e1000e: return appropriate errors for 'ethtool -r'
[deliverable/linux.git] / drivers / net / igb / e1000_82575.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* e1000_82575
29 * e1000_82576
30 */
31
32#include <linux/types.h>
2d064c06 33#include <linux/if_ether.h>
9d5c8243
AK
34
35#include "e1000_mac.h"
36#include "e1000_82575.h"
37
38static s32 igb_get_invariants_82575(struct e1000_hw *);
39static s32 igb_acquire_phy_82575(struct e1000_hw *);
40static void igb_release_phy_82575(struct e1000_hw *);
41static s32 igb_acquire_nvm_82575(struct e1000_hw *);
42static void igb_release_nvm_82575(struct e1000_hw *);
43static s32 igb_check_for_link_82575(struct e1000_hw *);
44static s32 igb_get_cfg_done_82575(struct e1000_hw *);
45static s32 igb_init_hw_82575(struct e1000_hw *);
46static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
bb2ac47b
AD
48static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
9d5c8243 50static s32 igb_reset_hw_82575(struct e1000_hw *);
bb2ac47b 51static s32 igb_reset_hw_82580(struct e1000_hw *);
9d5c8243
AK
52static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53static s32 igb_setup_copper_link_82575(struct e1000_hw *);
2fb02a26 54static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
9d5c8243
AK
55static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
9d5c8243
AK
58static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 u16 *);
60static s32 igb_get_phy_id_82575(struct e1000_hw *);
61static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62static bool igb_sgmii_active_82575(struct e1000_hw *);
63static s32 igb_reset_init_script_82575(struct e1000_hw *);
64static s32 igb_read_mac_addr_82575(struct e1000_hw *);
009bc06e 65static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
99870a73 66static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
9d5c8243 67
bb2ac47b
AD
68static const u16 e1000_82580_rxpbs_table[] =
69 { 36, 72, 144, 1, 2, 4, 8, 16,
70 35, 70, 140 };
71#define E1000_82580_RXPBS_TABLE_SIZE \
72 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
73
4085f746
NN
74/**
75 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
76 * @hw: pointer to the HW structure
77 *
78 * Called to determine if the I2C pins are being used for I2C or as an
79 * external MDIO interface since the two options are mutually exclusive.
80 **/
81static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
82{
83 u32 reg = 0;
84 bool ext_mdio = false;
85
86 switch (hw->mac.type) {
87 case e1000_82575:
88 case e1000_82576:
89 reg = rd32(E1000_MDIC);
90 ext_mdio = !!(reg & E1000_MDIC_DEST);
91 break;
92 case e1000_82580:
93 case e1000_i350:
94 reg = rd32(E1000_MDICNFG);
95 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
96 break;
97 default:
98 break;
99 }
100 return ext_mdio;
101}
102
9d5c8243
AK
103static s32 igb_get_invariants_82575(struct e1000_hw *hw)
104{
105 struct e1000_phy_info *phy = &hw->phy;
106 struct e1000_nvm_info *nvm = &hw->nvm;
107 struct e1000_mac_info *mac = &hw->mac;
c1889bfe 108 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
9d5c8243
AK
109 u32 eecd;
110 s32 ret_val;
111 u16 size;
112 u32 ctrl_ext = 0;
113
114 switch (hw->device_id) {
115 case E1000_DEV_ID_82575EB_COPPER:
116 case E1000_DEV_ID_82575EB_FIBER_SERDES:
117 case E1000_DEV_ID_82575GB_QUAD_COPPER:
118 mac->type = e1000_82575;
119 break;
2d064c06 120 case E1000_DEV_ID_82576:
9eb2341d 121 case E1000_DEV_ID_82576_NS:
747d49ba 122 case E1000_DEV_ID_82576_NS_SERDES:
2d064c06
AD
123 case E1000_DEV_ID_82576_FIBER:
124 case E1000_DEV_ID_82576_SERDES:
c8ea5ea9 125 case E1000_DEV_ID_82576_QUAD_COPPER:
b894fa26 126 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
4703bf73 127 case E1000_DEV_ID_82576_SERDES_QUAD:
2d064c06
AD
128 mac->type = e1000_82576;
129 break;
bb2ac47b
AD
130 case E1000_DEV_ID_82580_COPPER:
131 case E1000_DEV_ID_82580_FIBER:
6493d24f 132 case E1000_DEV_ID_82580_QUAD_FIBER:
bb2ac47b
AD
133 case E1000_DEV_ID_82580_SERDES:
134 case E1000_DEV_ID_82580_SGMII:
135 case E1000_DEV_ID_82580_COPPER_DUAL:
308fb39a
JG
136 case E1000_DEV_ID_DH89XXCC_SGMII:
137 case E1000_DEV_ID_DH89XXCC_SERDES:
1b5dda33
GJ
138 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
139 case E1000_DEV_ID_DH89XXCC_SFP:
bb2ac47b
AD
140 mac->type = e1000_82580;
141 break;
d2ba2ed8
AD
142 case E1000_DEV_ID_I350_COPPER:
143 case E1000_DEV_ID_I350_FIBER:
144 case E1000_DEV_ID_I350_SERDES:
145 case E1000_DEV_ID_I350_SGMII:
146 mac->type = e1000_i350;
147 break;
9d5c8243
AK
148 default:
149 return -E1000_ERR_MAC_INIT;
150 break;
151 }
152
9d5c8243
AK
153 /* Set media type */
154 /*
155 * The 82575 uses bits 22:23 for link mode. The mode can be changed
156 * based on the EEPROM. We cannot rely upon device ID. There
157 * is no distinguishable difference between fiber and internal
158 * SerDes mode on the 82575. There can be an external PHY attached
159 * on the SGMII interface. For this, we'll set sgmii_active to true.
160 */
161 phy->media_type = e1000_media_type_copper;
162 dev_spec->sgmii_active = false;
163
164 ctrl_ext = rd32(E1000_CTRL_EXT);
2fb02a26
AD
165 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
166 case E1000_CTRL_EXT_LINK_MODE_SGMII:
9d5c8243 167 dev_spec->sgmii_active = true;
2fb02a26 168 break;
bb2ac47b 169 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
2fb02a26
AD
170 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
171 hw->phy.media_type = e1000_media_type_internal_serdes;
2fb02a26
AD
172 break;
173 default:
2fb02a26 174 break;
9d5c8243 175 }
2fb02a26 176
9d5c8243
AK
177 /* Set mta register count */
178 mac->mta_reg_count = 128;
179 /* Set rar entry count */
180 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
2d064c06
AD
181 if (mac->type == e1000_82576)
182 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
bb2ac47b
AD
183 if (mac->type == e1000_82580)
184 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
d2ba2ed8
AD
185 if (mac->type == e1000_i350)
186 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
bb2ac47b 187 /* reset */
d2ba2ed8 188 if (mac->type >= e1000_82580)
bb2ac47b
AD
189 mac->ops.reset_hw = igb_reset_hw_82580;
190 else
191 mac->ops.reset_hw = igb_reset_hw_82575;
9d5c8243
AK
192 /* Set if part includes ASF firmware */
193 mac->asf_firmware_present = true;
194 /* Set if manageability features are enabled. */
195 mac->arc_subsystem_valid =
196 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
197 ? true : false;
198
199 /* physical interface link setup */
200 mac->ops.setup_physical_interface =
201 (hw->phy.media_type == e1000_media_type_copper)
202 ? igb_setup_copper_link_82575
2fb02a26 203 : igb_setup_serdes_link_82575;
9d5c8243
AK
204
205 /* NVM initialization */
206 eecd = rd32(E1000_EECD);
207
208 nvm->opcode_bits = 8;
209 nvm->delay_usec = 1;
210 switch (nvm->override) {
211 case e1000_nvm_override_spi_large:
212 nvm->page_size = 32;
213 nvm->address_bits = 16;
214 break;
215 case e1000_nvm_override_spi_small:
216 nvm->page_size = 8;
217 nvm->address_bits = 8;
218 break;
219 default:
220 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
221 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
222 break;
223 }
224
225 nvm->type = e1000_nvm_eeprom_spi;
226
227 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
228 E1000_EECD_SIZE_EX_SHIFT);
229
230 /*
231 * Added to a constant, "size" becomes the left-shift value
232 * for setting word_size.
233 */
234 size += NVM_WORD_SIZE_BASE_SHIFT;
5c3cad75
JK
235
236 /* EEPROM access above 16k is unsupported */
237 if (size > 14)
238 size = 14;
9d5c8243
AK
239 nvm->word_size = 1 << size;
240
a0c98605
AD
241 /* if 82576 then initialize mailbox parameters */
242 if (mac->type == e1000_82576)
243 igb_init_mbx_params_pf(hw);
244
9d5c8243
AK
245 /* setup PHY parameters */
246 if (phy->media_type != e1000_media_type_copper) {
247 phy->type = e1000_phy_none;
248 return 0;
249 }
250
251 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
252 phy->reset_delay_us = 100;
253
99870a73
AD
254 ctrl_ext = rd32(E1000_CTRL_EXT);
255
9d5c8243 256 /* PHY function pointers */
99870a73 257 if (igb_sgmii_active_82575(hw)) {
4085f746 258 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
99870a73
AD
259 ctrl_ext |= E1000_CTRL_I2C_ENA;
260 } else {
4085f746 261 phy->ops.reset = igb_phy_hw_reset;
99870a73
AD
262 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
263 }
264
265 wr32(E1000_CTRL_EXT, ctrl_ext);
266 igb_reset_mdicnfg_82580(hw);
4085f746
NN
267
268 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
269 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
270 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
d2ba2ed8 271 } else if (hw->mac.type >= e1000_82580) {
4085f746
NN
272 phy->ops.read_reg = igb_read_phy_reg_82580;
273 phy->ops.write_reg = igb_write_phy_reg_82580;
9d5c8243 274 } else {
4085f746
NN
275 phy->ops.read_reg = igb_read_phy_reg_igp;
276 phy->ops.write_reg = igb_write_phy_reg_igp;
9d5c8243
AK
277 }
278
19e588e7
AD
279 /* set lan id */
280 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
281 E1000_STATUS_FUNC_SHIFT;
282
9d5c8243
AK
283 /* Set phy->phy_addr and phy->id. */
284 ret_val = igb_get_phy_id_82575(hw);
285 if (ret_val)
286 return ret_val;
287
288 /* Verify phy id and set remaining function pointers */
289 switch (phy->id) {
308fb39a
JG
290 case I347AT4_E_PHY_ID:
291 case M88E1112_E_PHY_ID:
9d5c8243
AK
292 case M88E1111_I_PHY_ID:
293 phy->type = e1000_phy_m88;
294 phy->ops.get_phy_info = igb_get_phy_info_m88;
308fb39a
JG
295
296 if (phy->id == I347AT4_E_PHY_ID ||
297 phy->id == M88E1112_E_PHY_ID)
298 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
299 else
300 phy->ops.get_cable_length = igb_get_cable_length_m88;
301
9d5c8243
AK
302 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
303 break;
304 case IGP03E1000_E_PHY_ID:
305 phy->type = e1000_phy_igp_3;
306 phy->ops.get_phy_info = igb_get_phy_info_igp;
307 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
308 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
309 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
310 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
311 break;
bb2ac47b 312 case I82580_I_PHY_ID:
d2ba2ed8 313 case I350_I_PHY_ID:
bb2ac47b
AD
314 phy->type = e1000_phy_82580;
315 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
316 phy->ops.get_cable_length = igb_get_cable_length_82580;
317 phy->ops.get_phy_info = igb_get_phy_info_82580;
318 break;
9d5c8243
AK
319 default:
320 return -E1000_ERR_PHY;
321 }
322
323 return 0;
324}
325
326/**
733596be 327 * igb_acquire_phy_82575 - Acquire rights to access PHY
9d5c8243
AK
328 * @hw: pointer to the HW structure
329 *
330 * Acquire access rights to the correct PHY. This is a
331 * function pointer entry point called by the api module.
332 **/
333static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
334{
008c3422 335 u16 mask = E1000_SWFW_PHY0_SM;
9d5c8243 336
008c3422
AD
337 if (hw->bus.func == E1000_FUNC_1)
338 mask = E1000_SWFW_PHY1_SM;
ede3ef0d
NN
339 else if (hw->bus.func == E1000_FUNC_2)
340 mask = E1000_SWFW_PHY2_SM;
341 else if (hw->bus.func == E1000_FUNC_3)
342 mask = E1000_SWFW_PHY3_SM;
9d5c8243
AK
343
344 return igb_acquire_swfw_sync_82575(hw, mask);
345}
346
347/**
733596be 348 * igb_release_phy_82575 - Release rights to access PHY
9d5c8243
AK
349 * @hw: pointer to the HW structure
350 *
351 * A wrapper to release access rights to the correct PHY. This is a
352 * function pointer entry point called by the api module.
353 **/
354static void igb_release_phy_82575(struct e1000_hw *hw)
355{
008c3422
AD
356 u16 mask = E1000_SWFW_PHY0_SM;
357
358 if (hw->bus.func == E1000_FUNC_1)
359 mask = E1000_SWFW_PHY1_SM;
ede3ef0d
NN
360 else if (hw->bus.func == E1000_FUNC_2)
361 mask = E1000_SWFW_PHY2_SM;
362 else if (hw->bus.func == E1000_FUNC_3)
363 mask = E1000_SWFW_PHY3_SM;
9d5c8243 364
9d5c8243
AK
365 igb_release_swfw_sync_82575(hw, mask);
366}
367
368/**
733596be 369 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
9d5c8243
AK
370 * @hw: pointer to the HW structure
371 * @offset: register offset to be read
372 * @data: pointer to the read data
373 *
374 * Reads the PHY register at offset using the serial gigabit media independent
375 * interface and stores the retrieved information in data.
376 **/
377static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
378 u16 *data)
379{
bf6f7a92 380 s32 ret_val = -E1000_ERR_PARAM;
9d5c8243
AK
381
382 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 383 hw_dbg("PHY Address %u is out of range\n", offset);
bf6f7a92 384 goto out;
9d5c8243
AK
385 }
386
bf6f7a92
AD
387 ret_val = hw->phy.ops.acquire(hw);
388 if (ret_val)
389 goto out;
9d5c8243 390
bf6f7a92 391 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
9d5c8243 392
bf6f7a92
AD
393 hw->phy.ops.release(hw);
394
395out:
396 return ret_val;
9d5c8243
AK
397}
398
399/**
733596be 400 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
9d5c8243
AK
401 * @hw: pointer to the HW structure
402 * @offset: register offset to write to
403 * @data: data to write at register offset
404 *
405 * Writes the data to PHY register at the offset using the serial gigabit
406 * media independent interface.
407 **/
408static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
409 u16 data)
410{
bf6f7a92
AD
411 s32 ret_val = -E1000_ERR_PARAM;
412
9d5c8243
AK
413
414 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
652fff32 415 hw_dbg("PHY Address %d is out of range\n", offset);
bf6f7a92 416 goto out;
9d5c8243
AK
417 }
418
bf6f7a92
AD
419 ret_val = hw->phy.ops.acquire(hw);
420 if (ret_val)
421 goto out;
9d5c8243 422
bf6f7a92 423 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
9d5c8243 424
bf6f7a92
AD
425 hw->phy.ops.release(hw);
426
427out:
428 return ret_val;
9d5c8243
AK
429}
430
431/**
733596be 432 * igb_get_phy_id_82575 - Retrieve PHY addr and id
9d5c8243
AK
433 * @hw: pointer to the HW structure
434 *
652fff32 435 * Retrieves the PHY address and ID for both PHY's which do and do not use
9d5c8243
AK
436 * sgmi interface.
437 **/
438static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
439{
440 struct e1000_phy_info *phy = &hw->phy;
441 s32 ret_val = 0;
442 u16 phy_id;
2fb02a26 443 u32 ctrl_ext;
4085f746 444 u32 mdic;
9d5c8243
AK
445
446 /*
447 * For SGMII PHYs, we try the list of possible addresses until
448 * we find one that works. For non-SGMII PHYs
449 * (e.g. integrated copper PHYs), an address of 1 should
450 * work. The result of this function should mean phy->phy_addr
451 * and phy->id are set correctly.
452 */
453 if (!(igb_sgmii_active_82575(hw))) {
454 phy->addr = 1;
455 ret_val = igb_get_phy_id(hw);
456 goto out;
457 }
458
4085f746
NN
459 if (igb_sgmii_uses_mdio_82575(hw)) {
460 switch (hw->mac.type) {
461 case e1000_82575:
462 case e1000_82576:
463 mdic = rd32(E1000_MDIC);
464 mdic &= E1000_MDIC_PHY_MASK;
465 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
466 break;
467 case e1000_82580:
468 case e1000_i350:
469 mdic = rd32(E1000_MDICNFG);
470 mdic &= E1000_MDICNFG_PHY_MASK;
471 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
472 break;
473 default:
474 ret_val = -E1000_ERR_PHY;
475 goto out;
476 break;
477 }
478 ret_val = igb_get_phy_id(hw);
479 goto out;
480 }
481
2fb02a26
AD
482 /* Power on sgmii phy if it is disabled */
483 ctrl_ext = rd32(E1000_CTRL_EXT);
484 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
485 wrfl();
486 msleep(300);
487
9d5c8243
AK
488 /*
489 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
490 * Therefore, we need to test 1-7
491 */
492 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
493 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
494 if (ret_val == 0) {
652fff32
AK
495 hw_dbg("Vendor ID 0x%08X read at address %u\n",
496 phy_id, phy->addr);
9d5c8243
AK
497 /*
498 * At the time of this writing, The M88 part is
499 * the only supported SGMII PHY product.
500 */
501 if (phy_id == M88_VENDOR)
502 break;
503 } else {
652fff32 504 hw_dbg("PHY address %u was unreadable\n", phy->addr);
9d5c8243
AK
505 }
506 }
507
508 /* A valid PHY type couldn't be found. */
509 if (phy->addr == 8) {
510 phy->addr = 0;
511 ret_val = -E1000_ERR_PHY;
512 goto out;
2fb02a26
AD
513 } else {
514 ret_val = igb_get_phy_id(hw);
9d5c8243
AK
515 }
516
2fb02a26
AD
517 /* restore previous sfp cage power state */
518 wr32(E1000_CTRL_EXT, ctrl_ext);
9d5c8243
AK
519
520out:
521 return ret_val;
522}
523
524/**
733596be 525 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
9d5c8243
AK
526 * @hw: pointer to the HW structure
527 *
528 * Resets the PHY using the serial gigabit media independent interface.
529 **/
530static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
531{
532 s32 ret_val;
533
534 /*
535 * This isn't a true "hard" reset, but is the only reset
536 * available to us at this time.
537 */
538
652fff32 539 hw_dbg("Soft resetting SGMII attached PHY...\n");
9d5c8243
AK
540
541 /*
542 * SFP documentation requires the following to configure the SPF module
543 * to work on SGMII. No further documentation is given.
544 */
a8d2a0c2 545 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
9d5c8243
AK
546 if (ret_val)
547 goto out;
548
549 ret_val = igb_phy_sw_reset(hw);
550
551out:
552 return ret_val;
553}
554
555/**
733596be 556 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
9d5c8243
AK
557 * @hw: pointer to the HW structure
558 * @active: true to enable LPLU, false to disable
559 *
560 * Sets the LPLU D0 state according to the active flag. When
561 * activating LPLU this function also disables smart speed
562 * and vice versa. LPLU will not be activated unless the
563 * device autonegotiation advertisement meets standards of
564 * either 10 or 10/100 or 10/100/1000 at all duplexes.
565 * This is a function pointer entry point only called by
566 * PHY setup routines.
567 **/
568static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
569{
570 struct e1000_phy_info *phy = &hw->phy;
571 s32 ret_val;
572 u16 data;
573
a8d2a0c2 574 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
9d5c8243
AK
575 if (ret_val)
576 goto out;
577
578 if (active) {
579 data |= IGP02E1000_PM_D0_LPLU;
a8d2a0c2 580 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
652fff32 581 data);
9d5c8243
AK
582 if (ret_val)
583 goto out;
584
585 /* When LPLU is enabled, we should disable SmartSpeed */
a8d2a0c2 586 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
652fff32 587 &data);
9d5c8243 588 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 589 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
652fff32 590 data);
9d5c8243
AK
591 if (ret_val)
592 goto out;
593 } else {
594 data &= ~IGP02E1000_PM_D0_LPLU;
a8d2a0c2 595 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
652fff32 596 data);
9d5c8243
AK
597 /*
598 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
599 * during Dx states where the power conservation is most
600 * important. During driver activity we should enable
601 * SmartSpeed, so performance is maintained.
602 */
603 if (phy->smart_speed == e1000_smart_speed_on) {
a8d2a0c2 604 ret_val = phy->ops.read_reg(hw,
652fff32 605 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
606 if (ret_val)
607 goto out;
608
609 data |= IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 610 ret_val = phy->ops.write_reg(hw,
652fff32 611 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
612 if (ret_val)
613 goto out;
614 } else if (phy->smart_speed == e1000_smart_speed_off) {
a8d2a0c2 615 ret_val = phy->ops.read_reg(hw,
652fff32 616 IGP01E1000_PHY_PORT_CONFIG, &data);
9d5c8243
AK
617 if (ret_val)
618 goto out;
619
620 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
a8d2a0c2 621 ret_val = phy->ops.write_reg(hw,
652fff32 622 IGP01E1000_PHY_PORT_CONFIG, data);
9d5c8243
AK
623 if (ret_val)
624 goto out;
625 }
626 }
627
628out:
629 return ret_val;
630}
631
632/**
733596be 633 * igb_acquire_nvm_82575 - Request for access to EEPROM
9d5c8243
AK
634 * @hw: pointer to the HW structure
635 *
652fff32 636 * Acquire the necessary semaphores for exclusive access to the EEPROM.
9d5c8243
AK
637 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
638 * Return successful if access grant bit set, else clear the request for
639 * EEPROM access and return -E1000_ERR_NVM (-1).
640 **/
641static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
642{
643 s32 ret_val;
644
645 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
646 if (ret_val)
647 goto out;
648
649 ret_val = igb_acquire_nvm(hw);
650
651 if (ret_val)
652 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
653
654out:
655 return ret_val;
656}
657
658/**
733596be 659 * igb_release_nvm_82575 - Release exclusive access to EEPROM
9d5c8243
AK
660 * @hw: pointer to the HW structure
661 *
662 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
663 * then release the semaphores acquired.
664 **/
665static void igb_release_nvm_82575(struct e1000_hw *hw)
666{
667 igb_release_nvm(hw);
668 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
669}
670
671/**
733596be 672 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
9d5c8243
AK
673 * @hw: pointer to the HW structure
674 * @mask: specifies which semaphore to acquire
675 *
676 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
677 * will also specify which port we're acquiring the lock for.
678 **/
679static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
680{
681 u32 swfw_sync;
682 u32 swmask = mask;
683 u32 fwmask = mask << 16;
684 s32 ret_val = 0;
685 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
686
687 while (i < timeout) {
688 if (igb_get_hw_semaphore(hw)) {
689 ret_val = -E1000_ERR_SWFW_SYNC;
690 goto out;
691 }
692
693 swfw_sync = rd32(E1000_SW_FW_SYNC);
694 if (!(swfw_sync & (fwmask | swmask)))
695 break;
696
697 /*
698 * Firmware currently using resource (fwmask)
699 * or other software thread using resource (swmask)
700 */
701 igb_put_hw_semaphore(hw);
702 mdelay(5);
703 i++;
704 }
705
706 if (i == timeout) {
652fff32 707 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
9d5c8243
AK
708 ret_val = -E1000_ERR_SWFW_SYNC;
709 goto out;
710 }
711
712 swfw_sync |= swmask;
713 wr32(E1000_SW_FW_SYNC, swfw_sync);
714
715 igb_put_hw_semaphore(hw);
716
717out:
718 return ret_val;
719}
720
721/**
733596be 722 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
9d5c8243
AK
723 * @hw: pointer to the HW structure
724 * @mask: specifies which semaphore to acquire
725 *
726 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
727 * will also specify which port we're releasing the lock for.
728 **/
729static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
730{
731 u32 swfw_sync;
732
733 while (igb_get_hw_semaphore(hw) != 0);
734 /* Empty */
735
736 swfw_sync = rd32(E1000_SW_FW_SYNC);
737 swfw_sync &= ~mask;
738 wr32(E1000_SW_FW_SYNC, swfw_sync);
739
740 igb_put_hw_semaphore(hw);
741}
742
743/**
733596be 744 * igb_get_cfg_done_82575 - Read config done bit
9d5c8243
AK
745 * @hw: pointer to the HW structure
746 *
747 * Read the management control register for the config done bit for
748 * completion status. NOTE: silicon which is EEPROM-less will fail trying
749 * to read the config done bit, so an error is *ONLY* logged and returns
750 * 0. If we were to return with error, EEPROM-less silicon
751 * would not be able to be reset or change link.
752 **/
753static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
754{
755 s32 timeout = PHY_CFG_TIMEOUT;
756 s32 ret_val = 0;
757 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
758
759 if (hw->bus.func == 1)
760 mask = E1000_NVM_CFG_DONE_PORT_1;
bb2ac47b
AD
761 else if (hw->bus.func == E1000_FUNC_2)
762 mask = E1000_NVM_CFG_DONE_PORT_2;
763 else if (hw->bus.func == E1000_FUNC_3)
764 mask = E1000_NVM_CFG_DONE_PORT_3;
9d5c8243
AK
765
766 while (timeout) {
767 if (rd32(E1000_EEMNGCTL) & mask)
768 break;
769 msleep(1);
770 timeout--;
771 }
772 if (!timeout)
652fff32 773 hw_dbg("MNG configuration cycle has not completed.\n");
9d5c8243
AK
774
775 /* If EEPROM is not marked present, init the PHY manually */
776 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
777 (hw->phy.type == e1000_phy_igp_3))
778 igb_phy_init_script_igp3(hw);
779
780 return ret_val;
781}
782
783/**
733596be 784 * igb_check_for_link_82575 - Check for link
9d5c8243
AK
785 * @hw: pointer to the HW structure
786 *
787 * If sgmii is enabled, then use the pcs register to determine link, otherwise
788 * use the generic interface for determining link.
789 **/
790static s32 igb_check_for_link_82575(struct e1000_hw *hw)
791{
792 s32 ret_val;
793 u16 speed, duplex;
794
70d92f86 795 if (hw->phy.media_type != e1000_media_type_copper) {
9d5c8243 796 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
2d064c06 797 &duplex);
5d0932a5
AD
798 /*
799 * Use this flag to determine if link needs to be checked or
800 * not. If we have link clear the flag so that we do not
801 * continue to check for link.
802 */
803 hw->mac.get_link_status = !hw->mac.serdes_has_link;
804 } else {
9d5c8243 805 ret_val = igb_check_for_copper_link(hw);
5d0932a5 806 }
9d5c8243
AK
807
808 return ret_val;
809}
70d92f86 810
88a268c1
NN
811/**
812 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
813 * @hw: pointer to the HW structure
814 **/
815void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
816{
817 u32 reg;
818
819
820 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
821 !igb_sgmii_active_82575(hw))
822 return;
823
824 /* Enable PCS to turn on link */
825 reg = rd32(E1000_PCS_CFG0);
826 reg |= E1000_PCS_CFG_PCS_EN;
827 wr32(E1000_PCS_CFG0, reg);
828
829 /* Power up the laser */
830 reg = rd32(E1000_CTRL_EXT);
831 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
832 wr32(E1000_CTRL_EXT, reg);
833
834 /* flush the write to verify completion */
835 wrfl();
836 msleep(1);
837}
838
9d5c8243 839/**
733596be 840 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
9d5c8243
AK
841 * @hw: pointer to the HW structure
842 * @speed: stores the current speed
843 * @duplex: stores the current duplex
844 *
652fff32 845 * Using the physical coding sub-layer (PCS), retrieve the current speed and
9d5c8243
AK
846 * duplex, then store the values in the pointers provided.
847 **/
848static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
849 u16 *duplex)
850{
851 struct e1000_mac_info *mac = &hw->mac;
852 u32 pcs;
853
854 /* Set up defaults for the return values of this function */
855 mac->serdes_has_link = false;
856 *speed = 0;
857 *duplex = 0;
858
859 /*
860 * Read the PCS Status register for link state. For non-copper mode,
861 * the status register is not accurate. The PCS status register is
862 * used instead.
863 */
864 pcs = rd32(E1000_PCS_LSTAT);
865
866 /*
867 * The link up bit determines when link is up on autoneg. The sync ok
868 * gets set once both sides sync up and agree upon link. Stable link
869 * can be determined by checking for both link up and link sync ok
870 */
871 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
872 mac->serdes_has_link = true;
873
874 /* Detect and store PCS speed */
875 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
876 *speed = SPEED_1000;
877 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
878 *speed = SPEED_100;
879 } else {
880 *speed = SPEED_10;
881 }
882
883 /* Detect and store PCS duplex */
884 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
885 *duplex = FULL_DUPLEX;
886 } else {
887 *duplex = HALF_DUPLEX;
888 }
889 }
890
891 return 0;
892}
893
2d064c06 894/**
2fb02a26 895 * igb_shutdown_serdes_link_82575 - Remove link during power down
9d5c8243 896 * @hw: pointer to the HW structure
9d5c8243 897 *
2d064c06
AD
898 * In the case of fiber serdes, shut down optics and PCS on driver unload
899 * when management pass thru is not enabled.
9d5c8243 900 **/
2fb02a26 901void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 902{
2d064c06
AD
903 u32 reg;
904
53c992fa 905 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
2fb02a26 906 igb_sgmii_active_82575(hw))
2d064c06
AD
907 return;
908
53c992fa 909 if (!igb_enable_mng_pass_thru(hw)) {
2d064c06
AD
910 /* Disable PCS to turn off link */
911 reg = rd32(E1000_PCS_CFG0);
912 reg &= ~E1000_PCS_CFG_PCS_EN;
913 wr32(E1000_PCS_CFG0, reg);
914
915 /* shutdown the laser */
916 reg = rd32(E1000_CTRL_EXT);
2fb02a26 917 reg |= E1000_CTRL_EXT_SDP3_DATA;
2d064c06
AD
918 wr32(E1000_CTRL_EXT, reg);
919
920 /* flush the write to verify completion */
921 wrfl();
922 msleep(1);
923 }
9d5c8243
AK
924}
925
926/**
733596be 927 * igb_reset_hw_82575 - Reset hardware
9d5c8243
AK
928 * @hw: pointer to the HW structure
929 *
930 * This resets the hardware into a known state. This is a
931 * function pointer entry point called by the api module.
932 **/
933static s32 igb_reset_hw_82575(struct e1000_hw *hw)
934{
935 u32 ctrl, icr;
936 s32 ret_val;
937
938 /*
939 * Prevent the PCI-E bus from sticking if there is no TLP connection
940 * on the last TLP read/write transaction when MAC is reset.
941 */
942 ret_val = igb_disable_pcie_master(hw);
943 if (ret_val)
652fff32 944 hw_dbg("PCI-E Master disable polling has failed.\n");
9d5c8243 945
009bc06e
AD
946 /* set the completion timeout for interface */
947 ret_val = igb_set_pcie_completion_timeout(hw);
948 if (ret_val) {
949 hw_dbg("PCI-E Set completion timeout has failed.\n");
950 }
951
652fff32 952 hw_dbg("Masking off all interrupts\n");
9d5c8243
AK
953 wr32(E1000_IMC, 0xffffffff);
954
955 wr32(E1000_RCTL, 0);
956 wr32(E1000_TCTL, E1000_TCTL_PSP);
957 wrfl();
958
959 msleep(10);
960
961 ctrl = rd32(E1000_CTRL);
962
652fff32 963 hw_dbg("Issuing a global reset to MAC\n");
9d5c8243
AK
964 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
965
966 ret_val = igb_get_auto_rd_done(hw);
967 if (ret_val) {
968 /*
969 * When auto config read does not complete, do not
970 * return with an error. This can happen in situations
971 * where there is no eeprom and prevents getting link.
972 */
652fff32 973 hw_dbg("Auto Read Done did not complete\n");
9d5c8243
AK
974 }
975
976 /* If EEPROM is not present, run manual init scripts */
977 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
978 igb_reset_init_script_82575(hw);
979
980 /* Clear any pending interrupt events. */
981 wr32(E1000_IMC, 0xffffffff);
982 icr = rd32(E1000_ICR);
983
5ac16659
AD
984 /* Install any alternate MAC address into RAR0 */
985 ret_val = igb_check_alt_mac_addr(hw);
9d5c8243
AK
986
987 return ret_val;
988}
989
990/**
733596be 991 * igb_init_hw_82575 - Initialize hardware
9d5c8243
AK
992 * @hw: pointer to the HW structure
993 *
994 * This inits the hardware readying it for operation.
995 **/
996static s32 igb_init_hw_82575(struct e1000_hw *hw)
997{
998 struct e1000_mac_info *mac = &hw->mac;
999 s32 ret_val;
1000 u16 i, rar_count = mac->rar_entry_count;
1001
1002 /* Initialize identification LED */
1003 ret_val = igb_id_led_init(hw);
1004 if (ret_val) {
652fff32 1005 hw_dbg("Error initializing identification LED\n");
9d5c8243
AK
1006 /* This is not fatal and we should not stop init due to this */
1007 }
1008
1009 /* Disabling VLAN filtering */
652fff32 1010 hw_dbg("Initializing the IEEE VLAN\n");
9d5c8243
AK
1011 igb_clear_vfta(hw);
1012
1013 /* Setup the receive address */
5ac16659
AD
1014 igb_init_rx_addrs(hw, rar_count);
1015
9d5c8243 1016 /* Zero out the Multicast HASH table */
652fff32 1017 hw_dbg("Zeroing the MTA\n");
9d5c8243
AK
1018 for (i = 0; i < mac->mta_reg_count; i++)
1019 array_wr32(E1000_MTA, i, 0);
1020
68d480c4
AD
1021 /* Zero out the Unicast HASH table */
1022 hw_dbg("Zeroing the UTA\n");
1023 for (i = 0; i < mac->uta_reg_count; i++)
1024 array_wr32(E1000_UTA, i, 0);
1025
9d5c8243
AK
1026 /* Setup link and flow control */
1027 ret_val = igb_setup_link(hw);
1028
1029 /*
1030 * Clear all of the statistics registers (clear on read). It is
1031 * important that we do this after we have tried to establish link
1032 * because the symbol error count will increment wildly if there
1033 * is no link.
1034 */
1035 igb_clear_hw_cntrs_82575(hw);
1036
1037 return ret_val;
1038}
1039
1040/**
733596be 1041 * igb_setup_copper_link_82575 - Configure copper link settings
9d5c8243
AK
1042 * @hw: pointer to the HW structure
1043 *
1044 * Configures the link for auto-neg or forced speed and duplex. Then we check
1045 * for link, once link is established calls to configure collision distance
1046 * and flow control are called.
1047 **/
1048static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1049{
12645a19 1050 u32 ctrl;
9d5c8243 1051 s32 ret_val;
9d5c8243
AK
1052
1053 ctrl = rd32(E1000_CTRL);
1054 ctrl |= E1000_CTRL_SLU;
1055 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1056 wr32(E1000_CTRL, ctrl);
1057
2fb02a26
AD
1058 ret_val = igb_setup_serdes_link_82575(hw);
1059 if (ret_val)
1060 goto out;
1061
1062 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
bb2ac47b
AD
1063 /* allow time for SFP cage time to power up phy */
1064 msleep(300);
1065
2fb02a26
AD
1066 ret_val = hw->phy.ops.reset(hw);
1067 if (ret_val) {
1068 hw_dbg("Error resetting the PHY.\n");
1069 goto out;
1070 }
1071 }
9d5c8243
AK
1072 switch (hw->phy.type) {
1073 case e1000_phy_m88:
308fb39a
JG
1074 if (hw->phy.id == I347AT4_E_PHY_ID ||
1075 hw->phy.id == M88E1112_E_PHY_ID)
1076 ret_val = igb_copper_link_setup_m88_gen2(hw);
1077 else
1078 ret_val = igb_copper_link_setup_m88(hw);
9d5c8243
AK
1079 break;
1080 case e1000_phy_igp_3:
1081 ret_val = igb_copper_link_setup_igp(hw);
9d5c8243 1082 break;
bb2ac47b
AD
1083 case e1000_phy_82580:
1084 ret_val = igb_copper_link_setup_82580(hw);
1085 break;
9d5c8243
AK
1086 default:
1087 ret_val = -E1000_ERR_PHY;
1088 break;
1089 }
1090
1091 if (ret_val)
1092 goto out;
1093
81fadd81 1094 ret_val = igb_setup_copper_link(hw);
9d5c8243
AK
1095out:
1096 return ret_val;
1097}
1098
1099/**
70d92f86 1100 * igb_setup_serdes_link_82575 - Setup link for serdes
9d5c8243
AK
1101 * @hw: pointer to the HW structure
1102 *
70d92f86
AD
1103 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1104 * used on copper connections where the serialized gigabit media independent
1105 * interface (sgmii), or serdes fiber is being used. Configures the link
1106 * for auto-negotiation or forces speed/duplex.
9d5c8243 1107 **/
2fb02a26 1108static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
9d5c8243 1109{
bb2ac47b
AD
1110 u32 ctrl_ext, ctrl_reg, reg;
1111 bool pcs_autoneg;
2fb02a26
AD
1112
1113 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1114 !igb_sgmii_active_82575(hw))
1115 return 0;
9d5c8243
AK
1116
1117 /*
1118 * On the 82575, SerDes loopback mode persists until it is
1119 * explicitly turned off or a power cycle is performed. A read to
1120 * the register does not indicate its status. Therefore, we ensure
1121 * loopback mode is disabled during initialization.
1122 */
1123 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1124
2fb02a26 1125 /* power on the sfp cage if present */
bb2ac47b
AD
1126 ctrl_ext = rd32(E1000_CTRL_EXT);
1127 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1128 wr32(E1000_CTRL_EXT, ctrl_ext);
2fb02a26
AD
1129
1130 ctrl_reg = rd32(E1000_CTRL);
1131 ctrl_reg |= E1000_CTRL_SLU;
1132
1133 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1134 /* set both sw defined pins */
1135 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1136
1137 /* Set switch control to serdes energy detect */
1138 reg = rd32(E1000_CONNSW);
1139 reg |= E1000_CONNSW_ENRGSRC;
1140 wr32(E1000_CONNSW, reg);
1141 }
1142
1143 reg = rd32(E1000_PCS_LCTL);
1144
bb2ac47b
AD
1145 /* default pcs_autoneg to the same setting as mac autoneg */
1146 pcs_autoneg = hw->mac.autoneg;
2fb02a26 1147
bb2ac47b
AD
1148 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1149 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1150 /* sgmii mode lets the phy handle forcing speed/duplex */
1151 pcs_autoneg = true;
1152 /* autoneg time out should be disabled for SGMII mode */
2fb02a26 1153 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
bb2ac47b
AD
1154 break;
1155 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1156 /* disable PCS autoneg and support parallel detect only */
1157 pcs_autoneg = false;
1158 default:
1159 /*
1160 * non-SGMII modes only supports a speed of 1000/Full for the
1161 * link so it is best to just force the MAC and let the pcs
1162 * link either autoneg or be forced to 1000/Full
1163 */
2fb02a26
AD
1164 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1165 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
bb2ac47b
AD
1166
1167 /* set speed of 1000/Full if speed/duplex is forced */
1168 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1169 break;
921aa749
AD
1170 }
1171
2fb02a26 1172 wr32(E1000_CTRL, ctrl_reg);
9d5c8243
AK
1173
1174 /*
1175 * New SerDes mode allows for forcing speed or autonegotiating speed
1176 * at 1gb. Autoneg should be default set by most drivers. This is the
1177 * mode that will be compatible with older link partners and switches.
1178 * However, both are supported by the hardware and some drivers/tools.
1179 */
9d5c8243
AK
1180 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1181 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1182
2fb02a26
AD
1183 /*
1184 * We force flow control to prevent the CTRL register values from being
1185 * overwritten by the autonegotiated flow control values
1186 */
1187 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1188
bb2ac47b 1189 if (pcs_autoneg) {
9d5c8243 1190 /* Set PCS register for autoneg */
bb2ac47b 1191 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
70d92f86 1192 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
bb2ac47b 1193 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
9d5c8243 1194 } else {
bb2ac47b 1195 /* Set PCS register for forced link */
d68caec6 1196 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
bb2ac47b
AD
1197
1198 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
9d5c8243 1199 }
726c09e7 1200
9d5c8243
AK
1201 wr32(E1000_PCS_LCTL, reg);
1202
2fb02a26
AD
1203 if (!igb_sgmii_active_82575(hw))
1204 igb_force_mac_fc(hw);
9d5c8243 1205
2fb02a26 1206 return 0;
9d5c8243
AK
1207}
1208
1209/**
733596be 1210 * igb_sgmii_active_82575 - Return sgmii state
9d5c8243
AK
1211 * @hw: pointer to the HW structure
1212 *
1213 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1214 * which can be enabled for use in the embedded applications. Simply
1215 * return the current state of the sgmii interface.
1216 **/
1217static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1218{
c1889bfe 1219 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
c1889bfe 1220 return dev_spec->sgmii_active;
9d5c8243
AK
1221}
1222
1223/**
733596be 1224 * igb_reset_init_script_82575 - Inits HW defaults after reset
9d5c8243
AK
1225 * @hw: pointer to the HW structure
1226 *
1227 * Inits recommended HW defaults after a reset when there is no EEPROM
1228 * detected. This is only for the 82575.
1229 **/
1230static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1231{
1232 if (hw->mac.type == e1000_82575) {
652fff32 1233 hw_dbg("Running reset init script for 82575\n");
9d5c8243
AK
1234 /* SerDes configuration via SERDESCTRL */
1235 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1236 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1237 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1238 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1239
1240 /* CCM configuration via CCMCTL register */
1241 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1242 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1243
1244 /* PCIe lanes configuration */
1245 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1246 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1247 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1248 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1249
1250 /* PCIe PLL Configuration */
1251 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1252 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1253 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1254 }
1255
1256 return 0;
1257}
1258
1259/**
733596be 1260 * igb_read_mac_addr_82575 - Read device MAC address
9d5c8243
AK
1261 * @hw: pointer to the HW structure
1262 **/
1263static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1264{
1265 s32 ret_val = 0;
1266
22896639
AD
1267 /*
1268 * If there's an alternate MAC address place it in RAR0
1269 * so that it will override the Si installed default perm
1270 * address.
1271 */
1272 ret_val = igb_check_alt_mac_addr(hw);
1273 if (ret_val)
1274 goto out;
1275
1276 ret_val = igb_read_mac_addr(hw);
9d5c8243 1277
22896639 1278out:
9d5c8243
AK
1279 return ret_val;
1280}
1281
88a268c1
NN
1282/**
1283 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1284 * @hw: pointer to the HW structure
1285 *
1286 * In the case of a PHY power down to save power, or to turn off link during a
1287 * driver unload, or wake on lan is not enabled, remove the link.
1288 **/
1289void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1290{
1291 /* If the management interface is not enabled, then power down */
1292 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1293 igb_power_down_phy_copper(hw);
88a268c1
NN
1294}
1295
9d5c8243 1296/**
733596be 1297 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
9d5c8243
AK
1298 * @hw: pointer to the HW structure
1299 *
1300 * Clears the hardware counters by reading the counter registers.
1301 **/
1302static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1303{
9d5c8243
AK
1304 igb_clear_hw_cntrs_base(hw);
1305
cc9073bb
AD
1306 rd32(E1000_PRC64);
1307 rd32(E1000_PRC127);
1308 rd32(E1000_PRC255);
1309 rd32(E1000_PRC511);
1310 rd32(E1000_PRC1023);
1311 rd32(E1000_PRC1522);
1312 rd32(E1000_PTC64);
1313 rd32(E1000_PTC127);
1314 rd32(E1000_PTC255);
1315 rd32(E1000_PTC511);
1316 rd32(E1000_PTC1023);
1317 rd32(E1000_PTC1522);
1318
1319 rd32(E1000_ALGNERRC);
1320 rd32(E1000_RXERRC);
1321 rd32(E1000_TNCRS);
1322 rd32(E1000_CEXTERR);
1323 rd32(E1000_TSCTC);
1324 rd32(E1000_TSCTFC);
1325
1326 rd32(E1000_MGTPRC);
1327 rd32(E1000_MGTPDC);
1328 rd32(E1000_MGTPTC);
1329
1330 rd32(E1000_IAC);
1331 rd32(E1000_ICRXOC);
1332
1333 rd32(E1000_ICRXPTC);
1334 rd32(E1000_ICRXATC);
1335 rd32(E1000_ICTXPTC);
1336 rd32(E1000_ICTXATC);
1337 rd32(E1000_ICTXQEC);
1338 rd32(E1000_ICTXQMTC);
1339 rd32(E1000_ICRXDMTC);
1340
1341 rd32(E1000_CBTMPC);
1342 rd32(E1000_HTDPMC);
1343 rd32(E1000_CBRMPC);
1344 rd32(E1000_RPTHC);
1345 rd32(E1000_HGPTC);
1346 rd32(E1000_HTCBDPC);
1347 rd32(E1000_HGORCL);
1348 rd32(E1000_HGORCH);
1349 rd32(E1000_HGOTCL);
1350 rd32(E1000_HGOTCH);
1351 rd32(E1000_LENERRS);
9d5c8243
AK
1352
1353 /* This register should not be read in copper configurations */
2fb02a26
AD
1354 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1355 igb_sgmii_active_82575(hw))
cc9073bb 1356 rd32(E1000_SCVPC);
9d5c8243
AK
1357}
1358
662d7205
AD
1359/**
1360 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1361 * @hw: pointer to the HW structure
1362 *
1363 * After rx enable if managability is enabled then there is likely some
1364 * bad data at the start of the fifo and possibly in the DMA fifo. This
1365 * function clears the fifos and flushes any packets that came in as rx was
1366 * being enabled.
1367 **/
1368void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1369{
1370 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1371 int i, ms_wait;
1372
1373 if (hw->mac.type != e1000_82575 ||
1374 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1375 return;
1376
1377 /* Disable all RX queues */
1378 for (i = 0; i < 4; i++) {
1379 rxdctl[i] = rd32(E1000_RXDCTL(i));
1380 wr32(E1000_RXDCTL(i),
1381 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1382 }
1383 /* Poll all queues to verify they have shut down */
1384 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1385 msleep(1);
1386 rx_enabled = 0;
1387 for (i = 0; i < 4; i++)
1388 rx_enabled |= rd32(E1000_RXDCTL(i));
1389 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1390 break;
1391 }
1392
1393 if (ms_wait == 10)
1394 hw_dbg("Queue disable timed out after 10ms\n");
1395
1396 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1397 * incoming packets are rejected. Set enable and wait 2ms so that
1398 * any packet that was coming in as RCTL.EN was set is flushed
1399 */
1400 rfctl = rd32(E1000_RFCTL);
1401 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1402
1403 rlpml = rd32(E1000_RLPML);
1404 wr32(E1000_RLPML, 0);
1405
1406 rctl = rd32(E1000_RCTL);
1407 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1408 temp_rctl |= E1000_RCTL_LPE;
1409
1410 wr32(E1000_RCTL, temp_rctl);
1411 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1412 wrfl();
1413 msleep(2);
1414
1415 /* Enable RX queues that were previously enabled and restore our
1416 * previous state
1417 */
1418 for (i = 0; i < 4; i++)
1419 wr32(E1000_RXDCTL(i), rxdctl[i]);
1420 wr32(E1000_RCTL, rctl);
1421 wrfl();
1422
1423 wr32(E1000_RLPML, rlpml);
1424 wr32(E1000_RFCTL, rfctl);
1425
1426 /* Flush receive errors generated by workaround */
1427 rd32(E1000_ROC);
1428 rd32(E1000_RNBC);
1429 rd32(E1000_MPC);
1430}
1431
009bc06e
AD
1432/**
1433 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1434 * @hw: pointer to the HW structure
1435 *
1436 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1437 * however the hardware default for these parts is 500us to 1ms which is less
1438 * than the 10ms recommended by the pci-e spec. To address this we need to
1439 * increase the value to either 10ms to 200ms for capability version 1 config,
1440 * or 16ms to 55ms for version 2.
1441 **/
1442static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1443{
1444 u32 gcr = rd32(E1000_GCR);
1445 s32 ret_val = 0;
1446 u16 pcie_devctl2;
1447
1448 /* only take action if timeout value is defaulted to 0 */
1449 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1450 goto out;
1451
1452 /*
1453 * if capababilities version is type 1 we can write the
1454 * timeout of 10ms to 200ms through the GCR register
1455 */
1456 if (!(gcr & E1000_GCR_CAP_VER2)) {
1457 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1458 goto out;
1459 }
1460
1461 /*
1462 * for version 2 capabilities we need to write the config space
1463 * directly in order to set the completion timeout value for
1464 * 16ms to 55ms
1465 */
1466 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1467 &pcie_devctl2);
1468 if (ret_val)
1469 goto out;
1470
1471 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1472
1473 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1474 &pcie_devctl2);
1475out:
1476 /* disable completion timeout resend */
1477 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1478
1479 wr32(E1000_GCR, gcr);
1480 return ret_val;
1481}
1482
13800469
GR
1483/**
1484 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1485 * @hw: pointer to the hardware struct
1486 * @enable: state to enter, either enabled or disabled
1487 * @pf: Physical Function pool - do not set anti-spoofing for the PF
1488 *
1489 * enables/disables L2 switch anti-spoofing functionality.
1490 **/
1491void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1492{
1493 u32 dtxswc;
1494
1495 switch (hw->mac.type) {
1496 case e1000_82576:
1497 case e1000_i350:
1498 dtxswc = rd32(E1000_DTXSWC);
1499 if (enable) {
1500 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1501 E1000_DTXSWC_VLAN_SPOOF_MASK);
1502 /* The PF can spoof - it has to in order to
1503 * support emulation mode NICs */
1504 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1505 } else {
1506 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1507 E1000_DTXSWC_VLAN_SPOOF_MASK);
1508 }
1509 wr32(E1000_DTXSWC, dtxswc);
1510 break;
1511 default:
1512 break;
1513 }
1514}
1515
4ae196df
AD
1516/**
1517 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1518 * @hw: pointer to the hardware struct
1519 * @enable: state to enter, either enabled or disabled
1520 *
1521 * enables/disables L2 switch loopback functionality.
1522 **/
1523void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1524{
1525 u32 dtxswc = rd32(E1000_DTXSWC);
1526
1527 if (enable)
1528 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1529 else
1530 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1531
1532 wr32(E1000_DTXSWC, dtxswc);
1533}
1534
1535/**
1536 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1537 * @hw: pointer to the hardware struct
1538 * @enable: state to enter, either enabled or disabled
1539 *
1540 * enables/disables replication of packets across multiple pools.
1541 **/
1542void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1543{
1544 u32 vt_ctl = rd32(E1000_VT_CTL);
1545
1546 if (enable)
1547 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1548 else
1549 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1550
1551 wr32(E1000_VT_CTL, vt_ctl);
1552}
1553
bb2ac47b
AD
1554/**
1555 * igb_read_phy_reg_82580 - Read 82580 MDI control register
1556 * @hw: pointer to the HW structure
1557 * @offset: register offset to be read
1558 * @data: pointer to the read data
1559 *
1560 * Reads the MDI control register in the PHY at offset and stores the
1561 * information read to data.
1562 **/
1563static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1564{
bb2ac47b
AD
1565 s32 ret_val;
1566
1567
1568 ret_val = hw->phy.ops.acquire(hw);
1569 if (ret_val)
1570 goto out;
1571
bb2ac47b
AD
1572 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1573
1574 hw->phy.ops.release(hw);
1575
1576out:
1577 return ret_val;
1578}
1579
1580/**
1581 * igb_write_phy_reg_82580 - Write 82580 MDI control register
1582 * @hw: pointer to the HW structure
1583 * @offset: register offset to write to
1584 * @data: data to write to register at offset
1585 *
1586 * Writes data to MDI control register in the PHY at offset.
1587 **/
1588static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1589{
bb2ac47b
AD
1590 s32 ret_val;
1591
1592
1593 ret_val = hw->phy.ops.acquire(hw);
1594 if (ret_val)
1595 goto out;
1596
bb2ac47b
AD
1597 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1598
1599 hw->phy.ops.release(hw);
1600
1601out:
1602 return ret_val;
1603}
1604
08451e25
NN
1605/**
1606 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1607 * @hw: pointer to the HW structure
1608 *
1609 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1610 * the values found in the EEPROM. This addresses an issue in which these
1611 * bits are not restored from EEPROM after reset.
1612 **/
1613static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1614{
1615 s32 ret_val = 0;
1616 u32 mdicnfg;
1b5dda33 1617 u16 nvm_data = 0;
08451e25
NN
1618
1619 if (hw->mac.type != e1000_82580)
1620 goto out;
1621 if (!igb_sgmii_active_82575(hw))
1622 goto out;
1623
1624 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1625 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1626 &nvm_data);
1627 if (ret_val) {
1628 hw_dbg("NVM Read Error\n");
1629 goto out;
1630 }
1631
1632 mdicnfg = rd32(E1000_MDICNFG);
1633 if (nvm_data & NVM_WORD24_EXT_MDIO)
1634 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1635 if (nvm_data & NVM_WORD24_COM_MDIO)
1636 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1637 wr32(E1000_MDICNFG, mdicnfg);
1638out:
1639 return ret_val;
1640}
1641
bb2ac47b
AD
1642/**
1643 * igb_reset_hw_82580 - Reset hardware
1644 * @hw: pointer to the HW structure
1645 *
1646 * This resets function or entire device (all ports, etc.)
1647 * to a known state.
1648 **/
1649static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1650{
1651 s32 ret_val = 0;
1652 /* BH SW mailbox bit in SW_FW_SYNC */
1653 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1654 u32 ctrl, icr;
1655 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1656
1657
1658 hw->dev_spec._82575.global_device_reset = false;
1659
1660 /* Get current control state. */
1661 ctrl = rd32(E1000_CTRL);
1662
1663 /*
1664 * Prevent the PCI-E bus from sticking if there is no TLP connection
1665 * on the last TLP read/write transaction when MAC is reset.
1666 */
1667 ret_val = igb_disable_pcie_master(hw);
1668 if (ret_val)
1669 hw_dbg("PCI-E Master disable polling has failed.\n");
1670
1671 hw_dbg("Masking off all interrupts\n");
1672 wr32(E1000_IMC, 0xffffffff);
1673 wr32(E1000_RCTL, 0);
1674 wr32(E1000_TCTL, E1000_TCTL_PSP);
1675 wrfl();
1676
1677 msleep(10);
1678
1679 /* Determine whether or not a global dev reset is requested */
1680 if (global_device_reset &&
1681 igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1682 global_device_reset = false;
1683
1684 if (global_device_reset &&
1685 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1686 ctrl |= E1000_CTRL_DEV_RST;
1687 else
1688 ctrl |= E1000_CTRL_RST;
1689
1690 wr32(E1000_CTRL, ctrl);
1691
1692 /* Add delay to insure DEV_RST has time to complete */
1693 if (global_device_reset)
1694 msleep(5);
1695
1696 ret_val = igb_get_auto_rd_done(hw);
1697 if (ret_val) {
1698 /*
1699 * When auto config read does not complete, do not
1700 * return with an error. This can happen in situations
1701 * where there is no eeprom and prevents getting link.
1702 */
1703 hw_dbg("Auto Read Done did not complete\n");
1704 }
1705
1706 /* If EEPROM is not present, run manual init scripts */
1707 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1708 igb_reset_init_script_82575(hw);
1709
1710 /* clear global device reset status bit */
1711 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1712
1713 /* Clear any pending interrupt events. */
1714 wr32(E1000_IMC, 0xffffffff);
1715 icr = rd32(E1000_ICR);
1716
08451e25
NN
1717 ret_val = igb_reset_mdicnfg_82580(hw);
1718 if (ret_val)
1719 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1720
bb2ac47b
AD
1721 /* Install any alternate MAC address into RAR0 */
1722 ret_val = igb_check_alt_mac_addr(hw);
1723
1724 /* Release semaphore */
1725 if (global_device_reset)
1726 igb_release_swfw_sync_82575(hw, swmbsw_mask);
1727
1728 return ret_val;
1729}
1730
1731/**
1732 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1733 * @data: data received by reading RXPBS register
1734 *
1735 * The 82580 uses a table based approach for packet buffer allocation sizes.
1736 * This function converts the retrieved value into the correct table value
1737 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1738 * 0x0 36 72 144 1 2 4 8 16
1739 * 0x8 35 70 140 rsv rsv rsv rsv rsv
1740 */
1741u16 igb_rxpbs_adjust_82580(u32 data)
1742{
1743 u16 ret_val = 0;
1744
1745 if (data < E1000_82580_RXPBS_TABLE_SIZE)
1746 ret_val = e1000_82580_rxpbs_table[data];
1747
1748 return ret_val;
1749}
1750
9d5c8243 1751static struct e1000_mac_operations e1000_mac_ops_82575 = {
9d5c8243
AK
1752 .init_hw = igb_init_hw_82575,
1753 .check_for_link = igb_check_for_link_82575,
2d064c06 1754 .rar_set = igb_rar_set,
9d5c8243
AK
1755 .read_mac_addr = igb_read_mac_addr_82575,
1756 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1757};
1758
1759static struct e1000_phy_operations e1000_phy_ops_82575 = {
a8d2a0c2 1760 .acquire = igb_acquire_phy_82575,
9d5c8243 1761 .get_cfg_done = igb_get_cfg_done_82575,
a8d2a0c2 1762 .release = igb_release_phy_82575,
9d5c8243
AK
1763};
1764
1765static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
312c75ae
AD
1766 .acquire = igb_acquire_nvm_82575,
1767 .read = igb_read_nvm_eerd,
1768 .release = igb_release_nvm_82575,
1769 .write = igb_write_nvm_spi,
9d5c8243
AK
1770};
1771
1772const struct e1000_info e1000_82575_info = {
1773 .get_invariants = igb_get_invariants_82575,
1774 .mac_ops = &e1000_mac_ops_82575,
1775 .phy_ops = &e1000_phy_ops_82575,
1776 .nvm_ops = &e1000_nvm_ops_82575,
1777};
1778
This page took 0.58864 seconds and 5 git commands to generate.