ixgbe: Reorder the ring to q_vector mapping to improve performance
[deliverable/linux.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
CommitLineData
9a799d71
AK
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
94971820 4 Copyright(c) 1999 - 2012 Intel Corporation.
9a799d71
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
9a799d71
AK
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/sched.h>
ccffad25 31#include <linux/netdevice.h>
9a799d71 32
11afc1b1 33#include "ixgbe.h"
9a799d71
AK
34#include "ixgbe_common.h"
35#include "ixgbe_phy.h"
36
c44ade9e 37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
9a799d71
AK
38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
c44ade9e
JB
40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43 u16 count);
44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
9a799d71 48
9a799d71 49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
0b0c2b31
ET
50static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
51static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
52static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
53static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
54static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
55 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
7b25cdba 56static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
eb9c3e3e 57static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
68c7005d
ET
58static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 u16 words, u16 *data);
60static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
61 u16 words, u16 *data);
62static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
63 u16 offset);
ff9d1a5a 64static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
9a799d71
AK
65
66/**
c44ade9e 67 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
9a799d71
AK
68 * @hw: pointer to hardware structure
69 *
70 * Starts the hardware by filling the bus info structure and media type, clears
71 * all on chip counters, initializes receive address registers, multicast
72 * table, VLAN filter table, calls routine to set up link and flow control
73 * settings, and leaves transmit and receive units disabled and uninitialized
74 **/
c44ade9e 75s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
9a799d71
AK
76{
77 u32 ctrl_ext;
78
79 /* Set the media type */
80 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
81
82 /* Identify the PHY */
c44ade9e 83 hw->phy.ops.identify(hw);
9a799d71 84
9a799d71 85 /* Clear the VLAN filter table */
c44ade9e 86 hw->mac.ops.clear_vfta(hw);
9a799d71 87
9a799d71 88 /* Clear statistics registers */
c44ade9e 89 hw->mac.ops.clear_hw_cntrs(hw);
9a799d71
AK
90
91 /* Set No Snoop Disable */
92 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
93 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
94 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
3957d63d 95 IXGBE_WRITE_FLUSH(hw);
9a799d71 96
620fa036
MC
97 /* Setup flow control */
98 ixgbe_setup_fc(hw, 0);
99
9a799d71
AK
100 /* Clear adapter stopped flag */
101 hw->adapter_stopped = false;
102
103 return 0;
104}
105
7184b7cf
ET
106/**
107 * ixgbe_start_hw_gen2 - Init sequence for common device family
108 * @hw: pointer to hw structure
109 *
110 * Performs the init sequence common to the second generation
111 * of 10 GbE devices.
112 * Devices in the second generation:
113 * 82599
114 * X540
115 **/
116s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
117{
118 u32 i;
3d5c5207 119 u32 regval;
7184b7cf
ET
120
121 /* Clear the rate limiters */
122 for (i = 0; i < hw->mac.max_tx_queues; i++) {
123 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
124 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
125 }
126 IXGBE_WRITE_FLUSH(hw);
127
3d5c5207
ET
128 /* Disable relaxed ordering */
129 for (i = 0; i < hw->mac.max_tx_queues; i++) {
130 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
bdda1a61 131 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3d5c5207
ET
132 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
133 }
134
135 for (i = 0; i < hw->mac.max_rx_queues; i++) {
136 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
bdda1a61
AD
137 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
138 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
3d5c5207
ET
139 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
140 }
141
7184b7cf
ET
142 return 0;
143}
144
9a799d71 145/**
c44ade9e 146 * ixgbe_init_hw_generic - Generic hardware initialization
9a799d71
AK
147 * @hw: pointer to hardware structure
148 *
c44ade9e 149 * Initialize the hardware by resetting the hardware, filling the bus info
9a799d71
AK
150 * structure and media type, clears all on chip counters, initializes receive
151 * address registers, multicast table, VLAN filter table, calls routine to set
152 * up link and flow control settings, and leaves transmit and receive units
153 * disabled and uninitialized
154 **/
c44ade9e 155s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
9a799d71 156{
794caeb2
PWJ
157 s32 status;
158
9a799d71 159 /* Reset the hardware */
794caeb2 160 status = hw->mac.ops.reset_hw(hw);
9a799d71 161
794caeb2
PWJ
162 if (status == 0) {
163 /* Start the HW */
164 status = hw->mac.ops.start_hw(hw);
165 }
9a799d71 166
794caeb2 167 return status;
9a799d71
AK
168}
169
170/**
c44ade9e 171 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
9a799d71
AK
172 * @hw: pointer to hardware structure
173 *
174 * Clears all hardware statistics counters by reading them from the hardware
175 * Statistics counters are clear on read.
176 **/
c44ade9e 177s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
178{
179 u16 i = 0;
180
181 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
182 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
183 IXGBE_READ_REG(hw, IXGBE_ERRBC);
184 IXGBE_READ_REG(hw, IXGBE_MSPDC);
185 for (i = 0; i < 8; i++)
186 IXGBE_READ_REG(hw, IXGBE_MPC(i));
187
188 IXGBE_READ_REG(hw, IXGBE_MLFC);
189 IXGBE_READ_REG(hw, IXGBE_MRFC);
190 IXGBE_READ_REG(hw, IXGBE_RLEC);
191 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
9a799d71 192 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
667c7565
ET
193 if (hw->mac.type >= ixgbe_mac_82599EB) {
194 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
195 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
196 } else {
197 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
198 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
199 }
9a799d71
AK
200
201 for (i = 0; i < 8; i++) {
202 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
9a799d71 203 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
667c7565
ET
204 if (hw->mac.type >= ixgbe_mac_82599EB) {
205 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
206 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
207 } else {
208 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
209 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
210 }
9a799d71 211 }
667c7565
ET
212 if (hw->mac.type >= ixgbe_mac_82599EB)
213 for (i = 0; i < 8; i++)
214 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
9a799d71
AK
215 IXGBE_READ_REG(hw, IXGBE_PRC64);
216 IXGBE_READ_REG(hw, IXGBE_PRC127);
217 IXGBE_READ_REG(hw, IXGBE_PRC255);
218 IXGBE_READ_REG(hw, IXGBE_PRC511);
219 IXGBE_READ_REG(hw, IXGBE_PRC1023);
220 IXGBE_READ_REG(hw, IXGBE_PRC1522);
221 IXGBE_READ_REG(hw, IXGBE_GPRC);
222 IXGBE_READ_REG(hw, IXGBE_BPRC);
223 IXGBE_READ_REG(hw, IXGBE_MPRC);
224 IXGBE_READ_REG(hw, IXGBE_GPTC);
225 IXGBE_READ_REG(hw, IXGBE_GORCL);
226 IXGBE_READ_REG(hw, IXGBE_GORCH);
227 IXGBE_READ_REG(hw, IXGBE_GOTCL);
228 IXGBE_READ_REG(hw, IXGBE_GOTCH);
f3116f62
ET
229 if (hw->mac.type == ixgbe_mac_82598EB)
230 for (i = 0; i < 8; i++)
231 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
9a799d71
AK
232 IXGBE_READ_REG(hw, IXGBE_RUC);
233 IXGBE_READ_REG(hw, IXGBE_RFC);
234 IXGBE_READ_REG(hw, IXGBE_ROC);
235 IXGBE_READ_REG(hw, IXGBE_RJC);
236 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
237 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
238 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
239 IXGBE_READ_REG(hw, IXGBE_TORL);
240 IXGBE_READ_REG(hw, IXGBE_TORH);
241 IXGBE_READ_REG(hw, IXGBE_TPR);
242 IXGBE_READ_REG(hw, IXGBE_TPT);
243 IXGBE_READ_REG(hw, IXGBE_PTC64);
244 IXGBE_READ_REG(hw, IXGBE_PTC127);
245 IXGBE_READ_REG(hw, IXGBE_PTC255);
246 IXGBE_READ_REG(hw, IXGBE_PTC511);
247 IXGBE_READ_REG(hw, IXGBE_PTC1023);
248 IXGBE_READ_REG(hw, IXGBE_PTC1522);
249 IXGBE_READ_REG(hw, IXGBE_MPTC);
250 IXGBE_READ_REG(hw, IXGBE_BPTC);
251 for (i = 0; i < 16; i++) {
252 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
9a799d71 253 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
667c7565
ET
254 if (hw->mac.type >= ixgbe_mac_82599EB) {
255 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
256 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
257 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
258 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
259 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
260 } else {
261 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
262 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
263 }
9a799d71
AK
264 }
265
a3aeea0e
ET
266 if (hw->mac.type == ixgbe_mac_X540) {
267 if (hw->phy.id == 0)
268 hw->phy.ops.identify(hw);
c1085b10
ET
269 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
270 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
271 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
272 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
a3aeea0e
ET
273 }
274
9a799d71
AK
275 return 0;
276}
277
278/**
289700db 279 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
c44ade9e 280 * @hw: pointer to hardware structure
289700db
DS
281 * @pba_num: stores the part number string from the EEPROM
282 * @pba_num_size: part number string buffer length
c44ade9e 283 *
289700db 284 * Reads the part number string from the EEPROM.
c44ade9e 285 **/
289700db
DS
286s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
287 u32 pba_num_size)
c44ade9e
JB
288{
289 s32 ret_val;
290 u16 data;
289700db
DS
291 u16 pba_ptr;
292 u16 offset;
293 u16 length;
294
295 if (pba_num == NULL) {
296 hw_dbg(hw, "PBA string buffer was null\n");
297 return IXGBE_ERR_INVALID_ARGUMENT;
298 }
c44ade9e
JB
299
300 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
301 if (ret_val) {
302 hw_dbg(hw, "NVM Read Error\n");
303 return ret_val;
304 }
c44ade9e 305
289700db 306 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
c44ade9e
JB
307 if (ret_val) {
308 hw_dbg(hw, "NVM Read Error\n");
309 return ret_val;
310 }
289700db
DS
311
312 /*
313 * if data is not ptr guard the PBA must be in legacy format which
314 * means pba_ptr is actually our second data word for the PBA number
315 * and we can decode it into an ascii string
316 */
317 if (data != IXGBE_PBANUM_PTR_GUARD) {
318 hw_dbg(hw, "NVM PBA number is not stored as string\n");
319
320 /* we will need 11 characters to store the PBA */
321 if (pba_num_size < 11) {
322 hw_dbg(hw, "PBA string buffer too small\n");
323 return IXGBE_ERR_NO_SPACE;
324 }
325
326 /* extract hex string from data and pba_ptr */
327 pba_num[0] = (data >> 12) & 0xF;
328 pba_num[1] = (data >> 8) & 0xF;
329 pba_num[2] = (data >> 4) & 0xF;
330 pba_num[3] = data & 0xF;
331 pba_num[4] = (pba_ptr >> 12) & 0xF;
332 pba_num[5] = (pba_ptr >> 8) & 0xF;
333 pba_num[6] = '-';
334 pba_num[7] = 0;
335 pba_num[8] = (pba_ptr >> 4) & 0xF;
336 pba_num[9] = pba_ptr & 0xF;
337
338 /* put a null character on the end of our string */
339 pba_num[10] = '\0';
340
341 /* switch all the data but the '-' to hex char */
342 for (offset = 0; offset < 10; offset++) {
343 if (pba_num[offset] < 0xA)
344 pba_num[offset] += '0';
345 else if (pba_num[offset] < 0x10)
346 pba_num[offset] += 'A' - 0xA;
347 }
348
349 return 0;
350 }
351
352 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
353 if (ret_val) {
354 hw_dbg(hw, "NVM Read Error\n");
355 return ret_val;
356 }
357
358 if (length == 0xFFFF || length == 0) {
359 hw_dbg(hw, "NVM PBA number section invalid length\n");
360 return IXGBE_ERR_PBA_SECTION;
361 }
362
363 /* check if pba_num buffer is big enough */
364 if (pba_num_size < (((u32)length * 2) - 1)) {
365 hw_dbg(hw, "PBA string buffer too small\n");
366 return IXGBE_ERR_NO_SPACE;
367 }
368
369 /* trim pba length from start of string */
370 pba_ptr++;
371 length--;
372
373 for (offset = 0; offset < length; offset++) {
374 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
375 if (ret_val) {
376 hw_dbg(hw, "NVM Read Error\n");
377 return ret_val;
378 }
379 pba_num[offset * 2] = (u8)(data >> 8);
380 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
381 }
382 pba_num[offset * 2] = '\0';
c44ade9e
JB
383
384 return 0;
385}
386
387/**
388 * ixgbe_get_mac_addr_generic - Generic get MAC address
9a799d71
AK
389 * @hw: pointer to hardware structure
390 * @mac_addr: Adapter MAC address
391 *
392 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
393 * A reset of the adapter must be performed prior to calling this function
394 * in order for the MAC address to have been loaded from the EEPROM into RAR0
395 **/
c44ade9e 396s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
9a799d71
AK
397{
398 u32 rar_high;
399 u32 rar_low;
400 u16 i;
401
402 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
403 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
404
405 for (i = 0; i < 4; i++)
406 mac_addr[i] = (u8)(rar_low >> (i*8));
407
408 for (i = 0; i < 2; i++)
409 mac_addr[i+4] = (u8)(rar_high >> (i*8));
410
411 return 0;
412}
413
11afc1b1
PW
414/**
415 * ixgbe_get_bus_info_generic - Generic set PCI bus info
416 * @hw: pointer to hardware structure
417 *
418 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
419 **/
420s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
421{
422 struct ixgbe_adapter *adapter = hw->back;
423 struct ixgbe_mac_info *mac = &hw->mac;
424 u16 link_status;
425
426 hw->bus.type = ixgbe_bus_type_pci_express;
427
428 /* Get the negotiated link width and speed from PCI config space */
429 pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
430 &link_status);
431
432 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
433 case IXGBE_PCI_LINK_WIDTH_1:
434 hw->bus.width = ixgbe_bus_width_pcie_x1;
435 break;
436 case IXGBE_PCI_LINK_WIDTH_2:
437 hw->bus.width = ixgbe_bus_width_pcie_x2;
438 break;
439 case IXGBE_PCI_LINK_WIDTH_4:
440 hw->bus.width = ixgbe_bus_width_pcie_x4;
441 break;
442 case IXGBE_PCI_LINK_WIDTH_8:
443 hw->bus.width = ixgbe_bus_width_pcie_x8;
444 break;
445 default:
446 hw->bus.width = ixgbe_bus_width_unknown;
447 break;
448 }
449
450 switch (link_status & IXGBE_PCI_LINK_SPEED) {
451 case IXGBE_PCI_LINK_SPEED_2500:
452 hw->bus.speed = ixgbe_bus_speed_2500;
453 break;
454 case IXGBE_PCI_LINK_SPEED_5000:
455 hw->bus.speed = ixgbe_bus_speed_5000;
456 break;
457 default:
458 hw->bus.speed = ixgbe_bus_speed_unknown;
459 break;
460 }
461
462 mac->ops.set_lan_id(hw);
463
464 return 0;
465}
466
467/**
468 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
469 * @hw: pointer to the HW structure
470 *
471 * Determines the LAN function id by reading memory-mapped registers
472 * and swaps the port value if requested.
473 **/
474void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
475{
476 struct ixgbe_bus_info *bus = &hw->bus;
477 u32 reg;
478
479 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
480 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
481 bus->lan_id = bus->func;
482
483 /* check for a port swap */
484 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
485 if (reg & IXGBE_FACTPS_LFS)
486 bus->func ^= 0x1;
487}
488
9a799d71 489/**
c44ade9e 490 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
9a799d71
AK
491 * @hw: pointer to hardware structure
492 *
493 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
494 * disables transmit and receive units. The adapter_stopped flag is used by
495 * the shared code and drivers to determine if the adapter is in a stopped
496 * state and should not touch the hardware.
497 **/
c44ade9e 498s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
9a799d71 499{
9a799d71
AK
500 u32 reg_val;
501 u16 i;
502
503 /*
504 * Set the adapter_stopped flag so other driver functions stop touching
505 * the hardware
506 */
507 hw->adapter_stopped = true;
508
509 /* Disable the receive unit */
ff9d1a5a 510 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
9a799d71 511
ff9d1a5a 512 /* Clear interrupt mask to stop interrupts from being generated */
9a799d71
AK
513 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
514
ff9d1a5a 515 /* Clear any pending interrupts, flush previous writes */
9a799d71
AK
516 IXGBE_READ_REG(hw, IXGBE_EICR);
517
518 /* Disable the transmit unit. Each queue must be disabled. */
ff9d1a5a
ET
519 for (i = 0; i < hw->mac.max_tx_queues; i++)
520 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
521
522 /* Disable the receive unit by stopping each queue */
523 for (i = 0; i < hw->mac.max_rx_queues; i++) {
524 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
525 reg_val &= ~IXGBE_RXDCTL_ENABLE;
526 reg_val |= IXGBE_RXDCTL_SWFLSH;
527 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
9a799d71
AK
528 }
529
ff9d1a5a
ET
530 /* flush all queues disables */
531 IXGBE_WRITE_FLUSH(hw);
532 usleep_range(1000, 2000);
533
c44ade9e
JB
534 /*
535 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
536 * access and verify no pending requests
537 */
ff9d1a5a 538 return ixgbe_disable_pcie_master(hw);
9a799d71
AK
539}
540
541/**
c44ade9e 542 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
9a799d71
AK
543 * @hw: pointer to hardware structure
544 * @index: led number to turn on
545 **/
c44ade9e 546s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
547{
548 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
549
550 /* To turn on the LED, set mode to ON. */
551 led_reg &= ~IXGBE_LED_MODE_MASK(index);
552 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
553 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 554 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
555
556 return 0;
557}
558
559/**
c44ade9e 560 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
9a799d71
AK
561 * @hw: pointer to hardware structure
562 * @index: led number to turn off
563 **/
c44ade9e 564s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
9a799d71
AK
565{
566 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
567
568 /* To turn off the LED, set mode to OFF. */
569 led_reg &= ~IXGBE_LED_MODE_MASK(index);
570 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
571 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3957d63d 572 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
573
574 return 0;
575}
576
9a799d71 577/**
c44ade9e 578 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
9a799d71
AK
579 * @hw: pointer to hardware structure
580 *
581 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
582 * ixgbe_hw struct in order to set up EEPROM access.
583 **/
c44ade9e 584s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
9a799d71
AK
585{
586 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
587 u32 eec;
588 u16 eeprom_size;
589
590 if (eeprom->type == ixgbe_eeprom_uninitialized) {
591 eeprom->type = ixgbe_eeprom_none;
c44ade9e
JB
592 /* Set default semaphore delay to 10ms which is a well
593 * tested value */
594 eeprom->semaphore_delay = 10;
68c7005d
ET
595 /* Clear EEPROM page size, it will be initialized as needed */
596 eeprom->word_page_size = 0;
9a799d71
AK
597
598 /*
599 * Check for EEPROM present first.
600 * If not present leave as none
601 */
602 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
603 if (eec & IXGBE_EEC_PRES) {
604 eeprom->type = ixgbe_eeprom_spi;
605
606 /*
607 * SPI EEPROM is assumed here. This code would need to
608 * change if a future EEPROM is not SPI.
609 */
610 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
611 IXGBE_EEC_SIZE_SHIFT);
612 eeprom->word_size = 1 << (eeprom_size +
613 IXGBE_EEPROM_WORD_SIZE_SHIFT);
614 }
615
616 if (eec & IXGBE_EEC_ADDR_SIZE)
617 eeprom->address_bits = 16;
618 else
619 eeprom->address_bits = 8;
620 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
621 "%d\n", eeprom->type, eeprom->word_size,
622 eeprom->address_bits);
623 }
624
625 return 0;
626}
627
11afc1b1 628/**
68c7005d 629 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
11afc1b1 630 * @hw: pointer to hardware structure
68c7005d
ET
631 * @offset: offset within the EEPROM to write
632 * @words: number of words
633 * @data: 16 bit word(s) to write to EEPROM
11afc1b1 634 *
68c7005d 635 * Reads 16 bit word(s) from EEPROM through bit-bang method
11afc1b1 636 **/
68c7005d
ET
637s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
638 u16 words, u16 *data)
11afc1b1 639{
68c7005d
ET
640 s32 status = 0;
641 u16 i, count;
11afc1b1
PW
642
643 hw->eeprom.ops.init_params(hw);
644
68c7005d
ET
645 if (words == 0) {
646 status = IXGBE_ERR_INVALID_ARGUMENT;
647 goto out;
648 }
649
650 if (offset + words > hw->eeprom.word_size) {
11afc1b1
PW
651 status = IXGBE_ERR_EEPROM;
652 goto out;
653 }
654
68c7005d
ET
655 /*
656 * The EEPROM page size cannot be queried from the chip. We do lazy
657 * initialization. It is worth to do that when we write large buffer.
658 */
659 if ((hw->eeprom.word_page_size == 0) &&
660 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
661 ixgbe_detect_eeprom_page_size_generic(hw, offset);
662
663 /*
664 * We cannot hold synchronization semaphores for too long
665 * to avoid other entity starvation. However it is more efficient
666 * to read in bursts than synchronizing access for each word.
667 */
668 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
669 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
670 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
671 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
672 count, &data[i]);
673
674 if (status != 0)
675 break;
676 }
677
678out:
679 return status;
680}
681
682/**
683 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
684 * @hw: pointer to hardware structure
685 * @offset: offset within the EEPROM to be written to
686 * @words: number of word(s)
687 * @data: 16 bit word(s) to be written to the EEPROM
688 *
689 * If ixgbe_eeprom_update_checksum is not called after this function, the
690 * EEPROM will most likely contain an invalid checksum.
691 **/
692static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
693 u16 words, u16 *data)
694{
695 s32 status;
696 u16 word;
697 u16 page_size;
698 u16 i;
699 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
700
11afc1b1
PW
701 /* Prepare the EEPROM for writing */
702 status = ixgbe_acquire_eeprom(hw);
703
704 if (status == 0) {
705 if (ixgbe_ready_eeprom(hw) != 0) {
706 ixgbe_release_eeprom(hw);
707 status = IXGBE_ERR_EEPROM;
708 }
709 }
710
711 if (status == 0) {
68c7005d
ET
712 for (i = 0; i < words; i++) {
713 ixgbe_standby_eeprom(hw);
11afc1b1 714
68c7005d
ET
715 /* Send the WRITE ENABLE command (8 bit opcode ) */
716 ixgbe_shift_out_eeprom_bits(hw,
717 IXGBE_EEPROM_WREN_OPCODE_SPI,
718 IXGBE_EEPROM_OPCODE_BITS);
11afc1b1 719
68c7005d 720 ixgbe_standby_eeprom(hw);
11afc1b1 721
68c7005d
ET
722 /*
723 * Some SPI eeproms use the 8th address bit embedded
724 * in the opcode
725 */
726 if ((hw->eeprom.address_bits == 8) &&
727 ((offset + i) >= 128))
728 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
729
730 /* Send the Write command (8-bit opcode + addr) */
731 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
732 IXGBE_EEPROM_OPCODE_BITS);
733 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
734 hw->eeprom.address_bits);
735
736 page_size = hw->eeprom.word_page_size;
737
738 /* Send the data in burst via SPI*/
739 do {
740 word = data[i];
741 word = (word >> 8) | (word << 8);
742 ixgbe_shift_out_eeprom_bits(hw, word, 16);
743
744 if (page_size == 0)
745 break;
746
747 /* do not wrap around page */
748 if (((offset + i) & (page_size - 1)) ==
749 (page_size - 1))
750 break;
751 } while (++i < words);
752
753 ixgbe_standby_eeprom(hw);
754 usleep_range(10000, 20000);
755 }
756 /* Done with writing - release the EEPROM */
757 ixgbe_release_eeprom(hw);
758 }
11afc1b1 759
68c7005d
ET
760 return status;
761}
762
763/**
764 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
765 * @hw: pointer to hardware structure
766 * @offset: offset within the EEPROM to be written to
767 * @data: 16 bit word to be written to the EEPROM
768 *
769 * If ixgbe_eeprom_update_checksum is not called after this function, the
770 * EEPROM will most likely contain an invalid checksum.
771 **/
772s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
773{
774 s32 status;
11afc1b1 775
68c7005d 776 hw->eeprom.ops.init_params(hw);
11afc1b1 777
68c7005d
ET
778 if (offset >= hw->eeprom.word_size) {
779 status = IXGBE_ERR_EEPROM;
780 goto out;
11afc1b1
PW
781 }
782
68c7005d
ET
783 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
784
11afc1b1
PW
785out:
786 return status;
787}
788
9a799d71 789/**
68c7005d 790 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
c44ade9e
JB
791 * @hw: pointer to hardware structure
792 * @offset: offset within the EEPROM to be read
68c7005d
ET
793 * @words: number of word(s)
794 * @data: read 16 bit words(s) from EEPROM
c44ade9e 795 *
68c7005d 796 * Reads 16 bit word(s) from EEPROM through bit-bang method
c44ade9e 797 **/
68c7005d
ET
798s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
799 u16 words, u16 *data)
c44ade9e 800{
68c7005d
ET
801 s32 status = 0;
802 u16 i, count;
c44ade9e
JB
803
804 hw->eeprom.ops.init_params(hw);
805
68c7005d
ET
806 if (words == 0) {
807 status = IXGBE_ERR_INVALID_ARGUMENT;
808 goto out;
809 }
810
811 if (offset + words > hw->eeprom.word_size) {
c44ade9e
JB
812 status = IXGBE_ERR_EEPROM;
813 goto out;
814 }
815
68c7005d
ET
816 /*
817 * We cannot hold synchronization semaphores for too long
818 * to avoid other entity starvation. However it is more efficient
819 * to read in bursts than synchronizing access for each word.
820 */
821 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
822 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
823 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
824
825 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
826 count, &data[i]);
827
828 if (status != 0)
829 break;
830 }
831
832out:
833 return status;
834}
835
836/**
837 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
838 * @hw: pointer to hardware structure
839 * @offset: offset within the EEPROM to be read
840 * @words: number of word(s)
841 * @data: read 16 bit word(s) from EEPROM
842 *
843 * Reads 16 bit word(s) from EEPROM through bit-bang method
844 **/
845static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
846 u16 words, u16 *data)
847{
848 s32 status;
849 u16 word_in;
850 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
851 u16 i;
852
c44ade9e
JB
853 /* Prepare the EEPROM for reading */
854 status = ixgbe_acquire_eeprom(hw);
855
856 if (status == 0) {
857 if (ixgbe_ready_eeprom(hw) != 0) {
858 ixgbe_release_eeprom(hw);
859 status = IXGBE_ERR_EEPROM;
860 }
861 }
862
863 if (status == 0) {
68c7005d
ET
864 for (i = 0; i < words; i++) {
865 ixgbe_standby_eeprom(hw);
866 /*
867 * Some SPI eeproms use the 8th address bit embedded
868 * in the opcode
869 */
870 if ((hw->eeprom.address_bits == 8) &&
871 ((offset + i) >= 128))
872 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
873
874 /* Send the READ command (opcode + addr) */
875 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
876 IXGBE_EEPROM_OPCODE_BITS);
877 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
878 hw->eeprom.address_bits);
879
880 /* Read the data. */
881 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
882 data[i] = (word_in >> 8) | (word_in << 8);
883 }
c44ade9e 884
68c7005d
ET
885 /* End this read operation */
886 ixgbe_release_eeprom(hw);
887 }
c44ade9e 888
68c7005d
ET
889 return status;
890}
c44ade9e 891
68c7005d
ET
892/**
893 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
894 * @hw: pointer to hardware structure
895 * @offset: offset within the EEPROM to be read
896 * @data: read 16 bit value from EEPROM
897 *
898 * Reads 16 bit value from EEPROM through bit-bang method
899 **/
900s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
901 u16 *data)
902{
903 s32 status;
c44ade9e 904
68c7005d
ET
905 hw->eeprom.ops.init_params(hw);
906
907 if (offset >= hw->eeprom.word_size) {
908 status = IXGBE_ERR_EEPROM;
909 goto out;
c44ade9e
JB
910 }
911
68c7005d
ET
912 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
913
c44ade9e
JB
914out:
915 return status;
916}
917
918/**
68c7005d 919 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
9a799d71 920 * @hw: pointer to hardware structure
68c7005d
ET
921 * @offset: offset of word in the EEPROM to read
922 * @words: number of word(s)
923 * @data: 16 bit word(s) from the EEPROM
9a799d71 924 *
68c7005d 925 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
9a799d71 926 **/
68c7005d
ET
927s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
928 u16 words, u16 *data)
9a799d71
AK
929{
930 u32 eerd;
68c7005d
ET
931 s32 status = 0;
932 u32 i;
9a799d71 933
c44ade9e
JB
934 hw->eeprom.ops.init_params(hw);
935
68c7005d
ET
936 if (words == 0) {
937 status = IXGBE_ERR_INVALID_ARGUMENT;
938 goto out;
939 }
940
c44ade9e
JB
941 if (offset >= hw->eeprom.word_size) {
942 status = IXGBE_ERR_EEPROM;
943 goto out;
944 }
945
68c7005d
ET
946 for (i = 0; i < words; i++) {
947 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
948 IXGBE_EEPROM_RW_REG_START;
9a799d71 949
68c7005d
ET
950 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
951 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
9a799d71 952
68c7005d
ET
953 if (status == 0) {
954 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
955 IXGBE_EEPROM_RW_REG_DATA);
956 } else {
957 hw_dbg(hw, "Eeprom read timed out\n");
958 goto out;
959 }
960 }
961out:
962 return status;
963}
9a799d71 964
68c7005d
ET
965/**
966 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
967 * @hw: pointer to hardware structure
968 * @offset: offset within the EEPROM to be used as a scratch pad
969 *
970 * Discover EEPROM page size by writing marching data at given offset.
971 * This function is called only when we are writing a new large buffer
972 * at given offset so the data would be overwritten anyway.
973 **/
974static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
975 u16 offset)
976{
977 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
978 s32 status = 0;
979 u16 i;
980
981 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
982 data[i] = i;
983
984 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
985 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
986 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
987 hw->eeprom.word_page_size = 0;
988 if (status != 0)
989 goto out;
990
991 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
992 if (status != 0)
993 goto out;
994
995 /*
996 * When writing in burst more than the actual page size
997 * EEPROM address wraps around current page.
998 */
999 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1000
1001 hw_dbg(hw, "Detected EEPROM page size = %d words.",
1002 hw->eeprom.word_page_size);
c44ade9e 1003out:
9a799d71
AK
1004 return status;
1005}
1006
eb9c3e3e 1007/**
68c7005d
ET
1008 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1009 * @hw: pointer to hardware structure
1010 * @offset: offset of word in the EEPROM to read
1011 * @data: word read from the EEPROM
1012 *
1013 * Reads a 16 bit word from the EEPROM using the EERD register.
1014 **/
1015s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1016{
1017 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1018}
1019
1020/**
1021 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
eb9c3e3e
ET
1022 * @hw: pointer to hardware structure
1023 * @offset: offset of word in the EEPROM to write
68c7005d
ET
1024 * @words: number of words
1025 * @data: word(s) write to the EEPROM
eb9c3e3e 1026 *
68c7005d 1027 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
eb9c3e3e 1028 **/
68c7005d
ET
1029s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1030 u16 words, u16 *data)
eb9c3e3e
ET
1031{
1032 u32 eewr;
68c7005d
ET
1033 s32 status = 0;
1034 u16 i;
eb9c3e3e
ET
1035
1036 hw->eeprom.ops.init_params(hw);
1037
68c7005d
ET
1038 if (words == 0) {
1039 status = IXGBE_ERR_INVALID_ARGUMENT;
1040 goto out;
1041 }
1042
eb9c3e3e
ET
1043 if (offset >= hw->eeprom.word_size) {
1044 status = IXGBE_ERR_EEPROM;
1045 goto out;
1046 }
1047
68c7005d
ET
1048 for (i = 0; i < words; i++) {
1049 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1050 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1051 IXGBE_EEPROM_RW_REG_START;
eb9c3e3e 1052
68c7005d
ET
1053 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1054 if (status != 0) {
1055 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1056 goto out;
1057 }
eb9c3e3e 1058
68c7005d 1059 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
eb9c3e3e 1060
68c7005d
ET
1061 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1062 if (status != 0) {
1063 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1064 goto out;
1065 }
eb9c3e3e
ET
1066 }
1067
1068out:
1069 return status;
1070}
1071
68c7005d
ET
1072/**
1073 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1074 * @hw: pointer to hardware structure
1075 * @offset: offset of word in the EEPROM to write
1076 * @data: word write to the EEPROM
1077 *
1078 * Write a 16 bit word to the EEPROM using the EEWR register.
1079 **/
1080s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1081{
1082 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1083}
1084
9a799d71 1085/**
21ce849b 1086 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
9a799d71 1087 * @hw: pointer to hardware structure
21ce849b 1088 * @ee_reg: EEPROM flag for polling
9a799d71 1089 *
21ce849b
MC
1090 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1091 * read or write is done respectively.
9a799d71 1092 **/
eb9c3e3e 1093static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
9a799d71
AK
1094{
1095 u32 i;
1096 u32 reg;
1097 s32 status = IXGBE_ERR_EEPROM;
1098
21ce849b
MC
1099 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1100 if (ee_reg == IXGBE_NVM_POLL_READ)
1101 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1102 else
1103 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1104
1105 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
9a799d71
AK
1106 status = 0;
1107 break;
1108 }
1109 udelay(5);
1110 }
1111 return status;
1112}
1113
c44ade9e
JB
1114/**
1115 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1116 * @hw: pointer to hardware structure
1117 *
1118 * Prepares EEPROM for access using bit-bang method. This function should
1119 * be called before issuing a command to the EEPROM.
1120 **/
1121static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1122{
1123 s32 status = 0;
dbf893ee 1124 u32 eec;
c44ade9e
JB
1125 u32 i;
1126
5e655105 1127 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
c44ade9e
JB
1128 status = IXGBE_ERR_SWFW_SYNC;
1129
1130 if (status == 0) {
1131 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1132
1133 /* Request EEPROM Access */
1134 eec |= IXGBE_EEC_REQ;
1135 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1136
1137 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1138 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1139 if (eec & IXGBE_EEC_GNT)
1140 break;
1141 udelay(5);
1142 }
1143
1144 /* Release if grant not acquired */
1145 if (!(eec & IXGBE_EEC_GNT)) {
1146 eec &= ~IXGBE_EEC_REQ;
1147 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1148 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1149
5e655105 1150 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
c44ade9e
JB
1151 status = IXGBE_ERR_EEPROM;
1152 }
c44ade9e 1153
dbf893ee
ET
1154 /* Setup EEPROM for Read/Write */
1155 if (status == 0) {
1156 /* Clear CS and SK */
1157 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1158 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1159 IXGBE_WRITE_FLUSH(hw);
1160 udelay(1);
1161 }
c44ade9e
JB
1162 }
1163 return status;
1164}
1165
9a799d71
AK
1166/**
1167 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1168 * @hw: pointer to hardware structure
1169 *
1170 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1171 **/
1172static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1173{
1174 s32 status = IXGBE_ERR_EEPROM;
dbf893ee 1175 u32 timeout = 2000;
9a799d71
AK
1176 u32 i;
1177 u32 swsm;
1178
9a799d71
AK
1179 /* Get SMBI software semaphore between device drivers first */
1180 for (i = 0; i < timeout; i++) {
1181 /*
1182 * If the SMBI bit is 0 when we read it, then the bit will be
1183 * set and we have the semaphore
1184 */
1185 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1186 if (!(swsm & IXGBE_SWSM_SMBI)) {
1187 status = 0;
1188 break;
1189 }
dbf893ee 1190 udelay(50);
9a799d71
AK
1191 }
1192
51275d37
ET
1193 if (i == timeout) {
1194 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1195 "not granted.\n");
1196 /*
1197 * this release is particularly important because our attempts
1198 * above to get the semaphore may have succeeded, and if there
1199 * was a timeout, we should unconditionally clear the semaphore
1200 * bits to free the driver to make progress
1201 */
1202 ixgbe_release_eeprom_semaphore(hw);
1203
1204 udelay(50);
1205 /*
1206 * one last try
1207 * If the SMBI bit is 0 when we read it, then the bit will be
1208 * set and we have the semaphore
1209 */
1210 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1211 if (!(swsm & IXGBE_SWSM_SMBI))
1212 status = 0;
1213 }
1214
9a799d71
AK
1215 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1216 if (status == 0) {
1217 for (i = 0; i < timeout; i++) {
1218 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1219
1220 /* Set the SW EEPROM semaphore bit to request access */
1221 swsm |= IXGBE_SWSM_SWESMBI;
1222 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1223
1224 /*
1225 * If we set the bit successfully then we got the
1226 * semaphore.
1227 */
1228 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1229 if (swsm & IXGBE_SWSM_SWESMBI)
1230 break;
1231
1232 udelay(50);
1233 }
1234
1235 /*
1236 * Release semaphores and return error if SW EEPROM semaphore
1237 * was not granted because we don't have access to the EEPROM
1238 */
1239 if (i >= timeout) {
dbf893ee 1240 hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
b4617240 1241 "not granted.\n");
9a799d71
AK
1242 ixgbe_release_eeprom_semaphore(hw);
1243 status = IXGBE_ERR_EEPROM;
1244 }
dbf893ee
ET
1245 } else {
1246 hw_dbg(hw, "Software semaphore SMBI between device drivers "
1247 "not granted.\n");
9a799d71
AK
1248 }
1249
1250 return status;
1251}
1252
1253/**
1254 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1255 * @hw: pointer to hardware structure
1256 *
1257 * This function clears hardware semaphore bits.
1258 **/
1259static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1260{
1261 u32 swsm;
1262
1263 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1264
1265 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1266 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1267 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
3957d63d 1268 IXGBE_WRITE_FLUSH(hw);
9a799d71
AK
1269}
1270
c44ade9e
JB
1271/**
1272 * ixgbe_ready_eeprom - Polls for EEPROM ready
1273 * @hw: pointer to hardware structure
1274 **/
1275static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1276{
1277 s32 status = 0;
1278 u16 i;
1279 u8 spi_stat_reg;
1280
1281 /*
1282 * Read "Status Register" repeatedly until the LSB is cleared. The
1283 * EEPROM will signal that the command has been completed by clearing
1284 * bit 0 of the internal status register. If it's not cleared within
1285 * 5 milliseconds, then error out.
1286 */
1287 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1288 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1289 IXGBE_EEPROM_OPCODE_BITS);
1290 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1291 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1292 break;
1293
1294 udelay(5);
1295 ixgbe_standby_eeprom(hw);
6403eab1 1296 }
c44ade9e
JB
1297
1298 /*
1299 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1300 * devices (and only 0-5mSec on 5V devices)
1301 */
1302 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1303 hw_dbg(hw, "SPI EEPROM Status error\n");
1304 status = IXGBE_ERR_EEPROM;
1305 }
1306
1307 return status;
1308}
1309
1310/**
1311 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1312 * @hw: pointer to hardware structure
1313 **/
1314static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1315{
1316 u32 eec;
1317
1318 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1319
1320 /* Toggle CS to flush commands */
1321 eec |= IXGBE_EEC_CS;
1322 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1323 IXGBE_WRITE_FLUSH(hw);
1324 udelay(1);
1325 eec &= ~IXGBE_EEC_CS;
1326 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1327 IXGBE_WRITE_FLUSH(hw);
1328 udelay(1);
1329}
1330
1331/**
1332 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1333 * @hw: pointer to hardware structure
1334 * @data: data to send to the EEPROM
1335 * @count: number of bits to shift out
1336 **/
1337static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1338 u16 count)
1339{
1340 u32 eec;
1341 u32 mask;
1342 u32 i;
1343
1344 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1345
1346 /*
1347 * Mask is used to shift "count" bits of "data" out to the EEPROM
1348 * one bit at a time. Determine the starting bit based on count
1349 */
1350 mask = 0x01 << (count - 1);
1351
1352 for (i = 0; i < count; i++) {
1353 /*
1354 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1355 * "1", and then raising and then lowering the clock (the SK
1356 * bit controls the clock input to the EEPROM). A "0" is
1357 * shifted out to the EEPROM by setting "DI" to "0" and then
1358 * raising and then lowering the clock.
1359 */
1360 if (data & mask)
1361 eec |= IXGBE_EEC_DI;
1362 else
1363 eec &= ~IXGBE_EEC_DI;
1364
1365 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1366 IXGBE_WRITE_FLUSH(hw);
1367
1368 udelay(1);
1369
1370 ixgbe_raise_eeprom_clk(hw, &eec);
1371 ixgbe_lower_eeprom_clk(hw, &eec);
1372
1373 /*
1374 * Shift mask to signify next bit of data to shift in to the
1375 * EEPROM
1376 */
1377 mask = mask >> 1;
6403eab1 1378 }
c44ade9e
JB
1379
1380 /* We leave the "DI" bit set to "0" when we leave this routine. */
1381 eec &= ~IXGBE_EEC_DI;
1382 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1383 IXGBE_WRITE_FLUSH(hw);
1384}
1385
1386/**
1387 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1388 * @hw: pointer to hardware structure
1389 **/
1390static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1391{
1392 u32 eec;
1393 u32 i;
1394 u16 data = 0;
1395
1396 /*
1397 * In order to read a register from the EEPROM, we need to shift
1398 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1399 * the clock input to the EEPROM (setting the SK bit), and then reading
1400 * the value of the "DO" bit. During this "shifting in" process the
1401 * "DI" bit should always be clear.
1402 */
1403 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1404
1405 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1406
1407 for (i = 0; i < count; i++) {
1408 data = data << 1;
1409 ixgbe_raise_eeprom_clk(hw, &eec);
1410
1411 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1412
1413 eec &= ~(IXGBE_EEC_DI);
1414 if (eec & IXGBE_EEC_DO)
1415 data |= 1;
1416
1417 ixgbe_lower_eeprom_clk(hw, &eec);
1418 }
1419
1420 return data;
1421}
1422
1423/**
1424 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1425 * @hw: pointer to hardware structure
1426 * @eec: EEC register's current value
1427 **/
1428static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1429{
1430 /*
1431 * Raise the clock input to the EEPROM
1432 * (setting the SK bit), then delay
1433 */
1434 *eec = *eec | IXGBE_EEC_SK;
1435 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1436 IXGBE_WRITE_FLUSH(hw);
1437 udelay(1);
1438}
1439
1440/**
1441 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1442 * @hw: pointer to hardware structure
1443 * @eecd: EECD's current value
1444 **/
1445static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1446{
1447 /*
1448 * Lower the clock input to the EEPROM (clearing the SK bit), then
1449 * delay
1450 */
1451 *eec = *eec & ~IXGBE_EEC_SK;
1452 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1453 IXGBE_WRITE_FLUSH(hw);
1454 udelay(1);
1455}
1456
1457/**
1458 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1459 * @hw: pointer to hardware structure
1460 **/
1461static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1462{
1463 u32 eec;
1464
1465 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466
1467 eec |= IXGBE_EEC_CS; /* Pull CS high */
1468 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1469
1470 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1471 IXGBE_WRITE_FLUSH(hw);
1472
1473 udelay(1);
1474
1475 /* Stop requesting EEPROM access */
1476 eec &= ~IXGBE_EEC_REQ;
1477 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1478
90827996 1479 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
dbf893ee 1480
032b4325
DS
1481 /*
1482 * Delay before attempt to obtain semaphore again to allow FW
1483 * access. semaphore_delay is in ms we need us for usleep_range
1484 */
1485 usleep_range(hw->eeprom.semaphore_delay * 1000,
1486 hw->eeprom.semaphore_delay * 2000);
c44ade9e
JB
1487}
1488
9a799d71 1489/**
dbf893ee 1490 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
9a799d71
AK
1491 * @hw: pointer to hardware structure
1492 **/
a391f1d5 1493u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
9a799d71
AK
1494{
1495 u16 i;
1496 u16 j;
1497 u16 checksum = 0;
1498 u16 length = 0;
1499 u16 pointer = 0;
1500 u16 word = 0;
1501
1502 /* Include 0x0-0x3F in the checksum */
1503 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
c44ade9e 1504 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
9a799d71
AK
1505 hw_dbg(hw, "EEPROM read failed\n");
1506 break;
1507 }
1508 checksum += word;
1509 }
1510
1511 /* Include all data from pointers except for the fw pointer */
1512 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
c44ade9e 1513 hw->eeprom.ops.read(hw, i, &pointer);
9a799d71
AK
1514
1515 /* Make sure the pointer seems valid */
1516 if (pointer != 0xFFFF && pointer != 0) {
c44ade9e 1517 hw->eeprom.ops.read(hw, pointer, &length);
9a799d71
AK
1518
1519 if (length != 0xFFFF && length != 0) {
1520 for (j = pointer+1; j <= pointer+length; j++) {
c44ade9e 1521 hw->eeprom.ops.read(hw, j, &word);
9a799d71
AK
1522 checksum += word;
1523 }
1524 }
1525 }
1526 }
1527
1528 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1529
1530 return checksum;
1531}
1532
1533/**
c44ade9e 1534 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
9a799d71
AK
1535 * @hw: pointer to hardware structure
1536 * @checksum_val: calculated checksum
1537 *
1538 * Performs checksum calculation and validates the EEPROM checksum. If the
1539 * caller does not need checksum_val, the value can be NULL.
1540 **/
c44ade9e
JB
1541s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1542 u16 *checksum_val)
9a799d71
AK
1543{
1544 s32 status;
1545 u16 checksum;
1546 u16 read_checksum = 0;
1547
1548 /*
1549 * Read the first word from the EEPROM. If this times out or fails, do
1550 * not continue or we could be in for a very long wait while every
1551 * EEPROM read fails
1552 */
c44ade9e 1553 status = hw->eeprom.ops.read(hw, 0, &checksum);
9a799d71
AK
1554
1555 if (status == 0) {
a391f1d5 1556 checksum = hw->eeprom.ops.calc_checksum(hw);
9a799d71 1557
c44ade9e 1558 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
9a799d71
AK
1559
1560 /*
1561 * Verify read checksum from EEPROM is the same as
1562 * calculated checksum
1563 */
1564 if (read_checksum != checksum)
1565 status = IXGBE_ERR_EEPROM_CHECKSUM;
1566
1567 /* If the user cares, return the calculated checksum */
1568 if (checksum_val)
1569 *checksum_val = checksum;
1570 } else {
1571 hw_dbg(hw, "EEPROM read failed\n");
1572 }
1573
1574 return status;
1575}
1576
c44ade9e
JB
1577/**
1578 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1579 * @hw: pointer to hardware structure
1580 **/
1581s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1582{
1583 s32 status;
1584 u16 checksum;
1585
1586 /*
1587 * Read the first word from the EEPROM. If this times out or fails, do
1588 * not continue or we could be in for a very long wait while every
1589 * EEPROM read fails
1590 */
1591 status = hw->eeprom.ops.read(hw, 0, &checksum);
1592
1593 if (status == 0) {
a391f1d5 1594 checksum = hw->eeprom.ops.calc_checksum(hw);
c44ade9e 1595 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
8c7bea32 1596 checksum);
c44ade9e
JB
1597 } else {
1598 hw_dbg(hw, "EEPROM read failed\n");
1599 }
1600
1601 return status;
1602}
1603
9a799d71
AK
1604/**
1605 * ixgbe_validate_mac_addr - Validate MAC address
1606 * @mac_addr: pointer to MAC address.
1607 *
1608 * Tests a MAC address to ensure it is a valid Individual Address
1609 **/
1610s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1611{
1612 s32 status = 0;
1613
1614 /* Make sure it is not a multicast address */
1615 if (IXGBE_IS_MULTICAST(mac_addr))
1616 status = IXGBE_ERR_INVALID_MAC_ADDR;
1617 /* Not a broadcast address */
1618 else if (IXGBE_IS_BROADCAST(mac_addr))
1619 status = IXGBE_ERR_INVALID_MAC_ADDR;
1620 /* Reject the zero address */
1621 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
c44ade9e 1622 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
9a799d71
AK
1623 status = IXGBE_ERR_INVALID_MAC_ADDR;
1624
1625 return status;
1626}
1627
1628/**
c44ade9e 1629 * ixgbe_set_rar_generic - Set Rx address register
9a799d71 1630 * @hw: pointer to hardware structure
9a799d71 1631 * @index: Receive address register to write
c44ade9e
JB
1632 * @addr: Address to put into receive address register
1633 * @vmdq: VMDq "set" or "pool" index
9a799d71
AK
1634 * @enable_addr: set flag that address is active
1635 *
1636 * Puts an ethernet address into a receive address register.
1637 **/
c44ade9e
JB
1638s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1639 u32 enable_addr)
9a799d71
AK
1640{
1641 u32 rar_low, rar_high;
c44ade9e
JB
1642 u32 rar_entries = hw->mac.num_rar_entries;
1643
c700f4e6
ET
1644 /* Make sure we are using a valid rar index range */
1645 if (index >= rar_entries) {
1646 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1647 return IXGBE_ERR_INVALID_ARGUMENT;
1648 }
1649
c44ade9e
JB
1650 /* setup VMDq pool selection before this RAR gets enabled */
1651 hw->mac.ops.set_vmdq(hw, index, vmdq);
9a799d71 1652
c700f4e6
ET
1653 /*
1654 * HW expects these in little endian so we reverse the byte
1655 * order from network order (big endian) to little endian
1656 */
1657 rar_low = ((u32)addr[0] |
1658 ((u32)addr[1] << 8) |
1659 ((u32)addr[2] << 16) |
1660 ((u32)addr[3] << 24));
1661 /*
1662 * Some parts put the VMDq setting in the extra RAH bits,
1663 * so save everything except the lower 16 bits that hold part
1664 * of the address and the address valid bit.
1665 */
1666 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1667 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1668 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
9a799d71 1669
c700f4e6
ET
1670 if (enable_addr != 0)
1671 rar_high |= IXGBE_RAH_AV;
9a799d71 1672
c700f4e6
ET
1673 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1674 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
c44ade9e
JB
1675
1676 return 0;
1677}
1678
1679/**
1680 * ixgbe_clear_rar_generic - Remove Rx address register
1681 * @hw: pointer to hardware structure
1682 * @index: Receive address register to write
1683 *
1684 * Clears an ethernet address from a receive address register.
1685 **/
1686s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1687{
1688 u32 rar_high;
1689 u32 rar_entries = hw->mac.num_rar_entries;
1690
1691 /* Make sure we are using a valid rar index range */
c700f4e6 1692 if (index >= rar_entries) {
c44ade9e 1693 hw_dbg(hw, "RAR index %d is out of range.\n", index);
c700f4e6 1694 return IXGBE_ERR_INVALID_ARGUMENT;
c44ade9e
JB
1695 }
1696
c700f4e6
ET
1697 /*
1698 * Some parts put the VMDq setting in the extra RAH bits,
1699 * so save everything except the lower 16 bits that hold part
1700 * of the address and the address valid bit.
1701 */
1702 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1703 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1704
1705 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1706 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1707
c44ade9e
JB
1708 /* clear VMDq pool/queue selection for this RAR */
1709 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
9a799d71
AK
1710
1711 return 0;
1712}
1713
c44ade9e
JB
1714/**
1715 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
9a799d71
AK
1716 * @hw: pointer to hardware structure
1717 *
1718 * Places the MAC address in receive address register 0 and clears the rest
c44ade9e 1719 * of the receive address registers. Clears the multicast table. Assumes
9a799d71
AK
1720 * the receiver is in reset when the routine is called.
1721 **/
c44ade9e 1722s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
9a799d71
AK
1723{
1724 u32 i;
2c5645cf 1725 u32 rar_entries = hw->mac.num_rar_entries;
9a799d71
AK
1726
1727 /*
1728 * If the current mac address is valid, assume it is a software override
1729 * to the permanent address.
1730 * Otherwise, use the permanent address from the eeprom.
1731 */
1732 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1733 IXGBE_ERR_INVALID_MAC_ADDR) {
1734 /* Get the MAC address from the RAR0 for later reference */
c44ade9e 1735 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
9a799d71 1736
ce7194d8 1737 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
9a799d71
AK
1738 } else {
1739 /* Setup the receive address. */
1740 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
ce7194d8 1741 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
9a799d71 1742
c44ade9e 1743 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
96cc6372
AD
1744
1745 /* clear VMDq pool/queue selection for RAR 0 */
1746 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
9a799d71 1747 }
c44ade9e 1748 hw->addr_ctrl.overflow_promisc = 0;
9a799d71
AK
1749
1750 hw->addr_ctrl.rar_used_count = 1;
1751
1752 /* Zero out the other receive addresses. */
c44ade9e 1753 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
9a799d71
AK
1754 for (i = 1; i < rar_entries; i++) {
1755 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1756 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1757 }
1758
1759 /* Clear the MTA */
9a799d71
AK
1760 hw->addr_ctrl.mta_in_use = 0;
1761 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1762
1763 hw_dbg(hw, " Clearing MTA\n");
2c5645cf 1764 for (i = 0; i < hw->mac.mcft_size; i++)
9a799d71
AK
1765 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1766
c44ade9e
JB
1767 if (hw->mac.ops.init_uta_tables)
1768 hw->mac.ops.init_uta_tables(hw);
1769
9a799d71
AK
1770 return 0;
1771}
1772
1773/**
1774 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1775 * @hw: pointer to hardware structure
1776 * @mc_addr: the multicast address
1777 *
1778 * Extracts the 12 bits, from a multicast address, to determine which
1779 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1780 * incoming rx multicast addresses, to determine the bit-vector to check in
1781 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
c44ade9e 1782 * by the MO field of the MCSTCTRL. The MO field is set during initialization
9a799d71
AK
1783 * to mc_filter_type.
1784 **/
1785static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1786{
1787 u32 vector = 0;
1788
1789 switch (hw->mac.mc_filter_type) {
b4617240 1790 case 0: /* use bits [47:36] of the address */
9a799d71
AK
1791 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1792 break;
b4617240 1793 case 1: /* use bits [46:35] of the address */
9a799d71
AK
1794 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1795 break;
b4617240 1796 case 2: /* use bits [45:34] of the address */
9a799d71
AK
1797 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1798 break;
b4617240 1799 case 3: /* use bits [43:32] of the address */
9a799d71
AK
1800 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1801 break;
b4617240 1802 default: /* Invalid mc_filter_type */
9a799d71
AK
1803 hw_dbg(hw, "MC filter type param set incorrectly\n");
1804 break;
1805 }
1806
1807 /* vector can only be 12-bits or boundary will be exceeded */
1808 vector &= 0xFFF;
1809 return vector;
1810}
1811
1812/**
1813 * ixgbe_set_mta - Set bit-vector in multicast table
1814 * @hw: pointer to hardware structure
1815 * @hash_value: Multicast address hash value
1816 *
1817 * Sets the bit-vector in the multicast table.
1818 **/
1819static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1820{
1821 u32 vector;
1822 u32 vector_bit;
1823 u32 vector_reg;
9a799d71
AK
1824
1825 hw->addr_ctrl.mta_in_use++;
1826
1827 vector = ixgbe_mta_vector(hw, mc_addr);
1828 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1829
1830 /*
1831 * The MTA is a register array of 128 32-bit registers. It is treated
1832 * like an array of 4096 bits. We want to set bit
1833 * BitArray[vector_value]. So we figure out what register the bit is
1834 * in, read it, OR in the new bit, then write back the new value. The
1835 * register is determined by the upper 7 bits of the vector value and
1836 * the bit within that register are determined by the lower 5 bits of
1837 * the value.
1838 */
1839 vector_reg = (vector >> 5) & 0x7F;
1840 vector_bit = vector & 0x1F;
80960ab0 1841 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
9a799d71
AK
1842}
1843
9a799d71 1844/**
c44ade9e 1845 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
9a799d71 1846 * @hw: pointer to hardware structure
2853eb89 1847 * @netdev: pointer to net device structure
9a799d71
AK
1848 *
1849 * The given list replaces any existing list. Clears the MC addrs from receive
c44ade9e 1850 * address registers and the multicast table. Uses unused receive address
9a799d71
AK
1851 * registers for the first multicast addresses, and hashes the rest into the
1852 * multicast table.
1853 **/
2853eb89
JP
1854s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1855 struct net_device *netdev)
9a799d71 1856{
22bedad3 1857 struct netdev_hw_addr *ha;
9a799d71 1858 u32 i;
9a799d71
AK
1859
1860 /*
1861 * Set the new number of MC addresses that we are being requested to
1862 * use.
1863 */
2853eb89 1864 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
9a799d71
AK
1865 hw->addr_ctrl.mta_in_use = 0;
1866
80960ab0 1867 /* Clear mta_shadow */
9a799d71 1868 hw_dbg(hw, " Clearing MTA\n");
80960ab0 1869 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
9a799d71 1870
80960ab0 1871 /* Update mta shadow */
22bedad3 1872 netdev_for_each_mc_addr(ha, netdev) {
9a799d71 1873 hw_dbg(hw, " Adding the multicast addresses:\n");
22bedad3 1874 ixgbe_set_mta(hw, ha->addr);
9a799d71
AK
1875 }
1876
1877 /* Enable mta */
80960ab0
ET
1878 for (i = 0; i < hw->mac.mcft_size; i++)
1879 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1880 hw->mac.mta_shadow[i]);
1881
9a799d71
AK
1882 if (hw->addr_ctrl.mta_in_use > 0)
1883 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
b4617240 1884 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
9a799d71 1885
c44ade9e 1886 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
9a799d71
AK
1887 return 0;
1888}
1889
1890/**
c44ade9e 1891 * ixgbe_enable_mc_generic - Enable multicast address in RAR
9a799d71
AK
1892 * @hw: pointer to hardware structure
1893 *
c44ade9e 1894 * Enables multicast address in RAR and the use of the multicast hash table.
9a799d71 1895 **/
c44ade9e 1896s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
9a799d71 1897{
c44ade9e 1898 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
9a799d71 1899
c44ade9e
JB
1900 if (a->mta_in_use > 0)
1901 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1902 hw->mac.mc_filter_type);
9a799d71
AK
1903
1904 return 0;
1905}
1906
1907/**
c44ade9e 1908 * ixgbe_disable_mc_generic - Disable multicast address in RAR
9a799d71 1909 * @hw: pointer to hardware structure
9a799d71 1910 *
c44ade9e 1911 * Disables multicast address in RAR and the use of the multicast hash table.
9a799d71 1912 **/
c44ade9e 1913s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
9a799d71 1914{
c44ade9e 1915 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2b9ade93 1916
c44ade9e
JB
1917 if (a->mta_in_use > 0)
1918 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
9a799d71
AK
1919
1920 return 0;
1921}
1922
11afc1b1 1923/**
620fa036 1924 * ixgbe_fc_enable_generic - Enable flow control
11afc1b1
PW
1925 * @hw: pointer to hardware structure
1926 * @packetbuf_num: packet buffer number (0-7)
1927 *
1928 * Enable flow control according to the current settings.
1929 **/
620fa036 1930s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
11afc1b1
PW
1931{
1932 s32 ret_val = 0;
620fa036 1933 u32 mflcn_reg, fccfg_reg;
11afc1b1 1934 u32 reg;
16b61beb 1935 u32 fcrtl, fcrth;
70b77628
PWJ
1936
1937#ifdef CONFIG_DCB
1938 if (hw->fc.requested_mode == ixgbe_fc_pfc)
1939 goto out;
1940
1941#endif /* CONFIG_DCB */
620fa036
MC
1942 /* Negotiate the fc mode to use */
1943 ret_val = ixgbe_fc_autoneg(hw);
0b0c2b31 1944 if (ret_val == IXGBE_ERR_FLOW_CONTROL)
620fa036 1945 goto out;
11afc1b1 1946
620fa036 1947 /* Disable any previous flow control settings */
11afc1b1
PW
1948 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1949 mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1950
1951 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1952 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1953
1954 /*
1955 * The possible values of fc.current_mode are:
1956 * 0: Flow control is completely disabled
1957 * 1: Rx flow control is enabled (we can receive pause frames,
1958 * but not send pause frames).
bb3daa4a
PW
1959 * 2: Tx flow control is enabled (we can send pause frames but
1960 * we do not support receiving pause frames).
11afc1b1 1961 * 3: Both Rx and Tx flow control (symmetric) are enabled.
8c7bea32 1962#ifdef CONFIG_DCB
bb3daa4a 1963 * 4: Priority Flow Control is enabled.
8c7bea32 1964#endif
11afc1b1
PW
1965 * other: Invalid.
1966 */
1967 switch (hw->fc.current_mode) {
1968 case ixgbe_fc_none:
620fa036
MC
1969 /*
1970 * Flow control is disabled by software override or autoneg.
1971 * The code below will actually disable it in the HW.
1972 */
11afc1b1
PW
1973 break;
1974 case ixgbe_fc_rx_pause:
1975 /*
1976 * Rx Flow control is enabled and Tx Flow control is
1977 * disabled by software override. Since there really
1978 * isn't a way to advertise that we are capable of RX
1979 * Pause ONLY, we will advertise that we support both
1980 * symmetric and asymmetric Rx PAUSE. Later, we will
1981 * disable the adapter's ability to send PAUSE frames.
1982 */
1983 mflcn_reg |= IXGBE_MFLCN_RFCE;
1984 break;
1985 case ixgbe_fc_tx_pause:
1986 /*
1987 * Tx Flow control is enabled, and Rx Flow control is
1988 * disabled by software override.
1989 */
1990 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1991 break;
1992 case ixgbe_fc_full:
1993 /* Flow control (both Rx and Tx) is enabled by SW override. */
1994 mflcn_reg |= IXGBE_MFLCN_RFCE;
1995 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1996 break;
bb3daa4a
PW
1997#ifdef CONFIG_DCB
1998 case ixgbe_fc_pfc:
1999 goto out;
2000 break;
620fa036 2001#endif /* CONFIG_DCB */
11afc1b1
PW
2002 default:
2003 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 2004 ret_val = IXGBE_ERR_CONFIG;
11afc1b1
PW
2005 goto out;
2006 break;
2007 }
2008
620fa036 2009 /* Set 802.3x based flow control settings. */
2132d381 2010 mflcn_reg |= IXGBE_MFLCN_DPF;
11afc1b1
PW
2011 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2012 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2013
9da712d2 2014 fcrtl = hw->fc.low_water << 10;
264857b8 2015
16b61beb 2016 if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
8f4a0a3d 2017 fcrth = hw->fc.high_water[packetbuf_num] << 10;
16b61beb
JF
2018 fcrth |= IXGBE_FCRTH_FCEN;
2019 if (hw->fc.send_xon)
2020 fcrtl |= IXGBE_FCRTL_XONE;
8f4a0a3d
AD
2021 } else {
2022 /*
2023 * If Tx flow control is disabled, set our high water mark
2024 * to Rx FIFO size minus 32 in order prevent Tx switch
2025 * loopback from stalling on DMA.
2026 */
2027 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num)) - 32;
11afc1b1
PW
2028 }
2029
16b61beb
JF
2030 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
2031 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
2032
11afc1b1 2033 /* Configure pause time (2 TCs per register) */
70b77628 2034 reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
11afc1b1
PW
2035 if ((packetbuf_num & 1) == 0)
2036 reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
2037 else
2038 reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
2039 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
2040
2041 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
2042
2043out:
2044 return ret_val;
2045}
2046
0ecc061d
PWJ
2047/**
2048 * ixgbe_fc_autoneg - Configure flow control
2049 * @hw: pointer to hardware structure
2050 *
620fa036
MC
2051 * Compares our advertised flow control capabilities to those advertised by
2052 * our link partner, and determines the proper flow control mode to use.
0ecc061d
PWJ
2053 **/
2054s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2055{
0b0c2b31 2056 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
620fa036 2057 ixgbe_link_speed speed;
620fa036 2058 bool link_up;
0ecc061d 2059
0b0c2b31
ET
2060 if (hw->fc.disable_fc_autoneg)
2061 goto out;
2062
0ecc061d 2063 /*
620fa036
MC
2064 * AN should have completed when the cable was plugged in.
2065 * Look for reasons to bail out. Bail out if:
2066 * - FC autoneg is disabled, or if
539e5f02 2067 * - link is not up.
620fa036 2068 *
539e5f02 2069 * Since we're being called from an LSC, link is already known to be up.
620fa036 2070 * So use link_up_wait_to_complete=false.
0ecc061d 2071 */
620fa036 2072 hw->mac.ops.check_link(hw, &speed, &link_up, false);
0b0c2b31
ET
2073 if (!link_up) {
2074 ret_val = IXGBE_ERR_FLOW_CONTROL;
0ecc061d
PWJ
2075 goto out;
2076 }
2077
0b0c2b31
ET
2078 switch (hw->phy.media_type) {
2079 /* Autoneg flow control on fiber adapters */
2080 case ixgbe_media_type_fiber:
2081 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2082 ret_val = ixgbe_fc_autoneg_fiber(hw);
2083 break;
000c486d 2084
0b0c2b31
ET
2085 /* Autoneg flow control on backplane adapters */
2086 case ixgbe_media_type_backplane:
2087 ret_val = ixgbe_fc_autoneg_backplane(hw);
2088 break;
2089
2090 /* Autoneg flow control on copper adapters */
2091 case ixgbe_media_type_copper:
2092 if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2093 ret_val = ixgbe_fc_autoneg_copper(hw);
2094 break;
2095
2096 default:
2097 break;
2098 }
2099
2100out:
2101 if (ret_val == 0) {
2102 hw->fc.fc_was_autonegged = true;
2103 } else {
2104 hw->fc.fc_was_autonegged = false;
2105 hw->fc.current_mode = hw->fc.requested_mode;
539e5f02 2106 }
0b0c2b31
ET
2107 return ret_val;
2108}
2109
2110/**
2111 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2112 * @hw: pointer to hardware structure
2113 *
2114 * Enable flow control according on 1 gig fiber.
2115 **/
2116static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2117{
2118 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2119 s32 ret_val;
539e5f02
PWJ
2120
2121 /*
2122 * On multispeed fiber at 1g, bail out if
2123 * - link is up but AN did not complete, or if
2124 * - link is up and AN completed but timed out
2125 */
0b0c2b31
ET
2126
2127 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
53f096de
DS
2128 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2129 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
0b0c2b31
ET
2130 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2131 goto out;
539e5f02
PWJ
2132 }
2133
0b0c2b31
ET
2134 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2135 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2136
2137 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2138 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2139 IXGBE_PCS1GANA_ASM_PAUSE,
2140 IXGBE_PCS1GANA_SYM_PAUSE,
2141 IXGBE_PCS1GANA_ASM_PAUSE);
2142
2143out:
2144 return ret_val;
2145}
2146
2147/**
2148 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2149 * @hw: pointer to hardware structure
2150 *
2151 * Enable flow control according to IEEE clause 37.
2152 **/
2153static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2154{
2155 u32 links2, anlp1_reg, autoc_reg, links;
2156 s32 ret_val;
2157
9bbe3a57 2158 /*
0b0c2b31
ET
2159 * On backplane, bail out if
2160 * - backplane autoneg was not completed, or if
2161 * - we are 82599 and link partner is not AN enabled
9bbe3a57 2162 */
0b0c2b31
ET
2163 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2164 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
9bbe3a57
PW
2165 hw->fc.fc_was_autonegged = false;
2166 hw->fc.current_mode = hw->fc.requested_mode;
0b0c2b31 2167 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
9bbe3a57
PW
2168 goto out;
2169 }
2170
0b0c2b31
ET
2171 if (hw->mac.type == ixgbe_mac_82599EB) {
2172 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2173 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2174 hw->fc.fc_was_autonegged = false;
2175 hw->fc.current_mode = hw->fc.requested_mode;
2176 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2177 goto out;
2178 }
2179 }
0ecc061d 2180 /*
0b0c2b31 2181 * Read the 10g AN autoc and LP ability registers and resolve
0ecc061d
PWJ
2182 * local flow control settings accordingly
2183 */
0b0c2b31
ET
2184 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2185 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
539e5f02 2186
0b0c2b31
ET
2187 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2188 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2189 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2190
2191out:
2192 return ret_val;
2193}
2194
2195/**
2196 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2197 * @hw: pointer to hardware structure
2198 *
2199 * Enable flow control according to IEEE clause 37.
2200 **/
2201static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2202{
2203 u16 technology_ability_reg = 0;
2204 u16 lp_technology_ability_reg = 0;
2205
2206 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2207 MDIO_MMD_AN,
2208 &technology_ability_reg);
2209 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2210 MDIO_MMD_AN,
2211 &lp_technology_ability_reg);
2212
2213 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2214 (u32)lp_technology_ability_reg,
2215 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2216 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2217}
2218
2219/**
2220 * ixgbe_negotiate_fc - Negotiate flow control
2221 * @hw: pointer to hardware structure
2222 * @adv_reg: flow control advertised settings
2223 * @lp_reg: link partner's flow control settings
2224 * @adv_sym: symmetric pause bit in advertisement
2225 * @adv_asm: asymmetric pause bit in advertisement
2226 * @lp_sym: symmetric pause bit in link partner advertisement
2227 * @lp_asm: asymmetric pause bit in link partner advertisement
2228 *
2229 * Find the intersection between advertised settings and link partner's
2230 * advertised settings
2231 **/
2232static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2233 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2234{
2235 if ((!(adv_reg)) || (!(lp_reg)))
2236 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2237
2238 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
0ecc061d 2239 /*
0b0c2b31
ET
2240 * Now we need to check if the user selected Rx ONLY
2241 * of pause frames. In this case, we had to advertise
2242 * FULL flow control because we could not advertise RX
2243 * ONLY. Hence, we must now check to see if we need to
2244 * turn OFF the TRANSMISSION of PAUSE frames.
0ecc061d 2245 */
0b0c2b31
ET
2246 if (hw->fc.requested_mode == ixgbe_fc_full) {
2247 hw->fc.current_mode = ixgbe_fc_full;
2248 hw_dbg(hw, "Flow Control = FULL.\n");
539e5f02 2249 } else {
0b0c2b31
ET
2250 hw->fc.current_mode = ixgbe_fc_rx_pause;
2251 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
0ecc061d 2252 }
0b0c2b31
ET
2253 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2254 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2255 hw->fc.current_mode = ixgbe_fc_tx_pause;
2256 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2257 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2258 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2259 hw->fc.current_mode = ixgbe_fc_rx_pause;
2260 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2261 } else {
2262 hw->fc.current_mode = ixgbe_fc_none;
2263 hw_dbg(hw, "Flow Control = NONE.\n");
0ecc061d 2264 }
0b0c2b31 2265 return 0;
0ecc061d
PWJ
2266}
2267
11afc1b1 2268/**
620fa036 2269 * ixgbe_setup_fc - Set up flow control
11afc1b1
PW
2270 * @hw: pointer to hardware structure
2271 *
620fa036 2272 * Called at init time to set up flow control.
11afc1b1 2273 **/
7b25cdba 2274static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
11afc1b1
PW
2275{
2276 s32 ret_val = 0;
0b0c2b31
ET
2277 u32 reg = 0, reg_bp = 0;
2278 u16 reg_cu = 0;
11afc1b1 2279
bb3daa4a
PW
2280#ifdef CONFIG_DCB
2281 if (hw->fc.requested_mode == ixgbe_fc_pfc) {
2282 hw->fc.current_mode = hw->fc.requested_mode;
2283 goto out;
2284 }
2285
0b0c2b31 2286#endif /* CONFIG_DCB */
11afc1b1
PW
2287 /* Validate the packetbuf configuration */
2288 if (packetbuf_num < 0 || packetbuf_num > 7) {
2289 hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
2290 "is 0-7\n", packetbuf_num);
2291 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2292 goto out;
2293 }
2294
2295 /*
2296 * Validate the water mark configuration. Zero water marks are invalid
2297 * because it causes the controller to just blast out fc packets.
2298 */
9da712d2
JF
2299 if (!hw->fc.low_water ||
2300 !hw->fc.high_water[packetbuf_num] ||
2301 !hw->fc.pause_time) {
620fa036
MC
2302 hw_dbg(hw, "Invalid water mark configuration\n");
2303 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2304 goto out;
11afc1b1
PW
2305 }
2306
2307 /*
2308 * Validate the requested mode. Strict IEEE mode does not allow
620fa036 2309 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
11afc1b1
PW
2310 */
2311 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2312 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
2313 "IEEE mode\n");
2314 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2315 goto out;
2316 }
2317
2318 /*
2319 * 10gig parts do not have a word in the EEPROM to determine the
2320 * default flow control setting, so we explicitly set it to full.
2321 */
2322 if (hw->fc.requested_mode == ixgbe_fc_default)
2323 hw->fc.requested_mode = ixgbe_fc_full;
2324
2325 /*
0b0c2b31
ET
2326 * Set up the 1G and 10G flow control advertisement registers so the
2327 * HW will be able to do fc autoneg once the cable is plugged in. If
2328 * we link at 10G, the 1G advertisement is harmless and vice versa.
11afc1b1 2329 */
0b0c2b31
ET
2330
2331 switch (hw->phy.media_type) {
2332 case ixgbe_media_type_fiber:
2333 case ixgbe_media_type_backplane:
2334 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2335 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2336 break;
2337
2338 case ixgbe_media_type_copper:
2339 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340 MDIO_MMD_AN, &reg_cu);
2341 break;
2342
2343 default:
2344 ;
2345 }
11afc1b1 2346
620fa036
MC
2347 /*
2348 * The possible values of fc.requested_mode are:
2349 * 0: Flow control is completely disabled
2350 * 1: Rx flow control is enabled (we can receive pause frames,
2351 * but not send pause frames).
2352 * 2: Tx flow control is enabled (we can send pause frames but
2353 * we do not support receiving pause frames).
2354 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2355#ifdef CONFIG_DCB
2356 * 4: Priority Flow Control is enabled.
2357#endif
2358 * other: Invalid.
2359 */
2360 switch (hw->fc.requested_mode) {
2361 case ixgbe_fc_none:
2362 /* Flow control completely disabled by software override. */
2363 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
0b0c2b31
ET
2364 if (hw->phy.media_type == ixgbe_media_type_backplane)
2365 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2366 IXGBE_AUTOC_ASM_PAUSE);
2367 else if (hw->phy.media_type == ixgbe_media_type_copper)
2368 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
620fa036
MC
2369 break;
2370 case ixgbe_fc_rx_pause:
2371 /*
2372 * Rx Flow control is enabled and Tx Flow control is
2373 * disabled by software override. Since there really
2374 * isn't a way to advertise that we are capable of RX
2375 * Pause ONLY, we will advertise that we support both
2376 * symmetric and asymmetric Rx PAUSE. Later, we will
2377 * disable the adapter's ability to send PAUSE frames.
2378 */
2379 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
0b0c2b31
ET
2380 if (hw->phy.media_type == ixgbe_media_type_backplane)
2381 reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2382 IXGBE_AUTOC_ASM_PAUSE);
2383 else if (hw->phy.media_type == ixgbe_media_type_copper)
2384 reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
620fa036
MC
2385 break;
2386 case ixgbe_fc_tx_pause:
2387 /*
2388 * Tx Flow control is enabled, and Rx Flow control is
2389 * disabled by software override.
2390 */
2391 reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2392 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
0b0c2b31
ET
2393 if (hw->phy.media_type == ixgbe_media_type_backplane) {
2394 reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2395 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2396 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
2397 reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2398 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2399 }
620fa036
MC
2400 break;
2401 case ixgbe_fc_full:
2402 /* Flow control (both Rx and Tx) is enabled by SW override. */
2403 reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
0b0c2b31
ET
2404 if (hw->phy.media_type == ixgbe_media_type_backplane)
2405 reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2406 IXGBE_AUTOC_ASM_PAUSE);
2407 else if (hw->phy.media_type == ixgbe_media_type_copper)
2408 reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
620fa036
MC
2409 break;
2410#ifdef CONFIG_DCB
2411 case ixgbe_fc_pfc:
11afc1b1 2412 goto out;
620fa036
MC
2413 break;
2414#endif /* CONFIG_DCB */
2415 default:
2416 hw_dbg(hw, "Flow control param set incorrectly\n");
539e5f02 2417 ret_val = IXGBE_ERR_CONFIG;
620fa036
MC
2418 goto out;
2419 break;
2420 }
2421
0b0c2b31
ET
2422 if (hw->mac.type != ixgbe_mac_X540) {
2423 /*
2424 * Enable auto-negotiation between the MAC & PHY;
2425 * the MAC will advertise clause 37 flow control.
2426 */
2427 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2428 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
620fa036 2429
0b0c2b31
ET
2430 /* Disable AN timeout */
2431 if (hw->fc.strict_ieee)
2432 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
11afc1b1 2433
0b0c2b31
ET
2434 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2435 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2436 }
539e5f02
PWJ
2437
2438 /*
0b0c2b31
ET
2439 * AUTOC restart handles negotiation of 1G and 10G on backplane
2440 * and copper. There is no need to set the PCS1GCTL register.
2441 *
539e5f02 2442 */
0b0c2b31
ET
2443 if (hw->phy.media_type == ixgbe_media_type_backplane) {
2444 reg_bp |= IXGBE_AUTOC_AN_RESTART;
2445 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2446 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2447 (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
2448 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
2449 MDIO_MMD_AN, reg_cu);
539e5f02 2450 }
539e5f02 2451
0b0c2b31 2452 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
11afc1b1
PW
2453out:
2454 return ret_val;
2455}
2456
9a799d71
AK
2457/**
2458 * ixgbe_disable_pcie_master - Disable PCI-express master access
2459 * @hw: pointer to hardware structure
2460 *
2461 * Disables PCI-Express master access and verifies there are no pending
2462 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2463 * bit hasn't caused the master requests to be disabled, else 0
2464 * is returned signifying master requests disabled.
2465 **/
ff9d1a5a 2466static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
9a799d71 2467{
a4297dc2 2468 struct ixgbe_adapter *adapter = hw->back;
a4297dc2 2469 s32 status = 0;
ff9d1a5a
ET
2470 u32 i;
2471 u16 value;
2472
2473 /* Always set this bit to ensure any future transactions are blocked */
2474 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
a4297dc2 2475
ff9d1a5a 2476 /* Exit if master requests are blocked */
a4297dc2
ET
2477 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2478 goto out;
9a799d71 2479
ff9d1a5a 2480 /* Poll for master request bit to clear */
9a799d71 2481 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
a4297dc2 2482 udelay(100);
ff9d1a5a
ET
2483 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2484 goto out;
a4297dc2
ET
2485 }
2486
ff9d1a5a
ET
2487 /*
2488 * Two consecutive resets are required via CTRL.RST per datasheet
2489 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2490 * of this need. The first reset prevents new master requests from
2491 * being issued by our device. We then must wait 1usec or more for any
2492 * remaining completions from the PCIe bus to trickle in, and then reset
2493 * again to clear out any effects they may have had on our device.
2494 */
a4297dc2 2495 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
ff9d1a5a 2496 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
a4297dc2
ET
2497
2498 /*
2499 * Before proceeding, make sure that the PCIe block does not have
2500 * transactions pending.
2501 */
a4297dc2 2502 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
9a799d71 2503 udelay(100);
ff9d1a5a
ET
2504 pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2505 &value);
2506 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2507 goto out;
9a799d71
AK
2508 }
2509
ff9d1a5a
ET
2510 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2511 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
a4297dc2
ET
2512
2513out:
9a799d71
AK
2514 return status;
2515}
2516
9a799d71 2517/**
c44ade9e 2518 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
9a799d71 2519 * @hw: pointer to hardware structure
c44ade9e 2520 * @mask: Mask to specify which semaphore to acquire
9a799d71 2521 *
da74cd4a 2522 * Acquires the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2523 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2524 **/
2525s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2526{
2527 u32 gssr;
2528 u32 swmask = mask;
2529 u32 fwmask = mask << 5;
2530 s32 timeout = 200;
2531
2532 while (timeout) {
dbf893ee
ET
2533 /*
2534 * SW EEPROM semaphore bit is used for access to all
2535 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2536 */
9a799d71 2537 if (ixgbe_get_eeprom_semaphore(hw))
539e5f02 2538 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2539
2540 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2541 if (!(gssr & (fwmask | swmask)))
2542 break;
2543
2544 /*
2545 * Firmware currently using resource (fwmask) or other software
2546 * thread currently using resource (swmask)
2547 */
2548 ixgbe_release_eeprom_semaphore(hw);
032b4325 2549 usleep_range(5000, 10000);
9a799d71
AK
2550 timeout--;
2551 }
2552
2553 if (!timeout) {
dbf893ee 2554 hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
539e5f02 2555 return IXGBE_ERR_SWFW_SYNC;
9a799d71
AK
2556 }
2557
2558 gssr |= swmask;
2559 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2560
2561 ixgbe_release_eeprom_semaphore(hw);
2562 return 0;
2563}
2564
2565/**
2566 * ixgbe_release_swfw_sync - Release SWFW semaphore
2567 * @hw: pointer to hardware structure
c44ade9e 2568 * @mask: Mask to specify which semaphore to release
9a799d71 2569 *
da74cd4a 2570 * Releases the SWFW semaphore through the GSSR register for the specified
9a799d71
AK
2571 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2572 **/
2573void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2574{
2575 u32 gssr;
2576 u32 swmask = mask;
2577
2578 ixgbe_get_eeprom_semaphore(hw);
2579
2580 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2581 gssr &= ~swmask;
2582 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2583
2584 ixgbe_release_eeprom_semaphore(hw);
2585}
2586
d2f5e7f3
AS
2587/**
2588 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2589 * @hw: pointer to hardware structure
2590 *
2591 * Stops the receive data path and waits for the HW to internally
2592 * empty the Rx security block.
2593 **/
2594s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2595{
2596#define IXGBE_MAX_SECRX_POLL 40
2597 int i;
2598 int secrxreg;
2599
2600 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2601 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2602 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2603 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2604 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2605 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2606 break;
2607 else
2608 /* Use interrupt-safe sleep just in case */
2609 udelay(10);
2610 }
2611
2612 /* For informational purposes only */
2613 if (i >= IXGBE_MAX_SECRX_POLL)
2614 hw_dbg(hw, "Rx unit being enabled before security "
2615 "path fully disabled. Continuing with init.\n");
2616
2617 return 0;
2618
2619}
2620
2621/**
2622 * ixgbe_enable_rx_buff - Enables the receive data path
2623 * @hw: pointer to hardware structure
2624 *
2625 * Enables the receive data path
2626 **/
2627s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2628{
2629 int secrxreg;
2630
2631 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2632 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2633 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2634 IXGBE_WRITE_FLUSH(hw);
2635
2636 return 0;
2637}
2638
11afc1b1
PW
2639/**
2640 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2641 * @hw: pointer to hardware structure
2642 * @regval: register value to write to RXCTRL
2643 *
2644 * Enables the Rx DMA unit
2645 **/
2646s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2647{
2648 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2649
2650 return 0;
2651}
87c12017
PW
2652
2653/**
2654 * ixgbe_blink_led_start_generic - Blink LED based on index.
2655 * @hw: pointer to hardware structure
2656 * @index: led number to blink
2657 **/
2658s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2659{
2660 ixgbe_link_speed speed = 0;
3db1cd5c 2661 bool link_up = false;
87c12017
PW
2662 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2663 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2664
2665 /*
2666 * Link must be up to auto-blink the LEDs;
2667 * Force it if link is down.
2668 */
2669 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2670
2671 if (!link_up) {
50ac58ba 2672 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
87c12017
PW
2673 autoc_reg |= IXGBE_AUTOC_FLU;
2674 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
945a5151 2675 IXGBE_WRITE_FLUSH(hw);
032b4325 2676 usleep_range(10000, 20000);
87c12017
PW
2677 }
2678
2679 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2680 led_reg |= IXGBE_LED_BLINK(index);
2681 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2682 IXGBE_WRITE_FLUSH(hw);
2683
2684 return 0;
2685}
2686
2687/**
2688 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2689 * @hw: pointer to hardware structure
2690 * @index: led number to stop blinking
2691 **/
2692s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2693{
2694 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2695 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2696
2697 autoc_reg &= ~IXGBE_AUTOC_FLU;
2698 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2699 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2700
2701 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2702 led_reg &= ~IXGBE_LED_BLINK(index);
2703 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2704 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2705 IXGBE_WRITE_FLUSH(hw);
2706
2707 return 0;
2708}
21ce849b
MC
2709
2710/**
2711 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2712 * @hw: pointer to hardware structure
2713 * @san_mac_offset: SAN MAC address offset
2714 *
2715 * This function will read the EEPROM location for the SAN MAC address
2716 * pointer, and returns the value at that location. This is used in both
2717 * get and set mac_addr routines.
2718 **/
2719static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2720 u16 *san_mac_offset)
2721{
2722 /*
2723 * First read the EEPROM pointer to see if the MAC addresses are
2724 * available.
2725 */
2726 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2727
2728 return 0;
2729}
2730
2731/**
2732 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2733 * @hw: pointer to hardware structure
2734 * @san_mac_addr: SAN MAC address
2735 *
2736 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2737 * per-port, so set_lan_id() must be called before reading the addresses.
2738 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2739 * upon for non-SFP connections, so we must call it here.
2740 **/
2741s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2742{
2743 u16 san_mac_data, san_mac_offset;
2744 u8 i;
2745
2746 /*
2747 * First read the EEPROM pointer to see if the MAC addresses are
2748 * available. If they're not, no point in calling set_lan_id() here.
2749 */
2750 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2751
2752 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2753 /*
2754 * No addresses available in this EEPROM. It's not an
2755 * error though, so just wipe the local address and return.
2756 */
2757 for (i = 0; i < 6; i++)
2758 san_mac_addr[i] = 0xFF;
2759
2760 goto san_mac_addr_out;
2761 }
2762
2763 /* make sure we know which port we need to program */
2764 hw->mac.ops.set_lan_id(hw);
2765 /* apply the port offset to the address offset */
2766 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2767 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2768 for (i = 0; i < 3; i++) {
2769 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2770 san_mac_addr[i * 2] = (u8)(san_mac_data);
2771 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2772 san_mac_offset++;
2773 }
2774
2775san_mac_addr_out:
2776 return 0;
2777}
2778
2779/**
2780 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2781 * @hw: pointer to hardware structure
2782 *
2783 * Read PCIe configuration space, and get the MSI-X vector count from
2784 * the capabilities table.
2785 **/
71161302 2786u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
21ce849b
MC
2787{
2788 struct ixgbe_adapter *adapter = hw->back;
71161302
ET
2789 u16 msix_count = 1;
2790 u16 max_msix_count;
2791 u16 pcie_offset;
2792
2793 switch (hw->mac.type) {
2794 case ixgbe_mac_82598EB:
2795 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2796 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2797 break;
2798 case ixgbe_mac_82599EB:
2799 case ixgbe_mac_X540:
2800 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2801 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2802 break;
2803 default:
2804 return msix_count;
2805 }
2806
2807 pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
21ce849b
MC
2808 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2809
71161302 2810 /* MSI-X count is zero-based in HW */
21ce849b
MC
2811 msix_count++;
2812
71161302
ET
2813 if (msix_count > max_msix_count)
2814 msix_count = max_msix_count;
2815
21ce849b
MC
2816 return msix_count;
2817}
2818
2819/**
2820 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2821 * @hw: pointer to hardware struct
2822 * @rar: receive address register index to disassociate
2823 * @vmdq: VMDq pool index to remove from the rar
2824 **/
2825s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2826{
2827 u32 mpsar_lo, mpsar_hi;
2828 u32 rar_entries = hw->mac.num_rar_entries;
2829
c700f4e6
ET
2830 /* Make sure we are using a valid rar index range */
2831 if (rar >= rar_entries) {
2832 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2833 return IXGBE_ERR_INVALID_ARGUMENT;
2834 }
21ce849b 2835
c700f4e6
ET
2836 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2837 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
21ce849b 2838
c700f4e6
ET
2839 if (!mpsar_lo && !mpsar_hi)
2840 goto done;
21ce849b 2841
c700f4e6
ET
2842 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2843 if (mpsar_lo) {
2844 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2845 mpsar_lo = 0;
2846 }
2847 if (mpsar_hi) {
2848 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2849 mpsar_hi = 0;
2850 }
2851 } else if (vmdq < 32) {
2852 mpsar_lo &= ~(1 << vmdq);
2853 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
21ce849b 2854 } else {
c700f4e6
ET
2855 mpsar_hi &= ~(1 << (vmdq - 32));
2856 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
21ce849b
MC
2857 }
2858
c700f4e6
ET
2859 /* was that the last pool using this rar? */
2860 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2861 hw->mac.ops.clear_rar(hw, rar);
21ce849b
MC
2862done:
2863 return 0;
2864}
2865
2866/**
2867 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2868 * @hw: pointer to hardware struct
2869 * @rar: receive address register index to associate with a VMDq index
2870 * @vmdq: VMDq pool index
2871 **/
2872s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2873{
2874 u32 mpsar;
2875 u32 rar_entries = hw->mac.num_rar_entries;
2876
c700f4e6
ET
2877 /* Make sure we are using a valid rar index range */
2878 if (rar >= rar_entries) {
21ce849b 2879 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
c700f4e6
ET
2880 return IXGBE_ERR_INVALID_ARGUMENT;
2881 }
2882
2883 if (vmdq < 32) {
2884 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2885 mpsar |= 1 << vmdq;
2886 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2887 } else {
2888 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2889 mpsar |= 1 << (vmdq - 32);
2890 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
21ce849b
MC
2891 }
2892 return 0;
2893}
2894
2895/**
2896 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2897 * @hw: pointer to hardware structure
2898 **/
2899s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2900{
2901 int i;
2902
21ce849b
MC
2903 for (i = 0; i < 128; i++)
2904 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2905
2906 return 0;
2907}
2908
2909/**
2910 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2911 * @hw: pointer to hardware structure
2912 * @vlan: VLAN id to write to VLAN filter
2913 *
2914 * return the VLVF index where this VLAN id should be placed
2915 *
2916 **/
5d5b7c39 2917static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
21ce849b
MC
2918{
2919 u32 bits = 0;
2920 u32 first_empty_slot = 0;
2921 s32 regindex;
2922
2923 /* short cut the special case */
2924 if (vlan == 0)
2925 return 0;
2926
2927 /*
2928 * Search for the vlan id in the VLVF entries. Save off the first empty
2929 * slot found along the way
2930 */
2931 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2932 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2933 if (!bits && !(first_empty_slot))
2934 first_empty_slot = regindex;
2935 else if ((bits & 0x0FFF) == vlan)
2936 break;
2937 }
2938
2939 /*
2940 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2941 * in the VLVF. Else use the first empty VLVF register for this
2942 * vlan id.
2943 */
2944 if (regindex >= IXGBE_VLVF_ENTRIES) {
2945 if (first_empty_slot)
2946 regindex = first_empty_slot;
2947 else {
2948 hw_dbg(hw, "No space in VLVF.\n");
2949 regindex = IXGBE_ERR_NO_SPACE;
2950 }
2951 }
2952
2953 return regindex;
2954}
2955
2956/**
2957 * ixgbe_set_vfta_generic - Set VLAN filter table
2958 * @hw: pointer to hardware structure
2959 * @vlan: VLAN id to write to VLAN filter
2960 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2961 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2962 *
2963 * Turn on/off specified VLAN in the VLAN filter table.
2964 **/
2965s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2966 bool vlan_on)
2967{
2968 s32 regindex;
2969 u32 bitindex;
2970 u32 vfta;
2971 u32 bits;
2972 u32 vt;
2973 u32 targetbit;
2974 bool vfta_changed = false;
2975
2976 if (vlan > 4095)
2977 return IXGBE_ERR_PARAM;
2978
2979 /*
2980 * this is a 2 part operation - first the VFTA, then the
2981 * VLVF and VLVFB if VT Mode is set
2982 * We don't write the VFTA until we know the VLVF part succeeded.
2983 */
2984
2985 /* Part 1
2986 * The VFTA is a bitstring made up of 128 32-bit registers
2987 * that enable the particular VLAN id, much like the MTA:
2988 * bits[11-5]: which register
2989 * bits[4-0]: which bit in the register
2990 */
2991 regindex = (vlan >> 5) & 0x7F;
2992 bitindex = vlan & 0x1F;
2993 targetbit = (1 << bitindex);
2994 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2995
2996 if (vlan_on) {
2997 if (!(vfta & targetbit)) {
2998 vfta |= targetbit;
2999 vfta_changed = true;
3000 }
3001 } else {
3002 if ((vfta & targetbit)) {
3003 vfta &= ~targetbit;
3004 vfta_changed = true;
3005 }
3006 }
3007
3008 /* Part 2
3009 * If VT Mode is set
3010 * Either vlan_on
3011 * make sure the vlan is in VLVF
3012 * set the vind bit in the matching VLVFB
3013 * Or !vlan_on
3014 * clear the pool bit and possibly the vind
3015 */
3016 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3017 if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3018 s32 vlvf_index;
3019
3020 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3021 if (vlvf_index < 0)
3022 return vlvf_index;
3023
3024 if (vlan_on) {
3025 /* set the pool bit */
3026 if (vind < 32) {
3027 bits = IXGBE_READ_REG(hw,
3028 IXGBE_VLVFB(vlvf_index*2));
3029 bits |= (1 << vind);
3030 IXGBE_WRITE_REG(hw,
3031 IXGBE_VLVFB(vlvf_index*2),
3032 bits);
3033 } else {
3034 bits = IXGBE_READ_REG(hw,
3035 IXGBE_VLVFB((vlvf_index*2)+1));
3036 bits |= (1 << (vind-32));
3037 IXGBE_WRITE_REG(hw,
3038 IXGBE_VLVFB((vlvf_index*2)+1),
3039 bits);
3040 }
3041 } else {
3042 /* clear the pool bit */
3043 if (vind < 32) {
3044 bits = IXGBE_READ_REG(hw,
3045 IXGBE_VLVFB(vlvf_index*2));
3046 bits &= ~(1 << vind);
3047 IXGBE_WRITE_REG(hw,
3048 IXGBE_VLVFB(vlvf_index*2),
3049 bits);
3050 bits |= IXGBE_READ_REG(hw,
3051 IXGBE_VLVFB((vlvf_index*2)+1));
3052 } else {
3053 bits = IXGBE_READ_REG(hw,
3054 IXGBE_VLVFB((vlvf_index*2)+1));
3055 bits &= ~(1 << (vind-32));
3056 IXGBE_WRITE_REG(hw,
3057 IXGBE_VLVFB((vlvf_index*2)+1),
3058 bits);
3059 bits |= IXGBE_READ_REG(hw,
3060 IXGBE_VLVFB(vlvf_index*2));
3061 }
3062 }
3063
3064 /*
3065 * If there are still bits set in the VLVFB registers
3066 * for the VLAN ID indicated we need to see if the
3067 * caller is requesting that we clear the VFTA entry bit.
3068 * If the caller has requested that we clear the VFTA
3069 * entry bit but there are still pools/VFs using this VLAN
3070 * ID entry then ignore the request. We're not worried
3071 * about the case where we're turning the VFTA VLAN ID
3072 * entry bit on, only when requested to turn it off as
3073 * there may be multiple pools and/or VFs using the
3074 * VLAN ID entry. In that case we cannot clear the
3075 * VFTA bit until all pools/VFs using that VLAN ID have also
3076 * been cleared. This will be indicated by "bits" being
3077 * zero.
3078 */
3079 if (bits) {
3080 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3081 (IXGBE_VLVF_VIEN | vlan));
3082 if (!vlan_on) {
3083 /* someone wants to clear the vfta entry
3084 * but some pools/VFs are still using it.
3085 * Ignore it. */
3086 vfta_changed = false;
3087 }
3088 }
3089 else
3090 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3091 }
3092
3093 if (vfta_changed)
3094 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3095
3096 return 0;
3097}
3098
3099/**
3100 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3101 * @hw: pointer to hardware structure
3102 *
3103 * Clears the VLAN filer table, and the VMDq index associated with the filter
3104 **/
3105s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3106{
3107 u32 offset;
3108
3109 for (offset = 0; offset < hw->mac.vft_size; offset++)
3110 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3111
3112 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3113 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3114 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3115 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3116 }
3117
3118 return 0;
3119}
3120
3121/**
3122 * ixgbe_check_mac_link_generic - Determine link and speed status
3123 * @hw: pointer to hardware structure
3124 * @speed: pointer to link speed
3125 * @link_up: true when link is up
3126 * @link_up_wait_to_complete: bool used to wait for link up or not
3127 *
3128 * Reads the links register to determine if link is up and the current speed
3129 **/
3130s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
8c7bea32 3131 bool *link_up, bool link_up_wait_to_complete)
21ce849b 3132{
48de36c5 3133 u32 links_reg, links_orig;
21ce849b
MC
3134 u32 i;
3135
48de36c5
ET
3136 /* clear the old state */
3137 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3138
21ce849b 3139 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
48de36c5
ET
3140
3141 if (links_orig != links_reg) {
3142 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3143 links_orig, links_reg);
3144 }
3145
21ce849b
MC
3146 if (link_up_wait_to_complete) {
3147 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3148 if (links_reg & IXGBE_LINKS_UP) {
3149 *link_up = true;
3150 break;
3151 } else {
3152 *link_up = false;
3153 }
3154 msleep(100);
3155 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3156 }
3157 } else {
3158 if (links_reg & IXGBE_LINKS_UP)
3159 *link_up = true;
3160 else
3161 *link_up = false;
3162 }
3163
3164 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3165 IXGBE_LINKS_SPEED_10G_82599)
3166 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3167 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
63d778df 3168 IXGBE_LINKS_SPEED_1G_82599)
21ce849b 3169 *speed = IXGBE_LINK_SPEED_1GB_FULL;
63d778df
ET
3170 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3171 IXGBE_LINKS_SPEED_100_82599)
21ce849b 3172 *speed = IXGBE_LINK_SPEED_100_FULL;
63d778df
ET
3173 else
3174 *speed = IXGBE_LINK_SPEED_UNKNOWN;
21ce849b 3175
21ce849b
MC
3176 return 0;
3177}
a391f1d5
DS
3178
3179/**
3180 * ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3181 * the EEPROM
3182 * @hw: pointer to hardware structure
3183 * @wwnn_prefix: the alternative WWNN prefix
3184 * @wwpn_prefix: the alternative WWPN prefix
3185 *
3186 * This function will read the EEPROM from the alternative SAN MAC address
3187 * block to check the support for the alternative WWNN/WWPN prefix support.
3188 **/
3189s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3190 u16 *wwpn_prefix)
3191{
3192 u16 offset, caps;
3193 u16 alt_san_mac_blk_offset;
3194
3195 /* clear output first */
3196 *wwnn_prefix = 0xFFFF;
3197 *wwpn_prefix = 0xFFFF;
3198
3199 /* check if alternative SAN MAC is supported */
3200 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3201 &alt_san_mac_blk_offset);
3202
3203 if ((alt_san_mac_blk_offset == 0) ||
3204 (alt_san_mac_blk_offset == 0xFFFF))
3205 goto wwn_prefix_out;
3206
3207 /* check capability in alternative san mac address block */
3208 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3209 hw->eeprom.ops.read(hw, offset, &caps);
3210 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3211 goto wwn_prefix_out;
3212
3213 /* get the corresponding prefix for WWNN/WWPN */
3214 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3215 hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3216
3217 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3218 hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3219
3220wwn_prefix_out:
3221 return 0;
3222}
a985b6c3 3223
0b0c2b31
ET
3224/**
3225 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3226 * control
3227 * @hw: pointer to hardware structure
3228 *
3229 * There are several phys that do not support autoneg flow control. This
3230 * function check the device id to see if the associated phy supports
3231 * autoneg flow control.
3232 **/
3233static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3234{
3235
3236 switch (hw->device_id) {
3237 case IXGBE_DEV_ID_X540T:
3238 return 0;
3239 case IXGBE_DEV_ID_82599_T3_LOM:
3240 return 0;
3241 default:
3242 return IXGBE_ERR_FC_NOT_SUPPORTED;
3243 }
3244}
3245
a985b6c3
GR
3246/**
3247 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3248 * @hw: pointer to hardware structure
3249 * @enable: enable or disable switch for anti-spoofing
3250 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3251 *
3252 **/
3253void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3254{
3255 int j;
3256 int pf_target_reg = pf >> 3;
3257 int pf_target_shift = pf % 8;
3258 u32 pfvfspoof = 0;
3259
3260 if (hw->mac.type == ixgbe_mac_82598EB)
3261 return;
3262
3263 if (enable)
3264 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3265
3266 /*
3267 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3268 * MAC anti-spoof enables in each register array element.
3269 */
3270 for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3271 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3272
3273 /* If not enabling anti-spoofing then done */
3274 if (!enable)
3275 return;
3276
3277 /*
3278 * The PF should be allowed to spoof so that it can support
3279 * emulation mode NICs. Reset the bit assigned to the PF
3280 */
3281 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3282 pfvfspoof ^= (1 << pf_target_shift);
3283 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3284}
3285
3286/**
3287 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3288 * @hw: pointer to hardware structure
3289 * @enable: enable or disable switch for VLAN anti-spoofing
3290 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3291 *
3292 **/
3293void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3294{
3295 int vf_target_reg = vf >> 3;
3296 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3297 u32 pfvfspoof;
3298
3299 if (hw->mac.type == ixgbe_mac_82598EB)
3300 return;
3301
3302 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3303 if (enable)
3304 pfvfspoof |= (1 << vf_target_shift);
3305 else
3306 pfvfspoof &= ~(1 << vf_target_shift);
3307 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3308}
b776d104
ET
3309
3310/**
3311 * ixgbe_get_device_caps_generic - Get additional device capabilities
3312 * @hw: pointer to hardware structure
3313 * @device_caps: the EEPROM word with the extra device capabilities
3314 *
3315 * This function will read the EEPROM location for the device capabilities,
3316 * and return the word through device_caps.
3317 **/
3318s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3319{
3320 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3321
3322 return 0;
3323}
80605c65
JF
3324
3325/**
3326 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3327 * @hw: pointer to hardware structure
3328 * @num_pb: number of packet buffers to allocate
3329 * @headroom: reserve n KB of headroom
3330 * @strategy: packet buffer allocation strategy
3331 **/
3332void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3333 int num_pb,
3334 u32 headroom,
3335 int strategy)
3336{
3337 u32 pbsize = hw->mac.rx_pb_size;
3338 int i = 0;
3339 u32 rxpktsize, txpktsize, txpbthresh;
3340
3341 /* Reserve headroom */
3342 pbsize -= headroom;
3343
3344 if (!num_pb)
3345 num_pb = 1;
3346
3347 /* Divide remaining packet buffer space amongst the number
3348 * of packet buffers requested using supplied strategy.
3349 */
3350 switch (strategy) {
3351 case (PBA_STRATEGY_WEIGHTED):
3352 /* pba_80_48 strategy weight first half of packet buffer with
3353 * 5/8 of the packet buffer space.
3354 */
3355 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3356 pbsize -= rxpktsize * (num_pb / 2);
3357 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3358 for (; i < (num_pb / 2); i++)
3359 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3360 /* Fall through to configure remaining packet buffers */
3361 case (PBA_STRATEGY_EQUAL):
3362 /* Divide the remaining Rx packet buffer evenly among the TCs */
3363 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3364 for (; i < num_pb; i++)
3365 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3366 break;
3367 default:
3368 break;
3369 }
3370
3371 /*
3372 * Setup Tx packet buffer and threshold equally for all TCs
3373 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3374 * 10 since the largest packet we support is just over 9K.
3375 */
3376 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3377 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3378 for (i = 0; i < num_pb; i++) {
3379 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3380 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3381 }
3382
3383 /* Clear unused TCs, if any, to zero buffer size*/
3384 for (; i < IXGBE_MAX_PB; i++) {
3385 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3386 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3387 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3388 }
3389}
9612de92
ET
3390
3391/**
3392 * ixgbe_calculate_checksum - Calculate checksum for buffer
3393 * @buffer: pointer to EEPROM
3394 * @length: size of EEPROM to calculate a checksum for
3395 * Calculates the checksum for some buffer on a specified length. The
3396 * checksum calculated is returned.
3397 **/
3398static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3399{
3400 u32 i;
3401 u8 sum = 0;
3402
3403 if (!buffer)
3404 return 0;
3405
3406 for (i = 0; i < length; i++)
3407 sum += buffer[i];
3408
3409 return (u8) (0 - sum);
3410}
3411
3412/**
3413 * ixgbe_host_interface_command - Issue command to manageability block
3414 * @hw: pointer to the HW structure
3415 * @buffer: contains the command to write and where the return status will
3416 * be placed
c466d7a7 3417 * @length: length of buffer, must be multiple of 4 bytes
9612de92
ET
3418 *
3419 * Communicates with the manageability block. On success return 0
3420 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3421 **/
79488c58 3422static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
9612de92
ET
3423 u32 length)
3424{
331bcf45 3425 u32 hicr, i, bi;
9612de92
ET
3426 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3427 u8 buf_len, dword_len;
3428
3429 s32 ret_val = 0;
3430
3431 if (length == 0 || length & 0x3 ||
3432 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3433 hw_dbg(hw, "Buffer length failure.\n");
3434 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3435 goto out;
3436 }
3437
3438 /* Check that the host interface is enabled. */
3439 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3440 if ((hicr & IXGBE_HICR_EN) == 0) {
3441 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3442 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3443 goto out;
3444 }
3445
3446 /* Calculate length in DWORDs */
3447 dword_len = length >> 2;
3448
3449 /*
3450 * The device driver writes the relevant command block
3451 * into the ram area.
3452 */
3453 for (i = 0; i < dword_len; i++)
3454 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
79488c58 3455 i, cpu_to_le32(buffer[i]));
9612de92
ET
3456
3457 /* Setting this bit tells the ARC that a new command is pending. */
3458 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3459
3460 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3461 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3462 if (!(hicr & IXGBE_HICR_C))
3463 break;
3464 usleep_range(1000, 2000);
3465 }
3466
3467 /* Check command successful completion. */
3468 if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3469 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3470 hw_dbg(hw, "Command has failed with no status valid.\n");
3471 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3472 goto out;
3473 }
3474
3475 /* Calculate length in DWORDs */
3476 dword_len = hdr_size >> 2;
3477
3478 /* first pull in the header so we know the buffer length */
331bcf45
ET
3479 for (bi = 0; bi < dword_len; bi++) {
3480 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3481 le32_to_cpus(&buffer[bi]);
79488c58 3482 }
9612de92
ET
3483
3484 /* If there is any thing in data position pull it in */
3485 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3486 if (buf_len == 0)
3487 goto out;
3488
3489 if (length < (buf_len + hdr_size)) {
3490 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3491 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3492 goto out;
3493 }
3494
331bcf45
ET
3495 /* Calculate length in DWORDs, add 3 for odd lengths */
3496 dword_len = (buf_len + 3) >> 2;
9612de92 3497
331bcf45
ET
3498 /* Pull in the rest of the buffer (bi is where we left off)*/
3499 for (; bi <= dword_len; bi++) {
3500 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3501 le32_to_cpus(&buffer[bi]);
3502 }
9612de92
ET
3503
3504out:
3505 return ret_val;
3506}
3507
3508/**
3509 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3510 * @hw: pointer to the HW structure
3511 * @maj: driver version major number
3512 * @min: driver version minor number
3513 * @build: driver version build number
3514 * @sub: driver version sub build number
3515 *
3516 * Sends driver version number to firmware through the manageability
3517 * block. On success return 0
3518 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3519 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3520 **/
3521s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3522 u8 build, u8 sub)
3523{
3524 struct ixgbe_hic_drv_info fw_cmd;
3525 int i;
3526 s32 ret_val = 0;
3527
3528 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3529 ret_val = IXGBE_ERR_SWFW_SYNC;
3530 goto out;
3531 }
3532
3533 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3534 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3535 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3536 fw_cmd.port_num = (u8)hw->bus.func;
3537 fw_cmd.ver_maj = maj;
3538 fw_cmd.ver_min = min;
3539 fw_cmd.ver_build = build;
3540 fw_cmd.ver_sub = sub;
3541 fw_cmd.hdr.checksum = 0;
3542 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3543 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3544 fw_cmd.pad = 0;
3545 fw_cmd.pad2 = 0;
3546
3547 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
79488c58 3548 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
9612de92
ET
3549 sizeof(fw_cmd));
3550 if (ret_val != 0)
3551 continue;
3552
3553 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3554 FW_CEM_RESP_STATUS_SUCCESS)
3555 ret_val = 0;
3556 else
3557 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3558
3559 break;
3560 }
3561
3562 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3563out:
3564 return ret_val;
3565}
ff9d1a5a
ET
3566
3567/**
3568 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3569 * @hw: pointer to the hardware structure
3570 *
3571 * The 82599 and x540 MACs can experience issues if TX work is still pending
3572 * when a reset occurs. This function prevents this by flushing the PCIe
3573 * buffers on the system.
3574 **/
3575void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3576{
3577 u32 gcr_ext, hlreg0;
3578
3579 /*
3580 * If double reset is not requested then all transactions should
3581 * already be clear and as such there is no work to do
3582 */
3583 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3584 return;
3585
3586 /*
3587 * Set loopback enable to prevent any transmits from being sent
3588 * should the link come up. This assumes that the RXCTRL.RXEN bit
3589 * has already been cleared.
3590 */
3591 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3592 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3593
3594 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3595 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3596 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3597 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3598
3599 /* Flush all writes and allow 20usec for all transactions to clear */
3600 IXGBE_WRITE_FLUSH(hw);
3601 udelay(20);
3602
3603 /* restore previous register values */
3604 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3605 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3606}
e1ea9158
DS
3607
3608static const u8 ixgbe_emc_temp_data[4] = {
3609 IXGBE_EMC_INTERNAL_DATA,
3610 IXGBE_EMC_DIODE1_DATA,
3611 IXGBE_EMC_DIODE2_DATA,
3612 IXGBE_EMC_DIODE3_DATA
3613};
3614static const u8 ixgbe_emc_therm_limit[4] = {
3615 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3616 IXGBE_EMC_DIODE1_THERM_LIMIT,
3617 IXGBE_EMC_DIODE2_THERM_LIMIT,
3618 IXGBE_EMC_DIODE3_THERM_LIMIT
3619};
3620
3621/**
3622 * ixgbe_get_ets_data - Extracts the ETS bit data
3623 * @hw: pointer to hardware structure
3624 * @ets_cfg: extected ETS data
3625 * @ets_offset: offset of ETS data
3626 *
3627 * Returns error code.
3628 **/
3629static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3630 u16 *ets_offset)
3631{
3632 s32 status = 0;
3633
3634 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3635 if (status)
3636 goto out;
3637
3638 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3639 status = IXGBE_NOT_IMPLEMENTED;
3640 goto out;
3641 }
3642
3643 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3644 if (status)
3645 goto out;
3646
3647 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3648 status = IXGBE_NOT_IMPLEMENTED;
3649 goto out;
3650 }
3651
3652out:
3653 return status;
3654}
3655
3656/**
3657 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3658 * @hw: pointer to hardware structure
3659 *
3660 * Returns the thermal sensor data structure
3661 **/
3662s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3663{
3664 s32 status = 0;
3665 u16 ets_offset;
3666 u16 ets_cfg;
3667 u16 ets_sensor;
3668 u8 num_sensors;
3669 u8 i;
3670 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3671
3ca8bc6d
DS
3672 /* Only support thermal sensors attached to physical port 0 */
3673 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
e1ea9158
DS
3674 status = IXGBE_NOT_IMPLEMENTED;
3675 goto out;
3676 }
3677
3678 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3679 if (status)
3680 goto out;
3681
3682 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3683 if (num_sensors > IXGBE_MAX_SENSORS)
3684 num_sensors = IXGBE_MAX_SENSORS;
3685
3686 for (i = 0; i < num_sensors; i++) {
3687 u8 sensor_index;
3688 u8 sensor_location;
3689
3690 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3691 &ets_sensor);
3692 if (status)
3693 goto out;
3694
3695 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3696 IXGBE_ETS_DATA_INDEX_SHIFT);
3697 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3698 IXGBE_ETS_DATA_LOC_SHIFT);
3699
3700 if (sensor_location != 0) {
3701 status = hw->phy.ops.read_i2c_byte(hw,
3702 ixgbe_emc_temp_data[sensor_index],
3703 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3704 &data->sensor[i].temp);
3705 if (status)
3706 goto out;
3707 }
3708 }
3709out:
3710 return status;
3711}
3712
3713/**
3714 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3715 * @hw: pointer to hardware structure
3716 *
3717 * Inits the thermal sensor thresholds according to the NVM map
3718 * and save off the threshold and location values into mac.thermal_sensor_data
3719 **/
3720s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3721{
3722 s32 status = 0;
3723 u16 ets_offset;
3724 u16 ets_cfg;
3725 u16 ets_sensor;
3726 u8 low_thresh_delta;
3727 u8 num_sensors;
3728 u8 therm_limit;
3729 u8 i;
3730 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3731
3732 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3733
3ca8bc6d
DS
3734 /* Only support thermal sensors attached to physical port 0 */
3735 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
e1ea9158
DS
3736 status = IXGBE_NOT_IMPLEMENTED;
3737 goto out;
3738 }
3739
3740 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3741 if (status)
3742 goto out;
3743
3744 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3745 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3746 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3747 if (num_sensors > IXGBE_MAX_SENSORS)
3748 num_sensors = IXGBE_MAX_SENSORS;
3749
3750 for (i = 0; i < num_sensors; i++) {
3751 u8 sensor_index;
3752 u8 sensor_location;
3753
3754 hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3755 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3756 IXGBE_ETS_DATA_INDEX_SHIFT);
3757 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3758 IXGBE_ETS_DATA_LOC_SHIFT);
3759 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3760
3761 hw->phy.ops.write_i2c_byte(hw,
3762 ixgbe_emc_therm_limit[sensor_index],
3763 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3764
3765 if (sensor_location == 0)
3766 continue;
3767
3768 data->sensor[i].location = sensor_location;
3769 data->sensor[i].caution_thresh = therm_limit;
3770 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3771 }
3772out:
3773 return status;
3774}
3775
This page took 0.73362 seconds and 5 git commands to generate.