}
7141
32b3e08f 7142static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 7143{
0ba82994 7144 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 7145 struct sk_buff *skb = rx_ring->skb;
9d5c8243 7146 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 7147 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 7148
57ba34c9 7149 while (likely(total_packets < budget)) {
2e334eee 7150 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 7151
2e334eee
AD
7152 /* return some buffers to hardware, one at a time is too slow */
7153 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7154 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7155 cleaned_count = 0;
7156 }
bf36c1a0 7157
2e334eee 7158 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 7159
124b74c1 7160 if (!rx_desc->wb.upper.status_error)
2e334eee 7161 break;
9d5c8243 7162
74e238ea
AD
7163 /* This memory barrier is needed to keep us from reading
7164 * any other fields out of the rx_desc until we know the
124b74c1 7165 * descriptor has been written back
74e238ea 7166 */
124b74c1 7167 dma_rmb();
74e238ea 7168
2e334eee 7169 /* retrieve a buffer from the ring */
f9d40f6a 7170 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 7171
2e334eee
AD
7172 /* exit if we failed to retrieve a buffer */
7173 if (!skb)
7174 break;
1a1c225b 7175
2e334eee 7176 cleaned_count++;
1a1c225b 7177
2e334eee
AD
7178 /* fetch next buffer in frame if non-eop */
7179 if (igb_is_non_eop(rx_ring, rx_desc))
7180 continue;
1a1c225b
AD
7181
7182 /* verify the packet layout is correct */
7183 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7184 skb = NULL;
7185 continue;
9d5c8243 7186 }
9d5c8243 7187
db2ee5bd 7188 /* probably a little skewed due to removing CRC */
3ceb90fd 7189 total_bytes += skb->len;
3ceb90fd 7190
db2ee5bd
AD
7191 /* populate checksum, timestamp, VLAN, and protocol */
7192 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 7193
b2cb09b1 7194 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 7195
1a1c225b
AD
7196 /* reset skb pointer */
7197 skb = NULL;
7198
2e334eee
AD
7199 /* update budget accounting */
7200 total_packets++;
57ba34c9 7201 }
bf36c1a0 7202
1a1c225b
AD
7203 /* place incomplete frames back on ring for completion */
7204 rx_ring->skb = skb;
7205
12dcd86b 7206 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
7207 rx_ring->rx_stats.packets += total_packets;
7208 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 7209 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
7210 q_vector->rx.total_packets += total_packets;
7211 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
7212
7213 if (cleaned_count)
cd392f5c 7214 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 7215
32b3e08f 7216 return total_packets;
9d5c8243
AK
7217}
7218
c023cd88 7219static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 7220 struct igb_rx_buffer *bi)
c023cd88
AD
7221{
7222 struct page *page = bi->page;
cbc8e55f 7223 dma_addr_t dma;
c023cd88 7224
cbc8e55f
AD
7225 /* since we are recycling buffers we should seldom need to alloc */
7226 if (likely(page))
c023cd88
AD
7227 return true;
7228
cbc8e55f 7229 /* alloc new page for storage */
42b17f09 7230 page = dev_alloc_page();
cbc8e55f
AD
7231 if (unlikely(!page)) {
7232 rx_ring->rx_stats.alloc_failed++;
7233 return false;
c023cd88
AD
7234 }
7235
cbc8e55f
AD
7236 /* map page for use */
7237 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 7238
b980ac18 7239 /* if mapping failed free memory back to system since
cbc8e55f
AD
7240 * there isn't much point in holding memory we can't use
7241 */
1a1c225b 7242 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
7243 __free_page(page);
7244
c023cd88
AD
7245 rx_ring->rx_stats.alloc_failed++;
7246 return false;
7247 }
7248
1a1c225b 7249 bi->dma = dma;
cbc8e55f
AD
7250 bi->page = page;
7251 bi->page_offset = 0;
1a1c225b 7252
c023cd88
AD
7253 return true;
7254}
7255
9d5c8243 7256/**
b980ac18
JK
7257 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7258 * @adapter: address of board private structure
9d5c8243 7259 **/
cd392f5c 7260void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 7261{
9d5c8243 7262 union e1000_adv_rx_desc *rx_desc;
06034649 7263 struct igb_rx_buffer *bi;
c023cd88 7264 u16 i = rx_ring->next_to_use;
9d5c8243 7265
cbc8e55f
AD
7266 /* nothing to do */
7267 if (!cleaned_count)
7268 return;
7269
60136906 7270 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 7271 bi = &rx_ring->rx_buffer_info[i];
c023cd88 7272 i -= rx_ring->count;
9d5c8243 7273
cbc8e55f 7274 do {
1a1c225b 7275 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 7276 break;
9d5c8243 7277
b980ac18 7278 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
7279 * because each write-back erases this info.
7280 */
f9d40f6a 7281 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 7282
c023cd88
AD
7283 rx_desc++;
7284 bi++;
9d5c8243 7285 i++;
c023cd88 7286 if (unlikely(!i)) {
60136906 7287 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 7288 bi = rx_ring->rx_buffer_info;
c023cd88
AD
7289 i -= rx_ring->count;
7290 }
7291
95dd44b4
AD
7292 /* clear the status bits for the next_to_use descriptor */
7293 rx_desc->wb.upper.status_error = 0;
cbc8e55f
AD
7294
7295 cleaned_count--;
7296 } while (cleaned_count);
9d5c8243 7297
c023cd88
AD
7298 i += rx_ring->count;
7299
9d5c8243 7300 if (rx_ring->next_to_use != i) {
cbc8e55f 7301 /* record the next descriptor to use */
9d5c8243 7302 rx_ring->next_to_use = i;
9d5c8243 7303
cbc8e55f
AD
7304 /* update next to alloc since we have filled the ring */
7305 rx_ring->next_to_alloc = i;
7306
b980ac18 7307 /* Force memory writes to complete before letting h/w
9d5c8243
AK
7308 * know there are new descriptors to fetch. (Only
7309 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
7310 * such as IA-64).
7311 */
9d5c8243 7312 wmb();
fce99e34 7313 writel(i, rx_ring->tail);
9d5c8243
AK
7314 }
7315}
7316
7317/**
7318 * igb_mii_ioctl -
7319 * @netdev:
7320 * @ifreq:
7321 * @cmd:
7322 **/
7323static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7324{
7325 struct igb_adapter *adapter = netdev_priv(netdev);
7326 struct mii_ioctl_data *data = if_mii(ifr);
7327
7328 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7329 return -EOPNOTSUPP;
7330
7331 switch (cmd) {
7332 case SIOCGMIIPHY:
7333 data->phy_id = adapter->hw.phy.addr;
7334 break;
7335 case SIOCGMIIREG:
f5f4cf08 7336 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9005df38 7337 &data->val_out))
9d5c8243
AK
7338 return -EIO;
7339 break;
7340 case SIOCSMIIREG:
7341 default:
7342 return -EOPNOTSUPP;
7343 }
7344 return 0;
7345}
7346
7347/**
7348 * igb_ioctl -
7349 * @netdev:
7350 * @ifreq:
7351 * @cmd:
7352 **/
7353static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7354{
7355 switch (cmd) {
7356 case SIOCGMIIPHY:
7357 case SIOCGMIIREG:
7358 case SIOCSMIIREG:
7359 return igb_mii_ioctl(netdev, ifr, cmd);
6ab5f7b2
JK
7360 case SIOCGHWTSTAMP:
7361 return igb_ptp_get_ts_config(netdev, ifr);
c6cb090b 7362 case SIOCSHWTSTAMP:
6ab5f7b2 7363 return igb_ptp_set_ts_config(netdev, ifr);
9d5c8243
AK
7364 default:
7365 return -EOPNOTSUPP;
7366 }
7367}
7368
94826487
TF
7369void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7370{
7371 struct igb_adapter *adapter = hw->back;
7372
7373 pci_read_config_word(adapter->pdev, reg, value);
7374}
7375
7376void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7377{
7378 struct igb_adapter *adapter = hw->back;
7379
7380 pci_write_config_word(adapter->pdev, reg, *value);
7381}
7382
009bc06e
AD
7383s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7384{
7385 struct igb_adapter *adapter = hw->back;
009bc06e 7386
23d028cc 7387 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
7388 return -E1000_ERR_CONFIG;
7389
009bc06e
AD
7390 return 0;
7391}
7392
7393s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7394{
7395 struct igb_adapter *adapter = hw->back;
009bc06e 7396
23d028cc 7397 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
7398 return -E1000_ERR_CONFIG;
7399
009bc06e
AD
7400 return 0;
7401}
7402
c8f44aff 7403static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
7404{
7405 struct igb_adapter *adapter = netdev_priv(netdev);
7406 struct e1000_hw *hw = &adapter->hw;
7407 u32 ctrl, rctl;
f646968f 7408 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 7409
5faf030c 7410 if (enable) {
9d5c8243
AK
7411 /* enable VLAN tag insert/strip */
7412 ctrl = rd32(E1000_CTRL);
7413 ctrl |= E1000_CTRL_VME;
7414 wr32(E1000_CTRL, ctrl);
7415
51466239 7416 /* Disable CFI check */
9d5c8243 7417 rctl = rd32(E1000_RCTL);
9d5c8243
AK
7418 rctl &= ~E1000_RCTL_CFIEN;
7419 wr32(E1000_RCTL, rctl);
9d5c8243
AK
7420 } else {
7421 /* disable VLAN tag insert/strip */
7422 ctrl = rd32(E1000_CTRL);
7423 ctrl &= ~E1000_CTRL_VME;
7424 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
7425 }
7426
030f9f52 7427 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9d5c8243
AK
7428}
7429
80d5c368
PM
7430static int igb_vlan_rx_add_vid(struct net_device *netdev,
7431 __be16 proto, u16 vid)
9d5c8243
AK
7432{
7433 struct igb_adapter *adapter = netdev_priv(netdev);
7434 struct e1000_hw *hw = &adapter->hw;
4ae196df 7435 int pf_id = adapter->vfs_allocated_count;
9d5c8243 7436
51466239 7437 /* add the filter since PF can receive vlans w/o entry in vlvf */
16903caa
AD
7438 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7439 igb_vfta_set(hw, vid, pf_id, true, !!vid);
b2cb09b1
JP
7440
7441 set_bit(vid, adapter->active_vlans);
8e586137
JP
7442
7443 return 0;
9d5c8243
AK
7444}
7445
80d5c368
PM
7446static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7447 __be16 proto, u16 vid)
9d5c8243
AK
7448{
7449 struct igb_adapter *adapter = netdev_priv(netdev);
4ae196df 7450 int pf_id = adapter->vfs_allocated_count;
8b77c6b2 7451 struct e1000_hw *hw = &adapter->hw;
9d5c8243 7452
8b77c6b2 7453 /* remove VID from filter table */
16903caa
AD
7454 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7455 igb_vfta_set(hw, vid, pf_id, false, true);
b2cb09b1
JP
7456
7457 clear_bit(vid, adapter->active_vlans);
8e586137
JP
7458
7459 return 0;
9d5c8243
AK
7460}
7461
7462static void igb_restore_vlan(struct igb_adapter *adapter)
7463{
5982a556 7464 u16 vid = 1;
9d5c8243 7465
5faf030c 7466 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
5982a556 7467 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
5faf030c 7468
5982a556 7469 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 7470 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
7471}
7472
14ad2513 7473int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 7474{
090b1795 7475 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
7476 struct e1000_mac_info *mac = &adapter->hw.mac;
7477
7478 mac->autoneg = 0;
7479
14ad2513 7480 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
7481 * for the switch() below to work
7482 */
14ad2513
DD
7483 if ((spd & 1) || (dplx & ~1))
7484 goto err_inval;
7485
f502ef7d
AA
7486 /* Fiber NIC's only allow 1000 gbps Full duplex
7487 * and 100Mbps Full duplex for 100baseFx sfp
7488 */
7489 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7490 switch (spd + dplx) {
7491 case SPEED_10 + DUPLEX_HALF:
7492 case SPEED_10 + DUPLEX_FULL:
7493 case SPEED_100 + DUPLEX_HALF:
7494 goto err_inval;
7495 default:
7496 break;
7497 }
7498 }
cd2638a8 7499
14ad2513 7500 switch (spd + dplx) {
9d5c8243
AK
7501 case SPEED_10 + DUPLEX_HALF:
7502 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7503 break;
7504 case SPEED_10 + DUPLEX_FULL:
7505 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7506 break;
7507 case SPEED_100 + DUPLEX_HALF:
7508 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7509 break;
7510 case SPEED_100 + DUPLEX_FULL:
7511 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7512 break;
7513 case SPEED_1000 + DUPLEX_FULL:
7514 mac->autoneg = 1;
7515 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7516 break;
7517 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7518 default:
14ad2513 7519 goto err_inval;
9d5c8243 7520 }
8376dad0
JB
7521
7522 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7523 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7524
9d5c8243 7525 return 0;
14ad2513
DD
7526
7527err_inval:
7528 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7529 return -EINVAL;
9d5c8243
AK
7530}
7531
749ab2cd
YZ
7532static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7533 bool runtime)
9d5c8243
AK
7534{
7535 struct net_device *netdev = pci_get_drvdata(pdev);
7536 struct igb_adapter *adapter = netdev_priv(netdev);
7537 struct e1000_hw *hw = &adapter->hw;
2d064c06 7538 u32 ctrl, rctl, status;
749ab2cd 7539 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
7540#ifdef CONFIG_PM
7541 int retval = 0;
7542#endif
7543
7544 netif_device_detach(netdev);
7545
a88f10ec 7546 if (netif_running(netdev))
749ab2cd 7547 __igb_close(netdev, true);
a88f10ec 7548
8646f7b4
JK
7549 igb_ptp_suspend(adapter);
7550
047e0030 7551 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7552
7553#ifdef CONFIG_PM
7554 retval = pci_save_state(pdev);
7555 if (retval)
7556 return retval;
7557#endif
7558
7559 status = rd32(E1000_STATUS);
7560 if (status & E1000_STATUS_LU)
7561 wufc &= ~E1000_WUFC_LNKC;
7562
7563 if (wufc) {
7564 igb_setup_rctl(adapter);
ff41f8dc 7565 igb_set_rx_mode(netdev);
9d5c8243
AK
7566
7567 /* turn on all-multi mode if wake on multicast is enabled */
7568 if (wufc & E1000_WUFC_MC) {
7569 rctl = rd32(E1000_RCTL);
7570 rctl |= E1000_RCTL_MPE;
7571 wr32(E1000_RCTL, rctl);
7572 }
7573
7574 ctrl = rd32(E1000_CTRL);
7575 /* advertise wake from D3Cold */
7576 #define E1000_CTRL_ADVD3WUC 0x00100000
7577 /* phy power management enable */
7578 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7579 ctrl |= E1000_CTRL_ADVD3WUC;
7580 wr32(E1000_CTRL, ctrl);
7581
9d5c8243 7582 /* Allow time for pending master requests to run */
330a6d6a 7583 igb_disable_pcie_master(hw);
9d5c8243
AK
7584
7585 wr32(E1000_WUC, E1000_WUC_PME_EN);
7586 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7587 } else {
7588 wr32(E1000_WUC, 0);
7589 wr32(E1000_WUFC, 0);
9d5c8243
AK
7590 }
7591
3fe7c4c9
RW
7592 *enable_wake = wufc || adapter->en_mng_pt;
7593 if (!*enable_wake)
88a268c1
NN
7594 igb_power_down_link(adapter);
7595 else
7596 igb_power_up_link(adapter);
9d5c8243
AK
7597
7598 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
7599 * would have already happened in close and is redundant.
7600 */
9d5c8243
AK
7601 igb_release_hw_control(adapter);
7602
7603 pci_disable_device(pdev);
7604
9d5c8243
AK
7605 return 0;
7606}
7607
7608#ifdef CONFIG_PM
d9dd966d 7609#ifdef CONFIG_PM_SLEEP
749ab2cd 7610static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7611{
7612 int retval;
7613 bool wake;
749ab2cd 7614 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7615
749ab2cd 7616 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7617 if (retval)
7618 return retval;
7619
7620 if (wake) {
7621 pci_prepare_to_sleep(pdev);
7622 } else {
7623 pci_wake_from_d3(pdev, false);
7624 pci_set_power_state(pdev, PCI_D3hot);
7625 }
7626
7627 return 0;
7628}
d9dd966d 7629#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7630
749ab2cd 7631static int igb_resume(struct device *dev)
9d5c8243 7632{
749ab2cd 7633 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7634 struct net_device *netdev = pci_get_drvdata(pdev);
7635 struct igb_adapter *adapter = netdev_priv(netdev);
7636 struct e1000_hw *hw = &adapter->hw;
7637 u32 err;
7638
7639 pci_set_power_state(pdev, PCI_D0);
7640 pci_restore_state(pdev);
b94f2d77 7641 pci_save_state(pdev);
42bfd33a 7642
17a402a0
CW
7643 if (!pci_device_is_present(pdev))
7644 return -ENODEV;
aed5dec3 7645 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7646 if (err) {
7647 dev_err(&pdev->dev,
7648 "igb: Cannot enable PCI device from suspend\n");
7649 return err;
7650 }
7651 pci_set_master(pdev);
7652
7653 pci_enable_wake(pdev, PCI_D3hot, 0);
7654 pci_enable_wake(pdev, PCI_D3cold, 0);
7655
53c7d064 7656 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7657 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7658 return -ENOMEM;
9d5c8243
AK
7659 }
7660
9d5c8243 7661 igb_reset(adapter);
a8564f03
AD
7662
7663 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7664 * driver.
7665 */
a8564f03
AD
7666 igb_get_hw_control(adapter);
7667
9d5c8243
AK
7668 wr32(E1000_WUS, ~0);
7669
749ab2cd 7670 if (netdev->flags & IFF_UP) {
0c2cc02e 7671 rtnl_lock();
749ab2cd 7672 err = __igb_open(netdev, true);
0c2cc02e 7673 rtnl_unlock();
a88f10ec
AD
7674 if (err)
7675 return err;
7676 }
9d5c8243
AK
7677
7678 netif_device_attach(netdev);
749ab2cd
YZ
7679 return 0;
7680}
7681
749ab2cd
YZ
7682static int igb_runtime_idle(struct device *dev)
7683{
7684 struct pci_dev *pdev = to_pci_dev(dev);
7685 struct net_device *netdev = pci_get_drvdata(pdev);
7686 struct igb_adapter *adapter = netdev_priv(netdev);
7687
7688 if (!igb_has_link(adapter))
7689 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7690
7691 return -EBUSY;
7692}
7693
7694static int igb_runtime_suspend(struct device *dev)
7695{
7696 struct pci_dev *pdev = to_pci_dev(dev);
7697 int retval;
7698 bool wake;
7699
7700 retval = __igb_shutdown(pdev, &wake, 1);
7701 if (retval)
7702 return retval;
7703
7704 if (wake) {
7705 pci_prepare_to_sleep(pdev);
7706 } else {
7707 pci_wake_from_d3(pdev, false);
7708 pci_set_power_state(pdev, PCI_D3hot);
7709 }
9d5c8243 7710
9d5c8243
AK
7711 return 0;
7712}
749ab2cd
YZ
7713
7714static int igb_runtime_resume(struct device *dev)
7715{
7716 return igb_resume(dev);
7717}
d61c81cb 7718#endif /* CONFIG_PM */
9d5c8243
AK
7719
7720static void igb_shutdown(struct pci_dev *pdev)
7721{
3fe7c4c9
RW
7722 bool wake;
7723
749ab2cd 7724 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7725
7726 if (system_state == SYSTEM_POWER_OFF) {
7727 pci_wake_from_d3(pdev, wake);
7728 pci_set_power_state(pdev, PCI_D3hot);
7729 }
9d5c8243
AK
7730}
7731
fa44f2f1
GR
7732#ifdef CONFIG_PCI_IOV
7733static int igb_sriov_reinit(struct pci_dev *dev)
7734{
7735 struct net_device *netdev = pci_get_drvdata(dev);
7736 struct igb_adapter *adapter = netdev_priv(netdev);
7737 struct pci_dev *pdev = adapter->pdev;
7738
7739 rtnl_lock();
7740
7741 if (netif_running(netdev))
7742 igb_close(netdev);
76252723
SA
7743 else
7744 igb_reset(adapter);
fa44f2f1
GR
7745
7746 igb_clear_interrupt_scheme(adapter);
7747
7748 igb_init_queue_configuration(adapter);
7749
7750 if (igb_init_interrupt_scheme(adapter, true)) {
f468adc9 7751 rtnl_unlock();
fa44f2f1
GR
7752 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7753 return -ENOMEM;
7754 }
7755
7756 if (netif_running(netdev))
7757 igb_open(netdev);
7758
7759 rtnl_unlock();
7760
7761 return 0;
7762}
7763
7764static int igb_pci_disable_sriov(struct pci_dev *dev)
7765{
7766 int err = igb_disable_sriov(dev);
7767
7768 if (!err)
7769 err = igb_sriov_reinit(dev);
7770
7771 return err;
7772}
7773
7774static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7775{
7776 int err = igb_enable_sriov(dev, num_vfs);
7777
7778 if (err)
7779 goto out;
7780
7781 err = igb_sriov_reinit(dev);
7782 if (!err)
7783 return num_vfs;
7784
7785out:
7786 return err;
7787}
7788
7789#endif
7790static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7791{
7792#ifdef CONFIG_PCI_IOV
7793 if (num_vfs == 0)
7794 return igb_pci_disable_sriov(dev);
7795 else
7796 return igb_pci_enable_sriov(dev, num_vfs);
7797#endif
7798 return 0;
7799}
7800
9d5c8243 7801#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 7802/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
7803 * without having to re-enable interrupts. It's not called while
7804 * the interrupt routine is executing.
7805 */
7806static void igb_netpoll(struct net_device *netdev)
7807{
7808 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7809 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7810 struct igb_q_vector *q_vector;
9d5c8243 7811 int i;
9d5c8243 7812
047e0030 7813 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4 7814 q_vector = adapter->q_vector[i];
cd14ef54 7815 if (adapter->flags & IGB_FLAG_HAS_MSIX)
0d1ae7f4
AD
7816 wr32(E1000_EIMC, q_vector->eims_value);
7817 else
7818 igb_irq_disable(adapter);
047e0030 7819 napi_schedule(&q_vector->napi);
eebbbdba 7820 }
9d5c8243
AK
7821}
7822#endif /* CONFIG_NET_POLL_CONTROLLER */
7823
7824/**
b980ac18
JK
7825 * igb_io_error_detected - called when PCI error is detected
7826 * @pdev: Pointer to PCI device
7827 * @state: The current pci connection state
9d5c8243 7828 *
b980ac18
JK
7829 * This function is called after a PCI bus error affecting
7830 * this device has been detected.
7831 **/
9d5c8243
AK
7832static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7833 pci_channel_state_t state)
7834{
7835 struct net_device *netdev = pci_get_drvdata(pdev);
7836 struct igb_adapter *adapter = netdev_priv(netdev);
7837
7838 netif_device_detach(netdev);
7839
59ed6eec
AD
7840 if (state == pci_channel_io_perm_failure)
7841 return PCI_ERS_RESULT_DISCONNECT;
7842
9d5c8243
AK
7843 if (netif_running(netdev))
7844 igb_down(adapter);
7845 pci_disable_device(pdev);
7846
7847 /* Request a slot slot reset. */
7848 return PCI_ERS_RESULT_NEED_RESET;
7849}
7850
7851/**
b980ac18
JK
7852 * igb_io_slot_reset - called after the pci bus has been reset.
7853 * @pdev: Pointer to PCI device
9d5c8243 7854 *
b980ac18
JK
7855 * Restart the card from scratch, as if from a cold-boot. Implementation
7856 * resembles the first-half of the igb_resume routine.
7857 **/
9d5c8243
AK
7858static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7859{
7860 struct net_device *netdev = pci_get_drvdata(pdev);
7861 struct igb_adapter *adapter = netdev_priv(netdev);
7862 struct e1000_hw *hw = &adapter->hw;
40a914fa 7863 pci_ers_result_t result;
42bfd33a 7864 int err;
9d5c8243 7865
aed5dec3 7866 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7867 dev_err(&pdev->dev,
7868 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7869 result = PCI_ERS_RESULT_DISCONNECT;
7870 } else {
7871 pci_set_master(pdev);
7872 pci_restore_state(pdev);
b94f2d77 7873 pci_save_state(pdev);
9d5c8243 7874
40a914fa
AD
7875 pci_enable_wake(pdev, PCI_D3hot, 0);
7876 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7877
40a914fa
AD
7878 igb_reset(adapter);
7879 wr32(E1000_WUS, ~0);
7880 result = PCI_ERS_RESULT_RECOVERED;
7881 }
9d5c8243 7882
ea943d41
JK
7883 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7884 if (err) {
b980ac18
JK
7885 dev_err(&pdev->dev,
7886 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7887 err);
ea943d41
JK
7888 /* non-fatal, continue */
7889 }
40a914fa
AD
7890
7891 return result;
9d5c8243
AK
7892}
7893
7894/**
b980ac18
JK
7895 * igb_io_resume - called when traffic can start flowing again.
7896 * @pdev: Pointer to PCI device
9d5c8243 7897 *
b980ac18
JK
7898 * This callback is called when the error recovery driver tells us that
7899 * its OK to resume normal operation. Implementation resembles the
7900 * second-half of the igb_resume routine.
9d5c8243
AK
7901 */
7902static void igb_io_resume(struct pci_dev *pdev)
7903{
7904 struct net_device *netdev = pci_get_drvdata(pdev);
7905 struct igb_adapter *adapter = netdev_priv(netdev);
7906
9d5c8243
AK
7907 if (netif_running(netdev)) {
7908 if (igb_up(adapter)) {
7909 dev_err(&pdev->dev, "igb_up failed after reset\n");
7910 return;
7911 }
7912 }
7913
7914 netif_device_attach(netdev);
7915
7916 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7917 * driver.
7918 */
9d5c8243 7919 igb_get_hw_control(adapter);
9d5c8243
AK
7920}
7921
26ad9178 7922static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
b980ac18 7923 u8 qsel)
26ad9178 7924{
26ad9178 7925 struct e1000_hw *hw = &adapter->hw;
c3278587 7926 u32 rar_low, rar_high;
26ad9178 7927
415cd2a6
AD
7928 /* HW expects these to be in network order when they are plugged
7929 * into the registers which are little endian. In order to guarantee
7930 * that ordering we need to do an leXX_to_cpup here in order to be
7931 * ready for the byteswap that occurs with writel
26ad9178 7932 */
415cd2a6
AD
7933 rar_low = le32_to_cpup((__le32 *)(addr));
7934 rar_high = le16_to_cpup((__le16 *)(addr + 4));
26ad9178
AD
7935
7936 /* Indicate to hardware the Address is Valid. */
7937 rar_high |= E1000_RAH_AV;
7938
7939 if (hw->mac.type == e1000_82575)
7940 rar_high |= E1000_RAH_POOL_1 * qsel;
7941 else
7942 rar_high |= E1000_RAH_POOL_1 << qsel;
7943
7944 wr32(E1000_RAL(index), rar_low);
7945 wrfl();
7946 wr32(E1000_RAH(index), rar_high);
7947 wrfl();
7948}
7949
4ae196df 7950static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 7951 int vf, unsigned char *mac_addr)
4ae196df
AD
7952{
7953 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 7954 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
7955 * towards the first, as a result a collision should not be possible
7956 */
ff41f8dc 7957 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7958
37680117 7959 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7960
26ad9178 7961 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7962
7963 return 0;
7964}
7965
8151d294
WM
7966static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7967{
7968 struct igb_adapter *adapter = netdev_priv(netdev);
7969 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7970 return -EINVAL;
7971 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7972 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
b980ac18
JK
7973 dev_info(&adapter->pdev->dev,
7974 "Reload the VF driver to make this change effective.");
8151d294 7975 if (test_bit(__IGB_DOWN, &adapter->state)) {
b980ac18
JK
7976 dev_warn(&adapter->pdev->dev,
7977 "The VF MAC address has been set, but the PF device is not up.\n");
7978 dev_warn(&adapter->pdev->dev,
7979 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
7980 }
7981 return igb_set_vf_mac(adapter, vf, mac);
7982}
7983
17dc566c
LL
7984static int igb_link_mbps(int internal_link_speed)
7985{
7986 switch (internal_link_speed) {
7987 case SPEED_100:
7988 return 100;
7989 case SPEED_1000:
7990 return 1000;
7991 default:
7992 return 0;
7993 }
7994}
7995
7996static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7997 int link_speed)
7998{
7999 int rf_dec, rf_int;
8000 u32 bcnrc_val;
8001
8002 if (tx_rate != 0) {
8003 /* Calculate the rate factor values to set */
8004 rf_int = link_speed / tx_rate;
8005 rf_dec = (link_speed - (rf_int * tx_rate));
a51d8c21 8006 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
b980ac18 8007 tx_rate;
17dc566c
LL
8008
8009 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
8010 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8011 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
8012 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8013 } else {
8014 bcnrc_val = 0;
8015 }
8016
8017 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 8018 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
8019 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8020 */
8021 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
8022 wr32(E1000_RTTBCNRC, bcnrc_val);
8023}
8024
8025static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8026{
8027 int actual_link_speed, i;
8028 bool reset_rate = false;
8029
8030 /* VF TX rate limit was not set or not supported */
8031 if ((adapter->vf_rate_link_speed == 0) ||
8032 (adapter->hw.mac.type != e1000_82576))
8033 return;
8034
8035 actual_link_speed = igb_link_mbps(adapter->link_speed);
8036 if (actual_link_speed != adapter->vf_rate_link_speed) {
8037 reset_rate = true;
8038 adapter->vf_rate_link_speed = 0;
8039 dev_info(&adapter->pdev->dev,
b980ac18 8040 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
8041 }
8042
8043 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8044 if (reset_rate)
8045 adapter->vf_data[i].tx_rate = 0;
8046
8047 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
8048 adapter->vf_data[i].tx_rate,
8049 actual_link_speed);
17dc566c
LL
8050 }
8051}
8052
ed616689
SC
8053static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8054 int min_tx_rate, int max_tx_rate)
8151d294 8055{
17dc566c
LL
8056 struct igb_adapter *adapter = netdev_priv(netdev);
8057 struct e1000_hw *hw = &adapter->hw;
8058 int actual_link_speed;
8059
8060 if (hw->mac.type != e1000_82576)
8061 return -EOPNOTSUPP;
8062
ed616689
SC
8063 if (min_tx_rate)
8064 return -EINVAL;
8065
17dc566c
LL
8066 actual_link_speed = igb_link_mbps(adapter->link_speed);
8067 if ((vf >= adapter->vfs_allocated_count) ||
8068 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
ed616689
SC
8069 (max_tx_rate < 0) ||
8070 (max_tx_rate > actual_link_speed))
17dc566c
LL
8071 return -EINVAL;
8072
8073 adapter->vf_rate_link_speed = actual_link_speed;
ed616689
SC
8074 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8075 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
17dc566c
LL
8076
8077 return 0;
8151d294
WM
8078}
8079
70ea4783
LL
8080static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8081 bool setting)
8082{
8083 struct igb_adapter *adapter = netdev_priv(netdev);
8084 struct e1000_hw *hw = &adapter->hw;
8085 u32 reg_val, reg_offset;
8086
8087 if (!adapter->vfs_allocated_count)
8088 return -EOPNOTSUPP;
8089
8090 if (vf >= adapter->vfs_allocated_count)
8091 return -EINVAL;
8092
8093 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8094 reg_val = rd32(reg_offset);
8095 if (setting)
a51d8c21
JK
8096 reg_val |= (BIT(vf) |
8097 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
70ea4783 8098 else
a51d8c21
JK
8099 reg_val &= ~(BIT(vf) |
8100 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
70ea4783
LL
8101 wr32(reg_offset, reg_val);
8102
8103 adapter->vf_data[vf].spoofchk_enabled = setting;
23d87824 8104 return 0;
70ea4783
LL
8105}
8106
8151d294
WM
8107static int igb_ndo_get_vf_config(struct net_device *netdev,
8108 int vf, struct ifla_vf_info *ivi)
8109{
8110 struct igb_adapter *adapter = netdev_priv(netdev);
8111 if (vf >= adapter->vfs_allocated_count)
8112 return -EINVAL;
8113 ivi->vf = vf;
8114 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
ed616689
SC
8115 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8116 ivi->min_tx_rate = 0;
8151d294
WM
8117 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8118 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 8119 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8151d294
WM
8120 return 0;
8121}
8122
4ae196df
AD
8123static void igb_vmm_control(struct igb_adapter *adapter)
8124{
8125 struct e1000_hw *hw = &adapter->hw;
10d8e907 8126 u32 reg;
4ae196df 8127
52a1dd4d
AD
8128 switch (hw->mac.type) {
8129 case e1000_82575:
f96a8a0b
CW
8130 case e1000_i210:
8131 case e1000_i211:
ceb5f13b 8132 case e1000_i354:
52a1dd4d
AD
8133 default:
8134 /* replication is not supported for 82575 */
4ae196df 8135 return;
52a1dd4d
AD
8136 case e1000_82576:
8137 /* notify HW that the MAC is adding vlan tags */
8138 reg = rd32(E1000_DTXCTL);
8139 reg |= E1000_DTXCTL_VLAN_ADDED;
8140 wr32(E1000_DTXCTL, reg);
b26141d4 8141 /* Fall through */
52a1dd4d
AD
8142 case e1000_82580:
8143 /* enable replication vlan tag stripping */
8144 reg = rd32(E1000_RPLOLR);
8145 reg |= E1000_RPLOLR_STRVLAN;
8146 wr32(E1000_RPLOLR, reg);
b26141d4 8147 /* Fall through */
d2ba2ed8
AD
8148 case e1000_i350:
8149 /* none of the above registers are supported by i350 */
52a1dd4d
AD
8150 break;
8151 }
10d8e907 8152
d4960307
AD
8153 if (adapter->vfs_allocated_count) {
8154 igb_vmdq_set_loopback_pf(hw, true);
8155 igb_vmdq_set_replication_pf(hw, true);
13800469 8156 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 8157 adapter->vfs_allocated_count);
d4960307
AD
8158 } else {
8159 igb_vmdq_set_loopback_pf(hw, false);
8160 igb_vmdq_set_replication_pf(hw, false);
8161 }
4ae196df
AD
8162}
8163
b6e0c419
CW
8164static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8165{
8166 struct e1000_hw *hw = &adapter->hw;
8167 u32 dmac_thr;
8168 u16 hwm;
8169
8170 if (hw->mac.type > e1000_82580) {
8171 if (adapter->flags & IGB_FLAG_DMAC) {
8172 u32 reg;
8173
8174 /* force threshold to 0. */
8175 wr32(E1000_DMCTXTH, 0);
8176
b980ac18 8177 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
8178 * than the Rx threshold. Set hwm to PBA - max frame
8179 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 8180 */
45693bcb 8181 hwm = 64 * (pba - 6);
e8c626e9
MV
8182 reg = rd32(E1000_FCRTC);
8183 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8184 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8185 & E1000_FCRTC_RTH_COAL_MASK);
8186 wr32(E1000_FCRTC, reg);
8187
b980ac18 8188 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
8189 * frame size, capping it at PBA - 10KB.
8190 */
45693bcb 8191 dmac_thr = pba - 10;
b6e0c419
CW
8192 reg = rd32(E1000_DMACR);
8193 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
8194 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8195 & E1000_DMACR_DMACTHR_MASK);
8196
8197 /* transition to L0x or L1 if available..*/
8198 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8199
8200 /* watchdog timer= +-1000 usec in 32usec intervals */
8201 reg |= (1000 >> 5);
0c02dd98
MV
8202
8203 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
8204 if (hw->mac.type != e1000_i354)
8205 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8206
b6e0c419
CW
8207 wr32(E1000_DMACR, reg);
8208
b980ac18 8209 /* no lower threshold to disable
b6e0c419
CW
8210 * coalescing(smart fifb)-UTRESH=0
8211 */
8212 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
8213
8214 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8215
8216 wr32(E1000_DMCTLX, reg);
8217
b980ac18 8218 /* free space in tx packet buffer to wake from
b6e0c419
CW
8219 * DMA coal
8220 */
8221 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8222 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8223
b980ac18 8224 /* make low power state decision controlled
b6e0c419
CW
8225 * by DMA coal
8226 */
8227 reg = rd32(E1000_PCIEMISC);
8228 reg &= ~E1000_PCIEMISC_LX_DECISION;
8229 wr32(E1000_PCIEMISC, reg);
8230 } /* endif adapter->dmac is not disabled */
8231 } else if (hw->mac.type == e1000_82580) {
8232 u32 reg = rd32(E1000_PCIEMISC);
9005df38 8233
b6e0c419
CW
8234 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8235 wr32(E1000_DMACR, 0);
8236 }
8237}
8238
b980ac18
JK
8239/**
8240 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
8241 * @hw: pointer to hardware structure
8242 * @byte_offset: byte offset to read
8243 * @dev_addr: device address
8244 * @data: value read
8245 *
8246 * Performs byte read operation over I2C interface at
8247 * a specified device address.
b980ac18 8248 **/
441fc6fd 8249s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8250 u8 dev_addr, u8 *data)
441fc6fd
CW
8251{
8252 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8253 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8254 s32 status;
8255 u16 swfw_mask = 0;
8256
8257 if (!this_client)
8258 return E1000_ERR_I2C;
8259
8260 swfw_mask = E1000_SWFW_PHY0_SM;
8261
23d87824 8262 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
8263 return E1000_ERR_SWFW_SYNC;
8264
8265 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8266 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8267
8268 if (status < 0)
8269 return E1000_ERR_I2C;
8270 else {
8271 *data = status;
23d87824 8272 return 0;
441fc6fd
CW
8273 }
8274}
8275
b980ac18
JK
8276/**
8277 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
8278 * @hw: pointer to hardware structure
8279 * @byte_offset: byte offset to write
8280 * @dev_addr: device address
8281 * @data: value to write
8282 *
8283 * Performs byte write operation over I2C interface at
8284 * a specified device address.
b980ac18 8285 **/
441fc6fd 8286s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8287 u8 dev_addr, u8 data)
441fc6fd
CW
8288{
8289 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8290 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8291 s32 status;
8292 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8293
8294 if (!this_client)
8295 return E1000_ERR_I2C;
8296
23d87824 8297 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
8298 return E1000_ERR_SWFW_SYNC;
8299 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8300 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8301
8302 if (status)
8303 return E1000_ERR_I2C;
8304 else
23d87824 8305 return 0;
441fc6fd
CW
8306
8307}
907b7835
LMV
8308
8309int igb_reinit_queues(struct igb_adapter *adapter)
8310{
8311 struct net_device *netdev = adapter->netdev;
8312 struct pci_dev *pdev = adapter->pdev;
8313 int err = 0;
8314
8315 if (netif_running(netdev))
8316 igb_close(netdev);
8317
02ef6e1d 8318 igb_reset_interrupt_capability(adapter);
907b7835
LMV
8319
8320 if (igb_init_interrupt_scheme(adapter, true)) {
8321 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8322 return -ENOMEM;
8323 }
8324
8325 if (netif_running(netdev))
8326 err = igb_open(netdev);
8327
8328 return err;
8329}
0e71def2
GH
8330
8331static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8332{
8333 struct igb_nfc_filter *rule;
8334
8335 spin_lock(&adapter->nfc_lock);
8336
8337 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8338 igb_erase_filter(adapter, rule);
8339
8340 spin_unlock(&adapter->nfc_lock);
8341}
8342
8343static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8344{
8345 struct igb_nfc_filter *rule;
8346
8347 spin_lock(&adapter->nfc_lock);
8348
8349 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8350 igb_add_filter(adapter, rule);
8351
8352 spin_unlock(&adapter->nfc_lock);
8353}
9d5c8243 8354/* igb_main.c */
This page took 4.730348 seconds and 5 git commands to generate.