esp4: fix error return code in esp_output()
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvneta.c
CommitLineData
c5aff182
TP
1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14#include <linux/kernel.h>
c5aff182
TP
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/platform_device.h>
18#include <linux/skbuff.h>
19#include <linux/inetdevice.h>
20#include <linux/mbus.h>
21#include <linux/module.h>
22#include <linux/interrupt.h>
23#include <net/ip.h>
24#include <net/ipv6.h>
25#include <linux/of.h>
26#include <linux/of_irq.h>
27#include <linux/of_mdio.h>
28#include <linux/of_net.h>
29#include <linux/of_address.h>
30#include <linux/phy.h>
189dd626 31#include <linux/clk.h>
c5aff182
TP
32
33/* Registers */
34#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
35#define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
36#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
37#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
38#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
39#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
40#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
41#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
42#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
43#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
44#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
45#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
46#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
47#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
48#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
49#define MVNETA_PORT_RX_RESET 0x1cc0
50#define MVNETA_PORT_RX_DMA_RESET BIT(0)
51#define MVNETA_PHY_ADDR 0x2000
52#define MVNETA_PHY_ADDR_MASK 0x1f
53#define MVNETA_MBUS_RETRY 0x2010
54#define MVNETA_UNIT_INTR_CAUSE 0x2080
55#define MVNETA_UNIT_CONTROL 0x20B0
56#define MVNETA_PHY_POLLING_ENABLE BIT(1)
57#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
58#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
59#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
60#define MVNETA_BASE_ADDR_ENABLE 0x2290
61#define MVNETA_PORT_CONFIG 0x2400
62#define MVNETA_UNI_PROMISC_MODE BIT(0)
63#define MVNETA_DEF_RXQ(q) ((q) << 1)
64#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
65#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
66#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
67#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
68#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
69#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
70#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
71 MVNETA_DEF_RXQ_ARP(q) | \
72 MVNETA_DEF_RXQ_TCP(q) | \
73 MVNETA_DEF_RXQ_UDP(q) | \
74 MVNETA_DEF_RXQ_BPDU(q) | \
75 MVNETA_TX_UNSET_ERR_SUM | \
76 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
77#define MVNETA_PORT_CONFIG_EXTEND 0x2404
78#define MVNETA_MAC_ADDR_LOW 0x2414
79#define MVNETA_MAC_ADDR_HIGH 0x2418
80#define MVNETA_SDMA_CONFIG 0x241c
81#define MVNETA_SDMA_BRST_SIZE_16 4
82#define MVNETA_NO_DESC_SWAP 0x0
83#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
84#define MVNETA_RX_NO_DATA_SWAP BIT(4)
85#define MVNETA_TX_NO_DATA_SWAP BIT(5)
86#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
87#define MVNETA_PORT_STATUS 0x2444
88#define MVNETA_TX_IN_PRGRS BIT(1)
89#define MVNETA_TX_FIFO_EMPTY BIT(8)
90#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
91#define MVNETA_TYPE_PRIO 0x24bc
92#define MVNETA_FORCE_UNI BIT(21)
93#define MVNETA_TXQ_CMD_1 0x24e4
94#define MVNETA_TXQ_CMD 0x2448
95#define MVNETA_TXQ_DISABLE_SHIFT 8
96#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
97#define MVNETA_ACC_MODE 0x2500
98#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
99#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
100#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
101#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
102#define MVNETA_INTR_NEW_CAUSE 0x25a0
103#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
104#define MVNETA_INTR_NEW_MASK 0x25a4
105#define MVNETA_INTR_OLD_CAUSE 0x25a8
106#define MVNETA_INTR_OLD_MASK 0x25ac
107#define MVNETA_INTR_MISC_CAUSE 0x25b0
108#define MVNETA_INTR_MISC_MASK 0x25b4
109#define MVNETA_INTR_ENABLE 0x25b8
110#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
111#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000
112#define MVNETA_RXQ_CMD 0x2680
113#define MVNETA_RXQ_DISABLE_SHIFT 8
114#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
115#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
116#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
117#define MVNETA_GMAC_CTRL_0 0x2c00
118#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
119#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
120#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
121#define MVNETA_GMAC_CTRL_2 0x2c08
122#define MVNETA_GMAC2_PSC_ENABLE BIT(3)
123#define MVNETA_GMAC2_PORT_RGMII BIT(4)
124#define MVNETA_GMAC2_PORT_RESET BIT(6)
125#define MVNETA_GMAC_STATUS 0x2c10
126#define MVNETA_GMAC_LINK_UP BIT(0)
127#define MVNETA_GMAC_SPEED_1000 BIT(1)
128#define MVNETA_GMAC_SPEED_100 BIT(2)
129#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
130#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
131#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
132#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
133#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
134#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
135#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
136#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
137#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
138#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
139#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
140#define MVNETA_MIB_COUNTERS_BASE 0x3080
141#define MVNETA_MIB_LATE_COLLISION 0x7c
142#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
143#define MVNETA_DA_FILT_OTH_MCAST 0x3500
144#define MVNETA_DA_FILT_UCAST_BASE 0x3600
145#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
146#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
147#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
148#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
149#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
150#define MVNETA_TXQ_DEC_SENT_SHIFT 16
151#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
152#define MVNETA_TXQ_SENT_DESC_SHIFT 16
153#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
154#define MVNETA_PORT_TX_RESET 0x3cf0
155#define MVNETA_PORT_TX_DMA_RESET BIT(0)
156#define MVNETA_TX_MTU 0x3e0c
157#define MVNETA_TX_TOKEN_SIZE 0x3e14
158#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
159#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
160#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
161
162#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
163
164/* Descriptor ring Macros */
165#define MVNETA_QUEUE_NEXT_DESC(q, index) \
166 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
167
168/* Various constants */
169
170/* Coalescing */
171#define MVNETA_TXDONE_COAL_PKTS 16
172#define MVNETA_RX_COAL_PKTS 32
173#define MVNETA_RX_COAL_USEC 100
174
175/* Timer */
176#define MVNETA_TX_DONE_TIMER_PERIOD 10
177
178/* Napi polling weight */
179#define MVNETA_RX_POLL_WEIGHT 64
180
6a20c175 181/* The two bytes Marvell header. Either contains a special value used
c5aff182
TP
182 * by Marvell switches when a specific hardware mode is enabled (not
183 * supported by this driver) or is filled automatically by zeroes on
184 * the RX side. Those two bytes being at the front of the Ethernet
185 * header, they allow to have the IP header aligned on a 4 bytes
186 * boundary automatically: the hardware skips those two bytes on its
187 * own.
188 */
189#define MVNETA_MH_SIZE 2
190
191#define MVNETA_VLAN_TAG_LEN 4
192
193#define MVNETA_CPU_D_CACHE_LINE_SIZE 32
194#define MVNETA_TX_CSUM_MAX_SIZE 9800
195#define MVNETA_ACC_MODE_EXT 1
196
197/* Timeout constants */
198#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
199#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
200#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
201
202#define MVNETA_TX_MTU_MAX 0x3ffff
203
204/* Max number of Rx descriptors */
205#define MVNETA_MAX_RXD 128
206
207/* Max number of Tx descriptors */
208#define MVNETA_MAX_TXD 532
209
210/* descriptor aligned size */
211#define MVNETA_DESC_ALIGNED_SIZE 32
212
213#define MVNETA_RX_PKT_SIZE(mtu) \
214 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
215 ETH_HLEN + ETH_FCS_LEN, \
216 MVNETA_CPU_D_CACHE_LINE_SIZE)
217
218#define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
219
220struct mvneta_stats {
221 struct u64_stats_sync syncp;
222 u64 packets;
223 u64 bytes;
224};
225
226struct mvneta_port {
227 int pkt_size;
228 void __iomem *base;
229 struct mvneta_rx_queue *rxqs;
230 struct mvneta_tx_queue *txqs;
231 struct timer_list tx_done_timer;
232 struct net_device *dev;
233
234 u32 cause_rx_tx;
235 struct napi_struct napi;
236
237 /* Flags */
238 unsigned long flags;
239#define MVNETA_F_TX_DONE_TIMER_BIT 0
240
241 /* Napi weight */
242 int weight;
243
244 /* Core clock */
189dd626 245 struct clk *clk;
c5aff182
TP
246 u8 mcast_count[256];
247 u16 tx_ring_size;
248 u16 rx_ring_size;
249 struct mvneta_stats tx_stats;
250 struct mvneta_stats rx_stats;
251
252 struct mii_bus *mii_bus;
253 struct phy_device *phy_dev;
254 phy_interface_t phy_interface;
255 struct device_node *phy_node;
256 unsigned int link;
257 unsigned int duplex;
258 unsigned int speed;
259};
260
6a20c175 261/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
c5aff182
TP
262 * layout of the transmit and reception DMA descriptors, and their
263 * layout is therefore defined by the hardware design
264 */
265struct mvneta_tx_desc {
266 u32 command; /* Options used by HW for packet transmitting.*/
267#define MVNETA_TX_L3_OFF_SHIFT 0
268#define MVNETA_TX_IP_HLEN_SHIFT 8
269#define MVNETA_TX_L4_UDP BIT(16)
270#define MVNETA_TX_L3_IP6 BIT(17)
271#define MVNETA_TXD_IP_CSUM BIT(18)
272#define MVNETA_TXD_Z_PAD BIT(19)
273#define MVNETA_TXD_L_DESC BIT(20)
274#define MVNETA_TXD_F_DESC BIT(21)
275#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
276 MVNETA_TXD_L_DESC | \
277 MVNETA_TXD_F_DESC)
278#define MVNETA_TX_L4_CSUM_FULL BIT(30)
279#define MVNETA_TX_L4_CSUM_NOT BIT(31)
280
281 u16 reserverd1; /* csum_l4 (for future use) */
282 u16 data_size; /* Data size of transmitted packet in bytes */
283 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
284 u32 reserved2; /* hw_cmd - (for future use, PMT) */
285 u32 reserved3[4]; /* Reserved - (for future use) */
286};
287
288struct mvneta_rx_desc {
289 u32 status; /* Info about received packet */
290#define MVNETA_RXD_ERR_CRC 0x0
291#define MVNETA_RXD_ERR_SUMMARY BIT(16)
292#define MVNETA_RXD_ERR_OVERRUN BIT(17)
293#define MVNETA_RXD_ERR_LEN BIT(18)
294#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
295#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
296#define MVNETA_RXD_L3_IP4 BIT(25)
297#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
298#define MVNETA_RXD_L4_CSUM_OK BIT(30)
299
300 u16 reserved1; /* pnc_info - (for future use, PnC) */
301 u16 data_size; /* Size of received packet in bytes */
302 u32 buf_phys_addr; /* Physical address of the buffer */
303 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
304 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
305 u16 reserved3; /* prefetch_cmd, for future use */
306 u16 reserved4; /* csum_l4 - (for future use, PnC) */
307 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
308 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
309};
310
311struct mvneta_tx_queue {
312 /* Number of this TX queue, in the range 0-7 */
313 u8 id;
314
315 /* Number of TX DMA descriptors in the descriptor ring */
316 int size;
317
318 /* Number of currently used TX DMA descriptor in the
6a20c175
TP
319 * descriptor ring
320 */
c5aff182
TP
321 int count;
322
323 /* Array of transmitted skb */
324 struct sk_buff **tx_skb;
325
326 /* Index of last TX DMA descriptor that was inserted */
327 int txq_put_index;
328
329 /* Index of the TX DMA descriptor to be cleaned up */
330 int txq_get_index;
331
332 u32 done_pkts_coal;
333
334 /* Virtual address of the TX DMA descriptors array */
335 struct mvneta_tx_desc *descs;
336
337 /* DMA address of the TX DMA descriptors array */
338 dma_addr_t descs_phys;
339
340 /* Index of the last TX DMA descriptor */
341 int last_desc;
342
343 /* Index of the next TX DMA descriptor to process */
344 int next_desc_to_proc;
345};
346
347struct mvneta_rx_queue {
348 /* rx queue number, in the range 0-7 */
349 u8 id;
350
351 /* num of rx descriptors in the rx descriptor ring */
352 int size;
353
354 /* counter of times when mvneta_refill() failed */
355 int missed;
356
357 u32 pkts_coal;
358 u32 time_coal;
359
360 /* Virtual address of the RX DMA descriptors array */
361 struct mvneta_rx_desc *descs;
362
363 /* DMA address of the RX DMA descriptors array */
364 dma_addr_t descs_phys;
365
366 /* Index of the last RX DMA descriptor */
367 int last_desc;
368
369 /* Index of the next RX DMA descriptor to process */
370 int next_desc_to_proc;
371};
372
373static int rxq_number = 8;
374static int txq_number = 8;
375
376static int rxq_def;
377static int txq_def;
378
379#define MVNETA_DRIVER_NAME "mvneta"
380#define MVNETA_DRIVER_VERSION "1.0"
381
382/* Utility/helper methods */
383
384/* Write helper method */
385static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
386{
387 writel(data, pp->base + offset);
388}
389
390/* Read helper method */
391static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
392{
393 return readl(pp->base + offset);
394}
395
396/* Increment txq get counter */
397static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
398{
399 txq->txq_get_index++;
400 if (txq->txq_get_index == txq->size)
401 txq->txq_get_index = 0;
402}
403
404/* Increment txq put counter */
405static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
406{
407 txq->txq_put_index++;
408 if (txq->txq_put_index == txq->size)
409 txq->txq_put_index = 0;
410}
411
412
413/* Clear all MIB counters */
414static void mvneta_mib_counters_clear(struct mvneta_port *pp)
415{
416 int i;
417 u32 dummy;
418
419 /* Perform dummy reads from MIB counters */
420 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
421 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
422}
423
424/* Get System Network Statistics */
425struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
426 struct rtnl_link_stats64 *stats)
427{
428 struct mvneta_port *pp = netdev_priv(dev);
429 unsigned int start;
430
431 memset(stats, 0, sizeof(struct rtnl_link_stats64));
432
433 do {
434 start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
435 stats->rx_packets = pp->rx_stats.packets;
436 stats->rx_bytes = pp->rx_stats.bytes;
437 } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
438
439
440 do {
441 start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
442 stats->tx_packets = pp->tx_stats.packets;
443 stats->tx_bytes = pp->tx_stats.bytes;
444 } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
445
446 stats->rx_errors = dev->stats.rx_errors;
447 stats->rx_dropped = dev->stats.rx_dropped;
448
449 stats->tx_dropped = dev->stats.tx_dropped;
450
451 return stats;
452}
453
454/* Rx descriptors helper methods */
455
6a20c175 456/* Checks whether the given RX descriptor is both the first and the
c5aff182
TP
457 * last descriptor for the RX packet. Each RX packet is currently
458 * received through a single RX descriptor, so not having each RX
459 * descriptor with its first and last bits set is an error
460 */
461static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
462{
463 return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
464 MVNETA_RXD_FIRST_LAST_DESC;
465}
466
467/* Add number of descriptors ready to receive new packets */
468static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
469 struct mvneta_rx_queue *rxq,
470 int ndescs)
471{
472 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
6a20c175
TP
473 * be added at once
474 */
c5aff182
TP
475 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
476 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
477 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
478 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
479 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
480 }
481
482 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
483 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
484}
485
486/* Get number of RX descriptors occupied by received packets */
487static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
488 struct mvneta_rx_queue *rxq)
489{
490 u32 val;
491
492 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
493 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
494}
495
6a20c175 496/* Update num of rx desc called upon return from rx path or
c5aff182
TP
497 * from mvneta_rxq_drop_pkts().
498 */
499static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
500 struct mvneta_rx_queue *rxq,
501 int rx_done, int rx_filled)
502{
503 u32 val;
504
505 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
506 val = rx_done |
507 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
508 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
509 return;
510 }
511
512 /* Only 255 descriptors can be added at once */
513 while ((rx_done > 0) || (rx_filled > 0)) {
514 if (rx_done <= 0xff) {
515 val = rx_done;
516 rx_done = 0;
517 } else {
518 val = 0xff;
519 rx_done -= 0xff;
520 }
521 if (rx_filled <= 0xff) {
522 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
523 rx_filled = 0;
524 } else {
525 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
526 rx_filled -= 0xff;
527 }
528 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
529 }
530}
531
532/* Get pointer to next RX descriptor to be processed by SW */
533static struct mvneta_rx_desc *
534mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
535{
536 int rx_desc = rxq->next_desc_to_proc;
537
538 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
539 return rxq->descs + rx_desc;
540}
541
542/* Change maximum receive size of the port. */
543static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
544{
545 u32 val;
546
547 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
548 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
549 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
550 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
551 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
552}
553
554
555/* Set rx queue offset */
556static void mvneta_rxq_offset_set(struct mvneta_port *pp,
557 struct mvneta_rx_queue *rxq,
558 int offset)
559{
560 u32 val;
561
562 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
563 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
564
565 /* Offset is in */
566 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
567 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
568}
569
570
571/* Tx descriptors helper methods */
572
573/* Update HW with number of TX descriptors to be sent */
574static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
575 struct mvneta_tx_queue *txq,
576 int pend_desc)
577{
578 u32 val;
579
580 /* Only 255 descriptors can be added at once ; Assume caller
6a20c175
TP
581 * process TX desriptors in quanta less than 256
582 */
c5aff182
TP
583 val = pend_desc;
584 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
585}
586
587/* Get pointer to next TX descriptor to be processed (send) by HW */
588static struct mvneta_tx_desc *
589mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
590{
591 int tx_desc = txq->next_desc_to_proc;
592
593 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
594 return txq->descs + tx_desc;
595}
596
597/* Release the last allocated TX descriptor. Useful to handle DMA
6a20c175
TP
598 * mapping failures in the TX path.
599 */
c5aff182
TP
600static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
601{
602 if (txq->next_desc_to_proc == 0)
603 txq->next_desc_to_proc = txq->last_desc - 1;
604 else
605 txq->next_desc_to_proc--;
606}
607
608/* Set rxq buf size */
609static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
610 struct mvneta_rx_queue *rxq,
611 int buf_size)
612{
613 u32 val;
614
615 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
616
617 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
618 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
619
620 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
621}
622
623/* Disable buffer management (BM) */
624static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
625 struct mvneta_rx_queue *rxq)
626{
627 u32 val;
628
629 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
630 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
631 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
632}
633
634
635
636/* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
03ce758e 637static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
c5aff182
TP
638{
639 u32 val;
640
641 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
642
643 if (enable)
644 val |= MVNETA_GMAC2_PORT_RGMII;
645 else
646 val &= ~MVNETA_GMAC2_PORT_RGMII;
647
648 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
649}
650
651/* Config SGMII port */
03ce758e 652static void mvneta_port_sgmii_config(struct mvneta_port *pp)
c5aff182
TP
653{
654 u32 val;
655
656 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
657 val |= MVNETA_GMAC2_PSC_ENABLE;
658 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
659}
660
661/* Start the Ethernet port RX and TX activity */
662static void mvneta_port_up(struct mvneta_port *pp)
663{
664 int queue;
665 u32 q_map;
666
667 /* Enable all initialized TXs. */
668 mvneta_mib_counters_clear(pp);
669 q_map = 0;
670 for (queue = 0; queue < txq_number; queue++) {
671 struct mvneta_tx_queue *txq = &pp->txqs[queue];
672 if (txq->descs != NULL)
673 q_map |= (1 << queue);
674 }
675 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
676
677 /* Enable all initialized RXQs. */
678 q_map = 0;
679 for (queue = 0; queue < rxq_number; queue++) {
680 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
681 if (rxq->descs != NULL)
682 q_map |= (1 << queue);
683 }
684
685 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
686}
687
688/* Stop the Ethernet port activity */
689static void mvneta_port_down(struct mvneta_port *pp)
690{
691 u32 val;
692 int count;
693
694 /* Stop Rx port activity. Check port Rx activity. */
695 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
696
697 /* Issue stop command for active channels only */
698 if (val != 0)
699 mvreg_write(pp, MVNETA_RXQ_CMD,
700 val << MVNETA_RXQ_DISABLE_SHIFT);
701
702 /* Wait for all Rx activity to terminate. */
703 count = 0;
704 do {
705 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
706 netdev_warn(pp->dev,
707 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
708 val);
709 break;
710 }
711 mdelay(1);
712
713 val = mvreg_read(pp, MVNETA_RXQ_CMD);
714 } while (val & 0xff);
715
716 /* Stop Tx port activity. Check port Tx activity. Issue stop
6a20c175
TP
717 * command for active channels only
718 */
c5aff182
TP
719 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
720
721 if (val != 0)
722 mvreg_write(pp, MVNETA_TXQ_CMD,
723 (val << MVNETA_TXQ_DISABLE_SHIFT));
724
725 /* Wait for all Tx activity to terminate. */
726 count = 0;
727 do {
728 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
729 netdev_warn(pp->dev,
730 "TIMEOUT for TX stopped status=0x%08x\n",
731 val);
732 break;
733 }
734 mdelay(1);
735
736 /* Check TX Command reg that all Txqs are stopped */
737 val = mvreg_read(pp, MVNETA_TXQ_CMD);
738
739 } while (val & 0xff);
740
741 /* Double check to verify that TX FIFO is empty */
742 count = 0;
743 do {
744 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
745 netdev_warn(pp->dev,
746 "TX FIFO empty timeout status=0x08%x\n",
747 val);
748 break;
749 }
750 mdelay(1);
751
752 val = mvreg_read(pp, MVNETA_PORT_STATUS);
753 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
754 (val & MVNETA_TX_IN_PRGRS));
755
756 udelay(200);
757}
758
759/* Enable the port by setting the port enable bit of the MAC control register */
760static void mvneta_port_enable(struct mvneta_port *pp)
761{
762 u32 val;
763
764 /* Enable port */
765 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
766 val |= MVNETA_GMAC0_PORT_ENABLE;
767 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
768}
769
770/* Disable the port and wait for about 200 usec before retuning */
771static void mvneta_port_disable(struct mvneta_port *pp)
772{
773 u32 val;
774
775 /* Reset the Enable bit in the Serial Control Register */
776 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
777 val &= ~MVNETA_GMAC0_PORT_ENABLE;
778 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
779
780 udelay(200);
781}
782
783/* Multicast tables methods */
784
785/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
786static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
787{
788 int offset;
789 u32 val;
790
791 if (queue == -1) {
792 val = 0;
793 } else {
794 val = 0x1 | (queue << 1);
795 val |= (val << 24) | (val << 16) | (val << 8);
796 }
797
798 for (offset = 0; offset <= 0xc; offset += 4)
799 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
800}
801
802/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
803static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
804{
805 int offset;
806 u32 val;
807
808 if (queue == -1) {
809 val = 0;
810 } else {
811 val = 0x1 | (queue << 1);
812 val |= (val << 24) | (val << 16) | (val << 8);
813 }
814
815 for (offset = 0; offset <= 0xfc; offset += 4)
816 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
817
818}
819
820/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
821static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
822{
823 int offset;
824 u32 val;
825
826 if (queue == -1) {
827 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
828 val = 0;
829 } else {
830 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
831 val = 0x1 | (queue << 1);
832 val |= (val << 24) | (val << 16) | (val << 8);
833 }
834
835 for (offset = 0; offset <= 0xfc; offset += 4)
836 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
837}
838
839/* This method sets defaults to the NETA port:
840 * Clears interrupt Cause and Mask registers.
841 * Clears all MAC tables.
842 * Sets defaults to all registers.
843 * Resets RX and TX descriptor rings.
844 * Resets PHY.
845 * This method can be called after mvneta_port_down() to return the port
846 * settings to defaults.
847 */
848static void mvneta_defaults_set(struct mvneta_port *pp)
849{
850 int cpu;
851 int queue;
852 u32 val;
853
854 /* Clear all Cause registers */
855 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
856 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
857 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
858
859 /* Mask all interrupts */
860 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
861 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
862 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
863 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
864
865 /* Enable MBUS Retry bit16 */
866 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
867
868 /* Set CPU queue access map - all CPUs have access to all RX
6a20c175
TP
869 * queues and to all TX queues
870 */
c5aff182
TP
871 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
872 mvreg_write(pp, MVNETA_CPU_MAP(cpu),
873 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
874 MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
875
876 /* Reset RX and TX DMAs */
877 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
878 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
879
880 /* Disable Legacy WRR, Disable EJP, Release from reset */
881 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
882 for (queue = 0; queue < txq_number; queue++) {
883 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
884 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
885 }
886
887 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
888 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
889
890 /* Set Port Acceleration Mode */
891 val = MVNETA_ACC_MODE_EXT;
892 mvreg_write(pp, MVNETA_ACC_MODE, val);
893
894 /* Update val of portCfg register accordingly with all RxQueue types */
895 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
896 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
897
898 val = 0;
899 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
900 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
901
902 /* Build PORT_SDMA_CONFIG_REG */
903 val = 0;
904
905 /* Default burst size */
906 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
907 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
908
909 val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP |
910 MVNETA_NO_DESC_SWAP);
911
912 /* Assign port SDMA configuration */
913 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
914
915 mvneta_set_ucast_table(pp, -1);
916 mvneta_set_special_mcast_table(pp, -1);
917 mvneta_set_other_mcast_table(pp, -1);
918
919 /* Set port interrupt enable register - default enable all */
920 mvreg_write(pp, MVNETA_INTR_ENABLE,
921 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
922 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
923}
924
925/* Set max sizes for tx queues */
926static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
927
928{
929 u32 val, size, mtu;
930 int queue;
931
932 mtu = max_tx_size * 8;
933 if (mtu > MVNETA_TX_MTU_MAX)
934 mtu = MVNETA_TX_MTU_MAX;
935
936 /* Set MTU */
937 val = mvreg_read(pp, MVNETA_TX_MTU);
938 val &= ~MVNETA_TX_MTU_MAX;
939 val |= mtu;
940 mvreg_write(pp, MVNETA_TX_MTU, val);
941
942 /* TX token size and all TXQs token size must be larger that MTU */
943 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
944
945 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
946 if (size < mtu) {
947 size = mtu;
948 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
949 val |= size;
950 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
951 }
952 for (queue = 0; queue < txq_number; queue++) {
953 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
954
955 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
956 if (size < mtu) {
957 size = mtu;
958 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
959 val |= size;
960 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
961 }
962 }
963}
964
965/* Set unicast address */
966static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
967 int queue)
968{
969 unsigned int unicast_reg;
970 unsigned int tbl_offset;
971 unsigned int reg_offset;
972
973 /* Locate the Unicast table entry */
974 last_nibble = (0xf & last_nibble);
975
976 /* offset from unicast tbl base */
977 tbl_offset = (last_nibble / 4) * 4;
978
979 /* offset within the above reg */
980 reg_offset = last_nibble % 4;
981
982 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
983
984 if (queue == -1) {
985 /* Clear accepts frame bit at specified unicast DA tbl entry */
986 unicast_reg &= ~(0xff << (8 * reg_offset));
987 } else {
988 unicast_reg &= ~(0xff << (8 * reg_offset));
989 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
990 }
991
992 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
993}
994
995/* Set mac address */
996static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
997 int queue)
998{
999 unsigned int mac_h;
1000 unsigned int mac_l;
1001
1002 if (queue != -1) {
1003 mac_l = (addr[4] << 8) | (addr[5]);
1004 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1005 (addr[2] << 8) | (addr[3] << 0);
1006
1007 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1008 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1009 }
1010
1011 /* Accept frames of this address */
1012 mvneta_set_ucast_addr(pp, addr[5], queue);
1013}
1014
6a20c175
TP
1015/* Set the number of packets that will be received before RX interrupt
1016 * will be generated by HW.
c5aff182
TP
1017 */
1018static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1019 struct mvneta_rx_queue *rxq, u32 value)
1020{
1021 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1022 value | MVNETA_RXQ_NON_OCCUPIED(0));
1023 rxq->pkts_coal = value;
1024}
1025
6a20c175
TP
1026/* Set the time delay in usec before RX interrupt will be generated by
1027 * HW.
c5aff182
TP
1028 */
1029static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1030 struct mvneta_rx_queue *rxq, u32 value)
1031{
189dd626
TP
1032 u32 val;
1033 unsigned long clk_rate;
1034
1035 clk_rate = clk_get_rate(pp->clk);
1036 val = (clk_rate / 1000000) * value;
c5aff182
TP
1037
1038 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1039 rxq->time_coal = value;
1040}
1041
1042/* Set threshold for TX_DONE pkts coalescing */
1043static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1044 struct mvneta_tx_queue *txq, u32 value)
1045{
1046 u32 val;
1047
1048 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1049
1050 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1051 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1052
1053 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1054
1055 txq->done_pkts_coal = value;
1056}
1057
1058/* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
1059static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
1060{
1061 if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
1062 pp->tx_done_timer.expires = jiffies +
1063 msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
1064 add_timer(&pp->tx_done_timer);
1065 }
1066}
1067
1068
1069/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1070static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1071 u32 phys_addr, u32 cookie)
1072{
1073 rx_desc->buf_cookie = cookie;
1074 rx_desc->buf_phys_addr = phys_addr;
1075}
1076
1077/* Decrement sent descriptors counter */
1078static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1079 struct mvneta_tx_queue *txq,
1080 int sent_desc)
1081{
1082 u32 val;
1083
1084 /* Only 255 TX descriptors can be updated at once */
1085 while (sent_desc > 0xff) {
1086 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1087 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1088 sent_desc = sent_desc - 0xff;
1089 }
1090
1091 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1092 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1093}
1094
1095/* Get number of TX descriptors already sent by HW */
1096static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1097 struct mvneta_tx_queue *txq)
1098{
1099 u32 val;
1100 int sent_desc;
1101
1102 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1103 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1104 MVNETA_TXQ_SENT_DESC_SHIFT;
1105
1106 return sent_desc;
1107}
1108
6a20c175 1109/* Get number of sent descriptors and decrement counter.
c5aff182
TP
1110 * The number of sent descriptors is returned.
1111 */
1112static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1113 struct mvneta_tx_queue *txq)
1114{
1115 int sent_desc;
1116
1117 /* Get number of sent descriptors */
1118 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1119
1120 /* Decrement sent descriptors counter */
1121 if (sent_desc)
1122 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1123
1124 return sent_desc;
1125}
1126
1127/* Set TXQ descriptors fields relevant for CSUM calculation */
1128static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1129 int ip_hdr_len, int l4_proto)
1130{
1131 u32 command;
1132
1133 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
6a20c175
TP
1134 * G_L4_chk, L4_type; required only for checksum
1135 * calculation
1136 */
c5aff182
TP
1137 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1138 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1139
1140 if (l3_proto == swab16(ETH_P_IP))
1141 command |= MVNETA_TXD_IP_CSUM;
1142 else
1143 command |= MVNETA_TX_L3_IP6;
1144
1145 if (l4_proto == IPPROTO_TCP)
1146 command |= MVNETA_TX_L4_CSUM_FULL;
1147 else if (l4_proto == IPPROTO_UDP)
1148 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1149 else
1150 command |= MVNETA_TX_L4_CSUM_NOT;
1151
1152 return command;
1153}
1154
1155
1156/* Display more error info */
1157static void mvneta_rx_error(struct mvneta_port *pp,
1158 struct mvneta_rx_desc *rx_desc)
1159{
1160 u32 status = rx_desc->status;
1161
1162 if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
1163 netdev_err(pp->dev,
1164 "bad rx status %08x (buffer oversize), size=%d\n",
1165 rx_desc->status, rx_desc->data_size);
1166 return;
1167 }
1168
1169 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1170 case MVNETA_RXD_ERR_CRC:
1171 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1172 status, rx_desc->data_size);
1173 break;
1174 case MVNETA_RXD_ERR_OVERRUN:
1175 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1176 status, rx_desc->data_size);
1177 break;
1178 case MVNETA_RXD_ERR_LEN:
1179 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1180 status, rx_desc->data_size);
1181 break;
1182 case MVNETA_RXD_ERR_RESOURCE:
1183 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1184 status, rx_desc->data_size);
1185 break;
1186 }
1187}
1188
1189/* Handle RX checksum offload */
1190static void mvneta_rx_csum(struct mvneta_port *pp,
1191 struct mvneta_rx_desc *rx_desc,
1192 struct sk_buff *skb)
1193{
1194 if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
1195 (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
1196 skb->csum = 0;
1197 skb->ip_summed = CHECKSUM_UNNECESSARY;
1198 return;
1199 }
1200
1201 skb->ip_summed = CHECKSUM_NONE;
1202}
1203
1204/* Return tx queue pointer (find last set bit) according to causeTxDone reg */
1205static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1206 u32 cause)
1207{
1208 int queue = fls(cause) - 1;
1209
1210 return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
1211}
1212
1213/* Free tx queue skbuffs */
1214static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1215 struct mvneta_tx_queue *txq, int num)
1216{
1217 int i;
1218
1219 for (i = 0; i < num; i++) {
1220 struct mvneta_tx_desc *tx_desc = txq->descs +
1221 txq->txq_get_index;
1222 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1223
1224 mvneta_txq_inc_get(txq);
1225
1226 if (!skb)
1227 continue;
1228
1229 dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1230 tx_desc->data_size, DMA_TO_DEVICE);
1231 dev_kfree_skb_any(skb);
1232 }
1233}
1234
1235/* Handle end of transmission */
1236static int mvneta_txq_done(struct mvneta_port *pp,
1237 struct mvneta_tx_queue *txq)
1238{
1239 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1240 int tx_done;
1241
1242 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1243 if (tx_done == 0)
1244 return tx_done;
1245 mvneta_txq_bufs_free(pp, txq, tx_done);
1246
1247 txq->count -= tx_done;
1248
1249 if (netif_tx_queue_stopped(nq)) {
1250 if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1251 netif_tx_wake_queue(nq);
1252 }
1253
1254 return tx_done;
1255}
1256
1257/* Refill processing */
1258static int mvneta_rx_refill(struct mvneta_port *pp,
1259 struct mvneta_rx_desc *rx_desc)
1260
1261{
1262 dma_addr_t phys_addr;
1263 struct sk_buff *skb;
1264
1265 skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
1266 if (!skb)
1267 return -ENOMEM;
1268
1269 phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
1270 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1271 DMA_FROM_DEVICE);
1272 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1273 dev_kfree_skb(skb);
1274 return -ENOMEM;
1275 }
1276
1277 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1278
1279 return 0;
1280}
1281
1282/* Handle tx checksum */
1283static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1284{
1285 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1286 int ip_hdr_len = 0;
1287 u8 l4_proto;
1288
1289 if (skb->protocol == htons(ETH_P_IP)) {
1290 struct iphdr *ip4h = ip_hdr(skb);
1291
1292 /* Calculate IPv4 checksum and L4 checksum */
1293 ip_hdr_len = ip4h->ihl;
1294 l4_proto = ip4h->protocol;
1295 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1296 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1297
1298 /* Read l4_protocol from one of IPv6 extra headers */
1299 if (skb_network_header_len(skb) > 0)
1300 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1301 l4_proto = ip6h->nexthdr;
1302 } else
1303 return MVNETA_TX_L4_CSUM_NOT;
1304
1305 return mvneta_txq_desc_csum(skb_network_offset(skb),
1306 skb->protocol, ip_hdr_len, l4_proto);
1307 }
1308
1309 return MVNETA_TX_L4_CSUM_NOT;
1310}
1311
6a20c175 1312/* Returns rx queue pointer (find last set bit) according to causeRxTx
c5aff182
TP
1313 * value
1314 */
1315static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1316 u32 cause)
1317{
1318 int queue = fls(cause >> 8) - 1;
1319
1320 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1321}
1322
1323/* Drop packets received by the RXQ and free buffers */
1324static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1325 struct mvneta_rx_queue *rxq)
1326{
1327 int rx_done, i;
1328
1329 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1330 for (i = 0; i < rxq->size; i++) {
1331 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1332 struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
1333
1334 dev_kfree_skb_any(skb);
1335 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1336 rx_desc->data_size, DMA_FROM_DEVICE);
1337 }
1338
1339 if (rx_done)
1340 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1341}
1342
1343/* Main rx processing */
1344static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1345 struct mvneta_rx_queue *rxq)
1346{
1347 struct net_device *dev = pp->dev;
1348 int rx_done, rx_filled;
1349
1350 /* Get number of received packets */
1351 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1352
1353 if (rx_todo > rx_done)
1354 rx_todo = rx_done;
1355
1356 rx_done = 0;
1357 rx_filled = 0;
1358
1359 /* Fairness NAPI loop */
1360 while (rx_done < rx_todo) {
1361 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1362 struct sk_buff *skb;
1363 u32 rx_status;
1364 int rx_bytes, err;
1365
1366 prefetch(rx_desc);
1367 rx_done++;
1368 rx_filled++;
1369 rx_status = rx_desc->status;
1370 skb = (struct sk_buff *)rx_desc->buf_cookie;
1371
1372 if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
1373 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1374 dev->stats.rx_errors++;
1375 mvneta_rx_error(pp, rx_desc);
1376 mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
1377 (u32)skb);
1378 continue;
1379 }
1380
1381 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1382 rx_desc->data_size, DMA_FROM_DEVICE);
1383
1384 rx_bytes = rx_desc->data_size -
1385 (ETH_FCS_LEN + MVNETA_MH_SIZE);
1386 u64_stats_update_begin(&pp->rx_stats.syncp);
1387 pp->rx_stats.packets++;
1388 pp->rx_stats.bytes += rx_bytes;
1389 u64_stats_update_end(&pp->rx_stats.syncp);
1390
1391 /* Linux processing */
1392 skb_reserve(skb, MVNETA_MH_SIZE);
1393 skb_put(skb, rx_bytes);
1394
1395 skb->protocol = eth_type_trans(skb, dev);
1396
1397 mvneta_rx_csum(pp, rx_desc, skb);
1398
1399 napi_gro_receive(&pp->napi, skb);
1400
1401 /* Refill processing */
1402 err = mvneta_rx_refill(pp, rx_desc);
1403 if (err) {
1404 netdev_err(pp->dev, "Linux processing - Can't refill\n");
1405 rxq->missed++;
1406 rx_filled--;
1407 }
1408 }
1409
1410 /* Update rxq management counters */
1411 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1412
1413 return rx_done;
1414}
1415
1416/* Handle tx fragmentation processing */
1417static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1418 struct mvneta_tx_queue *txq)
1419{
1420 struct mvneta_tx_desc *tx_desc;
1421 int i;
1422
1423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1425 void *addr = page_address(frag->page.p) + frag->page_offset;
1426
1427 tx_desc = mvneta_txq_next_desc_get(txq);
1428 tx_desc->data_size = frag->size;
1429
1430 tx_desc->buf_phys_addr =
1431 dma_map_single(pp->dev->dev.parent, addr,
1432 tx_desc->data_size, DMA_TO_DEVICE);
1433
1434 if (dma_mapping_error(pp->dev->dev.parent,
1435 tx_desc->buf_phys_addr)) {
1436 mvneta_txq_desc_put(txq);
1437 goto error;
1438 }
1439
1440 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1441 /* Last descriptor */
1442 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1443
1444 txq->tx_skb[txq->txq_put_index] = skb;
1445
1446 mvneta_txq_inc_put(txq);
1447 } else {
1448 /* Descriptor in the middle: Not First, Not Last */
1449 tx_desc->command = 0;
1450
1451 txq->tx_skb[txq->txq_put_index] = NULL;
1452 mvneta_txq_inc_put(txq);
1453 }
1454 }
1455
1456 return 0;
1457
1458error:
1459 /* Release all descriptors that were used to map fragments of
6a20c175
TP
1460 * this packet, as well as the corresponding DMA mappings
1461 */
c5aff182
TP
1462 for (i = i - 1; i >= 0; i--) {
1463 tx_desc = txq->descs + i;
1464 dma_unmap_single(pp->dev->dev.parent,
1465 tx_desc->buf_phys_addr,
1466 tx_desc->data_size,
1467 DMA_TO_DEVICE);
1468 mvneta_txq_desc_put(txq);
1469 }
1470
1471 return -ENOMEM;
1472}
1473
1474/* Main tx processing */
1475static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1476{
1477 struct mvneta_port *pp = netdev_priv(dev);
1478 struct mvneta_tx_queue *txq = &pp->txqs[txq_def];
1479 struct mvneta_tx_desc *tx_desc;
1480 struct netdev_queue *nq;
1481 int frags = 0;
1482 u32 tx_cmd;
1483
1484 if (!netif_running(dev))
1485 goto out;
1486
1487 frags = skb_shinfo(skb)->nr_frags + 1;
1488 nq = netdev_get_tx_queue(dev, txq_def);
1489
1490 /* Get a descriptor for the first part of the packet */
1491 tx_desc = mvneta_txq_next_desc_get(txq);
1492
1493 tx_cmd = mvneta_skb_tx_csum(pp, skb);
1494
1495 tx_desc->data_size = skb_headlen(skb);
1496
1497 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1498 tx_desc->data_size,
1499 DMA_TO_DEVICE);
1500 if (unlikely(dma_mapping_error(dev->dev.parent,
1501 tx_desc->buf_phys_addr))) {
1502 mvneta_txq_desc_put(txq);
1503 frags = 0;
1504 goto out;
1505 }
1506
1507 if (frags == 1) {
1508 /* First and Last descriptor */
1509 tx_cmd |= MVNETA_TXD_FLZ_DESC;
1510 tx_desc->command = tx_cmd;
1511 txq->tx_skb[txq->txq_put_index] = skb;
1512 mvneta_txq_inc_put(txq);
1513 } else {
1514 /* First but not Last */
1515 tx_cmd |= MVNETA_TXD_F_DESC;
1516 txq->tx_skb[txq->txq_put_index] = NULL;
1517 mvneta_txq_inc_put(txq);
1518 tx_desc->command = tx_cmd;
1519 /* Continue with other skb fragments */
1520 if (mvneta_tx_frag_process(pp, skb, txq)) {
1521 dma_unmap_single(dev->dev.parent,
1522 tx_desc->buf_phys_addr,
1523 tx_desc->data_size,
1524 DMA_TO_DEVICE);
1525 mvneta_txq_desc_put(txq);
1526 frags = 0;
1527 goto out;
1528 }
1529 }
1530
1531 txq->count += frags;
1532 mvneta_txq_pend_desc_add(pp, txq, frags);
1533
1534 if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1535 netif_tx_stop_queue(nq);
1536
1537out:
1538 if (frags > 0) {
1539 u64_stats_update_begin(&pp->tx_stats.syncp);
1540 pp->tx_stats.packets++;
1541 pp->tx_stats.bytes += skb->len;
1542 u64_stats_update_end(&pp->tx_stats.syncp);
1543
1544 } else {
1545 dev->stats.tx_dropped++;
1546 dev_kfree_skb_any(skb);
1547 }
1548
1549 if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
1550 mvneta_txq_done(pp, txq);
1551
1552 /* If after calling mvneta_txq_done, count equals
6a20c175
TP
1553 * frags, we need to set the timer
1554 */
c5aff182
TP
1555 if (txq->count == frags && frags > 0)
1556 mvneta_add_tx_done_timer(pp);
1557
1558 return NETDEV_TX_OK;
1559}
1560
1561
1562/* Free tx resources, when resetting a port */
1563static void mvneta_txq_done_force(struct mvneta_port *pp,
1564 struct mvneta_tx_queue *txq)
1565
1566{
1567 int tx_done = txq->count;
1568
1569 mvneta_txq_bufs_free(pp, txq, tx_done);
1570
1571 /* reset txq */
1572 txq->count = 0;
1573 txq->txq_put_index = 0;
1574 txq->txq_get_index = 0;
1575}
1576
1577/* handle tx done - called from tx done timer callback */
1578static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
1579 int *tx_todo)
1580{
1581 struct mvneta_tx_queue *txq;
1582 u32 tx_done = 0;
1583 struct netdev_queue *nq;
1584
1585 *tx_todo = 0;
1586 while (cause_tx_done != 0) {
1587 txq = mvneta_tx_done_policy(pp, cause_tx_done);
1588 if (!txq)
1589 break;
1590
1591 nq = netdev_get_tx_queue(pp->dev, txq->id);
1592 __netif_tx_lock(nq, smp_processor_id());
1593
1594 if (txq->count) {
1595 tx_done += mvneta_txq_done(pp, txq);
1596 *tx_todo += txq->count;
1597 }
1598
1599 __netif_tx_unlock(nq);
1600 cause_tx_done &= ~((1 << txq->id));
1601 }
1602
1603 return tx_done;
1604}
1605
6a20c175 1606/* Compute crc8 of the specified address, using a unique algorithm ,
c5aff182
TP
1607 * according to hw spec, different than generic crc8 algorithm
1608 */
1609static int mvneta_addr_crc(unsigned char *addr)
1610{
1611 int crc = 0;
1612 int i;
1613
1614 for (i = 0; i < ETH_ALEN; i++) {
1615 int j;
1616
1617 crc = (crc ^ addr[i]) << 8;
1618 for (j = 7; j >= 0; j--) {
1619 if (crc & (0x100 << j))
1620 crc ^= 0x107 << j;
1621 }
1622 }
1623
1624 return crc;
1625}
1626
1627/* This method controls the net device special MAC multicast support.
1628 * The Special Multicast Table for MAC addresses supports MAC of the form
1629 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1630 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1631 * Table entries in the DA-Filter table. This method set the Special
1632 * Multicast Table appropriate entry.
1633 */
1634static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1635 unsigned char last_byte,
1636 int queue)
1637{
1638 unsigned int smc_table_reg;
1639 unsigned int tbl_offset;
1640 unsigned int reg_offset;
1641
1642 /* Register offset from SMC table base */
1643 tbl_offset = (last_byte / 4);
1644 /* Entry offset within the above reg */
1645 reg_offset = last_byte % 4;
1646
1647 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1648 + tbl_offset * 4));
1649
1650 if (queue == -1)
1651 smc_table_reg &= ~(0xff << (8 * reg_offset));
1652 else {
1653 smc_table_reg &= ~(0xff << (8 * reg_offset));
1654 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1655 }
1656
1657 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1658 smc_table_reg);
1659}
1660
1661/* This method controls the network device Other MAC multicast support.
1662 * The Other Multicast Table is used for multicast of another type.
1663 * A CRC-8 is used as an index to the Other Multicast Table entries
1664 * in the DA-Filter table.
1665 * The method gets the CRC-8 value from the calling routine and
1666 * sets the Other Multicast Table appropriate entry according to the
1667 * specified CRC-8 .
1668 */
1669static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1670 unsigned char crc8,
1671 int queue)
1672{
1673 unsigned int omc_table_reg;
1674 unsigned int tbl_offset;
1675 unsigned int reg_offset;
1676
1677 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1678 reg_offset = crc8 % 4; /* Entry offset within the above reg */
1679
1680 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1681
1682 if (queue == -1) {
1683 /* Clear accepts frame bit at specified Other DA table entry */
1684 omc_table_reg &= ~(0xff << (8 * reg_offset));
1685 } else {
1686 omc_table_reg &= ~(0xff << (8 * reg_offset));
1687 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1688 }
1689
1690 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1691}
1692
1693/* The network device supports multicast using two tables:
1694 * 1) Special Multicast Table for MAC addresses of the form
1695 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1696 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1697 * Table entries in the DA-Filter table.
1698 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
1699 * is used as an index to the Other Multicast Table entries in the
1700 * DA-Filter table.
1701 */
1702static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1703 int queue)
1704{
1705 unsigned char crc_result = 0;
1706
1707 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1708 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1709 return 0;
1710 }
1711
1712 crc_result = mvneta_addr_crc(p_addr);
1713 if (queue == -1) {
1714 if (pp->mcast_count[crc_result] == 0) {
1715 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1716 crc_result);
1717 return -EINVAL;
1718 }
1719
1720 pp->mcast_count[crc_result]--;
1721 if (pp->mcast_count[crc_result] != 0) {
1722 netdev_info(pp->dev,
1723 "After delete there are %d valid Mcast for crc8=0x%02x\n",
1724 pp->mcast_count[crc_result], crc_result);
1725 return -EINVAL;
1726 }
1727 } else
1728 pp->mcast_count[crc_result]++;
1729
1730 mvneta_set_other_mcast_addr(pp, crc_result, queue);
1731
1732 return 0;
1733}
1734
1735/* Configure Fitering mode of Ethernet port */
1736static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1737 int is_promisc)
1738{
1739 u32 port_cfg_reg, val;
1740
1741 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1742
1743 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1744
1745 /* Set / Clear UPM bit in port configuration register */
1746 if (is_promisc) {
1747 /* Accept all Unicast addresses */
1748 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1749 val |= MVNETA_FORCE_UNI;
1750 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1751 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1752 } else {
1753 /* Reject all Unicast addresses */
1754 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1755 val &= ~MVNETA_FORCE_UNI;
1756 }
1757
1758 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1759 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1760}
1761
1762/* register unicast and multicast addresses */
1763static void mvneta_set_rx_mode(struct net_device *dev)
1764{
1765 struct mvneta_port *pp = netdev_priv(dev);
1766 struct netdev_hw_addr *ha;
1767
1768 if (dev->flags & IFF_PROMISC) {
1769 /* Accept all: Multicast + Unicast */
1770 mvneta_rx_unicast_promisc_set(pp, 1);
1771 mvneta_set_ucast_table(pp, rxq_def);
1772 mvneta_set_special_mcast_table(pp, rxq_def);
1773 mvneta_set_other_mcast_table(pp, rxq_def);
1774 } else {
1775 /* Accept single Unicast */
1776 mvneta_rx_unicast_promisc_set(pp, 0);
1777 mvneta_set_ucast_table(pp, -1);
1778 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1779
1780 if (dev->flags & IFF_ALLMULTI) {
1781 /* Accept all multicast */
1782 mvneta_set_special_mcast_table(pp, rxq_def);
1783 mvneta_set_other_mcast_table(pp, rxq_def);
1784 } else {
1785 /* Accept only initialized multicast */
1786 mvneta_set_special_mcast_table(pp, -1);
1787 mvneta_set_other_mcast_table(pp, -1);
1788
1789 if (!netdev_mc_empty(dev)) {
1790 netdev_for_each_mc_addr(ha, dev) {
1791 mvneta_mcast_addr_set(pp, ha->addr,
1792 rxq_def);
1793 }
1794 }
1795 }
1796 }
1797}
1798
1799/* Interrupt handling - the callback for request_irq() */
1800static irqreturn_t mvneta_isr(int irq, void *dev_id)
1801{
1802 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1803
1804 /* Mask all interrupts */
1805 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1806
1807 napi_schedule(&pp->napi);
1808
1809 return IRQ_HANDLED;
1810}
1811
1812/* NAPI handler
1813 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1814 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1815 * Bits 8 -15 of the cause Rx Tx register indicate that are received
1816 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1817 * Each CPU has its own causeRxTx register
1818 */
1819static int mvneta_poll(struct napi_struct *napi, int budget)
1820{
1821 int rx_done = 0;
1822 u32 cause_rx_tx;
1823 unsigned long flags;
1824 struct mvneta_port *pp = netdev_priv(napi->dev);
1825
1826 if (!netif_running(pp->dev)) {
1827 napi_complete(napi);
1828 return rx_done;
1829 }
1830
1831 /* Read cause register */
1832 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1833 MVNETA_RX_INTR_MASK(rxq_number);
1834
6a20c175 1835 /* For the case where the last mvneta_poll did not process all
c5aff182
TP
1836 * RX packets
1837 */
1838 cause_rx_tx |= pp->cause_rx_tx;
1839 if (rxq_number > 1) {
1840 while ((cause_rx_tx != 0) && (budget > 0)) {
1841 int count;
1842 struct mvneta_rx_queue *rxq;
1843 /* get rx queue number from cause_rx_tx */
1844 rxq = mvneta_rx_policy(pp, cause_rx_tx);
1845 if (!rxq)
1846 break;
1847
1848 /* process the packet in that rx queue */
1849 count = mvneta_rx(pp, budget, rxq);
1850 rx_done += count;
1851 budget -= count;
1852 if (budget > 0) {
6a20c175
TP
1853 /* set off the rx bit of the
1854 * corresponding bit in the cause rx
1855 * tx register, so that next iteration
1856 * will find the next rx queue where
1857 * packets are received on
1858 */
c5aff182
TP
1859 cause_rx_tx &= ~((1 << rxq->id) << 8);
1860 }
1861 }
1862 } else {
1863 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1864 budget -= rx_done;
1865 }
1866
1867 if (budget > 0) {
1868 cause_rx_tx = 0;
1869 napi_complete(napi);
1870 local_irq_save(flags);
1871 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1872 MVNETA_RX_INTR_MASK(rxq_number));
1873 local_irq_restore(flags);
1874 }
1875
1876 pp->cause_rx_tx = cause_rx_tx;
1877 return rx_done;
1878}
1879
1880/* tx done timer callback */
1881static void mvneta_tx_done_timer_callback(unsigned long data)
1882{
1883 struct net_device *dev = (struct net_device *)data;
1884 struct mvneta_port *pp = netdev_priv(dev);
1885 int tx_done = 0, tx_todo = 0;
1886
1887 if (!netif_running(dev))
1888 return ;
1889
1890 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
1891
1892 tx_done = mvneta_tx_done_gbe(pp,
1893 (((1 << txq_number) - 1) &
1894 MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
1895 &tx_todo);
1896 if (tx_todo > 0)
1897 mvneta_add_tx_done_timer(pp);
1898}
1899
1900/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1901static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1902 int num)
1903{
1904 struct net_device *dev = pp->dev;
1905 int i;
1906
1907 for (i = 0; i < num; i++) {
1908 struct sk_buff *skb;
1909 struct mvneta_rx_desc *rx_desc;
1910 unsigned long phys_addr;
1911
1912 skb = dev_alloc_skb(pp->pkt_size);
1913 if (!skb) {
1914 netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n",
1915 __func__, rxq->id, i, num);
1916 break;
1917 }
1918
1919 rx_desc = rxq->descs + i;
1920 memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
1921 phys_addr = dma_map_single(dev->dev.parent, skb->head,
1922 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1923 DMA_FROM_DEVICE);
1924 if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
1925 dev_kfree_skb(skb);
1926 break;
1927 }
1928
1929 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1930 }
1931
1932 /* Add this number of RX descriptors as non occupied (ready to
6a20c175
TP
1933 * get packets)
1934 */
c5aff182
TP
1935 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1936
1937 return i;
1938}
1939
1940/* Free all packets pending transmit from all TXQs and reset TX port */
1941static void mvneta_tx_reset(struct mvneta_port *pp)
1942{
1943 int queue;
1944
1945 /* free the skb's in the hal tx ring */
1946 for (queue = 0; queue < txq_number; queue++)
1947 mvneta_txq_done_force(pp, &pp->txqs[queue]);
1948
1949 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1950 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1951}
1952
1953static void mvneta_rx_reset(struct mvneta_port *pp)
1954{
1955 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1956 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1957}
1958
1959/* Rx/Tx queue initialization/cleanup methods */
1960
1961/* Create a specified RX queue */
1962static int mvneta_rxq_init(struct mvneta_port *pp,
1963 struct mvneta_rx_queue *rxq)
1964
1965{
1966 rxq->size = pp->rx_ring_size;
1967
1968 /* Allocate memory for RX descriptors */
1969 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
1970 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1971 &rxq->descs_phys, GFP_KERNEL);
1972 if (rxq->descs == NULL) {
1973 netdev_err(pp->dev,
1974 "rxq=%d: Can't allocate %d bytes for %d RX descr\n",
1975 rxq->id, rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1976 rxq->size);
1977 return -ENOMEM;
1978 }
1979
1980 BUG_ON(rxq->descs !=
1981 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
1982
1983 rxq->last_desc = rxq->size - 1;
1984
1985 /* Set Rx descriptors queue starting address */
1986 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1987 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1988
1989 /* Set Offset */
1990 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
1991
1992 /* Set coalescing pkts and time */
1993 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
1994 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
1995
1996 /* Fill RXQ with buffers from RX pool */
1997 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
1998 mvneta_rxq_bm_disable(pp, rxq);
1999 mvneta_rxq_fill(pp, rxq, rxq->size);
2000
2001 return 0;
2002}
2003
2004/* Cleanup Rx queue */
2005static void mvneta_rxq_deinit(struct mvneta_port *pp,
2006 struct mvneta_rx_queue *rxq)
2007{
2008 mvneta_rxq_drop_pkts(pp, rxq);
2009
2010 if (rxq->descs)
2011 dma_free_coherent(pp->dev->dev.parent,
2012 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2013 rxq->descs,
2014 rxq->descs_phys);
2015
2016 rxq->descs = NULL;
2017 rxq->last_desc = 0;
2018 rxq->next_desc_to_proc = 0;
2019 rxq->descs_phys = 0;
2020}
2021
2022/* Create and initialize a tx queue */
2023static int mvneta_txq_init(struct mvneta_port *pp,
2024 struct mvneta_tx_queue *txq)
2025{
2026 txq->size = pp->tx_ring_size;
2027
2028 /* Allocate memory for TX descriptors */
2029 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2030 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2031 &txq->descs_phys, GFP_KERNEL);
2032 if (txq->descs == NULL) {
2033 netdev_err(pp->dev,
2034 "txQ=%d: Can't allocate %d bytes for %d TX descr\n",
2035 txq->id, txq->size * MVNETA_DESC_ALIGNED_SIZE,
2036 txq->size);
2037 return -ENOMEM;
2038 }
2039
2040 /* Make sure descriptor address is cache line size aligned */
2041 BUG_ON(txq->descs !=
2042 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2043
2044 txq->last_desc = txq->size - 1;
2045
2046 /* Set maximum bandwidth for enabled TXQs */
2047 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2048 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2049
2050 /* Set Tx descriptors queue starting address */
2051 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2052 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2053
2054 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2055 if (txq->tx_skb == NULL) {
2056 dma_free_coherent(pp->dev->dev.parent,
2057 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2058 txq->descs, txq->descs_phys);
2059 return -ENOMEM;
2060 }
2061 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2062
2063 return 0;
2064}
2065
2066/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2067static void mvneta_txq_deinit(struct mvneta_port *pp,
2068 struct mvneta_tx_queue *txq)
2069{
2070 kfree(txq->tx_skb);
2071
2072 if (txq->descs)
2073 dma_free_coherent(pp->dev->dev.parent,
2074 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2075 txq->descs, txq->descs_phys);
2076
2077 txq->descs = NULL;
2078 txq->last_desc = 0;
2079 txq->next_desc_to_proc = 0;
2080 txq->descs_phys = 0;
2081
2082 /* Set minimum bandwidth for disabled TXQs */
2083 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2084 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2085
2086 /* Set Tx descriptors queue starting address and size */
2087 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2088 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2089}
2090
2091/* Cleanup all Tx queues */
2092static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2093{
2094 int queue;
2095
2096 for (queue = 0; queue < txq_number; queue++)
2097 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2098}
2099
2100/* Cleanup all Rx queues */
2101static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2102{
2103 int queue;
2104
2105 for (queue = 0; queue < rxq_number; queue++)
2106 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2107}
2108
2109
2110/* Init all Rx queues */
2111static int mvneta_setup_rxqs(struct mvneta_port *pp)
2112{
2113 int queue;
2114
2115 for (queue = 0; queue < rxq_number; queue++) {
2116 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2117 if (err) {
2118 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2119 __func__, queue);
2120 mvneta_cleanup_rxqs(pp);
2121 return err;
2122 }
2123 }
2124
2125 return 0;
2126}
2127
2128/* Init all tx queues */
2129static int mvneta_setup_txqs(struct mvneta_port *pp)
2130{
2131 int queue;
2132
2133 for (queue = 0; queue < txq_number; queue++) {
2134 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2135 if (err) {
2136 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2137 __func__, queue);
2138 mvneta_cleanup_txqs(pp);
2139 return err;
2140 }
2141 }
2142
2143 return 0;
2144}
2145
2146static void mvneta_start_dev(struct mvneta_port *pp)
2147{
2148 mvneta_max_rx_size_set(pp, pp->pkt_size);
2149 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2150
2151 /* start the Rx/Tx activity */
2152 mvneta_port_enable(pp);
2153
2154 /* Enable polling on the port */
2155 napi_enable(&pp->napi);
2156
2157 /* Unmask interrupts */
2158 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2159 MVNETA_RX_INTR_MASK(rxq_number));
2160
2161 phy_start(pp->phy_dev);
2162 netif_tx_start_all_queues(pp->dev);
2163}
2164
2165static void mvneta_stop_dev(struct mvneta_port *pp)
2166{
2167 phy_stop(pp->phy_dev);
2168
2169 napi_disable(&pp->napi);
2170
2171 netif_carrier_off(pp->dev);
2172
2173 mvneta_port_down(pp);
2174 netif_tx_stop_all_queues(pp->dev);
2175
2176 /* Stop the port activity */
2177 mvneta_port_disable(pp);
2178
2179 /* Clear all ethernet port interrupts */
2180 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2181 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2182
2183 /* Mask all ethernet port interrupts */
2184 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2185 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2186 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2187
2188 mvneta_tx_reset(pp);
2189 mvneta_rx_reset(pp);
2190}
2191
2192/* tx timeout callback - display a message and stop/start the network device */
2193static void mvneta_tx_timeout(struct net_device *dev)
2194{
2195 struct mvneta_port *pp = netdev_priv(dev);
2196
2197 netdev_info(dev, "tx timeout\n");
2198 mvneta_stop_dev(pp);
2199 mvneta_start_dev(pp);
2200}
2201
2202/* Return positive if MTU is valid */
2203static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2204{
2205 if (mtu < 68) {
2206 netdev_err(dev, "cannot change mtu to less than 68\n");
2207 return -EINVAL;
2208 }
2209
6a20c175 2210 /* 9676 == 9700 - 20 and rounding to 8 */
c5aff182
TP
2211 if (mtu > 9676) {
2212 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2213 mtu = 9676;
2214 }
2215
2216 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2217 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2218 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2219 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2220 }
2221
2222 return mtu;
2223}
2224
2225/* Change the device mtu */
2226static int mvneta_change_mtu(struct net_device *dev, int mtu)
2227{
2228 struct mvneta_port *pp = netdev_priv(dev);
2229 int ret;
2230
2231 mtu = mvneta_check_mtu_valid(dev, mtu);
2232 if (mtu < 0)
2233 return -EINVAL;
2234
2235 dev->mtu = mtu;
2236
2237 if (!netif_running(dev))
2238 return 0;
2239
6a20c175 2240 /* The interface is running, so we have to force a
c5aff182
TP
2241 * reallocation of the RXQs
2242 */
2243 mvneta_stop_dev(pp);
2244
2245 mvneta_cleanup_txqs(pp);
2246 mvneta_cleanup_rxqs(pp);
2247
2248 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2249
2250 ret = mvneta_setup_rxqs(pp);
2251 if (ret) {
2252 netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2253 return ret;
2254 }
2255
2256 mvneta_setup_txqs(pp);
2257
2258 mvneta_start_dev(pp);
2259 mvneta_port_up(pp);
2260
2261 return 0;
2262}
2263
2264/* Handle setting mac address */
2265static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2266{
2267 struct mvneta_port *pp = netdev_priv(dev);
2268 u8 *mac = addr + 2;
2269 int i;
2270
2271 if (netif_running(dev))
2272 return -EBUSY;
2273
2274 /* Remove previous address table entry */
2275 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2276
2277 /* Set new addr in hw */
2278 mvneta_mac_addr_set(pp, mac, rxq_def);
2279
2280 /* Set addr in the device */
2281 for (i = 0; i < ETH_ALEN; i++)
2282 dev->dev_addr[i] = mac[i];
2283
2284 return 0;
2285}
2286
2287static void mvneta_adjust_link(struct net_device *ndev)
2288{
2289 struct mvneta_port *pp = netdev_priv(ndev);
2290 struct phy_device *phydev = pp->phy_dev;
2291 int status_change = 0;
2292
2293 if (phydev->link) {
2294 if ((pp->speed != phydev->speed) ||
2295 (pp->duplex != phydev->duplex)) {
2296 u32 val;
2297
2298 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2299 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2300 MVNETA_GMAC_CONFIG_GMII_SPEED |
2301 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2302
2303 if (phydev->duplex)
2304 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2305
2306 if (phydev->speed == SPEED_1000)
2307 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2308 else
2309 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2310
2311 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2312
2313 pp->duplex = phydev->duplex;
2314 pp->speed = phydev->speed;
2315 }
2316 }
2317
2318 if (phydev->link != pp->link) {
2319 if (!phydev->link) {
2320 pp->duplex = -1;
2321 pp->speed = 0;
2322 }
2323
2324 pp->link = phydev->link;
2325 status_change = 1;
2326 }
2327
2328 if (status_change) {
2329 if (phydev->link) {
2330 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2331 val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2332 MVNETA_GMAC_FORCE_LINK_DOWN);
2333 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2334 mvneta_port_up(pp);
2335 netdev_info(pp->dev, "link up\n");
2336 } else {
2337 mvneta_port_down(pp);
2338 netdev_info(pp->dev, "link down\n");
2339 }
2340 }
2341}
2342
2343static int mvneta_mdio_probe(struct mvneta_port *pp)
2344{
2345 struct phy_device *phy_dev;
2346
2347 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2348 pp->phy_interface);
2349 if (!phy_dev) {
2350 netdev_err(pp->dev, "could not find the PHY\n");
2351 return -ENODEV;
2352 }
2353
2354 phy_dev->supported &= PHY_GBIT_FEATURES;
2355 phy_dev->advertising = phy_dev->supported;
2356
2357 pp->phy_dev = phy_dev;
2358 pp->link = 0;
2359 pp->duplex = 0;
2360 pp->speed = 0;
2361
2362 return 0;
2363}
2364
2365static void mvneta_mdio_remove(struct mvneta_port *pp)
2366{
2367 phy_disconnect(pp->phy_dev);
2368 pp->phy_dev = NULL;
2369}
2370
2371static int mvneta_open(struct net_device *dev)
2372{
2373 struct mvneta_port *pp = netdev_priv(dev);
2374 int ret;
2375
2376 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2377
2378 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2379
2380 ret = mvneta_setup_rxqs(pp);
2381 if (ret)
2382 return ret;
2383
2384 ret = mvneta_setup_txqs(pp);
2385 if (ret)
2386 goto err_cleanup_rxqs;
2387
2388 /* Connect to port interrupt line */
2389 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2390 MVNETA_DRIVER_NAME, pp);
2391 if (ret) {
2392 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2393 goto err_cleanup_txqs;
2394 }
2395
2396 /* In default link is down */
2397 netif_carrier_off(pp->dev);
2398
2399 ret = mvneta_mdio_probe(pp);
2400 if (ret < 0) {
2401 netdev_err(dev, "cannot probe MDIO bus\n");
2402 goto err_free_irq;
2403 }
2404
2405 mvneta_start_dev(pp);
2406
2407 return 0;
2408
2409err_free_irq:
2410 free_irq(pp->dev->irq, pp);
2411err_cleanup_txqs:
2412 mvneta_cleanup_txqs(pp);
2413err_cleanup_rxqs:
2414 mvneta_cleanup_rxqs(pp);
2415 return ret;
2416}
2417
2418/* Stop the port, free port interrupt line */
2419static int mvneta_stop(struct net_device *dev)
2420{
2421 struct mvneta_port *pp = netdev_priv(dev);
2422
2423 mvneta_stop_dev(pp);
2424 mvneta_mdio_remove(pp);
2425 free_irq(dev->irq, pp);
2426 mvneta_cleanup_rxqs(pp);
2427 mvneta_cleanup_txqs(pp);
2428 del_timer(&pp->tx_done_timer);
2429 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2430
2431 return 0;
2432}
2433
2434/* Ethtool methods */
2435
2436/* Get settings (phy address, speed) for ethtools */
2437int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2438{
2439 struct mvneta_port *pp = netdev_priv(dev);
2440
2441 if (!pp->phy_dev)
2442 return -ENODEV;
2443
2444 return phy_ethtool_gset(pp->phy_dev, cmd);
2445}
2446
2447/* Set settings (phy address, speed) for ethtools */
2448int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2449{
2450 struct mvneta_port *pp = netdev_priv(dev);
2451
2452 if (!pp->phy_dev)
2453 return -ENODEV;
2454
2455 return phy_ethtool_sset(pp->phy_dev, cmd);
2456}
2457
2458/* Set interrupt coalescing for ethtools */
2459static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2460 struct ethtool_coalesce *c)
2461{
2462 struct mvneta_port *pp = netdev_priv(dev);
2463 int queue;
2464
2465 for (queue = 0; queue < rxq_number; queue++) {
2466 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2467 rxq->time_coal = c->rx_coalesce_usecs;
2468 rxq->pkts_coal = c->rx_max_coalesced_frames;
2469 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2470 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2471 }
2472
2473 for (queue = 0; queue < txq_number; queue++) {
2474 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2475 txq->done_pkts_coal = c->tx_max_coalesced_frames;
2476 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2477 }
2478
2479 return 0;
2480}
2481
2482/* get coalescing for ethtools */
2483static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2484 struct ethtool_coalesce *c)
2485{
2486 struct mvneta_port *pp = netdev_priv(dev);
2487
2488 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
2489 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
2490
2491 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
2492 return 0;
2493}
2494
2495
2496static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2497 struct ethtool_drvinfo *drvinfo)
2498{
2499 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2500 sizeof(drvinfo->driver));
2501 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2502 sizeof(drvinfo->version));
2503 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2504 sizeof(drvinfo->bus_info));
2505}
2506
2507
2508static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2509 struct ethtool_ringparam *ring)
2510{
2511 struct mvneta_port *pp = netdev_priv(netdev);
2512
2513 ring->rx_max_pending = MVNETA_MAX_RXD;
2514 ring->tx_max_pending = MVNETA_MAX_TXD;
2515 ring->rx_pending = pp->rx_ring_size;
2516 ring->tx_pending = pp->tx_ring_size;
2517}
2518
2519static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2520 struct ethtool_ringparam *ring)
2521{
2522 struct mvneta_port *pp = netdev_priv(dev);
2523
2524 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2525 return -EINVAL;
2526 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2527 ring->rx_pending : MVNETA_MAX_RXD;
2528 pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2529 ring->tx_pending : MVNETA_MAX_TXD;
2530
2531 if (netif_running(dev)) {
2532 mvneta_stop(dev);
2533 if (mvneta_open(dev)) {
2534 netdev_err(dev,
2535 "error on opening device after ring param change\n");
2536 return -ENOMEM;
2537 }
2538 }
2539
2540 return 0;
2541}
2542
2543static const struct net_device_ops mvneta_netdev_ops = {
2544 .ndo_open = mvneta_open,
2545 .ndo_stop = mvneta_stop,
2546 .ndo_start_xmit = mvneta_tx,
2547 .ndo_set_rx_mode = mvneta_set_rx_mode,
2548 .ndo_set_mac_address = mvneta_set_mac_addr,
2549 .ndo_change_mtu = mvneta_change_mtu,
2550 .ndo_tx_timeout = mvneta_tx_timeout,
2551 .ndo_get_stats64 = mvneta_get_stats64,
2552};
2553
2554const struct ethtool_ops mvneta_eth_tool_ops = {
2555 .get_link = ethtool_op_get_link,
2556 .get_settings = mvneta_ethtool_get_settings,
2557 .set_settings = mvneta_ethtool_set_settings,
2558 .set_coalesce = mvneta_ethtool_set_coalesce,
2559 .get_coalesce = mvneta_ethtool_get_coalesce,
2560 .get_drvinfo = mvneta_ethtool_get_drvinfo,
2561 .get_ringparam = mvneta_ethtool_get_ringparam,
2562 .set_ringparam = mvneta_ethtool_set_ringparam,
2563};
2564
2565/* Initialize hw */
03ce758e 2566static int mvneta_init(struct mvneta_port *pp, int phy_addr)
c5aff182
TP
2567{
2568 int queue;
2569
2570 /* Disable port */
2571 mvneta_port_disable(pp);
2572
2573 /* Set port default values */
2574 mvneta_defaults_set(pp);
2575
2576 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2577 GFP_KERNEL);
2578 if (!pp->txqs)
2579 return -ENOMEM;
2580
2581 /* Initialize TX descriptor rings */
2582 for (queue = 0; queue < txq_number; queue++) {
2583 struct mvneta_tx_queue *txq = &pp->txqs[queue];
2584 txq->id = queue;
2585 txq->size = pp->tx_ring_size;
2586 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2587 }
2588
2589 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2590 GFP_KERNEL);
2591 if (!pp->rxqs) {
2592 kfree(pp->txqs);
2593 return -ENOMEM;
2594 }
2595
2596 /* Create Rx descriptor rings */
2597 for (queue = 0; queue < rxq_number; queue++) {
2598 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2599 rxq->id = queue;
2600 rxq->size = pp->rx_ring_size;
2601 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2602 rxq->time_coal = MVNETA_RX_COAL_USEC;
2603 }
2604
2605 return 0;
2606}
2607
70eeaf98 2608static void mvneta_deinit(struct mvneta_port *pp)
c5aff182
TP
2609{
2610 kfree(pp->txqs);
2611 kfree(pp->rxqs);
2612}
2613
2614/* platform glue : initialize decoding windows */
03ce758e
GK
2615static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2616 const struct mbus_dram_target_info *dram)
c5aff182
TP
2617{
2618 u32 win_enable;
2619 u32 win_protect;
2620 int i;
2621
2622 for (i = 0; i < 6; i++) {
2623 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2624 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2625
2626 if (i < 4)
2627 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2628 }
2629
2630 win_enable = 0x3f;
2631 win_protect = 0;
2632
2633 for (i = 0; i < dram->num_cs; i++) {
2634 const struct mbus_dram_window *cs = dram->cs + i;
2635 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2636 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2637
2638 mvreg_write(pp, MVNETA_WIN_SIZE(i),
2639 (cs->size - 1) & 0xffff0000);
2640
2641 win_enable &= ~(1 << i);
2642 win_protect |= 3 << (2 * i);
2643 }
2644
2645 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2646}
2647
2648/* Power up the port */
03ce758e 2649static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
c5aff182
TP
2650{
2651 u32 val;
2652
2653 /* MAC Cause register should be cleared */
2654 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2655
2656 if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2657 mvneta_port_sgmii_config(pp);
2658
2659 mvneta_gmac_rgmii_set(pp, 1);
2660
2661 /* Cancel Port Reset */
2662 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2663 val &= ~MVNETA_GMAC2_PORT_RESET;
2664 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2665
2666 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2667 MVNETA_GMAC2_PORT_RESET) != 0)
2668 continue;
2669}
2670
2671/* Device initialization routine */
03ce758e 2672static int mvneta_probe(struct platform_device *pdev)
c5aff182
TP
2673{
2674 const struct mbus_dram_target_info *dram_target_info;
2675 struct device_node *dn = pdev->dev.of_node;
2676 struct device_node *phy_node;
189dd626 2677 u32 phy_addr;
c5aff182
TP
2678 struct mvneta_port *pp;
2679 struct net_device *dev;
2680 const char *mac_addr;
2681 int phy_mode;
2682 int err;
2683
6a20c175 2684 /* Our multiqueue support is not complete, so for now, only
c5aff182
TP
2685 * allow the usage of the first RX queue
2686 */
2687 if (rxq_def != 0) {
2688 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2689 return -EINVAL;
2690 }
2691
2692 dev = alloc_etherdev_mq(sizeof(struct mvneta_port), 8);
2693 if (!dev)
2694 return -ENOMEM;
2695
2696 dev->irq = irq_of_parse_and_map(dn, 0);
2697 if (dev->irq == 0) {
2698 err = -EINVAL;
2699 goto err_free_netdev;
2700 }
2701
2702 phy_node = of_parse_phandle(dn, "phy", 0);
2703 if (!phy_node) {
2704 dev_err(&pdev->dev, "no associated PHY\n");
2705 err = -ENODEV;
2706 goto err_free_irq;
2707 }
2708
2709 phy_mode = of_get_phy_mode(dn);
2710 if (phy_mode < 0) {
2711 dev_err(&pdev->dev, "incorrect phy-mode\n");
2712 err = -EINVAL;
2713 goto err_free_irq;
2714 }
2715
c5aff182
TP
2716 mac_addr = of_get_mac_address(dn);
2717
2718 if (!mac_addr || !is_valid_ether_addr(mac_addr))
2719 eth_hw_addr_random(dev);
2720 else
2721 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
2722
2723 dev->tx_queue_len = MVNETA_MAX_TXD;
2724 dev->watchdog_timeo = 5 * HZ;
2725 dev->netdev_ops = &mvneta_netdev_ops;
2726
2727 SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2728
2729 pp = netdev_priv(dev);
2730
2731 pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
2732 init_timer(&pp->tx_done_timer);
2733 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2734
2735 pp->weight = MVNETA_RX_POLL_WEIGHT;
c5aff182
TP
2736 pp->phy_node = phy_node;
2737 pp->phy_interface = phy_mode;
2738
2739 pp->base = of_iomap(dn, 0);
2740 if (pp->base == NULL) {
2741 err = -ENOMEM;
2742 goto err_free_irq;
2743 }
2744
189dd626
TP
2745 pp->clk = devm_clk_get(&pdev->dev, NULL);
2746 if (IS_ERR(pp->clk)) {
2747 err = PTR_ERR(pp->clk);
2748 goto err_unmap;
2749 }
2750
2751 clk_prepare_enable(pp->clk);
2752
c5aff182
TP
2753 pp->tx_done_timer.data = (unsigned long)dev;
2754
2755 pp->tx_ring_size = MVNETA_MAX_TXD;
2756 pp->rx_ring_size = MVNETA_MAX_RXD;
2757
2758 pp->dev = dev;
2759 SET_NETDEV_DEV(dev, &pdev->dev);
2760
2761 err = mvneta_init(pp, phy_addr);
2762 if (err < 0) {
2763 dev_err(&pdev->dev, "can't init eth hal\n");
189dd626 2764 goto err_clk;
c5aff182
TP
2765 }
2766 mvneta_port_power_up(pp, phy_mode);
2767
2768 dram_target_info = mv_mbus_dram_info();
2769 if (dram_target_info)
2770 mvneta_conf_mbus_windows(pp, dram_target_info);
2771
2772 netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2773
b50b72de 2774 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2775 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2776 dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2777 dev->priv_flags |= IFF_UNICAST_FLT;
2778
c5aff182
TP
2779 err = register_netdev(dev);
2780 if (err < 0) {
2781 dev_err(&pdev->dev, "failed to register\n");
2782 goto err_deinit;
2783 }
2784
c5aff182
TP
2785 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
2786
2787 platform_set_drvdata(pdev, pp->dev);
2788
2789 return 0;
2790
2791err_deinit:
2792 mvneta_deinit(pp);
189dd626
TP
2793err_clk:
2794 clk_disable_unprepare(pp->clk);
c5aff182
TP
2795err_unmap:
2796 iounmap(pp->base);
2797err_free_irq:
2798 irq_dispose_mapping(dev->irq);
2799err_free_netdev:
2800 free_netdev(dev);
2801 return err;
2802}
2803
2804/* Device removal routine */
03ce758e 2805static int mvneta_remove(struct platform_device *pdev)
c5aff182
TP
2806{
2807 struct net_device *dev = platform_get_drvdata(pdev);
2808 struct mvneta_port *pp = netdev_priv(dev);
2809
2810 unregister_netdev(dev);
2811 mvneta_deinit(pp);
189dd626 2812 clk_disable_unprepare(pp->clk);
c5aff182
TP
2813 iounmap(pp->base);
2814 irq_dispose_mapping(dev->irq);
2815 free_netdev(dev);
2816
2817 platform_set_drvdata(pdev, NULL);
2818
2819 return 0;
2820}
2821
2822static const struct of_device_id mvneta_match[] = {
2823 { .compatible = "marvell,armada-370-neta" },
2824 { }
2825};
2826MODULE_DEVICE_TABLE(of, mvneta_match);
2827
2828static struct platform_driver mvneta_driver = {
2829 .probe = mvneta_probe,
03ce758e 2830 .remove = mvneta_remove,
c5aff182
TP
2831 .driver = {
2832 .name = MVNETA_DRIVER_NAME,
2833 .of_match_table = mvneta_match,
2834 },
2835};
2836
2837module_platform_driver(mvneta_driver);
2838
2839MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2840MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2841MODULE_LICENSE("GPL");
2842
2843module_param(rxq_number, int, S_IRUGO);
2844module_param(txq_number, int, S_IRUGO);
2845
2846module_param(rxq_def, int, S_IRUGO);
2847module_param(txq_def, int, S_IRUGO);
This page took 0.155153 seconds and 5 git commands to generate.