sfc: Disable TX descriptor prefetch watchdog
[deliverable/linux.git] / drivers / net / igb / e1000_82575.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#include <linux/types.h>
33#include <linux/slab.h>
2d064c06 34#include <linux/if_ether.h>
9d5c8243
AK
35
36#include "e1000_mac.h"
37#include "e1000_82575.h"
38
39static s32 igb_get_invariants_82575(struct e1000_hw *);
40static s32 igb_acquire_phy_82575(struct e1000_hw *);
41static void igb_release_phy_82575(struct e1000_hw *);
42static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43static void igb_release_nvm_82575(struct e1000_hw *);
44static s32 igb_check_for_link_82575(struct e1000_hw *);
45static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46static s32 igb_init_hw_82575(struct e1000_hw *);
47static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
bb2ac47b
AD
49static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
50static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
9d5c8243 51static s32 igb_reset_hw_82575(struct e1000_hw *);
bb2ac47b 52static s32 igb_reset_hw_82580(struct e1000_hw *);
9d5c8243
AK
53static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
54static s32 igb_setup_copper_link_82575(struct e1000_hw *);
2fb02a26 55static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
9d5c8243
AK
56static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
57static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
58static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
9d5c8243
AK
59static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
60 u16 *);
61static s32 igb_get_phy_id_82575(struct e1000_hw *);
62static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
63static bool igb_sgmii_active_82575(struct e1000_hw *);
64static s32 igb_reset_init_script_82575(struct e1000_hw *);
65static s32 igb_read_mac_addr_82575(struct e1000_hw *);
009bc06e 66static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
9d5c8243 67
bb2ac47b
AD
68static const u16 e1000_82580_rxpbs_table[] =
69 { 36, 72, 144, 1, 2, 4, 8, 16,
70 35, 70, 140 };
71#define E1000_82580_RXPBS_TABLE_SIZE \
72 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
73
9d5c8243
AK
74static s32 igb_get_invariants_82575(struct e1000_hw *hw)
75{
76 struct e1000_phy_info *phy = &hw->phy;
77 struct e1000_nvm_info *nvm = &hw->nvm;
78 struct e1000_mac_info *mac = &hw->mac;
c1889bfe 79 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
9d5c8243
AK
80 u32 eecd;
81 s32 ret_val;
82 u16 size;
83 u32 ctrl_ext = 0;
84
85 switch (hw->device_id) {
86 case E1000_DEV_ID_82575EB_COPPER:
87 case E1000_DEV_ID_82575EB_FIBER_SERDES:
88 case E1000_DEV_ID_82575GB_QUAD_COPPER:
89 mac->type = e1000_82575;
90 break;
2d064c06 91 case E1000_DEV_ID_82576:
9eb2341d 92 case E1000_DEV_ID_82576_NS:
747d49ba 93 case E1000_DEV_ID_82576_NS_SERDES:
2d064c06
AD
94 case E1000_DEV_ID_82576_FIBER:
95 case E1000_DEV_ID_82576_SERDES:
c8ea5ea9 96 case E1000_DEV_ID_82576_QUAD_COPPER:
4703bf73 97 case E1000_DEV_ID_82576_SERDES_QUAD:
2d064c06
AD
98 mac->type = e1000_82576;
99 break;
bb2ac47b
AD
100 case E1000_DEV_ID_82580_COPPER:
101 case E1000_DEV_ID_82580_FIBER:
102 case E1000_DEV_ID_82580_SERDES:
103 case E1000_DEV_ID_82580_SGMII:
104 case E1000_DEV_ID_82580_COPPER_DUAL:
105 mac->type = e1000_82580;
106 break;
9d5c8243
AK
107 default:
108 return -E1000_ERR_MAC_INIT;
109 break;
110 }
111
9d5c8243
AK
112 /* Set media type */
113 /*
114 * The 82575 uses bits 22:23 for link mode. The mode can be changed
115 * based on the EEPROM. We cannot rely upon device ID. There
116 * is no distinguishable difference between fiber and internal
117 * SerDes mode on the 82575. There can be an external PHY attached
118 * on the SGMII interface. For this, we'll set sgmii_active to true.
119 */
120 phy->media_type = e1000_media_type_copper;
121 dev_spec->sgmii_active = false;
122
123 ctrl_ext = rd32(E1000_CTRL_EXT);
2fb02a26
AD
124 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
125 case E1000_CTRL_EXT_LINK_MODE_SGMII:
9d5c8243
AK
126 dev_spec->sgmii_active = true;
127 ctrl_ext |= E1000_CTRL_I2C_ENA;
2fb02a26 128 break;
bb2ac47b 129 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
2fb02a26
AD
130 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
131 hw->phy.media_type = e1000_media_type_internal_serdes;
132 ctrl_ext |= E1000_CTRL_I2C_ENA;
133 break;
134 default:
9d5c8243 135 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
2fb02a26 136 break;
9d5c8243 137 }
2fb02a26 138
9d5c8243
AK
139 wr32(E1000_CTRL_EXT, ctrl_ext);
140
bb2ac47b
AD
141 /*
142 * if using i2c make certain the MDICNFG register is cleared to prevent
143 * communications from being misrouted to the mdic registers
144 */
145 if ((ctrl_ext & E1000_CTRL_I2C_ENA) && (hw->mac.type == e1000_82580))
146 wr32(E1000_MDICNFG, 0);
147
9d5c8243
AK
148 /* Set mta register count */
149 mac->mta_reg_count = 128;
150 /* Set rar entry count */
151 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
2d064c06
AD
152 if (mac->type == e1000_82576)
153 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
bb2ac47b
AD
154 if (mac->type == e1000_82580)
155 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
156 /* reset */
157 if (mac->type == e1000_82580)
158 mac->ops.reset_hw = igb_reset_hw_82580;
159 else
160 mac->ops.reset_hw = igb_reset_hw_82575;
9d5c8243
AK
161 /* Set if part includes ASF firmware */
162 mac->asf_firmware_present = true;
163 /* Set if manageability features are enabled. */
164 mac->arc_subsystem_valid =
165 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
166 ? true : false;
167
168 /* physical interface link setup */
169 mac->ops.setup_physical_interface =
170 (hw->phy.media_type == e1000_media_type_copper)
171 ? igb_setup_copper_link_82575
2fb02a26 172 : igb_setup_serdes_link_82575;
9d5c8243
AK
173
174 /* NVM initialization */
175 eecd = rd32(E1000_EECD);
176
177 nvm->opcode_bits = 8;
178 nvm->delay_usec = 1;
179 switch (nvm->override) {
180 case e1000_nvm_override_spi_large:
181 nvm->page_size = 32;
182 nvm->address_bits = 16;
183 break;
184 case e1000_nvm_override_spi_small:
185 nvm->page_size = 8;
186 nvm->address_bits = 8;
187 break;
188 default:
189 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
190 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
191 break;
192 }
193
194 nvm->type = e1000_nvm_eeprom_spi;
195
196 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
197 E1000_EECD_SIZE_EX_SHIFT);
198
199 /*
200 * Added to a constant, "size" becomes the left-shift value
201 * for setting word_size.
202 */
203 size += NVM_WORD_SIZE_BASE_SHIFT;
5c3cad75
JK
204
205 /* EEPROM access above 16k is unsupported */
206 if (size > 14)
207 size = 14;
9d5c8243
AK
208 nvm->word_size = 1 << size;
209
a0c98605
AD
210 /* if 82576 then initialize mailbox parameters */
211 if (mac->type == e1000_82576)
212 igb_init_mbx_params_pf(hw);
213
9d5c8243
AK
214 /* setup PHY parameters */
215 if (phy->media_type != e1000_media_type_copper) {
216 phy->type = e1000_phy_none;
217 return 0;
218 }
219
220 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
221 phy->reset_delay_us = 100;
222
223 /* PHY function pointers */
224 if (igb_sgmii_active_82575(hw)) {
a8d2a0c2
AD
225 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
226 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
227 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
bb2ac47b
AD
228 } else if (hw->mac.type == e1000_82580) {
229 phy->ops.reset = igb_phy_hw_reset;
230 phy->ops.read_reg = igb_read_phy_reg_82580;
231 phy->ops.write_reg = igb_write_phy_reg_82580;
9d5c8243 232 } else {
a8d2a0c2
AD
233 phy->ops.reset = igb_phy_hw_reset;
234 phy->ops.read_reg = igb_read_phy_reg_igp;
235 phy->ops.write_reg = igb_write_phy_reg_igp;
9d5c8243
AK
236 }
237
19e588e7
AD
238 /* set lan id */
239 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
240 E1000_STATUS_FUNC_SHIFT;
241
9d5c8243
AK
242 /* Set phy->phy_addr and phy->id. */
243 ret_val = igb_get_phy_id_82575(hw);
244 if (ret_val)
245 return ret_val;
246
247 /* Verify phy id and set remaining function pointers */
248 switch (phy->id) {
249 case M88E1111_I_PHY_ID:
250 phy->type = e1000_phy_m88;
251 phy->ops.get_phy_info = igb_get_phy_info_m88;
252 phy->ops.get_cable_length = igb_get_cable_length_m88;
253 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
254 break;
255 case IGP03E1000_E_PHY_ID:
256 phy->type = e1000_phy_igp_3;
257 phy->ops.get_phy_info = igb_get_phy_info_igp;
258 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
259 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
260 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
261 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
262 break;
bb2ac47b
AD
263 case I82580_I_PHY_ID:
264 phy->type = e1000_phy_82580;
265 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
266 phy->ops.get_cable_length = igb_get_cable_length_82580;
267 phy->ops.get_phy_info = igb_get_phy_info_82580;
268 break;
9d5c8243
AK
269 default:
270 return -E1000_ERR_PHY;
271 }
272
273 return 0;
274}
275
276/**
733596be 277 * igb_acquire_phy_82575 - Acquire rights to access PHY
9d5c8243
AK
278 * @hw: pointer to the HW structure
279 *
280 * Acquire access rights to the correct PHY. This is a
281 * function pointer entry point called by the api module.
282 **/
283static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
284{
008c3422 285 u16 mask = E1000_SWFW_PHY0_SM;
9d5c8243 286
008c3422
AD
287 if (hw->bus.func == E1000_FUNC_1)
288 mask = E1000_SWFW_PHY1_SM;
9d5c8243
AK
289
290 return igb_acquire_swfw_sync_82575(hw, mask);
291}
292
293/**
733596be 294 * igb_release_phy_82575 - Release rights to access PHY
9d5c8243
AK
295 * @hw: pointer to the HW structure
296 *
297 * A wrapper to release access rights to the correct PHY. This is a
298 * function pointer entry point called by the api module.
299 **/
300static void igb_release_phy_82575(struct e1000_hw *hw)
301{
008c3422
AD
302 u16 mask = E1000_SWFW_PHY0_SM;
303
304 if (hw->bus.func == E1000_FUNC_1)
305 mask = E1000_SWFW_PHY1_SM;
9d5c8243 306
9d5c8243
AK
307 igb_release_swfw_sync_82575(hw, mask);
308}
309
310/**
733596be 311 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
9d5c8243
AK
312 * @hw: pointer to the HW structure
313 * @offset: register offset to be read
314 * @data: pointer to the read data
315 *
316 * Reads the PHY register at offset using the serial gigabit media independent
317 * interface and stores the retrieved information in data.
318 **/
319static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
320 u16 *data)
321{
bf6f7a92 322 s32 ret_val = -E1000_ERR_PARAM;
9d5c8243
AK
323
324 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 325 hw_dbg("PHY Address %u is out of range\n", offset);
bf6f7a92 326 goto out;
9d5c8243
AK
327 }
328
bf6f7a92
AD
329 ret_val = hw->phy.ops.acquire(hw);
330 if (ret_val)
331 goto out;
9d5c8243 332
bf6f7a92 333 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
9d5c8243 334
bf6f7a92
AD
335 hw->phy.ops.release(hw);
336
337out:
338 return ret_val;
9d5c8243
AK
339}
340
341/**
733596be 342 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
9d5c8243
AK
343 * @hw: pointer to the HW structure
344 * @offset: register offset to write to
345 * @data: data to write at register offset
346 *
347 * Writes the data to PHY register at the offset using the serial gigabit
348 * media independent interface.
349 **/
350static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
351 u16 data)
352{
bf6f7a92
AD
353 s32 ret_val = -E1000_ERR_PARAM;
354
9d5c8243
AK
355
356 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 357 hw_dbg("PHY Address %d is out of range\n", offset);
bf6f7a92 358 goto out;
9d5c8243
AK
359 }
360
bf6f7a92
AD
361 ret_val = hw->phy.ops.acquire(hw);
362 if (ret_val)
363 goto out;
9d5c8243 364
bf6f7a92 365 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
9d5c8243 366
bf6f7a92
AD
367 hw->phy.ops.release(hw);
368
369out:
370 return ret_val;
9d5c8243
AK
371}
372
373/**
733596be 374 * igb_get_phy_id_82575 - Retrieve PHY addr and id
9d5c8243
AK
375 * @hw: pointer to the HW structure
376 *
652fff32 377 * Retrieves the PHY address and ID for both PHY's which do and do not use
9d5c8243
AK
378 * sgmi interface.
379 **/
380static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
381{
382 struct e1000_phy_info *phy = &hw->phy;
383 s32 ret_val = 0;
384 u16 phy_id;
2fb02a26 385 u32 ctrl_ext;
9d5c8243
AK
386
387 /*
388 * For SGMII PHYs, we try the list of possible addresses until
389 * we find one that works. For non-SGMII PHYs
390 * (e.g. integrated copper PHYs), an address of 1 should
391 * work. The result of this function should mean phy->phy_addr
392 * and phy->id are set correctly.
393 */
394 if (!(igb_sgmii_active_82575(hw))) {
395 phy->addr = 1;
396 ret_val = igb_get_phy_id(hw);
397 goto out;
398 }
399
2fb02a26
AD
400 /* Power on sgmii phy if it is disabled */
401 ctrl_ext = rd32(E1000_CTRL_EXT);
402 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
403 wrfl();
404 msleep(300);
405
9d5c8243
AK
406 /*
407 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
408 * Therefore, we need to test 1-7
409 */
410 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
411 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
412 if (ret_val == 0) {
652fff32
AK
413 hw_dbg("Vendor ID 0x%08X read at address %u\n",
414 phy_id, phy->addr);
9d5c8243
AK
415 /*
416 * At the time of this writing, The M88 part is
417 * the only supported SGMII PHY product.
418 */
419 if (phy_id == M88_VENDOR)
420 break;
421 } else {
652fff32 422 hw_dbg("PHY address %u was unreadable\n", phy->addr);
9d5c8243
AK
423 }
424 }
425
426 /* A valid PHY type couldn't be found. */
427 if (phy->addr == 8) {
428 phy->addr = 0;
429 ret_val = -E1000_ERR_PHY;
430 goto out;
2fb02a26
AD
431 } else {
432 ret_val = igb_get_phy_id(hw);
9d5c8243
AK
433 }
434
2fb02a26
AD
435 /* restore previous sfp cage power state */
436 wr32(E1000_CTRL_EXT, ctrl_ext);
9d5c8243
AK
437
438out:
439 return ret_val;
440}
441
442/**
733596be 443 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
9d5c8243
AK
444 * @hw: pointer to the HW structure
445 *
446 * Resets the PHY using the serial gigabit media independent interface.
447 **/
448static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
449{
450 s32 ret_val;
451
452 /*
453 * This isn't a true "hard" reset, but is the only reset
454 * available to us at this time.
455 */
456
652fff32 457 hw_dbg("Soft resetting SGMII attached PHY...\n");
9d5c8243
AK
458
459 /*
460 * SFP documentation requires the following to configure the SPF module
461 * to work on SGMII. No further documentation is given.
462 */
a8d2a0c2 463 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
9d5c8243
AK
464 if (ret_val)
465 goto out;
466
467 ret_val = igb_phy_sw_reset(hw);
468
469out:
470 return ret_val;
471}
472
473/**
733596be 474 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
9d5c8243
AK
475 * @hw: pointer to the HW structure
476 * @active: true to enable LPLU, false to disable
477 *
478 * Sets the LPLU D0 state according to the active flag. When
479 * activating LPLU this function also disables smart speed
480 * and vice versa. LPLU will not be activated unless the
481 * device autonegotiation advertisement meets standards of
482 * either 10 or 10/100 or 10/100/1000 at all duplexes.
483 * This is a function pointer entry point only called by
484 * PHY setup routines.
485 **/
486static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
487{
488 struct e1000_phy_info *phy = &hw->phy;
489 s32 ret_val;
490 u16 data;
491
a8d2a0c2 492 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
9d5c8243
AK
493 if (ret_val)
494 goto out;
495
496 if (active) {
497 data |= IGP02E1000_PM_D0_LPLU;
a8d2a0c2 498 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
652fff32 499 data);
9d5c8243
AK
500 if (ret_val)
501 goto out;
502
503 /* When LPLU is enabled, we should disable SmartSpeed */
a8d2a0c2 504 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
652fff32 505 &data);
9d5c8243 506 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 507 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
652fff32 508 data);
9d5c8243
AK
509 if (ret_val)
510 goto out;
511 } else {
512 data &= ~IGP02E1000_PM_D0_LPLU;
a8d2a0c2 513 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
652fff32 514 data);
9d5c8243
AK
515 /*
516 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
517 * during Dx states where the power conservation is most
518 * important. During driver activity we should enable
519 * SmartSpeed, so performance is maintained.
520 */
521 if (phy->smart_speed == e1000_smart_speed_on) {
a8d2a0c2 522 ret_val = phy->ops.read_reg(hw,
652fff32 523 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
524 if (ret_val)
525 goto out;
526
527 data |= IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 528 ret_val = phy->ops.write_reg(hw,
652fff32 529 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
530 if (ret_val)
531 goto out;
532 } else if (phy->smart_speed == e1000_smart_speed_off) {
a8d2a0c2 533 ret_val = phy->ops.read_reg(hw,
652fff32 534 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
535 if (ret_val)
536 goto out;
537
538 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 539 ret_val = phy->ops.write_reg(hw,
652fff32 540 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
541 if (ret_val)
542 goto out;
543 }
544 }
545
546out:
547 return ret_val;
548}
549
550/**
733596be 551 * igb_acquire_nvm_82575 - Request for access to EEPROM
9d5c8243
AK
552 * @hw: pointer to the HW structure
553 *
652fff32 554 * Acquire the necessary semaphores for exclusive access to the EEPROM.
9d5c8243
AK
555 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
556 * Return successful if access grant bit set, else clear the request for
557 * EEPROM access and return -E1000_ERR_NVM (-1).
558 **/
559static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
560{
561 s32 ret_val;
562
563 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
564 if (ret_val)
565 goto out;
566
567 ret_val = igb_acquire_nvm(hw);
568
569 if (ret_val)
570 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
571
572out:
573 return ret_val;
574}
575
576/**
733596be 577 * igb_release_nvm_82575 - Release exclusive access to EEPROM
9d5c8243
AK
578 * @hw: pointer to the HW structure
579 *
580 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
581 * then release the semaphores acquired.
582 **/
583static void igb_release_nvm_82575(struct e1000_hw *hw)
584{
585 igb_release_nvm(hw);
586 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
587}
588
589/**
733596be 590 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
9d5c8243
AK
591 * @hw: pointer to the HW structure
592 * @mask: specifies which semaphore to acquire
593 *
594 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
595 * will also specify which port we're acquiring the lock for.
596 **/
597static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
598{
599 u32 swfw_sync;
600 u32 swmask = mask;
601 u32 fwmask = mask << 16;
602 s32 ret_val = 0;
603 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
604
605 while (i < timeout) {
606 if (igb_get_hw_semaphore(hw)) {
607 ret_val = -E1000_ERR_SWFW_SYNC;
608 goto out;
609 }
610
611 swfw_sync = rd32(E1000_SW_FW_SYNC);
612 if (!(swfw_sync & (fwmask | swmask)))
613 break;
614
615 /*
616 * Firmware currently using resource (fwmask)
617 * or other software thread using resource (swmask)
618 */
619 igb_put_hw_semaphore(hw);
620 mdelay(5);
621 i++;
622 }
623
624 if (i == timeout) {
652fff32 625 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
9d5c8243
AK
626 ret_val = -E1000_ERR_SWFW_SYNC;
627 goto out;
628 }
629
630 swfw_sync |= swmask;
631 wr32(E1000_SW_FW_SYNC, swfw_sync);
632
633 igb_put_hw_semaphore(hw);
634
635out:
636 return ret_val;
637}
638
639/**
733596be 640 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
9d5c8243
AK
641 * @hw: pointer to the HW structure
642 * @mask: specifies which semaphore to acquire
643 *
644 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
645 * will also specify which port we're releasing the lock for.
646 **/
647static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
648{
649 u32 swfw_sync;
650
651 while (igb_get_hw_semaphore(hw) != 0);
652 /* Empty */
653
654 swfw_sync = rd32(E1000_SW_FW_SYNC);
655 swfw_sync &= ~mask;
656 wr32(E1000_SW_FW_SYNC, swfw_sync);
657
658 igb_put_hw_semaphore(hw);
659}
660
661/**
733596be 662 * igb_get_cfg_done_82575 - Read config done bit
9d5c8243
AK
663 * @hw: pointer to the HW structure
664 *
665 * Read the management control register for the config done bit for
666 * completion status. NOTE: silicon which is EEPROM-less will fail trying
667 * to read the config done bit, so an error is *ONLY* logged and returns
668 * 0. If we were to return with error, EEPROM-less silicon
669 * would not be able to be reset or change link.
670 **/
671static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
672{
673 s32 timeout = PHY_CFG_TIMEOUT;
674 s32 ret_val = 0;
675 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
676
677 if (hw->bus.func == 1)
678 mask = E1000_NVM_CFG_DONE_PORT_1;
bb2ac47b
AD
679 else if (hw->bus.func == E1000_FUNC_2)
680 mask = E1000_NVM_CFG_DONE_PORT_2;
681 else if (hw->bus.func == E1000_FUNC_3)
682 mask = E1000_NVM_CFG_DONE_PORT_3;
9d5c8243
AK
683
684 while (timeout) {
685 if (rd32(E1000_EEMNGCTL) & mask)
686 break;
687 msleep(1);
688 timeout--;
689 }
690 if (!timeout)
652fff32 691 hw_dbg("MNG configuration cycle has not completed.\n");
9d5c8243
AK
692
693 /* If EEPROM is not marked present, init the PHY manually */
694 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
695 (hw->phy.type == e1000_phy_igp_3))
696 igb_phy_init_script_igp3(hw);
697
698 return ret_val;
699}
700
701/**
733596be 702 * igb_check_for_link_82575 - Check for link
9d5c8243
AK
703 * @hw: pointer to the HW structure
704 *
705 * If sgmii is enabled, then use the pcs register to determine link, otherwise
706 * use the generic interface for determining link.
707 **/
708static s32 igb_check_for_link_82575(struct e1000_hw *hw)
709{
710 s32 ret_val;
711 u16 speed, duplex;
712
70d92f86 713 if (hw->phy.media_type != e1000_media_type_copper) {
9d5c8243 714 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
2d064c06 715 &duplex);
5d0932a5
AD
716 /*
717 * Use this flag to determine if link needs to be checked or
718 * not. If we have link clear the flag so that we do not
719 * continue to check for link.
720 */
721 hw->mac.get_link_status = !hw->mac.serdes_has_link;
722 } else {
9d5c8243 723 ret_val = igb_check_for_copper_link(hw);
5d0932a5 724 }
9d5c8243
AK
725
726 return ret_val;
727}
70d92f86 728
9d5c8243 729/**
733596be 730 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
9d5c8243
AK
731 * @hw: pointer to the HW structure
732 * @speed: stores the current speed
733 * @duplex: stores the current duplex
734 *
652fff32 735 * Using the physical coding sub-layer (PCS), retrieve the current speed and
9d5c8243
AK
736 * duplex, then store the values in the pointers provided.
737 **/
738static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
739 u16 *duplex)
740{
741 struct e1000_mac_info *mac = &hw->mac;
742 u32 pcs;
743
744 /* Set up defaults for the return values of this function */
745 mac->serdes_has_link = false;
746 *speed = 0;
747 *duplex = 0;
748
749 /*
750 * Read the PCS Status register for link state. For non-copper mode,
751 * the status register is not accurate. The PCS status register is
752 * used instead.
753 */
754 pcs = rd32(E1000_PCS_LSTAT);
755
756 /*
757 * The link up bit determines when link is up on autoneg. The sync ok
758 * gets set once both sides sync up and agree upon link. Stable link
759 * can be determined by checking for both link up and link sync ok
760 */
761 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
762 mac->serdes_has_link = true;
763
764 /* Detect and store PCS speed */
765 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
766 *speed = SPEED_1000;
767 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
768 *speed = SPEED_100;
769 } else {
770 *speed = SPEED_10;
771 }
772
773 /* Detect and store PCS duplex */
774 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
775 *duplex = FULL_DUPLEX;
776 } else {
777 *duplex = HALF_DUPLEX;
778 }
779 }
780
781 return 0;
782}
783
2d064c06 784/**
2fb02a26 785 * igb_shutdown_serdes_link_82575 - Remove link during power down
9d5c8243 786 * @hw: pointer to the HW structure
9d5c8243 787 *
2d064c06
AD
788 * In the case of fiber serdes, shut down optics and PCS on driver unload
789 * when management pass thru is not enabled.
9d5c8243 790 **/
2fb02a26 791void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 792{
2d064c06 793 u32 reg;
70d92f86 794 u16 eeprom_data = 0;
2d064c06 795
2fb02a26
AD
796 if (hw->phy.media_type != e1000_media_type_internal_serdes ||
797 igb_sgmii_active_82575(hw))
2d064c06
AD
798 return;
799
70d92f86
AD
800 if (hw->bus.func == E1000_FUNC_0)
801 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
bb2ac47b
AD
802 else if (hw->mac.type == e1000_82580)
803 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
804 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
805 &eeprom_data);
70d92f86
AD
806 else if (hw->bus.func == E1000_FUNC_1)
807 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
808
809 /*
810 * If APM is not enabled in the EEPROM and management interface is
811 * not enabled, then power down.
812 */
813 if (!(eeprom_data & E1000_NVM_APME_82575) &&
814 !igb_enable_mng_pass_thru(hw)) {
2d064c06
AD
815 /* Disable PCS to turn off link */
816 reg = rd32(E1000_PCS_CFG0);
817 reg &= ~E1000_PCS_CFG_PCS_EN;
818 wr32(E1000_PCS_CFG0, reg);
819
820 /* shutdown the laser */
821 reg = rd32(E1000_CTRL_EXT);
2fb02a26 822 reg |= E1000_CTRL_EXT_SDP3_DATA;
2d064c06
AD
823 wr32(E1000_CTRL_EXT, reg);
824
825 /* flush the write to verify completion */
826 wrfl();
827 msleep(1);
828 }
9d5c8243
AK
829
830 return;
831}
832
833/**
733596be 834 * igb_reset_hw_82575 - Reset hardware
9d5c8243
AK
835 * @hw: pointer to the HW structure
836 *
837 * This resets the hardware into a known state. This is a
838 * function pointer entry point called by the api module.
839 **/
840static s32 igb_reset_hw_82575(struct e1000_hw *hw)
841{
842 u32 ctrl, icr;
843 s32 ret_val;
844
845 /*
846 * Prevent the PCI-E bus from sticking if there is no TLP connection
847 * on the last TLP read/write transaction when MAC is reset.
848 */
849 ret_val = igb_disable_pcie_master(hw);
850 if (ret_val)
652fff32 851 hw_dbg("PCI-E Master disable polling has failed.\n");
9d5c8243 852
009bc06e
AD
853 /* set the completion timeout for interface */
854 ret_val = igb_set_pcie_completion_timeout(hw);
855 if (ret_val) {
856 hw_dbg("PCI-E Set completion timeout has failed.\n");
857 }
858
652fff32 859 hw_dbg("Masking off all interrupts\n");
9d5c8243
AK
860 wr32(E1000_IMC, 0xffffffff);
861
862 wr32(E1000_RCTL, 0);
863 wr32(E1000_TCTL, E1000_TCTL_PSP);
864 wrfl();
865
866 msleep(10);
867
868 ctrl = rd32(E1000_CTRL);
869
652fff32 870 hw_dbg("Issuing a global reset to MAC\n");
9d5c8243
AK
871 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
872
873 ret_val = igb_get_auto_rd_done(hw);
874 if (ret_val) {
875 /*
876 * When auto config read does not complete, do not
877 * return with an error. This can happen in situations
878 * where there is no eeprom and prevents getting link.
879 */
652fff32 880 hw_dbg("Auto Read Done did not complete\n");
9d5c8243
AK
881 }
882
883 /* If EEPROM is not present, run manual init scripts */
884 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
885 igb_reset_init_script_82575(hw);
886
887 /* Clear any pending interrupt events. */
888 wr32(E1000_IMC, 0xffffffff);
889 icr = rd32(E1000_ICR);
890
5ac16659
AD
891 /* Install any alternate MAC address into RAR0 */
892 ret_val = igb_check_alt_mac_addr(hw);
9d5c8243
AK
893
894 return ret_val;
895}
896
897/**
733596be 898 * igb_init_hw_82575 - Initialize hardware
9d5c8243
AK
899 * @hw: pointer to the HW structure
900 *
901 * This inits the hardware readying it for operation.
902 **/
903static s32 igb_init_hw_82575(struct e1000_hw *hw)
904{
905 struct e1000_mac_info *mac = &hw->mac;
906 s32 ret_val;
907 u16 i, rar_count = mac->rar_entry_count;
908
909 /* Initialize identification LED */
910 ret_val = igb_id_led_init(hw);
911 if (ret_val) {
652fff32 912 hw_dbg("Error initializing identification LED\n");
9d5c8243
AK
913 /* This is not fatal and we should not stop init due to this */
914 }
915
916 /* Disabling VLAN filtering */
652fff32 917 hw_dbg("Initializing the IEEE VLAN\n");
9d5c8243
AK
918 igb_clear_vfta(hw);
919
920 /* Setup the receive address */
5ac16659
AD
921 igb_init_rx_addrs(hw, rar_count);
922
9d5c8243 923 /* Zero out the Multicast HASH table */
652fff32 924 hw_dbg("Zeroing the MTA\n");
9d5c8243
AK
925 for (i = 0; i < mac->mta_reg_count; i++)
926 array_wr32(E1000_MTA, i, 0);
927
68d480c4
AD
928 /* Zero out the Unicast HASH table */
929 hw_dbg("Zeroing the UTA\n");
930 for (i = 0; i < mac->uta_reg_count; i++)
931 array_wr32(E1000_UTA, i, 0);
932
9d5c8243
AK
933 /* Setup link and flow control */
934 ret_val = igb_setup_link(hw);
935
936 /*
937 * Clear all of the statistics registers (clear on read). It is
938 * important that we do this after we have tried to establish link
939 * because the symbol error count will increment wildly if there
940 * is no link.
941 */
942 igb_clear_hw_cntrs_82575(hw);
943
944 return ret_val;
945}
946
947/**
733596be 948 * igb_setup_copper_link_82575 - Configure copper link settings
9d5c8243
AK
949 * @hw: pointer to the HW structure
950 *
951 * Configures the link for auto-neg or forced speed and duplex. Then we check
952 * for link, once link is established calls to configure collision distance
953 * and flow control are called.
954 **/
955static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
956{
12645a19 957 u32 ctrl;
9d5c8243 958 s32 ret_val;
9d5c8243
AK
959
960 ctrl = rd32(E1000_CTRL);
961 ctrl |= E1000_CTRL_SLU;
962 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
963 wr32(E1000_CTRL, ctrl);
964
2fb02a26
AD
965 ret_val = igb_setup_serdes_link_82575(hw);
966 if (ret_val)
967 goto out;
968
969 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
bb2ac47b
AD
970 /* allow time for SFP cage time to power up phy */
971 msleep(300);
972
2fb02a26
AD
973 ret_val = hw->phy.ops.reset(hw);
974 if (ret_val) {
975 hw_dbg("Error resetting the PHY.\n");
976 goto out;
977 }
978 }
9d5c8243
AK
979 switch (hw->phy.type) {
980 case e1000_phy_m88:
981 ret_val = igb_copper_link_setup_m88(hw);
982 break;
983 case e1000_phy_igp_3:
984 ret_val = igb_copper_link_setup_igp(hw);
9d5c8243 985 break;
bb2ac47b
AD
986 case e1000_phy_82580:
987 ret_val = igb_copper_link_setup_82580(hw);
988 break;
9d5c8243
AK
989 default:
990 ret_val = -E1000_ERR_PHY;
991 break;
992 }
993
994 if (ret_val)
995 goto out;
996
81fadd81 997 ret_val = igb_setup_copper_link(hw);
9d5c8243
AK
998out:
999 return ret_val;
1000}
1001
1002/**
70d92f86 1003 * igb_setup_serdes_link_82575 - Setup link for serdes
9d5c8243
AK
1004 * @hw: pointer to the HW structure
1005 *
70d92f86
AD
1006 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1007 * used on copper connections where the serialized gigabit media independent
1008 * interface (sgmii), or serdes fiber is being used. Configures the link
1009 * for auto-negotiation or forces speed/duplex.
9d5c8243 1010 **/
2fb02a26 1011static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 1012{
bb2ac47b
AD
1013 u32 ctrl_ext, ctrl_reg, reg;
1014 bool pcs_autoneg;
2fb02a26
AD
1015
1016 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1017 !igb_sgmii_active_82575(hw))
1018 return 0;
9d5c8243
AK
1019
1020 /*
1021 * On the 82575, SerDes loopback mode persists until it is
1022 * explicitly turned off or a power cycle is performed. A read to
1023 * the register does not indicate its status. Therefore, we ensure
1024 * loopback mode is disabled during initialization.
1025 */
1026 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1027
2fb02a26 1028 /* power on the sfp cage if present */
bb2ac47b
AD
1029 ctrl_ext = rd32(E1000_CTRL_EXT);
1030 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1031 wr32(E1000_CTRL_EXT, ctrl_ext);
2fb02a26
AD
1032
1033 ctrl_reg = rd32(E1000_CTRL);
1034 ctrl_reg |= E1000_CTRL_SLU;
1035
1036 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1037 /* set both sw defined pins */
1038 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1039
1040 /* Set switch control to serdes energy detect */
1041 reg = rd32(E1000_CONNSW);
1042 reg |= E1000_CONNSW_ENRGSRC;
1043 wr32(E1000_CONNSW, reg);
1044 }
1045
1046 reg = rd32(E1000_PCS_LCTL);
1047
bb2ac47b
AD
1048 /* default pcs_autoneg to the same setting as mac autoneg */
1049 pcs_autoneg = hw->mac.autoneg;
2fb02a26 1050
bb2ac47b
AD
1051 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1052 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1053 /* sgmii mode lets the phy handle forcing speed/duplex */
1054 pcs_autoneg = true;
1055 /* autoneg time out should be disabled for SGMII mode */
2fb02a26 1056 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
bb2ac47b
AD
1057 break;
1058 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1059 /* disable PCS autoneg and support parallel detect only */
1060 pcs_autoneg = false;
1061 default:
1062 /*
1063 * non-SGMII modes only supports a speed of 1000/Full for the
1064 * link so it is best to just force the MAC and let the pcs
1065 * link either autoneg or be forced to 1000/Full
1066 */
2fb02a26
AD
1067 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1068 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
bb2ac47b
AD
1069
1070 /* set speed of 1000/Full if speed/duplex is forced */
1071 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1072 break;
921aa749
AD
1073 }
1074
2fb02a26 1075 wr32(E1000_CTRL, ctrl_reg);
9d5c8243
AK
1076
1077 /*
1078 * New SerDes mode allows for forcing speed or autonegotiating speed
1079 * at 1gb. Autoneg should be default set by most drivers. This is the
1080 * mode that will be compatible with older link partners and switches.
1081 * However, both are supported by the hardware and some drivers/tools.
1082 */
9d5c8243
AK
1083 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1084 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1085
2fb02a26
AD
1086 /*
1087 * We force flow control to prevent the CTRL register values from being
1088 * overwritten by the autonegotiated flow control values
1089 */
1090 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1091
bb2ac47b 1092 if (pcs_autoneg) {
9d5c8243 1093 /* Set PCS register for autoneg */
bb2ac47b 1094 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
70d92f86 1095 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
bb2ac47b 1096 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
9d5c8243 1097 } else {
bb2ac47b
AD
1098 /* Set PCS register for forced link */
1099 reg |= E1000_PCS_LCTL_FSD | /* Force Speed */
1100 E1000_PCS_LCTL_FORCE_LINK | /* Force Link */
1101 E1000_PCS_LCTL_FLV_LINK_UP; /* Force link value up */
1102
1103 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
9d5c8243 1104 }
726c09e7 1105
9d5c8243
AK
1106 wr32(E1000_PCS_LCTL, reg);
1107
2fb02a26
AD
1108 if (!igb_sgmii_active_82575(hw))
1109 igb_force_mac_fc(hw);
9d5c8243 1110
2fb02a26 1111 return 0;
9d5c8243
AK
1112}
1113
1114/**
733596be 1115 * igb_sgmii_active_82575 - Return sgmii state
9d5c8243
AK
1116 * @hw: pointer to the HW structure
1117 *
1118 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1119 * which can be enabled for use in the embedded applications. Simply
1120 * return the current state of the sgmii interface.
1121 **/
1122static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1123{
c1889bfe 1124 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
c1889bfe 1125 return dev_spec->sgmii_active;
9d5c8243
AK
1126}
1127
1128/**
733596be 1129 * igb_reset_init_script_82575 - Inits HW defaults after reset
9d5c8243
AK
1130 * @hw: pointer to the HW structure
1131 *
1132 * Inits recommended HW defaults after a reset when there is no EEPROM
1133 * detected. This is only for the 82575.
1134 **/
1135static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1136{
1137 if (hw->mac.type == e1000_82575) {
652fff32 1138 hw_dbg("Running reset init script for 82575\n");
9d5c8243
AK
1139 /* SerDes configuration via SERDESCTRL */
1140 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1141 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1142 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1143 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1144
1145 /* CCM configuration via CCMCTL register */
1146 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1147 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1148
1149 /* PCIe lanes configuration */
1150 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1151 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1152 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1153 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1154
1155 /* PCIe PLL Configuration */
1156 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1157 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1158 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1159 }
1160
1161 return 0;
1162}
1163
1164/**
733596be 1165 * igb_read_mac_addr_82575 - Read device MAC address
9d5c8243
AK
1166 * @hw: pointer to the HW structure
1167 **/
1168static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1169{
1170 s32 ret_val = 0;
1171
22896639
AD
1172 /*
1173 * If there's an alternate MAC address place it in RAR0
1174 * so that it will override the Si installed default perm
1175 * address.
1176 */
1177 ret_val = igb_check_alt_mac_addr(hw);
1178 if (ret_val)
1179 goto out;
1180
1181 ret_val = igb_read_mac_addr(hw);
9d5c8243 1182
22896639 1183out:
9d5c8243
AK
1184 return ret_val;
1185}
1186
1187/**
733596be 1188 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
9d5c8243
AK
1189 * @hw: pointer to the HW structure
1190 *
1191 * Clears the hardware counters by reading the counter registers.
1192 **/
1193static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1194{
9d5c8243
AK
1195 igb_clear_hw_cntrs_base(hw);
1196
cc9073bb
AD
1197 rd32(E1000_PRC64);
1198 rd32(E1000_PRC127);
1199 rd32(E1000_PRC255);
1200 rd32(E1000_PRC511);
1201 rd32(E1000_PRC1023);
1202 rd32(E1000_PRC1522);
1203 rd32(E1000_PTC64);
1204 rd32(E1000_PTC127);
1205 rd32(E1000_PTC255);
1206 rd32(E1000_PTC511);
1207 rd32(E1000_PTC1023);
1208 rd32(E1000_PTC1522);
1209
1210 rd32(E1000_ALGNERRC);
1211 rd32(E1000_RXERRC);
1212 rd32(E1000_TNCRS);
1213 rd32(E1000_CEXTERR);
1214 rd32(E1000_TSCTC);
1215 rd32(E1000_TSCTFC);
1216
1217 rd32(E1000_MGTPRC);
1218 rd32(E1000_MGTPDC);
1219 rd32(E1000_MGTPTC);
1220
1221 rd32(E1000_IAC);
1222 rd32(E1000_ICRXOC);
1223
1224 rd32(E1000_ICRXPTC);
1225 rd32(E1000_ICRXATC);
1226 rd32(E1000_ICTXPTC);
1227 rd32(E1000_ICTXATC);
1228 rd32(E1000_ICTXQEC);
1229 rd32(E1000_ICTXQMTC);
1230 rd32(E1000_ICRXDMTC);
1231
1232 rd32(E1000_CBTMPC);
1233 rd32(E1000_HTDPMC);
1234 rd32(E1000_CBRMPC);
1235 rd32(E1000_RPTHC);
1236 rd32(E1000_HGPTC);
1237 rd32(E1000_HTCBDPC);
1238 rd32(E1000_HGORCL);
1239 rd32(E1000_HGORCH);
1240 rd32(E1000_HGOTCL);
1241 rd32(E1000_HGOTCH);
1242 rd32(E1000_LENERRS);
9d5c8243
AK
1243
1244 /* This register should not be read in copper configurations */
2fb02a26
AD
1245 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1246 igb_sgmii_active_82575(hw))
cc9073bb 1247 rd32(E1000_SCVPC);
9d5c8243
AK
1248}
1249
662d7205
AD
1250/**
1251 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1252 * @hw: pointer to the HW structure
1253 *
1254 * After rx enable if managability is enabled then there is likely some
1255 * bad data at the start of the fifo and possibly in the DMA fifo. This
1256 * function clears the fifos and flushes any packets that came in as rx was
1257 * being enabled.
1258 **/
1259void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1260{
1261 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1262 int i, ms_wait;
1263
1264 if (hw->mac.type != e1000_82575 ||
1265 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1266 return;
1267
1268 /* Disable all RX queues */
1269 for (i = 0; i < 4; i++) {
1270 rxdctl[i] = rd32(E1000_RXDCTL(i));
1271 wr32(E1000_RXDCTL(i),
1272 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1273 }
1274 /* Poll all queues to verify they have shut down */
1275 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1276 msleep(1);
1277 rx_enabled = 0;
1278 for (i = 0; i < 4; i++)
1279 rx_enabled |= rd32(E1000_RXDCTL(i));
1280 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1281 break;
1282 }
1283
1284 if (ms_wait == 10)
1285 hw_dbg("Queue disable timed out after 10ms\n");
1286
1287 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1288 * incoming packets are rejected. Set enable and wait 2ms so that
1289 * any packet that was coming in as RCTL.EN was set is flushed
1290 */
1291 rfctl = rd32(E1000_RFCTL);
1292 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1293
1294 rlpml = rd32(E1000_RLPML);
1295 wr32(E1000_RLPML, 0);
1296
1297 rctl = rd32(E1000_RCTL);
1298 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1299 temp_rctl |= E1000_RCTL_LPE;
1300
1301 wr32(E1000_RCTL, temp_rctl);
1302 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1303 wrfl();
1304 msleep(2);
1305
1306 /* Enable RX queues that were previously enabled and restore our
1307 * previous state
1308 */
1309 for (i = 0; i < 4; i++)
1310 wr32(E1000_RXDCTL(i), rxdctl[i]);
1311 wr32(E1000_RCTL, rctl);
1312 wrfl();
1313
1314 wr32(E1000_RLPML, rlpml);
1315 wr32(E1000_RFCTL, rfctl);
1316
1317 /* Flush receive errors generated by workaround */
1318 rd32(E1000_ROC);
1319 rd32(E1000_RNBC);
1320 rd32(E1000_MPC);
1321}
1322
009bc06e
AD
1323/**
1324 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1325 * @hw: pointer to the HW structure
1326 *
1327 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1328 * however the hardware default for these parts is 500us to 1ms which is less
1329 * than the 10ms recommended by the pci-e spec. To address this we need to
1330 * increase the value to either 10ms to 200ms for capability version 1 config,
1331 * or 16ms to 55ms for version 2.
1332 **/
1333static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1334{
1335 u32 gcr = rd32(E1000_GCR);
1336 s32 ret_val = 0;
1337 u16 pcie_devctl2;
1338
1339 /* only take action if timeout value is defaulted to 0 */
1340 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1341 goto out;
1342
1343 /*
1344 * if capababilities version is type 1 we can write the
1345 * timeout of 10ms to 200ms through the GCR register
1346 */
1347 if (!(gcr & E1000_GCR_CAP_VER2)) {
1348 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1349 goto out;
1350 }
1351
1352 /*
1353 * for version 2 capabilities we need to write the config space
1354 * directly in order to set the completion timeout value for
1355 * 16ms to 55ms
1356 */
1357 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1358 &pcie_devctl2);
1359 if (ret_val)
1360 goto out;
1361
1362 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1363
1364 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1365 &pcie_devctl2);
1366out:
1367 /* disable completion timeout resend */
1368 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1369
1370 wr32(E1000_GCR, gcr);
1371 return ret_val;
1372}
1373
4ae196df
AD
1374/**
1375 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1376 * @hw: pointer to the hardware struct
1377 * @enable: state to enter, either enabled or disabled
1378 *
1379 * enables/disables L2 switch loopback functionality.
1380 **/
1381void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1382{
1383 u32 dtxswc = rd32(E1000_DTXSWC);
1384
1385 if (enable)
1386 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1387 else
1388 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1389
1390 wr32(E1000_DTXSWC, dtxswc);
1391}
1392
1393/**
1394 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1395 * @hw: pointer to the hardware struct
1396 * @enable: state to enter, either enabled or disabled
1397 *
1398 * enables/disables replication of packets across multiple pools.
1399 **/
1400void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1401{
1402 u32 vt_ctl = rd32(E1000_VT_CTL);
1403
1404 if (enable)
1405 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1406 else
1407 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1408
1409 wr32(E1000_VT_CTL, vt_ctl);
1410}
1411
bb2ac47b
AD
1412/**
1413 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1414 * @hw: pointer to the HW structure
1415 * @offset: register offset to be read
1416 * @data: pointer to the read data
1417 *
1418 * Reads the MDI control register in the PHY at offset and stores the
1419 * information read to data.
1420 **/
1421static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1422{
1423 u32 mdicnfg = 0;
1424 s32 ret_val;
1425
1426
1427 ret_val = hw->phy.ops.acquire(hw);
1428 if (ret_val)
1429 goto out;
1430
1431 /*
1432 * We config the phy address in MDICNFG register now. Same bits
1433 * as before. The values in MDIC can be written but will be
1434 * ignored. This allows us to call the old function after
1435 * configuring the PHY address in the new register
1436 */
1437 mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
1438 wr32(E1000_MDICNFG, mdicnfg);
1439
1440 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1441
1442 hw->phy.ops.release(hw);
1443
1444out:
1445 return ret_val;
1446}
1447
1448/**
1449 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1450 * @hw: pointer to the HW structure
1451 * @offset: register offset to write to
1452 * @data: data to write to register at offset
1453 *
1454 * Writes data to MDI control register in the PHY at offset.
1455 **/
1456static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1457{
1458 u32 mdicnfg = 0;
1459 s32 ret_val;
1460
1461
1462 ret_val = hw->phy.ops.acquire(hw);
1463 if (ret_val)
1464 goto out;
1465
1466 /*
1467 * We config the phy address in MDICNFG register now. Same bits
1468 * as before. The values in MDIC can be written but will be
1469 * ignored. This allows us to call the old function after
1470 * configuring the PHY address in the new register
1471 */
1472 mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT);
1473 wr32(E1000_MDICNFG, mdicnfg);
1474
1475 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1476
1477 hw->phy.ops.release(hw);
1478
1479out:
1480 return ret_val;
1481}
1482
1483/**
1484 * igb_reset_hw_82580 - Reset hardware
1485 * @hw: pointer to the HW structure
1486 *
1487 * This resets function or entire device (all ports, etc.)
1488 * to a known state.
1489 **/
1490static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1491{
1492 s32 ret_val = 0;
1493 /* BH SW mailbox bit in SW_FW_SYNC */
1494 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1495 u32 ctrl, icr;
1496 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1497
1498
1499 hw->dev_spec._82575.global_device_reset = false;
1500
1501 /* Get current control state. */
1502 ctrl = rd32(E1000_CTRL);
1503
1504 /*
1505 * Prevent the PCI-E bus from sticking if there is no TLP connection
1506 * on the last TLP read/write transaction when MAC is reset.
1507 */
1508 ret_val = igb_disable_pcie_master(hw);
1509 if (ret_val)
1510 hw_dbg("PCI-E Master disable polling has failed.\n");
1511
1512 hw_dbg("Masking off all interrupts\n");
1513 wr32(E1000_IMC, 0xffffffff);
1514 wr32(E1000_RCTL, 0);
1515 wr32(E1000_TCTL, E1000_TCTL_PSP);
1516 wrfl();
1517
1518 msleep(10);
1519
1520 /* Determine whether or not a global dev reset is requested */
1521 if (global_device_reset &&
1522 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1523 global_device_reset = false;
1524
1525 if (global_device_reset &&
1526 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1527 ctrl |= E1000_CTRL_DEV_RST;
1528 else
1529 ctrl |= E1000_CTRL_RST;
1530
1531 wr32(E1000_CTRL, ctrl);
1532
1533 /* Add delay to insure DEV_RST has time to complete */
1534 if (global_device_reset)
1535 msleep(5);
1536
1537 ret_val = igb_get_auto_rd_done(hw);
1538 if (ret_val) {
1539 /*
1540 * When auto config read does not complete, do not
1541 * return with an error. This can happen in situations
1542 * where there is no eeprom and prevents getting link.
1543 */
1544 hw_dbg("Auto Read Done did not complete\n");
1545 }
1546
1547 /* If EEPROM is not present, run manual init scripts */
1548 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1549 igb_reset_init_script_82575(hw);
1550
1551 /* clear global device reset status bit */
1552 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1553
1554 /* Clear any pending interrupt events. */
1555 wr32(E1000_IMC, 0xffffffff);
1556 icr = rd32(E1000_ICR);
1557
1558 /* Install any alternate MAC address into RAR0 */
1559 ret_val = igb_check_alt_mac_addr(hw);
1560
1561 /* Release semaphore */
1562 if (global_device_reset)
1563 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1564
1565 return ret_val;
1566}
1567
1568/**
1569 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1570 * @data: data received by reading RXPBS register
1571 *
1572 * The 82580 uses a table based approach for packet buffer allocation sizes.
1573 * This function converts the retrieved value into the correct table value
1574 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1575 * 0x0 36 72 144 1 2 4 8 16
1576 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1577 */
1578u16 igb_rxpbs_adjust_82580(u32 data)
1579{
1580 u16 ret_val = 0;
1581
1582 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1583 ret_val = e1000_82580_rxpbs_table[data];
1584
1585 return ret_val;
1586}
1587
9d5c8243 1588static struct e1000_mac_operations e1000_mac_ops_82575 = {
9d5c8243
AK
1589 .init_hw = igb_init_hw_82575,
1590 .check_for_link = igb_check_for_link_82575,
2d064c06 1591 .rar_set = igb_rar_set,
9d5c8243
AK
1592 .read_mac_addr = igb_read_mac_addr_82575,
1593 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1594};
1595
1596static struct e1000_phy_operations e1000_phy_ops_82575 = {
a8d2a0c2 1597 .acquire = igb_acquire_phy_82575,
9d5c8243 1598 .get_cfg_done = igb_get_cfg_done_82575,
a8d2a0c2 1599 .release = igb_release_phy_82575,
9d5c8243
AK
1600};
1601
1602static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
312c75ae
AD
1603 .acquire = igb_acquire_nvm_82575,
1604 .read = igb_read_nvm_eerd,
1605 .release = igb_release_nvm_82575,
1606 .write = igb_write_nvm_spi,
9d5c8243
AK
1607};
1608
1609const struct e1000_info e1000_82575_info = {
1610 .get_invariants = igb_get_invariants_82575,
1611 .mac_ops = &e1000_mac_ops_82575,
1612 .phy_ops = &e1000_phy_ops_82575,
1613 .nvm_ops = &e1000_nvm_ops_82575,
1614};
1615
This page took 0.333863 seconds and 5 git commands to generate.