ixgbe: Mask off check of frag_off as we only want fragment offset
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
434c5e39 4 Copyright(c) 1999 - 2013 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
ccffad25 31#include <linux/netdevice.h>
9a799d71 32
11afc1b1 33#include "ixgbe.h"
9a799d71
AK
34#include "ixgbe_common.h"
35#include "ixgbe_phy.h"
36
c44ade9e 37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
9a799d71
AK
38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
c44ade9e
JB
40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
9a799d71 48
9a799d71 49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
eb9c3e3e 50static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
68c7005d
ET
51static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
52 u16 words, u16 *data);
53static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 u16 words, u16 *data);
55static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
56 u16 offset);
ff9d1a5a 57static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
9a799d71 58
67a79df2
AD
59/**
60 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
61 * control
62 * @hw: pointer to hardware structure
63 *
64 * There are several phys that do not support autoneg flow control. This
65 * function check the device id to see if the associated phy supports
66 * autoneg flow control.
67 **/
db2adc2d 68s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
67a79df2
AD
69{
70
71 switch (hw->device_id) {
72 case IXGBE_DEV_ID_X540T:
df376f0d 73 case IXGBE_DEV_ID_X540T1:
67a79df2
AD
74 case IXGBE_DEV_ID_82599_T3_LOM:
75 return 0;
76 default:
77 return IXGBE_ERR_FC_NOT_SUPPORTED;
78 }
79}
80
81/**
82 * ixgbe_setup_fc - Set up flow control
83 * @hw: pointer to hardware structure
84 *
85 * Called at init time to set up flow control.
86 **/
041441d0 87static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
67a79df2
AD
88{
89 s32 ret_val = 0;
90 u32 reg = 0, reg_bp = 0;
91 u16 reg_cu = 0;
d7bbcd32 92 bool got_lock = false;
67a79df2 93
67a79df2
AD
94 /*
95 * Validate the requested mode. Strict IEEE mode does not allow
96 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
97 */
98 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
99 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
100 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
101 goto out;
102 }
103
104 /*
105 * 10gig parts do not have a word in the EEPROM to determine the
106 * default flow control setting, so we explicitly set it to full.
107 */
108 if (hw->fc.requested_mode == ixgbe_fc_default)
109 hw->fc.requested_mode = ixgbe_fc_full;
110
111 /*
112 * Set up the 1G and 10G flow control advertisement registers so the
113 * HW will be able to do fc autoneg once the cable is plugged in. If
114 * we link at 10G, the 1G advertisement is harmless and vice versa.
115 */
67a79df2
AD
116 switch (hw->phy.media_type) {
117 case ixgbe_media_type_fiber:
118 case ixgbe_media_type_backplane:
119 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
120 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
121 break;
67a79df2
AD
122 case ixgbe_media_type_copper:
123 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
124 MDIO_MMD_AN, &reg_cu);
125 break;
67a79df2 126 default:
041441d0 127 break;
67a79df2
AD
128 }
129
130 /*
131 * The possible values of fc.requested_mode are:
132 * 0: Flow control is completely disabled
133 * 1: Rx flow control is enabled (we can receive pause frames,
134 * but not send pause frames).
135 * 2: Tx flow control is enabled (we can send pause frames but
136 * we do not support receiving pause frames).
137 * 3: Both Rx and Tx flow control (symmetric) are enabled.
67a79df2
AD
138 * other: Invalid.
139 */
140 switch (hw->fc.requested_mode) {
141 case ixgbe_fc_none:
142 /* Flow control completely disabled by software override. */
143 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
144 if (hw->phy.media_type == ixgbe_media_type_backplane)
145 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
146 IXGBE_AUTOC_ASM_PAUSE);
147 else if (hw->phy.media_type == ixgbe_media_type_copper)
148 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
149 break;
67a79df2
AD
150 case ixgbe_fc_tx_pause:
151 /*
152 * Tx Flow control is enabled, and Rx Flow control is
153 * disabled by software override.
154 */
041441d0
AD
155 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
156 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
67a79df2 157 if (hw->phy.media_type == ixgbe_media_type_backplane) {
041441d0
AD
158 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
159 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
67a79df2 160 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
041441d0
AD
161 reg_cu |= IXGBE_TAF_ASM_PAUSE;
162 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
67a79df2
AD
163 }
164 break;
041441d0
AD
165 case ixgbe_fc_rx_pause:
166 /*
167 * Rx Flow control is enabled and Tx Flow control is
168 * disabled by software override. Since there really
169 * isn't a way to advertise that we are capable of RX
170 * Pause ONLY, we will advertise that we support both
171 * symmetric and asymmetric Rx PAUSE, as such we fall
172 * through to the fc_full statement. Later, we will
173 * disable the adapter's ability to send PAUSE frames.
174 */
67a79df2
AD
175 case ixgbe_fc_full:
176 /* Flow control (both Rx and Tx) is enabled by SW override. */
041441d0 177 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
67a79df2 178 if (hw->phy.media_type == ixgbe_media_type_backplane)
041441d0
AD
179 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
180 IXGBE_AUTOC_ASM_PAUSE;
67a79df2 181 else if (hw->phy.media_type == ixgbe_media_type_copper)
041441d0 182 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
67a79df2 183 break;
67a79df2
AD
184 default:
185 hw_dbg(hw, "Flow control param set incorrectly\n");
186 ret_val = IXGBE_ERR_CONFIG;
187 goto out;
188 break;
189 }
190
191 if (hw->mac.type != ixgbe_mac_X540) {
192 /*
193 * Enable auto-negotiation between the MAC & PHY;
194 * the MAC will advertise clause 37 flow control.
195 */
196 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
197 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
198
199 /* Disable AN timeout */
200 if (hw->fc.strict_ieee)
201 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
202
203 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
204 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
205 }
206
207 /*
208 * AUTOC restart handles negotiation of 1G and 10G on backplane
209 * and copper. There is no need to set the PCS1GCTL register.
210 *
211 */
212 if (hw->phy.media_type == ixgbe_media_type_backplane) {
d7bbcd32
DS
213 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
214 * LESM is on, likewise reset_pipeline requries the lock as
215 * it also writes AUTOC.
216 */
217 if ((hw->mac.type == ixgbe_mac_82599EB) &&
218 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
219 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
220 IXGBE_GSSR_MAC_CSR_SM);
221 if (ret_val)
222 goto out;
223
224 got_lock = true;
225 }
226
67a79df2 227 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
d7bbcd32
DS
228
229 if (hw->mac.type == ixgbe_mac_82599EB)
230 ixgbe_reset_pipeline_82599(hw);
231
232 if (got_lock)
233 hw->mac.ops.release_swfw_sync(hw,
234 IXGBE_GSSR_MAC_CSR_SM);
235
67a79df2
AD
236 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
237 (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
238 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
239 MDIO_MMD_AN, reg_cu);
240 }
241
242 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
243out:
244 return ret_val;
245}
246
9a799d71 247/**
c44ade9e 248 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
9a799d71
AK
249 * @hw: pointer to hardware structure
250 *
251 * Starts the hardware by filling the bus info structure and media type, clears
252 * all on chip counters, initializes receive address registers, multicast
253 * table, VLAN filter table, calls routine to set up link and flow control
254 * settings, and leaves transmit and receive units disabled and uninitialized
255 **/
c44ade9e 256s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
9a799d71
AK
257{
258 u32 ctrl_ext;
259
260 /* Set the media type */
261 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
262
263 /* Identify the PHY */
c44ade9e 264 hw->phy.ops.identify(hw);
9a799d71 265
9a799d71 266 /* Clear the VLAN filter table */
c44ade9e 267 hw->mac.ops.clear_vfta(hw);
9a799d71 268
9a799d71 269 /* Clear statistics registers */
c44ade9e 270 hw->mac.ops.clear_hw_cntrs(hw);
9a799d71
AK
271
272 /* Set No Snoop Disable */
273 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
274 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
275 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
3957d63d 276 IXGBE_WRITE_FLUSH(hw);
9a799d71 277
620fa036 278 /* Setup flow control */
041441d0 279 ixgbe_setup_fc(hw);
620fa036 280
9a799d71
AK
281 /* Clear adapter stopped flag */
282 hw->adapter_stopped = false;
283
284 return 0;
285}
286
7184b7cf
ET
287/**
288 * ixgbe_start_hw_gen2 - Init sequence for common device family
289 * @hw: pointer to hw structure
290 *
291 * Performs the init sequence common to the second generation
292 * of 10 GbE devices.
293 * Devices in the second generation:
294 * 82599
295 * X540
296 **/
297s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
298{
299 u32 i;
3d5c5207 300 u32 regval;
7184b7cf
ET
301
302 /* Clear the rate limiters */
303 for (i = 0; i < hw->mac.max_tx_queues; i++) {
304 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
305 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
306 }
307 IXGBE_WRITE_FLUSH(hw);
308
3d5c5207
ET
309 /* Disable relaxed ordering */
310 for (i = 0; i < hw->mac.max_tx_queues; i++) {
311 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
bdda1a61 312 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3d5c5207
ET
313 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
314 }
315
316 for (i = 0; i < hw->mac.max_rx_queues; i++) {
317 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
bdda1a61
AD
318 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
319 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
3d5c5207
ET
320 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
321 }
322
7184b7cf
ET
323 return 0;
324}
325
9a799d71 326/**
c44ade9e 327 * ixgbe_init_hw_generic - Generic hardware initialization
9a799d71
AK
328 * @hw: pointer to hardware structure
329 *
c44ade9e 330 * Initialize the hardware by resetting the hardware, filling the bus info
9a799d71
AK
331 * structure and media type, clears all on chip counters, initializes receive
332 * address registers, multicast table, VLAN filter table, calls routine to set
333 * up link and flow control settings, and leaves transmit and receive units
334 * disabled and uninitialized
335 **/
c44ade9e 336s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
9a799d71 337{
794caeb2
PWJ
338 s32 status;
339
9a799d71 340 /* Reset the hardware */
794caeb2 341 status = hw->mac.ops.reset_hw(hw);
9a799d71 342
794caeb2
PWJ
343 if (status == 0) {
344 /* Start the HW */
345 status = hw->mac.ops.start_hw(hw);
346 }
9a799d71 347
794caeb2 348 return status;
9a799d71
AK
349}
350
351/**
c44ade9e 352 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
9a799d71
AK
353 * @hw: pointer to hardware structure
354 *
355 * Clears all hardware statistics counters by reading them from the hardware
356 * Statistics counters are clear on read.
357 **/
c44ade9e 358s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
359{
360 u16 i = 0;
361
362 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
363 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
364 IXGBE_READ_REG(hw, IXGBE_ERRBC);
365 IXGBE_READ_REG(hw, IXGBE_MSPDC);
366 for (i = 0; i < 8; i++)
367 IXGBE_READ_REG(hw, IXGBE_MPC(i));
368
369 IXGBE_READ_REG(hw, IXGBE_MLFC);
370 IXGBE_READ_REG(hw, IXGBE_MRFC);
371 IXGBE_READ_REG(hw, IXGBE_RLEC);
372 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
9a799d71 373 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
667c7565
ET
374 if (hw->mac.type >= ixgbe_mac_82599EB) {
375 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
376 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
377 } else {
378 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
379 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
380 }
9a799d71
AK
381
382 for (i = 0; i < 8; i++) {
383 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
9a799d71 384 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
667c7565
ET
385 if (hw->mac.type >= ixgbe_mac_82599EB) {
386 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
387 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
388 } else {
389 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
390 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
391 }
9a799d71 392 }
667c7565
ET
393 if (hw->mac.type >= ixgbe_mac_82599EB)
394 for (i = 0; i < 8; i++)
395 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
9a799d71
AK
396 IXGBE_READ_REG(hw, IXGBE_PRC64);
397 IXGBE_READ_REG(hw, IXGBE_PRC127);
398 IXGBE_READ_REG(hw, IXGBE_PRC255);
399 IXGBE_READ_REG(hw, IXGBE_PRC511);
400 IXGBE_READ_REG(hw, IXGBE_PRC1023);
401 IXGBE_READ_REG(hw, IXGBE_PRC1522);
402 IXGBE_READ_REG(hw, IXGBE_GPRC);
403 IXGBE_READ_REG(hw, IXGBE_BPRC);
404 IXGBE_READ_REG(hw, IXGBE_MPRC);
405 IXGBE_READ_REG(hw, IXGBE_GPTC);
406 IXGBE_READ_REG(hw, IXGBE_GORCL);
407 IXGBE_READ_REG(hw, IXGBE_GORCH);
408 IXGBE_READ_REG(hw, IXGBE_GOTCL);
409 IXGBE_READ_REG(hw, IXGBE_GOTCH);
f3116f62
ET
410 if (hw->mac.type == ixgbe_mac_82598EB)
411 for (i = 0; i < 8; i++)
412 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
9a799d71
AK
413 IXGBE_READ_REG(hw, IXGBE_RUC);
414 IXGBE_READ_REG(hw, IXGBE_RFC);
415 IXGBE_READ_REG(hw, IXGBE_ROC);
416 IXGBE_READ_REG(hw, IXGBE_RJC);
417 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
418 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
419 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
420 IXGBE_READ_REG(hw, IXGBE_TORL);
421 IXGBE_READ_REG(hw, IXGBE_TORH);
422 IXGBE_READ_REG(hw, IXGBE_TPR);
423 IXGBE_READ_REG(hw, IXGBE_TPT);
424 IXGBE_READ_REG(hw, IXGBE_PTC64);
425 IXGBE_READ_REG(hw, IXGBE_PTC127);
426 IXGBE_READ_REG(hw, IXGBE_PTC255);
427 IXGBE_READ_REG(hw, IXGBE_PTC511);
428 IXGBE_READ_REG(hw, IXGBE_PTC1023);
429 IXGBE_READ_REG(hw, IXGBE_PTC1522);
430 IXGBE_READ_REG(hw, IXGBE_MPTC);
431 IXGBE_READ_REG(hw, IXGBE_BPTC);
432 for (i = 0; i < 16; i++) {
433 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
9a799d71 434 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
667c7565
ET
435 if (hw->mac.type >= ixgbe_mac_82599EB) {
436 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
437 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
438 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
439 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
440 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
441 } else {
442 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
443 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
444 }
9a799d71
AK
445 }
446
a3aeea0e
ET
447 if (hw->mac.type == ixgbe_mac_X540) {
448 if (hw->phy.id == 0)
449 hw->phy.ops.identify(hw);
c1085b10
ET
450 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
451 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
452 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
453 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
a3aeea0e
ET
454 }
455
9a799d71
AK
456 return 0;
457}
458
459/**
289700db 460 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
c44ade9e 461 * @hw: pointer to hardware structure
289700db
DS
462 * @pba_num: stores the part number string from the EEPROM
463 * @pba_num_size: part number string buffer length
c44ade9e 464 *
289700db 465 * Reads the part number string from the EEPROM.
c44ade9e 466 **/
289700db
DS
467s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
468 u32 pba_num_size)
c44ade9e
JB
469{
470 s32 ret_val;
471 u16 data;
289700db
DS
472 u16 pba_ptr;
473 u16 offset;
474 u16 length;
475
476 if (pba_num == NULL) {
477 hw_dbg(hw, "PBA string buffer was null\n");
478 return IXGBE_ERR_INVALID_ARGUMENT;
479 }
c44ade9e
JB
480
481 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
482 if (ret_val) {
483 hw_dbg(hw, "NVM Read Error\n");
484 return ret_val;
485 }
c44ade9e 486
289700db 487 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
c44ade9e
JB
488 if (ret_val) {
489 hw_dbg(hw, "NVM Read Error\n");
490 return ret_val;
491 }
289700db
DS
492
493 /*
494 * if data is not ptr guard the PBA must be in legacy format which
495 * means pba_ptr is actually our second data word for the PBA number
496 * and we can decode it into an ascii string
497 */
498 if (data != IXGBE_PBANUM_PTR_GUARD) {
499 hw_dbg(hw, "NVM PBA number is not stored as string\n");
500
501 /* we will need 11 characters to store the PBA */
502 if (pba_num_size < 11) {
503 hw_dbg(hw, "PBA string buffer too small\n");
504 return IXGBE_ERR_NO_SPACE;
505 }
506
507 /* extract hex string from data and pba_ptr */
508 pba_num[0] = (data >> 12) & 0xF;
509 pba_num[1] = (data >> 8) & 0xF;
510 pba_num[2] = (data >> 4) & 0xF;
511 pba_num[3] = data & 0xF;
512 pba_num[4] = (pba_ptr >> 12) & 0xF;
513 pba_num[5] = (pba_ptr >> 8) & 0xF;
514 pba_num[6] = '-';
515 pba_num[7] = 0;
516 pba_num[8] = (pba_ptr >> 4) & 0xF;
517 pba_num[9] = pba_ptr & 0xF;
518
519 /* put a null character on the end of our string */
520 pba_num[10] = '\0';
521
522 /* switch all the data but the '-' to hex char */
523 for (offset = 0; offset < 10; offset++) {
524 if (pba_num[offset] < 0xA)
525 pba_num[offset] += '0';
526 else if (pba_num[offset] < 0x10)
527 pba_num[offset] += 'A' - 0xA;
528 }
529
530 return 0;
531 }
532
533 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
534 if (ret_val) {
535 hw_dbg(hw, "NVM Read Error\n");
536 return ret_val;
537 }
538
539 if (length == 0xFFFF || length == 0) {
540 hw_dbg(hw, "NVM PBA number section invalid length\n");
541 return IXGBE_ERR_PBA_SECTION;
542 }
543
544 /* check if pba_num buffer is big enough */
545 if (pba_num_size < (((u32)length * 2) - 1)) {
546 hw_dbg(hw, "PBA string buffer too small\n");
547 return IXGBE_ERR_NO_SPACE;
548 }
549
550 /* trim pba length from start of string */
551 pba_ptr++;
552 length--;
553
554 for (offset = 0; offset < length; offset++) {
555 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
556 if (ret_val) {
557 hw_dbg(hw, "NVM Read Error\n");
558 return ret_val;
559 }
560 pba_num[offset * 2] = (u8)(data >> 8);
561 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
562 }
563 pba_num[offset * 2] = '\0';
c44ade9e
JB
564
565 return 0;
566}
567
568/**
569 * ixgbe_get_mac_addr_generic - Generic get MAC address
9a799d71
AK
570 * @hw: pointer to hardware structure
571 * @mac_addr: Adapter MAC address
572 *
573 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
574 * A reset of the adapter must be performed prior to calling this function
575 * in order for the MAC address to have been loaded from the EEPROM into RAR0
576 **/
c44ade9e 577s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
9a799d71
AK
578{
579 u32 rar_high;
580 u32 rar_low;
581 u16 i;
582
583 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
584 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
585
586 for (i = 0; i < 4; i++)
587 mac_addr[i] = (u8)(rar_low >> (i*8));
588
589 for (i = 0; i < 2; i++)
590 mac_addr[i+4] = (u8)(rar_high >> (i*8));
591
592 return 0;
593}
594
11afc1b1
PW
595/**
596 * ixgbe_get_bus_info_generic - Generic set PCI bus info
597 * @hw: pointer to hardware structure
598 *
599 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
600 **/
601s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
602{
603 struct ixgbe_adapter *adapter = hw->back;
604 struct ixgbe_mac_info *mac = &hw->mac;
605 u16 link_status;
606
607 hw->bus.type = ixgbe_bus_type_pci_express;
608
609 /* Get the negotiated link width and speed from PCI config space */
610 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
611 &link_status);
612
613 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
614 case IXGBE_PCI_LINK_WIDTH_1:
615 hw->bus.width = ixgbe_bus_width_pcie_x1;
616 break;
617 case IXGBE_PCI_LINK_WIDTH_2:
618 hw->bus.width = ixgbe_bus_width_pcie_x2;
619 break;
620 case IXGBE_PCI_LINK_WIDTH_4:
621 hw->bus.width = ixgbe_bus_width_pcie_x4;
622 break;
623 case IXGBE_PCI_LINK_WIDTH_8:
624 hw->bus.width = ixgbe_bus_width_pcie_x8;
625 break;
626 default:
627 hw->bus.width = ixgbe_bus_width_unknown;
628 break;
629 }
630
631 switch (link_status & IXGBE_PCI_LINK_SPEED) {
632 case IXGBE_PCI_LINK_SPEED_2500:
633 hw->bus.speed = ixgbe_bus_speed_2500;
634 break;
635 case IXGBE_PCI_LINK_SPEED_5000:
636 hw->bus.speed = ixgbe_bus_speed_5000;
637 break;
638 default:
639 hw->bus.speed = ixgbe_bus_speed_unknown;
640 break;
641 }
642
643 mac->ops.set_lan_id(hw);
644
645 return 0;
646}
647
648/**
649 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
650 * @hw: pointer to the HW structure
651 *
652 * Determines the LAN function id by reading memory-mapped registers
653 * and swaps the port value if requested.
654 **/
655void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
656{
657 struct ixgbe_bus_info *bus = &hw->bus;
658 u32 reg;
659
660 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
661 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
662 bus->lan_id = bus->func;
663
664 /* check for a port swap */
665 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
666 if (reg & IXGBE_FACTPS_LFS)
667 bus->func ^= 0x1;
668}
669
9a799d71 670/**
c44ade9e 671 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
9a799d71
AK
672 * @hw: pointer to hardware structure
673 *
674 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
675 * disables transmit and receive units. The adapter_stopped flag is used by
676 * the shared code and drivers to determine if the adapter is in a stopped
677 * state and should not touch the hardware.
678 **/
c44ade9e 679s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
9a799d71 680{
9a799d71
AK
681 u32 reg_val;
682 u16 i;
683
684 /*
685 * Set the adapter_stopped flag so other driver functions stop touching
686 * the hardware
687 */
688 hw->adapter_stopped = true;
689
690 /* Disable the receive unit */
ff9d1a5a 691 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
9a799d71 692
ff9d1a5a 693 /* Clear interrupt mask to stop interrupts from being generated */
9a799d71
AK
694 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
695
ff9d1a5a 696 /* Clear any pending interrupts, flush previous writes */
9a799d71
AK
697 IXGBE_READ_REG(hw, IXGBE_EICR);
698
699 /* Disable the transmit unit. Each queue must be disabled. */
ff9d1a5a
ET
700 for (i = 0; i < hw->mac.max_tx_queues; i++)
701 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
702
703 /* Disable the receive unit by stopping each queue */
704 for (i = 0; i < hw->mac.max_rx_queues; i++) {
705 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
706 reg_val &= ~IXGBE_RXDCTL_ENABLE;
707 reg_val |= IXGBE_RXDCTL_SWFLSH;
708 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
9a799d71
AK
709 }
710
ff9d1a5a
ET
711 /* flush all queues disables */
712 IXGBE_WRITE_FLUSH(hw);
713 usleep_range(1000, 2000);
714
c44ade9e
JB
715 /*
716 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
717 * access and verify no pending requests
718 */
ff9d1a5a 719 return ixgbe_disable_pcie_master(hw);
9a799d71
AK
720}
721
722/**
c44ade9e 723 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
9a799d71
AK
724 * @hw: pointer to hardware structure
725 * @index: led number to turn on
726 **/
c44ade9e 727s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
728{
729 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
730
731 /* To turn on the LED, set mode to ON. */
732 led_reg &= ~IXGBE_LED_MODE_MASK(index);
733 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
734 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 735 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
736
737 return 0;
738}
739
740/**
c44ade9e 741 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
9a799d71
AK
742 * @hw: pointer to hardware structure
743 * @index: led number to turn off
744 **/
c44ade9e 745s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
746{
747 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
748
749 /* To turn off the LED, set mode to OFF. */
750 led_reg &= ~IXGBE_LED_MODE_MASK(index);
751 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
752 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 753 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
754
755 return 0;
756}
757
9a799d71 758/**
c44ade9e 759 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
9a799d71
AK
760 * @hw: pointer to hardware structure
761 *
762 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
763 * ixgbe_hw struct in order to set up EEPROM access.
764 **/
c44ade9e 765s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
9a799d71
AK
766{
767 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
768 u32 eec;
769 u16 eeprom_size;
770
771 if (eeprom->type == ixgbe_eeprom_uninitialized) {
772 eeprom->type = ixgbe_eeprom_none;
c44ade9e
JB
773 /* Set default semaphore delay to 10ms which is a well
774 * tested value */
775 eeprom->semaphore_delay = 10;
68c7005d
ET
776 /* Clear EEPROM page size, it will be initialized as needed */
777 eeprom->word_page_size = 0;
9a799d71
AK
778
779 /*
780 * Check for EEPROM present first.
781 * If not present leave as none
782 */
783 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
784 if (eec & IXGBE_EEC_PRES) {
785 eeprom->type = ixgbe_eeprom_spi;
786
787 /*
788 * SPI EEPROM is assumed here. This code would need to
789 * change if a future EEPROM is not SPI.
790 */
791 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
792 IXGBE_EEC_SIZE_SHIFT);
793 eeprom->word_size = 1 << (eeprom_size +
794 IXGBE_EEPROM_WORD_SIZE_SHIFT);
795 }
796
797 if (eec & IXGBE_EEC_ADDR_SIZE)
798 eeprom->address_bits = 16;
799 else
800 eeprom->address_bits = 8;
801 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
802 "%d\n", eeprom->type, eeprom->word_size,
803 eeprom->address_bits);
804 }
805
806 return 0;
807}
808
11afc1b1 809/**
68c7005d 810 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
11afc1b1 811 * @hw: pointer to hardware structure
68c7005d
ET
812 * @offset: offset within the EEPROM to write
813 * @words: number of words
814 * @data: 16 bit word(s) to write to EEPROM
11afc1b1 815 *
68c7005d 816 * Reads 16 bit word(s) from EEPROM through bit-bang method
11afc1b1 817 **/
68c7005d
ET
818s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
819 u16 words, u16 *data)
11afc1b1 820{
68c7005d
ET
821 s32 status = 0;
822 u16 i, count;
11afc1b1
PW
823
824 hw->eeprom.ops.init_params(hw);
825
68c7005d
ET
826 if (words == 0) {
827 status = IXGBE_ERR_INVALID_ARGUMENT;
828 goto out;
829 }
830
831 if (offset + words > hw->eeprom.word_size) {
11afc1b1
PW
832 status = IXGBE_ERR_EEPROM;
833 goto out;
834 }
835
68c7005d
ET
836 /*
837 * The EEPROM page size cannot be queried from the chip. We do lazy
838 * initialization. It is worth to do that when we write large buffer.
839 */
840 if ((hw->eeprom.word_page_size == 0) &&
841 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
842 ixgbe_detect_eeprom_page_size_generic(hw, offset);
843
844 /*
845 * We cannot hold synchronization semaphores for too long
846 * to avoid other entity starvation. However it is more efficient
847 * to read in bursts than synchronizing access for each word.
848 */
849 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
850 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
851 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
852 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
853 count, &data[i]);
854
855 if (status != 0)
856 break;
857 }
858
859out:
860 return status;
861}
862
863/**
864 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
865 * @hw: pointer to hardware structure
866 * @offset: offset within the EEPROM to be written to
867 * @words: number of word(s)
868 * @data: 16 bit word(s) to be written to the EEPROM
869 *
870 * If ixgbe_eeprom_update_checksum is not called after this function, the
871 * EEPROM will most likely contain an invalid checksum.
872 **/
873static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
874 u16 words, u16 *data)
875{
876 s32 status;
877 u16 word;
878 u16 page_size;
879 u16 i;
880 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
881
11afc1b1
PW
882 /* Prepare the EEPROM for writing */
883 status = ixgbe_acquire_eeprom(hw);
884
885 if (status == 0) {
886 if (ixgbe_ready_eeprom(hw) != 0) {
887 ixgbe_release_eeprom(hw);
888 status = IXGBE_ERR_EEPROM;
889 }
890 }
891
892 if (status == 0) {
68c7005d
ET
893 for (i = 0; i < words; i++) {
894 ixgbe_standby_eeprom(hw);
11afc1b1 895
68c7005d
ET
896 /* Send the WRITE ENABLE command (8 bit opcode ) */
897 ixgbe_shift_out_eeprom_bits(hw,
898 IXGBE_EEPROM_WREN_OPCODE_SPI,
899 IXGBE_EEPROM_OPCODE_BITS);
11afc1b1 900
68c7005d 901 ixgbe_standby_eeprom(hw);
11afc1b1 902
68c7005d
ET
903 /*
904 * Some SPI eeproms use the 8th address bit embedded
905 * in the opcode
906 */
907 if ((hw->eeprom.address_bits == 8) &&
908 ((offset + i) >= 128))
909 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
910
911 /* Send the Write command (8-bit opcode + addr) */
912 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
913 IXGBE_EEPROM_OPCODE_BITS);
914 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
915 hw->eeprom.address_bits);
916
917 page_size = hw->eeprom.word_page_size;
918
919 /* Send the data in burst via SPI*/
920 do {
921 word = data[i];
922 word = (word >> 8) | (word << 8);
923 ixgbe_shift_out_eeprom_bits(hw, word, 16);
924
925 if (page_size == 0)
926 break;
927
928 /* do not wrap around page */
929 if (((offset + i) & (page_size - 1)) ==
930 (page_size - 1))
931 break;
932 } while (++i < words);
933
934 ixgbe_standby_eeprom(hw);
935 usleep_range(10000, 20000);
936 }
937 /* Done with writing - release the EEPROM */
938 ixgbe_release_eeprom(hw);
939 }
11afc1b1 940
68c7005d
ET
941 return status;
942}
943
944/**
945 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
946 * @hw: pointer to hardware structure
947 * @offset: offset within the EEPROM to be written to
948 * @data: 16 bit word to be written to the EEPROM
949 *
950 * If ixgbe_eeprom_update_checksum is not called after this function, the
951 * EEPROM will most likely contain an invalid checksum.
952 **/
953s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
954{
955 s32 status;
11afc1b1 956
68c7005d 957 hw->eeprom.ops.init_params(hw);
11afc1b1 958
68c7005d
ET
959 if (offset >= hw->eeprom.word_size) {
960 status = IXGBE_ERR_EEPROM;
961 goto out;
11afc1b1
PW
962 }
963
68c7005d
ET
964 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
965
11afc1b1
PW
966out:
967 return status;
968}
969
9a799d71 970/**
68c7005d 971 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
c44ade9e
JB
972 * @hw: pointer to hardware structure
973 * @offset: offset within the EEPROM to be read
68c7005d
ET
974 * @words: number of word(s)
975 * @data: read 16 bit words(s) from EEPROM
c44ade9e 976 *
68c7005d 977 * Reads 16 bit word(s) from EEPROM through bit-bang method
c44ade9e 978 **/
68c7005d
ET
979s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
980 u16 words, u16 *data)
c44ade9e 981{
68c7005d
ET
982 s32 status = 0;
983 u16 i, count;
c44ade9e
JB
984
985 hw->eeprom.ops.init_params(hw);
986
68c7005d
ET
987 if (words == 0) {
988 status = IXGBE_ERR_INVALID_ARGUMENT;
989 goto out;
990 }
991
992 if (offset + words > hw->eeprom.word_size) {
c44ade9e
JB
993 status = IXGBE_ERR_EEPROM;
994 goto out;
995 }
996
68c7005d
ET
997 /*
998 * We cannot hold synchronization semaphores for too long
999 * to avoid other entity starvation. However it is more efficient
1000 * to read in bursts than synchronizing access for each word.
1001 */
1002 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1003 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1004 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1005
1006 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1007 count, &data[i]);
1008
1009 if (status != 0)
1010 break;
1011 }
1012
1013out:
1014 return status;
1015}
1016
1017/**
1018 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1019 * @hw: pointer to hardware structure
1020 * @offset: offset within the EEPROM to be read
1021 * @words: number of word(s)
1022 * @data: read 16 bit word(s) from EEPROM
1023 *
1024 * Reads 16 bit word(s) from EEPROM through bit-bang method
1025 **/
1026static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1027 u16 words, u16 *data)
1028{
1029 s32 status;
1030 u16 word_in;
1031 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1032 u16 i;
1033
c44ade9e
JB
1034 /* Prepare the EEPROM for reading */
1035 status = ixgbe_acquire_eeprom(hw);
1036
1037 if (status == 0) {
1038 if (ixgbe_ready_eeprom(hw) != 0) {
1039 ixgbe_release_eeprom(hw);
1040 status = IXGBE_ERR_EEPROM;
1041 }
1042 }
1043
1044 if (status == 0) {
68c7005d
ET
1045 for (i = 0; i < words; i++) {
1046 ixgbe_standby_eeprom(hw);
1047 /*
1048 * Some SPI eeproms use the 8th address bit embedded
1049 * in the opcode
1050 */
1051 if ((hw->eeprom.address_bits == 8) &&
1052 ((offset + i) >= 128))
1053 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1054
1055 /* Send the READ command (opcode + addr) */
1056 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1057 IXGBE_EEPROM_OPCODE_BITS);
1058 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1059 hw->eeprom.address_bits);
1060
1061 /* Read the data. */
1062 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1063 data[i] = (word_in >> 8) | (word_in << 8);
1064 }
c44ade9e 1065
68c7005d
ET
1066 /* End this read operation */
1067 ixgbe_release_eeprom(hw);
1068 }
c44ade9e 1069
68c7005d
ET
1070 return status;
1071}
c44ade9e 1072
68c7005d
ET
1073/**
1074 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1075 * @hw: pointer to hardware structure
1076 * @offset: offset within the EEPROM to be read
1077 * @data: read 16 bit value from EEPROM
1078 *
1079 * Reads 16 bit value from EEPROM through bit-bang method
1080 **/
1081s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1082 u16 *data)
1083{
1084 s32 status;
c44ade9e 1085
68c7005d
ET
1086 hw->eeprom.ops.init_params(hw);
1087
1088 if (offset >= hw->eeprom.word_size) {
1089 status = IXGBE_ERR_EEPROM;
1090 goto out;
c44ade9e
JB
1091 }
1092
68c7005d
ET
1093 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1094
c44ade9e
JB
1095out:
1096 return status;
1097}
1098
1099/**
68c7005d 1100 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
9a799d71 1101 * @hw: pointer to hardware structure
68c7005d
ET
1102 * @offset: offset of word in the EEPROM to read
1103 * @words: number of word(s)
1104 * @data: 16 bit word(s) from the EEPROM
9a799d71 1105 *
68c7005d 1106 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
9a799d71 1107 **/
68c7005d
ET
1108s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1109 u16 words, u16 *data)
9a799d71
AK
1110{
1111 u32 eerd;
68c7005d
ET
1112 s32 status = 0;
1113 u32 i;
9a799d71 1114
c44ade9e
JB
1115 hw->eeprom.ops.init_params(hw);
1116
68c7005d
ET
1117 if (words == 0) {
1118 status = IXGBE_ERR_INVALID_ARGUMENT;
1119 goto out;
1120 }
1121
c44ade9e
JB
1122 if (offset >= hw->eeprom.word_size) {
1123 status = IXGBE_ERR_EEPROM;
1124 goto out;
1125 }
1126
68c7005d
ET
1127 for (i = 0; i < words; i++) {
1128 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1129 IXGBE_EEPROM_RW_REG_START;
9a799d71 1130
68c7005d
ET
1131 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1132 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
9a799d71 1133
68c7005d
ET
1134 if (status == 0) {
1135 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1136 IXGBE_EEPROM_RW_REG_DATA);
1137 } else {
1138 hw_dbg(hw, "Eeprom read timed out\n");
1139 goto out;
1140 }
1141 }
1142out:
1143 return status;
1144}
9a799d71 1145
68c7005d
ET
1146/**
1147 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1148 * @hw: pointer to hardware structure
1149 * @offset: offset within the EEPROM to be used as a scratch pad
1150 *
1151 * Discover EEPROM page size by writing marching data at given offset.
1152 * This function is called only when we are writing a new large buffer
1153 * at given offset so the data would be overwritten anyway.
1154 **/
1155static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1156 u16 offset)
1157{
1158 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1159 s32 status = 0;
1160 u16 i;
1161
1162 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1163 data[i] = i;
1164
1165 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1166 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1167 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1168 hw->eeprom.word_page_size = 0;
1169 if (status != 0)
1170 goto out;
1171
1172 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1173 if (status != 0)
1174 goto out;
1175
1176 /*
1177 * When writing in burst more than the actual page size
1178 * EEPROM address wraps around current page.
1179 */
1180 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1181
1182 hw_dbg(hw, "Detected EEPROM page size = %d words.",
1183 hw->eeprom.word_page_size);
c44ade9e 1184out:
9a799d71
AK
1185 return status;
1186}
1187
eb9c3e3e 1188/**
68c7005d
ET
1189 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1190 * @hw: pointer to hardware structure
1191 * @offset: offset of word in the EEPROM to read
1192 * @data: word read from the EEPROM
1193 *
1194 * Reads a 16 bit word from the EEPROM using the EERD register.
1195 **/
1196s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1197{
1198 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1199}
1200
1201/**
1202 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
eb9c3e3e
ET
1203 * @hw: pointer to hardware structure
1204 * @offset: offset of word in the EEPROM to write
68c7005d
ET
1205 * @words: number of words
1206 * @data: word(s) write to the EEPROM
eb9c3e3e 1207 *
68c7005d 1208 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
eb9c3e3e 1209 **/
68c7005d
ET
1210s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1211 u16 words, u16 *data)
eb9c3e3e
ET
1212{
1213 u32 eewr;
68c7005d
ET
1214 s32 status = 0;
1215 u16 i;
eb9c3e3e
ET
1216
1217 hw->eeprom.ops.init_params(hw);
1218
68c7005d
ET
1219 if (words == 0) {
1220 status = IXGBE_ERR_INVALID_ARGUMENT;
1221 goto out;
1222 }
1223
eb9c3e3e
ET
1224 if (offset >= hw->eeprom.word_size) {
1225 status = IXGBE_ERR_EEPROM;
1226 goto out;
1227 }
1228
68c7005d
ET
1229 for (i = 0; i < words; i++) {
1230 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1231 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1232 IXGBE_EEPROM_RW_REG_START;
eb9c3e3e 1233
68c7005d
ET
1234 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1235 if (status != 0) {
1236 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1237 goto out;
1238 }
eb9c3e3e 1239
68c7005d 1240 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
eb9c3e3e 1241
68c7005d
ET
1242 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1243 if (status != 0) {
1244 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1245 goto out;
1246 }
eb9c3e3e
ET
1247 }
1248
1249out:
1250 return status;
1251}
1252
68c7005d
ET
1253/**
1254 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1255 * @hw: pointer to hardware structure
1256 * @offset: offset of word in the EEPROM to write
1257 * @data: word write to the EEPROM
1258 *
1259 * Write a 16 bit word to the EEPROM using the EEWR register.
1260 **/
1261s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1262{
1263 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1264}
1265
9a799d71 1266/**
21ce849b 1267 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
9a799d71 1268 * @hw: pointer to hardware structure
21ce849b 1269 * @ee_reg: EEPROM flag for polling
9a799d71 1270 *
21ce849b
MC
1271 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1272 * read or write is done respectively.
9a799d71 1273 **/
eb9c3e3e 1274static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
9a799d71
AK
1275{
1276 u32 i;
1277 u32 reg;
1278 s32 status = IXGBE_ERR_EEPROM;
1279
21ce849b
MC
1280 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1281 if (ee_reg == IXGBE_NVM_POLL_READ)
1282 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1283 else
1284 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1285
1286 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
9a799d71
AK
1287 status = 0;
1288 break;
1289 }
1290 udelay(5);
1291 }
1292 return status;
1293}
1294
c44ade9e
JB
1295/**
1296 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1297 * @hw: pointer to hardware structure
1298 *
1299 * Prepares EEPROM for access using bit-bang method. This function should
1300 * be called before issuing a command to the EEPROM.
1301 **/
1302static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1303{
1304 s32 status = 0;
dbf893ee 1305 u32 eec;
c44ade9e
JB
1306 u32 i;
1307
5e655105 1308 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
c44ade9e
JB
1309 status = IXGBE_ERR_SWFW_SYNC;
1310
1311 if (status == 0) {
1312 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1313
1314 /* Request EEPROM Access */
1315 eec |= IXGBE_EEC_REQ;
1316 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1317
1318 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1319 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1320 if (eec & IXGBE_EEC_GNT)
1321 break;
1322 udelay(5);
1323 }
1324
1325 /* Release if grant not acquired */
1326 if (!(eec & IXGBE_EEC_GNT)) {
1327 eec &= ~IXGBE_EEC_REQ;
1328 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1329 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1330
5e655105 1331 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
c44ade9e
JB
1332 status = IXGBE_ERR_EEPROM;
1333 }
c44ade9e 1334
dbf893ee
ET
1335 /* Setup EEPROM for Read/Write */
1336 if (status == 0) {
1337 /* Clear CS and SK */
1338 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1339 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1340 IXGBE_WRITE_FLUSH(hw);
1341 udelay(1);
1342 }
c44ade9e
JB
1343 }
1344 return status;
1345}
1346
9a799d71
AK
1347/**
1348 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1349 * @hw: pointer to hardware structure
1350 *
1351 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1352 **/
1353static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1354{
1355 s32 status = IXGBE_ERR_EEPROM;
dbf893ee 1356 u32 timeout = 2000;
9a799d71
AK
1357 u32 i;
1358 u32 swsm;
1359
9a799d71
AK
1360 /* Get SMBI software semaphore between device drivers first */
1361 for (i = 0; i < timeout; i++) {
1362 /*
1363 * If the SMBI bit is 0 when we read it, then the bit will be
1364 * set and we have the semaphore
1365 */
1366 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1367 if (!(swsm & IXGBE_SWSM_SMBI)) {
1368 status = 0;
1369 break;
1370 }
dbf893ee 1371 udelay(50);
9a799d71
AK
1372 }
1373
51275d37
ET
1374 if (i == timeout) {
1375 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1376 "not granted.\n");
1377 /*
1378 * this release is particularly important because our attempts
1379 * above to get the semaphore may have succeeded, and if there
1380 * was a timeout, we should unconditionally clear the semaphore
1381 * bits to free the driver to make progress
1382 */
1383 ixgbe_release_eeprom_semaphore(hw);
1384
1385 udelay(50);
1386 /*
1387 * one last try
1388 * If the SMBI bit is 0 when we read it, then the bit will be
1389 * set and we have the semaphore
1390 */
1391 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1392 if (!(swsm & IXGBE_SWSM_SMBI))
1393 status = 0;
1394 }
1395
9a799d71
AK
1396 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1397 if (status == 0) {
1398 for (i = 0; i < timeout; i++) {
1399 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1400
1401 /* Set the SW EEPROM semaphore bit to request access */
1402 swsm |= IXGBE_SWSM_SWESMBI;
1403 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1404
1405 /*
1406 * If we set the bit successfully then we got the
1407 * semaphore.
1408 */
1409 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1410 if (swsm & IXGBE_SWSM_SWESMBI)
1411 break;
1412
1413 udelay(50);
1414 }
1415
1416 /*
1417 * Release semaphores and return error if SW EEPROM semaphore
1418 * was not granted because we don't have access to the EEPROM
1419 */
1420 if (i >= timeout) {
dbf893ee 1421 hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
b4617240 1422 "not granted.\n");
9a799d71
AK
1423 ixgbe_release_eeprom_semaphore(hw);
1424 status = IXGBE_ERR_EEPROM;
1425 }
dbf893ee
ET
1426 } else {
1427 hw_dbg(hw, "Software semaphore SMBI between device drivers "
1428 "not granted.\n");
9a799d71
AK
1429 }
1430
1431 return status;
1432}
1433
1434/**
1435 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1436 * @hw: pointer to hardware structure
1437 *
1438 * This function clears hardware semaphore bits.
1439 **/
1440static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1441{
1442 u32 swsm;
1443
1444 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1445
1446 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1447 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1448 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
3957d63d 1449 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
1450}
1451
c44ade9e
JB
1452/**
1453 * ixgbe_ready_eeprom - Polls for EEPROM ready
1454 * @hw: pointer to hardware structure
1455 **/
1456static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1457{
1458 s32 status = 0;
1459 u16 i;
1460 u8 spi_stat_reg;
1461
1462 /*
1463 * Read "Status Register" repeatedly until the LSB is cleared. The
1464 * EEPROM will signal that the command has been completed by clearing
1465 * bit 0 of the internal status register. If it's not cleared within
1466 * 5 milliseconds, then error out.
1467 */
1468 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1469 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1470 IXGBE_EEPROM_OPCODE_BITS);
1471 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1472 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1473 break;
1474
1475 udelay(5);
1476 ixgbe_standby_eeprom(hw);
6403eab1 1477 }
c44ade9e
JB
1478
1479 /*
1480 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1481 * devices (and only 0-5mSec on 5V devices)
1482 */
1483 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1484 hw_dbg(hw, "SPI EEPROM Status error\n");
1485 status = IXGBE_ERR_EEPROM;
1486 }
1487
1488 return status;
1489}
1490
1491/**
1492 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1493 * @hw: pointer to hardware structure
1494 **/
1495static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1496{
1497 u32 eec;
1498
1499 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1500
1501 /* Toggle CS to flush commands */
1502 eec |= IXGBE_EEC_CS;
1503 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1504 IXGBE_WRITE_FLUSH(hw);
1505 udelay(1);
1506 eec &= ~IXGBE_EEC_CS;
1507 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1508 IXGBE_WRITE_FLUSH(hw);
1509 udelay(1);
1510}
1511
1512/**
1513 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1514 * @hw: pointer to hardware structure
1515 * @data: data to send to the EEPROM
1516 * @count: number of bits to shift out
1517 **/
1518static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1519 u16 count)
1520{
1521 u32 eec;
1522 u32 mask;
1523 u32 i;
1524
1525 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1526
1527 /*
1528 * Mask is used to shift "count" bits of "data" out to the EEPROM
1529 * one bit at a time. Determine the starting bit based on count
1530 */
1531 mask = 0x01 << (count - 1);
1532
1533 for (i = 0; i < count; i++) {
1534 /*
1535 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1536 * "1", and then raising and then lowering the clock (the SK
1537 * bit controls the clock input to the EEPROM). A "0" is
1538 * shifted out to the EEPROM by setting "DI" to "0" and then
1539 * raising and then lowering the clock.
1540 */
1541 if (data & mask)
1542 eec |= IXGBE_EEC_DI;
1543 else
1544 eec &= ~IXGBE_EEC_DI;
1545
1546 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1547 IXGBE_WRITE_FLUSH(hw);
1548
1549 udelay(1);
1550
1551 ixgbe_raise_eeprom_clk(hw, &eec);
1552 ixgbe_lower_eeprom_clk(hw, &eec);
1553
1554 /*
1555 * Shift mask to signify next bit of data to shift in to the
1556 * EEPROM
1557 */
1558 mask = mask >> 1;
6403eab1 1559 }
c44ade9e
JB
1560
1561 /* We leave the "DI" bit set to "0" when we leave this routine. */
1562 eec &= ~IXGBE_EEC_DI;
1563 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1564 IXGBE_WRITE_FLUSH(hw);
1565}
1566
1567/**
1568 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1569 * @hw: pointer to hardware structure
1570 **/
1571static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1572{
1573 u32 eec;
1574 u32 i;
1575 u16 data = 0;
1576
1577 /*
1578 * In order to read a register from the EEPROM, we need to shift
1579 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1580 * the clock input to the EEPROM (setting the SK bit), and then reading
1581 * the value of the "DO" bit. During this "shifting in" process the
1582 * "DI" bit should always be clear.
1583 */
1584 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1585
1586 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1587
1588 for (i = 0; i < count; i++) {
1589 data = data << 1;
1590 ixgbe_raise_eeprom_clk(hw, &eec);
1591
1592 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1593
1594 eec &= ~(IXGBE_EEC_DI);
1595 if (eec & IXGBE_EEC_DO)
1596 data |= 1;
1597
1598 ixgbe_lower_eeprom_clk(hw, &eec);
1599 }
1600
1601 return data;
1602}
1603
1604/**
1605 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1606 * @hw: pointer to hardware structure
1607 * @eec: EEC register's current value
1608 **/
1609static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1610{
1611 /*
1612 * Raise the clock input to the EEPROM
1613 * (setting the SK bit), then delay
1614 */
1615 *eec = *eec | IXGBE_EEC_SK;
1616 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1617 IXGBE_WRITE_FLUSH(hw);
1618 udelay(1);
1619}
1620
1621/**
1622 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1623 * @hw: pointer to hardware structure
1624 * @eecd: EECD's current value
1625 **/
1626static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1627{
1628 /*
1629 * Lower the clock input to the EEPROM (clearing the SK bit), then
1630 * delay
1631 */
1632 *eec = *eec & ~IXGBE_EEC_SK;
1633 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1634 IXGBE_WRITE_FLUSH(hw);
1635 udelay(1);
1636}
1637
1638/**
1639 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1640 * @hw: pointer to hardware structure
1641 **/
1642static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1643{
1644 u32 eec;
1645
1646 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1647
1648 eec |= IXGBE_EEC_CS; /* Pull CS high */
1649 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1650
1651 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1652 IXGBE_WRITE_FLUSH(hw);
1653
1654 udelay(1);
1655
1656 /* Stop requesting EEPROM access */
1657 eec &= ~IXGBE_EEC_REQ;
1658 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1659
90827996 1660 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
dbf893ee 1661
032b4325
DS
1662 /*
1663 * Delay before attempt to obtain semaphore again to allow FW
1664 * access. semaphore_delay is in ms we need us for usleep_range
1665 */
1666 usleep_range(hw->eeprom.semaphore_delay * 1000,
1667 hw->eeprom.semaphore_delay * 2000);
c44ade9e
JB
1668}
1669
9a799d71 1670/**
dbf893ee 1671 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
9a799d71
AK
1672 * @hw: pointer to hardware structure
1673 **/
a391f1d5 1674u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
9a799d71
AK
1675{
1676 u16 i;
1677 u16 j;
1678 u16 checksum = 0;
1679 u16 length = 0;
1680 u16 pointer = 0;
1681 u16 word = 0;
1682
1683 /* Include 0x0-0x3F in the checksum */
1684 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
c44ade9e 1685 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
9a799d71
AK
1686 hw_dbg(hw, "EEPROM read failed\n");
1687 break;
1688 }
1689 checksum += word;
1690 }
1691
1692 /* Include all data from pointers except for the fw pointer */
1693 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
c44ade9e 1694 hw->eeprom.ops.read(hw, i, &pointer);
9a799d71
AK
1695
1696 /* Make sure the pointer seems valid */
1697 if (pointer != 0xFFFF && pointer != 0) {
c44ade9e 1698 hw->eeprom.ops.read(hw, pointer, &length);
9a799d71
AK
1699
1700 if (length != 0xFFFF && length != 0) {
1701 for (j = pointer+1; j <= pointer+length; j++) {
c44ade9e 1702 hw->eeprom.ops.read(hw, j, &word);
9a799d71
AK
1703 checksum += word;
1704 }
1705 }
1706 }
1707 }
1708
1709 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1710
1711 return checksum;
1712}
1713
1714/**
c44ade9e 1715 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
9a799d71
AK
1716 * @hw: pointer to hardware structure
1717 * @checksum_val: calculated checksum
1718 *
1719 * Performs checksum calculation and validates the EEPROM checksum. If the
1720 * caller does not need checksum_val, the value can be NULL.
1721 **/
c44ade9e
JB
1722s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1723 u16 *checksum_val)
9a799d71
AK
1724{
1725 s32 status;
1726 u16 checksum;
1727 u16 read_checksum = 0;
1728
1729 /*
1730 * Read the first word from the EEPROM. If this times out or fails, do
1731 * not continue or we could be in for a very long wait while every
1732 * EEPROM read fails
1733 */
c44ade9e 1734 status = hw->eeprom.ops.read(hw, 0, &checksum);
9a799d71
AK
1735
1736 if (status == 0) {
a391f1d5 1737 checksum = hw->eeprom.ops.calc_checksum(hw);
9a799d71 1738
c44ade9e 1739 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
9a799d71
AK
1740
1741 /*
1742 * Verify read checksum from EEPROM is the same as
1743 * calculated checksum
1744 */
1745 if (read_checksum != checksum)
1746 status = IXGBE_ERR_EEPROM_CHECKSUM;
1747
1748 /* If the user cares, return the calculated checksum */
1749 if (checksum_val)
1750 *checksum_val = checksum;
1751 } else {
1752 hw_dbg(hw, "EEPROM read failed\n");
1753 }
1754
1755 return status;
1756}
1757
c44ade9e
JB
1758/**
1759 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1760 * @hw: pointer to hardware structure
1761 **/
1762s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1763{
1764 s32 status;
1765 u16 checksum;
1766
1767 /*
1768 * Read the first word from the EEPROM. If this times out or fails, do
1769 * not continue or we could be in for a very long wait while every
1770 * EEPROM read fails
1771 */
1772 status = hw->eeprom.ops.read(hw, 0, &checksum);
1773
1774 if (status == 0) {
a391f1d5 1775 checksum = hw->eeprom.ops.calc_checksum(hw);
c44ade9e 1776 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
8c7bea32 1777 checksum);
c44ade9e
JB
1778 } else {
1779 hw_dbg(hw, "EEPROM read failed\n");
1780 }
1781
1782 return status;
1783}
1784
9a799d71 1785/**
c44ade9e 1786 * ixgbe_set_rar_generic - Set Rx address register
9a799d71 1787 * @hw: pointer to hardware structure
9a799d71 1788 * @index: Receive address register to write
c44ade9e
JB
1789 * @addr: Address to put into receive address register
1790 * @vmdq: VMDq "set" or "pool" index
9a799d71
AK
1791 * @enable_addr: set flag that address is active
1792 *
1793 * Puts an ethernet address into a receive address register.
1794 **/
c44ade9e
JB
1795s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1796 u32 enable_addr)
9a799d71
AK
1797{
1798 u32 rar_low, rar_high;
c44ade9e
JB
1799 u32 rar_entries = hw->mac.num_rar_entries;
1800
c700f4e6
ET
1801 /* Make sure we are using a valid rar index range */
1802 if (index >= rar_entries) {
1803 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1804 return IXGBE_ERR_INVALID_ARGUMENT;
1805 }
1806
c44ade9e
JB
1807 /* setup VMDq pool selection before this RAR gets enabled */
1808 hw->mac.ops.set_vmdq(hw, index, vmdq);
9a799d71 1809
c700f4e6
ET
1810 /*
1811 * HW expects these in little endian so we reverse the byte
1812 * order from network order (big endian) to little endian
1813 */
1814 rar_low = ((u32)addr[0] |
1815 ((u32)addr[1] << 8) |
1816 ((u32)addr[2] << 16) |
1817 ((u32)addr[3] << 24));
1818 /*
1819 * Some parts put the VMDq setting in the extra RAH bits,
1820 * so save everything except the lower 16 bits that hold part
1821 * of the address and the address valid bit.
1822 */
1823 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1824 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1825 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
9a799d71 1826
c700f4e6
ET
1827 if (enable_addr != 0)
1828 rar_high |= IXGBE_RAH_AV;
9a799d71 1829
c700f4e6
ET
1830 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1831 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
c44ade9e
JB
1832
1833 return 0;
1834}
1835
1836/**
1837 * ixgbe_clear_rar_generic - Remove Rx address register
1838 * @hw: pointer to hardware structure
1839 * @index: Receive address register to write
1840 *
1841 * Clears an ethernet address from a receive address register.
1842 **/
1843s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1844{
1845 u32 rar_high;
1846 u32 rar_entries = hw->mac.num_rar_entries;
1847
1848 /* Make sure we are using a valid rar index range */
c700f4e6 1849 if (index >= rar_entries) {
c44ade9e 1850 hw_dbg(hw, "RAR index %d is out of range.\n", index);
c700f4e6 1851 return IXGBE_ERR_INVALID_ARGUMENT;
c44ade9e
JB
1852 }
1853
c700f4e6
ET
1854 /*
1855 * Some parts put the VMDq setting in the extra RAH bits,
1856 * so save everything except the lower 16 bits that hold part
1857 * of the address and the address valid bit.
1858 */
1859 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1860 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1861
1862 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1863 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1864
c44ade9e
JB
1865 /* clear VMDq pool/queue selection for this RAR */
1866 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
9a799d71
AK
1867
1868 return 0;
1869}
1870
c44ade9e
JB
1871/**
1872 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
9a799d71
AK
1873 * @hw: pointer to hardware structure
1874 *
1875 * Places the MAC address in receive address register 0 and clears the rest
c44ade9e 1876 * of the receive address registers. Clears the multicast table. Assumes
9a799d71
AK
1877 * the receiver is in reset when the routine is called.
1878 **/
c44ade9e 1879s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
1880{
1881 u32 i;
2c5645cf 1882 u32 rar_entries = hw->mac.num_rar_entries;
9a799d71
AK
1883
1884 /*
1885 * If the current mac address is valid, assume it is a software override
1886 * to the permanent address.
1887 * Otherwise, use the permanent address from the eeprom.
1888 */
f8ebc683 1889 if (!is_valid_ether_addr(hw->mac.addr)) {
9a799d71 1890 /* Get the MAC address from the RAR0 for later reference */
c44ade9e 1891 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
9a799d71 1892
ce7194d8 1893 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
9a799d71
AK
1894 } else {
1895 /* Setup the receive address. */
1896 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
ce7194d8 1897 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
9a799d71 1898
c44ade9e 1899 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
96cc6372
AD
1900
1901 /* clear VMDq pool/queue selection for RAR 0 */
1902 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
9a799d71 1903 }
c44ade9e 1904 hw->addr_ctrl.overflow_promisc = 0;
9a799d71
AK
1905
1906 hw->addr_ctrl.rar_used_count = 1;
1907
1908 /* Zero out the other receive addresses. */
c44ade9e 1909 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
9a799d71
AK
1910 for (i = 1; i < rar_entries; i++) {
1911 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1912 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1913 }
1914
1915 /* Clear the MTA */
9a799d71
AK
1916 hw->addr_ctrl.mta_in_use = 0;
1917 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1918
1919 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1920 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1921 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1922
c44ade9e
JB
1923 if (hw->mac.ops.init_uta_tables)
1924 hw->mac.ops.init_uta_tables(hw);
1925
9a799d71
AK
1926 return 0;
1927}
1928
1929/**
1930 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1931 * @hw: pointer to hardware structure
1932 * @mc_addr: the multicast address
1933 *
1934 * Extracts the 12 bits, from a multicast address, to determine which
1935 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1936 * incoming rx multicast addresses, to determine the bit-vector to check in
1937 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
c44ade9e 1938 * by the MO field of the MCSTCTRL. The MO field is set during initialization
9a799d71
AK
1939 * to mc_filter_type.
1940 **/
1941static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1942{
1943 u32 vector = 0;
1944
1945 switch (hw->mac.mc_filter_type) {
b4617240 1946 case 0: /* use bits [47:36] of the address */
9a799d71
AK
1947 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1948 break;
b4617240 1949 case 1: /* use bits [46:35] of the address */
9a799d71
AK
1950 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1951 break;
b4617240 1952 case 2: /* use bits [45:34] of the address */
9a799d71
AK
1953 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1954 break;
b4617240 1955 case 3: /* use bits [43:32] of the address */
9a799d71
AK
1956 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1957 break;
b4617240 1958 default: /* Invalid mc_filter_type */
9a799d71
AK
1959 hw_dbg(hw, "MC filter type param set incorrectly\n");
1960 break;
1961 }
1962
1963 /* vector can only be 12-bits or boundary will be exceeded */
1964 vector &= 0xFFF;
1965 return vector;
1966}
1967
1968/**
1969 * ixgbe_set_mta - Set bit-vector in multicast table
1970 * @hw: pointer to hardware structure
1971 * @hash_value: Multicast address hash value
1972 *
1973 * Sets the bit-vector in the multicast table.
1974 **/
1975static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1976{
1977 u32 vector;
1978 u32 vector_bit;
1979 u32 vector_reg;
9a799d71
AK
1980
1981 hw->addr_ctrl.mta_in_use++;
1982
1983 vector = ixgbe_mta_vector(hw, mc_addr);
1984 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1985
1986 /*
1987 * The MTA is a register array of 128 32-bit registers. It is treated
1988 * like an array of 4096 bits. We want to set bit
1989 * BitArray[vector_value]. So we figure out what register the bit is
1990 * in, read it, OR in the new bit, then write back the new value. The
1991 * register is determined by the upper 7 bits of the vector value and
1992 * the bit within that register are determined by the lower 5 bits of
1993 * the value.
1994 */
1995 vector_reg = (vector >> 5) & 0x7F;
1996 vector_bit = vector & 0x1F;
80960ab0 1997 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
9a799d71
AK
1998}
1999
9a799d71 2000/**
c44ade9e 2001 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
9a799d71 2002 * @hw: pointer to hardware structure
2853eb89 2003 * @netdev: pointer to net device structure
9a799d71
AK
2004 *
2005 * The given list replaces any existing list. Clears the MC addrs from receive
c44ade9e 2006 * address registers and the multicast table. Uses unused receive address
9a799d71
AK
2007 * registers for the first multicast addresses, and hashes the rest into the
2008 * multicast table.
2009 **/
2853eb89
JP
2010s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2011 struct net_device *netdev)
9a799d71 2012{
22bedad3 2013 struct netdev_hw_addr *ha;
9a799d71 2014 u32 i;
9a799d71
AK
2015
2016 /*
2017 * Set the new number of MC addresses that we are being requested to
2018 * use.
2019 */
2853eb89 2020 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
9a799d71
AK
2021 hw->addr_ctrl.mta_in_use = 0;
2022
80960ab0 2023 /* Clear mta_shadow */
9a799d71 2024 hw_dbg(hw, " Clearing MTA\n");
80960ab0 2025 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
9a799d71 2026
80960ab0 2027 /* Update mta shadow */
22bedad3 2028 netdev_for_each_mc_addr(ha, netdev) {
9a799d71 2029 hw_dbg(hw, " Adding the multicast addresses:\n");
22bedad3 2030 ixgbe_set_mta(hw, ha->addr);
9a799d71
AK
2031 }
2032
2033 /* Enable mta */
80960ab0
ET
2034 for (i = 0; i < hw->mac.mcft_size; i++)
2035 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2036 hw->mac.mta_shadow[i]);
2037
9a799d71
AK
2038 if (hw->addr_ctrl.mta_in_use > 0)
2039 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
b4617240 2040 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
9a799d71 2041
c44ade9e 2042 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
9a799d71
AK
2043 return 0;
2044}
2045
2046/**
c44ade9e 2047 * ixgbe_enable_mc_generic - Enable multicast address in RAR
9a799d71
AK
2048 * @hw: pointer to hardware structure
2049 *
c44ade9e 2050 * Enables multicast address in RAR and the use of the multicast hash table.
9a799d71 2051 **/
c44ade9e 2052s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
9a799d71 2053{
c44ade9e 2054 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
9a799d71 2055
c44ade9e
JB
2056 if (a->mta_in_use > 0)
2057 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2058 hw->mac.mc_filter_type);
9a799d71
AK
2059
2060 return 0;
2061}
2062
2063/**
c44ade9e 2064 * ixgbe_disable_mc_generic - Disable multicast address in RAR
9a799d71 2065 * @hw: pointer to hardware structure
9a799d71 2066 *
c44ade9e 2067 * Disables multicast address in RAR and the use of the multicast hash table.
9a799d71 2068 **/
c44ade9e 2069s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
9a799d71 2070{
c44ade9e 2071 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2b9ade93 2072
c44ade9e
JB
2073 if (a->mta_in_use > 0)
2074 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
9a799d71
AK
2075
2076 return 0;
2077}
2078
11afc1b1 2079/**
620fa036 2080 * ixgbe_fc_enable_generic - Enable flow control
11afc1b1 2081 * @hw: pointer to hardware structure
11afc1b1
PW
2082 *
2083 * Enable flow control according to the current settings.
2084 **/
041441d0 2085s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
11afc1b1
PW
2086{
2087 s32 ret_val = 0;
620fa036 2088 u32 mflcn_reg, fccfg_reg;
11afc1b1 2089 u32 reg;
16b61beb 2090 u32 fcrtl, fcrth;
041441d0 2091 int i;
70b77628 2092
041441d0
AD
2093 /*
2094 * Validate the water mark configuration for packet buffer 0. Zero
2095 * water marks indicate that the packet buffer was not configured
2096 * and the watermarks for packet buffer 0 should always be configured.
2097 */
2098 if (!hw->fc.low_water ||
2099 !hw->fc.high_water[0] ||
2100 !hw->fc.pause_time) {
2101 hw_dbg(hw, "Invalid water mark configuration\n");
2102 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
70b77628 2103 goto out;
041441d0 2104 }
70b77628 2105
620fa036 2106 /* Negotiate the fc mode to use */
786e9a5f 2107 ixgbe_fc_autoneg(hw);
11afc1b1 2108
620fa036 2109 /* Disable any previous flow control settings */
11afc1b1 2110 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
041441d0 2111 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
11afc1b1
PW
2112
2113 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2114 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2115
2116 /*
2117 * The possible values of fc.current_mode are:
2118 * 0: Flow control is completely disabled
2119 * 1: Rx flow control is enabled (we can receive pause frames,
2120 * but not send pause frames).
bb3daa4a
PW
2121 * 2: Tx flow control is enabled (we can send pause frames but
2122 * we do not support receiving pause frames).
11afc1b1
PW
2123 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2124 * other: Invalid.
2125 */
2126 switch (hw->fc.current_mode) {
2127 case ixgbe_fc_none:
620fa036
MC
2128 /*
2129 * Flow control is disabled by software override or autoneg.
2130 * The code below will actually disable it in the HW.
2131 */
11afc1b1
PW
2132 break;
2133 case ixgbe_fc_rx_pause:
2134 /*
2135 * Rx Flow control is enabled and Tx Flow control is
2136 * disabled by software override. Since there really
2137 * isn't a way to advertise that we are capable of RX
2138 * Pause ONLY, we will advertise that we support both
2139 * symmetric and asymmetric Rx PAUSE. Later, we will
2140 * disable the adapter's ability to send PAUSE frames.
2141 */
2142 mflcn_reg |= IXGBE_MFLCN_RFCE;
2143 break;
2144 case ixgbe_fc_tx_pause:
2145 /*
2146 * Tx Flow control is enabled, and Rx Flow control is
2147 * disabled by software override.
2148 */
2149 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2150 break;
2151 case ixgbe_fc_full:
2152 /* Flow control (both Rx and Tx) is enabled by SW override. */
2153 mflcn_reg |= IXGBE_MFLCN_RFCE;
2154 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2155 break;
2156 default:
2157 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 2158 ret_val = IXGBE_ERR_CONFIG;
11afc1b1
PW
2159 goto out;
2160 break;
2161 }
2162
620fa036 2163 /* Set 802.3x based flow control settings. */
2132d381 2164 mflcn_reg |= IXGBE_MFLCN_DPF;
11afc1b1
PW
2165 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2166 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2167
041441d0 2168 fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
264857b8 2169
041441d0
AD
2170 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2171 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2172 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2173 hw->fc.high_water[i]) {
2174 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2175 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2176 } else {
2177 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2178 /*
2179 * In order to prevent Tx hangs when the internal Tx
2180 * switch is enabled we must set the high water mark
2181 * to the maximum FCRTH value. This allows the Tx
2182 * switch to function even under heavy Rx workloads.
2183 */
2184 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2185 }
11afc1b1 2186
041441d0
AD
2187 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2188 }
16b61beb 2189
11afc1b1 2190 /* Configure pause time (2 TCs per register) */
041441d0
AD
2191 reg = hw->fc.pause_time * 0x00010001;
2192 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2193 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2194
2195 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
11afc1b1
PW
2196
2197out:
2198 return ret_val;
2199}
2200
0ecc061d 2201/**
67a79df2 2202 * ixgbe_negotiate_fc - Negotiate flow control
0ecc061d 2203 * @hw: pointer to hardware structure
67a79df2
AD
2204 * @adv_reg: flow control advertised settings
2205 * @lp_reg: link partner's flow control settings
2206 * @adv_sym: symmetric pause bit in advertisement
2207 * @adv_asm: asymmetric pause bit in advertisement
2208 * @lp_sym: symmetric pause bit in link partner advertisement
2209 * @lp_asm: asymmetric pause bit in link partner advertisement
0ecc061d 2210 *
67a79df2
AD
2211 * Find the intersection between advertised settings and link partner's
2212 * advertised settings
0ecc061d 2213 **/
67a79df2
AD
2214static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2215 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
0ecc061d 2216{
67a79df2
AD
2217 if ((!(adv_reg)) || (!(lp_reg)))
2218 return IXGBE_ERR_FC_NOT_NEGOTIATED;
0b0c2b31 2219
67a79df2
AD
2220 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2221 /*
2222 * Now we need to check if the user selected Rx ONLY
2223 * of pause frames. In this case, we had to advertise
2224 * FULL flow control because we could not advertise RX
2225 * ONLY. Hence, we must now check to see if we need to
2226 * turn OFF the TRANSMISSION of PAUSE frames.
2227 */
2228 if (hw->fc.requested_mode == ixgbe_fc_full) {
2229 hw->fc.current_mode = ixgbe_fc_full;
2230 hw_dbg(hw, "Flow Control = FULL.\n");
2231 } else {
2232 hw->fc.current_mode = ixgbe_fc_rx_pause;
2233 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2234 }
2235 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2236 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2237 hw->fc.current_mode = ixgbe_fc_tx_pause;
2238 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2239 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2240 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2241 hw->fc.current_mode = ixgbe_fc_rx_pause;
2242 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
0b0c2b31 2243 } else {
67a79df2
AD
2244 hw->fc.current_mode = ixgbe_fc_none;
2245 hw_dbg(hw, "Flow Control = NONE.\n");
539e5f02 2246 }
67a79df2 2247 return 0;
0b0c2b31
ET
2248}
2249
2250/**
2251 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2252 * @hw: pointer to hardware structure
2253 *
2254 * Enable flow control according on 1 gig fiber.
2255 **/
2256static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2257{
2258 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
786e9a5f 2259 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
539e5f02
PWJ
2260
2261 /*
2262 * On multispeed fiber at 1g, bail out if
2263 * - link is up but AN did not complete, or if
2264 * - link is up and AN completed but timed out
2265 */
0b0c2b31
ET
2266
2267 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
53f096de 2268 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
786e9a5f 2269 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
0b0c2b31 2270 goto out;
539e5f02 2271
0b0c2b31
ET
2272 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2273 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2274
2275 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2276 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2277 IXGBE_PCS1GANA_ASM_PAUSE,
2278 IXGBE_PCS1GANA_SYM_PAUSE,
2279 IXGBE_PCS1GANA_ASM_PAUSE);
2280
2281out:
2282 return ret_val;
2283}
2284
2285/**
2286 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2287 * @hw: pointer to hardware structure
2288 *
2289 * Enable flow control according to IEEE clause 37.
2290 **/
2291static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2292{
2293 u32 links2, anlp1_reg, autoc_reg, links;
786e9a5f 2294 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
0b0c2b31 2295
9bbe3a57 2296 /*
0b0c2b31
ET
2297 * On backplane, bail out if
2298 * - backplane autoneg was not completed, or if
2299 * - we are 82599 and link partner is not AN enabled
9bbe3a57 2300 */
0b0c2b31 2301 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
786e9a5f 2302 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
9bbe3a57 2303 goto out;
9bbe3a57 2304
0b0c2b31
ET
2305 if (hw->mac.type == ixgbe_mac_82599EB) {
2306 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
786e9a5f 2307 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
0b0c2b31 2308 goto out;
0b0c2b31 2309 }
0ecc061d 2310 /*
0b0c2b31 2311 * Read the 10g AN autoc and LP ability registers and resolve
0ecc061d
PWJ
2312 * local flow control settings accordingly
2313 */
0b0c2b31
ET
2314 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2315 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
539e5f02 2316
0b0c2b31
ET
2317 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2318 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2319 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2320
2321out:
2322 return ret_val;
2323}
2324
2325/**
2326 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2327 * @hw: pointer to hardware structure
2328 *
2329 * Enable flow control according to IEEE clause 37.
2330 **/
2331static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2332{
2333 u16 technology_ability_reg = 0;
2334 u16 lp_technology_ability_reg = 0;
2335
2336 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2337 MDIO_MMD_AN,
2338 &technology_ability_reg);
2339 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2340 MDIO_MMD_AN,
2341 &lp_technology_ability_reg);
2342
2343 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2344 (u32)lp_technology_ability_reg,
2345 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2346 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2347}
2348
2349/**
67a79df2 2350 * ixgbe_fc_autoneg - Configure flow control
11afc1b1
PW
2351 * @hw: pointer to hardware structure
2352 *
67a79df2
AD
2353 * Compares our advertised flow control capabilities to those advertised by
2354 * our link partner, and determines the proper flow control mode to use.
11afc1b1 2355 **/
67a79df2 2356void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
11afc1b1 2357{
67a79df2
AD
2358 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2359 ixgbe_link_speed speed;
2360 bool link_up;
11afc1b1
PW
2361
2362 /*
67a79df2
AD
2363 * AN should have completed when the cable was plugged in.
2364 * Look for reasons to bail out. Bail out if:
2365 * - FC autoneg is disabled, or if
2366 * - link is not up.
2367 *
2368 * Since we're being called from an LSC, link is already known to be up.
2369 * So use link_up_wait_to_complete=false.
11afc1b1 2370 */
67a79df2 2371 if (hw->fc.disable_fc_autoneg)
620fa036 2372 goto out;
11afc1b1 2373
67a79df2
AD
2374 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2375 if (!link_up)
11afc1b1 2376 goto out;
0b0c2b31
ET
2377
2378 switch (hw->phy.media_type) {
67a79df2 2379 /* Autoneg flow control on fiber adapters */
0b0c2b31 2380 case ixgbe_media_type_fiber:
67a79df2
AD
2381 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2382 ret_val = ixgbe_fc_autoneg_fiber(hw);
2383 break;
2384
2385 /* Autoneg flow control on backplane adapters */
0b0c2b31 2386 case ixgbe_media_type_backplane:
67a79df2 2387 ret_val = ixgbe_fc_autoneg_backplane(hw);
0b0c2b31
ET
2388 break;
2389
67a79df2 2390 /* Autoneg flow control on copper adapters */
0b0c2b31 2391 case ixgbe_media_type_copper:
67a79df2
AD
2392 if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2393 ret_val = ixgbe_fc_autoneg_copper(hw);
0b0c2b31
ET
2394 break;
2395
2396 default:
620fa036 2397 break;
0b0c2b31 2398 }
539e5f02 2399
11afc1b1 2400out:
67a79df2
AD
2401 if (ret_val == 0) {
2402 hw->fc.fc_was_autonegged = true;
2403 } else {
2404 hw->fc.fc_was_autonegged = false;
2405 hw->fc.current_mode = hw->fc.requested_mode;
2406 }
11afc1b1
PW
2407}
2408
9a799d71
AK
2409/**
2410 * ixgbe_disable_pcie_master - Disable PCI-express master access
2411 * @hw: pointer to hardware structure
2412 *
2413 * Disables PCI-Express master access and verifies there are no pending
2414 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2415 * bit hasn't caused the master requests to be disabled, else 0
2416 * is returned signifying master requests disabled.
2417 **/
ff9d1a5a 2418static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
9a799d71 2419{
a4297dc2 2420 struct ixgbe_adapter *adapter = hw->back;
a4297dc2 2421 s32 status = 0;
ff9d1a5a
ET
2422 u32 i;
2423 u16 value;
2424
2425 /* Always set this bit to ensure any future transactions are blocked */
2426 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
a4297dc2 2427
ff9d1a5a 2428 /* Exit if master requests are blocked */
a4297dc2
ET
2429 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2430 goto out;
9a799d71 2431
ff9d1a5a 2432 /* Poll for master request bit to clear */
9a799d71 2433 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
a4297dc2 2434 udelay(100);
ff9d1a5a
ET
2435 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2436 goto out;
a4297dc2
ET
2437 }
2438
ff9d1a5a
ET
2439 /*
2440 * Two consecutive resets are required via CTRL.RST per datasheet
2441 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2442 * of this need. The first reset prevents new master requests from
2443 * being issued by our device. We then must wait 1usec or more for any
2444 * remaining completions from the PCIe bus to trickle in, and then reset
2445 * again to clear out any effects they may have had on our device.
2446 */
a4297dc2 2447 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
ff9d1a5a 2448 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
a4297dc2
ET
2449
2450 /*
2451 * Before proceeding, make sure that the PCIe block does not have
2452 * transactions pending.
2453 */
a4297dc2 2454 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
9a799d71 2455 udelay(100);
ff9d1a5a
ET
2456 pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2457 &value);
2458 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2459 goto out;
9a799d71
AK
2460 }
2461
ff9d1a5a
ET
2462 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2463 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
a4297dc2
ET
2464
2465out:
9a799d71
AK
2466 return status;
2467}
2468
9a799d71 2469/**
c44ade9e 2470 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
9a799d71 2471 * @hw: pointer to hardware structure
c44ade9e 2472 * @mask: Mask to specify which semaphore to acquire
9a799d71 2473 *
da74cd4a 2474 * Acquires the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2475 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2476 **/
2477s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2478{
2479 u32 gssr;
2480 u32 swmask = mask;
2481 u32 fwmask = mask << 5;
2482 s32 timeout = 200;
2483
2484 while (timeout) {
dbf893ee
ET
2485 /*
2486 * SW EEPROM semaphore bit is used for access to all
2487 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2488 */
9a799d71 2489 if (ixgbe_get_eeprom_semaphore(hw))
539e5f02 2490 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2491
2492 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2493 if (!(gssr & (fwmask | swmask)))
2494 break;
2495
2496 /*
2497 * Firmware currently using resource (fwmask) or other software
2498 * thread currently using resource (swmask)
2499 */
2500 ixgbe_release_eeprom_semaphore(hw);
032b4325 2501 usleep_range(5000, 10000);
9a799d71
AK
2502 timeout--;
2503 }
2504
2505 if (!timeout) {
dbf893ee 2506 hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
539e5f02 2507 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2508 }
2509
2510 gssr |= swmask;
2511 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2512
2513 ixgbe_release_eeprom_semaphore(hw);
2514 return 0;
2515}
2516
2517/**
2518 * ixgbe_release_swfw_sync - Release SWFW semaphore
2519 * @hw: pointer to hardware structure
c44ade9e 2520 * @mask: Mask to specify which semaphore to release
9a799d71 2521 *
da74cd4a 2522 * Releases the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2523 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2524 **/
2525void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2526{
2527 u32 gssr;
2528 u32 swmask = mask;
2529
2530 ixgbe_get_eeprom_semaphore(hw);
2531
2532 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2533 gssr &= ~swmask;
2534 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2535
2536 ixgbe_release_eeprom_semaphore(hw);
2537}
2538
d2f5e7f3
AS
2539/**
2540 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2541 * @hw: pointer to hardware structure
2542 *
2543 * Stops the receive data path and waits for the HW to internally
2544 * empty the Rx security block.
2545 **/
2546s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2547{
2548#define IXGBE_MAX_SECRX_POLL 40
2549 int i;
2550 int secrxreg;
2551
2552 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2553 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2554 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2555 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2556 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2557 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2558 break;
2559 else
2560 /* Use interrupt-safe sleep just in case */
db76ad47 2561 udelay(1000);
d2f5e7f3
AS
2562 }
2563
2564 /* For informational purposes only */
2565 if (i >= IXGBE_MAX_SECRX_POLL)
2566 hw_dbg(hw, "Rx unit being enabled before security "
2567 "path fully disabled. Continuing with init.\n");
2568
2569 return 0;
2570
2571}
2572
2573/**
2574 * ixgbe_enable_rx_buff - Enables the receive data path
2575 * @hw: pointer to hardware structure
2576 *
2577 * Enables the receive data path
2578 **/
2579s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2580{
2581 int secrxreg;
2582
2583 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2584 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2585 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2586 IXGBE_WRITE_FLUSH(hw);
2587
2588 return 0;
2589}
2590
11afc1b1
PW
2591/**
2592 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2593 * @hw: pointer to hardware structure
2594 * @regval: register value to write to RXCTRL
2595 *
2596 * Enables the Rx DMA unit
2597 **/
2598s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2599{
2600 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2601
2602 return 0;
2603}
87c12017
PW
2604
2605/**
2606 * ixgbe_blink_led_start_generic - Blink LED based on index.
2607 * @hw: pointer to hardware structure
2608 * @index: led number to blink
2609 **/
2610s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2611{
2612 ixgbe_link_speed speed = 0;
3db1cd5c 2613 bool link_up = false;
87c12017
PW
2614 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2615 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
d7bbcd32 2616 s32 ret_val = 0;
87c12017
PW
2617
2618 /*
2619 * Link must be up to auto-blink the LEDs;
2620 * Force it if link is down.
2621 */
2622 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2623
2624 if (!link_up) {
d7bbcd32
DS
2625 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2626 * LESM is on.
2627 */
2628 bool got_lock = false;
2629
2630 if ((hw->mac.type == ixgbe_mac_82599EB) &&
2631 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2632 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2633 IXGBE_GSSR_MAC_CSR_SM);
2634 if (ret_val)
2635 goto out;
2636
2637 got_lock = true;
2638 }
50ac58ba 2639 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
87c12017
PW
2640 autoc_reg |= IXGBE_AUTOC_FLU;
2641 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
945a5151 2642 IXGBE_WRITE_FLUSH(hw);
d7bbcd32
DS
2643
2644 if (got_lock)
2645 hw->mac.ops.release_swfw_sync(hw,
2646 IXGBE_GSSR_MAC_CSR_SM);
032b4325 2647 usleep_range(10000, 20000);
87c12017
PW
2648 }
2649
2650 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2651 led_reg |= IXGBE_LED_BLINK(index);
2652 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2653 IXGBE_WRITE_FLUSH(hw);
2654
d7bbcd32
DS
2655out:
2656 return ret_val;
87c12017
PW
2657}
2658
2659/**
2660 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2661 * @hw: pointer to hardware structure
2662 * @index: led number to stop blinking
2663 **/
2664s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2665{
2666 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2667 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
d7bbcd32
DS
2668 s32 ret_val = 0;
2669 bool got_lock = false;
2670
2671 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
2672 * LESM is on.
2673 */
2674 if ((hw->mac.type == ixgbe_mac_82599EB) &&
2675 ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2676 ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2677 IXGBE_GSSR_MAC_CSR_SM);
2678 if (ret_val)
2679 goto out;
2680
2681 got_lock = true;
2682 }
87c12017
PW
2683
2684 autoc_reg &= ~IXGBE_AUTOC_FLU;
2685 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2686 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2687
d7bbcd32
DS
2688 if (hw->mac.type == ixgbe_mac_82599EB)
2689 ixgbe_reset_pipeline_82599(hw);
2690
2691 if (got_lock)
2692 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
2693
87c12017
PW
2694 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2695 led_reg &= ~IXGBE_LED_BLINK(index);
2696 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2697 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2698 IXGBE_WRITE_FLUSH(hw);
2699
d7bbcd32
DS
2700out:
2701 return ret_val;
87c12017 2702}
21ce849b
MC
2703
2704/**
2705 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2706 * @hw: pointer to hardware structure
2707 * @san_mac_offset: SAN MAC address offset
2708 *
2709 * This function will read the EEPROM location for the SAN MAC address
2710 * pointer, and returns the value at that location. This is used in both
2711 * get and set mac_addr routines.
2712 **/
2713static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2714 u16 *san_mac_offset)
2715{
2716 /*
2717 * First read the EEPROM pointer to see if the MAC addresses are
2718 * available.
2719 */
2720 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2721
2722 return 0;
2723}
2724
2725/**
2726 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2727 * @hw: pointer to hardware structure
2728 * @san_mac_addr: SAN MAC address
2729 *
2730 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2731 * per-port, so set_lan_id() must be called before reading the addresses.
2732 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2733 * upon for non-SFP connections, so we must call it here.
2734 **/
2735s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2736{
2737 u16 san_mac_data, san_mac_offset;
2738 u8 i;
2739
2740 /*
2741 * First read the EEPROM pointer to see if the MAC addresses are
2742 * available. If they're not, no point in calling set_lan_id() here.
2743 */
2744 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2745
2746 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2747 /*
2748 * No addresses available in this EEPROM. It's not an
2749 * error though, so just wipe the local address and return.
2750 */
2751 for (i = 0; i < 6; i++)
2752 san_mac_addr[i] = 0xFF;
2753
2754 goto san_mac_addr_out;
2755 }
2756
2757 /* make sure we know which port we need to program */
2758 hw->mac.ops.set_lan_id(hw);
2759 /* apply the port offset to the address offset */
2760 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2761 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2762 for (i = 0; i < 3; i++) {
2763 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2764 san_mac_addr[i * 2] = (u8)(san_mac_data);
2765 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2766 san_mac_offset++;
2767 }
2768
2769san_mac_addr_out:
2770 return 0;
2771}
2772
2773/**
2774 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2775 * @hw: pointer to hardware structure
2776 *
2777 * Read PCIe configuration space, and get the MSI-X vector count from
2778 * the capabilities table.
2779 **/
71161302 2780u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
21ce849b
MC
2781{
2782 struct ixgbe_adapter *adapter = hw->back;
71161302
ET
2783 u16 msix_count = 1;
2784 u16 max_msix_count;
2785 u16 pcie_offset;
2786
2787 switch (hw->mac.type) {
2788 case ixgbe_mac_82598EB:
2789 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2790 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2791 break;
2792 case ixgbe_mac_82599EB:
2793 case ixgbe_mac_X540:
2794 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2795 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2796 break;
2797 default:
2798 return msix_count;
2799 }
2800
2801 pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
21ce849b
MC
2802 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2803
71161302 2804 /* MSI-X count is zero-based in HW */
21ce849b
MC
2805 msix_count++;
2806
71161302
ET
2807 if (msix_count > max_msix_count)
2808 msix_count = max_msix_count;
2809
21ce849b
MC
2810 return msix_count;
2811}
2812
2813/**
2814 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2815 * @hw: pointer to hardware struct
2816 * @rar: receive address register index to disassociate
2817 * @vmdq: VMDq pool index to remove from the rar
2818 **/
2819s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2820{
2821 u32 mpsar_lo, mpsar_hi;
2822 u32 rar_entries = hw->mac.num_rar_entries;
2823
c700f4e6
ET
2824 /* Make sure we are using a valid rar index range */
2825 if (rar >= rar_entries) {
2826 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2827 return IXGBE_ERR_INVALID_ARGUMENT;
2828 }
21ce849b 2829
c700f4e6
ET
2830 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2831 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
21ce849b 2832
c700f4e6
ET
2833 if (!mpsar_lo && !mpsar_hi)
2834 goto done;
21ce849b 2835
c700f4e6
ET
2836 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2837 if (mpsar_lo) {
2838 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2839 mpsar_lo = 0;
2840 }
2841 if (mpsar_hi) {
2842 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2843 mpsar_hi = 0;
2844 }
2845 } else if (vmdq < 32) {
2846 mpsar_lo &= ~(1 << vmdq);
2847 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
21ce849b 2848 } else {
c700f4e6
ET
2849 mpsar_hi &= ~(1 << (vmdq - 32));
2850 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
21ce849b
MC
2851 }
2852
c700f4e6
ET
2853 /* was that the last pool using this rar? */
2854 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2855 hw->mac.ops.clear_rar(hw, rar);
21ce849b
MC
2856done:
2857 return 0;
2858}
2859
2860/**
2861 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2862 * @hw: pointer to hardware struct
2863 * @rar: receive address register index to associate with a VMDq index
2864 * @vmdq: VMDq pool index
2865 **/
2866s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2867{
2868 u32 mpsar;
2869 u32 rar_entries = hw->mac.num_rar_entries;
2870
c700f4e6
ET
2871 /* Make sure we are using a valid rar index range */
2872 if (rar >= rar_entries) {
21ce849b 2873 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
c700f4e6
ET
2874 return IXGBE_ERR_INVALID_ARGUMENT;
2875 }
2876
2877 if (vmdq < 32) {
2878 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2879 mpsar |= 1 << vmdq;
2880 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2881 } else {
2882 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2883 mpsar |= 1 << (vmdq - 32);
2884 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
21ce849b
MC
2885 }
2886 return 0;
2887}
2888
7fa7c9dc
AD
2889/**
2890 * This function should only be involved in the IOV mode.
2891 * In IOV mode, Default pool is next pool after the number of
2892 * VFs advertized and not 0.
2893 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2894 *
2895 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2896 * @hw: pointer to hardware struct
2897 * @vmdq: VMDq pool index
2898 **/
2899s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2900{
2901 u32 rar = hw->mac.san_mac_rar_index;
2902
2903 if (vmdq < 32) {
2904 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2905 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2906 } else {
2907 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2908 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2909 }
2910
2911 return 0;
2912}
2913
21ce849b
MC
2914/**
2915 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2916 * @hw: pointer to hardware structure
2917 **/
2918s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2919{
2920 int i;
2921
21ce849b
MC
2922 for (i = 0; i < 128; i++)
2923 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2924
2925 return 0;
2926}
2927
2928/**
2929 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2930 * @hw: pointer to hardware structure
2931 * @vlan: VLAN id to write to VLAN filter
2932 *
2933 * return the VLVF index where this VLAN id should be placed
2934 *
2935 **/
5d5b7c39 2936static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
21ce849b
MC
2937{
2938 u32 bits = 0;
2939 u32 first_empty_slot = 0;
2940 s32 regindex;
2941
2942 /* short cut the special case */
2943 if (vlan == 0)
2944 return 0;
2945
2946 /*
2947 * Search for the vlan id in the VLVF entries. Save off the first empty
2948 * slot found along the way
2949 */
2950 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2951 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2952 if (!bits && !(first_empty_slot))
2953 first_empty_slot = regindex;
2954 else if ((bits & 0x0FFF) == vlan)
2955 break;
2956 }
2957
2958 /*
2959 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2960 * in the VLVF. Else use the first empty VLVF register for this
2961 * vlan id.
2962 */
2963 if (regindex >= IXGBE_VLVF_ENTRIES) {
2964 if (first_empty_slot)
2965 regindex = first_empty_slot;
2966 else {
2967 hw_dbg(hw, "No space in VLVF.\n");
2968 regindex = IXGBE_ERR_NO_SPACE;
2969 }
2970 }
2971
2972 return regindex;
2973}
2974
2975/**
2976 * ixgbe_set_vfta_generic - Set VLAN filter table
2977 * @hw: pointer to hardware structure
2978 * @vlan: VLAN id to write to VLAN filter
2979 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2980 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2981 *
2982 * Turn on/off specified VLAN in the VLAN filter table.
2983 **/
2984s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2985 bool vlan_on)
2986{
2987 s32 regindex;
2988 u32 bitindex;
2989 u32 vfta;
2990 u32 bits;
2991 u32 vt;
2992 u32 targetbit;
2993 bool vfta_changed = false;
2994
2995 if (vlan > 4095)
2996 return IXGBE_ERR_PARAM;
2997
2998 /*
2999 * this is a 2 part operation - first the VFTA, then the
3000 * VLVF and VLVFB if VT Mode is set
3001 * We don't write the VFTA until we know the VLVF part succeeded.
3002 */
3003
3004 /* Part 1
3005 * The VFTA is a bitstring made up of 128 32-bit registers
3006 * that enable the particular VLAN id, much like the MTA:
3007 * bits[11-5]: which register
3008 * bits[4-0]: which bit in the register
3009 */
3010 regindex = (vlan >> 5) & 0x7F;
3011 bitindex = vlan & 0x1F;
3012 targetbit = (1 << bitindex);
3013 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3014
3015 if (vlan_on) {
3016 if (!(vfta & targetbit)) {
3017 vfta |= targetbit;
3018 vfta_changed = true;
3019 }
3020 } else {
3021 if ((vfta & targetbit)) {
3022 vfta &= ~targetbit;
3023 vfta_changed = true;
3024 }
3025 }
3026
3027 /* Part 2
3028 * If VT Mode is set
3029 * Either vlan_on
3030 * make sure the vlan is in VLVF
3031 * set the vind bit in the matching VLVFB
3032 * Or !vlan_on
3033 * clear the pool bit and possibly the vind
3034 */
3035 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3036 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3037 s32 vlvf_index;
3038
3039 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3040 if (vlvf_index < 0)
3041 return vlvf_index;
3042
3043 if (vlan_on) {
3044 /* set the pool bit */
3045 if (vind < 32) {
3046 bits = IXGBE_READ_REG(hw,
3047 IXGBE_VLVFB(vlvf_index*2));
3048 bits |= (1 << vind);
3049 IXGBE_WRITE_REG(hw,
3050 IXGBE_VLVFB(vlvf_index*2),
3051 bits);
3052 } else {
3053 bits = IXGBE_READ_REG(hw,
3054 IXGBE_VLVFB((vlvf_index*2)+1));
3055 bits |= (1 << (vind-32));
3056 IXGBE_WRITE_REG(hw,
3057 IXGBE_VLVFB((vlvf_index*2)+1),
3058 bits);
3059 }
3060 } else {
3061 /* clear the pool bit */
3062 if (vind < 32) {
3063 bits = IXGBE_READ_REG(hw,
3064 IXGBE_VLVFB(vlvf_index*2));
3065 bits &= ~(1 << vind);
3066 IXGBE_WRITE_REG(hw,
3067 IXGBE_VLVFB(vlvf_index*2),
3068 bits);
3069 bits |= IXGBE_READ_REG(hw,
3070 IXGBE_VLVFB((vlvf_index*2)+1));
3071 } else {
3072 bits = IXGBE_READ_REG(hw,
3073 IXGBE_VLVFB((vlvf_index*2)+1));
3074 bits &= ~(1 << (vind-32));
3075 IXGBE_WRITE_REG(hw,
3076 IXGBE_VLVFB((vlvf_index*2)+1),
3077 bits);
3078 bits |= IXGBE_READ_REG(hw,
3079 IXGBE_VLVFB(vlvf_index*2));
3080 }
3081 }
3082
3083 /*
3084 * If there are still bits set in the VLVFB registers
3085 * for the VLAN ID indicated we need to see if the
3086 * caller is requesting that we clear the VFTA entry bit.
3087 * If the caller has requested that we clear the VFTA
3088 * entry bit but there are still pools/VFs using this VLAN
3089 * ID entry then ignore the request. We're not worried
3090 * about the case where we're turning the VFTA VLAN ID
3091 * entry bit on, only when requested to turn it off as
3092 * there may be multiple pools and/or VFs using the
3093 * VLAN ID entry. In that case we cannot clear the
3094 * VFTA bit until all pools/VFs using that VLAN ID have also
3095 * been cleared. This will be indicated by "bits" being
3096 * zero.
3097 */
3098 if (bits) {
3099 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3100 (IXGBE_VLVF_VIEN | vlan));
3101 if (!vlan_on) {
3102 /* someone wants to clear the vfta entry
3103 * but some pools/VFs are still using it.
3104 * Ignore it. */
3105 vfta_changed = false;
3106 }
3107 }
3108 else
3109 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3110 }
3111
3112 if (vfta_changed)
3113 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3114
3115 return 0;
3116}
3117
3118/**
3119 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3120 * @hw: pointer to hardware structure
3121 *
3122 * Clears the VLAN filer table, and the VMDq index associated with the filter
3123 **/
3124s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3125{
3126 u32 offset;
3127
3128 for (offset = 0; offset < hw->mac.vft_size; offset++)
3129 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3130
3131 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3132 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3133 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3134 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3135 }
3136
3137 return 0;
3138}
3139
3140/**
3141 * ixgbe_check_mac_link_generic - Determine link and speed status
3142 * @hw: pointer to hardware structure
3143 * @speed: pointer to link speed
3144 * @link_up: true when link is up
3145 * @link_up_wait_to_complete: bool used to wait for link up or not
3146 *
3147 * Reads the links register to determine if link is up and the current speed
3148 **/
3149s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
8c7bea32 3150 bool *link_up, bool link_up_wait_to_complete)
21ce849b 3151{
48de36c5 3152 u32 links_reg, links_orig;
21ce849b
MC
3153 u32 i;
3154
48de36c5
ET
3155 /* clear the old state */
3156 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3157
21ce849b 3158 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
48de36c5
ET
3159
3160 if (links_orig != links_reg) {
3161 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3162 links_orig, links_reg);
3163 }
3164
21ce849b
MC
3165 if (link_up_wait_to_complete) {
3166 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3167 if (links_reg & IXGBE_LINKS_UP) {
3168 *link_up = true;
3169 break;
3170 } else {
3171 *link_up = false;
3172 }
3173 msleep(100);
3174 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3175 }
3176 } else {
3177 if (links_reg & IXGBE_LINKS_UP)
3178 *link_up = true;
3179 else
3180 *link_up = false;
3181 }
3182
3183 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3184 IXGBE_LINKS_SPEED_10G_82599)
3185 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3186 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
63d778df 3187 IXGBE_LINKS_SPEED_1G_82599)
21ce849b 3188 *speed = IXGBE_LINK_SPEED_1GB_FULL;
63d778df
ET
3189 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3190 IXGBE_LINKS_SPEED_100_82599)
21ce849b 3191 *speed = IXGBE_LINK_SPEED_100_FULL;
63d778df
ET
3192 else
3193 *speed = IXGBE_LINK_SPEED_UNKNOWN;
21ce849b 3194
21ce849b
MC
3195 return 0;
3196}
a391f1d5
DS
3197
3198/**
49ce9c2c 3199 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
a391f1d5
DS
3200 * the EEPROM
3201 * @hw: pointer to hardware structure
3202 * @wwnn_prefix: the alternative WWNN prefix
3203 * @wwpn_prefix: the alternative WWPN prefix
3204 *
3205 * This function will read the EEPROM from the alternative SAN MAC address
3206 * block to check the support for the alternative WWNN/WWPN prefix support.
3207 **/
3208s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3209 u16 *wwpn_prefix)
3210{
3211 u16 offset, caps;
3212 u16 alt_san_mac_blk_offset;
3213
3214 /* clear output first */
3215 *wwnn_prefix = 0xFFFF;
3216 *wwpn_prefix = 0xFFFF;
3217
3218 /* check if alternative SAN MAC is supported */
3219 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3220 &alt_san_mac_blk_offset);
3221
3222 if ((alt_san_mac_blk_offset == 0) ||
3223 (alt_san_mac_blk_offset == 0xFFFF))
3224 goto wwn_prefix_out;
3225
3226 /* check capability in alternative san mac address block */
3227 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3228 hw->eeprom.ops.read(hw, offset, &caps);
3229 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3230 goto wwn_prefix_out;
3231
3232 /* get the corresponding prefix for WWNN/WWPN */
3233 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3234 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3235
3236 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3237 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3238
3239wwn_prefix_out:
3240 return 0;
3241}
a985b6c3
GR
3242
3243/**
3244 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3245 * @hw: pointer to hardware structure
3246 * @enable: enable or disable switch for anti-spoofing
3247 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3248 *
3249 **/
3250void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3251{
3252 int j;
3253 int pf_target_reg = pf >> 3;
3254 int pf_target_shift = pf % 8;
3255 u32 pfvfspoof = 0;
3256
3257 if (hw->mac.type == ixgbe_mac_82598EB)
3258 return;
3259
3260 if (enable)
3261 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3262
3263 /*
3264 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3265 * MAC anti-spoof enables in each register array element.
3266 */
ef89e0a2 3267 for (j = 0; j < pf_target_reg; j++)
a985b6c3
GR
3268 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3269
a985b6c3
GR
3270 /*
3271 * The PF should be allowed to spoof so that it can support
ef89e0a2
AD
3272 * emulation mode NICs. Do not set the bits assigned to the PF
3273 */
3274 pfvfspoof &= (1 << pf_target_shift) - 1;
3275 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3276
3277 /*
3278 * Remaining pools belong to the PF so they do not need to have
3279 * anti-spoofing enabled.
a985b6c3 3280 */
ef89e0a2
AD
3281 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3282 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
a985b6c3
GR
3283}
3284
3285/**
3286 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3287 * @hw: pointer to hardware structure
3288 * @enable: enable or disable switch for VLAN anti-spoofing
3289 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3290 *
3291 **/
3292void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3293{
3294 int vf_target_reg = vf >> 3;
3295 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3296 u32 pfvfspoof;
3297
3298 if (hw->mac.type == ixgbe_mac_82598EB)
3299 return;
3300
3301 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3302 if (enable)
3303 pfvfspoof |= (1 << vf_target_shift);
3304 else
3305 pfvfspoof &= ~(1 << vf_target_shift);
3306 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3307}
b776d104
ET
3308
3309/**
3310 * ixgbe_get_device_caps_generic - Get additional device capabilities
3311 * @hw: pointer to hardware structure
3312 * @device_caps: the EEPROM word with the extra device capabilities
3313 *
3314 * This function will read the EEPROM location for the device capabilities,
3315 * and return the word through device_caps.
3316 **/
3317s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3318{
3319 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3320
3321 return 0;
3322}
80605c65
JF
3323
3324/**
3325 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3326 * @hw: pointer to hardware structure
3327 * @num_pb: number of packet buffers to allocate
3328 * @headroom: reserve n KB of headroom
3329 * @strategy: packet buffer allocation strategy
3330 **/
3331void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3332 int num_pb,
3333 u32 headroom,
3334 int strategy)
3335{
3336 u32 pbsize = hw->mac.rx_pb_size;
3337 int i = 0;
3338 u32 rxpktsize, txpktsize, txpbthresh;
3339
3340 /* Reserve headroom */
3341 pbsize -= headroom;
3342
3343 if (!num_pb)
3344 num_pb = 1;
3345
3346 /* Divide remaining packet buffer space amongst the number
3347 * of packet buffers requested using supplied strategy.
3348 */
3349 switch (strategy) {
3350 case (PBA_STRATEGY_WEIGHTED):
3351 /* pba_80_48 strategy weight first half of packet buffer with
3352 * 5/8 of the packet buffer space.
3353 */
3354 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3355 pbsize -= rxpktsize * (num_pb / 2);
3356 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3357 for (; i < (num_pb / 2); i++)
3358 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3359 /* Fall through to configure remaining packet buffers */
3360 case (PBA_STRATEGY_EQUAL):
3361 /* Divide the remaining Rx packet buffer evenly among the TCs */
3362 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3363 for (; i < num_pb; i++)
3364 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3365 break;
3366 default:
3367 break;
3368 }
3369
3370 /*
3371 * Setup Tx packet buffer and threshold equally for all TCs
3372 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3373 * 10 since the largest packet we support is just over 9K.
3374 */
3375 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3376 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3377 for (i = 0; i < num_pb; i++) {
3378 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3379 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3380 }
3381
3382 /* Clear unused TCs, if any, to zero buffer size*/
3383 for (; i < IXGBE_MAX_PB; i++) {
3384 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3385 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3386 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3387 }
3388}
9612de92
ET
3389
3390/**
3391 * ixgbe_calculate_checksum - Calculate checksum for buffer
3392 * @buffer: pointer to EEPROM
3393 * @length: size of EEPROM to calculate a checksum for
49ce9c2c 3394 *
9612de92
ET
3395 * Calculates the checksum for some buffer on a specified length. The
3396 * checksum calculated is returned.
3397 **/
3398static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3399{
3400 u32 i;
3401 u8 sum = 0;
3402
3403 if (!buffer)
3404 return 0;
3405
3406 for (i = 0; i < length; i++)
3407 sum += buffer[i];
3408
3409 return (u8) (0 - sum);
3410}
3411
3412/**
3413 * ixgbe_host_interface_command - Issue command to manageability block
3414 * @hw: pointer to the HW structure
3415 * @buffer: contains the command to write and where the return status will
3416 * be placed
c466d7a7 3417 * @length: length of buffer, must be multiple of 4 bytes
9612de92
ET
3418 *
3419 * Communicates with the manageability block. On success return 0
3420 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3421 **/
79488c58 3422static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
9612de92
ET
3423 u32 length)
3424{
331bcf45 3425 u32 hicr, i, bi;
9612de92
ET
3426 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3427 u8 buf_len, dword_len;
3428
3429 s32 ret_val = 0;
3430
3431 if (length == 0 || length & 0x3 ||
3432 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3433 hw_dbg(hw, "Buffer length failure.\n");
3434 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3435 goto out;
3436 }
3437
3438 /* Check that the host interface is enabled. */
3439 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3440 if ((hicr & IXGBE_HICR_EN) == 0) {
3441 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3442 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3443 goto out;
3444 }
3445
3446 /* Calculate length in DWORDs */
3447 dword_len = length >> 2;
3448
3449 /*
3450 * The device driver writes the relevant command block
3451 * into the ram area.
3452 */
3453 for (i = 0; i < dword_len; i++)
3454 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
79488c58 3455 i, cpu_to_le32(buffer[i]));
9612de92
ET
3456
3457 /* Setting this bit tells the ARC that a new command is pending. */
3458 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3459
3460 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3461 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3462 if (!(hicr & IXGBE_HICR_C))
3463 break;
3464 usleep_range(1000, 2000);
3465 }
3466
3467 /* Check command successful completion. */
3468 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3469 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3470 hw_dbg(hw, "Command has failed with no status valid.\n");
3471 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3472 goto out;
3473 }
3474
3475 /* Calculate length in DWORDs */
3476 dword_len = hdr_size >> 2;
3477
3478 /* first pull in the header so we know the buffer length */
331bcf45
ET
3479 for (bi = 0; bi < dword_len; bi++) {
3480 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3481 le32_to_cpus(&buffer[bi]);
79488c58 3482 }
9612de92
ET
3483
3484 /* If there is any thing in data position pull it in */
3485 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3486 if (buf_len == 0)
3487 goto out;
3488
3489 if (length < (buf_len + hdr_size)) {
3490 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3491 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3492 goto out;
3493 }
3494
331bcf45
ET
3495 /* Calculate length in DWORDs, add 3 for odd lengths */
3496 dword_len = (buf_len + 3) >> 2;
9612de92 3497
331bcf45
ET
3498 /* Pull in the rest of the buffer (bi is where we left off)*/
3499 for (; bi <= dword_len; bi++) {
3500 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3501 le32_to_cpus(&buffer[bi]);
3502 }
9612de92
ET
3503
3504out:
3505 return ret_val;
3506}
3507
3508/**
3509 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3510 * @hw: pointer to the HW structure
3511 * @maj: driver version major number
3512 * @min: driver version minor number
3513 * @build: driver version build number
3514 * @sub: driver version sub build number
3515 *
3516 * Sends driver version number to firmware through the manageability
3517 * block. On success return 0
3518 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3519 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3520 **/
3521s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3522 u8 build, u8 sub)
3523{
3524 struct ixgbe_hic_drv_info fw_cmd;
3525 int i;
3526 s32 ret_val = 0;
3527
3528 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3529 ret_val = IXGBE_ERR_SWFW_SYNC;
3530 goto out;
3531 }
3532
3533 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3534 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3535 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3536 fw_cmd.port_num = (u8)hw->bus.func;
3537 fw_cmd.ver_maj = maj;
3538 fw_cmd.ver_min = min;
3539 fw_cmd.ver_build = build;
3540 fw_cmd.ver_sub = sub;
3541 fw_cmd.hdr.checksum = 0;
3542 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3543 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3544 fw_cmd.pad = 0;
3545 fw_cmd.pad2 = 0;
3546
3547 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
79488c58 3548 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
9612de92
ET
3549 sizeof(fw_cmd));
3550 if (ret_val != 0)
3551 continue;
3552
3553 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3554 FW_CEM_RESP_STATUS_SUCCESS)
3555 ret_val = 0;
3556 else
3557 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3558
3559 break;
3560 }
3561
3562 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3563out:
3564 return ret_val;
3565}
ff9d1a5a
ET
3566
3567/**
3568 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3569 * @hw: pointer to the hardware structure
3570 *
3571 * The 82599 and x540 MACs can experience issues if TX work is still pending
3572 * when a reset occurs. This function prevents this by flushing the PCIe
3573 * buffers on the system.
3574 **/
3575void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3576{
3577 u32 gcr_ext, hlreg0;
3578
3579 /*
3580 * If double reset is not requested then all transactions should
3581 * already be clear and as such there is no work to do
3582 */
3583 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3584 return;
3585
3586 /*
3587 * Set loopback enable to prevent any transmits from being sent
3588 * should the link come up. This assumes that the RXCTRL.RXEN bit
3589 * has already been cleared.
3590 */
3591 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3592 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3593
3594 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3595 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3596 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3597 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3598
3599 /* Flush all writes and allow 20usec for all transactions to clear */
3600 IXGBE_WRITE_FLUSH(hw);
3601 udelay(20);
3602
3603 /* restore previous register values */
3604 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3605 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3606}
e1ea9158
DS
3607
3608static const u8 ixgbe_emc_temp_data[4] = {
3609 IXGBE_EMC_INTERNAL_DATA,
3610 IXGBE_EMC_DIODE1_DATA,
3611 IXGBE_EMC_DIODE2_DATA,
3612 IXGBE_EMC_DIODE3_DATA
3613};
3614static const u8 ixgbe_emc_therm_limit[4] = {
3615 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3616 IXGBE_EMC_DIODE1_THERM_LIMIT,
3617 IXGBE_EMC_DIODE2_THERM_LIMIT,
3618 IXGBE_EMC_DIODE3_THERM_LIMIT
3619};
3620
3621/**
3622 * ixgbe_get_ets_data - Extracts the ETS bit data
3623 * @hw: pointer to hardware structure
3624 * @ets_cfg: extected ETS data
3625 * @ets_offset: offset of ETS data
3626 *
3627 * Returns error code.
3628 **/
3629static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3630 u16 *ets_offset)
3631{
3632 s32 status = 0;
3633
3634 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3635 if (status)
3636 goto out;
3637
3638 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3639 status = IXGBE_NOT_IMPLEMENTED;
3640 goto out;
3641 }
3642
3643 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3644 if (status)
3645 goto out;
3646
3647 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3648 status = IXGBE_NOT_IMPLEMENTED;
3649 goto out;
3650 }
3651
3652out:
3653 return status;
3654}
3655
3656/**
3657 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3658 * @hw: pointer to hardware structure
3659 *
3660 * Returns the thermal sensor data structure
3661 **/
3662s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3663{
3664 s32 status = 0;
3665 u16 ets_offset;
3666 u16 ets_cfg;
3667 u16 ets_sensor;
3668 u8 num_sensors;
3669 u8 i;
3670 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3671
3ca8bc6d
DS
3672 /* Only support thermal sensors attached to physical port 0 */
3673 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
e1ea9158
DS
3674 status = IXGBE_NOT_IMPLEMENTED;
3675 goto out;
3676 }
3677
3678 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3679 if (status)
3680 goto out;
3681
3682 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3683 if (num_sensors > IXGBE_MAX_SENSORS)
3684 num_sensors = IXGBE_MAX_SENSORS;
3685
3686 for (i = 0; i < num_sensors; i++) {
3687 u8 sensor_index;
3688 u8 sensor_location;
3689
3690 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3691 &ets_sensor);
3692 if (status)
3693 goto out;
3694
3695 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3696 IXGBE_ETS_DATA_INDEX_SHIFT);
3697 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3698 IXGBE_ETS_DATA_LOC_SHIFT);
3699
3700 if (sensor_location != 0) {
3701 status = hw->phy.ops.read_i2c_byte(hw,
3702 ixgbe_emc_temp_data[sensor_index],
3703 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3704 &data->sensor[i].temp);
3705 if (status)
3706 goto out;
3707 }
3708 }
3709out:
3710 return status;
3711}
3712
3713/**
3714 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3715 * @hw: pointer to hardware structure
3716 *
3717 * Inits the thermal sensor thresholds according to the NVM map
3718 * and save off the threshold and location values into mac.thermal_sensor_data
3719 **/
3720s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3721{
3722 s32 status = 0;
3723 u16 ets_offset;
3724 u16 ets_cfg;
3725 u16 ets_sensor;
3726 u8 low_thresh_delta;
3727 u8 num_sensors;
3728 u8 therm_limit;
3729 u8 i;
3730 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3731
3732 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3733
3ca8bc6d
DS
3734 /* Only support thermal sensors attached to physical port 0 */
3735 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
e1ea9158
DS
3736 status = IXGBE_NOT_IMPLEMENTED;
3737 goto out;
3738 }
3739
3740 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3741 if (status)
3742 goto out;
3743
3744 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3745 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3746 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3747 if (num_sensors > IXGBE_MAX_SENSORS)
3748 num_sensors = IXGBE_MAX_SENSORS;
3749
3750 for (i = 0; i < num_sensors; i++) {
3751 u8 sensor_index;
3752 u8 sensor_location;
3753
3754 hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3755 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3756 IXGBE_ETS_DATA_INDEX_SHIFT);
3757 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3758 IXGBE_ETS_DATA_LOC_SHIFT);
3759 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3760
3761 hw->phy.ops.write_i2c_byte(hw,
3762 ixgbe_emc_therm_limit[sensor_index],
3763 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3764
3765 if (sensor_location == 0)
3766 continue;
3767
3768 data->sensor[i].location = sensor_location;
3769 data->sensor[i].caution_thresh = therm_limit;
3770 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3771 }
3772out:
3773 return status;
3774}
3775
This page took 1.155364 seconds and 5 git commands to generate.