ixgbe: cleanup make ixgbe_set_ethertype_anti_spoofing_X550 static
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
14438464 4 Copyright(c) 1999 - 2014 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
b89aae71 23 Linux NICS <linux.nics@intel.com>
9a799d71
AK
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/pci.h>
30#include <linux/delay.h>
31#include <linux/sched.h>
ccffad25 32#include <linux/netdevice.h>
9a799d71 33
11afc1b1 34#include "ixgbe.h"
9a799d71
AK
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37
c44ade9e 38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
9a799d71
AK
39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
c44ade9e
JB
41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
e7cf745b 44 u16 count);
c44ade9e
JB
45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
9a799d71 49
9a799d71 50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
eb9c3e3e 51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
68c7005d
ET
52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 u16 offset);
ff9d1a5a 58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
9a799d71 59
67a79df2
AD
60/**
61 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62 * control
63 * @hw: pointer to hardware structure
64 *
65 * There are several phys that do not support autoneg flow control. This
66 * function check the device id to see if the associated phy supports
67 * autoneg flow control.
68 **/
73d80953 69bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
67a79df2 70{
73d80953
DS
71 bool supported = false;
72 ixgbe_link_speed speed;
73 bool link_up;
67a79df2 74
73d80953
DS
75 switch (hw->phy.media_type) {
76 case ixgbe_media_type_fiber:
77 hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 /* if link is down, assume supported */
79 if (link_up)
80 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 true : false;
82 else
83 supported = true;
84 break;
85 case ixgbe_media_type_backplane:
86 supported = true;
87 break;
88 case ixgbe_media_type_copper:
89 /* only some copper devices support flow control autoneg */
90 switch (hw->device_id) {
91 case IXGBE_DEV_ID_82599_T3_LOM:
92 case IXGBE_DEV_ID_X540T:
93 case IXGBE_DEV_ID_X540T1:
94 supported = true;
95 break;
96 default:
97 break;
98 }
67a79df2 99 default:
73d80953 100 break;
67a79df2 101 }
73d80953
DS
102
103 return supported;
67a79df2
AD
104}
105
106/**
107 * ixgbe_setup_fc - Set up flow control
108 * @hw: pointer to hardware structure
109 *
110 * Called at init time to set up flow control.
111 **/
041441d0 112static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
67a79df2
AD
113{
114 s32 ret_val = 0;
115 u32 reg = 0, reg_bp = 0;
116 u16 reg_cu = 0;
429d6a3b 117 bool locked = false;
67a79df2 118
67a79df2
AD
119 /*
120 * Validate the requested mode. Strict IEEE mode does not allow
121 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 */
123 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
e90dd264 125 return IXGBE_ERR_INVALID_LINK_SETTINGS;
67a79df2
AD
126 }
127
128 /*
129 * 10gig parts do not have a word in the EEPROM to determine the
130 * default flow control setting, so we explicitly set it to full.
131 */
132 if (hw->fc.requested_mode == ixgbe_fc_default)
133 hw->fc.requested_mode = ixgbe_fc_full;
134
135 /*
136 * Set up the 1G and 10G flow control advertisement registers so the
137 * HW will be able to do fc autoneg once the cable is plugged in. If
138 * we link at 10G, the 1G advertisement is harmless and vice versa.
139 */
67a79df2 140 switch (hw->phy.media_type) {
429d6a3b
DS
141 case ixgbe_media_type_backplane:
142 /* some MAC's need RMW protection on AUTOC */
143 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
f8cf7a00 144 if (ret_val)
e90dd264 145 return ret_val;
429d6a3b
DS
146
147 /* only backplane uses autoc so fall though */
67a79df2 148 case ixgbe_media_type_fiber:
67a79df2 149 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
429d6a3b 150
67a79df2 151 break;
67a79df2
AD
152 case ixgbe_media_type_copper:
153 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
154 MDIO_MMD_AN, &reg_cu);
155 break;
67a79df2 156 default:
041441d0 157 break;
67a79df2
AD
158 }
159
160 /*
161 * The possible values of fc.requested_mode are:
162 * 0: Flow control is completely disabled
163 * 1: Rx flow control is enabled (we can receive pause frames,
164 * but not send pause frames).
165 * 2: Tx flow control is enabled (we can send pause frames but
166 * we do not support receiving pause frames).
167 * 3: Both Rx and Tx flow control (symmetric) are enabled.
67a79df2
AD
168 * other: Invalid.
169 */
170 switch (hw->fc.requested_mode) {
171 case ixgbe_fc_none:
172 /* Flow control completely disabled by software override. */
173 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
174 if (hw->phy.media_type == ixgbe_media_type_backplane)
175 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
176 IXGBE_AUTOC_ASM_PAUSE);
177 else if (hw->phy.media_type == ixgbe_media_type_copper)
178 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
179 break;
67a79df2
AD
180 case ixgbe_fc_tx_pause:
181 /*
182 * Tx Flow control is enabled, and Rx Flow control is
183 * disabled by software override.
184 */
041441d0
AD
185 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
186 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
67a79df2 187 if (hw->phy.media_type == ixgbe_media_type_backplane) {
041441d0
AD
188 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
189 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
67a79df2 190 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
041441d0
AD
191 reg_cu |= IXGBE_TAF_ASM_PAUSE;
192 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
67a79df2
AD
193 }
194 break;
041441d0
AD
195 case ixgbe_fc_rx_pause:
196 /*
197 * Rx Flow control is enabled and Tx Flow control is
198 * disabled by software override. Since there really
199 * isn't a way to advertise that we are capable of RX
200 * Pause ONLY, we will advertise that we support both
201 * symmetric and asymmetric Rx PAUSE, as such we fall
202 * through to the fc_full statement. Later, we will
203 * disable the adapter's ability to send PAUSE frames.
204 */
67a79df2
AD
205 case ixgbe_fc_full:
206 /* Flow control (both Rx and Tx) is enabled by SW override. */
041441d0 207 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
67a79df2 208 if (hw->phy.media_type == ixgbe_media_type_backplane)
041441d0
AD
209 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
210 IXGBE_AUTOC_ASM_PAUSE;
67a79df2 211 else if (hw->phy.media_type == ixgbe_media_type_copper)
041441d0 212 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
67a79df2 213 break;
67a79df2
AD
214 default:
215 hw_dbg(hw, "Flow control param set incorrectly\n");
e90dd264 216 return IXGBE_ERR_CONFIG;
67a79df2
AD
217 }
218
219 if (hw->mac.type != ixgbe_mac_X540) {
220 /*
221 * Enable auto-negotiation between the MAC & PHY;
222 * the MAC will advertise clause 37 flow control.
223 */
224 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
225 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
226
227 /* Disable AN timeout */
228 if (hw->fc.strict_ieee)
229 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
230
231 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
232 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
233 }
234
235 /*
236 * AUTOC restart handles negotiation of 1G and 10G on backplane
237 * and copper. There is no need to set the PCS1GCTL register.
238 *
239 */
240 if (hw->phy.media_type == ixgbe_media_type_backplane) {
d7bbcd32
DS
241 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
242 * LESM is on, likewise reset_pipeline requries the lock as
243 * it also writes AUTOC.
244 */
429d6a3b
DS
245 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
246 if (ret_val)
e90dd264 247 return ret_val;
d7bbcd32 248
67a79df2 249 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
429d6a3b 250 ixgbe_device_supports_autoneg_fc(hw)) {
67a79df2
AD
251 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
252 MDIO_MMD_AN, reg_cu);
253 }
254
255 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
67a79df2
AD
256 return ret_val;
257}
258
9a799d71 259/**
c44ade9e 260 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
9a799d71
AK
261 * @hw: pointer to hardware structure
262 *
263 * Starts the hardware by filling the bus info structure and media type, clears
264 * all on chip counters, initializes receive address registers, multicast
265 * table, VLAN filter table, calls routine to set up link and flow control
266 * settings, and leaves transmit and receive units disabled and uninitialized
267 **/
c44ade9e 268s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
9a799d71 269{
e5776620 270 s32 ret_val;
9a799d71
AK
271 u32 ctrl_ext;
272
273 /* Set the media type */
274 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
275
276 /* Identify the PHY */
c44ade9e 277 hw->phy.ops.identify(hw);
9a799d71 278
9a799d71 279 /* Clear the VLAN filter table */
c44ade9e 280 hw->mac.ops.clear_vfta(hw);
9a799d71 281
9a799d71 282 /* Clear statistics registers */
c44ade9e 283 hw->mac.ops.clear_hw_cntrs(hw);
9a799d71
AK
284
285 /* Set No Snoop Disable */
286 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
287 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
288 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
3957d63d 289 IXGBE_WRITE_FLUSH(hw);
9a799d71 290
620fa036 291 /* Setup flow control */
e5776620
JK
292 ret_val = ixgbe_setup_fc(hw);
293 if (!ret_val)
e90dd264 294 return 0;
620fa036 295
9a799d71
AK
296 /* Clear adapter stopped flag */
297 hw->adapter_stopped = false;
298
e5776620 299 return ret_val;
9a799d71
AK
300}
301
7184b7cf
ET
302/**
303 * ixgbe_start_hw_gen2 - Init sequence for common device family
304 * @hw: pointer to hw structure
305 *
306 * Performs the init sequence common to the second generation
307 * of 10 GbE devices.
308 * Devices in the second generation:
309 * 82599
310 * X540
311 **/
312s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
313{
314 u32 i;
3d5c5207 315 u32 regval;
7184b7cf
ET
316
317 /* Clear the rate limiters */
318 for (i = 0; i < hw->mac.max_tx_queues; i++) {
319 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
320 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
321 }
322 IXGBE_WRITE_FLUSH(hw);
323
3d5c5207
ET
324 /* Disable relaxed ordering */
325 for (i = 0; i < hw->mac.max_tx_queues; i++) {
326 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
bdda1a61 327 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3d5c5207
ET
328 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
329 }
330
331 for (i = 0; i < hw->mac.max_rx_queues; i++) {
332 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
bdda1a61
AD
333 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
334 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
3d5c5207
ET
335 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
336 }
337
7184b7cf
ET
338 return 0;
339}
340
9a799d71 341/**
c44ade9e 342 * ixgbe_init_hw_generic - Generic hardware initialization
9a799d71
AK
343 * @hw: pointer to hardware structure
344 *
c44ade9e 345 * Initialize the hardware by resetting the hardware, filling the bus info
9a799d71
AK
346 * structure and media type, clears all on chip counters, initializes receive
347 * address registers, multicast table, VLAN filter table, calls routine to set
348 * up link and flow control settings, and leaves transmit and receive units
349 * disabled and uninitialized
350 **/
c44ade9e 351s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
9a799d71 352{
794caeb2
PWJ
353 s32 status;
354
9a799d71 355 /* Reset the hardware */
794caeb2 356 status = hw->mac.ops.reset_hw(hw);
9a799d71 357
794caeb2
PWJ
358 if (status == 0) {
359 /* Start the HW */
360 status = hw->mac.ops.start_hw(hw);
361 }
9a799d71 362
794caeb2 363 return status;
9a799d71
AK
364}
365
366/**
c44ade9e 367 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
9a799d71
AK
368 * @hw: pointer to hardware structure
369 *
370 * Clears all hardware statistics counters by reading them from the hardware
371 * Statistics counters are clear on read.
372 **/
c44ade9e 373s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
374{
375 u16 i = 0;
376
377 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
378 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
379 IXGBE_READ_REG(hw, IXGBE_ERRBC);
380 IXGBE_READ_REG(hw, IXGBE_MSPDC);
381 for (i = 0; i < 8; i++)
382 IXGBE_READ_REG(hw, IXGBE_MPC(i));
383
384 IXGBE_READ_REG(hw, IXGBE_MLFC);
385 IXGBE_READ_REG(hw, IXGBE_MRFC);
386 IXGBE_READ_REG(hw, IXGBE_RLEC);
387 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
9a799d71 388 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
667c7565
ET
389 if (hw->mac.type >= ixgbe_mac_82599EB) {
390 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
391 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
392 } else {
393 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
394 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
395 }
9a799d71
AK
396
397 for (i = 0; i < 8; i++) {
398 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
9a799d71 399 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
667c7565
ET
400 if (hw->mac.type >= ixgbe_mac_82599EB) {
401 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
402 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
403 } else {
404 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
405 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
406 }
9a799d71 407 }
667c7565
ET
408 if (hw->mac.type >= ixgbe_mac_82599EB)
409 for (i = 0; i < 8; i++)
410 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
9a799d71
AK
411 IXGBE_READ_REG(hw, IXGBE_PRC64);
412 IXGBE_READ_REG(hw, IXGBE_PRC127);
413 IXGBE_READ_REG(hw, IXGBE_PRC255);
414 IXGBE_READ_REG(hw, IXGBE_PRC511);
415 IXGBE_READ_REG(hw, IXGBE_PRC1023);
416 IXGBE_READ_REG(hw, IXGBE_PRC1522);
417 IXGBE_READ_REG(hw, IXGBE_GPRC);
418 IXGBE_READ_REG(hw, IXGBE_BPRC);
419 IXGBE_READ_REG(hw, IXGBE_MPRC);
420 IXGBE_READ_REG(hw, IXGBE_GPTC);
421 IXGBE_READ_REG(hw, IXGBE_GORCL);
422 IXGBE_READ_REG(hw, IXGBE_GORCH);
423 IXGBE_READ_REG(hw, IXGBE_GOTCL);
424 IXGBE_READ_REG(hw, IXGBE_GOTCH);
f3116f62
ET
425 if (hw->mac.type == ixgbe_mac_82598EB)
426 for (i = 0; i < 8; i++)
427 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
9a799d71
AK
428 IXGBE_READ_REG(hw, IXGBE_RUC);
429 IXGBE_READ_REG(hw, IXGBE_RFC);
430 IXGBE_READ_REG(hw, IXGBE_ROC);
431 IXGBE_READ_REG(hw, IXGBE_RJC);
432 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
433 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
434 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
435 IXGBE_READ_REG(hw, IXGBE_TORL);
436 IXGBE_READ_REG(hw, IXGBE_TORH);
437 IXGBE_READ_REG(hw, IXGBE_TPR);
438 IXGBE_READ_REG(hw, IXGBE_TPT);
439 IXGBE_READ_REG(hw, IXGBE_PTC64);
440 IXGBE_READ_REG(hw, IXGBE_PTC127);
441 IXGBE_READ_REG(hw, IXGBE_PTC255);
442 IXGBE_READ_REG(hw, IXGBE_PTC511);
443 IXGBE_READ_REG(hw, IXGBE_PTC1023);
444 IXGBE_READ_REG(hw, IXGBE_PTC1522);
445 IXGBE_READ_REG(hw, IXGBE_MPTC);
446 IXGBE_READ_REG(hw, IXGBE_BPTC);
447 for (i = 0; i < 16; i++) {
448 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
9a799d71 449 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
667c7565
ET
450 if (hw->mac.type >= ixgbe_mac_82599EB) {
451 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
452 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
453 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
454 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
455 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
456 } else {
457 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
458 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
459 }
9a799d71
AK
460 }
461
a3aeea0e
ET
462 if (hw->mac.type == ixgbe_mac_X540) {
463 if (hw->phy.id == 0)
464 hw->phy.ops.identify(hw);
c1085b10
ET
465 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
466 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
467 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
468 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
a3aeea0e
ET
469 }
470
9a799d71
AK
471 return 0;
472}
473
474/**
289700db 475 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
c44ade9e 476 * @hw: pointer to hardware structure
289700db
DS
477 * @pba_num: stores the part number string from the EEPROM
478 * @pba_num_size: part number string buffer length
c44ade9e 479 *
289700db 480 * Reads the part number string from the EEPROM.
c44ade9e 481 **/
289700db 482s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
e7cf745b 483 u32 pba_num_size)
c44ade9e
JB
484{
485 s32 ret_val;
486 u16 data;
289700db
DS
487 u16 pba_ptr;
488 u16 offset;
489 u16 length;
490
491 if (pba_num == NULL) {
492 hw_dbg(hw, "PBA string buffer was null\n");
493 return IXGBE_ERR_INVALID_ARGUMENT;
494 }
c44ade9e
JB
495
496 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
497 if (ret_val) {
498 hw_dbg(hw, "NVM Read Error\n");
499 return ret_val;
500 }
c44ade9e 501
289700db 502 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
c44ade9e
JB
503 if (ret_val) {
504 hw_dbg(hw, "NVM Read Error\n");
505 return ret_val;
506 }
289700db
DS
507
508 /*
509 * if data is not ptr guard the PBA must be in legacy format which
510 * means pba_ptr is actually our second data word for the PBA number
511 * and we can decode it into an ascii string
512 */
513 if (data != IXGBE_PBANUM_PTR_GUARD) {
514 hw_dbg(hw, "NVM PBA number is not stored as string\n");
515
516 /* we will need 11 characters to store the PBA */
517 if (pba_num_size < 11) {
518 hw_dbg(hw, "PBA string buffer too small\n");
519 return IXGBE_ERR_NO_SPACE;
520 }
521
522 /* extract hex string from data and pba_ptr */
523 pba_num[0] = (data >> 12) & 0xF;
524 pba_num[1] = (data >> 8) & 0xF;
525 pba_num[2] = (data >> 4) & 0xF;
526 pba_num[3] = data & 0xF;
527 pba_num[4] = (pba_ptr >> 12) & 0xF;
528 pba_num[5] = (pba_ptr >> 8) & 0xF;
529 pba_num[6] = '-';
530 pba_num[7] = 0;
531 pba_num[8] = (pba_ptr >> 4) & 0xF;
532 pba_num[9] = pba_ptr & 0xF;
533
534 /* put a null character on the end of our string */
535 pba_num[10] = '\0';
536
537 /* switch all the data but the '-' to hex char */
538 for (offset = 0; offset < 10; offset++) {
539 if (pba_num[offset] < 0xA)
540 pba_num[offset] += '0';
541 else if (pba_num[offset] < 0x10)
542 pba_num[offset] += 'A' - 0xA;
543 }
544
545 return 0;
546 }
547
548 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
549 if (ret_val) {
550 hw_dbg(hw, "NVM Read Error\n");
551 return ret_val;
552 }
553
554 if (length == 0xFFFF || length == 0) {
555 hw_dbg(hw, "NVM PBA number section invalid length\n");
556 return IXGBE_ERR_PBA_SECTION;
557 }
558
559 /* check if pba_num buffer is big enough */
560 if (pba_num_size < (((u32)length * 2) - 1)) {
561 hw_dbg(hw, "PBA string buffer too small\n");
562 return IXGBE_ERR_NO_SPACE;
563 }
564
565 /* trim pba length from start of string */
566 pba_ptr++;
567 length--;
568
569 for (offset = 0; offset < length; offset++) {
570 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
571 if (ret_val) {
572 hw_dbg(hw, "NVM Read Error\n");
573 return ret_val;
574 }
575 pba_num[offset * 2] = (u8)(data >> 8);
576 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
577 }
578 pba_num[offset * 2] = '\0';
c44ade9e
JB
579
580 return 0;
581}
582
583/**
584 * ixgbe_get_mac_addr_generic - Generic get MAC address
9a799d71
AK
585 * @hw: pointer to hardware structure
586 * @mac_addr: Adapter MAC address
587 *
588 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
589 * A reset of the adapter must be performed prior to calling this function
590 * in order for the MAC address to have been loaded from the EEPROM into RAR0
591 **/
c44ade9e 592s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
9a799d71
AK
593{
594 u32 rar_high;
595 u32 rar_low;
596 u16 i;
597
598 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
599 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
600
601 for (i = 0; i < 4; i++)
602 mac_addr[i] = (u8)(rar_low >> (i*8));
603
604 for (i = 0; i < 2; i++)
605 mac_addr[i+4] = (u8)(rar_high >> (i*8));
606
607 return 0;
608}
609
ef1889d5
JK
610enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
611{
612 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
613 case IXGBE_PCI_LINK_WIDTH_1:
614 return ixgbe_bus_width_pcie_x1;
615 case IXGBE_PCI_LINK_WIDTH_2:
616 return ixgbe_bus_width_pcie_x2;
617 case IXGBE_PCI_LINK_WIDTH_4:
618 return ixgbe_bus_width_pcie_x4;
619 case IXGBE_PCI_LINK_WIDTH_8:
620 return ixgbe_bus_width_pcie_x8;
621 default:
622 return ixgbe_bus_width_unknown;
623 }
624}
625
626enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
627{
628 switch (link_status & IXGBE_PCI_LINK_SPEED) {
629 case IXGBE_PCI_LINK_SPEED_2500:
630 return ixgbe_bus_speed_2500;
631 case IXGBE_PCI_LINK_SPEED_5000:
632 return ixgbe_bus_speed_5000;
633 case IXGBE_PCI_LINK_SPEED_8000:
634 return ixgbe_bus_speed_8000;
635 default:
636 return ixgbe_bus_speed_unknown;
637 }
638}
639
11afc1b1
PW
640/**
641 * ixgbe_get_bus_info_generic - Generic set PCI bus info
642 * @hw: pointer to hardware structure
643 *
644 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
645 **/
646s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
647{
11afc1b1
PW
648 u16 link_status;
649
650 hw->bus.type = ixgbe_bus_type_pci_express;
651
652 /* Get the negotiated link width and speed from PCI config space */
0d7c6e00 653 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
11afc1b1 654
ef1889d5
JK
655 hw->bus.width = ixgbe_convert_bus_width(link_status);
656 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
11afc1b1 657
0d7c6e00 658 hw->mac.ops.set_lan_id(hw);
11afc1b1
PW
659
660 return 0;
661}
662
663/**
664 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
665 * @hw: pointer to the HW structure
666 *
667 * Determines the LAN function id by reading memory-mapped registers
668 * and swaps the port value if requested.
669 **/
670void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
671{
672 struct ixgbe_bus_info *bus = &hw->bus;
673 u32 reg;
674
675 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
676 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
677 bus->lan_id = bus->func;
678
679 /* check for a port swap */
680 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
681 if (reg & IXGBE_FACTPS_LFS)
682 bus->func ^= 0x1;
683}
684
9a799d71 685/**
c44ade9e 686 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
9a799d71
AK
687 * @hw: pointer to hardware structure
688 *
689 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
690 * disables transmit and receive units. The adapter_stopped flag is used by
691 * the shared code and drivers to determine if the adapter is in a stopped
692 * state and should not touch the hardware.
693 **/
c44ade9e 694s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
9a799d71 695{
9a799d71
AK
696 u32 reg_val;
697 u16 i;
698
699 /*
700 * Set the adapter_stopped flag so other driver functions stop touching
701 * the hardware
702 */
703 hw->adapter_stopped = true;
704
705 /* Disable the receive unit */
1f9ac57c 706 hw->mac.ops.disable_rx(hw);
9a799d71 707
ff9d1a5a 708 /* Clear interrupt mask to stop interrupts from being generated */
9a799d71
AK
709 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
710
ff9d1a5a 711 /* Clear any pending interrupts, flush previous writes */
9a799d71
AK
712 IXGBE_READ_REG(hw, IXGBE_EICR);
713
714 /* Disable the transmit unit. Each queue must be disabled. */
ff9d1a5a
ET
715 for (i = 0; i < hw->mac.max_tx_queues; i++)
716 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
717
718 /* Disable the receive unit by stopping each queue */
719 for (i = 0; i < hw->mac.max_rx_queues; i++) {
720 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
721 reg_val &= ~IXGBE_RXDCTL_ENABLE;
722 reg_val |= IXGBE_RXDCTL_SWFLSH;
723 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
9a799d71
AK
724 }
725
ff9d1a5a
ET
726 /* flush all queues disables */
727 IXGBE_WRITE_FLUSH(hw);
728 usleep_range(1000, 2000);
729
c44ade9e
JB
730 /*
731 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
732 * access and verify no pending requests
733 */
ff9d1a5a 734 return ixgbe_disable_pcie_master(hw);
9a799d71
AK
735}
736
737/**
c44ade9e 738 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
9a799d71
AK
739 * @hw: pointer to hardware structure
740 * @index: led number to turn on
741 **/
c44ade9e 742s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
743{
744 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
745
746 /* To turn on the LED, set mode to ON. */
747 led_reg &= ~IXGBE_LED_MODE_MASK(index);
748 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
749 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 750 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
751
752 return 0;
753}
754
755/**
c44ade9e 756 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
9a799d71
AK
757 * @hw: pointer to hardware structure
758 * @index: led number to turn off
759 **/
c44ade9e 760s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
761{
762 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
763
764 /* To turn off the LED, set mode to OFF. */
765 led_reg &= ~IXGBE_LED_MODE_MASK(index);
766 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
767 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 768 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
769
770 return 0;
771}
772
9a799d71 773/**
c44ade9e 774 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
9a799d71
AK
775 * @hw: pointer to hardware structure
776 *
777 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
778 * ixgbe_hw struct in order to set up EEPROM access.
779 **/
c44ade9e 780s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
9a799d71
AK
781{
782 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
783 u32 eec;
784 u16 eeprom_size;
785
786 if (eeprom->type == ixgbe_eeprom_uninitialized) {
787 eeprom->type = ixgbe_eeprom_none;
c44ade9e
JB
788 /* Set default semaphore delay to 10ms which is a well
789 * tested value */
790 eeprom->semaphore_delay = 10;
68c7005d
ET
791 /* Clear EEPROM page size, it will be initialized as needed */
792 eeprom->word_page_size = 0;
9a799d71
AK
793
794 /*
795 * Check for EEPROM present first.
796 * If not present leave as none
797 */
798 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
799 if (eec & IXGBE_EEC_PRES) {
800 eeprom->type = ixgbe_eeprom_spi;
801
802 /*
803 * SPI EEPROM is assumed here. This code would need to
804 * change if a future EEPROM is not SPI.
805 */
806 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
807 IXGBE_EEC_SIZE_SHIFT);
808 eeprom->word_size = 1 << (eeprom_size +
809 IXGBE_EEPROM_WORD_SIZE_SHIFT);
810 }
811
812 if (eec & IXGBE_EEC_ADDR_SIZE)
813 eeprom->address_bits = 16;
814 else
815 eeprom->address_bits = 8;
6ec1b71f
JK
816 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
817 eeprom->type, eeprom->word_size, eeprom->address_bits);
9a799d71
AK
818 }
819
820 return 0;
821}
822
11afc1b1 823/**
68c7005d 824 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
11afc1b1 825 * @hw: pointer to hardware structure
68c7005d
ET
826 * @offset: offset within the EEPROM to write
827 * @words: number of words
828 * @data: 16 bit word(s) to write to EEPROM
11afc1b1 829 *
68c7005d 830 * Reads 16 bit word(s) from EEPROM through bit-bang method
11afc1b1 831 **/
68c7005d
ET
832s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
833 u16 words, u16 *data)
11afc1b1 834{
e90dd264 835 s32 status;
68c7005d 836 u16 i, count;
11afc1b1
PW
837
838 hw->eeprom.ops.init_params(hw);
839
e90dd264
MR
840 if (words == 0)
841 return IXGBE_ERR_INVALID_ARGUMENT;
68c7005d 842
e90dd264
MR
843 if (offset + words > hw->eeprom.word_size)
844 return IXGBE_ERR_EEPROM;
11afc1b1 845
68c7005d
ET
846 /*
847 * The EEPROM page size cannot be queried from the chip. We do lazy
848 * initialization. It is worth to do that when we write large buffer.
849 */
850 if ((hw->eeprom.word_page_size == 0) &&
851 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
852 ixgbe_detect_eeprom_page_size_generic(hw, offset);
853
854 /*
855 * We cannot hold synchronization semaphores for too long
856 * to avoid other entity starvation. However it is more efficient
857 * to read in bursts than synchronizing access for each word.
858 */
859 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
860 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
861 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
862 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
863 count, &data[i]);
864
865 if (status != 0)
866 break;
867 }
868
68c7005d
ET
869 return status;
870}
871
872/**
873 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
874 * @hw: pointer to hardware structure
875 * @offset: offset within the EEPROM to be written to
876 * @words: number of word(s)
877 * @data: 16 bit word(s) to be written to the EEPROM
878 *
879 * If ixgbe_eeprom_update_checksum is not called after this function, the
880 * EEPROM will most likely contain an invalid checksum.
881 **/
882static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
883 u16 words, u16 *data)
884{
885 s32 status;
886 u16 word;
887 u16 page_size;
888 u16 i;
889 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
890
11afc1b1
PW
891 /* Prepare the EEPROM for writing */
892 status = ixgbe_acquire_eeprom(hw);
e90dd264
MR
893 if (status)
894 return status;
11afc1b1 895
e90dd264
MR
896 if (ixgbe_ready_eeprom(hw) != 0) {
897 ixgbe_release_eeprom(hw);
898 return IXGBE_ERR_EEPROM;
11afc1b1
PW
899 }
900
e90dd264
MR
901 for (i = 0; i < words; i++) {
902 ixgbe_standby_eeprom(hw);
903
904 /* Send the WRITE ENABLE command (8 bit opcode) */
905 ixgbe_shift_out_eeprom_bits(hw,
906 IXGBE_EEPROM_WREN_OPCODE_SPI,
907 IXGBE_EEPROM_OPCODE_BITS);
11afc1b1 908
e90dd264 909 ixgbe_standby_eeprom(hw);
11afc1b1 910
e90dd264
MR
911 /* Some SPI eeproms use the 8th address bit embedded
912 * in the opcode
913 */
914 if ((hw->eeprom.address_bits == 8) &&
915 ((offset + i) >= 128))
916 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
11afc1b1 917
e90dd264
MR
918 /* Send the Write command (8-bit opcode + addr) */
919 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
920 IXGBE_EEPROM_OPCODE_BITS);
921 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
922 hw->eeprom.address_bits);
923
924 page_size = hw->eeprom.word_page_size;
925
926 /* Send the data in burst via SPI */
927 do {
928 word = data[i];
929 word = (word >> 8) | (word << 8);
930 ixgbe_shift_out_eeprom_bits(hw, word, 16);
931
932 if (page_size == 0)
933 break;
934
935 /* do not wrap around page */
936 if (((offset + i) & (page_size - 1)) ==
937 (page_size - 1))
938 break;
939 } while (++i < words);
940
941 ixgbe_standby_eeprom(hw);
942 usleep_range(10000, 20000);
68c7005d 943 }
e90dd264
MR
944 /* Done with writing - release the EEPROM */
945 ixgbe_release_eeprom(hw);
11afc1b1 946
e90dd264 947 return 0;
68c7005d
ET
948}
949
950/**
951 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
952 * @hw: pointer to hardware structure
953 * @offset: offset within the EEPROM to be written to
954 * @data: 16 bit word to be written to the EEPROM
955 *
956 * If ixgbe_eeprom_update_checksum is not called after this function, the
957 * EEPROM will most likely contain an invalid checksum.
958 **/
959s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
960{
68c7005d 961 hw->eeprom.ops.init_params(hw);
11afc1b1 962
e90dd264
MR
963 if (offset >= hw->eeprom.word_size)
964 return IXGBE_ERR_EEPROM;
11afc1b1 965
e90dd264 966 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
11afc1b1
PW
967}
968
9a799d71 969/**
68c7005d 970 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
c44ade9e
JB
971 * @hw: pointer to hardware structure
972 * @offset: offset within the EEPROM to be read
68c7005d
ET
973 * @words: number of word(s)
974 * @data: read 16 bit words(s) from EEPROM
c44ade9e 975 *
68c7005d 976 * Reads 16 bit word(s) from EEPROM through bit-bang method
c44ade9e 977 **/
68c7005d
ET
978s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
979 u16 words, u16 *data)
c44ade9e 980{
e90dd264 981 s32 status;
68c7005d 982 u16 i, count;
c44ade9e
JB
983
984 hw->eeprom.ops.init_params(hw);
985
e90dd264
MR
986 if (words == 0)
987 return IXGBE_ERR_INVALID_ARGUMENT;
68c7005d 988
e90dd264
MR
989 if (offset + words > hw->eeprom.word_size)
990 return IXGBE_ERR_EEPROM;
c44ade9e 991
68c7005d
ET
992 /*
993 * We cannot hold synchronization semaphores for too long
994 * to avoid other entity starvation. However it is more efficient
995 * to read in bursts than synchronizing access for each word.
996 */
997 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
998 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
999 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1000
1001 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1002 count, &data[i]);
1003
e90dd264
MR
1004 if (status)
1005 return status;
68c7005d
ET
1006 }
1007
e90dd264 1008 return 0;
68c7005d
ET
1009}
1010
1011/**
1012 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1013 * @hw: pointer to hardware structure
1014 * @offset: offset within the EEPROM to be read
1015 * @words: number of word(s)
1016 * @data: read 16 bit word(s) from EEPROM
1017 *
1018 * Reads 16 bit word(s) from EEPROM through bit-bang method
1019 **/
1020static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1021 u16 words, u16 *data)
1022{
1023 s32 status;
1024 u16 word_in;
1025 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1026 u16 i;
1027
c44ade9e
JB
1028 /* Prepare the EEPROM for reading */
1029 status = ixgbe_acquire_eeprom(hw);
e90dd264
MR
1030 if (status)
1031 return status;
c44ade9e 1032
e90dd264
MR
1033 if (ixgbe_ready_eeprom(hw) != 0) {
1034 ixgbe_release_eeprom(hw);
1035 return IXGBE_ERR_EEPROM;
c44ade9e
JB
1036 }
1037
e90dd264
MR
1038 for (i = 0; i < words; i++) {
1039 ixgbe_standby_eeprom(hw);
1040 /* Some SPI eeproms use the 8th address bit embedded
1041 * in the opcode
1042 */
1043 if ((hw->eeprom.address_bits == 8) &&
1044 ((offset + i) >= 128))
1045 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
c44ade9e 1046
e90dd264
MR
1047 /* Send the READ command (opcode + addr) */
1048 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1049 IXGBE_EEPROM_OPCODE_BITS);
1050 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1051 hw->eeprom.address_bits);
1052
1053 /* Read the data. */
1054 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1055 data[i] = (word_in >> 8) | (word_in << 8);
68c7005d 1056 }
c44ade9e 1057
e90dd264
MR
1058 /* End this read operation */
1059 ixgbe_release_eeprom(hw);
1060
1061 return 0;
68c7005d 1062}
c44ade9e 1063
68c7005d
ET
1064/**
1065 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1066 * @hw: pointer to hardware structure
1067 * @offset: offset within the EEPROM to be read
1068 * @data: read 16 bit value from EEPROM
1069 *
1070 * Reads 16 bit value from EEPROM through bit-bang method
1071 **/
1072s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1073 u16 *data)
1074{
68c7005d
ET
1075 hw->eeprom.ops.init_params(hw);
1076
e90dd264
MR
1077 if (offset >= hw->eeprom.word_size)
1078 return IXGBE_ERR_EEPROM;
68c7005d 1079
e90dd264 1080 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
c44ade9e
JB
1081}
1082
1083/**
68c7005d 1084 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
9a799d71 1085 * @hw: pointer to hardware structure
68c7005d
ET
1086 * @offset: offset of word in the EEPROM to read
1087 * @words: number of word(s)
1088 * @data: 16 bit word(s) from the EEPROM
9a799d71 1089 *
68c7005d 1090 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
9a799d71 1091 **/
68c7005d
ET
1092s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1093 u16 words, u16 *data)
9a799d71
AK
1094{
1095 u32 eerd;
e90dd264 1096 s32 status;
68c7005d 1097 u32 i;
9a799d71 1098
c44ade9e
JB
1099 hw->eeprom.ops.init_params(hw);
1100
e90dd264
MR
1101 if (words == 0)
1102 return IXGBE_ERR_INVALID_ARGUMENT;
68c7005d 1103
e90dd264
MR
1104 if (offset >= hw->eeprom.word_size)
1105 return IXGBE_ERR_EEPROM;
c44ade9e 1106
68c7005d 1107 for (i = 0; i < words; i++) {
d0111575 1108 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
68c7005d 1109 IXGBE_EEPROM_RW_REG_START;
9a799d71 1110
68c7005d
ET
1111 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1112 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
9a799d71 1113
68c7005d
ET
1114 if (status == 0) {
1115 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1116 IXGBE_EEPROM_RW_REG_DATA);
1117 } else {
1118 hw_dbg(hw, "Eeprom read timed out\n");
e90dd264 1119 return status;
68c7005d
ET
1120 }
1121 }
e90dd264
MR
1122
1123 return 0;
68c7005d 1124}
9a799d71 1125
68c7005d
ET
1126/**
1127 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1128 * @hw: pointer to hardware structure
1129 * @offset: offset within the EEPROM to be used as a scratch pad
1130 *
1131 * Discover EEPROM page size by writing marching data at given offset.
1132 * This function is called only when we are writing a new large buffer
1133 * at given offset so the data would be overwritten anyway.
1134 **/
1135static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1136 u16 offset)
1137{
1138 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
e90dd264 1139 s32 status;
68c7005d
ET
1140 u16 i;
1141
1142 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1143 data[i] = i;
1144
1145 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1146 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1147 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1148 hw->eeprom.word_page_size = 0;
e90dd264
MR
1149 if (status)
1150 return status;
68c7005d
ET
1151
1152 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
e90dd264
MR
1153 if (status)
1154 return status;
68c7005d
ET
1155
1156 /*
1157 * When writing in burst more than the actual page size
1158 * EEPROM address wraps around current page.
1159 */
1160 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1161
c5ffe7e1 1162 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
68c7005d 1163 hw->eeprom.word_page_size);
e90dd264 1164 return 0;
9a799d71
AK
1165}
1166
eb9c3e3e 1167/**
68c7005d
ET
1168 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1169 * @hw: pointer to hardware structure
1170 * @offset: offset of word in the EEPROM to read
1171 * @data: word read from the EEPROM
1172 *
1173 * Reads a 16 bit word from the EEPROM using the EERD register.
1174 **/
1175s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1176{
1177 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1178}
1179
1180/**
1181 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
eb9c3e3e
ET
1182 * @hw: pointer to hardware structure
1183 * @offset: offset of word in the EEPROM to write
68c7005d
ET
1184 * @words: number of words
1185 * @data: word(s) write to the EEPROM
eb9c3e3e 1186 *
68c7005d 1187 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
eb9c3e3e 1188 **/
68c7005d
ET
1189s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1190 u16 words, u16 *data)
eb9c3e3e
ET
1191{
1192 u32 eewr;
e90dd264 1193 s32 status;
68c7005d 1194 u16 i;
eb9c3e3e
ET
1195
1196 hw->eeprom.ops.init_params(hw);
1197
e90dd264
MR
1198 if (words == 0)
1199 return IXGBE_ERR_INVALID_ARGUMENT;
68c7005d 1200
e90dd264
MR
1201 if (offset >= hw->eeprom.word_size)
1202 return IXGBE_ERR_EEPROM;
eb9c3e3e 1203
68c7005d
ET
1204 for (i = 0; i < words; i++) {
1205 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1206 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1207 IXGBE_EEPROM_RW_REG_START;
eb9c3e3e 1208
68c7005d 1209 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
e90dd264 1210 if (status) {
68c7005d 1211 hw_dbg(hw, "Eeprom write EEWR timed out\n");
e90dd264 1212 return status;
68c7005d 1213 }
eb9c3e3e 1214
68c7005d 1215 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
eb9c3e3e 1216
68c7005d 1217 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
e90dd264 1218 if (status) {
68c7005d 1219 hw_dbg(hw, "Eeprom write EEWR timed out\n");
e90dd264 1220 return status;
68c7005d 1221 }
eb9c3e3e
ET
1222 }
1223
e90dd264 1224 return 0;
eb9c3e3e
ET
1225}
1226
68c7005d
ET
1227/**
1228 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1229 * @hw: pointer to hardware structure
1230 * @offset: offset of word in the EEPROM to write
1231 * @data: word write to the EEPROM
1232 *
1233 * Write a 16 bit word to the EEPROM using the EEWR register.
1234 **/
1235s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1236{
1237 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1238}
1239
9a799d71 1240/**
21ce849b 1241 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
9a799d71 1242 * @hw: pointer to hardware structure
21ce849b 1243 * @ee_reg: EEPROM flag for polling
9a799d71 1244 *
21ce849b
MC
1245 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1246 * read or write is done respectively.
9a799d71 1247 **/
eb9c3e3e 1248static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
9a799d71
AK
1249{
1250 u32 i;
1251 u32 reg;
9a799d71 1252
21ce849b
MC
1253 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1254 if (ee_reg == IXGBE_NVM_POLL_READ)
1255 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1256 else
1257 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1258
1259 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
e90dd264 1260 return 0;
9a799d71
AK
1261 }
1262 udelay(5);
1263 }
e90dd264 1264 return IXGBE_ERR_EEPROM;
9a799d71
AK
1265}
1266
c44ade9e
JB
1267/**
1268 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1269 * @hw: pointer to hardware structure
1270 *
1271 * Prepares EEPROM for access using bit-bang method. This function should
1272 * be called before issuing a command to the EEPROM.
1273 **/
1274static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1275{
dbf893ee 1276 u32 eec;
c44ade9e
JB
1277 u32 i;
1278
5e655105 1279 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
e90dd264 1280 return IXGBE_ERR_SWFW_SYNC;
c44ade9e 1281
e90dd264 1282 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
c44ade9e 1283
e90dd264
MR
1284 /* Request EEPROM Access */
1285 eec |= IXGBE_EEC_REQ;
1286 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
c44ade9e 1287
e90dd264
MR
1288 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1289 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1290 if (eec & IXGBE_EEC_GNT)
1291 break;
1292 udelay(5);
1293 }
c44ade9e 1294
e90dd264
MR
1295 /* Release if grant not acquired */
1296 if (!(eec & IXGBE_EEC_GNT)) {
1297 eec &= ~IXGBE_EEC_REQ;
1298 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1299 hw_dbg(hw, "Could not acquire EEPROM grant\n");
c44ade9e 1300
e90dd264
MR
1301 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1302 return IXGBE_ERR_EEPROM;
c44ade9e 1303 }
e90dd264
MR
1304
1305 /* Setup EEPROM for Read/Write */
1306 /* Clear CS and SK */
1307 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1308 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1309 IXGBE_WRITE_FLUSH(hw);
1310 udelay(1);
1311 return 0;
c44ade9e
JB
1312}
1313
9a799d71
AK
1314/**
1315 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1316 * @hw: pointer to hardware structure
1317 *
1318 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1319 **/
1320static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1321{
dbf893ee 1322 u32 timeout = 2000;
9a799d71
AK
1323 u32 i;
1324 u32 swsm;
1325
9a799d71
AK
1326 /* Get SMBI software semaphore between device drivers first */
1327 for (i = 0; i < timeout; i++) {
1328 /*
1329 * If the SMBI bit is 0 when we read it, then the bit will be
1330 * set and we have the semaphore
1331 */
1332 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
e90dd264 1333 if (!(swsm & IXGBE_SWSM_SMBI))
9a799d71 1334 break;
d819fc52 1335 usleep_range(50, 100);
9a799d71
AK
1336 }
1337
51275d37 1338 if (i == timeout) {
6ec1b71f 1339 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
e90dd264 1340 /* this release is particularly important because our attempts
51275d37
ET
1341 * above to get the semaphore may have succeeded, and if there
1342 * was a timeout, we should unconditionally clear the semaphore
1343 * bits to free the driver to make progress
1344 */
1345 ixgbe_release_eeprom_semaphore(hw);
1346
d819fc52 1347 usleep_range(50, 100);
e90dd264 1348 /* one last try
51275d37
ET
1349 * If the SMBI bit is 0 when we read it, then the bit will be
1350 * set and we have the semaphore
1351 */
1352 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
e90dd264
MR
1353 if (swsm & IXGBE_SWSM_SMBI) {
1354 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1355 return IXGBE_ERR_EEPROM;
1356 }
51275d37
ET
1357 }
1358
9a799d71 1359 /* Now get the semaphore between SW/FW through the SWESMBI bit */
e90dd264
MR
1360 for (i = 0; i < timeout; i++) {
1361 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
9a799d71 1362
e90dd264
MR
1363 /* Set the SW EEPROM semaphore bit to request access */
1364 swsm |= IXGBE_SWSM_SWESMBI;
1365 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
9a799d71 1366
e90dd264
MR
1367 /* If we set the bit successfully then we got the
1368 * semaphore.
1369 */
1370 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1371 if (swsm & IXGBE_SWSM_SWESMBI)
1372 break;
9a799d71 1373
e90dd264
MR
1374 usleep_range(50, 100);
1375 }
9a799d71 1376
e90dd264
MR
1377 /* Release semaphores and return error if SW EEPROM semaphore
1378 * was not granted because we don't have access to the EEPROM
1379 */
1380 if (i >= timeout) {
1381 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1382 ixgbe_release_eeprom_semaphore(hw);
1383 return IXGBE_ERR_EEPROM;
9a799d71
AK
1384 }
1385
e90dd264 1386 return 0;
9a799d71
AK
1387}
1388
1389/**
1390 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1391 * @hw: pointer to hardware structure
1392 *
1393 * This function clears hardware semaphore bits.
1394 **/
1395static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1396{
1397 u32 swsm;
1398
1399 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1400
1401 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1402 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1403 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
3957d63d 1404 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
1405}
1406
c44ade9e
JB
1407/**
1408 * ixgbe_ready_eeprom - Polls for EEPROM ready
1409 * @hw: pointer to hardware structure
1410 **/
1411static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1412{
c44ade9e
JB
1413 u16 i;
1414 u8 spi_stat_reg;
1415
1416 /*
1417 * Read "Status Register" repeatedly until the LSB is cleared. The
1418 * EEPROM will signal that the command has been completed by clearing
1419 * bit 0 of the internal status register. If it's not cleared within
1420 * 5 milliseconds, then error out.
1421 */
1422 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1423 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
e7cf745b 1424 IXGBE_EEPROM_OPCODE_BITS);
c44ade9e
JB
1425 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1426 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1427 break;
1428
1429 udelay(5);
1430 ixgbe_standby_eeprom(hw);
6403eab1 1431 }
c44ade9e
JB
1432
1433 /*
1434 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1435 * devices (and only 0-5mSec on 5V devices)
1436 */
1437 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1438 hw_dbg(hw, "SPI EEPROM Status error\n");
e90dd264 1439 return IXGBE_ERR_EEPROM;
c44ade9e
JB
1440 }
1441
e90dd264 1442 return 0;
c44ade9e
JB
1443}
1444
1445/**
1446 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1447 * @hw: pointer to hardware structure
1448 **/
1449static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1450{
1451 u32 eec;
1452
1453 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1454
1455 /* Toggle CS to flush commands */
1456 eec |= IXGBE_EEC_CS;
1457 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1458 IXGBE_WRITE_FLUSH(hw);
1459 udelay(1);
1460 eec &= ~IXGBE_EEC_CS;
1461 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1462 IXGBE_WRITE_FLUSH(hw);
1463 udelay(1);
1464}
1465
1466/**
1467 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1468 * @hw: pointer to hardware structure
1469 * @data: data to send to the EEPROM
1470 * @count: number of bits to shift out
1471 **/
1472static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
e7cf745b 1473 u16 count)
c44ade9e
JB
1474{
1475 u32 eec;
1476 u32 mask;
1477 u32 i;
1478
1479 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1480
1481 /*
1482 * Mask is used to shift "count" bits of "data" out to the EEPROM
1483 * one bit at a time. Determine the starting bit based on count
1484 */
1485 mask = 0x01 << (count - 1);
1486
1487 for (i = 0; i < count; i++) {
1488 /*
1489 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1490 * "1", and then raising and then lowering the clock (the SK
1491 * bit controls the clock input to the EEPROM). A "0" is
1492 * shifted out to the EEPROM by setting "DI" to "0" and then
1493 * raising and then lowering the clock.
1494 */
1495 if (data & mask)
1496 eec |= IXGBE_EEC_DI;
1497 else
1498 eec &= ~IXGBE_EEC_DI;
1499
1500 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1501 IXGBE_WRITE_FLUSH(hw);
1502
1503 udelay(1);
1504
1505 ixgbe_raise_eeprom_clk(hw, &eec);
1506 ixgbe_lower_eeprom_clk(hw, &eec);
1507
1508 /*
1509 * Shift mask to signify next bit of data to shift in to the
1510 * EEPROM
1511 */
1512 mask = mask >> 1;
6403eab1 1513 }
c44ade9e
JB
1514
1515 /* We leave the "DI" bit set to "0" when we leave this routine. */
1516 eec &= ~IXGBE_EEC_DI;
1517 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1518 IXGBE_WRITE_FLUSH(hw);
1519}
1520
1521/**
1522 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1523 * @hw: pointer to hardware structure
1524 **/
1525static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1526{
1527 u32 eec;
1528 u32 i;
1529 u16 data = 0;
1530
1531 /*
1532 * In order to read a register from the EEPROM, we need to shift
1533 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1534 * the clock input to the EEPROM (setting the SK bit), and then reading
1535 * the value of the "DO" bit. During this "shifting in" process the
1536 * "DI" bit should always be clear.
1537 */
1538 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1539
1540 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1541
1542 for (i = 0; i < count; i++) {
1543 data = data << 1;
1544 ixgbe_raise_eeprom_clk(hw, &eec);
1545
1546 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1547
1548 eec &= ~(IXGBE_EEC_DI);
1549 if (eec & IXGBE_EEC_DO)
1550 data |= 1;
1551
1552 ixgbe_lower_eeprom_clk(hw, &eec);
1553 }
1554
1555 return data;
1556}
1557
1558/**
1559 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1560 * @hw: pointer to hardware structure
1561 * @eec: EEC register's current value
1562 **/
1563static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1564{
1565 /*
1566 * Raise the clock input to the EEPROM
1567 * (setting the SK bit), then delay
1568 */
1569 *eec = *eec | IXGBE_EEC_SK;
1570 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1571 IXGBE_WRITE_FLUSH(hw);
1572 udelay(1);
1573}
1574
1575/**
1576 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1577 * @hw: pointer to hardware structure
1578 * @eecd: EECD's current value
1579 **/
1580static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1581{
1582 /*
1583 * Lower the clock input to the EEPROM (clearing the SK bit), then
1584 * delay
1585 */
1586 *eec = *eec & ~IXGBE_EEC_SK;
1587 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1588 IXGBE_WRITE_FLUSH(hw);
1589 udelay(1);
1590}
1591
1592/**
1593 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1594 * @hw: pointer to hardware structure
1595 **/
1596static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1597{
1598 u32 eec;
1599
1600 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601
1602 eec |= IXGBE_EEC_CS; /* Pull CS high */
1603 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1604
1605 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1606 IXGBE_WRITE_FLUSH(hw);
1607
1608 udelay(1);
1609
1610 /* Stop requesting EEPROM access */
1611 eec &= ~IXGBE_EEC_REQ;
1612 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1613
90827996 1614 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
dbf893ee 1615
032b4325
DS
1616 /*
1617 * Delay before attempt to obtain semaphore again to allow FW
1618 * access. semaphore_delay is in ms we need us for usleep_range
1619 */
1620 usleep_range(hw->eeprom.semaphore_delay * 1000,
1621 hw->eeprom.semaphore_delay * 2000);
c44ade9e
JB
1622}
1623
9a799d71 1624/**
dbf893ee 1625 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
9a799d71
AK
1626 * @hw: pointer to hardware structure
1627 **/
735c35af 1628s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
9a799d71
AK
1629{
1630 u16 i;
1631 u16 j;
1632 u16 checksum = 0;
1633 u16 length = 0;
1634 u16 pointer = 0;
1635 u16 word = 0;
1636
1637 /* Include 0x0-0x3F in the checksum */
1638 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
735c35af 1639 if (hw->eeprom.ops.read(hw, i, &word)) {
9a799d71
AK
1640 hw_dbg(hw, "EEPROM read failed\n");
1641 break;
1642 }
1643 checksum += word;
1644 }
1645
1646 /* Include all data from pointers except for the fw pointer */
1647 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
735c35af
DS
1648 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1649 hw_dbg(hw, "EEPROM read failed\n");
1650 return IXGBE_ERR_EEPROM;
1651 }
1652
1653 /* If the pointer seems invalid */
1654 if (pointer == 0xFFFF || pointer == 0)
1655 continue;
1656
1657 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1658 hw_dbg(hw, "EEPROM read failed\n");
1659 return IXGBE_ERR_EEPROM;
1660 }
9a799d71 1661
735c35af
DS
1662 if (length == 0xFFFF || length == 0)
1663 continue;
9a799d71 1664
735c35af
DS
1665 for (j = pointer + 1; j <= pointer + length; j++) {
1666 if (hw->eeprom.ops.read(hw, j, &word)) {
1667 hw_dbg(hw, "EEPROM read failed\n");
1668 return IXGBE_ERR_EEPROM;
9a799d71 1669 }
735c35af 1670 checksum += word;
9a799d71
AK
1671 }
1672 }
1673
1674 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1675
735c35af 1676 return (s32)checksum;
9a799d71
AK
1677}
1678
1679/**
c44ade9e 1680 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
9a799d71
AK
1681 * @hw: pointer to hardware structure
1682 * @checksum_val: calculated checksum
1683 *
1684 * Performs checksum calculation and validates the EEPROM checksum. If the
1685 * caller does not need checksum_val, the value can be NULL.
1686 **/
c44ade9e 1687s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
e7cf745b 1688 u16 *checksum_val)
9a799d71
AK
1689{
1690 s32 status;
1691 u16 checksum;
1692 u16 read_checksum = 0;
1693
1694 /*
1695 * Read the first word from the EEPROM. If this times out or fails, do
1696 * not continue or we could be in for a very long wait while every
1697 * EEPROM read fails
1698 */
c44ade9e 1699 status = hw->eeprom.ops.read(hw, 0, &checksum);
735c35af
DS
1700 if (status) {
1701 hw_dbg(hw, "EEPROM read failed\n");
1702 return status;
1703 }
9a799d71 1704
735c35af
DS
1705 status = hw->eeprom.ops.calc_checksum(hw);
1706 if (status < 0)
1707 return status;
9a799d71 1708
735c35af 1709 checksum = (u16)(status & 0xffff);
9a799d71 1710
735c35af
DS
1711 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1712 if (status) {
9a799d71 1713 hw_dbg(hw, "EEPROM read failed\n");
735c35af 1714 return status;
9a799d71
AK
1715 }
1716
735c35af
DS
1717 /* Verify read checksum from EEPROM is the same as
1718 * calculated checksum
1719 */
1720 if (read_checksum != checksum)
1721 status = IXGBE_ERR_EEPROM_CHECKSUM;
1722
1723 /* If the user cares, return the calculated checksum */
1724 if (checksum_val)
1725 *checksum_val = checksum;
1726
9a799d71
AK
1727 return status;
1728}
1729
c44ade9e
JB
1730/**
1731 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1732 * @hw: pointer to hardware structure
1733 **/
1734s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1735{
1736 s32 status;
1737 u16 checksum;
1738
1739 /*
1740 * Read the first word from the EEPROM. If this times out or fails, do
1741 * not continue or we could be in for a very long wait while every
1742 * EEPROM read fails
1743 */
1744 status = hw->eeprom.ops.read(hw, 0, &checksum);
735c35af 1745 if (status) {
c44ade9e 1746 hw_dbg(hw, "EEPROM read failed\n");
735c35af 1747 return status;
c44ade9e
JB
1748 }
1749
735c35af
DS
1750 status = hw->eeprom.ops.calc_checksum(hw);
1751 if (status < 0)
1752 return status;
1753
1754 checksum = (u16)(status & 0xffff);
1755
1756 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1757
c44ade9e
JB
1758 return status;
1759}
1760
9a799d71 1761/**
c44ade9e 1762 * ixgbe_set_rar_generic - Set Rx address register
9a799d71 1763 * @hw: pointer to hardware structure
9a799d71 1764 * @index: Receive address register to write
c44ade9e
JB
1765 * @addr: Address to put into receive address register
1766 * @vmdq: VMDq "set" or "pool" index
9a799d71
AK
1767 * @enable_addr: set flag that address is active
1768 *
1769 * Puts an ethernet address into a receive address register.
1770 **/
c44ade9e 1771s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
e7cf745b 1772 u32 enable_addr)
9a799d71
AK
1773{
1774 u32 rar_low, rar_high;
c44ade9e
JB
1775 u32 rar_entries = hw->mac.num_rar_entries;
1776
c700f4e6
ET
1777 /* Make sure we are using a valid rar index range */
1778 if (index >= rar_entries) {
1779 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1780 return IXGBE_ERR_INVALID_ARGUMENT;
1781 }
1782
c44ade9e
JB
1783 /* setup VMDq pool selection before this RAR gets enabled */
1784 hw->mac.ops.set_vmdq(hw, index, vmdq);
9a799d71 1785
c700f4e6
ET
1786 /*
1787 * HW expects these in little endian so we reverse the byte
1788 * order from network order (big endian) to little endian
1789 */
1790 rar_low = ((u32)addr[0] |
1791 ((u32)addr[1] << 8) |
1792 ((u32)addr[2] << 16) |
1793 ((u32)addr[3] << 24));
1794 /*
1795 * Some parts put the VMDq setting in the extra RAH bits,
1796 * so save everything except the lower 16 bits that hold part
1797 * of the address and the address valid bit.
1798 */
1799 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1800 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1801 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
9a799d71 1802
c700f4e6
ET
1803 if (enable_addr != 0)
1804 rar_high |= IXGBE_RAH_AV;
9a799d71 1805
c700f4e6
ET
1806 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1807 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
c44ade9e
JB
1808
1809 return 0;
1810}
1811
1812/**
1813 * ixgbe_clear_rar_generic - Remove Rx address register
1814 * @hw: pointer to hardware structure
1815 * @index: Receive address register to write
1816 *
1817 * Clears an ethernet address from a receive address register.
1818 **/
1819s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1820{
1821 u32 rar_high;
1822 u32 rar_entries = hw->mac.num_rar_entries;
1823
1824 /* Make sure we are using a valid rar index range */
c700f4e6 1825 if (index >= rar_entries) {
c44ade9e 1826 hw_dbg(hw, "RAR index %d is out of range.\n", index);
c700f4e6 1827 return IXGBE_ERR_INVALID_ARGUMENT;
c44ade9e
JB
1828 }
1829
c700f4e6
ET
1830 /*
1831 * Some parts put the VMDq setting in the extra RAH bits,
1832 * so save everything except the lower 16 bits that hold part
1833 * of the address and the address valid bit.
1834 */
1835 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1836 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1837
1838 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1839 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1840
c44ade9e
JB
1841 /* clear VMDq pool/queue selection for this RAR */
1842 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
9a799d71
AK
1843
1844 return 0;
1845}
1846
c44ade9e
JB
1847/**
1848 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
9a799d71
AK
1849 * @hw: pointer to hardware structure
1850 *
1851 * Places the MAC address in receive address register 0 and clears the rest
c44ade9e 1852 * of the receive address registers. Clears the multicast table. Assumes
9a799d71
AK
1853 * the receiver is in reset when the routine is called.
1854 **/
c44ade9e 1855s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
1856{
1857 u32 i;
2c5645cf 1858 u32 rar_entries = hw->mac.num_rar_entries;
9a799d71
AK
1859
1860 /*
1861 * If the current mac address is valid, assume it is a software override
1862 * to the permanent address.
1863 * Otherwise, use the permanent address from the eeprom.
1864 */
f8ebc683 1865 if (!is_valid_ether_addr(hw->mac.addr)) {
9a799d71 1866 /* Get the MAC address from the RAR0 for later reference */
c44ade9e 1867 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
9a799d71 1868
ce7194d8 1869 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
9a799d71
AK
1870 } else {
1871 /* Setup the receive address. */
1872 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
ce7194d8 1873 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
9a799d71 1874
c44ade9e 1875 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
96cc6372
AD
1876
1877 /* clear VMDq pool/queue selection for RAR 0 */
1878 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
9a799d71 1879 }
c44ade9e 1880 hw->addr_ctrl.overflow_promisc = 0;
9a799d71
AK
1881
1882 hw->addr_ctrl.rar_used_count = 1;
1883
1884 /* Zero out the other receive addresses. */
c44ade9e 1885 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
9a799d71
AK
1886 for (i = 1; i < rar_entries; i++) {
1887 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1888 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1889 }
1890
1891 /* Clear the MTA */
9a799d71
AK
1892 hw->addr_ctrl.mta_in_use = 0;
1893 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1894
1895 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1896 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1897 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1898
c44ade9e
JB
1899 if (hw->mac.ops.init_uta_tables)
1900 hw->mac.ops.init_uta_tables(hw);
1901
9a799d71
AK
1902 return 0;
1903}
1904
1905/**
1906 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1907 * @hw: pointer to hardware structure
1908 * @mc_addr: the multicast address
1909 *
1910 * Extracts the 12 bits, from a multicast address, to determine which
1911 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1912 * incoming rx multicast addresses, to determine the bit-vector to check in
1913 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
c44ade9e 1914 * by the MO field of the MCSTCTRL. The MO field is set during initialization
9a799d71
AK
1915 * to mc_filter_type.
1916 **/
1917static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1918{
1919 u32 vector = 0;
1920
1921 switch (hw->mac.mc_filter_type) {
b4617240 1922 case 0: /* use bits [47:36] of the address */
9a799d71
AK
1923 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1924 break;
b4617240 1925 case 1: /* use bits [46:35] of the address */
9a799d71
AK
1926 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1927 break;
b4617240 1928 case 2: /* use bits [45:34] of the address */
9a799d71
AK
1929 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1930 break;
b4617240 1931 case 3: /* use bits [43:32] of the address */
9a799d71
AK
1932 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1933 break;
b4617240 1934 default: /* Invalid mc_filter_type */
9a799d71
AK
1935 hw_dbg(hw, "MC filter type param set incorrectly\n");
1936 break;
1937 }
1938
1939 /* vector can only be 12-bits or boundary will be exceeded */
1940 vector &= 0xFFF;
1941 return vector;
1942}
1943
1944/**
1945 * ixgbe_set_mta - Set bit-vector in multicast table
1946 * @hw: pointer to hardware structure
1947 * @hash_value: Multicast address hash value
1948 *
1949 * Sets the bit-vector in the multicast table.
1950 **/
1951static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1952{
1953 u32 vector;
1954 u32 vector_bit;
1955 u32 vector_reg;
9a799d71
AK
1956
1957 hw->addr_ctrl.mta_in_use++;
1958
1959 vector = ixgbe_mta_vector(hw, mc_addr);
1960 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1961
1962 /*
1963 * The MTA is a register array of 128 32-bit registers. It is treated
1964 * like an array of 4096 bits. We want to set bit
1965 * BitArray[vector_value]. So we figure out what register the bit is
1966 * in, read it, OR in the new bit, then write back the new value. The
1967 * register is determined by the upper 7 bits of the vector value and
1968 * the bit within that register are determined by the lower 5 bits of
1969 * the value.
1970 */
1971 vector_reg = (vector >> 5) & 0x7F;
1972 vector_bit = vector & 0x1F;
80960ab0 1973 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
9a799d71
AK
1974}
1975
9a799d71 1976/**
c44ade9e 1977 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
9a799d71 1978 * @hw: pointer to hardware structure
2853eb89 1979 * @netdev: pointer to net device structure
9a799d71
AK
1980 *
1981 * The given list replaces any existing list. Clears the MC addrs from receive
c44ade9e 1982 * address registers and the multicast table. Uses unused receive address
9a799d71
AK
1983 * registers for the first multicast addresses, and hashes the rest into the
1984 * multicast table.
1985 **/
2853eb89
JP
1986s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1987 struct net_device *netdev)
9a799d71 1988{
22bedad3 1989 struct netdev_hw_addr *ha;
9a799d71 1990 u32 i;
9a799d71
AK
1991
1992 /*
1993 * Set the new number of MC addresses that we are being requested to
1994 * use.
1995 */
2853eb89 1996 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
9a799d71
AK
1997 hw->addr_ctrl.mta_in_use = 0;
1998
80960ab0 1999 /* Clear mta_shadow */
9a799d71 2000 hw_dbg(hw, " Clearing MTA\n");
80960ab0 2001 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
9a799d71 2002
80960ab0 2003 /* Update mta shadow */
22bedad3 2004 netdev_for_each_mc_addr(ha, netdev) {
9a799d71 2005 hw_dbg(hw, " Adding the multicast addresses:\n");
22bedad3 2006 ixgbe_set_mta(hw, ha->addr);
9a799d71
AK
2007 }
2008
2009 /* Enable mta */
80960ab0
ET
2010 for (i = 0; i < hw->mac.mcft_size; i++)
2011 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2012 hw->mac.mta_shadow[i]);
2013
9a799d71
AK
2014 if (hw->addr_ctrl.mta_in_use > 0)
2015 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
e7cf745b 2016 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
9a799d71 2017
c44ade9e 2018 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
9a799d71
AK
2019 return 0;
2020}
2021
2022/**
c44ade9e 2023 * ixgbe_enable_mc_generic - Enable multicast address in RAR
9a799d71
AK
2024 * @hw: pointer to hardware structure
2025 *
c44ade9e 2026 * Enables multicast address in RAR and the use of the multicast hash table.
9a799d71 2027 **/
c44ade9e 2028s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
9a799d71 2029{
c44ade9e 2030 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
9a799d71 2031
c44ade9e
JB
2032 if (a->mta_in_use > 0)
2033 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
e7cf745b 2034 hw->mac.mc_filter_type);
9a799d71
AK
2035
2036 return 0;
2037}
2038
2039/**
c44ade9e 2040 * ixgbe_disable_mc_generic - Disable multicast address in RAR
9a799d71 2041 * @hw: pointer to hardware structure
9a799d71 2042 *
c44ade9e 2043 * Disables multicast address in RAR and the use of the multicast hash table.
9a799d71 2044 **/
c44ade9e 2045s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
9a799d71 2046{
c44ade9e 2047 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2b9ade93 2048
c44ade9e
JB
2049 if (a->mta_in_use > 0)
2050 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
9a799d71
AK
2051
2052 return 0;
2053}
2054
11afc1b1 2055/**
620fa036 2056 * ixgbe_fc_enable_generic - Enable flow control
11afc1b1 2057 * @hw: pointer to hardware structure
11afc1b1
PW
2058 *
2059 * Enable flow control according to the current settings.
2060 **/
041441d0 2061s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
11afc1b1 2062{
620fa036 2063 u32 mflcn_reg, fccfg_reg;
11afc1b1 2064 u32 reg;
16b61beb 2065 u32 fcrtl, fcrth;
041441d0 2066 int i;
70b77628 2067
e5776620 2068 /* Validate the water mark configuration. */
e90dd264
MR
2069 if (!hw->fc.pause_time)
2070 return IXGBE_ERR_INVALID_LINK_SETTINGS;
70b77628 2071
e5776620
JK
2072 /* Low water mark of zero causes XOFF floods */
2073 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2074 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2075 hw->fc.high_water[i]) {
2076 if (!hw->fc.low_water[i] ||
2077 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2078 hw_dbg(hw, "Invalid water mark configuration\n");
e90dd264 2079 return IXGBE_ERR_INVALID_LINK_SETTINGS;
e5776620
JK
2080 }
2081 }
2082 }
2083
620fa036 2084 /* Negotiate the fc mode to use */
786e9a5f 2085 ixgbe_fc_autoneg(hw);
11afc1b1 2086
620fa036 2087 /* Disable any previous flow control settings */
11afc1b1 2088 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
041441d0 2089 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
11afc1b1
PW
2090
2091 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2092 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2093
2094 /*
2095 * The possible values of fc.current_mode are:
2096 * 0: Flow control is completely disabled
2097 * 1: Rx flow control is enabled (we can receive pause frames,
2098 * but not send pause frames).
bb3daa4a
PW
2099 * 2: Tx flow control is enabled (we can send pause frames but
2100 * we do not support receiving pause frames).
11afc1b1
PW
2101 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2102 * other: Invalid.
2103 */
2104 switch (hw->fc.current_mode) {
2105 case ixgbe_fc_none:
620fa036
MC
2106 /*
2107 * Flow control is disabled by software override or autoneg.
2108 * The code below will actually disable it in the HW.
2109 */
11afc1b1
PW
2110 break;
2111 case ixgbe_fc_rx_pause:
2112 /*
2113 * Rx Flow control is enabled and Tx Flow control is
2114 * disabled by software override. Since there really
2115 * isn't a way to advertise that we are capable of RX
2116 * Pause ONLY, we will advertise that we support both
2117 * symmetric and asymmetric Rx PAUSE. Later, we will
2118 * disable the adapter's ability to send PAUSE frames.
2119 */
2120 mflcn_reg |= IXGBE_MFLCN_RFCE;
2121 break;
2122 case ixgbe_fc_tx_pause:
2123 /*
2124 * Tx Flow control is enabled, and Rx Flow control is
2125 * disabled by software override.
2126 */
2127 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2128 break;
2129 case ixgbe_fc_full:
2130 /* Flow control (both Rx and Tx) is enabled by SW override. */
2131 mflcn_reg |= IXGBE_MFLCN_RFCE;
2132 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2133 break;
2134 default:
2135 hw_dbg(hw, "Flow control param set incorrectly\n");
e90dd264 2136 return IXGBE_ERR_CONFIG;
11afc1b1
PW
2137 }
2138
620fa036 2139 /* Set 802.3x based flow control settings. */
2132d381 2140 mflcn_reg |= IXGBE_MFLCN_DPF;
11afc1b1
PW
2141 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2142 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2143
041441d0
AD
2144 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2145 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2146 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2147 hw->fc.high_water[i]) {
e5776620 2148 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
041441d0
AD
2149 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2150 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2151 } else {
2152 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2153 /*
2154 * In order to prevent Tx hangs when the internal Tx
2155 * switch is enabled we must set the high water mark
2156 * to the maximum FCRTH value. This allows the Tx
2157 * switch to function even under heavy Rx workloads.
2158 */
2159 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2160 }
11afc1b1 2161
041441d0
AD
2162 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2163 }
16b61beb 2164
11afc1b1 2165 /* Configure pause time (2 TCs per register) */
041441d0
AD
2166 reg = hw->fc.pause_time * 0x00010001;
2167 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2168 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2169
2170 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
11afc1b1 2171
e90dd264 2172 return 0;
11afc1b1
PW
2173}
2174
0ecc061d 2175/**
67a79df2 2176 * ixgbe_negotiate_fc - Negotiate flow control
0ecc061d 2177 * @hw: pointer to hardware structure
67a79df2
AD
2178 * @adv_reg: flow control advertised settings
2179 * @lp_reg: link partner's flow control settings
2180 * @adv_sym: symmetric pause bit in advertisement
2181 * @adv_asm: asymmetric pause bit in advertisement
2182 * @lp_sym: symmetric pause bit in link partner advertisement
2183 * @lp_asm: asymmetric pause bit in link partner advertisement
0ecc061d 2184 *
67a79df2
AD
2185 * Find the intersection between advertised settings and link partner's
2186 * advertised settings
0ecc061d 2187 **/
67a79df2
AD
2188static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2189 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
0ecc061d 2190{
67a79df2
AD
2191 if ((!(adv_reg)) || (!(lp_reg)))
2192 return IXGBE_ERR_FC_NOT_NEGOTIATED;
0b0c2b31 2193
67a79df2
AD
2194 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2195 /*
2196 * Now we need to check if the user selected Rx ONLY
2197 * of pause frames. In this case, we had to advertise
2198 * FULL flow control because we could not advertise RX
2199 * ONLY. Hence, we must now check to see if we need to
2200 * turn OFF the TRANSMISSION of PAUSE frames.
2201 */
2202 if (hw->fc.requested_mode == ixgbe_fc_full) {
2203 hw->fc.current_mode = ixgbe_fc_full;
2204 hw_dbg(hw, "Flow Control = FULL.\n");
2205 } else {
2206 hw->fc.current_mode = ixgbe_fc_rx_pause;
2207 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2208 }
2209 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2210 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2211 hw->fc.current_mode = ixgbe_fc_tx_pause;
2212 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2213 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2214 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2215 hw->fc.current_mode = ixgbe_fc_rx_pause;
2216 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
0b0c2b31 2217 } else {
67a79df2
AD
2218 hw->fc.current_mode = ixgbe_fc_none;
2219 hw_dbg(hw, "Flow Control = NONE.\n");
539e5f02 2220 }
67a79df2 2221 return 0;
0b0c2b31
ET
2222}
2223
2224/**
2225 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2226 * @hw: pointer to hardware structure
2227 *
2228 * Enable flow control according on 1 gig fiber.
2229 **/
2230static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2231{
2232 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
e90dd264 2233 s32 ret_val;
539e5f02
PWJ
2234
2235 /*
2236 * On multispeed fiber at 1g, bail out if
2237 * - link is up but AN did not complete, or if
2238 * - link is up and AN completed but timed out
2239 */
0b0c2b31
ET
2240
2241 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
53f096de 2242 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
786e9a5f 2243 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
e90dd264 2244 return IXGBE_ERR_FC_NOT_NEGOTIATED;
539e5f02 2245
0b0c2b31
ET
2246 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2247 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2248
2249 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2250 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2251 IXGBE_PCS1GANA_ASM_PAUSE,
2252 IXGBE_PCS1GANA_SYM_PAUSE,
2253 IXGBE_PCS1GANA_ASM_PAUSE);
2254
0b0c2b31
ET
2255 return ret_val;
2256}
2257
2258/**
2259 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2260 * @hw: pointer to hardware structure
2261 *
2262 * Enable flow control according to IEEE clause 37.
2263 **/
2264static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2265{
2266 u32 links2, anlp1_reg, autoc_reg, links;
e90dd264 2267 s32 ret_val;
0b0c2b31 2268
9bbe3a57 2269 /*
0b0c2b31
ET
2270 * On backplane, bail out if
2271 * - backplane autoneg was not completed, or if
2272 * - we are 82599 and link partner is not AN enabled
9bbe3a57 2273 */
0b0c2b31 2274 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
786e9a5f 2275 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
e90dd264 2276 return IXGBE_ERR_FC_NOT_NEGOTIATED;
9bbe3a57 2277
0b0c2b31
ET
2278 if (hw->mac.type == ixgbe_mac_82599EB) {
2279 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
786e9a5f 2280 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
e90dd264 2281 return IXGBE_ERR_FC_NOT_NEGOTIATED;
0b0c2b31 2282 }
0ecc061d 2283 /*
0b0c2b31 2284 * Read the 10g AN autoc and LP ability registers and resolve
0ecc061d
PWJ
2285 * local flow control settings accordingly
2286 */
0b0c2b31
ET
2287 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2288 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
539e5f02 2289
0b0c2b31
ET
2290 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2291 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2292 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2293
0b0c2b31
ET
2294 return ret_val;
2295}
2296
2297/**
2298 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2299 * @hw: pointer to hardware structure
2300 *
2301 * Enable flow control according to IEEE clause 37.
2302 **/
2303static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2304{
2305 u16 technology_ability_reg = 0;
2306 u16 lp_technology_ability_reg = 0;
2307
2308 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2309 MDIO_MMD_AN,
2310 &technology_ability_reg);
2311 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2312 MDIO_MMD_AN,
2313 &lp_technology_ability_reg);
2314
2315 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2316 (u32)lp_technology_ability_reg,
2317 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2318 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2319}
2320
2321/**
67a79df2 2322 * ixgbe_fc_autoneg - Configure flow control
11afc1b1
PW
2323 * @hw: pointer to hardware structure
2324 *
67a79df2
AD
2325 * Compares our advertised flow control capabilities to those advertised by
2326 * our link partner, and determines the proper flow control mode to use.
11afc1b1 2327 **/
67a79df2 2328void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
11afc1b1 2329{
67a79df2
AD
2330 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2331 ixgbe_link_speed speed;
2332 bool link_up;
11afc1b1
PW
2333
2334 /*
67a79df2
AD
2335 * AN should have completed when the cable was plugged in.
2336 * Look for reasons to bail out. Bail out if:
2337 * - FC autoneg is disabled, or if
2338 * - link is not up.
2339 *
2340 * Since we're being called from an LSC, link is already known to be up.
2341 * So use link_up_wait_to_complete=false.
11afc1b1 2342 */
67a79df2 2343 if (hw->fc.disable_fc_autoneg)
620fa036 2344 goto out;
11afc1b1 2345
67a79df2
AD
2346 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2347 if (!link_up)
11afc1b1 2348 goto out;
0b0c2b31
ET
2349
2350 switch (hw->phy.media_type) {
67a79df2 2351 /* Autoneg flow control on fiber adapters */
0b0c2b31 2352 case ixgbe_media_type_fiber:
67a79df2
AD
2353 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2354 ret_val = ixgbe_fc_autoneg_fiber(hw);
2355 break;
2356
2357 /* Autoneg flow control on backplane adapters */
0b0c2b31 2358 case ixgbe_media_type_backplane:
67a79df2 2359 ret_val = ixgbe_fc_autoneg_backplane(hw);
0b0c2b31
ET
2360 break;
2361
67a79df2 2362 /* Autoneg flow control on copper adapters */
0b0c2b31 2363 case ixgbe_media_type_copper:
73d80953 2364 if (ixgbe_device_supports_autoneg_fc(hw))
67a79df2 2365 ret_val = ixgbe_fc_autoneg_copper(hw);
0b0c2b31
ET
2366 break;
2367
2368 default:
620fa036 2369 break;
0b0c2b31 2370 }
539e5f02 2371
11afc1b1 2372out:
67a79df2
AD
2373 if (ret_val == 0) {
2374 hw->fc.fc_was_autonegged = true;
2375 } else {
2376 hw->fc.fc_was_autonegged = false;
2377 hw->fc.current_mode = hw->fc.requested_mode;
2378 }
11afc1b1
PW
2379}
2380
1f86c983
DS
2381/**
2382 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2383 * @hw: pointer to hardware structure
2384 *
2385 * System-wide timeout range is encoded in PCIe Device Control2 register.
2386 *
2387 * Add 10% to specified maximum and return the number of times to poll for
2388 * completion timeout, in units of 100 microsec. Never return less than
2389 * 800 = 80 millisec.
2390 **/
2391static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2392{
1f86c983
DS
2393 s16 devctl2;
2394 u32 pollcnt;
2395
0d7c6e00 2396 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
1f86c983
DS
2397 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2398
2399 switch (devctl2) {
2400 case IXGBE_PCIDEVCTRL2_65_130ms:
2401 pollcnt = 1300; /* 130 millisec */
2402 break;
2403 case IXGBE_PCIDEVCTRL2_260_520ms:
2404 pollcnt = 5200; /* 520 millisec */
2405 break;
2406 case IXGBE_PCIDEVCTRL2_1_2s:
2407 pollcnt = 20000; /* 2 sec */
2408 break;
2409 case IXGBE_PCIDEVCTRL2_4_8s:
2410 pollcnt = 80000; /* 8 sec */
2411 break;
2412 case IXGBE_PCIDEVCTRL2_17_34s:
2413 pollcnt = 34000; /* 34 sec */
2414 break;
2415 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2416 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2417 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2418 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2419 default:
2420 pollcnt = 800; /* 80 millisec minimum */
2421 break;
2422 }
2423
2424 /* add 10% to spec maximum */
2425 return (pollcnt * 11) / 10;
2426}
2427
9a799d71
AK
2428/**
2429 * ixgbe_disable_pcie_master - Disable PCI-express master access
2430 * @hw: pointer to hardware structure
2431 *
2432 * Disables PCI-Express master access and verifies there are no pending
2433 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2434 * bit hasn't caused the master requests to be disabled, else 0
2435 * is returned signifying master requests disabled.
2436 **/
ff9d1a5a 2437static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
9a799d71 2438{
1f86c983 2439 u32 i, poll;
ff9d1a5a
ET
2440 u16 value;
2441
2442 /* Always set this bit to ensure any future transactions are blocked */
2443 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
a4297dc2 2444
ff9d1a5a 2445 /* Exit if master requests are blocked */
14438464
MR
2446 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2447 ixgbe_removed(hw->hw_addr))
e90dd264 2448 return 0;
9a799d71 2449
ff9d1a5a 2450 /* Poll for master request bit to clear */
9a799d71 2451 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
a4297dc2 2452 udelay(100);
ff9d1a5a 2453 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
e90dd264 2454 return 0;
a4297dc2
ET
2455 }
2456
ff9d1a5a
ET
2457 /*
2458 * Two consecutive resets are required via CTRL.RST per datasheet
2459 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2460 * of this need. The first reset prevents new master requests from
2461 * being issued by our device. We then must wait 1usec or more for any
2462 * remaining completions from the PCIe bus to trickle in, and then reset
2463 * again to clear out any effects they may have had on our device.
2464 */
a4297dc2 2465 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
ff9d1a5a 2466 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
a4297dc2
ET
2467
2468 /*
2469 * Before proceeding, make sure that the PCIe block does not have
2470 * transactions pending.
2471 */
1f86c983
DS
2472 poll = ixgbe_pcie_timeout_poll(hw);
2473 for (i = 0; i < poll; i++) {
9a799d71 2474 udelay(100);
14438464
MR
2475 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2476 if (ixgbe_removed(hw->hw_addr))
e90dd264 2477 return 0;
ff9d1a5a 2478 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
e90dd264 2479 return 0;
9a799d71
AK
2480 }
2481
ff9d1a5a 2482 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
e90dd264 2483 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
9a799d71
AK
2484}
2485
9a799d71 2486/**
c44ade9e 2487 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
9a799d71 2488 * @hw: pointer to hardware structure
c44ade9e 2489 * @mask: Mask to specify which semaphore to acquire
9a799d71 2490 *
da74cd4a 2491 * Acquires the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2492 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2493 **/
030eaece 2494s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
9a799d71 2495{
674c18b2 2496 u32 gssr = 0;
9a799d71
AK
2497 u32 swmask = mask;
2498 u32 fwmask = mask << 5;
674c18b2
ET
2499 u32 timeout = 200;
2500 u32 i;
9a799d71 2501
674c18b2 2502 for (i = 0; i < timeout; i++) {
dbf893ee 2503 /*
674c18b2
ET
2504 * SW NVM semaphore bit is used for access to all
2505 * SW_FW_SYNC bits (not just NVM)
dbf893ee 2506 */
9a799d71 2507 if (ixgbe_get_eeprom_semaphore(hw))
539e5f02 2508 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2509
2510 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
674c18b2
ET
2511 if (!(gssr & (fwmask | swmask))) {
2512 gssr |= swmask;
2513 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2514 ixgbe_release_eeprom_semaphore(hw);
2515 return 0;
2516 } else {
2517 /* Resource is currently in use by FW or SW */
2518 ixgbe_release_eeprom_semaphore(hw);
2519 usleep_range(5000, 10000);
2520 }
9a799d71
AK
2521 }
2522
674c18b2
ET
2523 /* If time expired clear the bits holding the lock and retry */
2524 if (gssr & (fwmask | swmask))
2525 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
9a799d71 2526
674c18b2
ET
2527 usleep_range(5000, 10000);
2528 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2529}
2530
2531/**
2532 * ixgbe_release_swfw_sync - Release SWFW semaphore
2533 * @hw: pointer to hardware structure
c44ade9e 2534 * @mask: Mask to specify which semaphore to release
9a799d71 2535 *
da74cd4a 2536 * Releases the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2537 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2538 **/
030eaece 2539void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
9a799d71
AK
2540{
2541 u32 gssr;
2542 u32 swmask = mask;
2543
2544 ixgbe_get_eeprom_semaphore(hw);
2545
2546 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2547 gssr &= ~swmask;
2548 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2549
2550 ixgbe_release_eeprom_semaphore(hw);
2551}
2552
429d6a3b
DS
2553/**
2554 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2555 * @hw: pointer to hardware structure
2556 * @reg_val: Value we read from AUTOC
2557 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2558 * true in this the generic case.
2559 *
2560 * The default case requires no protection so just to the register read.
2561 **/
2562s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2563{
2564 *locked = false;
2565 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2566 return 0;
2567}
2568
2569/**
2570 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2571 * @hw: pointer to hardware structure
2572 * @reg_val: value to write to AUTOC
2573 * @locked: bool to indicate whether the SW/FW lock was already taken by
2574 * previous read.
2575 **/
2576s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2577{
2578 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2579 return 0;
2580}
2581
d2f5e7f3
AS
2582/**
2583 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2584 * @hw: pointer to hardware structure
2585 *
2586 * Stops the receive data path and waits for the HW to internally
2587 * empty the Rx security block.
2588 **/
2589s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2590{
2591#define IXGBE_MAX_SECRX_POLL 40
2592 int i;
2593 int secrxreg;
2594
2595 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2596 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2597 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2598 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2599 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2600 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2601 break;
2602 else
2603 /* Use interrupt-safe sleep just in case */
db76ad47 2604 udelay(1000);
d2f5e7f3
AS
2605 }
2606
2607 /* For informational purposes only */
2608 if (i >= IXGBE_MAX_SECRX_POLL)
6ec1b71f 2609 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
d2f5e7f3
AS
2610
2611 return 0;
2612
2613}
2614
2615/**
2616 * ixgbe_enable_rx_buff - Enables the receive data path
2617 * @hw: pointer to hardware structure
2618 *
2619 * Enables the receive data path
2620 **/
2621s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2622{
2623 int secrxreg;
2624
2625 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2626 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2627 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2628 IXGBE_WRITE_FLUSH(hw);
2629
2630 return 0;
2631}
2632
11afc1b1
PW
2633/**
2634 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2635 * @hw: pointer to hardware structure
2636 * @regval: register value to write to RXCTRL
2637 *
2638 * Enables the Rx DMA unit
2639 **/
2640s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2641{
1f9ac57c
DS
2642 if (regval & IXGBE_RXCTRL_RXEN)
2643 hw->mac.ops.enable_rx(hw);
2644 else
2645 hw->mac.ops.disable_rx(hw);
11afc1b1
PW
2646
2647 return 0;
2648}
87c12017
PW
2649
2650/**
2651 * ixgbe_blink_led_start_generic - Blink LED based on index.
2652 * @hw: pointer to hardware structure
2653 * @index: led number to blink
2654 **/
2655s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2656{
2657 ixgbe_link_speed speed = 0;
3db1cd5c 2658 bool link_up = false;
87c12017
PW
2659 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2660 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
429d6a3b 2661 bool locked = false;
e90dd264 2662 s32 ret_val;
87c12017
PW
2663
2664 /*
2665 * Link must be up to auto-blink the LEDs;
2666 * Force it if link is down.
2667 */
2668 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2669
2670 if (!link_up) {
429d6a3b 2671 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
f8cf7a00 2672 if (ret_val)
e90dd264 2673 return ret_val;
d7bbcd32 2674
50ac58ba 2675 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
87c12017 2676 autoc_reg |= IXGBE_AUTOC_FLU;
429d6a3b
DS
2677
2678 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
f8cf7a00 2679 if (ret_val)
e90dd264 2680 return ret_val;
429d6a3b 2681
945a5151 2682 IXGBE_WRITE_FLUSH(hw);
d7bbcd32 2683
032b4325 2684 usleep_range(10000, 20000);
87c12017
PW
2685 }
2686
2687 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2688 led_reg |= IXGBE_LED_BLINK(index);
2689 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2690 IXGBE_WRITE_FLUSH(hw);
2691
e90dd264 2692 return 0;
87c12017
PW
2693}
2694
2695/**
2696 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2697 * @hw: pointer to hardware structure
2698 * @index: led number to stop blinking
2699 **/
2700s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2701{
429d6a3b 2702 u32 autoc_reg = 0;
87c12017 2703 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
429d6a3b 2704 bool locked = false;
e90dd264 2705 s32 ret_val;
d7bbcd32 2706
429d6a3b 2707 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
f8cf7a00 2708 if (ret_val)
e90dd264 2709 return ret_val;
87c12017
PW
2710
2711 autoc_reg &= ~IXGBE_AUTOC_FLU;
2712 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
87c12017 2713
429d6a3b 2714 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
f8cf7a00 2715 if (ret_val)
e90dd264 2716 return ret_val;
d7bbcd32 2717
87c12017
PW
2718 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2719 led_reg &= ~IXGBE_LED_BLINK(index);
2720 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2721 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2722 IXGBE_WRITE_FLUSH(hw);
2723
e90dd264 2724 return 0;
87c12017 2725}
21ce849b
MC
2726
2727/**
2728 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2729 * @hw: pointer to hardware structure
2730 * @san_mac_offset: SAN MAC address offset
2731 *
2732 * This function will read the EEPROM location for the SAN MAC address
2733 * pointer, and returns the value at that location. This is used in both
2734 * get and set mac_addr routines.
2735 **/
2736static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
e7cf745b 2737 u16 *san_mac_offset)
21ce849b 2738{
be0c27b4
MR
2739 s32 ret_val;
2740
21ce849b
MC
2741 /*
2742 * First read the EEPROM pointer to see if the MAC addresses are
2743 * available.
2744 */
be0c27b4
MR
2745 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2746 san_mac_offset);
2747 if (ret_val)
2748 hw_err(hw, "eeprom read at offset %d failed\n",
2749 IXGBE_SAN_MAC_ADDR_PTR);
21ce849b 2750
be0c27b4 2751 return ret_val;
21ce849b
MC
2752}
2753
2754/**
2755 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2756 * @hw: pointer to hardware structure
2757 * @san_mac_addr: SAN MAC address
2758 *
2759 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2760 * per-port, so set_lan_id() must be called before reading the addresses.
2761 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2762 * upon for non-SFP connections, so we must call it here.
2763 **/
2764s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2765{
2766 u16 san_mac_data, san_mac_offset;
2767 u8 i;
be0c27b4 2768 s32 ret_val;
21ce849b
MC
2769
2770 /*
2771 * First read the EEPROM pointer to see if the MAC addresses are
2772 * available. If they're not, no point in calling set_lan_id() here.
2773 */
be0c27b4
MR
2774 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2775 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
21ce849b 2776
be0c27b4 2777 goto san_mac_addr_clr;
21ce849b
MC
2778
2779 /* make sure we know which port we need to program */
2780 hw->mac.ops.set_lan_id(hw);
2781 /* apply the port offset to the address offset */
2782 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
e7cf745b 2783 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
21ce849b 2784 for (i = 0; i < 3; i++) {
be0c27b4
MR
2785 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2786 &san_mac_data);
2787 if (ret_val) {
2788 hw_err(hw, "eeprom read at offset %d failed\n",
2789 san_mac_offset);
2790 goto san_mac_addr_clr;
2791 }
21ce849b
MC
2792 san_mac_addr[i * 2] = (u8)(san_mac_data);
2793 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2794 san_mac_offset++;
2795 }
21ce849b 2796 return 0;
be0c27b4
MR
2797
2798san_mac_addr_clr:
2799 /* No addresses available in this EEPROM. It's not necessarily an
2800 * error though, so just wipe the local address and return.
2801 */
2802 for (i = 0; i < 6; i++)
2803 san_mac_addr[i] = 0xFF;
2804 return ret_val;
21ce849b
MC
2805}
2806
2807/**
2808 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2809 * @hw: pointer to hardware structure
2810 *
2811 * Read PCIe configuration space, and get the MSI-X vector count from
2812 * the capabilities table.
2813 **/
71161302 2814u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
21ce849b 2815{
e90dd264 2816 u16 msix_count;
71161302
ET
2817 u16 max_msix_count;
2818 u16 pcie_offset;
2819
2820 switch (hw->mac.type) {
2821 case ixgbe_mac_82598EB:
2822 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2823 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2824 break;
2825 case ixgbe_mac_82599EB:
2826 case ixgbe_mac_X540:
9a75a1ac
DS
2827 case ixgbe_mac_X550:
2828 case ixgbe_mac_X550EM_x:
71161302
ET
2829 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2830 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2831 break;
2832 default:
e90dd264 2833 return 1;
71161302
ET
2834 }
2835
14438464
MR
2836 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2837 if (ixgbe_removed(hw->hw_addr))
2838 msix_count = 0;
21ce849b
MC
2839 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2840
71161302 2841 /* MSI-X count is zero-based in HW */
21ce849b
MC
2842 msix_count++;
2843
71161302
ET
2844 if (msix_count > max_msix_count)
2845 msix_count = max_msix_count;
2846
21ce849b
MC
2847 return msix_count;
2848}
2849
2850/**
2851 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2852 * @hw: pointer to hardware struct
2853 * @rar: receive address register index to disassociate
2854 * @vmdq: VMDq pool index to remove from the rar
2855 **/
2856s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2857{
2858 u32 mpsar_lo, mpsar_hi;
2859 u32 rar_entries = hw->mac.num_rar_entries;
2860
c700f4e6
ET
2861 /* Make sure we are using a valid rar index range */
2862 if (rar >= rar_entries) {
2863 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2864 return IXGBE_ERR_INVALID_ARGUMENT;
2865 }
21ce849b 2866
c700f4e6
ET
2867 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2868 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
21ce849b 2869
19458bd4 2870 if (ixgbe_removed(hw->hw_addr))
e90dd264 2871 return 0;
19458bd4 2872
c700f4e6 2873 if (!mpsar_lo && !mpsar_hi)
e90dd264 2874 return 0;
21ce849b 2875
c700f4e6
ET
2876 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2877 if (mpsar_lo) {
2878 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2879 mpsar_lo = 0;
2880 }
2881 if (mpsar_hi) {
2882 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2883 mpsar_hi = 0;
2884 }
2885 } else if (vmdq < 32) {
2886 mpsar_lo &= ~(1 << vmdq);
2887 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
21ce849b 2888 } else {
c700f4e6
ET
2889 mpsar_hi &= ~(1 << (vmdq - 32));
2890 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
21ce849b
MC
2891 }
2892
c700f4e6
ET
2893 /* was that the last pool using this rar? */
2894 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2895 hw->mac.ops.clear_rar(hw, rar);
21ce849b
MC
2896 return 0;
2897}
2898
2899/**
2900 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2901 * @hw: pointer to hardware struct
2902 * @rar: receive address register index to associate with a VMDq index
2903 * @vmdq: VMDq pool index
2904 **/
2905s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2906{
2907 u32 mpsar;
2908 u32 rar_entries = hw->mac.num_rar_entries;
2909
c700f4e6
ET
2910 /* Make sure we are using a valid rar index range */
2911 if (rar >= rar_entries) {
21ce849b 2912 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
c700f4e6
ET
2913 return IXGBE_ERR_INVALID_ARGUMENT;
2914 }
2915
2916 if (vmdq < 32) {
2917 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2918 mpsar |= 1 << vmdq;
2919 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2920 } else {
2921 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2922 mpsar |= 1 << (vmdq - 32);
2923 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
21ce849b
MC
2924 }
2925 return 0;
2926}
2927
7fa7c9dc
AD
2928/**
2929 * This function should only be involved in the IOV mode.
2930 * In IOV mode, Default pool is next pool after the number of
2931 * VFs advertized and not 0.
2932 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2933 *
2934 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2935 * @hw: pointer to hardware struct
2936 * @vmdq: VMDq pool index
2937 **/
2938s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2939{
2940 u32 rar = hw->mac.san_mac_rar_index;
2941
2942 if (vmdq < 32) {
2943 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2944 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2945 } else {
2946 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2947 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2948 }
2949
2950 return 0;
2951}
2952
21ce849b
MC
2953/**
2954 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2955 * @hw: pointer to hardware structure
2956 **/
2957s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2958{
2959 int i;
2960
21ce849b
MC
2961 for (i = 0; i < 128; i++)
2962 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2963
2964 return 0;
2965}
2966
2967/**
2968 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2969 * @hw: pointer to hardware structure
2970 * @vlan: VLAN id to write to VLAN filter
2971 *
2972 * return the VLVF index where this VLAN id should be placed
2973 *
2974 **/
5d5b7c39 2975static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
21ce849b
MC
2976{
2977 u32 bits = 0;
2978 u32 first_empty_slot = 0;
2979 s32 regindex;
2980
2981 /* short cut the special case */
2982 if (vlan == 0)
2983 return 0;
2984
2985 /*
2986 * Search for the vlan id in the VLVF entries. Save off the first empty
2987 * slot found along the way
2988 */
2989 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2990 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2991 if (!bits && !(first_empty_slot))
2992 first_empty_slot = regindex;
2993 else if ((bits & 0x0FFF) == vlan)
2994 break;
2995 }
2996
2997 /*
2998 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2999 * in the VLVF. Else use the first empty VLVF register for this
3000 * vlan id.
3001 */
3002 if (regindex >= IXGBE_VLVF_ENTRIES) {
3003 if (first_empty_slot)
3004 regindex = first_empty_slot;
3005 else {
3006 hw_dbg(hw, "No space in VLVF.\n");
3007 regindex = IXGBE_ERR_NO_SPACE;
3008 }
3009 }
3010
3011 return regindex;
3012}
3013
3014/**
3015 * ixgbe_set_vfta_generic - Set VLAN filter table
3016 * @hw: pointer to hardware structure
3017 * @vlan: VLAN id to write to VLAN filter
3018 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3019 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3020 *
3021 * Turn on/off specified VLAN in the VLAN filter table.
3022 **/
3023s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
e7cf745b 3024 bool vlan_on)
21ce849b
MC
3025{
3026 s32 regindex;
3027 u32 bitindex;
3028 u32 vfta;
3029 u32 bits;
3030 u32 vt;
3031 u32 targetbit;
3032 bool vfta_changed = false;
3033
3034 if (vlan > 4095)
3035 return IXGBE_ERR_PARAM;
3036
3037 /*
3038 * this is a 2 part operation - first the VFTA, then the
3039 * VLVF and VLVFB if VT Mode is set
3040 * We don't write the VFTA until we know the VLVF part succeeded.
3041 */
3042
3043 /* Part 1
3044 * The VFTA is a bitstring made up of 128 32-bit registers
3045 * that enable the particular VLAN id, much like the MTA:
3046 * bits[11-5]: which register
3047 * bits[4-0]: which bit in the register
3048 */
3049 regindex = (vlan >> 5) & 0x7F;
3050 bitindex = vlan & 0x1F;
3051 targetbit = (1 << bitindex);
3052 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3053
3054 if (vlan_on) {
3055 if (!(vfta & targetbit)) {
3056 vfta |= targetbit;
3057 vfta_changed = true;
3058 }
3059 } else {
3060 if ((vfta & targetbit)) {
3061 vfta &= ~targetbit;
3062 vfta_changed = true;
3063 }
3064 }
3065
3066 /* Part 2
3067 * If VT Mode is set
3068 * Either vlan_on
3069 * make sure the vlan is in VLVF
3070 * set the vind bit in the matching VLVFB
3071 * Or !vlan_on
3072 * clear the pool bit and possibly the vind
3073 */
3074 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3075 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3076 s32 vlvf_index;
3077
3078 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3079 if (vlvf_index < 0)
3080 return vlvf_index;
3081
3082 if (vlan_on) {
3083 /* set the pool bit */
3084 if (vind < 32) {
3085 bits = IXGBE_READ_REG(hw,
3086 IXGBE_VLVFB(vlvf_index*2));
3087 bits |= (1 << vind);
3088 IXGBE_WRITE_REG(hw,
3089 IXGBE_VLVFB(vlvf_index*2),
3090 bits);
3091 } else {
3092 bits = IXGBE_READ_REG(hw,
3093 IXGBE_VLVFB((vlvf_index*2)+1));
3094 bits |= (1 << (vind-32));
3095 IXGBE_WRITE_REG(hw,
3096 IXGBE_VLVFB((vlvf_index*2)+1),
3097 bits);
3098 }
3099 } else {
3100 /* clear the pool bit */
3101 if (vind < 32) {
3102 bits = IXGBE_READ_REG(hw,
3103 IXGBE_VLVFB(vlvf_index*2));
3104 bits &= ~(1 << vind);
3105 IXGBE_WRITE_REG(hw,
3106 IXGBE_VLVFB(vlvf_index*2),
3107 bits);
3108 bits |= IXGBE_READ_REG(hw,
3109 IXGBE_VLVFB((vlvf_index*2)+1));
3110 } else {
3111 bits = IXGBE_READ_REG(hw,
3112 IXGBE_VLVFB((vlvf_index*2)+1));
3113 bits &= ~(1 << (vind-32));
3114 IXGBE_WRITE_REG(hw,
3115 IXGBE_VLVFB((vlvf_index*2)+1),
3116 bits);
3117 bits |= IXGBE_READ_REG(hw,
3118 IXGBE_VLVFB(vlvf_index*2));
3119 }
3120 }
3121
3122 /*
3123 * If there are still bits set in the VLVFB registers
3124 * for the VLAN ID indicated we need to see if the
3125 * caller is requesting that we clear the VFTA entry bit.
3126 * If the caller has requested that we clear the VFTA
3127 * entry bit but there are still pools/VFs using this VLAN
3128 * ID entry then ignore the request. We're not worried
3129 * about the case where we're turning the VFTA VLAN ID
3130 * entry bit on, only when requested to turn it off as
3131 * there may be multiple pools and/or VFs using the
3132 * VLAN ID entry. In that case we cannot clear the
3133 * VFTA bit until all pools/VFs using that VLAN ID have also
3134 * been cleared. This will be indicated by "bits" being
3135 * zero.
3136 */
3137 if (bits) {
3138 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3139 (IXGBE_VLVF_VIEN | vlan));
3140 if (!vlan_on) {
3141 /* someone wants to clear the vfta entry
3142 * but some pools/VFs are still using it.
3143 * Ignore it. */
3144 vfta_changed = false;
3145 }
63b64de3 3146 } else {
21ce849b 3147 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
63b64de3 3148 }
21ce849b
MC
3149 }
3150
3151 if (vfta_changed)
3152 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3153
3154 return 0;
3155}
3156
3157/**
3158 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3159 * @hw: pointer to hardware structure
3160 *
3161 * Clears the VLAN filer table, and the VMDq index associated with the filter
3162 **/
3163s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3164{
3165 u32 offset;
3166
3167 for (offset = 0; offset < hw->mac.vft_size; offset++)
3168 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3169
3170 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3171 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3172 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3173 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3174 }
3175
3176 return 0;
3177}
3178
3179/**
3180 * ixgbe_check_mac_link_generic - Determine link and speed status
3181 * @hw: pointer to hardware structure
3182 * @speed: pointer to link speed
3183 * @link_up: true when link is up
3184 * @link_up_wait_to_complete: bool used to wait for link up or not
3185 *
3186 * Reads the links register to determine if link is up and the current speed
3187 **/
3188s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
8c7bea32 3189 bool *link_up, bool link_up_wait_to_complete)
21ce849b 3190{
48de36c5 3191 u32 links_reg, links_orig;
21ce849b
MC
3192 u32 i;
3193
48de36c5
ET
3194 /* clear the old state */
3195 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3196
21ce849b 3197 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
48de36c5
ET
3198
3199 if (links_orig != links_reg) {
3200 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3201 links_orig, links_reg);
3202 }
3203
21ce849b
MC
3204 if (link_up_wait_to_complete) {
3205 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3206 if (links_reg & IXGBE_LINKS_UP) {
3207 *link_up = true;
3208 break;
3209 } else {
3210 *link_up = false;
3211 }
3212 msleep(100);
3213 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3214 }
3215 } else {
3216 if (links_reg & IXGBE_LINKS_UP)
3217 *link_up = true;
3218 else
3219 *link_up = false;
3220 }
3221
9a75a1ac
DS
3222 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3223 case IXGBE_LINKS_SPEED_10G_82599:
3224 if ((hw->mac.type >= ixgbe_mac_X550) &&
3225 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3226 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3227 else
3228 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3229 break;
3230 case IXGBE_LINKS_SPEED_1G_82599:
21ce849b 3231 *speed = IXGBE_LINK_SPEED_1GB_FULL;
9a75a1ac
DS
3232 break;
3233 case IXGBE_LINKS_SPEED_100_82599:
3234 if ((hw->mac.type >= ixgbe_mac_X550) &&
3235 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3236 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3237 else
3238 *speed = IXGBE_LINK_SPEED_100_FULL;
3239 break;
3240 default:
63d778df 3241 *speed = IXGBE_LINK_SPEED_UNKNOWN;
9a75a1ac 3242 }
21ce849b 3243
21ce849b
MC
3244 return 0;
3245}
a391f1d5
DS
3246
3247/**
49ce9c2c 3248 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
a391f1d5
DS
3249 * the EEPROM
3250 * @hw: pointer to hardware structure
3251 * @wwnn_prefix: the alternative WWNN prefix
3252 * @wwpn_prefix: the alternative WWPN prefix
3253 *
3254 * This function will read the EEPROM from the alternative SAN MAC address
3255 * block to check the support for the alternative WWNN/WWPN prefix support.
3256 **/
3257s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
e7cf745b 3258 u16 *wwpn_prefix)
a391f1d5
DS
3259{
3260 u16 offset, caps;
3261 u16 alt_san_mac_blk_offset;
3262
3263 /* clear output first */
3264 *wwnn_prefix = 0xFFFF;
3265 *wwpn_prefix = 0xFFFF;
3266
3267 /* check if alternative SAN MAC is supported */
be0c27b4
MR
3268 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3269 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3270 goto wwn_prefix_err;
a391f1d5
DS
3271
3272 if ((alt_san_mac_blk_offset == 0) ||
3273 (alt_san_mac_blk_offset == 0xFFFF))
e90dd264 3274 return 0;
a391f1d5
DS
3275
3276 /* check capability in alternative san mac address block */
3277 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
be0c27b4
MR
3278 if (hw->eeprom.ops.read(hw, offset, &caps))
3279 goto wwn_prefix_err;
a391f1d5 3280 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
e90dd264 3281 return 0;
a391f1d5
DS
3282
3283 /* get the corresponding prefix for WWNN/WWPN */
3284 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
be0c27b4
MR
3285 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3286 hw_err(hw, "eeprom read at offset %d failed\n", offset);
a391f1d5
DS
3287
3288 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
be0c27b4
MR
3289 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3290 goto wwn_prefix_err;
a391f1d5 3291
a391f1d5 3292 return 0;
be0c27b4
MR
3293
3294wwn_prefix_err:
3295 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3296 return 0;
a391f1d5 3297}
a985b6c3
GR
3298
3299/**
3300 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3301 * @hw: pointer to hardware structure
3302 * @enable: enable or disable switch for anti-spoofing
3303 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3304 *
3305 **/
3306void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3307{
3308 int j;
3309 int pf_target_reg = pf >> 3;
3310 int pf_target_shift = pf % 8;
3311 u32 pfvfspoof = 0;
3312
3313 if (hw->mac.type == ixgbe_mac_82598EB)
3314 return;
3315
3316 if (enable)
3317 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3318
3319 /*
3320 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3321 * MAC anti-spoof enables in each register array element.
3322 */
ef89e0a2 3323 for (j = 0; j < pf_target_reg; j++)
a985b6c3
GR
3324 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3325
a985b6c3
GR
3326 /*
3327 * The PF should be allowed to spoof so that it can support
ef89e0a2
AD
3328 * emulation mode NICs. Do not set the bits assigned to the PF
3329 */
3330 pfvfspoof &= (1 << pf_target_shift) - 1;
3331 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3332
3333 /*
3334 * Remaining pools belong to the PF so they do not need to have
3335 * anti-spoofing enabled.
a985b6c3 3336 */
ef89e0a2
AD
3337 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3338 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
a985b6c3
GR
3339}
3340
3341/**
3342 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3343 * @hw: pointer to hardware structure
3344 * @enable: enable or disable switch for VLAN anti-spoofing
3345 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3346 *
3347 **/
3348void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3349{
3350 int vf_target_reg = vf >> 3;
3351 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3352 u32 pfvfspoof;
3353
3354 if (hw->mac.type == ixgbe_mac_82598EB)
3355 return;
3356
3357 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3358 if (enable)
3359 pfvfspoof |= (1 << vf_target_shift);
3360 else
3361 pfvfspoof &= ~(1 << vf_target_shift);
3362 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3363}
b776d104
ET
3364
3365/**
3366 * ixgbe_get_device_caps_generic - Get additional device capabilities
3367 * @hw: pointer to hardware structure
3368 * @device_caps: the EEPROM word with the extra device capabilities
3369 *
3370 * This function will read the EEPROM location for the device capabilities,
3371 * and return the word through device_caps.
3372 **/
3373s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3374{
3375 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3376
3377 return 0;
3378}
80605c65
JF
3379
3380/**
3381 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3382 * @hw: pointer to hardware structure
3383 * @num_pb: number of packet buffers to allocate
3384 * @headroom: reserve n KB of headroom
3385 * @strategy: packet buffer allocation strategy
3386 **/
3387void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3388 int num_pb,
3389 u32 headroom,
3390 int strategy)
3391{
3392 u32 pbsize = hw->mac.rx_pb_size;
3393 int i = 0;
3394 u32 rxpktsize, txpktsize, txpbthresh;
3395
3396 /* Reserve headroom */
3397 pbsize -= headroom;
3398
3399 if (!num_pb)
3400 num_pb = 1;
3401
3402 /* Divide remaining packet buffer space amongst the number
3403 * of packet buffers requested using supplied strategy.
3404 */
3405 switch (strategy) {
3406 case (PBA_STRATEGY_WEIGHTED):
3407 /* pba_80_48 strategy weight first half of packet buffer with
3408 * 5/8 of the packet buffer space.
3409 */
3410 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3411 pbsize -= rxpktsize * (num_pb / 2);
3412 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3413 for (; i < (num_pb / 2); i++)
3414 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3415 /* Fall through to configure remaining packet buffers */
3416 case (PBA_STRATEGY_EQUAL):
3417 /* Divide the remaining Rx packet buffer evenly among the TCs */
3418 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3419 for (; i < num_pb; i++)
3420 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3421 break;
3422 default:
3423 break;
3424 }
3425
3426 /*
3427 * Setup Tx packet buffer and threshold equally for all TCs
3428 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3429 * 10 since the largest packet we support is just over 9K.
3430 */
3431 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3432 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3433 for (i = 0; i < num_pb; i++) {
3434 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3435 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3436 }
3437
3438 /* Clear unused TCs, if any, to zero buffer size*/
3439 for (; i < IXGBE_MAX_PB; i++) {
3440 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3441 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3442 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3443 }
3444}
9612de92
ET
3445
3446/**
3447 * ixgbe_calculate_checksum - Calculate checksum for buffer
3448 * @buffer: pointer to EEPROM
3449 * @length: size of EEPROM to calculate a checksum for
49ce9c2c 3450 *
9612de92
ET
3451 * Calculates the checksum for some buffer on a specified length. The
3452 * checksum calculated is returned.
3453 **/
3454static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3455{
3456 u32 i;
3457 u8 sum = 0;
3458
3459 if (!buffer)
3460 return 0;
3461
3462 for (i = 0; i < length; i++)
3463 sum += buffer[i];
3464
3465 return (u8) (0 - sum);
3466}
3467
3468/**
3469 * ixgbe_host_interface_command - Issue command to manageability block
3470 * @hw: pointer to the HW structure
3471 * @buffer: contains the command to write and where the return status will
3472 * be placed
c466d7a7 3473 * @length: length of buffer, must be multiple of 4 bytes
b48e4aa3
DS
3474 * @timeout: time in ms to wait for command completion
3475 * @return_data: read and return data from the buffer (true) or not (false)
3476 * Needed because FW structures are big endian and decoding of
3477 * these fields can be 8 bit or 16 bit based on command. Decoding
3478 * is not easily understood without making a table of commands.
3479 * So we will leave this up to the caller to read back the data
3480 * in these cases.
9612de92
ET
3481 *
3482 * Communicates with the manageability block. On success return 0
3483 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3484 **/
6a14ee0c
DS
3485s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3486 u32 length, u32 timeout,
3487 bool return_data)
9612de92 3488{
b48e4aa3 3489 u32 hicr, i, bi, fwsts;
9612de92 3490 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
b48e4aa3 3491 u16 buf_len, dword_len;
9612de92 3492
b48e4aa3
DS
3493 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3494 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
e90dd264 3495 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
9612de92
ET
3496 }
3497
b48e4aa3
DS
3498 /* Set bit 9 of FWSTS clearing FW reset indication */
3499 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3500 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3501
9612de92
ET
3502 /* Check that the host interface is enabled. */
3503 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3504 if ((hicr & IXGBE_HICR_EN) == 0) {
3505 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
e90dd264 3506 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
9612de92
ET
3507 }
3508
b48e4aa3
DS
3509 /* Calculate length in DWORDs. We must be DWORD aligned */
3510 if ((length % (sizeof(u32))) != 0) {
3511 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3512 return IXGBE_ERR_INVALID_ARGUMENT;
3513 }
3514
9612de92
ET
3515 dword_len = length >> 2;
3516
3517 /*
3518 * The device driver writes the relevant command block
3519 * into the ram area.
3520 */
3521 for (i = 0; i < dword_len; i++)
3522 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
79488c58 3523 i, cpu_to_le32(buffer[i]));
9612de92
ET
3524
3525 /* Setting this bit tells the ARC that a new command is pending. */
3526 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3527
b48e4aa3 3528 for (i = 0; i < timeout; i++) {
9612de92
ET
3529 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3530 if (!(hicr & IXGBE_HICR_C))
3531 break;
3532 usleep_range(1000, 2000);
3533 }
3534
3535 /* Check command successful completion. */
b48e4aa3 3536 if ((timeout != 0 && i == timeout) ||
9612de92
ET
3537 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3538 hw_dbg(hw, "Command has failed with no status valid.\n");
e90dd264 3539 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
9612de92
ET
3540 }
3541
b48e4aa3
DS
3542 if (!return_data)
3543 return 0;
3544
9612de92
ET
3545 /* Calculate length in DWORDs */
3546 dword_len = hdr_size >> 2;
3547
3548 /* first pull in the header so we know the buffer length */
331bcf45
ET
3549 for (bi = 0; bi < dword_len; bi++) {
3550 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3551 le32_to_cpus(&buffer[bi]);
79488c58 3552 }
9612de92
ET
3553
3554 /* If there is any thing in data position pull it in */
3555 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3556 if (buf_len == 0)
e90dd264 3557 return 0;
9612de92
ET
3558
3559 if (length < (buf_len + hdr_size)) {
3560 hw_dbg(hw, "Buffer not large enough for reply message.\n");
e90dd264 3561 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
9612de92
ET
3562 }
3563
331bcf45
ET
3564 /* Calculate length in DWORDs, add 3 for odd lengths */
3565 dword_len = (buf_len + 3) >> 2;
9612de92 3566
331bcf45
ET
3567 /* Pull in the rest of the buffer (bi is where we left off)*/
3568 for (; bi <= dword_len; bi++) {
3569 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3570 le32_to_cpus(&buffer[bi]);
3571 }
9612de92 3572
e90dd264 3573 return 0;
9612de92
ET
3574}
3575
3576/**
3577 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3578 * @hw: pointer to the HW structure
3579 * @maj: driver version major number
3580 * @min: driver version minor number
3581 * @build: driver version build number
3582 * @sub: driver version sub build number
3583 *
3584 * Sends driver version number to firmware through the manageability
3585 * block. On success return 0
3586 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3587 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3588 **/
3589s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3590 u8 build, u8 sub)
3591{
3592 struct ixgbe_hic_drv_info fw_cmd;
3593 int i;
e90dd264 3594 s32 ret_val;
9612de92 3595
e90dd264
MR
3596 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3597 return IXGBE_ERR_SWFW_SYNC;
9612de92
ET
3598
3599 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3600 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3601 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3602 fw_cmd.port_num = (u8)hw->bus.func;
3603 fw_cmd.ver_maj = maj;
3604 fw_cmd.ver_min = min;
3605 fw_cmd.ver_build = build;
3606 fw_cmd.ver_sub = sub;
3607 fw_cmd.hdr.checksum = 0;
3608 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3609 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3610 fw_cmd.pad = 0;
3611 fw_cmd.pad2 = 0;
3612
3613 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
79488c58 3614 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
b48e4aa3
DS
3615 sizeof(fw_cmd),
3616 IXGBE_HI_COMMAND_TIMEOUT,
3617 true);
9612de92
ET
3618 if (ret_val != 0)
3619 continue;
3620
3621 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3622 FW_CEM_RESP_STATUS_SUCCESS)
3623 ret_val = 0;
3624 else
3625 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3626
3627 break;
3628 }
3629
3630 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
9612de92
ET
3631 return ret_val;
3632}
ff9d1a5a
ET
3633
3634/**
3635 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3636 * @hw: pointer to the hardware structure
3637 *
3638 * The 82599 and x540 MACs can experience issues if TX work is still pending
3639 * when a reset occurs. This function prevents this by flushing the PCIe
3640 * buffers on the system.
3641 **/
3642void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3643{
71bde601
DS
3644 u32 gcr_ext, hlreg0, i, poll;
3645 u16 value;
ff9d1a5a
ET
3646
3647 /*
3648 * If double reset is not requested then all transactions should
3649 * already be clear and as such there is no work to do
3650 */
3651 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3652 return;
3653
3654 /*
3655 * Set loopback enable to prevent any transmits from being sent
3656 * should the link come up. This assumes that the RXCTRL.RXEN bit
3657 * has already been cleared.
3658 */
3659 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3660 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3661
71bde601
DS
3662 /* wait for a last completion before clearing buffers */
3663 IXGBE_WRITE_FLUSH(hw);
3664 usleep_range(3000, 6000);
3665
3666 /* Before proceeding, make sure that the PCIe block does not have
3667 * transactions pending.
3668 */
3669 poll = ixgbe_pcie_timeout_poll(hw);
3670 for (i = 0; i < poll; i++) {
3671 usleep_range(100, 200);
3672 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3673 if (ixgbe_removed(hw->hw_addr))
3674 break;
3675 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3676 break;
3677 }
3678
ff9d1a5a
ET
3679 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3680 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3681 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3682 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3683
3684 /* Flush all writes and allow 20usec for all transactions to clear */
3685 IXGBE_WRITE_FLUSH(hw);
3686 udelay(20);
3687
3688 /* restore previous register values */
3689 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3690 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3691}
e1ea9158
DS
3692
3693static const u8 ixgbe_emc_temp_data[4] = {
3694 IXGBE_EMC_INTERNAL_DATA,
3695 IXGBE_EMC_DIODE1_DATA,
3696 IXGBE_EMC_DIODE2_DATA,
3697 IXGBE_EMC_DIODE3_DATA
3698};
3699static const u8 ixgbe_emc_therm_limit[4] = {
3700 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3701 IXGBE_EMC_DIODE1_THERM_LIMIT,
3702 IXGBE_EMC_DIODE2_THERM_LIMIT,
3703 IXGBE_EMC_DIODE3_THERM_LIMIT
3704};
3705
3706/**
3707 * ixgbe_get_ets_data - Extracts the ETS bit data
3708 * @hw: pointer to hardware structure
3709 * @ets_cfg: extected ETS data
3710 * @ets_offset: offset of ETS data
3711 *
3712 * Returns error code.
3713 **/
3714static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3715 u16 *ets_offset)
3716{
e90dd264 3717 s32 status;
e1ea9158
DS
3718
3719 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3720 if (status)
e90dd264 3721 return status;
e1ea9158 3722
e90dd264
MR
3723 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3724 return IXGBE_NOT_IMPLEMENTED;
e1ea9158
DS
3725
3726 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3727 if (status)
e90dd264 3728 return status;
e1ea9158 3729
e90dd264
MR
3730 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3731 return IXGBE_NOT_IMPLEMENTED;
e1ea9158 3732
e90dd264 3733 return 0;
e1ea9158
DS
3734}
3735
3736/**
3737 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3738 * @hw: pointer to hardware structure
3739 *
3740 * Returns the thermal sensor data structure
3741 **/
3742s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3743{
e90dd264 3744 s32 status;
e1ea9158
DS
3745 u16 ets_offset;
3746 u16 ets_cfg;
3747 u16 ets_sensor;
3748 u8 num_sensors;
3749 u8 i;
3750 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3751
3ca8bc6d 3752 /* Only support thermal sensors attached to physical port 0 */
e90dd264
MR
3753 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3754 return IXGBE_NOT_IMPLEMENTED;
e1ea9158
DS
3755
3756 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3757 if (status)
e90dd264 3758 return status;
e1ea9158
DS
3759
3760 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3761 if (num_sensors > IXGBE_MAX_SENSORS)
3762 num_sensors = IXGBE_MAX_SENSORS;
3763
3764 for (i = 0; i < num_sensors; i++) {
3765 u8 sensor_index;
3766 u8 sensor_location;
3767
3768 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3769 &ets_sensor);
3770 if (status)
e90dd264 3771 return status;
e1ea9158
DS
3772
3773 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3774 IXGBE_ETS_DATA_INDEX_SHIFT);
3775 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3776 IXGBE_ETS_DATA_LOC_SHIFT);
3777
3778 if (sensor_location != 0) {
3779 status = hw->phy.ops.read_i2c_byte(hw,
3780 ixgbe_emc_temp_data[sensor_index],
3781 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3782 &data->sensor[i].temp);
3783 if (status)
e90dd264 3784 return status;
e1ea9158
DS
3785 }
3786 }
e90dd264
MR
3787
3788 return 0;
e1ea9158
DS
3789}
3790
3791/**
3792 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3793 * @hw: pointer to hardware structure
3794 *
3795 * Inits the thermal sensor thresholds according to the NVM map
3796 * and save off the threshold and location values into mac.thermal_sensor_data
3797 **/
3798s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3799{
e90dd264 3800 s32 status;
e1ea9158
DS
3801 u16 ets_offset;
3802 u16 ets_cfg;
3803 u16 ets_sensor;
3804 u8 low_thresh_delta;
3805 u8 num_sensors;
3806 u8 therm_limit;
3807 u8 i;
3808 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3809
3810 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3811
3ca8bc6d 3812 /* Only support thermal sensors attached to physical port 0 */
e90dd264
MR
3813 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3814 return IXGBE_NOT_IMPLEMENTED;
e1ea9158
DS
3815
3816 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3817 if (status)
e90dd264 3818 return status;
e1ea9158
DS
3819
3820 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3821 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3822 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3823 if (num_sensors > IXGBE_MAX_SENSORS)
3824 num_sensors = IXGBE_MAX_SENSORS;
3825
3826 for (i = 0; i < num_sensors; i++) {
3827 u8 sensor_index;
3828 u8 sensor_location;
3829
be0c27b4
MR
3830 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3831 hw_err(hw, "eeprom read at offset %d failed\n",
3832 ets_offset + 1 + i);
3833 continue;
3834 }
e1ea9158
DS
3835 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3836 IXGBE_ETS_DATA_INDEX_SHIFT);
3837 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3838 IXGBE_ETS_DATA_LOC_SHIFT);
3839 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3840
3841 hw->phy.ops.write_i2c_byte(hw,
3842 ixgbe_emc_therm_limit[sensor_index],
3843 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3844
3845 if (sensor_location == 0)
3846 continue;
3847
3848 data->sensor[i].location = sensor_location;
3849 data->sensor[i].caution_thresh = therm_limit;
3850 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3851 }
e90dd264
MR
3852
3853 return 0;
e1ea9158
DS
3854}
3855
1f9ac57c
DS
3856void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3857{
3858 u32 rxctrl;
3859
3860 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3861 if (rxctrl & IXGBE_RXCTRL_RXEN) {
3862 if (hw->mac.type != ixgbe_mac_82598EB) {
3863 u32 pfdtxgswc;
3864
3865 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3866 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3867 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3868 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3869 hw->mac.set_lben = true;
3870 } else {
3871 hw->mac.set_lben = false;
3872 }
3873 }
3874 rxctrl &= ~IXGBE_RXCTRL_RXEN;
3875 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3876 }
3877}
3878
3879void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3880{
3881 u32 rxctrl;
3882
3883 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3884 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3885
3886 if (hw->mac.type != ixgbe_mac_82598EB) {
3887 if (hw->mac.set_lben) {
3888 u32 pfdtxgswc;
3889
3890 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3891 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3892 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3893 hw->mac.set_lben = false;
3894 }
3895 }
3896}
This page took 1.809974 seconds and 5 git commands to generate.