ixgbe: Make FCoE allocation and configuration closer to how rings work
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
94971820 4 Copyright(c) 1999 - 2012 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
ccffad25 31#include <linux/netdevice.h>
9a799d71 32
11afc1b1 33#include "ixgbe.h"
9a799d71
AK
34#include "ixgbe_common.h"
35#include "ixgbe_phy.h"
36
c44ade9e 37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
9a799d71
AK
38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
c44ade9e
JB
40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
9a799d71 48
9a799d71 49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
eb9c3e3e 50static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
68c7005d
ET
51static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
52 u16 words, u16 *data);
53static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 u16 words, u16 *data);
55static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
56 u16 offset);
ff9d1a5a 57static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
9a799d71 58
67a79df2
AD
59/**
60 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
61 * control
62 * @hw: pointer to hardware structure
63 *
64 * There are several phys that do not support autoneg flow control. This
65 * function check the device id to see if the associated phy supports
66 * autoneg flow control.
67 **/
68static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
69{
70
71 switch (hw->device_id) {
72 case IXGBE_DEV_ID_X540T:
73 return 0;
74 case IXGBE_DEV_ID_82599_T3_LOM:
75 return 0;
76 default:
77 return IXGBE_ERR_FC_NOT_SUPPORTED;
78 }
79}
80
81/**
82 * ixgbe_setup_fc - Set up flow control
83 * @hw: pointer to hardware structure
84 *
85 * Called at init time to set up flow control.
86 **/
041441d0 87static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
67a79df2
AD
88{
89 s32 ret_val = 0;
90 u32 reg = 0, reg_bp = 0;
91 u16 reg_cu = 0;
92
67a79df2
AD
93 /*
94 * Validate the requested mode. Strict IEEE mode does not allow
95 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
96 */
97 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
98 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
99 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
100 goto out;
101 }
102
103 /*
104 * 10gig parts do not have a word in the EEPROM to determine the
105 * default flow control setting, so we explicitly set it to full.
106 */
107 if (hw->fc.requested_mode == ixgbe_fc_default)
108 hw->fc.requested_mode = ixgbe_fc_full;
109
110 /*
111 * Set up the 1G and 10G flow control advertisement registers so the
112 * HW will be able to do fc autoneg once the cable is plugged in. If
113 * we link at 10G, the 1G advertisement is harmless and vice versa.
114 */
67a79df2
AD
115 switch (hw->phy.media_type) {
116 case ixgbe_media_type_fiber:
117 case ixgbe_media_type_backplane:
118 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
119 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
120 break;
67a79df2
AD
121 case ixgbe_media_type_copper:
122 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
123 MDIO_MMD_AN, &reg_cu);
124 break;
67a79df2 125 default:
041441d0 126 break;
67a79df2
AD
127 }
128
129 /*
130 * The possible values of fc.requested_mode are:
131 * 0: Flow control is completely disabled
132 * 1: Rx flow control is enabled (we can receive pause frames,
133 * but not send pause frames).
134 * 2: Tx flow control is enabled (we can send pause frames but
135 * we do not support receiving pause frames).
136 * 3: Both Rx and Tx flow control (symmetric) are enabled.
67a79df2
AD
137 * other: Invalid.
138 */
139 switch (hw->fc.requested_mode) {
140 case ixgbe_fc_none:
141 /* Flow control completely disabled by software override. */
142 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
143 if (hw->phy.media_type == ixgbe_media_type_backplane)
144 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
145 IXGBE_AUTOC_ASM_PAUSE);
146 else if (hw->phy.media_type == ixgbe_media_type_copper)
147 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
148 break;
67a79df2
AD
149 case ixgbe_fc_tx_pause:
150 /*
151 * Tx Flow control is enabled, and Rx Flow control is
152 * disabled by software override.
153 */
041441d0
AD
154 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
155 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
67a79df2 156 if (hw->phy.media_type == ixgbe_media_type_backplane) {
041441d0
AD
157 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
158 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
67a79df2 159 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
041441d0
AD
160 reg_cu |= IXGBE_TAF_ASM_PAUSE;
161 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
67a79df2
AD
162 }
163 break;
041441d0
AD
164 case ixgbe_fc_rx_pause:
165 /*
166 * Rx Flow control is enabled and Tx Flow control is
167 * disabled by software override. Since there really
168 * isn't a way to advertise that we are capable of RX
169 * Pause ONLY, we will advertise that we support both
170 * symmetric and asymmetric Rx PAUSE, as such we fall
171 * through to the fc_full statement. Later, we will
172 * disable the adapter's ability to send PAUSE frames.
173 */
67a79df2
AD
174 case ixgbe_fc_full:
175 /* Flow control (both Rx and Tx) is enabled by SW override. */
041441d0 176 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
67a79df2 177 if (hw->phy.media_type == ixgbe_media_type_backplane)
041441d0
AD
178 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
179 IXGBE_AUTOC_ASM_PAUSE;
67a79df2 180 else if (hw->phy.media_type == ixgbe_media_type_copper)
041441d0 181 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
67a79df2 182 break;
67a79df2
AD
183 default:
184 hw_dbg(hw, "Flow control param set incorrectly\n");
185 ret_val = IXGBE_ERR_CONFIG;
186 goto out;
187 break;
188 }
189
190 if (hw->mac.type != ixgbe_mac_X540) {
191 /*
192 * Enable auto-negotiation between the MAC & PHY;
193 * the MAC will advertise clause 37 flow control.
194 */
195 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
196 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
197
198 /* Disable AN timeout */
199 if (hw->fc.strict_ieee)
200 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
201
202 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
203 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
204 }
205
206 /*
207 * AUTOC restart handles negotiation of 1G and 10G on backplane
208 * and copper. There is no need to set the PCS1GCTL register.
209 *
210 */
211 if (hw->phy.media_type == ixgbe_media_type_backplane) {
212 reg_bp |= IXGBE_AUTOC_AN_RESTART;
213 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
214 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
215 (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
216 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
217 MDIO_MMD_AN, reg_cu);
218 }
219
220 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
221out:
222 return ret_val;
223}
224
9a799d71 225/**
c44ade9e 226 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
9a799d71
AK
227 * @hw: pointer to hardware structure
228 *
229 * Starts the hardware by filling the bus info structure and media type, clears
230 * all on chip counters, initializes receive address registers, multicast
231 * table, VLAN filter table, calls routine to set up link and flow control
232 * settings, and leaves transmit and receive units disabled and uninitialized
233 **/
c44ade9e 234s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
9a799d71
AK
235{
236 u32 ctrl_ext;
237
238 /* Set the media type */
239 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
240
241 /* Identify the PHY */
c44ade9e 242 hw->phy.ops.identify(hw);
9a799d71 243
9a799d71 244 /* Clear the VLAN filter table */
c44ade9e 245 hw->mac.ops.clear_vfta(hw);
9a799d71 246
9a799d71 247 /* Clear statistics registers */
c44ade9e 248 hw->mac.ops.clear_hw_cntrs(hw);
9a799d71
AK
249
250 /* Set No Snoop Disable */
251 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
252 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
253 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
3957d63d 254 IXGBE_WRITE_FLUSH(hw);
9a799d71 255
620fa036 256 /* Setup flow control */
041441d0 257 ixgbe_setup_fc(hw);
620fa036 258
9a799d71
AK
259 /* Clear adapter stopped flag */
260 hw->adapter_stopped = false;
261
262 return 0;
263}
264
7184b7cf
ET
265/**
266 * ixgbe_start_hw_gen2 - Init sequence for common device family
267 * @hw: pointer to hw structure
268 *
269 * Performs the init sequence common to the second generation
270 * of 10 GbE devices.
271 * Devices in the second generation:
272 * 82599
273 * X540
274 **/
275s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
276{
277 u32 i;
3d5c5207 278 u32 regval;
7184b7cf
ET
279
280 /* Clear the rate limiters */
281 for (i = 0; i < hw->mac.max_tx_queues; i++) {
282 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
283 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
284 }
285 IXGBE_WRITE_FLUSH(hw);
286
3d5c5207
ET
287 /* Disable relaxed ordering */
288 for (i = 0; i < hw->mac.max_tx_queues; i++) {
289 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
bdda1a61 290 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3d5c5207
ET
291 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
292 }
293
294 for (i = 0; i < hw->mac.max_rx_queues; i++) {
295 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
bdda1a61
AD
296 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
297 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
3d5c5207
ET
298 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
299 }
300
7184b7cf
ET
301 return 0;
302}
303
9a799d71 304/**
c44ade9e 305 * ixgbe_init_hw_generic - Generic hardware initialization
9a799d71
AK
306 * @hw: pointer to hardware structure
307 *
c44ade9e 308 * Initialize the hardware by resetting the hardware, filling the bus info
9a799d71
AK
309 * structure and media type, clears all on chip counters, initializes receive
310 * address registers, multicast table, VLAN filter table, calls routine to set
311 * up link and flow control settings, and leaves transmit and receive units
312 * disabled and uninitialized
313 **/
c44ade9e 314s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
9a799d71 315{
794caeb2
PWJ
316 s32 status;
317
9a799d71 318 /* Reset the hardware */
794caeb2 319 status = hw->mac.ops.reset_hw(hw);
9a799d71 320
794caeb2
PWJ
321 if (status == 0) {
322 /* Start the HW */
323 status = hw->mac.ops.start_hw(hw);
324 }
9a799d71 325
794caeb2 326 return status;
9a799d71
AK
327}
328
329/**
c44ade9e 330 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
9a799d71
AK
331 * @hw: pointer to hardware structure
332 *
333 * Clears all hardware statistics counters by reading them from the hardware
334 * Statistics counters are clear on read.
335 **/
c44ade9e 336s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
337{
338 u16 i = 0;
339
340 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
341 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
342 IXGBE_READ_REG(hw, IXGBE_ERRBC);
343 IXGBE_READ_REG(hw, IXGBE_MSPDC);
344 for (i = 0; i < 8; i++)
345 IXGBE_READ_REG(hw, IXGBE_MPC(i));
346
347 IXGBE_READ_REG(hw, IXGBE_MLFC);
348 IXGBE_READ_REG(hw, IXGBE_MRFC);
349 IXGBE_READ_REG(hw, IXGBE_RLEC);
350 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
9a799d71 351 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
667c7565
ET
352 if (hw->mac.type >= ixgbe_mac_82599EB) {
353 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
354 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
355 } else {
356 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
357 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
358 }
9a799d71
AK
359
360 for (i = 0; i < 8; i++) {
361 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
9a799d71 362 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
667c7565
ET
363 if (hw->mac.type >= ixgbe_mac_82599EB) {
364 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
365 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
366 } else {
367 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
368 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
369 }
9a799d71 370 }
667c7565
ET
371 if (hw->mac.type >= ixgbe_mac_82599EB)
372 for (i = 0; i < 8; i++)
373 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
9a799d71
AK
374 IXGBE_READ_REG(hw, IXGBE_PRC64);
375 IXGBE_READ_REG(hw, IXGBE_PRC127);
376 IXGBE_READ_REG(hw, IXGBE_PRC255);
377 IXGBE_READ_REG(hw, IXGBE_PRC511);
378 IXGBE_READ_REG(hw, IXGBE_PRC1023);
379 IXGBE_READ_REG(hw, IXGBE_PRC1522);
380 IXGBE_READ_REG(hw, IXGBE_GPRC);
381 IXGBE_READ_REG(hw, IXGBE_BPRC);
382 IXGBE_READ_REG(hw, IXGBE_MPRC);
383 IXGBE_READ_REG(hw, IXGBE_GPTC);
384 IXGBE_READ_REG(hw, IXGBE_GORCL);
385 IXGBE_READ_REG(hw, IXGBE_GORCH);
386 IXGBE_READ_REG(hw, IXGBE_GOTCL);
387 IXGBE_READ_REG(hw, IXGBE_GOTCH);
f3116f62
ET
388 if (hw->mac.type == ixgbe_mac_82598EB)
389 for (i = 0; i < 8; i++)
390 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
9a799d71
AK
391 IXGBE_READ_REG(hw, IXGBE_RUC);
392 IXGBE_READ_REG(hw, IXGBE_RFC);
393 IXGBE_READ_REG(hw, IXGBE_ROC);
394 IXGBE_READ_REG(hw, IXGBE_RJC);
395 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
396 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
397 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
398 IXGBE_READ_REG(hw, IXGBE_TORL);
399 IXGBE_READ_REG(hw, IXGBE_TORH);
400 IXGBE_READ_REG(hw, IXGBE_TPR);
401 IXGBE_READ_REG(hw, IXGBE_TPT);
402 IXGBE_READ_REG(hw, IXGBE_PTC64);
403 IXGBE_READ_REG(hw, IXGBE_PTC127);
404 IXGBE_READ_REG(hw, IXGBE_PTC255);
405 IXGBE_READ_REG(hw, IXGBE_PTC511);
406 IXGBE_READ_REG(hw, IXGBE_PTC1023);
407 IXGBE_READ_REG(hw, IXGBE_PTC1522);
408 IXGBE_READ_REG(hw, IXGBE_MPTC);
409 IXGBE_READ_REG(hw, IXGBE_BPTC);
410 for (i = 0; i < 16; i++) {
411 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
9a799d71 412 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
667c7565
ET
413 if (hw->mac.type >= ixgbe_mac_82599EB) {
414 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
415 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
416 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
417 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
418 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
419 } else {
420 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
421 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
422 }
9a799d71
AK
423 }
424
a3aeea0e
ET
425 if (hw->mac.type == ixgbe_mac_X540) {
426 if (hw->phy.id == 0)
427 hw->phy.ops.identify(hw);
c1085b10
ET
428 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
429 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
430 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
431 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
a3aeea0e
ET
432 }
433
9a799d71
AK
434 return 0;
435}
436
437/**
289700db 438 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
c44ade9e 439 * @hw: pointer to hardware structure
289700db
DS
440 * @pba_num: stores the part number string from the EEPROM
441 * @pba_num_size: part number string buffer length
c44ade9e 442 *
289700db 443 * Reads the part number string from the EEPROM.
c44ade9e 444 **/
289700db
DS
445s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
446 u32 pba_num_size)
c44ade9e
JB
447{
448 s32 ret_val;
449 u16 data;
289700db
DS
450 u16 pba_ptr;
451 u16 offset;
452 u16 length;
453
454 if (pba_num == NULL) {
455 hw_dbg(hw, "PBA string buffer was null\n");
456 return IXGBE_ERR_INVALID_ARGUMENT;
457 }
c44ade9e
JB
458
459 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
460 if (ret_val) {
461 hw_dbg(hw, "NVM Read Error\n");
462 return ret_val;
463 }
c44ade9e 464
289700db 465 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
c44ade9e
JB
466 if (ret_val) {
467 hw_dbg(hw, "NVM Read Error\n");
468 return ret_val;
469 }
289700db
DS
470
471 /*
472 * if data is not ptr guard the PBA must be in legacy format which
473 * means pba_ptr is actually our second data word for the PBA number
474 * and we can decode it into an ascii string
475 */
476 if (data != IXGBE_PBANUM_PTR_GUARD) {
477 hw_dbg(hw, "NVM PBA number is not stored as string\n");
478
479 /* we will need 11 characters to store the PBA */
480 if (pba_num_size < 11) {
481 hw_dbg(hw, "PBA string buffer too small\n");
482 return IXGBE_ERR_NO_SPACE;
483 }
484
485 /* extract hex string from data and pba_ptr */
486 pba_num[0] = (data >> 12) & 0xF;
487 pba_num[1] = (data >> 8) & 0xF;
488 pba_num[2] = (data >> 4) & 0xF;
489 pba_num[3] = data & 0xF;
490 pba_num[4] = (pba_ptr >> 12) & 0xF;
491 pba_num[5] = (pba_ptr >> 8) & 0xF;
492 pba_num[6] = '-';
493 pba_num[7] = 0;
494 pba_num[8] = (pba_ptr >> 4) & 0xF;
495 pba_num[9] = pba_ptr & 0xF;
496
497 /* put a null character on the end of our string */
498 pba_num[10] = '\0';
499
500 /* switch all the data but the '-' to hex char */
501 for (offset = 0; offset < 10; offset++) {
502 if (pba_num[offset] < 0xA)
503 pba_num[offset] += '0';
504 else if (pba_num[offset] < 0x10)
505 pba_num[offset] += 'A' - 0xA;
506 }
507
508 return 0;
509 }
510
511 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
512 if (ret_val) {
513 hw_dbg(hw, "NVM Read Error\n");
514 return ret_val;
515 }
516
517 if (length == 0xFFFF || length == 0) {
518 hw_dbg(hw, "NVM PBA number section invalid length\n");
519 return IXGBE_ERR_PBA_SECTION;
520 }
521
522 /* check if pba_num buffer is big enough */
523 if (pba_num_size < (((u32)length * 2) - 1)) {
524 hw_dbg(hw, "PBA string buffer too small\n");
525 return IXGBE_ERR_NO_SPACE;
526 }
527
528 /* trim pba length from start of string */
529 pba_ptr++;
530 length--;
531
532 for (offset = 0; offset < length; offset++) {
533 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
534 if (ret_val) {
535 hw_dbg(hw, "NVM Read Error\n");
536 return ret_val;
537 }
538 pba_num[offset * 2] = (u8)(data >> 8);
539 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
540 }
541 pba_num[offset * 2] = '\0';
c44ade9e
JB
542
543 return 0;
544}
545
546/**
547 * ixgbe_get_mac_addr_generic - Generic get MAC address
9a799d71
AK
548 * @hw: pointer to hardware structure
549 * @mac_addr: Adapter MAC address
550 *
551 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
552 * A reset of the adapter must be performed prior to calling this function
553 * in order for the MAC address to have been loaded from the EEPROM into RAR0
554 **/
c44ade9e 555s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
9a799d71
AK
556{
557 u32 rar_high;
558 u32 rar_low;
559 u16 i;
560
561 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
562 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
563
564 for (i = 0; i < 4; i++)
565 mac_addr[i] = (u8)(rar_low >> (i*8));
566
567 for (i = 0; i < 2; i++)
568 mac_addr[i+4] = (u8)(rar_high >> (i*8));
569
570 return 0;
571}
572
11afc1b1
PW
573/**
574 * ixgbe_get_bus_info_generic - Generic set PCI bus info
575 * @hw: pointer to hardware structure
576 *
577 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
578 **/
579s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
580{
581 struct ixgbe_adapter *adapter = hw->back;
582 struct ixgbe_mac_info *mac = &hw->mac;
583 u16 link_status;
584
585 hw->bus.type = ixgbe_bus_type_pci_express;
586
587 /* Get the negotiated link width and speed from PCI config space */
588 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
589 &link_status);
590
591 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
592 case IXGBE_PCI_LINK_WIDTH_1:
593 hw->bus.width = ixgbe_bus_width_pcie_x1;
594 break;
595 case IXGBE_PCI_LINK_WIDTH_2:
596 hw->bus.width = ixgbe_bus_width_pcie_x2;
597 break;
598 case IXGBE_PCI_LINK_WIDTH_4:
599 hw->bus.width = ixgbe_bus_width_pcie_x4;
600 break;
601 case IXGBE_PCI_LINK_WIDTH_8:
602 hw->bus.width = ixgbe_bus_width_pcie_x8;
603 break;
604 default:
605 hw->bus.width = ixgbe_bus_width_unknown;
606 break;
607 }
608
609 switch (link_status & IXGBE_PCI_LINK_SPEED) {
610 case IXGBE_PCI_LINK_SPEED_2500:
611 hw->bus.speed = ixgbe_bus_speed_2500;
612 break;
613 case IXGBE_PCI_LINK_SPEED_5000:
614 hw->bus.speed = ixgbe_bus_speed_5000;
615 break;
616 default:
617 hw->bus.speed = ixgbe_bus_speed_unknown;
618 break;
619 }
620
621 mac->ops.set_lan_id(hw);
622
623 return 0;
624}
625
626/**
627 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
628 * @hw: pointer to the HW structure
629 *
630 * Determines the LAN function id by reading memory-mapped registers
631 * and swaps the port value if requested.
632 **/
633void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
634{
635 struct ixgbe_bus_info *bus = &hw->bus;
636 u32 reg;
637
638 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
639 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
640 bus->lan_id = bus->func;
641
642 /* check for a port swap */
643 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
644 if (reg & IXGBE_FACTPS_LFS)
645 bus->func ^= 0x1;
646}
647
9a799d71 648/**
c44ade9e 649 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
9a799d71
AK
650 * @hw: pointer to hardware structure
651 *
652 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
653 * disables transmit and receive units. The adapter_stopped flag is used by
654 * the shared code and drivers to determine if the adapter is in a stopped
655 * state and should not touch the hardware.
656 **/
c44ade9e 657s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
9a799d71 658{
9a799d71
AK
659 u32 reg_val;
660 u16 i;
661
662 /*
663 * Set the adapter_stopped flag so other driver functions stop touching
664 * the hardware
665 */
666 hw->adapter_stopped = true;
667
668 /* Disable the receive unit */
ff9d1a5a 669 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
9a799d71 670
ff9d1a5a 671 /* Clear interrupt mask to stop interrupts from being generated */
9a799d71
AK
672 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
673
ff9d1a5a 674 /* Clear any pending interrupts, flush previous writes */
9a799d71
AK
675 IXGBE_READ_REG(hw, IXGBE_EICR);
676
677 /* Disable the transmit unit. Each queue must be disabled. */
ff9d1a5a
ET
678 for (i = 0; i < hw->mac.max_tx_queues; i++)
679 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
680
681 /* Disable the receive unit by stopping each queue */
682 for (i = 0; i < hw->mac.max_rx_queues; i++) {
683 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
684 reg_val &= ~IXGBE_RXDCTL_ENABLE;
685 reg_val |= IXGBE_RXDCTL_SWFLSH;
686 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
9a799d71
AK
687 }
688
ff9d1a5a
ET
689 /* flush all queues disables */
690 IXGBE_WRITE_FLUSH(hw);
691 usleep_range(1000, 2000);
692
c44ade9e
JB
693 /*
694 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
695 * access and verify no pending requests
696 */
ff9d1a5a 697 return ixgbe_disable_pcie_master(hw);
9a799d71
AK
698}
699
700/**
c44ade9e 701 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
9a799d71
AK
702 * @hw: pointer to hardware structure
703 * @index: led number to turn on
704 **/
c44ade9e 705s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
706{
707 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
708
709 /* To turn on the LED, set mode to ON. */
710 led_reg &= ~IXGBE_LED_MODE_MASK(index);
711 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
712 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 713 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
714
715 return 0;
716}
717
718/**
c44ade9e 719 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
9a799d71
AK
720 * @hw: pointer to hardware structure
721 * @index: led number to turn off
722 **/
c44ade9e 723s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
724{
725 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
726
727 /* To turn off the LED, set mode to OFF. */
728 led_reg &= ~IXGBE_LED_MODE_MASK(index);
729 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
730 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 731 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
732
733 return 0;
734}
735
9a799d71 736/**
c44ade9e 737 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
9a799d71
AK
738 * @hw: pointer to hardware structure
739 *
740 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
741 * ixgbe_hw struct in order to set up EEPROM access.
742 **/
c44ade9e 743s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
9a799d71
AK
744{
745 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
746 u32 eec;
747 u16 eeprom_size;
748
749 if (eeprom->type == ixgbe_eeprom_uninitialized) {
750 eeprom->type = ixgbe_eeprom_none;
c44ade9e
JB
751 /* Set default semaphore delay to 10ms which is a well
752 * tested value */
753 eeprom->semaphore_delay = 10;
68c7005d
ET
754 /* Clear EEPROM page size, it will be initialized as needed */
755 eeprom->word_page_size = 0;
9a799d71
AK
756
757 /*
758 * Check for EEPROM present first.
759 * If not present leave as none
760 */
761 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
762 if (eec & IXGBE_EEC_PRES) {
763 eeprom->type = ixgbe_eeprom_spi;
764
765 /*
766 * SPI EEPROM is assumed here. This code would need to
767 * change if a future EEPROM is not SPI.
768 */
769 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
770 IXGBE_EEC_SIZE_SHIFT);
771 eeprom->word_size = 1 << (eeprom_size +
772 IXGBE_EEPROM_WORD_SIZE_SHIFT);
773 }
774
775 if (eec & IXGBE_EEC_ADDR_SIZE)
776 eeprom->address_bits = 16;
777 else
778 eeprom->address_bits = 8;
779 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
780 "%d\n", eeprom->type, eeprom->word_size,
781 eeprom->address_bits);
782 }
783
784 return 0;
785}
786
11afc1b1 787/**
68c7005d 788 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
11afc1b1 789 * @hw: pointer to hardware structure
68c7005d
ET
790 * @offset: offset within the EEPROM to write
791 * @words: number of words
792 * @data: 16 bit word(s) to write to EEPROM
11afc1b1 793 *
68c7005d 794 * Reads 16 bit word(s) from EEPROM through bit-bang method
11afc1b1 795 **/
68c7005d
ET
796s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
797 u16 words, u16 *data)
11afc1b1 798{
68c7005d
ET
799 s32 status = 0;
800 u16 i, count;
11afc1b1
PW
801
802 hw->eeprom.ops.init_params(hw);
803
68c7005d
ET
804 if (words == 0) {
805 status = IXGBE_ERR_INVALID_ARGUMENT;
806 goto out;
807 }
808
809 if (offset + words > hw->eeprom.word_size) {
11afc1b1
PW
810 status = IXGBE_ERR_EEPROM;
811 goto out;
812 }
813
68c7005d
ET
814 /*
815 * The EEPROM page size cannot be queried from the chip. We do lazy
816 * initialization. It is worth to do that when we write large buffer.
817 */
818 if ((hw->eeprom.word_page_size == 0) &&
819 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
820 ixgbe_detect_eeprom_page_size_generic(hw, offset);
821
822 /*
823 * We cannot hold synchronization semaphores for too long
824 * to avoid other entity starvation. However it is more efficient
825 * to read in bursts than synchronizing access for each word.
826 */
827 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
828 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
829 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
830 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
831 count, &data[i]);
832
833 if (status != 0)
834 break;
835 }
836
837out:
838 return status;
839}
840
841/**
842 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
843 * @hw: pointer to hardware structure
844 * @offset: offset within the EEPROM to be written to
845 * @words: number of word(s)
846 * @data: 16 bit word(s) to be written to the EEPROM
847 *
848 * If ixgbe_eeprom_update_checksum is not called after this function, the
849 * EEPROM will most likely contain an invalid checksum.
850 **/
851static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
852 u16 words, u16 *data)
853{
854 s32 status;
855 u16 word;
856 u16 page_size;
857 u16 i;
858 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
859
11afc1b1
PW
860 /* Prepare the EEPROM for writing */
861 status = ixgbe_acquire_eeprom(hw);
862
863 if (status == 0) {
864 if (ixgbe_ready_eeprom(hw) != 0) {
865 ixgbe_release_eeprom(hw);
866 status = IXGBE_ERR_EEPROM;
867 }
868 }
869
870 if (status == 0) {
68c7005d
ET
871 for (i = 0; i < words; i++) {
872 ixgbe_standby_eeprom(hw);
11afc1b1 873
68c7005d
ET
874 /* Send the WRITE ENABLE command (8 bit opcode ) */
875 ixgbe_shift_out_eeprom_bits(hw,
876 IXGBE_EEPROM_WREN_OPCODE_SPI,
877 IXGBE_EEPROM_OPCODE_BITS);
11afc1b1 878
68c7005d 879 ixgbe_standby_eeprom(hw);
11afc1b1 880
68c7005d
ET
881 /*
882 * Some SPI eeproms use the 8th address bit embedded
883 * in the opcode
884 */
885 if ((hw->eeprom.address_bits == 8) &&
886 ((offset + i) >= 128))
887 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
888
889 /* Send the Write command (8-bit opcode + addr) */
890 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
891 IXGBE_EEPROM_OPCODE_BITS);
892 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
893 hw->eeprom.address_bits);
894
895 page_size = hw->eeprom.word_page_size;
896
897 /* Send the data in burst via SPI*/
898 do {
899 word = data[i];
900 word = (word >> 8) | (word << 8);
901 ixgbe_shift_out_eeprom_bits(hw, word, 16);
902
903 if (page_size == 0)
904 break;
905
906 /* do not wrap around page */
907 if (((offset + i) & (page_size - 1)) ==
908 (page_size - 1))
909 break;
910 } while (++i < words);
911
912 ixgbe_standby_eeprom(hw);
913 usleep_range(10000, 20000);
914 }
915 /* Done with writing - release the EEPROM */
916 ixgbe_release_eeprom(hw);
917 }
11afc1b1 918
68c7005d
ET
919 return status;
920}
921
922/**
923 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
924 * @hw: pointer to hardware structure
925 * @offset: offset within the EEPROM to be written to
926 * @data: 16 bit word to be written to the EEPROM
927 *
928 * If ixgbe_eeprom_update_checksum is not called after this function, the
929 * EEPROM will most likely contain an invalid checksum.
930 **/
931s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
932{
933 s32 status;
11afc1b1 934
68c7005d 935 hw->eeprom.ops.init_params(hw);
11afc1b1 936
68c7005d
ET
937 if (offset >= hw->eeprom.word_size) {
938 status = IXGBE_ERR_EEPROM;
939 goto out;
11afc1b1
PW
940 }
941
68c7005d
ET
942 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
943
11afc1b1
PW
944out:
945 return status;
946}
947
9a799d71 948/**
68c7005d 949 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
c44ade9e
JB
950 * @hw: pointer to hardware structure
951 * @offset: offset within the EEPROM to be read
68c7005d
ET
952 * @words: number of word(s)
953 * @data: read 16 bit words(s) from EEPROM
c44ade9e 954 *
68c7005d 955 * Reads 16 bit word(s) from EEPROM through bit-bang method
c44ade9e 956 **/
68c7005d
ET
957s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
958 u16 words, u16 *data)
c44ade9e 959{
68c7005d
ET
960 s32 status = 0;
961 u16 i, count;
c44ade9e
JB
962
963 hw->eeprom.ops.init_params(hw);
964
68c7005d
ET
965 if (words == 0) {
966 status = IXGBE_ERR_INVALID_ARGUMENT;
967 goto out;
968 }
969
970 if (offset + words > hw->eeprom.word_size) {
c44ade9e
JB
971 status = IXGBE_ERR_EEPROM;
972 goto out;
973 }
974
68c7005d
ET
975 /*
976 * We cannot hold synchronization semaphores for too long
977 * to avoid other entity starvation. However it is more efficient
978 * to read in bursts than synchronizing access for each word.
979 */
980 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
981 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
982 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
983
984 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
985 count, &data[i]);
986
987 if (status != 0)
988 break;
989 }
990
991out:
992 return status;
993}
994
995/**
996 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
997 * @hw: pointer to hardware structure
998 * @offset: offset within the EEPROM to be read
999 * @words: number of word(s)
1000 * @data: read 16 bit word(s) from EEPROM
1001 *
1002 * Reads 16 bit word(s) from EEPROM through bit-bang method
1003 **/
1004static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1005 u16 words, u16 *data)
1006{
1007 s32 status;
1008 u16 word_in;
1009 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1010 u16 i;
1011
c44ade9e
JB
1012 /* Prepare the EEPROM for reading */
1013 status = ixgbe_acquire_eeprom(hw);
1014
1015 if (status == 0) {
1016 if (ixgbe_ready_eeprom(hw) != 0) {
1017 ixgbe_release_eeprom(hw);
1018 status = IXGBE_ERR_EEPROM;
1019 }
1020 }
1021
1022 if (status == 0) {
68c7005d
ET
1023 for (i = 0; i < words; i++) {
1024 ixgbe_standby_eeprom(hw);
1025 /*
1026 * Some SPI eeproms use the 8th address bit embedded
1027 * in the opcode
1028 */
1029 if ((hw->eeprom.address_bits == 8) &&
1030 ((offset + i) >= 128))
1031 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1032
1033 /* Send the READ command (opcode + addr) */
1034 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1035 IXGBE_EEPROM_OPCODE_BITS);
1036 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1037 hw->eeprom.address_bits);
1038
1039 /* Read the data. */
1040 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1041 data[i] = (word_in >> 8) | (word_in << 8);
1042 }
c44ade9e 1043
68c7005d
ET
1044 /* End this read operation */
1045 ixgbe_release_eeprom(hw);
1046 }
c44ade9e 1047
68c7005d
ET
1048 return status;
1049}
c44ade9e 1050
68c7005d
ET
1051/**
1052 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1053 * @hw: pointer to hardware structure
1054 * @offset: offset within the EEPROM to be read
1055 * @data: read 16 bit value from EEPROM
1056 *
1057 * Reads 16 bit value from EEPROM through bit-bang method
1058 **/
1059s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1060 u16 *data)
1061{
1062 s32 status;
c44ade9e 1063
68c7005d
ET
1064 hw->eeprom.ops.init_params(hw);
1065
1066 if (offset >= hw->eeprom.word_size) {
1067 status = IXGBE_ERR_EEPROM;
1068 goto out;
c44ade9e
JB
1069 }
1070
68c7005d
ET
1071 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1072
c44ade9e
JB
1073out:
1074 return status;
1075}
1076
1077/**
68c7005d 1078 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
9a799d71 1079 * @hw: pointer to hardware structure
68c7005d
ET
1080 * @offset: offset of word in the EEPROM to read
1081 * @words: number of word(s)
1082 * @data: 16 bit word(s) from the EEPROM
9a799d71 1083 *
68c7005d 1084 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
9a799d71 1085 **/
68c7005d
ET
1086s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1087 u16 words, u16 *data)
9a799d71
AK
1088{
1089 u32 eerd;
68c7005d
ET
1090 s32 status = 0;
1091 u32 i;
9a799d71 1092
c44ade9e
JB
1093 hw->eeprom.ops.init_params(hw);
1094
68c7005d
ET
1095 if (words == 0) {
1096 status = IXGBE_ERR_INVALID_ARGUMENT;
1097 goto out;
1098 }
1099
c44ade9e
JB
1100 if (offset >= hw->eeprom.word_size) {
1101 status = IXGBE_ERR_EEPROM;
1102 goto out;
1103 }
1104
68c7005d
ET
1105 for (i = 0; i < words; i++) {
1106 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1107 IXGBE_EEPROM_RW_REG_START;
9a799d71 1108
68c7005d
ET
1109 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1110 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
9a799d71 1111
68c7005d
ET
1112 if (status == 0) {
1113 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1114 IXGBE_EEPROM_RW_REG_DATA);
1115 } else {
1116 hw_dbg(hw, "Eeprom read timed out\n");
1117 goto out;
1118 }
1119 }
1120out:
1121 return status;
1122}
9a799d71 1123
68c7005d
ET
1124/**
1125 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1126 * @hw: pointer to hardware structure
1127 * @offset: offset within the EEPROM to be used as a scratch pad
1128 *
1129 * Discover EEPROM page size by writing marching data at given offset.
1130 * This function is called only when we are writing a new large buffer
1131 * at given offset so the data would be overwritten anyway.
1132 **/
1133static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1134 u16 offset)
1135{
1136 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1137 s32 status = 0;
1138 u16 i;
1139
1140 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1141 data[i] = i;
1142
1143 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1144 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1145 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1146 hw->eeprom.word_page_size = 0;
1147 if (status != 0)
1148 goto out;
1149
1150 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1151 if (status != 0)
1152 goto out;
1153
1154 /*
1155 * When writing in burst more than the actual page size
1156 * EEPROM address wraps around current page.
1157 */
1158 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1159
1160 hw_dbg(hw, "Detected EEPROM page size = %d words.",
1161 hw->eeprom.word_page_size);
c44ade9e 1162out:
9a799d71
AK
1163 return status;
1164}
1165
eb9c3e3e 1166/**
68c7005d
ET
1167 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1168 * @hw: pointer to hardware structure
1169 * @offset: offset of word in the EEPROM to read
1170 * @data: word read from the EEPROM
1171 *
1172 * Reads a 16 bit word from the EEPROM using the EERD register.
1173 **/
1174s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1175{
1176 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1177}
1178
1179/**
1180 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
eb9c3e3e
ET
1181 * @hw: pointer to hardware structure
1182 * @offset: offset of word in the EEPROM to write
68c7005d
ET
1183 * @words: number of words
1184 * @data: word(s) write to the EEPROM
eb9c3e3e 1185 *
68c7005d 1186 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
eb9c3e3e 1187 **/
68c7005d
ET
1188s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1189 u16 words, u16 *data)
eb9c3e3e
ET
1190{
1191 u32 eewr;
68c7005d
ET
1192 s32 status = 0;
1193 u16 i;
eb9c3e3e
ET
1194
1195 hw->eeprom.ops.init_params(hw);
1196
68c7005d
ET
1197 if (words == 0) {
1198 status = IXGBE_ERR_INVALID_ARGUMENT;
1199 goto out;
1200 }
1201
eb9c3e3e
ET
1202 if (offset >= hw->eeprom.word_size) {
1203 status = IXGBE_ERR_EEPROM;
1204 goto out;
1205 }
1206
68c7005d
ET
1207 for (i = 0; i < words; i++) {
1208 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1209 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1210 IXGBE_EEPROM_RW_REG_START;
eb9c3e3e 1211
68c7005d
ET
1212 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1213 if (status != 0) {
1214 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1215 goto out;
1216 }
eb9c3e3e 1217
68c7005d 1218 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
eb9c3e3e 1219
68c7005d
ET
1220 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1221 if (status != 0) {
1222 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1223 goto out;
1224 }
eb9c3e3e
ET
1225 }
1226
1227out:
1228 return status;
1229}
1230
68c7005d
ET
1231/**
1232 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1233 * @hw: pointer to hardware structure
1234 * @offset: offset of word in the EEPROM to write
1235 * @data: word write to the EEPROM
1236 *
1237 * Write a 16 bit word to the EEPROM using the EEWR register.
1238 **/
1239s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1240{
1241 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1242}
1243
9a799d71 1244/**
21ce849b 1245 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
9a799d71 1246 * @hw: pointer to hardware structure
21ce849b 1247 * @ee_reg: EEPROM flag for polling
9a799d71 1248 *
21ce849b
MC
1249 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1250 * read or write is done respectively.
9a799d71 1251 **/
eb9c3e3e 1252static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
9a799d71
AK
1253{
1254 u32 i;
1255 u32 reg;
1256 s32 status = IXGBE_ERR_EEPROM;
1257
21ce849b
MC
1258 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1259 if (ee_reg == IXGBE_NVM_POLL_READ)
1260 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1261 else
1262 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1263
1264 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
9a799d71
AK
1265 status = 0;
1266 break;
1267 }
1268 udelay(5);
1269 }
1270 return status;
1271}
1272
c44ade9e
JB
1273/**
1274 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1275 * @hw: pointer to hardware structure
1276 *
1277 * Prepares EEPROM for access using bit-bang method. This function should
1278 * be called before issuing a command to the EEPROM.
1279 **/
1280static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1281{
1282 s32 status = 0;
dbf893ee 1283 u32 eec;
c44ade9e
JB
1284 u32 i;
1285
5e655105 1286 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
c44ade9e
JB
1287 status = IXGBE_ERR_SWFW_SYNC;
1288
1289 if (status == 0) {
1290 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1291
1292 /* Request EEPROM Access */
1293 eec |= IXGBE_EEC_REQ;
1294 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1295
1296 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1297 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1298 if (eec & IXGBE_EEC_GNT)
1299 break;
1300 udelay(5);
1301 }
1302
1303 /* Release if grant not acquired */
1304 if (!(eec & IXGBE_EEC_GNT)) {
1305 eec &= ~IXGBE_EEC_REQ;
1306 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1307 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1308
5e655105 1309 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
c44ade9e
JB
1310 status = IXGBE_ERR_EEPROM;
1311 }
c44ade9e 1312
dbf893ee
ET
1313 /* Setup EEPROM for Read/Write */
1314 if (status == 0) {
1315 /* Clear CS and SK */
1316 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1317 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1318 IXGBE_WRITE_FLUSH(hw);
1319 udelay(1);
1320 }
c44ade9e
JB
1321 }
1322 return status;
1323}
1324
9a799d71
AK
1325/**
1326 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1327 * @hw: pointer to hardware structure
1328 *
1329 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1330 **/
1331static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1332{
1333 s32 status = IXGBE_ERR_EEPROM;
dbf893ee 1334 u32 timeout = 2000;
9a799d71
AK
1335 u32 i;
1336 u32 swsm;
1337
9a799d71
AK
1338 /* Get SMBI software semaphore between device drivers first */
1339 for (i = 0; i < timeout; i++) {
1340 /*
1341 * If the SMBI bit is 0 when we read it, then the bit will be
1342 * set and we have the semaphore
1343 */
1344 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1345 if (!(swsm & IXGBE_SWSM_SMBI)) {
1346 status = 0;
1347 break;
1348 }
dbf893ee 1349 udelay(50);
9a799d71
AK
1350 }
1351
51275d37
ET
1352 if (i == timeout) {
1353 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1354 "not granted.\n");
1355 /*
1356 * this release is particularly important because our attempts
1357 * above to get the semaphore may have succeeded, and if there
1358 * was a timeout, we should unconditionally clear the semaphore
1359 * bits to free the driver to make progress
1360 */
1361 ixgbe_release_eeprom_semaphore(hw);
1362
1363 udelay(50);
1364 /*
1365 * one last try
1366 * If the SMBI bit is 0 when we read it, then the bit will be
1367 * set and we have the semaphore
1368 */
1369 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1370 if (!(swsm & IXGBE_SWSM_SMBI))
1371 status = 0;
1372 }
1373
9a799d71
AK
1374 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1375 if (status == 0) {
1376 for (i = 0; i < timeout; i++) {
1377 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1378
1379 /* Set the SW EEPROM semaphore bit to request access */
1380 swsm |= IXGBE_SWSM_SWESMBI;
1381 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1382
1383 /*
1384 * If we set the bit successfully then we got the
1385 * semaphore.
1386 */
1387 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1388 if (swsm & IXGBE_SWSM_SWESMBI)
1389 break;
1390
1391 udelay(50);
1392 }
1393
1394 /*
1395 * Release semaphores and return error if SW EEPROM semaphore
1396 * was not granted because we don't have access to the EEPROM
1397 */
1398 if (i >= timeout) {
dbf893ee 1399 hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
b4617240 1400 "not granted.\n");
9a799d71
AK
1401 ixgbe_release_eeprom_semaphore(hw);
1402 status = IXGBE_ERR_EEPROM;
1403 }
dbf893ee
ET
1404 } else {
1405 hw_dbg(hw, "Software semaphore SMBI between device drivers "
1406 "not granted.\n");
9a799d71
AK
1407 }
1408
1409 return status;
1410}
1411
1412/**
1413 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1414 * @hw: pointer to hardware structure
1415 *
1416 * This function clears hardware semaphore bits.
1417 **/
1418static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1419{
1420 u32 swsm;
1421
1422 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1423
1424 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1425 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1426 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
3957d63d 1427 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
1428}
1429
c44ade9e
JB
1430/**
1431 * ixgbe_ready_eeprom - Polls for EEPROM ready
1432 * @hw: pointer to hardware structure
1433 **/
1434static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1435{
1436 s32 status = 0;
1437 u16 i;
1438 u8 spi_stat_reg;
1439
1440 /*
1441 * Read "Status Register" repeatedly until the LSB is cleared. The
1442 * EEPROM will signal that the command has been completed by clearing
1443 * bit 0 of the internal status register. If it's not cleared within
1444 * 5 milliseconds, then error out.
1445 */
1446 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1447 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1448 IXGBE_EEPROM_OPCODE_BITS);
1449 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1450 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1451 break;
1452
1453 udelay(5);
1454 ixgbe_standby_eeprom(hw);
6403eab1 1455 }
c44ade9e
JB
1456
1457 /*
1458 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1459 * devices (and only 0-5mSec on 5V devices)
1460 */
1461 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1462 hw_dbg(hw, "SPI EEPROM Status error\n");
1463 status = IXGBE_ERR_EEPROM;
1464 }
1465
1466 return status;
1467}
1468
1469/**
1470 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1471 * @hw: pointer to hardware structure
1472 **/
1473static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1474{
1475 u32 eec;
1476
1477 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1478
1479 /* Toggle CS to flush commands */
1480 eec |= IXGBE_EEC_CS;
1481 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1482 IXGBE_WRITE_FLUSH(hw);
1483 udelay(1);
1484 eec &= ~IXGBE_EEC_CS;
1485 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1486 IXGBE_WRITE_FLUSH(hw);
1487 udelay(1);
1488}
1489
1490/**
1491 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1492 * @hw: pointer to hardware structure
1493 * @data: data to send to the EEPROM
1494 * @count: number of bits to shift out
1495 **/
1496static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1497 u16 count)
1498{
1499 u32 eec;
1500 u32 mask;
1501 u32 i;
1502
1503 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1504
1505 /*
1506 * Mask is used to shift "count" bits of "data" out to the EEPROM
1507 * one bit at a time. Determine the starting bit based on count
1508 */
1509 mask = 0x01 << (count - 1);
1510
1511 for (i = 0; i < count; i++) {
1512 /*
1513 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1514 * "1", and then raising and then lowering the clock (the SK
1515 * bit controls the clock input to the EEPROM). A "0" is
1516 * shifted out to the EEPROM by setting "DI" to "0" and then
1517 * raising and then lowering the clock.
1518 */
1519 if (data & mask)
1520 eec |= IXGBE_EEC_DI;
1521 else
1522 eec &= ~IXGBE_EEC_DI;
1523
1524 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1525 IXGBE_WRITE_FLUSH(hw);
1526
1527 udelay(1);
1528
1529 ixgbe_raise_eeprom_clk(hw, &eec);
1530 ixgbe_lower_eeprom_clk(hw, &eec);
1531
1532 /*
1533 * Shift mask to signify next bit of data to shift in to the
1534 * EEPROM
1535 */
1536 mask = mask >> 1;
6403eab1 1537 }
c44ade9e
JB
1538
1539 /* We leave the "DI" bit set to "0" when we leave this routine. */
1540 eec &= ~IXGBE_EEC_DI;
1541 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1542 IXGBE_WRITE_FLUSH(hw);
1543}
1544
1545/**
1546 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1547 * @hw: pointer to hardware structure
1548 **/
1549static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1550{
1551 u32 eec;
1552 u32 i;
1553 u16 data = 0;
1554
1555 /*
1556 * In order to read a register from the EEPROM, we need to shift
1557 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1558 * the clock input to the EEPROM (setting the SK bit), and then reading
1559 * the value of the "DO" bit. During this "shifting in" process the
1560 * "DI" bit should always be clear.
1561 */
1562 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1563
1564 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1565
1566 for (i = 0; i < count; i++) {
1567 data = data << 1;
1568 ixgbe_raise_eeprom_clk(hw, &eec);
1569
1570 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1571
1572 eec &= ~(IXGBE_EEC_DI);
1573 if (eec & IXGBE_EEC_DO)
1574 data |= 1;
1575
1576 ixgbe_lower_eeprom_clk(hw, &eec);
1577 }
1578
1579 return data;
1580}
1581
1582/**
1583 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1584 * @hw: pointer to hardware structure
1585 * @eec: EEC register's current value
1586 **/
1587static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1588{
1589 /*
1590 * Raise the clock input to the EEPROM
1591 * (setting the SK bit), then delay
1592 */
1593 *eec = *eec | IXGBE_EEC_SK;
1594 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1595 IXGBE_WRITE_FLUSH(hw);
1596 udelay(1);
1597}
1598
1599/**
1600 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1601 * @hw: pointer to hardware structure
1602 * @eecd: EECD's current value
1603 **/
1604static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1605{
1606 /*
1607 * Lower the clock input to the EEPROM (clearing the SK bit), then
1608 * delay
1609 */
1610 *eec = *eec & ~IXGBE_EEC_SK;
1611 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1612 IXGBE_WRITE_FLUSH(hw);
1613 udelay(1);
1614}
1615
1616/**
1617 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1618 * @hw: pointer to hardware structure
1619 **/
1620static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1621{
1622 u32 eec;
1623
1624 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1625
1626 eec |= IXGBE_EEC_CS; /* Pull CS high */
1627 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1628
1629 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1630 IXGBE_WRITE_FLUSH(hw);
1631
1632 udelay(1);
1633
1634 /* Stop requesting EEPROM access */
1635 eec &= ~IXGBE_EEC_REQ;
1636 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1637
90827996 1638 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
dbf893ee 1639
032b4325
DS
1640 /*
1641 * Delay before attempt to obtain semaphore again to allow FW
1642 * access. semaphore_delay is in ms we need us for usleep_range
1643 */
1644 usleep_range(hw->eeprom.semaphore_delay * 1000,
1645 hw->eeprom.semaphore_delay * 2000);
c44ade9e
JB
1646}
1647
9a799d71 1648/**
dbf893ee 1649 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
9a799d71
AK
1650 * @hw: pointer to hardware structure
1651 **/
a391f1d5 1652u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
9a799d71
AK
1653{
1654 u16 i;
1655 u16 j;
1656 u16 checksum = 0;
1657 u16 length = 0;
1658 u16 pointer = 0;
1659 u16 word = 0;
1660
1661 /* Include 0x0-0x3F in the checksum */
1662 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
c44ade9e 1663 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
9a799d71
AK
1664 hw_dbg(hw, "EEPROM read failed\n");
1665 break;
1666 }
1667 checksum += word;
1668 }
1669
1670 /* Include all data from pointers except for the fw pointer */
1671 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
c44ade9e 1672 hw->eeprom.ops.read(hw, i, &pointer);
9a799d71
AK
1673
1674 /* Make sure the pointer seems valid */
1675 if (pointer != 0xFFFF && pointer != 0) {
c44ade9e 1676 hw->eeprom.ops.read(hw, pointer, &length);
9a799d71
AK
1677
1678 if (length != 0xFFFF && length != 0) {
1679 for (j = pointer+1; j <= pointer+length; j++) {
c44ade9e 1680 hw->eeprom.ops.read(hw, j, &word);
9a799d71
AK
1681 checksum += word;
1682 }
1683 }
1684 }
1685 }
1686
1687 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1688
1689 return checksum;
1690}
1691
1692/**
c44ade9e 1693 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
9a799d71
AK
1694 * @hw: pointer to hardware structure
1695 * @checksum_val: calculated checksum
1696 *
1697 * Performs checksum calculation and validates the EEPROM checksum. If the
1698 * caller does not need checksum_val, the value can be NULL.
1699 **/
c44ade9e
JB
1700s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1701 u16 *checksum_val)
9a799d71
AK
1702{
1703 s32 status;
1704 u16 checksum;
1705 u16 read_checksum = 0;
1706
1707 /*
1708 * Read the first word from the EEPROM. If this times out or fails, do
1709 * not continue or we could be in for a very long wait while every
1710 * EEPROM read fails
1711 */
c44ade9e 1712 status = hw->eeprom.ops.read(hw, 0, &checksum);
9a799d71
AK
1713
1714 if (status == 0) {
a391f1d5 1715 checksum = hw->eeprom.ops.calc_checksum(hw);
9a799d71 1716
c44ade9e 1717 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
9a799d71
AK
1718
1719 /*
1720 * Verify read checksum from EEPROM is the same as
1721 * calculated checksum
1722 */
1723 if (read_checksum != checksum)
1724 status = IXGBE_ERR_EEPROM_CHECKSUM;
1725
1726 /* If the user cares, return the calculated checksum */
1727 if (checksum_val)
1728 *checksum_val = checksum;
1729 } else {
1730 hw_dbg(hw, "EEPROM read failed\n");
1731 }
1732
1733 return status;
1734}
1735
c44ade9e
JB
1736/**
1737 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1738 * @hw: pointer to hardware structure
1739 **/
1740s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1741{
1742 s32 status;
1743 u16 checksum;
1744
1745 /*
1746 * Read the first word from the EEPROM. If this times out or fails, do
1747 * not continue or we could be in for a very long wait while every
1748 * EEPROM read fails
1749 */
1750 status = hw->eeprom.ops.read(hw, 0, &checksum);
1751
1752 if (status == 0) {
a391f1d5 1753 checksum = hw->eeprom.ops.calc_checksum(hw);
c44ade9e 1754 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
8c7bea32 1755 checksum);
c44ade9e
JB
1756 } else {
1757 hw_dbg(hw, "EEPROM read failed\n");
1758 }
1759
1760 return status;
1761}
1762
9a799d71
AK
1763/**
1764 * ixgbe_validate_mac_addr - Validate MAC address
1765 * @mac_addr: pointer to MAC address.
1766 *
1767 * Tests a MAC address to ensure it is a valid Individual Address
1768 **/
1769s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1770{
1771 s32 status = 0;
1772
1773 /* Make sure it is not a multicast address */
1774 if (IXGBE_IS_MULTICAST(mac_addr))
1775 status = IXGBE_ERR_INVALID_MAC_ADDR;
1776 /* Not a broadcast address */
1777 else if (IXGBE_IS_BROADCAST(mac_addr))
1778 status = IXGBE_ERR_INVALID_MAC_ADDR;
1779 /* Reject the zero address */
1780 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
c44ade9e 1781 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
9a799d71
AK
1782 status = IXGBE_ERR_INVALID_MAC_ADDR;
1783
1784 return status;
1785}
1786
1787/**
c44ade9e 1788 * ixgbe_set_rar_generic - Set Rx address register
9a799d71 1789 * @hw: pointer to hardware structure
9a799d71 1790 * @index: Receive address register to write
c44ade9e
JB
1791 * @addr: Address to put into receive address register
1792 * @vmdq: VMDq "set" or "pool" index
9a799d71
AK
1793 * @enable_addr: set flag that address is active
1794 *
1795 * Puts an ethernet address into a receive address register.
1796 **/
c44ade9e
JB
1797s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1798 u32 enable_addr)
9a799d71
AK
1799{
1800 u32 rar_low, rar_high;
c44ade9e
JB
1801 u32 rar_entries = hw->mac.num_rar_entries;
1802
c700f4e6
ET
1803 /* Make sure we are using a valid rar index range */
1804 if (index >= rar_entries) {
1805 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1806 return IXGBE_ERR_INVALID_ARGUMENT;
1807 }
1808
c44ade9e
JB
1809 /* setup VMDq pool selection before this RAR gets enabled */
1810 hw->mac.ops.set_vmdq(hw, index, vmdq);
9a799d71 1811
c700f4e6
ET
1812 /*
1813 * HW expects these in little endian so we reverse the byte
1814 * order from network order (big endian) to little endian
1815 */
1816 rar_low = ((u32)addr[0] |
1817 ((u32)addr[1] << 8) |
1818 ((u32)addr[2] << 16) |
1819 ((u32)addr[3] << 24));
1820 /*
1821 * Some parts put the VMDq setting in the extra RAH bits,
1822 * so save everything except the lower 16 bits that hold part
1823 * of the address and the address valid bit.
1824 */
1825 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1826 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1827 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
9a799d71 1828
c700f4e6
ET
1829 if (enable_addr != 0)
1830 rar_high |= IXGBE_RAH_AV;
9a799d71 1831
c700f4e6
ET
1832 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1833 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
c44ade9e
JB
1834
1835 return 0;
1836}
1837
1838/**
1839 * ixgbe_clear_rar_generic - Remove Rx address register
1840 * @hw: pointer to hardware structure
1841 * @index: Receive address register to write
1842 *
1843 * Clears an ethernet address from a receive address register.
1844 **/
1845s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1846{
1847 u32 rar_high;
1848 u32 rar_entries = hw->mac.num_rar_entries;
1849
1850 /* Make sure we are using a valid rar index range */
c700f4e6 1851 if (index >= rar_entries) {
c44ade9e 1852 hw_dbg(hw, "RAR index %d is out of range.\n", index);
c700f4e6 1853 return IXGBE_ERR_INVALID_ARGUMENT;
c44ade9e
JB
1854 }
1855
c700f4e6
ET
1856 /*
1857 * Some parts put the VMDq setting in the extra RAH bits,
1858 * so save everything except the lower 16 bits that hold part
1859 * of the address and the address valid bit.
1860 */
1861 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1862 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1863
1864 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1865 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1866
c44ade9e
JB
1867 /* clear VMDq pool/queue selection for this RAR */
1868 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
9a799d71
AK
1869
1870 return 0;
1871}
1872
c44ade9e
JB
1873/**
1874 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
9a799d71
AK
1875 * @hw: pointer to hardware structure
1876 *
1877 * Places the MAC address in receive address register 0 and clears the rest
c44ade9e 1878 * of the receive address registers. Clears the multicast table. Assumes
9a799d71
AK
1879 * the receiver is in reset when the routine is called.
1880 **/
c44ade9e 1881s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
1882{
1883 u32 i;
2c5645cf 1884 u32 rar_entries = hw->mac.num_rar_entries;
9a799d71
AK
1885
1886 /*
1887 * If the current mac address is valid, assume it is a software override
1888 * to the permanent address.
1889 * Otherwise, use the permanent address from the eeprom.
1890 */
1891 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1892 IXGBE_ERR_INVALID_MAC_ADDR) {
1893 /* Get the MAC address from the RAR0 for later reference */
c44ade9e 1894 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
9a799d71 1895
ce7194d8 1896 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
9a799d71
AK
1897 } else {
1898 /* Setup the receive address. */
1899 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
ce7194d8 1900 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
9a799d71 1901
c44ade9e 1902 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
96cc6372
AD
1903
1904 /* clear VMDq pool/queue selection for RAR 0 */
1905 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
9a799d71 1906 }
c44ade9e 1907 hw->addr_ctrl.overflow_promisc = 0;
9a799d71
AK
1908
1909 hw->addr_ctrl.rar_used_count = 1;
1910
1911 /* Zero out the other receive addresses. */
c44ade9e 1912 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
9a799d71
AK
1913 for (i = 1; i < rar_entries; i++) {
1914 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1915 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1916 }
1917
1918 /* Clear the MTA */
9a799d71
AK
1919 hw->addr_ctrl.mta_in_use = 0;
1920 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1921
1922 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1923 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1924 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1925
c44ade9e
JB
1926 if (hw->mac.ops.init_uta_tables)
1927 hw->mac.ops.init_uta_tables(hw);
1928
9a799d71
AK
1929 return 0;
1930}
1931
1932/**
1933 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1934 * @hw: pointer to hardware structure
1935 * @mc_addr: the multicast address
1936 *
1937 * Extracts the 12 bits, from a multicast address, to determine which
1938 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1939 * incoming rx multicast addresses, to determine the bit-vector to check in
1940 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
c44ade9e 1941 * by the MO field of the MCSTCTRL. The MO field is set during initialization
9a799d71
AK
1942 * to mc_filter_type.
1943 **/
1944static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1945{
1946 u32 vector = 0;
1947
1948 switch (hw->mac.mc_filter_type) {
b4617240 1949 case 0: /* use bits [47:36] of the address */
9a799d71
AK
1950 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1951 break;
b4617240 1952 case 1: /* use bits [46:35] of the address */
9a799d71
AK
1953 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1954 break;
b4617240 1955 case 2: /* use bits [45:34] of the address */
9a799d71
AK
1956 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1957 break;
b4617240 1958 case 3: /* use bits [43:32] of the address */
9a799d71
AK
1959 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1960 break;
b4617240 1961 default: /* Invalid mc_filter_type */
9a799d71
AK
1962 hw_dbg(hw, "MC filter type param set incorrectly\n");
1963 break;
1964 }
1965
1966 /* vector can only be 12-bits or boundary will be exceeded */
1967 vector &= 0xFFF;
1968 return vector;
1969}
1970
1971/**
1972 * ixgbe_set_mta - Set bit-vector in multicast table
1973 * @hw: pointer to hardware structure
1974 * @hash_value: Multicast address hash value
1975 *
1976 * Sets the bit-vector in the multicast table.
1977 **/
1978static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1979{
1980 u32 vector;
1981 u32 vector_bit;
1982 u32 vector_reg;
9a799d71
AK
1983
1984 hw->addr_ctrl.mta_in_use++;
1985
1986 vector = ixgbe_mta_vector(hw, mc_addr);
1987 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1988
1989 /*
1990 * The MTA is a register array of 128 32-bit registers. It is treated
1991 * like an array of 4096 bits. We want to set bit
1992 * BitArray[vector_value]. So we figure out what register the bit is
1993 * in, read it, OR in the new bit, then write back the new value. The
1994 * register is determined by the upper 7 bits of the vector value and
1995 * the bit within that register are determined by the lower 5 bits of
1996 * the value.
1997 */
1998 vector_reg = (vector >> 5) & 0x7F;
1999 vector_bit = vector & 0x1F;
80960ab0 2000 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
9a799d71
AK
2001}
2002
9a799d71 2003/**
c44ade9e 2004 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
9a799d71 2005 * @hw: pointer to hardware structure
2853eb89 2006 * @netdev: pointer to net device structure
9a799d71
AK
2007 *
2008 * The given list replaces any existing list. Clears the MC addrs from receive
c44ade9e 2009 * address registers and the multicast table. Uses unused receive address
9a799d71
AK
2010 * registers for the first multicast addresses, and hashes the rest into the
2011 * multicast table.
2012 **/
2853eb89
JP
2013s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2014 struct net_device *netdev)
9a799d71 2015{
22bedad3 2016 struct netdev_hw_addr *ha;
9a799d71 2017 u32 i;
9a799d71
AK
2018
2019 /*
2020 * Set the new number of MC addresses that we are being requested to
2021 * use.
2022 */
2853eb89 2023 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
9a799d71
AK
2024 hw->addr_ctrl.mta_in_use = 0;
2025
80960ab0 2026 /* Clear mta_shadow */
9a799d71 2027 hw_dbg(hw, " Clearing MTA\n");
80960ab0 2028 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
9a799d71 2029
80960ab0 2030 /* Update mta shadow */
22bedad3 2031 netdev_for_each_mc_addr(ha, netdev) {
9a799d71 2032 hw_dbg(hw, " Adding the multicast addresses:\n");
22bedad3 2033 ixgbe_set_mta(hw, ha->addr);
9a799d71
AK
2034 }
2035
2036 /* Enable mta */
80960ab0
ET
2037 for (i = 0; i < hw->mac.mcft_size; i++)
2038 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2039 hw->mac.mta_shadow[i]);
2040
9a799d71
AK
2041 if (hw->addr_ctrl.mta_in_use > 0)
2042 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
b4617240 2043 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
9a799d71 2044
c44ade9e 2045 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
9a799d71
AK
2046 return 0;
2047}
2048
2049/**
c44ade9e 2050 * ixgbe_enable_mc_generic - Enable multicast address in RAR
9a799d71
AK
2051 * @hw: pointer to hardware structure
2052 *
c44ade9e 2053 * Enables multicast address in RAR and the use of the multicast hash table.
9a799d71 2054 **/
c44ade9e 2055s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
9a799d71 2056{
c44ade9e 2057 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
9a799d71 2058
c44ade9e
JB
2059 if (a->mta_in_use > 0)
2060 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2061 hw->mac.mc_filter_type);
9a799d71
AK
2062
2063 return 0;
2064}
2065
2066/**
c44ade9e 2067 * ixgbe_disable_mc_generic - Disable multicast address in RAR
9a799d71 2068 * @hw: pointer to hardware structure
9a799d71 2069 *
c44ade9e 2070 * Disables multicast address in RAR and the use of the multicast hash table.
9a799d71 2071 **/
c44ade9e 2072s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
9a799d71 2073{
c44ade9e 2074 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2b9ade93 2075
c44ade9e
JB
2076 if (a->mta_in_use > 0)
2077 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
9a799d71
AK
2078
2079 return 0;
2080}
2081
11afc1b1 2082/**
620fa036 2083 * ixgbe_fc_enable_generic - Enable flow control
11afc1b1 2084 * @hw: pointer to hardware structure
11afc1b1
PW
2085 *
2086 * Enable flow control according to the current settings.
2087 **/
041441d0 2088s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
11afc1b1
PW
2089{
2090 s32 ret_val = 0;
620fa036 2091 u32 mflcn_reg, fccfg_reg;
11afc1b1 2092 u32 reg;
16b61beb 2093 u32 fcrtl, fcrth;
041441d0 2094 int i;
70b77628 2095
041441d0
AD
2096 /*
2097 * Validate the water mark configuration for packet buffer 0. Zero
2098 * water marks indicate that the packet buffer was not configured
2099 * and the watermarks for packet buffer 0 should always be configured.
2100 */
2101 if (!hw->fc.low_water ||
2102 !hw->fc.high_water[0] ||
2103 !hw->fc.pause_time) {
2104 hw_dbg(hw, "Invalid water mark configuration\n");
2105 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
70b77628 2106 goto out;
041441d0 2107 }
70b77628 2108
620fa036 2109 /* Negotiate the fc mode to use */
786e9a5f 2110 ixgbe_fc_autoneg(hw);
11afc1b1 2111
620fa036 2112 /* Disable any previous flow control settings */
11afc1b1 2113 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
041441d0 2114 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
11afc1b1
PW
2115
2116 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2117 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2118
2119 /*
2120 * The possible values of fc.current_mode are:
2121 * 0: Flow control is completely disabled
2122 * 1: Rx flow control is enabled (we can receive pause frames,
2123 * but not send pause frames).
bb3daa4a
PW
2124 * 2: Tx flow control is enabled (we can send pause frames but
2125 * we do not support receiving pause frames).
11afc1b1
PW
2126 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2127 * other: Invalid.
2128 */
2129 switch (hw->fc.current_mode) {
2130 case ixgbe_fc_none:
620fa036
MC
2131 /*
2132 * Flow control is disabled by software override or autoneg.
2133 * The code below will actually disable it in the HW.
2134 */
11afc1b1
PW
2135 break;
2136 case ixgbe_fc_rx_pause:
2137 /*
2138 * Rx Flow control is enabled and Tx Flow control is
2139 * disabled by software override. Since there really
2140 * isn't a way to advertise that we are capable of RX
2141 * Pause ONLY, we will advertise that we support both
2142 * symmetric and asymmetric Rx PAUSE. Later, we will
2143 * disable the adapter's ability to send PAUSE frames.
2144 */
2145 mflcn_reg |= IXGBE_MFLCN_RFCE;
2146 break;
2147 case ixgbe_fc_tx_pause:
2148 /*
2149 * Tx Flow control is enabled, and Rx Flow control is
2150 * disabled by software override.
2151 */
2152 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2153 break;
2154 case ixgbe_fc_full:
2155 /* Flow control (both Rx and Tx) is enabled by SW override. */
2156 mflcn_reg |= IXGBE_MFLCN_RFCE;
2157 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2158 break;
2159 default:
2160 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 2161 ret_val = IXGBE_ERR_CONFIG;
11afc1b1
PW
2162 goto out;
2163 break;
2164 }
2165
620fa036 2166 /* Set 802.3x based flow control settings. */
2132d381 2167 mflcn_reg |= IXGBE_MFLCN_DPF;
11afc1b1
PW
2168 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2169 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2170
041441d0 2171 fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
264857b8 2172
041441d0
AD
2173 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2174 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2175 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2176 hw->fc.high_water[i]) {
2177 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2178 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2179 } else {
2180 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2181 /*
2182 * In order to prevent Tx hangs when the internal Tx
2183 * switch is enabled we must set the high water mark
2184 * to the maximum FCRTH value. This allows the Tx
2185 * switch to function even under heavy Rx workloads.
2186 */
2187 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2188 }
11afc1b1 2189
041441d0
AD
2190 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2191 }
16b61beb 2192
11afc1b1 2193 /* Configure pause time (2 TCs per register) */
041441d0
AD
2194 reg = hw->fc.pause_time * 0x00010001;
2195 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2196 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2197
2198 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
11afc1b1
PW
2199
2200out:
2201 return ret_val;
2202}
2203
0ecc061d 2204/**
67a79df2 2205 * ixgbe_negotiate_fc - Negotiate flow control
0ecc061d 2206 * @hw: pointer to hardware structure
67a79df2
AD
2207 * @adv_reg: flow control advertised settings
2208 * @lp_reg: link partner's flow control settings
2209 * @adv_sym: symmetric pause bit in advertisement
2210 * @adv_asm: asymmetric pause bit in advertisement
2211 * @lp_sym: symmetric pause bit in link partner advertisement
2212 * @lp_asm: asymmetric pause bit in link partner advertisement
0ecc061d 2213 *
67a79df2
AD
2214 * Find the intersection between advertised settings and link partner's
2215 * advertised settings
0ecc061d 2216 **/
67a79df2
AD
2217static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2218 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
0ecc061d 2219{
67a79df2
AD
2220 if ((!(adv_reg)) || (!(lp_reg)))
2221 return IXGBE_ERR_FC_NOT_NEGOTIATED;
0b0c2b31 2222
67a79df2
AD
2223 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2224 /*
2225 * Now we need to check if the user selected Rx ONLY
2226 * of pause frames. In this case, we had to advertise
2227 * FULL flow control because we could not advertise RX
2228 * ONLY. Hence, we must now check to see if we need to
2229 * turn OFF the TRANSMISSION of PAUSE frames.
2230 */
2231 if (hw->fc.requested_mode == ixgbe_fc_full) {
2232 hw->fc.current_mode = ixgbe_fc_full;
2233 hw_dbg(hw, "Flow Control = FULL.\n");
2234 } else {
2235 hw->fc.current_mode = ixgbe_fc_rx_pause;
2236 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2237 }
2238 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2239 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2240 hw->fc.current_mode = ixgbe_fc_tx_pause;
2241 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2242 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2243 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2244 hw->fc.current_mode = ixgbe_fc_rx_pause;
2245 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
0b0c2b31 2246 } else {
67a79df2
AD
2247 hw->fc.current_mode = ixgbe_fc_none;
2248 hw_dbg(hw, "Flow Control = NONE.\n");
539e5f02 2249 }
67a79df2 2250 return 0;
0b0c2b31
ET
2251}
2252
2253/**
2254 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2255 * @hw: pointer to hardware structure
2256 *
2257 * Enable flow control according on 1 gig fiber.
2258 **/
2259static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2260{
2261 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
786e9a5f 2262 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
539e5f02
PWJ
2263
2264 /*
2265 * On multispeed fiber at 1g, bail out if
2266 * - link is up but AN did not complete, or if
2267 * - link is up and AN completed but timed out
2268 */
0b0c2b31
ET
2269
2270 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
53f096de 2271 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
786e9a5f 2272 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
0b0c2b31 2273 goto out;
539e5f02 2274
0b0c2b31
ET
2275 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2276 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2277
2278 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2279 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2280 IXGBE_PCS1GANA_ASM_PAUSE,
2281 IXGBE_PCS1GANA_SYM_PAUSE,
2282 IXGBE_PCS1GANA_ASM_PAUSE);
2283
2284out:
2285 return ret_val;
2286}
2287
2288/**
2289 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2290 * @hw: pointer to hardware structure
2291 *
2292 * Enable flow control according to IEEE clause 37.
2293 **/
2294static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2295{
2296 u32 links2, anlp1_reg, autoc_reg, links;
786e9a5f 2297 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
0b0c2b31 2298
9bbe3a57 2299 /*
0b0c2b31
ET
2300 * On backplane, bail out if
2301 * - backplane autoneg was not completed, or if
2302 * - we are 82599 and link partner is not AN enabled
9bbe3a57 2303 */
0b0c2b31 2304 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
786e9a5f 2305 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
9bbe3a57 2306 goto out;
9bbe3a57 2307
0b0c2b31
ET
2308 if (hw->mac.type == ixgbe_mac_82599EB) {
2309 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
786e9a5f 2310 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
0b0c2b31 2311 goto out;
0b0c2b31 2312 }
0ecc061d 2313 /*
0b0c2b31 2314 * Read the 10g AN autoc and LP ability registers and resolve
0ecc061d
PWJ
2315 * local flow control settings accordingly
2316 */
0b0c2b31
ET
2317 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2318 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
539e5f02 2319
0b0c2b31
ET
2320 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2321 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2322 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2323
2324out:
2325 return ret_val;
2326}
2327
2328/**
2329 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2330 * @hw: pointer to hardware structure
2331 *
2332 * Enable flow control according to IEEE clause 37.
2333 **/
2334static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2335{
2336 u16 technology_ability_reg = 0;
2337 u16 lp_technology_ability_reg = 0;
2338
2339 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340 MDIO_MMD_AN,
2341 &technology_ability_reg);
2342 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2343 MDIO_MMD_AN,
2344 &lp_technology_ability_reg);
2345
2346 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2347 (u32)lp_technology_ability_reg,
2348 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2349 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2350}
2351
2352/**
67a79df2 2353 * ixgbe_fc_autoneg - Configure flow control
11afc1b1
PW
2354 * @hw: pointer to hardware structure
2355 *
67a79df2
AD
2356 * Compares our advertised flow control capabilities to those advertised by
2357 * our link partner, and determines the proper flow control mode to use.
11afc1b1 2358 **/
67a79df2 2359void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
11afc1b1 2360{
67a79df2
AD
2361 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2362 ixgbe_link_speed speed;
2363 bool link_up;
11afc1b1
PW
2364
2365 /*
67a79df2
AD
2366 * AN should have completed when the cable was plugged in.
2367 * Look for reasons to bail out. Bail out if:
2368 * - FC autoneg is disabled, or if
2369 * - link is not up.
2370 *
2371 * Since we're being called from an LSC, link is already known to be up.
2372 * So use link_up_wait_to_complete=false.
11afc1b1 2373 */
67a79df2 2374 if (hw->fc.disable_fc_autoneg)
620fa036 2375 goto out;
11afc1b1 2376
67a79df2
AD
2377 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2378 if (!link_up)
11afc1b1 2379 goto out;
0b0c2b31
ET
2380
2381 switch (hw->phy.media_type) {
67a79df2 2382 /* Autoneg flow control on fiber adapters */
0b0c2b31 2383 case ixgbe_media_type_fiber:
67a79df2
AD
2384 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2385 ret_val = ixgbe_fc_autoneg_fiber(hw);
2386 break;
2387
2388 /* Autoneg flow control on backplane adapters */
0b0c2b31 2389 case ixgbe_media_type_backplane:
67a79df2 2390 ret_val = ixgbe_fc_autoneg_backplane(hw);
0b0c2b31
ET
2391 break;
2392
67a79df2 2393 /* Autoneg flow control on copper adapters */
0b0c2b31 2394 case ixgbe_media_type_copper:
67a79df2
AD
2395 if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2396 ret_val = ixgbe_fc_autoneg_copper(hw);
0b0c2b31
ET
2397 break;
2398
2399 default:
620fa036 2400 break;
0b0c2b31 2401 }
539e5f02 2402
11afc1b1 2403out:
67a79df2
AD
2404 if (ret_val == 0) {
2405 hw->fc.fc_was_autonegged = true;
2406 } else {
2407 hw->fc.fc_was_autonegged = false;
2408 hw->fc.current_mode = hw->fc.requested_mode;
2409 }
11afc1b1
PW
2410}
2411
9a799d71
AK
2412/**
2413 * ixgbe_disable_pcie_master - Disable PCI-express master access
2414 * @hw: pointer to hardware structure
2415 *
2416 * Disables PCI-Express master access and verifies there are no pending
2417 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2418 * bit hasn't caused the master requests to be disabled, else 0
2419 * is returned signifying master requests disabled.
2420 **/
ff9d1a5a 2421static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
9a799d71 2422{
a4297dc2 2423 struct ixgbe_adapter *adapter = hw->back;
a4297dc2 2424 s32 status = 0;
ff9d1a5a
ET
2425 u32 i;
2426 u16 value;
2427
2428 /* Always set this bit to ensure any future transactions are blocked */
2429 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
a4297dc2 2430
ff9d1a5a 2431 /* Exit if master requests are blocked */
a4297dc2
ET
2432 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2433 goto out;
9a799d71 2434
ff9d1a5a 2435 /* Poll for master request bit to clear */
9a799d71 2436 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
a4297dc2 2437 udelay(100);
ff9d1a5a
ET
2438 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2439 goto out;
a4297dc2
ET
2440 }
2441
ff9d1a5a
ET
2442 /*
2443 * Two consecutive resets are required via CTRL.RST per datasheet
2444 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2445 * of this need. The first reset prevents new master requests from
2446 * being issued by our device. We then must wait 1usec or more for any
2447 * remaining completions from the PCIe bus to trickle in, and then reset
2448 * again to clear out any effects they may have had on our device.
2449 */
a4297dc2 2450 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
ff9d1a5a 2451 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
a4297dc2
ET
2452
2453 /*
2454 * Before proceeding, make sure that the PCIe block does not have
2455 * transactions pending.
2456 */
a4297dc2 2457 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
9a799d71 2458 udelay(100);
ff9d1a5a
ET
2459 pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2460 &value);
2461 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2462 goto out;
9a799d71
AK
2463 }
2464
ff9d1a5a
ET
2465 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2466 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
a4297dc2
ET
2467
2468out:
9a799d71
AK
2469 return status;
2470}
2471
9a799d71 2472/**
c44ade9e 2473 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
9a799d71 2474 * @hw: pointer to hardware structure
c44ade9e 2475 * @mask: Mask to specify which semaphore to acquire
9a799d71 2476 *
da74cd4a 2477 * Acquires the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2478 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2479 **/
2480s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2481{
2482 u32 gssr;
2483 u32 swmask = mask;
2484 u32 fwmask = mask << 5;
2485 s32 timeout = 200;
2486
2487 while (timeout) {
dbf893ee
ET
2488 /*
2489 * SW EEPROM semaphore bit is used for access to all
2490 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2491 */
9a799d71 2492 if (ixgbe_get_eeprom_semaphore(hw))
539e5f02 2493 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2494
2495 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2496 if (!(gssr & (fwmask | swmask)))
2497 break;
2498
2499 /*
2500 * Firmware currently using resource (fwmask) or other software
2501 * thread currently using resource (swmask)
2502 */
2503 ixgbe_release_eeprom_semaphore(hw);
032b4325 2504 usleep_range(5000, 10000);
9a799d71
AK
2505 timeout--;
2506 }
2507
2508 if (!timeout) {
dbf893ee 2509 hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
539e5f02 2510 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2511 }
2512
2513 gssr |= swmask;
2514 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2515
2516 ixgbe_release_eeprom_semaphore(hw);
2517 return 0;
2518}
2519
2520/**
2521 * ixgbe_release_swfw_sync - Release SWFW semaphore
2522 * @hw: pointer to hardware structure
c44ade9e 2523 * @mask: Mask to specify which semaphore to release
9a799d71 2524 *
da74cd4a 2525 * Releases the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2526 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2527 **/
2528void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2529{
2530 u32 gssr;
2531 u32 swmask = mask;
2532
2533 ixgbe_get_eeprom_semaphore(hw);
2534
2535 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2536 gssr &= ~swmask;
2537 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2538
2539 ixgbe_release_eeprom_semaphore(hw);
2540}
2541
d2f5e7f3
AS
2542/**
2543 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2544 * @hw: pointer to hardware structure
2545 *
2546 * Stops the receive data path and waits for the HW to internally
2547 * empty the Rx security block.
2548 **/
2549s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2550{
2551#define IXGBE_MAX_SECRX_POLL 40
2552 int i;
2553 int secrxreg;
2554
2555 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2556 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2557 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2558 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2559 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2560 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2561 break;
2562 else
2563 /* Use interrupt-safe sleep just in case */
db76ad47 2564 udelay(1000);
d2f5e7f3
AS
2565 }
2566
2567 /* For informational purposes only */
2568 if (i >= IXGBE_MAX_SECRX_POLL)
2569 hw_dbg(hw, "Rx unit being enabled before security "
2570 "path fully disabled. Continuing with init.\n");
2571
2572 return 0;
2573
2574}
2575
2576/**
2577 * ixgbe_enable_rx_buff - Enables the receive data path
2578 * @hw: pointer to hardware structure
2579 *
2580 * Enables the receive data path
2581 **/
2582s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2583{
2584 int secrxreg;
2585
2586 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2587 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2588 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2589 IXGBE_WRITE_FLUSH(hw);
2590
2591 return 0;
2592}
2593
11afc1b1
PW
2594/**
2595 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2596 * @hw: pointer to hardware structure
2597 * @regval: register value to write to RXCTRL
2598 *
2599 * Enables the Rx DMA unit
2600 **/
2601s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2602{
2603 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2604
2605 return 0;
2606}
87c12017
PW
2607
2608/**
2609 * ixgbe_blink_led_start_generic - Blink LED based on index.
2610 * @hw: pointer to hardware structure
2611 * @index: led number to blink
2612 **/
2613s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2614{
2615 ixgbe_link_speed speed = 0;
3db1cd5c 2616 bool link_up = false;
87c12017
PW
2617 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2618 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2619
2620 /*
2621 * Link must be up to auto-blink the LEDs;
2622 * Force it if link is down.
2623 */
2624 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2625
2626 if (!link_up) {
50ac58ba 2627 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
87c12017
PW
2628 autoc_reg |= IXGBE_AUTOC_FLU;
2629 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
945a5151 2630 IXGBE_WRITE_FLUSH(hw);
032b4325 2631 usleep_range(10000, 20000);
87c12017
PW
2632 }
2633
2634 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2635 led_reg |= IXGBE_LED_BLINK(index);
2636 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2637 IXGBE_WRITE_FLUSH(hw);
2638
2639 return 0;
2640}
2641
2642/**
2643 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2644 * @hw: pointer to hardware structure
2645 * @index: led number to stop blinking
2646 **/
2647s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2648{
2649 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2650 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2651
2652 autoc_reg &= ~IXGBE_AUTOC_FLU;
2653 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2654 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2655
2656 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2657 led_reg &= ~IXGBE_LED_BLINK(index);
2658 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2659 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2660 IXGBE_WRITE_FLUSH(hw);
2661
2662 return 0;
2663}
21ce849b
MC
2664
2665/**
2666 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2667 * @hw: pointer to hardware structure
2668 * @san_mac_offset: SAN MAC address offset
2669 *
2670 * This function will read the EEPROM location for the SAN MAC address
2671 * pointer, and returns the value at that location. This is used in both
2672 * get and set mac_addr routines.
2673 **/
2674static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2675 u16 *san_mac_offset)
2676{
2677 /*
2678 * First read the EEPROM pointer to see if the MAC addresses are
2679 * available.
2680 */
2681 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2682
2683 return 0;
2684}
2685
2686/**
2687 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2688 * @hw: pointer to hardware structure
2689 * @san_mac_addr: SAN MAC address
2690 *
2691 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2692 * per-port, so set_lan_id() must be called before reading the addresses.
2693 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2694 * upon for non-SFP connections, so we must call it here.
2695 **/
2696s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2697{
2698 u16 san_mac_data, san_mac_offset;
2699 u8 i;
2700
2701 /*
2702 * First read the EEPROM pointer to see if the MAC addresses are
2703 * available. If they're not, no point in calling set_lan_id() here.
2704 */
2705 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2706
2707 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2708 /*
2709 * No addresses available in this EEPROM. It's not an
2710 * error though, so just wipe the local address and return.
2711 */
2712 for (i = 0; i < 6; i++)
2713 san_mac_addr[i] = 0xFF;
2714
2715 goto san_mac_addr_out;
2716 }
2717
2718 /* make sure we know which port we need to program */
2719 hw->mac.ops.set_lan_id(hw);
2720 /* apply the port offset to the address offset */
2721 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2722 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2723 for (i = 0; i < 3; i++) {
2724 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2725 san_mac_addr[i * 2] = (u8)(san_mac_data);
2726 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2727 san_mac_offset++;
2728 }
2729
2730san_mac_addr_out:
2731 return 0;
2732}
2733
2734/**
2735 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2736 * @hw: pointer to hardware structure
2737 *
2738 * Read PCIe configuration space, and get the MSI-X vector count from
2739 * the capabilities table.
2740 **/
71161302 2741u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
21ce849b
MC
2742{
2743 struct ixgbe_adapter *adapter = hw->back;
71161302
ET
2744 u16 msix_count = 1;
2745 u16 max_msix_count;
2746 u16 pcie_offset;
2747
2748 switch (hw->mac.type) {
2749 case ixgbe_mac_82598EB:
2750 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2751 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2752 break;
2753 case ixgbe_mac_82599EB:
2754 case ixgbe_mac_X540:
2755 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2756 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2757 break;
2758 default:
2759 return msix_count;
2760 }
2761
2762 pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
21ce849b
MC
2763 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2764
71161302 2765 /* MSI-X count is zero-based in HW */
21ce849b
MC
2766 msix_count++;
2767
71161302
ET
2768 if (msix_count > max_msix_count)
2769 msix_count = max_msix_count;
2770
21ce849b
MC
2771 return msix_count;
2772}
2773
2774/**
2775 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2776 * @hw: pointer to hardware struct
2777 * @rar: receive address register index to disassociate
2778 * @vmdq: VMDq pool index to remove from the rar
2779 **/
2780s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2781{
2782 u32 mpsar_lo, mpsar_hi;
2783 u32 rar_entries = hw->mac.num_rar_entries;
2784
c700f4e6
ET
2785 /* Make sure we are using a valid rar index range */
2786 if (rar >= rar_entries) {
2787 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2788 return IXGBE_ERR_INVALID_ARGUMENT;
2789 }
21ce849b 2790
c700f4e6
ET
2791 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2792 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
21ce849b 2793
c700f4e6
ET
2794 if (!mpsar_lo && !mpsar_hi)
2795 goto done;
21ce849b 2796
c700f4e6
ET
2797 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2798 if (mpsar_lo) {
2799 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2800 mpsar_lo = 0;
2801 }
2802 if (mpsar_hi) {
2803 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2804 mpsar_hi = 0;
2805 }
2806 } else if (vmdq < 32) {
2807 mpsar_lo &= ~(1 << vmdq);
2808 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
21ce849b 2809 } else {
c700f4e6
ET
2810 mpsar_hi &= ~(1 << (vmdq - 32));
2811 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
21ce849b
MC
2812 }
2813
c700f4e6
ET
2814 /* was that the last pool using this rar? */
2815 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2816 hw->mac.ops.clear_rar(hw, rar);
21ce849b
MC
2817done:
2818 return 0;
2819}
2820
2821/**
2822 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2823 * @hw: pointer to hardware struct
2824 * @rar: receive address register index to associate with a VMDq index
2825 * @vmdq: VMDq pool index
2826 **/
2827s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2828{
2829 u32 mpsar;
2830 u32 rar_entries = hw->mac.num_rar_entries;
2831
c700f4e6
ET
2832 /* Make sure we are using a valid rar index range */
2833 if (rar >= rar_entries) {
21ce849b 2834 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
c700f4e6
ET
2835 return IXGBE_ERR_INVALID_ARGUMENT;
2836 }
2837
2838 if (vmdq < 32) {
2839 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2840 mpsar |= 1 << vmdq;
2841 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2842 } else {
2843 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2844 mpsar |= 1 << (vmdq - 32);
2845 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
21ce849b
MC
2846 }
2847 return 0;
2848}
2849
2850/**
2851 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2852 * @hw: pointer to hardware structure
2853 **/
2854s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2855{
2856 int i;
2857
21ce849b
MC
2858 for (i = 0; i < 128; i++)
2859 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2860
2861 return 0;
2862}
2863
2864/**
2865 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2866 * @hw: pointer to hardware structure
2867 * @vlan: VLAN id to write to VLAN filter
2868 *
2869 * return the VLVF index where this VLAN id should be placed
2870 *
2871 **/
5d5b7c39 2872static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
21ce849b
MC
2873{
2874 u32 bits = 0;
2875 u32 first_empty_slot = 0;
2876 s32 regindex;
2877
2878 /* short cut the special case */
2879 if (vlan == 0)
2880 return 0;
2881
2882 /*
2883 * Search for the vlan id in the VLVF entries. Save off the first empty
2884 * slot found along the way
2885 */
2886 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2887 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2888 if (!bits && !(first_empty_slot))
2889 first_empty_slot = regindex;
2890 else if ((bits & 0x0FFF) == vlan)
2891 break;
2892 }
2893
2894 /*
2895 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2896 * in the VLVF. Else use the first empty VLVF register for this
2897 * vlan id.
2898 */
2899 if (regindex >= IXGBE_VLVF_ENTRIES) {
2900 if (first_empty_slot)
2901 regindex = first_empty_slot;
2902 else {
2903 hw_dbg(hw, "No space in VLVF.\n");
2904 regindex = IXGBE_ERR_NO_SPACE;
2905 }
2906 }
2907
2908 return regindex;
2909}
2910
2911/**
2912 * ixgbe_set_vfta_generic - Set VLAN filter table
2913 * @hw: pointer to hardware structure
2914 * @vlan: VLAN id to write to VLAN filter
2915 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2916 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2917 *
2918 * Turn on/off specified VLAN in the VLAN filter table.
2919 **/
2920s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2921 bool vlan_on)
2922{
2923 s32 regindex;
2924 u32 bitindex;
2925 u32 vfta;
2926 u32 bits;
2927 u32 vt;
2928 u32 targetbit;
2929 bool vfta_changed = false;
2930
2931 if (vlan > 4095)
2932 return IXGBE_ERR_PARAM;
2933
2934 /*
2935 * this is a 2 part operation - first the VFTA, then the
2936 * VLVF and VLVFB if VT Mode is set
2937 * We don't write the VFTA until we know the VLVF part succeeded.
2938 */
2939
2940 /* Part 1
2941 * The VFTA is a bitstring made up of 128 32-bit registers
2942 * that enable the particular VLAN id, much like the MTA:
2943 * bits[11-5]: which register
2944 * bits[4-0]: which bit in the register
2945 */
2946 regindex = (vlan >> 5) & 0x7F;
2947 bitindex = vlan & 0x1F;
2948 targetbit = (1 << bitindex);
2949 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2950
2951 if (vlan_on) {
2952 if (!(vfta & targetbit)) {
2953 vfta |= targetbit;
2954 vfta_changed = true;
2955 }
2956 } else {
2957 if ((vfta & targetbit)) {
2958 vfta &= ~targetbit;
2959 vfta_changed = true;
2960 }
2961 }
2962
2963 /* Part 2
2964 * If VT Mode is set
2965 * Either vlan_on
2966 * make sure the vlan is in VLVF
2967 * set the vind bit in the matching VLVFB
2968 * Or !vlan_on
2969 * clear the pool bit and possibly the vind
2970 */
2971 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2972 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2973 s32 vlvf_index;
2974
2975 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2976 if (vlvf_index < 0)
2977 return vlvf_index;
2978
2979 if (vlan_on) {
2980 /* set the pool bit */
2981 if (vind < 32) {
2982 bits = IXGBE_READ_REG(hw,
2983 IXGBE_VLVFB(vlvf_index*2));
2984 bits |= (1 << vind);
2985 IXGBE_WRITE_REG(hw,
2986 IXGBE_VLVFB(vlvf_index*2),
2987 bits);
2988 } else {
2989 bits = IXGBE_READ_REG(hw,
2990 IXGBE_VLVFB((vlvf_index*2)+1));
2991 bits |= (1 << (vind-32));
2992 IXGBE_WRITE_REG(hw,
2993 IXGBE_VLVFB((vlvf_index*2)+1),
2994 bits);
2995 }
2996 } else {
2997 /* clear the pool bit */
2998 if (vind < 32) {
2999 bits = IXGBE_READ_REG(hw,
3000 IXGBE_VLVFB(vlvf_index*2));
3001 bits &= ~(1 << vind);
3002 IXGBE_WRITE_REG(hw,
3003 IXGBE_VLVFB(vlvf_index*2),
3004 bits);
3005 bits |= IXGBE_READ_REG(hw,
3006 IXGBE_VLVFB((vlvf_index*2)+1));
3007 } else {
3008 bits = IXGBE_READ_REG(hw,
3009 IXGBE_VLVFB((vlvf_index*2)+1));
3010 bits &= ~(1 << (vind-32));
3011 IXGBE_WRITE_REG(hw,
3012 IXGBE_VLVFB((vlvf_index*2)+1),
3013 bits);
3014 bits |= IXGBE_READ_REG(hw,
3015 IXGBE_VLVFB(vlvf_index*2));
3016 }
3017 }
3018
3019 /*
3020 * If there are still bits set in the VLVFB registers
3021 * for the VLAN ID indicated we need to see if the
3022 * caller is requesting that we clear the VFTA entry bit.
3023 * If the caller has requested that we clear the VFTA
3024 * entry bit but there are still pools/VFs using this VLAN
3025 * ID entry then ignore the request. We're not worried
3026 * about the case where we're turning the VFTA VLAN ID
3027 * entry bit on, only when requested to turn it off as
3028 * there may be multiple pools and/or VFs using the
3029 * VLAN ID entry. In that case we cannot clear the
3030 * VFTA bit until all pools/VFs using that VLAN ID have also
3031 * been cleared. This will be indicated by "bits" being
3032 * zero.
3033 */
3034 if (bits) {
3035 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3036 (IXGBE_VLVF_VIEN | vlan));
3037 if (!vlan_on) {
3038 /* someone wants to clear the vfta entry
3039 * but some pools/VFs are still using it.
3040 * Ignore it. */
3041 vfta_changed = false;
3042 }
3043 }
3044 else
3045 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3046 }
3047
3048 if (vfta_changed)
3049 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3050
3051 return 0;
3052}
3053
3054/**
3055 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3056 * @hw: pointer to hardware structure
3057 *
3058 * Clears the VLAN filer table, and the VMDq index associated with the filter
3059 **/
3060s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3061{
3062 u32 offset;
3063
3064 for (offset = 0; offset < hw->mac.vft_size; offset++)
3065 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3066
3067 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3068 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3069 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3070 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3071 }
3072
3073 return 0;
3074}
3075
3076/**
3077 * ixgbe_check_mac_link_generic - Determine link and speed status
3078 * @hw: pointer to hardware structure
3079 * @speed: pointer to link speed
3080 * @link_up: true when link is up
3081 * @link_up_wait_to_complete: bool used to wait for link up or not
3082 *
3083 * Reads the links register to determine if link is up and the current speed
3084 **/
3085s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
8c7bea32 3086 bool *link_up, bool link_up_wait_to_complete)
21ce849b 3087{
48de36c5 3088 u32 links_reg, links_orig;
21ce849b
MC
3089 u32 i;
3090
48de36c5
ET
3091 /* clear the old state */
3092 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3093
21ce849b 3094 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
48de36c5
ET
3095
3096 if (links_orig != links_reg) {
3097 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3098 links_orig, links_reg);
3099 }
3100
21ce849b
MC
3101 if (link_up_wait_to_complete) {
3102 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3103 if (links_reg & IXGBE_LINKS_UP) {
3104 *link_up = true;
3105 break;
3106 } else {
3107 *link_up = false;
3108 }
3109 msleep(100);
3110 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3111 }
3112 } else {
3113 if (links_reg & IXGBE_LINKS_UP)
3114 *link_up = true;
3115 else
3116 *link_up = false;
3117 }
3118
3119 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3120 IXGBE_LINKS_SPEED_10G_82599)
3121 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3122 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
63d778df 3123 IXGBE_LINKS_SPEED_1G_82599)
21ce849b 3124 *speed = IXGBE_LINK_SPEED_1GB_FULL;
63d778df
ET
3125 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3126 IXGBE_LINKS_SPEED_100_82599)
21ce849b 3127 *speed = IXGBE_LINK_SPEED_100_FULL;
63d778df
ET
3128 else
3129 *speed = IXGBE_LINK_SPEED_UNKNOWN;
21ce849b 3130
21ce849b
MC
3131 return 0;
3132}
a391f1d5
DS
3133
3134/**
49ce9c2c 3135 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
a391f1d5
DS
3136 * the EEPROM
3137 * @hw: pointer to hardware structure
3138 * @wwnn_prefix: the alternative WWNN prefix
3139 * @wwpn_prefix: the alternative WWPN prefix
3140 *
3141 * This function will read the EEPROM from the alternative SAN MAC address
3142 * block to check the support for the alternative WWNN/WWPN prefix support.
3143 **/
3144s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3145 u16 *wwpn_prefix)
3146{
3147 u16 offset, caps;
3148 u16 alt_san_mac_blk_offset;
3149
3150 /* clear output first */
3151 *wwnn_prefix = 0xFFFF;
3152 *wwpn_prefix = 0xFFFF;
3153
3154 /* check if alternative SAN MAC is supported */
3155 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3156 &alt_san_mac_blk_offset);
3157
3158 if ((alt_san_mac_blk_offset == 0) ||
3159 (alt_san_mac_blk_offset == 0xFFFF))
3160 goto wwn_prefix_out;
3161
3162 /* check capability in alternative san mac address block */
3163 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3164 hw->eeprom.ops.read(hw, offset, &caps);
3165 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3166 goto wwn_prefix_out;
3167
3168 /* get the corresponding prefix for WWNN/WWPN */
3169 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3170 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3171
3172 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3173 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3174
3175wwn_prefix_out:
3176 return 0;
3177}
a985b6c3
GR
3178
3179/**
3180 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3181 * @hw: pointer to hardware structure
3182 * @enable: enable or disable switch for anti-spoofing
3183 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3184 *
3185 **/
3186void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3187{
3188 int j;
3189 int pf_target_reg = pf >> 3;
3190 int pf_target_shift = pf % 8;
3191 u32 pfvfspoof = 0;
3192
3193 if (hw->mac.type == ixgbe_mac_82598EB)
3194 return;
3195
3196 if (enable)
3197 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3198
3199 /*
3200 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3201 * MAC anti-spoof enables in each register array element.
3202 */
3203 for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3204 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3205
3206 /* If not enabling anti-spoofing then done */
3207 if (!enable)
3208 return;
3209
3210 /*
3211 * The PF should be allowed to spoof so that it can support
3212 * emulation mode NICs. Reset the bit assigned to the PF
3213 */
3214 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3215 pfvfspoof ^= (1 << pf_target_shift);
3216 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3217}
3218
3219/**
3220 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3221 * @hw: pointer to hardware structure
3222 * @enable: enable or disable switch for VLAN anti-spoofing
3223 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3224 *
3225 **/
3226void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3227{
3228 int vf_target_reg = vf >> 3;
3229 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3230 u32 pfvfspoof;
3231
3232 if (hw->mac.type == ixgbe_mac_82598EB)
3233 return;
3234
3235 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3236 if (enable)
3237 pfvfspoof |= (1 << vf_target_shift);
3238 else
3239 pfvfspoof &= ~(1 << vf_target_shift);
3240 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3241}
b776d104
ET
3242
3243/**
3244 * ixgbe_get_device_caps_generic - Get additional device capabilities
3245 * @hw: pointer to hardware structure
3246 * @device_caps: the EEPROM word with the extra device capabilities
3247 *
3248 * This function will read the EEPROM location for the device capabilities,
3249 * and return the word through device_caps.
3250 **/
3251s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3252{
3253 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3254
3255 return 0;
3256}
80605c65
JF
3257
3258/**
3259 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3260 * @hw: pointer to hardware structure
3261 * @num_pb: number of packet buffers to allocate
3262 * @headroom: reserve n KB of headroom
3263 * @strategy: packet buffer allocation strategy
3264 **/
3265void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3266 int num_pb,
3267 u32 headroom,
3268 int strategy)
3269{
3270 u32 pbsize = hw->mac.rx_pb_size;
3271 int i = 0;
3272 u32 rxpktsize, txpktsize, txpbthresh;
3273
3274 /* Reserve headroom */
3275 pbsize -= headroom;
3276
3277 if (!num_pb)
3278 num_pb = 1;
3279
3280 /* Divide remaining packet buffer space amongst the number
3281 * of packet buffers requested using supplied strategy.
3282 */
3283 switch (strategy) {
3284 case (PBA_STRATEGY_WEIGHTED):
3285 /* pba_80_48 strategy weight first half of packet buffer with
3286 * 5/8 of the packet buffer space.
3287 */
3288 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3289 pbsize -= rxpktsize * (num_pb / 2);
3290 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3291 for (; i < (num_pb / 2); i++)
3292 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3293 /* Fall through to configure remaining packet buffers */
3294 case (PBA_STRATEGY_EQUAL):
3295 /* Divide the remaining Rx packet buffer evenly among the TCs */
3296 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3297 for (; i < num_pb; i++)
3298 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3299 break;
3300 default:
3301 break;
3302 }
3303
3304 /*
3305 * Setup Tx packet buffer and threshold equally for all TCs
3306 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3307 * 10 since the largest packet we support is just over 9K.
3308 */
3309 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3310 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3311 for (i = 0; i < num_pb; i++) {
3312 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3313 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3314 }
3315
3316 /* Clear unused TCs, if any, to zero buffer size*/
3317 for (; i < IXGBE_MAX_PB; i++) {
3318 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3319 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3320 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3321 }
3322}
9612de92
ET
3323
3324/**
3325 * ixgbe_calculate_checksum - Calculate checksum for buffer
3326 * @buffer: pointer to EEPROM
3327 * @length: size of EEPROM to calculate a checksum for
49ce9c2c 3328 *
9612de92
ET
3329 * Calculates the checksum for some buffer on a specified length. The
3330 * checksum calculated is returned.
3331 **/
3332static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3333{
3334 u32 i;
3335 u8 sum = 0;
3336
3337 if (!buffer)
3338 return 0;
3339
3340 for (i = 0; i < length; i++)
3341 sum += buffer[i];
3342
3343 return (u8) (0 - sum);
3344}
3345
3346/**
3347 * ixgbe_host_interface_command - Issue command to manageability block
3348 * @hw: pointer to the HW structure
3349 * @buffer: contains the command to write and where the return status will
3350 * be placed
c466d7a7 3351 * @length: length of buffer, must be multiple of 4 bytes
9612de92
ET
3352 *
3353 * Communicates with the manageability block. On success return 0
3354 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3355 **/
79488c58 3356static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
9612de92
ET
3357 u32 length)
3358{
331bcf45 3359 u32 hicr, i, bi;
9612de92
ET
3360 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3361 u8 buf_len, dword_len;
3362
3363 s32 ret_val = 0;
3364
3365 if (length == 0 || length & 0x3 ||
3366 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3367 hw_dbg(hw, "Buffer length failure.\n");
3368 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3369 goto out;
3370 }
3371
3372 /* Check that the host interface is enabled. */
3373 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3374 if ((hicr & IXGBE_HICR_EN) == 0) {
3375 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3376 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3377 goto out;
3378 }
3379
3380 /* Calculate length in DWORDs */
3381 dword_len = length >> 2;
3382
3383 /*
3384 * The device driver writes the relevant command block
3385 * into the ram area.
3386 */
3387 for (i = 0; i < dword_len; i++)
3388 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
79488c58 3389 i, cpu_to_le32(buffer[i]));
9612de92
ET
3390
3391 /* Setting this bit tells the ARC that a new command is pending. */
3392 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3393
3394 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3395 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3396 if (!(hicr & IXGBE_HICR_C))
3397 break;
3398 usleep_range(1000, 2000);
3399 }
3400
3401 /* Check command successful completion. */
3402 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3403 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3404 hw_dbg(hw, "Command has failed with no status valid.\n");
3405 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3406 goto out;
3407 }
3408
3409 /* Calculate length in DWORDs */
3410 dword_len = hdr_size >> 2;
3411
3412 /* first pull in the header so we know the buffer length */
331bcf45
ET
3413 for (bi = 0; bi < dword_len; bi++) {
3414 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3415 le32_to_cpus(&buffer[bi]);
79488c58 3416 }
9612de92
ET
3417
3418 /* If there is any thing in data position pull it in */
3419 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3420 if (buf_len == 0)
3421 goto out;
3422
3423 if (length < (buf_len + hdr_size)) {
3424 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3425 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3426 goto out;
3427 }
3428
331bcf45
ET
3429 /* Calculate length in DWORDs, add 3 for odd lengths */
3430 dword_len = (buf_len + 3) >> 2;
9612de92 3431
331bcf45
ET
3432 /* Pull in the rest of the buffer (bi is where we left off)*/
3433 for (; bi <= dword_len; bi++) {
3434 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3435 le32_to_cpus(&buffer[bi]);
3436 }
9612de92
ET
3437
3438out:
3439 return ret_val;
3440}
3441
3442/**
3443 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3444 * @hw: pointer to the HW structure
3445 * @maj: driver version major number
3446 * @min: driver version minor number
3447 * @build: driver version build number
3448 * @sub: driver version sub build number
3449 *
3450 * Sends driver version number to firmware through the manageability
3451 * block. On success return 0
3452 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3453 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3454 **/
3455s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3456 u8 build, u8 sub)
3457{
3458 struct ixgbe_hic_drv_info fw_cmd;
3459 int i;
3460 s32 ret_val = 0;
3461
3462 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3463 ret_val = IXGBE_ERR_SWFW_SYNC;
3464 goto out;
3465 }
3466
3467 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3468 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3469 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3470 fw_cmd.port_num = (u8)hw->bus.func;
3471 fw_cmd.ver_maj = maj;
3472 fw_cmd.ver_min = min;
3473 fw_cmd.ver_build = build;
3474 fw_cmd.ver_sub = sub;
3475 fw_cmd.hdr.checksum = 0;
3476 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3477 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3478 fw_cmd.pad = 0;
3479 fw_cmd.pad2 = 0;
3480
3481 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
79488c58 3482 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
9612de92
ET
3483 sizeof(fw_cmd));
3484 if (ret_val != 0)
3485 continue;
3486
3487 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3488 FW_CEM_RESP_STATUS_SUCCESS)
3489 ret_val = 0;
3490 else
3491 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3492
3493 break;
3494 }
3495
3496 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3497out:
3498 return ret_val;
3499}
ff9d1a5a
ET
3500
3501/**
3502 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3503 * @hw: pointer to the hardware structure
3504 *
3505 * The 82599 and x540 MACs can experience issues if TX work is still pending
3506 * when a reset occurs. This function prevents this by flushing the PCIe
3507 * buffers on the system.
3508 **/
3509void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3510{
3511 u32 gcr_ext, hlreg0;
3512
3513 /*
3514 * If double reset is not requested then all transactions should
3515 * already be clear and as such there is no work to do
3516 */
3517 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3518 return;
3519
3520 /*
3521 * Set loopback enable to prevent any transmits from being sent
3522 * should the link come up. This assumes that the RXCTRL.RXEN bit
3523 * has already been cleared.
3524 */
3525 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3526 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3527
3528 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3529 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3530 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3531 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3532
3533 /* Flush all writes and allow 20usec for all transactions to clear */
3534 IXGBE_WRITE_FLUSH(hw);
3535 udelay(20);
3536
3537 /* restore previous register values */
3538 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3539 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3540}
e1ea9158
DS
3541
3542static const u8 ixgbe_emc_temp_data[4] = {
3543 IXGBE_EMC_INTERNAL_DATA,
3544 IXGBE_EMC_DIODE1_DATA,
3545 IXGBE_EMC_DIODE2_DATA,
3546 IXGBE_EMC_DIODE3_DATA
3547};
3548static const u8 ixgbe_emc_therm_limit[4] = {
3549 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3550 IXGBE_EMC_DIODE1_THERM_LIMIT,
3551 IXGBE_EMC_DIODE2_THERM_LIMIT,
3552 IXGBE_EMC_DIODE3_THERM_LIMIT
3553};
3554
3555/**
3556 * ixgbe_get_ets_data - Extracts the ETS bit data
3557 * @hw: pointer to hardware structure
3558 * @ets_cfg: extected ETS data
3559 * @ets_offset: offset of ETS data
3560 *
3561 * Returns error code.
3562 **/
3563static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3564 u16 *ets_offset)
3565{
3566 s32 status = 0;
3567
3568 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3569 if (status)
3570 goto out;
3571
3572 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3573 status = IXGBE_NOT_IMPLEMENTED;
3574 goto out;
3575 }
3576
3577 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3578 if (status)
3579 goto out;
3580
3581 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3582 status = IXGBE_NOT_IMPLEMENTED;
3583 goto out;
3584 }
3585
3586out:
3587 return status;
3588}
3589
3590/**
3591 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3592 * @hw: pointer to hardware structure
3593 *
3594 * Returns the thermal sensor data structure
3595 **/
3596s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3597{
3598 s32 status = 0;
3599 u16 ets_offset;
3600 u16 ets_cfg;
3601 u16 ets_sensor;
3602 u8 num_sensors;
3603 u8 i;
3604 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3605
3ca8bc6d
DS
3606 /* Only support thermal sensors attached to physical port 0 */
3607 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
e1ea9158
DS
3608 status = IXGBE_NOT_IMPLEMENTED;
3609 goto out;
3610 }
3611
3612 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3613 if (status)
3614 goto out;
3615
3616 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3617 if (num_sensors > IXGBE_MAX_SENSORS)
3618 num_sensors = IXGBE_MAX_SENSORS;
3619
3620 for (i = 0; i < num_sensors; i++) {
3621 u8 sensor_index;
3622 u8 sensor_location;
3623
3624 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3625 &ets_sensor);
3626 if (status)
3627 goto out;
3628
3629 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3630 IXGBE_ETS_DATA_INDEX_SHIFT);
3631 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3632 IXGBE_ETS_DATA_LOC_SHIFT);
3633
3634 if (sensor_location != 0) {
3635 status = hw->phy.ops.read_i2c_byte(hw,
3636 ixgbe_emc_temp_data[sensor_index],
3637 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3638 &data->sensor[i].temp);
3639 if (status)
3640 goto out;
3641 }
3642 }
3643out:
3644 return status;
3645}
3646
3647/**
3648 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3649 * @hw: pointer to hardware structure
3650 *
3651 * Inits the thermal sensor thresholds according to the NVM map
3652 * and save off the threshold and location values into mac.thermal_sensor_data
3653 **/
3654s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3655{
3656 s32 status = 0;
3657 u16 ets_offset;
3658 u16 ets_cfg;
3659 u16 ets_sensor;
3660 u8 low_thresh_delta;
3661 u8 num_sensors;
3662 u8 therm_limit;
3663 u8 i;
3664 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3665
3666 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3667
3ca8bc6d
DS
3668 /* Only support thermal sensors attached to physical port 0 */
3669 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
e1ea9158
DS
3670 status = IXGBE_NOT_IMPLEMENTED;
3671 goto out;
3672 }
3673
3674 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3675 if (status)
3676 goto out;
3677
3678 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3679 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3680 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3681 if (num_sensors > IXGBE_MAX_SENSORS)
3682 num_sensors = IXGBE_MAX_SENSORS;
3683
3684 for (i = 0; i < num_sensors; i++) {
3685 u8 sensor_index;
3686 u8 sensor_location;
3687
3688 hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3689 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3690 IXGBE_ETS_DATA_INDEX_SHIFT);
3691 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3692 IXGBE_ETS_DATA_LOC_SHIFT);
3693 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3694
3695 hw->phy.ops.write_i2c_byte(hw,
3696 ixgbe_emc_therm_limit[sensor_index],
3697 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3698
3699 if (sensor_location == 0)
3700 continue;
3701
3702 data->sensor[i].location = sensor_location;
3703 data->sensor[i].caution_thresh = therm_limit;
3704 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3705 }
3706out:
3707 return status;
3708}
3709
This page took 0.751842 seconds and 5 git commands to generate.