Fix common misspellings
[deliverable/linux.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
926bd900 3 * Copyright(c) 2002-2010 Exar Corp.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722 14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722 30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
9dc737a7
AR
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
926930b2
SS
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
3a3d5756
SH
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
53 ************************************************************************/
54
6cef2b8e
JP
55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
40239396 66#include <linux/mdio.h>
1da177e4
LT
67#include <linux/skbuff.h>
68#include <linux/init.h>
69#include <linux/delay.h>
70#include <linux/stddef.h>
71#include <linux/ioctl.h>
72#include <linux/timex.h>
1da177e4 73#include <linux/ethtool.h>
1da177e4 74#include <linux/workqueue.h>
be3a6b02 75#include <linux/if_vlan.h>
7d3d0439
RA
76#include <linux/ip.h>
77#include <linux/tcp.h>
d44570e4
JP
78#include <linux/uaccess.h>
79#include <linux/io.h>
5a0e3ad6 80#include <linux/slab.h>
7d3d0439 81#include <net/tcp.h>
1da177e4 82
1da177e4 83#include <asm/system.h>
fe931395 84#include <asm/div64.h>
330ce0de 85#include <asm/irq.h>
1da177e4
LT
86
87/* local include */
88#include "s2io.h"
89#include "s2io-regs.h"
90
11410b62 91#define DRV_VERSION "2.0.26.28"
6c1792f4 92
1da177e4 93/* S2io Driver name & version. */
c0dbf37e
JM
94static const char s2io_driver_name[] = "Neterion";
95static const char s2io_driver_version[] = DRV_VERSION;
1da177e4 96
c0dbf37e
JM
97static const int rxd_size[2] = {32, 48};
98static const int rxd_count[2] = {127, 85};
da6971d8 99
1ee6dd77 100static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd 101{
102 int ret;
103
104 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 105 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd 106
107 return ret;
108}
109
20346722 110/*
1da177e4
LT
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
114 */
d44570e4
JP
115#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
116 (dev_type == XFRAME_I_DEVICE) ? \
117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
119
120#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 122
d44570e4 123static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
124{
125 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126}
127
1da177e4 128/* Ethtool related variables and Macros. */
6fce365d 129static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
130 "Register test\t(offline)",
131 "Eeprom test\t(offline)",
132 "Link test\t(online)",
133 "RLDRAM test\t(offline)",
134 "BIST Test\t(offline)"
135};
136
6fce365d 137static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
138 {"tmac_frms"},
139 {"tmac_data_octets"},
140 {"tmac_drop_frms"},
141 {"tmac_mcst_frms"},
142 {"tmac_bcst_frms"},
143 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
144 {"tmac_ttl_octets"},
145 {"tmac_ucst_frms"},
146 {"tmac_nucst_frms"},
1da177e4 147 {"tmac_any_err_frms"},
bd1034f0 148 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
149 {"tmac_vld_ip_octets"},
150 {"tmac_vld_ip"},
151 {"tmac_drop_ip"},
152 {"tmac_icmp"},
153 {"tmac_rst_tcp"},
154 {"tmac_tcp"},
155 {"tmac_udp"},
156 {"rmac_vld_frms"},
157 {"rmac_data_octets"},
158 {"rmac_fcs_err_frms"},
159 {"rmac_drop_frms"},
160 {"rmac_vld_mcst_frms"},
161 {"rmac_vld_bcst_frms"},
162 {"rmac_in_rng_len_err_frms"},
bd1034f0 163 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
164 {"rmac_long_frms"},
165 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
166 {"rmac_unsup_ctrl_frms"},
167 {"rmac_ttl_octets"},
168 {"rmac_accepted_ucst_frms"},
169 {"rmac_accepted_nucst_frms"},
1da177e4 170 {"rmac_discarded_frms"},
bd1034f0
AR
171 {"rmac_drop_events"},
172 {"rmac_ttl_less_fb_octets"},
173 {"rmac_ttl_frms"},
1da177e4
LT
174 {"rmac_usized_frms"},
175 {"rmac_osized_frms"},
176 {"rmac_frag_frms"},
177 {"rmac_jabber_frms"},
bd1034f0
AR
178 {"rmac_ttl_64_frms"},
179 {"rmac_ttl_65_127_frms"},
180 {"rmac_ttl_128_255_frms"},
181 {"rmac_ttl_256_511_frms"},
182 {"rmac_ttl_512_1023_frms"},
183 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
184 {"rmac_ip"},
185 {"rmac_ip_octets"},
186 {"rmac_hdr_err_ip"},
187 {"rmac_drop_ip"},
188 {"rmac_icmp"},
189 {"rmac_tcp"},
190 {"rmac_udp"},
191 {"rmac_err_drp_udp"},
bd1034f0
AR
192 {"rmac_xgmii_err_sym"},
193 {"rmac_frms_q0"},
194 {"rmac_frms_q1"},
195 {"rmac_frms_q2"},
196 {"rmac_frms_q3"},
197 {"rmac_frms_q4"},
198 {"rmac_frms_q5"},
199 {"rmac_frms_q6"},
200 {"rmac_frms_q7"},
201 {"rmac_full_q0"},
202 {"rmac_full_q1"},
203 {"rmac_full_q2"},
204 {"rmac_full_q3"},
205 {"rmac_full_q4"},
206 {"rmac_full_q5"},
207 {"rmac_full_q6"},
208 {"rmac_full_q7"},
1da177e4 209 {"rmac_pause_cnt"},
bd1034f0
AR
210 {"rmac_xgmii_data_err_cnt"},
211 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
212 {"rmac_accepted_ip"},
213 {"rmac_err_tcp"},
bd1034f0
AR
214 {"rd_req_cnt"},
215 {"new_rd_req_cnt"},
216 {"new_rd_req_rtry_cnt"},
217 {"rd_rtry_cnt"},
218 {"wr_rtry_rd_ack_cnt"},
219 {"wr_req_cnt"},
220 {"new_wr_req_cnt"},
221 {"new_wr_req_rtry_cnt"},
222 {"wr_rtry_cnt"},
223 {"wr_disc_cnt"},
224 {"rd_rtry_wr_ack_cnt"},
225 {"txp_wr_cnt"},
226 {"txd_rd_cnt"},
227 {"txd_wr_cnt"},
228 {"rxd_rd_cnt"},
229 {"rxd_wr_cnt"},
230 {"txf_rd_cnt"},
fa1f0cb3
SS
231 {"rxf_wr_cnt"}
232};
233
6fce365d 234static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
235 {"rmac_ttl_1519_4095_frms"},
236 {"rmac_ttl_4096_8191_frms"},
237 {"rmac_ttl_8192_max_frms"},
238 {"rmac_ttl_gt_max_frms"},
239 {"rmac_osized_alt_frms"},
240 {"rmac_jabber_alt_frms"},
241 {"rmac_gt_max_alt_frms"},
242 {"rmac_vlan_frms"},
243 {"rmac_len_discard"},
244 {"rmac_fcs_discard"},
245 {"rmac_pf_discard"},
246 {"rmac_da_discard"},
247 {"rmac_red_discard"},
248 {"rmac_rts_discard"},
249 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
250 {"link_fault_cnt"}
251};
252
6fce365d 253static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac 254 {"\n DRIVER STATISTICS"},
255 {"single_bit_ecc_errs"},
256 {"double_bit_ecc_errs"},
bd1034f0
AR
257 {"parity_err_cnt"},
258 {"serious_err_cnt"},
259 {"soft_reset_cnt"},
260 {"fifo_full_cnt"},
8116f3cf
SS
261 {"ring_0_full_cnt"},
262 {"ring_1_full_cnt"},
263 {"ring_2_full_cnt"},
264 {"ring_3_full_cnt"},
265 {"ring_4_full_cnt"},
266 {"ring_5_full_cnt"},
267 {"ring_6_full_cnt"},
268 {"ring_7_full_cnt"},
43b7c451
SH
269 {"alarm_transceiver_temp_high"},
270 {"alarm_transceiver_temp_low"},
271 {"alarm_laser_bias_current_high"},
272 {"alarm_laser_bias_current_low"},
273 {"alarm_laser_output_power_high"},
274 {"alarm_laser_output_power_low"},
275 {"warn_transceiver_temp_high"},
276 {"warn_transceiver_temp_low"},
277 {"warn_laser_bias_current_high"},
278 {"warn_laser_bias_current_low"},
279 {"warn_laser_output_power_high"},
280 {"warn_laser_output_power_low"},
281 {"lro_aggregated_pkts"},
282 {"lro_flush_both_count"},
283 {"lro_out_of_sequence_pkts"},
284 {"lro_flush_due_to_max_pkts"},
285 {"lro_avg_aggr_pkts"},
286 {"mem_alloc_fail_cnt"},
287 {"pci_map_fail_cnt"},
288 {"watchdog_timer_cnt"},
289 {"mem_allocated"},
290 {"mem_freed"},
291 {"link_up_cnt"},
292 {"link_down_cnt"},
293 {"link_up_time"},
294 {"link_down_time"},
295 {"tx_tcode_buf_abort_cnt"},
296 {"tx_tcode_desc_abort_cnt"},
297 {"tx_tcode_parity_err_cnt"},
298 {"tx_tcode_link_loss_cnt"},
299 {"tx_tcode_list_proc_err_cnt"},
300 {"rx_tcode_parity_err_cnt"},
301 {"rx_tcode_abort_cnt"},
302 {"rx_tcode_parity_abort_cnt"},
303 {"rx_tcode_rda_fail_cnt"},
304 {"rx_tcode_unkn_prot_cnt"},
305 {"rx_tcode_fcs_err_cnt"},
306 {"rx_tcode_buf_size_err_cnt"},
307 {"rx_tcode_rxd_corrupt_cnt"},
308 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
309 {"tda_err_cnt"},
310 {"pfc_err_cnt"},
311 {"pcc_err_cnt"},
312 {"tti_err_cnt"},
313 {"tpa_err_cnt"},
314 {"sm_err_cnt"},
315 {"lso_err_cnt"},
316 {"mac_tmac_err_cnt"},
317 {"mac_rmac_err_cnt"},
318 {"xgxs_txgxs_err_cnt"},
319 {"xgxs_rxgxs_err_cnt"},
320 {"rc_err_cnt"},
321 {"prc_pcix_err_cnt"},
322 {"rpa_err_cnt"},
323 {"rda_err_cnt"},
324 {"rti_err_cnt"},
325 {"mc_err_cnt"}
1da177e4
LT
326};
327
4c3616cd
AMR
328#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
329#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
330#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 331
d44570e4
JP
332#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 334
d44570e4
JP
335#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 337
4c3616cd 338#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 339#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 340
d44570e4
JP
341#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
342 init_timer(&timer); \
343 timer.function = handle; \
344 timer.data = (unsigned long)arg; \
345 mod_timer(&timer, (jiffies + exp)) \
25fff88e 346
2fd37688
SS
347/* copy mac addr to def_mac_addr array */
348static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349{
350 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
351 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
352 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
353 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
354 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
355 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356}
04025095 357
be3a6b02 358/* Add the vlan */
359static void s2io_vlan_rx_register(struct net_device *dev,
04025095 360 struct vlan_group *grp)
be3a6b02 361{
2fda096d 362 int i;
4cf1653a 363 struct s2io_nic *nic = netdev_priv(dev);
2fda096d 364 unsigned long flags[MAX_TX_FIFOS];
2fda096d 365 struct config_param *config = &nic->config;
ffb5df6c 366 struct mac_info *mac_control = &nic->mac_control;
2fda096d 367
13d866a9
JP
368 for (i = 0; i < config->tx_fifo_num; i++) {
369 struct fifo_info *fifo = &mac_control->fifos[i];
370
371 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
372 }
be3a6b02 373
be3a6b02 374 nic->vlgrp = grp;
13d866a9
JP
375
376 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
377 struct fifo_info *fifo = &mac_control->fifos[i];
378
379 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
380 }
be3a6b02 381}
382
cdb5bf02 383/* Unregister the vlan */
04025095 384static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
cdb5bf02
SH
385{
386 int i;
4cf1653a 387 struct s2io_nic *nic = netdev_priv(dev);
cdb5bf02 388 unsigned long flags[MAX_TX_FIFOS];
cdb5bf02 389 struct config_param *config = &nic->config;
ffb5df6c 390 struct mac_info *mac_control = &nic->mac_control;
cdb5bf02 391
13d866a9
JP
392 for (i = 0; i < config->tx_fifo_num; i++) {
393 struct fifo_info *fifo = &mac_control->fifos[i];
394
395 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
396 }
cdb5bf02
SH
397
398 if (nic->vlgrp)
399 vlan_group_set_device(nic->vlgrp, vid, NULL);
400
13d866a9
JP
401 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
402 struct fifo_info *fifo = &mac_control->fifos[i];
403
404 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
405 }
cdb5bf02
SH
406}
407
20346722 408/*
1da177e4
LT
409 * Constants to be programmed into the Xena's registers, to configure
410 * the XAUI.
411 */
412
1da177e4 413#define END_SIGN 0x0
f71e1309 414static const u64 herc_act_dtx_cfg[] = {
541ae68f 415 /* Set address */
e960fc5c 416 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 417 /* Write data */
e960fc5c 418 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f 419 /* Set address */
420 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
421 /* Write data */
422 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
423 /* Set address */
e960fc5c 424 0x801205150D440000ULL, 0x801205150D4400E0ULL,
425 /* Write data */
426 0x801205150D440004ULL, 0x801205150D4400E4ULL,
427 /* Set address */
541ae68f 428 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
429 /* Write data */
430 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
431 /* Done */
432 END_SIGN
433};
434
f71e1309 435static const u64 xena_dtx_cfg[] = {
c92ca04b 436 /* Set address */
1da177e4 437 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
438 /* Write data */
439 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
440 /* Set address */
441 0x8001051500000000ULL, 0x80010515000000E0ULL,
442 /* Write data */
443 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
444 /* Set address */
1da177e4 445 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
446 /* Write data */
447 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
448 END_SIGN
449};
450
20346722 451/*
1da177e4
LT
452 * Constants for Fixing the MacAddress problem seen mostly on
453 * Alpha machines.
454 */
f71e1309 455static const u64 fix_mac[] = {
1da177e4
LT
456 0x0060000000000000ULL, 0x0060600000000000ULL,
457 0x0040600000000000ULL, 0x0000600000000000ULL,
458 0x0020600000000000ULL, 0x0060600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0000600000000000ULL,
469 0x0040600000000000ULL, 0x0060600000000000ULL,
470 END_SIGN
471};
472
b41477f3
AR
473MODULE_LICENSE("GPL");
474MODULE_VERSION(DRV_VERSION);
475
476
1da177e4 477/* Module Loadable parameters. */
6cfc482b 478S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 479S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 480S2IO_PARM_INT(multiq, 0);
b41477f3
AR
481S2IO_PARM_INT(rx_ring_mode, 1);
482S2IO_PARM_INT(use_continuous_tx_intrs, 1);
483S2IO_PARM_INT(rmac_pause_time, 0x100);
484S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
485S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
486S2IO_PARM_INT(shared_splits, 0);
487S2IO_PARM_INT(tmac_util_period, 5);
488S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 489S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
490/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
491S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 492/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 493S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 494/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 495S2IO_PARM_INT(intr_type, 2);
7d3d0439 496/* Large receive offload feature */
43b7c451 497
7d3d0439
RA
498/* Max pkts to be aggregated by LRO at one time. If not specified,
499 * aggregation happens until we hit max IP pkt size(64K)
500 */
b41477f3 501S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 502S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
503
504S2IO_PARM_INT(napi, 1);
505S2IO_PARM_INT(ufo, 0);
926930b2 506S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
507
508static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 509{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 510static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 511{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 512static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 513{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
514
515module_param_array(tx_fifo_len, uint, NULL, 0);
516module_param_array(rx_ring_sz, uint, NULL, 0);
517module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 518
20346722 519/*
1da177e4 520 * S2IO device table.
20346722 521 * This table lists all the devices that this driver supports.
1da177e4 522 */
a3aa1884 523static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
1da177e4
LT
524 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
525 PCI_ANY_ID, PCI_ANY_ID},
526 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
527 PCI_ANY_ID, PCI_ANY_ID},
528 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
529 PCI_ANY_ID, PCI_ANY_ID},
530 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
531 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
532 {0,}
533};
534
535MODULE_DEVICE_TABLE(pci, s2io_tbl);
536
d796fdb7
LV
537static struct pci_error_handlers s2io_err_handler = {
538 .error_detected = s2io_io_error_detected,
539 .slot_reset = s2io_io_slot_reset,
540 .resume = s2io_io_resume,
541};
542
1da177e4 543static struct pci_driver s2io_driver = {
d44570e4
JP
544 .name = "S2IO",
545 .id_table = s2io_tbl,
546 .probe = s2io_init_nic,
547 .remove = __devexit_p(s2io_rem_nic),
548 .err_handler = &s2io_err_handler,
1da177e4
LT
549};
550
551/* A simplifier macro used both by init and free shared_mem Fns(). */
552#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
553
3a3d5756
SH
554/* netqueue manipulation helper functions */
555static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
556{
fd2ea0a7
DM
557 if (!sp->config.multiq) {
558 int i;
559
3a3d5756
SH
560 for (i = 0; i < sp->config.tx_fifo_num; i++)
561 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 562 }
fd2ea0a7 563 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
564}
565
566static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
567{
fd2ea0a7 568 if (!sp->config.multiq)
3a3d5756
SH
569 sp->mac_control.fifos[fifo_no].queue_state =
570 FIFO_QUEUE_STOP;
fd2ea0a7
DM
571
572 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
573}
574
575static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
576{
fd2ea0a7
DM
577 if (!sp->config.multiq) {
578 int i;
579
3a3d5756
SH
580 for (i = 0; i < sp->config.tx_fifo_num; i++)
581 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 582 }
fd2ea0a7 583 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
584}
585
586static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
587{
fd2ea0a7 588 if (!sp->config.multiq)
3a3d5756
SH
589 sp->mac_control.fifos[fifo_no].queue_state =
590 FIFO_QUEUE_START;
fd2ea0a7
DM
591
592 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
593}
594
595static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
596{
fd2ea0a7
DM
597 if (!sp->config.multiq) {
598 int i;
599
3a3d5756
SH
600 for (i = 0; i < sp->config.tx_fifo_num; i++)
601 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 602 }
fd2ea0a7 603 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
604}
605
606static inline void s2io_wake_tx_queue(
607 struct fifo_info *fifo, int cnt, u8 multiq)
608{
609
3a3d5756
SH
610 if (multiq) {
611 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
612 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 613 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
614 if (netif_queue_stopped(fifo->dev)) {
615 fifo->queue_state = FIFO_QUEUE_START;
616 netif_wake_queue(fifo->dev);
617 }
618 }
619}
620
1da177e4
LT
621/**
622 * init_shared_mem - Allocation and Initialization of Memory
623 * @nic: Device private variable.
20346722 624 * Description: The function allocates all the memory areas shared
625 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
626 * Rx descriptors and the statistics block.
627 */
628
629static int init_shared_mem(struct s2io_nic *nic)
630{
631 u32 size;
632 void *tmp_v_addr, *tmp_v_addr_next;
633 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 634 struct RxD_block *pre_rxd_blk = NULL;
372cc597 635 int i, j, blk_cnt;
1da177e4
LT
636 int lst_size, lst_per_page;
637 struct net_device *dev = nic->dev;
8ae418cf 638 unsigned long tmp;
1ee6dd77 639 struct buffAdd *ba;
ffb5df6c
JP
640 struct config_param *config = &nic->config;
641 struct mac_info *mac_control = &nic->mac_control;
491976b2 642 unsigned long long mem_allocated = 0;
1da177e4 643
13d866a9 644 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
645 size = 0;
646 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
647 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
648
649 size += tx_cfg->fifo_len;
1da177e4
LT
650 }
651 if (size > MAX_AVAILABLE_TXDS) {
9e39f7c5
JP
652 DBG_PRINT(ERR_DBG,
653 "Too many TxDs requested: %d, max supported: %d\n",
654 size, MAX_AVAILABLE_TXDS);
b41477f3 655 return -EINVAL;
1da177e4
LT
656 }
657
2fda096d
SR
658 size = 0;
659 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
660 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
661
662 size = tx_cfg->fifo_len;
2fda096d
SR
663 /*
664 * Legal values are from 2 to 8192
665 */
666 if (size < 2) {
9e39f7c5
JP
667 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
668 "Valid lengths are 2 through 8192\n",
669 i, size);
2fda096d
SR
670 return -EINVAL;
671 }
672 }
673
1ee6dd77 674 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
675 lst_per_page = PAGE_SIZE / lst_size;
676
677 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
678 struct fifo_info *fifo = &mac_control->fifos[i];
679 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
680 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 681 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
682
683 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
684 if (!fifo->list_info) {
d44570e4 685 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
686 return -ENOMEM;
687 }
491976b2 688 mem_allocated += list_holder_size;
1da177e4
LT
689 }
690 for (i = 0; i < config->tx_fifo_num; i++) {
691 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
692 lst_per_page);
13d866a9
JP
693 struct fifo_info *fifo = &mac_control->fifos[i];
694 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
695
696 fifo->tx_curr_put_info.offset = 0;
697 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
698 fifo->tx_curr_get_info.offset = 0;
699 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
700 fifo->fifo_no = i;
701 fifo->nic = nic;
702 fifo->max_txds = MAX_SKB_FRAGS + 2;
703 fifo->dev = dev;
20346722 704
1da177e4
LT
705 for (j = 0; j < page_num; j++) {
706 int k = 0;
707 dma_addr_t tmp_p;
708 void *tmp_v;
709 tmp_v = pci_alloc_consistent(nic->pdev,
710 PAGE_SIZE, &tmp_p);
711 if (!tmp_v) {
9e39f7c5
JP
712 DBG_PRINT(INFO_DBG,
713 "pci_alloc_consistent failed for TxDL\n");
1da177e4
LT
714 return -ENOMEM;
715 }
776bd20f 716 /* If we got a zero DMA address(can happen on
717 * certain platforms like PPC), reallocate.
718 * Store virtual address of page we don't want,
719 * to be freed later.
720 */
721 if (!tmp_p) {
722 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 723 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
724 "%s: Zero DMA address for TxDL. "
725 "Virtual address %p\n",
726 dev->name, tmp_v);
776bd20f 727 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 728 PAGE_SIZE, &tmp_p);
776bd20f 729 if (!tmp_v) {
0c61ed5f 730 DBG_PRINT(INFO_DBG,
9e39f7c5 731 "pci_alloc_consistent failed for TxDL\n");
776bd20f 732 return -ENOMEM;
733 }
491976b2 734 mem_allocated += PAGE_SIZE;
776bd20f 735 }
1da177e4
LT
736 while (k < lst_per_page) {
737 int l = (j * lst_per_page) + k;
13d866a9 738 if (l == tx_cfg->fifo_len)
20346722 739 break;
13d866a9 740 fifo->list_info[l].list_virt_addr =
d44570e4 741 tmp_v + (k * lst_size);
13d866a9 742 fifo->list_info[l].list_phy_addr =
d44570e4 743 tmp_p + (k * lst_size);
1da177e4
LT
744 k++;
745 }
746 }
747 }
1da177e4 748
2fda096d 749 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
750 struct fifo_info *fifo = &mac_control->fifos[i];
751 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
752
753 size = tx_cfg->fifo_len;
754 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
755 if (!fifo->ufo_in_band_v)
2fda096d
SR
756 return -ENOMEM;
757 mem_allocated += (size * sizeof(u64));
758 }
fed5eccd 759
1da177e4
LT
760 /* Allocation and initialization of RXDs in Rings */
761 size = 0;
762 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
763 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
764 struct ring_info *ring = &mac_control->rings[i];
765
766 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
9e39f7c5
JP
767 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
768 "multiple of RxDs per Block\n",
769 dev->name, i);
1da177e4
LT
770 return FAILURE;
771 }
13d866a9
JP
772 size += rx_cfg->num_rxd;
773 ring->block_count = rx_cfg->num_rxd /
d44570e4 774 (rxd_count[nic->rxd_mode] + 1);
13d866a9 775 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 776 }
da6971d8 777 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 778 size = (size * (sizeof(struct RxD1)));
da6971d8 779 else
1ee6dd77 780 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
781
782 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
783 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
784 struct ring_info *ring = &mac_control->rings[i];
785
786 ring->rx_curr_get_info.block_index = 0;
787 ring->rx_curr_get_info.offset = 0;
788 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
789 ring->rx_curr_put_info.block_index = 0;
790 ring->rx_curr_put_info.offset = 0;
791 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
792 ring->nic = nic;
793 ring->ring_no = i;
13d866a9
JP
794
795 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
796 /* Allocating all the Rx blocks */
797 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 798 struct rx_block_info *rx_blocks;
da6971d8
AR
799 int l;
800
13d866a9 801 rx_blocks = &ring->rx_blocks[j];
d44570e4 802 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
803 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
804 &tmp_p_addr);
805 if (tmp_v_addr == NULL) {
806 /*
20346722 807 * In case of failure, free_shared_mem()
808 * is called, which should free any
809 * memory that was alloced till the
1da177e4
LT
810 * failure happened.
811 */
da6971d8 812 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
813 return -ENOMEM;
814 }
491976b2 815 mem_allocated += size;
1da177e4 816 memset(tmp_v_addr, 0, size);
4f870320
JP
817
818 size = sizeof(struct rxd_info) *
819 rxd_count[nic->rxd_mode];
da6971d8
AR
820 rx_blocks->block_virt_addr = tmp_v_addr;
821 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 822 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
823 if (!rx_blocks->rxds)
824 return -ENOMEM;
4f870320 825 mem_allocated += size;
d44570e4 826 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
827 rx_blocks->rxds[l].virt_addr =
828 rx_blocks->block_virt_addr +
829 (rxd_size[nic->rxd_mode] * l);
830 rx_blocks->rxds[l].dma_addr =
831 rx_blocks->block_dma_addr +
832 (rxd_size[nic->rxd_mode] * l);
833 }
1da177e4
LT
834 }
835 /* Interlinking all Rx Blocks */
836 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
837 int next = (j + 1) % blk_cnt;
838 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
839 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
840 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
841 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 842
d44570e4 843 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
1da177e4 844 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 845 (unsigned long)tmp_v_addr_next;
1da177e4 846 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 847 (u64)tmp_p_addr_next;
1da177e4
LT
848 }
849 }
6d517a27 850 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
851 /*
852 * Allocation of Storages for buffer addresses in 2BUFF mode
853 * and the buffers as well.
854 */
855 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
856 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
857 struct ring_info *ring = &mac_control->rings[i];
858
859 blk_cnt = rx_cfg->num_rxd /
d44570e4 860 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
861 size = sizeof(struct buffAdd *) * blk_cnt;
862 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 863 if (!ring->ba)
1da177e4 864 return -ENOMEM;
4f870320 865 mem_allocated += size;
da6971d8
AR
866 for (j = 0; j < blk_cnt; j++) {
867 int k = 0;
4f870320
JP
868
869 size = sizeof(struct buffAdd) *
870 (rxd_count[nic->rxd_mode] + 1);
871 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 872 if (!ring->ba[j])
1da177e4 873 return -ENOMEM;
4f870320 874 mem_allocated += size;
da6971d8 875 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 876 ba = &ring->ba[j][k];
4f870320
JP
877 size = BUF0_LEN + ALIGN_SIZE;
878 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
879 if (!ba->ba_0_org)
880 return -ENOMEM;
4f870320 881 mem_allocated += size;
da6971d8
AR
882 tmp = (unsigned long)ba->ba_0_org;
883 tmp += ALIGN_SIZE;
d44570e4
JP
884 tmp &= ~((unsigned long)ALIGN_SIZE);
885 ba->ba_0 = (void *)tmp;
da6971d8 886
4f870320
JP
887 size = BUF1_LEN + ALIGN_SIZE;
888 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
889 if (!ba->ba_1_org)
890 return -ENOMEM;
4f870320 891 mem_allocated += size;
d44570e4 892 tmp = (unsigned long)ba->ba_1_org;
da6971d8 893 tmp += ALIGN_SIZE;
d44570e4
JP
894 tmp &= ~((unsigned long)ALIGN_SIZE);
895 ba->ba_1 = (void *)tmp;
da6971d8
AR
896 k++;
897 }
1da177e4
LT
898 }
899 }
900 }
1da177e4
LT
901
902 /* Allocation and initialization of Statistics block */
1ee6dd77 903 size = sizeof(struct stat_block);
d44570e4
JP
904 mac_control->stats_mem =
905 pci_alloc_consistent(nic->pdev, size,
906 &mac_control->stats_mem_phy);
1da177e4
LT
907
908 if (!mac_control->stats_mem) {
20346722 909 /*
910 * In case of failure, free_shared_mem() is called, which
911 * should free any memory that was alloced till the
1da177e4
LT
912 * failure happened.
913 */
914 return -ENOMEM;
915 }
491976b2 916 mem_allocated += size;
1da177e4
LT
917 mac_control->stats_mem_sz = size;
918
919 tmp_v_addr = mac_control->stats_mem;
d44570e4 920 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
1da177e4 921 memset(tmp_v_addr, 0, size);
3a22813a
BL
922 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
923 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
491976b2 924 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
925 return SUCCESS;
926}
927
20346722 928/**
929 * free_shared_mem - Free the allocated Memory
1da177e4
LT
930 * @nic: Device private variable.
931 * Description: This function is to free all memory locations allocated by
932 * the init_shared_mem() function and return it to the kernel.
933 */
934
935static void free_shared_mem(struct s2io_nic *nic)
936{
937 int i, j, blk_cnt, size;
938 void *tmp_v_addr;
939 dma_addr_t tmp_p_addr;
1da177e4 940 int lst_size, lst_per_page;
8910b49f 941 struct net_device *dev;
491976b2 942 int page_num = 0;
ffb5df6c
JP
943 struct config_param *config;
944 struct mac_info *mac_control;
945 struct stat_block *stats;
946 struct swStat *swstats;
1da177e4
LT
947
948 if (!nic)
949 return;
950
8910b49f
MG
951 dev = nic->dev;
952
1da177e4 953 config = &nic->config;
ffb5df6c
JP
954 mac_control = &nic->mac_control;
955 stats = mac_control->stats_info;
956 swstats = &stats->sw_stat;
1da177e4 957
d44570e4 958 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
959 lst_per_page = PAGE_SIZE / lst_size;
960
961 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
962 struct fifo_info *fifo = &mac_control->fifos[i];
963 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
964
965 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
966 for (j = 0; j < page_num; j++) {
967 int mem_blks = (j * lst_per_page);
13d866a9
JP
968 struct list_info_hold *fli;
969
970 if (!fifo->list_info)
6aa20a22 971 return;
13d866a9
JP
972
973 fli = &fifo->list_info[mem_blks];
974 if (!fli->list_virt_addr)
1da177e4
LT
975 break;
976 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
977 fli->list_virt_addr,
978 fli->list_phy_addr);
ffb5df6c 979 swstats->mem_freed += PAGE_SIZE;
1da177e4 980 }
776bd20f 981 /* If we got a zero DMA address during allocation,
982 * free the page now
983 */
984 if (mac_control->zerodma_virt_addr) {
985 pci_free_consistent(nic->pdev, PAGE_SIZE,
986 mac_control->zerodma_virt_addr,
987 (dma_addr_t)0);
6aa20a22 988 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
989 "%s: Freeing TxDL with zero DMA address. "
990 "Virtual address %p\n",
991 dev->name, mac_control->zerodma_virt_addr);
ffb5df6c 992 swstats->mem_freed += PAGE_SIZE;
776bd20f 993 }
13d866a9 994 kfree(fifo->list_info);
82c2d023 995 swstats->mem_freed += tx_cfg->fifo_len *
d44570e4 996 sizeof(struct list_info_hold);
1da177e4
LT
997 }
998
1da177e4 999 size = SIZE_OF_BLOCK;
1da177e4 1000 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1001 struct ring_info *ring = &mac_control->rings[i];
1002
1003 blk_cnt = ring->block_count;
1da177e4 1004 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
1005 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1006 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
1007 if (tmp_v_addr == NULL)
1008 break;
1009 pci_free_consistent(nic->pdev, size,
1010 tmp_v_addr, tmp_p_addr);
ffb5df6c 1011 swstats->mem_freed += size;
13d866a9 1012 kfree(ring->rx_blocks[j].rxds);
ffb5df6c
JP
1013 swstats->mem_freed += sizeof(struct rxd_info) *
1014 rxd_count[nic->rxd_mode];
1da177e4
LT
1015 }
1016 }
1017
6d517a27 1018 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1019 /* Freeing buffer storage addresses in 2BUFF mode. */
1020 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1021 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1022 struct ring_info *ring = &mac_control->rings[i];
1023
1024 blk_cnt = rx_cfg->num_rxd /
1025 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
1026 for (j = 0; j < blk_cnt; j++) {
1027 int k = 0;
13d866a9 1028 if (!ring->ba[j])
da6971d8
AR
1029 continue;
1030 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 1031 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 1032 kfree(ba->ba_0_org);
ffb5df6c
JP
1033 swstats->mem_freed +=
1034 BUF0_LEN + ALIGN_SIZE;
da6971d8 1035 kfree(ba->ba_1_org);
ffb5df6c
JP
1036 swstats->mem_freed +=
1037 BUF1_LEN + ALIGN_SIZE;
da6971d8
AR
1038 k++;
1039 }
13d866a9 1040 kfree(ring->ba[j]);
ffb5df6c
JP
1041 swstats->mem_freed += sizeof(struct buffAdd) *
1042 (rxd_count[nic->rxd_mode] + 1);
1da177e4 1043 }
13d866a9 1044 kfree(ring->ba);
ffb5df6c
JP
1045 swstats->mem_freed += sizeof(struct buffAdd *) *
1046 blk_cnt;
1da177e4 1047 }
1da177e4 1048 }
1da177e4 1049
2fda096d 1050 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1051 struct fifo_info *fifo = &mac_control->fifos[i];
1052 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1053
1054 if (fifo->ufo_in_band_v) {
ffb5df6c
JP
1055 swstats->mem_freed += tx_cfg->fifo_len *
1056 sizeof(u64);
13d866a9 1057 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1058 }
1059 }
1060
1da177e4 1061 if (mac_control->stats_mem) {
ffb5df6c 1062 swstats->mem_freed += mac_control->stats_mem_sz;
1da177e4
LT
1063 pci_free_consistent(nic->pdev,
1064 mac_control->stats_mem_sz,
1065 mac_control->stats_mem,
1066 mac_control->stats_mem_phy);
491976b2 1067 }
1da177e4
LT
1068}
1069
541ae68f 1070/**
1071 * s2io_verify_pci_mode -
1072 */
1073
1ee6dd77 1074static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1075{
1ee6dd77 1076 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1077 register u64 val64 = 0;
1078 int mode;
1079
1080 val64 = readq(&bar0->pci_mode);
1081 mode = (u8)GET_PCI_MODE(val64);
1082
d44570e4 1083 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f 1084 return -1; /* Unknown PCI mode */
1085 return mode;
1086}
1087
c92ca04b
AR
1088#define NEC_VENID 0x1033
1089#define NEC_DEVID 0x0125
1090static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1091{
1092 struct pci_dev *tdev = NULL;
26d36b64
AC
1093 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1094 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1095 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1096 pci_dev_put(tdev);
c92ca04b 1097 return 1;
7ad62dbc 1098 }
c92ca04b
AR
1099 }
1100 }
1101 return 0;
1102}
541ae68f 1103
7b32a312 1104static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f 1105/**
1106 * s2io_print_pci_mode -
1107 */
1ee6dd77 1108static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1109{
1ee6dd77 1110 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1111 register u64 val64 = 0;
1112 int mode;
1113 struct config_param *config = &nic->config;
9e39f7c5 1114 const char *pcimode;
541ae68f 1115
1116 val64 = readq(&bar0->pci_mode);
1117 mode = (u8)GET_PCI_MODE(val64);
1118
d44570e4 1119 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f 1120 return -1; /* Unknown PCI mode */
1121
c92ca04b
AR
1122 config->bus_speed = bus_speed[mode];
1123
1124 if (s2io_on_nec_bridge(nic->pdev)) {
1125 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1126 nic->dev->name);
c92ca04b
AR
1127 return mode;
1128 }
1129
d44570e4
JP
1130 switch (mode) {
1131 case PCI_MODE_PCI_33:
9e39f7c5 1132 pcimode = "33MHz PCI bus";
d44570e4
JP
1133 break;
1134 case PCI_MODE_PCI_66:
9e39f7c5 1135 pcimode = "66MHz PCI bus";
d44570e4
JP
1136 break;
1137 case PCI_MODE_PCIX_M1_66:
9e39f7c5 1138 pcimode = "66MHz PCIX(M1) bus";
d44570e4
JP
1139 break;
1140 case PCI_MODE_PCIX_M1_100:
9e39f7c5 1141 pcimode = "100MHz PCIX(M1) bus";
d44570e4
JP
1142 break;
1143 case PCI_MODE_PCIX_M1_133:
9e39f7c5 1144 pcimode = "133MHz PCIX(M1) bus";
d44570e4
JP
1145 break;
1146 case PCI_MODE_PCIX_M2_66:
9e39f7c5 1147 pcimode = "133MHz PCIX(M2) bus";
d44570e4
JP
1148 break;
1149 case PCI_MODE_PCIX_M2_100:
9e39f7c5 1150 pcimode = "200MHz PCIX(M2) bus";
d44570e4
JP
1151 break;
1152 case PCI_MODE_PCIX_M2_133:
9e39f7c5 1153 pcimode = "266MHz PCIX(M2) bus";
d44570e4
JP
1154 break;
1155 default:
9e39f7c5
JP
1156 pcimode = "unsupported bus!";
1157 mode = -1;
541ae68f 1158 }
1159
9e39f7c5
JP
1160 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1161 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1162
541ae68f 1163 return mode;
1164}
1165
b7c5678f
RV
1166/**
1167 * init_tti - Initialization transmit traffic interrupt scheme
1168 * @nic: device private variable
1169 * @link: link status (UP/DOWN) used to enable/disable continuous
1170 * transmit interrupts
1171 * Description: The function configures transmit traffic interrupts
1172 * Return Value: SUCCESS on success and
1173 * '-1' on failure
1174 */
1175
0d66afe7 1176static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1177{
1178 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1179 register u64 val64 = 0;
1180 int i;
ffb5df6c 1181 struct config_param *config = &nic->config;
b7c5678f
RV
1182
1183 for (i = 0; i < config->tx_fifo_num; i++) {
1184 /*
1185 * TTI Initialization. Default Tx timer gets us about
1186 * 250 interrupts per sec. Continuous interrupts are enabled
1187 * by default.
1188 */
1189 if (nic->device_type == XFRAME_II_DEVICE) {
1190 int count = (nic->config.bus_speed * 125)/2;
1191 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1192 } else
1193 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1194
1195 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1196 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1197 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1198 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1199 if (i == 0)
1200 if (use_continuous_tx_intrs && (link == LINK_UP))
1201 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1202 writeq(val64, &bar0->tti_data1_mem);
1203
ac731ab6
SH
1204 if (nic->config.intr_type == MSI_X) {
1205 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1206 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1207 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1208 TTI_DATA2_MEM_TX_UFC_D(0x300);
1209 } else {
1210 if ((nic->config.tx_steering_type ==
d44570e4
JP
1211 TX_DEFAULT_STEERING) &&
1212 (config->tx_fifo_num > 1) &&
1213 (i >= nic->udp_fifo_idx) &&
1214 (i < (nic->udp_fifo_idx +
1215 nic->total_udp_fifos)))
ac731ab6
SH
1216 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1217 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1218 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1219 TTI_DATA2_MEM_TX_UFC_D(0x120);
1220 else
1221 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1222 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1223 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1224 TTI_DATA2_MEM_TX_UFC_D(0x80);
1225 }
b7c5678f
RV
1226
1227 writeq(val64, &bar0->tti_data2_mem);
1228
d44570e4
JP
1229 val64 = TTI_CMD_MEM_WE |
1230 TTI_CMD_MEM_STROBE_NEW_CMD |
1231 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1232 writeq(val64, &bar0->tti_command_mem);
1233
1234 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1235 TTI_CMD_MEM_STROBE_NEW_CMD,
1236 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1237 return FAILURE;
1238 }
1239
1240 return SUCCESS;
1241}
1242
20346722 1243/**
1244 * init_nic - Initialization of hardware
b7c5678f 1245 * @nic: device private variable
20346722 1246 * Description: The function sequentially configures every block
1247 * of the H/W from their reset values.
1248 * Return Value: SUCCESS on success and
1da177e4
LT
1249 * '-1' on failure (endian settings incorrect).
1250 */
1251
1252static int init_nic(struct s2io_nic *nic)
1253{
1ee6dd77 1254 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1255 struct net_device *dev = nic->dev;
1256 register u64 val64 = 0;
1257 void __iomem *add;
1258 u32 time;
1259 int i, j;
c92ca04b 1260 int dtx_cnt = 0;
1da177e4 1261 unsigned long long mem_share;
20346722 1262 int mem_size;
ffb5df6c
JP
1263 struct config_param *config = &nic->config;
1264 struct mac_info *mac_control = &nic->mac_control;
1da177e4 1265
5e25b9dd 1266 /* to set the swapper controle on the card */
d44570e4
JP
1267 if (s2io_set_swapper(nic)) {
1268 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1269 return -EIO;
1da177e4
LT
1270 }
1271
541ae68f 1272 /*
1273 * Herc requires EOI to be removed from reset before XGXS, so..
1274 */
1275 if (nic->device_type & XFRAME_II_DEVICE) {
1276 val64 = 0xA500000000ULL;
1277 writeq(val64, &bar0->sw_reset);
1278 msleep(500);
1279 val64 = readq(&bar0->sw_reset);
1280 }
1281
1da177e4
LT
1282 /* Remove XGXS from reset state */
1283 val64 = 0;
1284 writeq(val64, &bar0->sw_reset);
1da177e4 1285 msleep(500);
20346722 1286 val64 = readq(&bar0->sw_reset);
1da177e4 1287
7962024e
SH
1288 /* Ensure that it's safe to access registers by checking
1289 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1290 */
1291 if (nic->device_type == XFRAME_II_DEVICE) {
1292 for (i = 0; i < 50; i++) {
1293 val64 = readq(&bar0->adapter_status);
1294 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1295 break;
1296 msleep(10);
1297 }
1298 if (i == 50)
1299 return -ENODEV;
1300 }
1301
1da177e4
LT
1302 /* Enable Receiving broadcasts */
1303 add = &bar0->mac_cfg;
1304 val64 = readq(&bar0->mac_cfg);
1305 val64 |= MAC_RMAC_BCAST_ENABLE;
1306 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1307 writel((u32)val64, add);
1da177e4
LT
1308 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1309 writel((u32) (val64 >> 32), (add + 4));
1310
1311 /* Read registers in all blocks */
1312 val64 = readq(&bar0->mac_int_mask);
1313 val64 = readq(&bar0->mc_int_mask);
1314 val64 = readq(&bar0->xgxs_int_mask);
1315
1316 /* Set MTU */
1317 val64 = dev->mtu;
1318 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1319
541ae68f 1320 if (nic->device_type & XFRAME_II_DEVICE) {
1321 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1322 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1323 &bar0->dtx_control, UF);
541ae68f 1324 if (dtx_cnt & 0x1)
1325 msleep(1); /* Necessary!! */
1da177e4
LT
1326 dtx_cnt++;
1327 }
541ae68f 1328 } else {
c92ca04b
AR
1329 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1330 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1331 &bar0->dtx_control, UF);
1332 val64 = readq(&bar0->dtx_control);
1333 dtx_cnt++;
1da177e4
LT
1334 }
1335 }
1336
1337 /* Tx DMA Initialization */
1338 val64 = 0;
1339 writeq(val64, &bar0->tx_fifo_partition_0);
1340 writeq(val64, &bar0->tx_fifo_partition_1);
1341 writeq(val64, &bar0->tx_fifo_partition_2);
1342 writeq(val64, &bar0->tx_fifo_partition_3);
1343
1da177e4 1344 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1345 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1346
1347 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1348 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1349
1350 if (i == (config->tx_fifo_num - 1)) {
1351 if (i % 2 == 0)
1352 i++;
1353 }
1354
1355 switch (i) {
1356 case 1:
1357 writeq(val64, &bar0->tx_fifo_partition_0);
1358 val64 = 0;
b7c5678f 1359 j = 0;
1da177e4
LT
1360 break;
1361 case 3:
1362 writeq(val64, &bar0->tx_fifo_partition_1);
1363 val64 = 0;
b7c5678f 1364 j = 0;
1da177e4
LT
1365 break;
1366 case 5:
1367 writeq(val64, &bar0->tx_fifo_partition_2);
1368 val64 = 0;
b7c5678f 1369 j = 0;
1da177e4
LT
1370 break;
1371 case 7:
1372 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1373 val64 = 0;
1374 j = 0;
1375 break;
1376 default:
1377 j++;
1da177e4
LT
1378 break;
1379 }
1380 }
1381
5e25b9dd 1382 /*
1383 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1384 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1385 */
d44570e4 1386 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd 1387 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1388
1da177e4
LT
1389 val64 = readq(&bar0->tx_fifo_partition_0);
1390 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1391 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1392
20346722 1393 /*
1394 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1395 * integrity checking.
1396 */
1397 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1398 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1399 TX_PA_CFG_IGNORE_SNAP_OUI |
1400 TX_PA_CFG_IGNORE_LLC_CTRL |
1401 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1402 writeq(val64, &bar0->tx_pa_cfg);
1403
1404 /* Rx DMA intialization. */
1405 val64 = 0;
1406 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1407 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1408
1409 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1410 }
1411 writeq(val64, &bar0->rx_queue_priority);
1412
20346722 1413 /*
1414 * Allocating equal share of memory to all the
1da177e4
LT
1415 * configured Rings.
1416 */
1417 val64 = 0;
541ae68f 1418 if (nic->device_type & XFRAME_II_DEVICE)
1419 mem_size = 32;
1420 else
1421 mem_size = 64;
1422
1da177e4
LT
1423 for (i = 0; i < config->rx_ring_num; i++) {
1424 switch (i) {
1425 case 0:
20346722 1426 mem_share = (mem_size / config->rx_ring_num +
1427 mem_size % config->rx_ring_num);
1da177e4
LT
1428 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1429 continue;
1430 case 1:
20346722 1431 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1432 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1433 continue;
1434 case 2:
20346722 1435 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1436 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1437 continue;
1438 case 3:
20346722 1439 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1440 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1441 continue;
1442 case 4:
20346722 1443 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1444 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1445 continue;
1446 case 5:
20346722 1447 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1448 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1449 continue;
1450 case 6:
20346722 1451 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1452 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1453 continue;
1454 case 7:
20346722 1455 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1456 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1457 continue;
1458 }
1459 }
1460 writeq(val64, &bar0->rx_queue_cfg);
1461
20346722 1462 /*
5e25b9dd 1463 * Filling Tx round robin registers
b7c5678f 1464 * as per the number of FIFOs for equal scheduling priority
1da177e4 1465 */
5e25b9dd 1466 switch (config->tx_fifo_num) {
1467 case 1:
b7c5678f 1468 val64 = 0x0;
5e25b9dd 1469 writeq(val64, &bar0->tx_w_round_robin_0);
1470 writeq(val64, &bar0->tx_w_round_robin_1);
1471 writeq(val64, &bar0->tx_w_round_robin_2);
1472 writeq(val64, &bar0->tx_w_round_robin_3);
1473 writeq(val64, &bar0->tx_w_round_robin_4);
1474 break;
1475 case 2:
b7c5678f 1476 val64 = 0x0001000100010001ULL;
5e25b9dd 1477 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1478 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1479 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1480 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1481 val64 = 0x0001000100000000ULL;
5e25b9dd 1482 writeq(val64, &bar0->tx_w_round_robin_4);
1483 break;
1484 case 3:
b7c5678f 1485 val64 = 0x0001020001020001ULL;
5e25b9dd 1486 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1487 val64 = 0x0200010200010200ULL;
5e25b9dd 1488 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1489 val64 = 0x0102000102000102ULL;
5e25b9dd 1490 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1491 val64 = 0x0001020001020001ULL;
5e25b9dd 1492 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1493 val64 = 0x0200010200000000ULL;
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_4);
1495 break;
1496 case 4:
b7c5678f 1497 val64 = 0x0001020300010203ULL;
5e25b9dd 1498 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1499 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1500 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1501 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1502 val64 = 0x0001020300000000ULL;
5e25b9dd 1503 writeq(val64, &bar0->tx_w_round_robin_4);
1504 break;
1505 case 5:
b7c5678f 1506 val64 = 0x0001020304000102ULL;
5e25b9dd 1507 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1508 val64 = 0x0304000102030400ULL;
5e25b9dd 1509 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1510 val64 = 0x0102030400010203ULL;
5e25b9dd 1511 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1512 val64 = 0x0400010203040001ULL;
5e25b9dd 1513 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1514 val64 = 0x0203040000000000ULL;
5e25b9dd 1515 writeq(val64, &bar0->tx_w_round_robin_4);
1516 break;
1517 case 6:
b7c5678f 1518 val64 = 0x0001020304050001ULL;
5e25b9dd 1519 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1520 val64 = 0x0203040500010203ULL;
5e25b9dd 1521 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1522 val64 = 0x0405000102030405ULL;
5e25b9dd 1523 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1524 val64 = 0x0001020304050001ULL;
5e25b9dd 1525 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1526 val64 = 0x0203040500000000ULL;
5e25b9dd 1527 writeq(val64, &bar0->tx_w_round_robin_4);
1528 break;
1529 case 7:
b7c5678f 1530 val64 = 0x0001020304050600ULL;
5e25b9dd 1531 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1532 val64 = 0x0102030405060001ULL;
5e25b9dd 1533 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1534 val64 = 0x0203040506000102ULL;
5e25b9dd 1535 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1536 val64 = 0x0304050600010203ULL;
5e25b9dd 1537 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1538 val64 = 0x0405060000000000ULL;
5e25b9dd 1539 writeq(val64, &bar0->tx_w_round_robin_4);
1540 break;
1541 case 8:
b7c5678f 1542 val64 = 0x0001020304050607ULL;
5e25b9dd 1543 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1544 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1545 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1546 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1547 val64 = 0x0001020300000000ULL;
5e25b9dd 1548 writeq(val64, &bar0->tx_w_round_robin_4);
1549 break;
1550 }
1551
b41477f3 1552 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1553 val64 = readq(&bar0->tx_fifo_partition_0);
1554 val64 |= (TX_FIFO_PARTITION_EN);
1555 writeq(val64, &bar0->tx_fifo_partition_0);
1556
5e25b9dd 1557 /* Filling the Rx round robin registers as per the
0425b46a
SH
1558 * number of Rings and steering based on QoS with
1559 * equal priority.
1560 */
5e25b9dd 1561 switch (config->rx_ring_num) {
1562 case 1:
0425b46a
SH
1563 val64 = 0x0;
1564 writeq(val64, &bar0->rx_w_round_robin_0);
1565 writeq(val64, &bar0->rx_w_round_robin_1);
1566 writeq(val64, &bar0->rx_w_round_robin_2);
1567 writeq(val64, &bar0->rx_w_round_robin_3);
1568 writeq(val64, &bar0->rx_w_round_robin_4);
1569
5e25b9dd 1570 val64 = 0x8080808080808080ULL;
1571 writeq(val64, &bar0->rts_qos_steering);
1572 break;
1573 case 2:
0425b46a 1574 val64 = 0x0001000100010001ULL;
5e25b9dd 1575 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1576 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1577 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1578 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1579 val64 = 0x0001000100000000ULL;
5e25b9dd 1580 writeq(val64, &bar0->rx_w_round_robin_4);
1581
1582 val64 = 0x8080808040404040ULL;
1583 writeq(val64, &bar0->rts_qos_steering);
1584 break;
1585 case 3:
0425b46a 1586 val64 = 0x0001020001020001ULL;
5e25b9dd 1587 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1588 val64 = 0x0200010200010200ULL;
5e25b9dd 1589 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1590 val64 = 0x0102000102000102ULL;
5e25b9dd 1591 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1592 val64 = 0x0001020001020001ULL;
5e25b9dd 1593 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1594 val64 = 0x0200010200000000ULL;
5e25b9dd 1595 writeq(val64, &bar0->rx_w_round_robin_4);
1596
1597 val64 = 0x8080804040402020ULL;
1598 writeq(val64, &bar0->rts_qos_steering);
1599 break;
1600 case 4:
0425b46a 1601 val64 = 0x0001020300010203ULL;
5e25b9dd 1602 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1603 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1604 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1605 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1606 val64 = 0x0001020300000000ULL;
5e25b9dd 1607 writeq(val64, &bar0->rx_w_round_robin_4);
1608
1609 val64 = 0x8080404020201010ULL;
1610 writeq(val64, &bar0->rts_qos_steering);
1611 break;
1612 case 5:
0425b46a 1613 val64 = 0x0001020304000102ULL;
5e25b9dd 1614 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1615 val64 = 0x0304000102030400ULL;
5e25b9dd 1616 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1617 val64 = 0x0102030400010203ULL;
5e25b9dd 1618 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1619 val64 = 0x0400010203040001ULL;
5e25b9dd 1620 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1621 val64 = 0x0203040000000000ULL;
5e25b9dd 1622 writeq(val64, &bar0->rx_w_round_robin_4);
1623
1624 val64 = 0x8080404020201008ULL;
1625 writeq(val64, &bar0->rts_qos_steering);
1626 break;
1627 case 6:
0425b46a 1628 val64 = 0x0001020304050001ULL;
5e25b9dd 1629 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1630 val64 = 0x0203040500010203ULL;
5e25b9dd 1631 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1632 val64 = 0x0405000102030405ULL;
5e25b9dd 1633 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1634 val64 = 0x0001020304050001ULL;
5e25b9dd 1635 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1636 val64 = 0x0203040500000000ULL;
5e25b9dd 1637 writeq(val64, &bar0->rx_w_round_robin_4);
1638
1639 val64 = 0x8080404020100804ULL;
1640 writeq(val64, &bar0->rts_qos_steering);
1641 break;
1642 case 7:
0425b46a 1643 val64 = 0x0001020304050600ULL;
5e25b9dd 1644 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1645 val64 = 0x0102030405060001ULL;
5e25b9dd 1646 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1647 val64 = 0x0203040506000102ULL;
5e25b9dd 1648 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1649 val64 = 0x0304050600010203ULL;
5e25b9dd 1650 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1651 val64 = 0x0405060000000000ULL;
5e25b9dd 1652 writeq(val64, &bar0->rx_w_round_robin_4);
1653
1654 val64 = 0x8080402010080402ULL;
1655 writeq(val64, &bar0->rts_qos_steering);
1656 break;
1657 case 8:
0425b46a 1658 val64 = 0x0001020304050607ULL;
5e25b9dd 1659 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1660 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1661 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1662 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1663 val64 = 0x0001020300000000ULL;
5e25b9dd 1664 writeq(val64, &bar0->rx_w_round_robin_4);
1665
1666 val64 = 0x8040201008040201ULL;
1667 writeq(val64, &bar0->rts_qos_steering);
1668 break;
1669 }
1da177e4
LT
1670
1671 /* UDP Fix */
1672 val64 = 0;
20346722 1673 for (i = 0; i < 8; i++)
1da177e4
LT
1674 writeq(val64, &bar0->rts_frm_len_n[i]);
1675
5e25b9dd 1676 /* Set the default rts frame length for the rings configured */
1677 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1678 for (i = 0 ; i < config->rx_ring_num ; i++)
1679 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681 /* Set the frame length for the configured rings
1682 * desired by the user
1683 */
1684 for (i = 0; i < config->rx_ring_num; i++) {
1685 /* If rts_frm_len[i] == 0 then it is assumed that user not
1686 * specified frame length steering.
1687 * If the user provides the frame length then program
1688 * the rts_frm_len register for those values or else
1689 * leave it as it is.
1690 */
1691 if (rts_frm_len[i] != 0) {
1692 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1693 &bar0->rts_frm_len_n[i]);
5e25b9dd 1694 }
1695 }
8a4bdbaa 1696
9fc93a41
SS
1697 /* Disable differentiated services steering logic */
1698 for (i = 0; i < 64; i++) {
1699 if (rts_ds_steer(nic, i, 0) == FAILURE) {
9e39f7c5
JP
1700 DBG_PRINT(ERR_DBG,
1701 "%s: rts_ds_steer failed on codepoint %d\n",
1702 dev->name, i);
9f74ffde 1703 return -ENODEV;
9fc93a41
SS
1704 }
1705 }
1706
20346722 1707 /* Program statistics memory */
1da177e4 1708 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1709
541ae68f 1710 if (nic->device_type == XFRAME_II_DEVICE) {
1711 val64 = STAT_BC(0x320);
1712 writeq(val64, &bar0->stat_byte_cnt);
1713 }
1714
20346722 1715 /*
1da177e4
LT
1716 * Initializing the sampling rate for the device to calculate the
1717 * bandwidth utilization.
1718 */
1719 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1720 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1721 writeq(val64, &bar0->mac_link_util);
1722
20346722 1723 /*
1724 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1725 * Scheme.
1726 */
1da177e4 1727
b7c5678f
RV
1728 /* Initialize TTI */
1729 if (SUCCESS != init_tti(nic, nic->last_link_state))
1730 return -ENODEV;
1da177e4 1731
8a4bdbaa
SS
1732 /* RTI Initialization */
1733 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1734 /*
8a4bdbaa
SS
1735 * Programmed to generate Apprx 500 Intrs per
1736 * second
1737 */
1738 int count = (nic->config.bus_speed * 125)/4;
1739 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1740 } else
1741 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1742 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1743 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1744 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1745 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1746
1747 writeq(val64, &bar0->rti_data1_mem);
1748
1749 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1750 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1751 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1752 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1753 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1754 else
d44570e4
JP
1755 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1756 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1757 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1758
8a4bdbaa 1759 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1760 val64 = RTI_CMD_MEM_WE |
1761 RTI_CMD_MEM_STROBE_NEW_CMD |
1762 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1763 writeq(val64, &bar0->rti_command_mem);
1da177e4 1764
8a4bdbaa
SS
1765 /*
1766 * Once the operation completes, the Strobe bit of the
1767 * command register will be reset. We poll for this
1768 * particular condition. We wait for a maximum of 500ms
1769 * for the operation to complete, if it's not complete
1770 * by then we return error.
1771 */
1772 time = 0;
f957bcf0 1773 while (true) {
8a4bdbaa
SS
1774 val64 = readq(&bar0->rti_command_mem);
1775 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1776 break;
b6e3f982 1777
8a4bdbaa 1778 if (time > 10) {
9e39f7c5 1779 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
8a4bdbaa 1780 dev->name);
9f74ffde 1781 return -ENODEV;
b6e3f982 1782 }
8a4bdbaa
SS
1783 time++;
1784 msleep(50);
1da177e4 1785 }
1da177e4
LT
1786 }
1787
20346722 1788 /*
1789 * Initializing proper values as Pause threshold into all
1da177e4
LT
1790 * the 8 Queues on Rx side.
1791 */
1792 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1793 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1794
1795 /* Disable RMAC PAD STRIPPING */
509a2671 1796 add = &bar0->mac_cfg;
1da177e4
LT
1797 val64 = readq(&bar0->mac_cfg);
1798 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1799 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1800 writel((u32) (val64), add);
1801 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1802 writel((u32) (val64 >> 32), (add + 4));
1803 val64 = readq(&bar0->mac_cfg);
1804
7d3d0439
RA
1805 /* Enable FCS stripping by adapter */
1806 add = &bar0->mac_cfg;
1807 val64 = readq(&bar0->mac_cfg);
1808 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1809 if (nic->device_type == XFRAME_II_DEVICE)
1810 writeq(val64, &bar0->mac_cfg);
1811 else {
1812 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1813 writel((u32) (val64), add);
1814 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1815 writel((u32) (val64 >> 32), (add + 4));
1816 }
1817
20346722 1818 /*
1819 * Set the time value to be inserted in the pause frame
1da177e4
LT
1820 * generated by xena.
1821 */
1822 val64 = readq(&bar0->rmac_pause_cfg);
1823 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1824 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1825 writeq(val64, &bar0->rmac_pause_cfg);
1826
20346722 1827 /*
1da177e4
LT
1828 * Set the Threshold Limit for Generating the pause frame
1829 * If the amount of data in any Queue exceeds ratio of
1830 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1831 * pause frame is generated
1832 */
1833 val64 = 0;
1834 for (i = 0; i < 4; i++) {
d44570e4
JP
1835 val64 |= (((u64)0xFF00 |
1836 nic->mac_control.mc_pause_threshold_q0q3)
1837 << (i * 2 * 8));
1da177e4
LT
1838 }
1839 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1840
1841 val64 = 0;
1842 for (i = 0; i < 4; i++) {
d44570e4
JP
1843 val64 |= (((u64)0xFF00 |
1844 nic->mac_control.mc_pause_threshold_q4q7)
1845 << (i * 2 * 8));
1da177e4
LT
1846 }
1847 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1848
20346722 1849 /*
1850 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1851 * exceeded the limit pointed by shared_splits
1852 */
1853 val64 = readq(&bar0->pic_control);
1854 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1855 writeq(val64, &bar0->pic_control);
1856
863c11a9
AR
1857 if (nic->config.bus_speed == 266) {
1858 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1859 writeq(0x0, &bar0->read_retry_delay);
1860 writeq(0x0, &bar0->write_retry_delay);
1861 }
1862
541ae68f 1863 /*
1864 * Programming the Herc to split every write transaction
1865 * that does not start on an ADB to reduce disconnects.
1866 */
1867 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1868 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1869 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1870 writeq(val64, &bar0->misc_control);
1871 val64 = readq(&bar0->pic_control2);
b7b5a128 1872 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1873 writeq(val64, &bar0->pic_control2);
541ae68f 1874 }
c92ca04b
AR
1875 if (strstr(nic->product_name, "CX4")) {
1876 val64 = TMAC_AVG_IPG(0x17);
1877 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d 1878 }
1879
1da177e4
LT
1880 return SUCCESS;
1881}
a371a07d 1882#define LINK_UP_DOWN_INTERRUPT 1
1883#define MAC_RMAC_ERR_TIMER 2
1884
1ee6dd77 1885static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1886{
1887 if (nic->device_type == XFRAME_II_DEVICE)
1888 return LINK_UP_DOWN_INTERRUPT;
1889 else
1890 return MAC_RMAC_ERR_TIMER;
1891}
8116f3cf 1892
9caab458
SS
1893/**
1894 * do_s2io_write_bits - update alarm bits in alarm register
1895 * @value: alarm bits
1896 * @flag: interrupt status
1897 * @addr: address value
1898 * Description: update alarm bits in alarm register
1899 * Return Value:
1900 * NONE.
1901 */
1902static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1903{
1904 u64 temp64;
1905
1906 temp64 = readq(addr);
1907
d44570e4
JP
1908 if (flag == ENABLE_INTRS)
1909 temp64 &= ~((u64)value);
9caab458 1910 else
d44570e4 1911 temp64 |= ((u64)value);
9caab458
SS
1912 writeq(temp64, addr);
1913}
1da177e4 1914
43b7c451 1915static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1916{
1917 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1918 register u64 gen_int_mask = 0;
01e16faa 1919 u64 interruptible;
9caab458 1920
01e16faa 1921 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1922 if (mask & TX_DMA_INTR) {
9caab458
SS
1923 gen_int_mask |= TXDMA_INT_M;
1924
1925 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1926 TXDMA_PCC_INT | TXDMA_TTI_INT |
1927 TXDMA_LSO_INT | TXDMA_TPA_INT |
1928 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1929
1930 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1931 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1932 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1933 &bar0->pfc_err_mask);
9caab458
SS
1934
1935 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1936 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1937 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1938
1939 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1940 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1941 PCC_N_SERR | PCC_6_COF_OV_ERR |
1942 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1943 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1944 PCC_TXB_ECC_SG_ERR,
1945 flag, &bar0->pcc_err_mask);
9caab458
SS
1946
1947 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1948 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1949
1950 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1951 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1952 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1953 flag, &bar0->lso_err_mask);
9caab458
SS
1954
1955 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1956 flag, &bar0->tpa_err_mask);
9caab458
SS
1957
1958 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1959 }
1960
1961 if (mask & TX_MAC_INTR) {
1962 gen_int_mask |= TXMAC_INT_M;
1963 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1964 &bar0->mac_int_mask);
9caab458 1965 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1966 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1967 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1968 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1969 }
1970
1971 if (mask & TX_XGXS_INTR) {
1972 gen_int_mask |= TXXGXS_INT_M;
1973 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1974 &bar0->xgxs_int_mask);
9caab458 1975 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1976 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1977 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1978 }
1979
1980 if (mask & RX_DMA_INTR) {
1981 gen_int_mask |= RXDMA_INT_M;
1982 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
1983 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1984 flag, &bar0->rxdma_int_mask);
9caab458 1985 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
1986 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1987 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1988 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 1989 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
1990 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1991 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1992 &bar0->prc_pcix_err_mask);
9caab458 1993 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
1994 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1995 &bar0->rpa_err_mask);
9caab458 1996 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
1997 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1998 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1999 RDA_FRM_ECC_SG_ERR |
2000 RDA_MISC_ERR|RDA_PCIX_ERR,
2001 flag, &bar0->rda_err_mask);
9caab458 2002 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
2003 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2004 flag, &bar0->rti_err_mask);
9caab458
SS
2005 }
2006
2007 if (mask & RX_MAC_INTR) {
2008 gen_int_mask |= RXMAC_INT_M;
2009 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
2010 &bar0->mac_int_mask);
2011 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2012 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2013 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
2014 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2015 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2016 do_s2io_write_bits(interruptible,
d44570e4 2017 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
2018 }
2019
d44570e4 2020 if (mask & RX_XGXS_INTR) {
9caab458
SS
2021 gen_int_mask |= RXXGXS_INT_M;
2022 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 2023 &bar0->xgxs_int_mask);
9caab458 2024 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 2025 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
2026 }
2027
2028 if (mask & MC_INTR) {
2029 gen_int_mask |= MC_INT_M;
d44570e4
JP
2030 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2031 flag, &bar0->mc_int_mask);
9caab458 2032 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
2033 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2034 &bar0->mc_err_mask);
9caab458
SS
2035 }
2036 nic->general_int_mask = gen_int_mask;
2037
2038 /* Remove this line when alarm interrupts are enabled */
2039 nic->general_int_mask = 0;
2040}
d44570e4 2041
20346722 2042/**
2043 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2044 * @nic: device private variable,
2045 * @mask: A mask indicating which Intr block must be modified and,
2046 * @flag: A flag indicating whether to enable or disable the Intrs.
2047 * Description: This function will either disable or enable the interrupts
20346722 2048 * depending on the flag argument. The mask argument can be used to
2049 * enable/disable any Intr block.
1da177e4
LT
2050 * Return Value: NONE.
2051 */
2052
2053static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2054{
1ee6dd77 2055 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2056 register u64 temp64 = 0, intr_mask = 0;
2057
2058 intr_mask = nic->general_int_mask;
1da177e4
LT
2059
2060 /* Top level interrupt classification */
2061 /* PIC Interrupts */
9caab458 2062 if (mask & TX_PIC_INTR) {
1da177e4 2063 /* Enable PIC Intrs in the general intr mask register */
9caab458 2064 intr_mask |= TXPIC_INT_M;
1da177e4 2065 if (flag == ENABLE_INTRS) {
20346722 2066 /*
a371a07d 2067 * If Hercules adapter enable GPIO otherwise
b41477f3 2068 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722 2069 * interrupts for now.
2070 * TODO
1da177e4 2071 */
a371a07d 2072 if (s2io_link_fault_indication(nic) ==
d44570e4 2073 LINK_UP_DOWN_INTERRUPT) {
9caab458 2074 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2075 &bar0->pic_int_mask);
9caab458 2076 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2077 &bar0->gpio_int_mask);
9caab458 2078 } else
a371a07d 2079 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2080 } else if (flag == DISABLE_INTRS) {
20346722 2081 /*
2082 * Disable PIC Intrs in the general
2083 * intr mask register
1da177e4
LT
2084 */
2085 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2086 }
2087 }
2088
1da177e4
LT
2089 /* Tx traffic interrupts */
2090 if (mask & TX_TRAFFIC_INTR) {
9caab458 2091 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2092 if (flag == ENABLE_INTRS) {
20346722 2093 /*
1da177e4 2094 * Enable all the Tx side interrupts
20346722 2095 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2096 */
2097 writeq(0x0, &bar0->tx_traffic_mask);
2098 } else if (flag == DISABLE_INTRS) {
20346722 2099 /*
2100 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2101 * register.
2102 */
2103 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2104 }
2105 }
2106
2107 /* Rx traffic interrupts */
2108 if (mask & RX_TRAFFIC_INTR) {
9caab458 2109 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2110 if (flag == ENABLE_INTRS) {
1da177e4
LT
2111 /* writing 0 Enables all 8 RX interrupt levels */
2112 writeq(0x0, &bar0->rx_traffic_mask);
2113 } else if (flag == DISABLE_INTRS) {
20346722 2114 /*
2115 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2116 * register.
2117 */
2118 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2119 }
2120 }
9caab458
SS
2121
2122 temp64 = readq(&bar0->general_int_mask);
2123 if (flag == ENABLE_INTRS)
d44570e4 2124 temp64 &= ~((u64)intr_mask);
9caab458
SS
2125 else
2126 temp64 = DISABLE_ALL_INTRS;
2127 writeq(temp64, &bar0->general_int_mask);
2128
2129 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2130}
2131
19a60522
SS
2132/**
2133 * verify_pcc_quiescent- Checks for PCC quiescent state
2134 * Return: 1 If PCC is quiescence
2135 * 0 If PCC is not quiescence
2136 */
1ee6dd77 2137static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2138{
19a60522 2139 int ret = 0, herc;
1ee6dd77 2140 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2141 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2142
19a60522 2143 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2144
f957bcf0 2145 if (flag == false) {
44c10138 2146 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2147 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2148 ret = 1;
19a60522
SS
2149 } else {
2150 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2151 ret = 1;
20346722 2152 }
2153 } else {
44c10138 2154 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2155 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2156 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2157 ret = 1;
5e25b9dd 2158 } else {
2159 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2160 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2161 ret = 1;
20346722 2162 }
2163 }
2164
2165 return ret;
2166}
2167/**
2168 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2169 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2170 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2171 * differs and the calling function passes the input argument flag to
2172 * indicate this.
20346722 2173 * Return: 1 If xena is quiescence
1da177e4
LT
2174 * 0 If Xena is not quiescence
2175 */
2176
1ee6dd77 2177static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2178{
19a60522 2179 int mode;
1ee6dd77 2180 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2181 u64 val64 = readq(&bar0->adapter_status);
2182 mode = s2io_verify_pci_mode(sp);
1da177e4 2183
19a60522 2184 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
9e39f7c5 2185 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
19a60522
SS
2186 return 0;
2187 }
2188 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
9e39f7c5 2189 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
19a60522
SS
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
9e39f7c5 2193 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
19a60522
SS
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
9e39f7c5 2197 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
19a60522
SS
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
9e39f7c5 2201 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
19a60522
SS
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
9e39f7c5 2205 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
19a60522
SS
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
9e39f7c5 2209 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
19a60522
SS
2210 return 0;
2211 }
2212 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
9e39f7c5 2213 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
19a60522 2214 return 0;
1da177e4
LT
2215 }
2216
19a60522
SS
2217 /*
2218 * In PCI 33 mode, the P_PLL is not used, and therefore,
2219 * the the P_PLL_LOCK bit in the adapter_status register will
2220 * not be asserted.
2221 */
2222 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2223 sp->device_type == XFRAME_II_DEVICE &&
2224 mode != PCI_MODE_PCI_33) {
9e39f7c5 2225 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
19a60522
SS
2226 return 0;
2227 }
2228 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2229 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
9e39f7c5 2230 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
19a60522
SS
2231 return 0;
2232 }
2233 return 1;
1da177e4
LT
2234}
2235
2236/**
2237 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2238 * @sp: Pointer to device specifc structure
20346722 2239 * Description :
1da177e4
LT
2240 * New procedure to clear mac address reading problems on Alpha platforms
2241 *
2242 */
2243
d44570e4 2244static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2245{
1ee6dd77 2246 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2247 u64 val64;
2248 int i = 0;
2249
2250 while (fix_mac[i] != END_SIGN) {
2251 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2252 udelay(10);
1da177e4
LT
2253 val64 = readq(&bar0->gpio_control);
2254 }
2255}
2256
2257/**
20346722 2258 * start_nic - Turns the device on
1da177e4 2259 * @nic : device private variable.
20346722 2260 * Description:
2261 * This function actually turns the device on. Before this function is
2262 * called,all Registers are configured from their reset states
2263 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2264 * calling this function, the device interrupts are cleared and the NIC is
2265 * literally switched on by writing into the adapter control register.
20346722 2266 * Return Value:
1da177e4
LT
2267 * SUCCESS on success and -1 on failure.
2268 */
2269
2270static int start_nic(struct s2io_nic *nic)
2271{
1ee6dd77 2272 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2273 struct net_device *dev = nic->dev;
2274 register u64 val64 = 0;
20346722 2275 u16 subid, i;
ffb5df6c
JP
2276 struct config_param *config = &nic->config;
2277 struct mac_info *mac_control = &nic->mac_control;
1da177e4
LT
2278
2279 /* PRC Initialization and configuration */
2280 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2281 struct ring_info *ring = &mac_control->rings[i];
2282
d44570e4 2283 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2284 &bar0->prc_rxd0_n[i]);
2285
2286 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2287 if (nic->rxd_mode == RXD_MODE_1)
2288 val64 |= PRC_CTRL_RC_ENABLED;
2289 else
2290 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2291 if (nic->device_type == XFRAME_II_DEVICE)
2292 val64 |= PRC_CTRL_GROUP_READS;
2293 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2295 writeq(val64, &bar0->prc_ctrl_n[i]);
2296 }
2297
da6971d8
AR
2298 if (nic->rxd_mode == RXD_MODE_3B) {
2299 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300 val64 = readq(&bar0->rx_pa_cfg);
2301 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2302 writeq(val64, &bar0->rx_pa_cfg);
2303 }
1da177e4 2304
926930b2
SS
2305 if (vlan_tag_strip == 0) {
2306 val64 = readq(&bar0->rx_pa_cfg);
2307 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2308 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2309 nic->vlan_strip_flag = 0;
926930b2
SS
2310 }
2311
20346722 2312 /*
1da177e4
LT
2313 * Enabling MC-RLDRAM. After enabling the device, we timeout
2314 * for around 100ms, which is approximately the time required
2315 * for the device to be ready for operation.
2316 */
2317 val64 = readq(&bar0->mc_rldram_mrs);
2318 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2319 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2320 val64 = readq(&bar0->mc_rldram_mrs);
2321
20346722 2322 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2323
2324 /* Enabling ECC Protection. */
2325 val64 = readq(&bar0->adapter_control);
2326 val64 &= ~ADAPTER_ECC_EN;
2327 writeq(val64, &bar0->adapter_control);
2328
20346722 2329 /*
2330 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2331 * it.
2332 */
2333 val64 = readq(&bar0->adapter_status);
19a60522 2334 if (!verify_xena_quiescence(nic)) {
9e39f7c5
JP
2335 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2336 "Adapter status reads: 0x%llx\n",
2337 dev->name, (unsigned long long)val64);
1da177e4
LT
2338 return FAILURE;
2339 }
2340
20346722 2341 /*
1da177e4 2342 * With some switches, link might be already up at this point.
20346722 2343 * Because of this weird behavior, when we enable laser,
2344 * we may not get link. We need to handle this. We cannot
2345 * figure out which switch is misbehaving. So we are forced to
2346 * make a global change.
1da177e4
LT
2347 */
2348
2349 /* Enabling Laser. */
2350 val64 = readq(&bar0->adapter_control);
2351 val64 |= ADAPTER_EOI_TX_ON;
2352 writeq(val64, &bar0->adapter_control);
2353
c92ca04b
AR
2354 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2355 /*
25985edc 2356 * Dont see link state interrupts initially on some switches,
c92ca04b
AR
2357 * so directly scheduling the link state task here.
2358 */
2359 schedule_work(&nic->set_link_task);
2360 }
1da177e4
LT
2361 /* SXE-002: Initialize link and activity LED */
2362 subid = nic->pdev->subsystem_device;
541ae68f 2363 if (((subid & 0xFF) >= 0x07) &&
2364 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2365 val64 = readq(&bar0->gpio_control);
2366 val64 |= 0x0000800000000000ULL;
2367 writeq(val64, &bar0->gpio_control);
2368 val64 = 0x0411040400000000ULL;
509a2671 2369 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2370 }
2371
1da177e4
LT
2372 return SUCCESS;
2373}
fed5eccd
AR
2374/**
2375 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2376 */
d44570e4
JP
2377static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2378 struct TxD *txdlp, int get_off)
fed5eccd 2379{
1ee6dd77 2380 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2381 struct sk_buff *skb;
1ee6dd77 2382 struct TxD *txds;
fed5eccd
AR
2383 u16 j, frg_cnt;
2384
2385 txds = txdlp;
2fda096d 2386 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2387 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2388 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2389 txds++;
2390 }
2391
d44570e4 2392 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2393 if (!skb) {
1ee6dd77 2394 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2395 return NULL;
2396 }
d44570e4 2397 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
e743d313 2398 skb_headlen(skb), PCI_DMA_TODEVICE);
fed5eccd
AR
2399 frg_cnt = skb_shinfo(skb)->nr_frags;
2400 if (frg_cnt) {
2401 txds++;
2402 for (j = 0; j < frg_cnt; j++, txds++) {
2403 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404 if (!txds->Buffer_Pointer)
2405 break;
d44570e4
JP
2406 pci_unmap_page(nic->pdev,
2407 (dma_addr_t)txds->Buffer_Pointer,
fed5eccd
AR
2408 frag->size, PCI_DMA_TODEVICE);
2409 }
2410 }
d44570e4
JP
2411 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2412 return skb;
fed5eccd 2413}
1da177e4 2414
20346722 2415/**
2416 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2417 * @nic : device private variable.
20346722 2418 * Description:
1da177e4 2419 * Free all queued Tx buffers.
20346722 2420 * Return Value: void
d44570e4 2421 */
1da177e4
LT
2422
2423static void free_tx_buffers(struct s2io_nic *nic)
2424{
2425 struct net_device *dev = nic->dev;
2426 struct sk_buff *skb;
1ee6dd77 2427 struct TxD *txdp;
1da177e4 2428 int i, j;
fed5eccd 2429 int cnt = 0;
ffb5df6c
JP
2430 struct config_param *config = &nic->config;
2431 struct mac_info *mac_control = &nic->mac_control;
2432 struct stat_block *stats = mac_control->stats_info;
2433 struct swStat *swstats = &stats->sw_stat;
1da177e4
LT
2434
2435 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2436 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2437 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2438 unsigned long flags;
13d866a9
JP
2439
2440 spin_lock_irqsave(&fifo->tx_lock, flags);
2441 for (j = 0; j < tx_cfg->fifo_len; j++) {
2442 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2443 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444 if (skb) {
ffb5df6c 2445 swstats->mem_freed += skb->truesize;
fed5eccd
AR
2446 dev_kfree_skb(skb);
2447 cnt++;
1da177e4 2448 }
1da177e4
LT
2449 }
2450 DBG_PRINT(INTR_DBG,
9e39f7c5 2451 "%s: forcibly freeing %d skbs on FIFO%d\n",
1da177e4 2452 dev->name, cnt, i);
13d866a9
JP
2453 fifo->tx_curr_get_info.offset = 0;
2454 fifo->tx_curr_put_info.offset = 0;
2455 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2456 }
2457}
2458
20346722 2459/**
2460 * stop_nic - To stop the nic
1da177e4 2461 * @nic ; device private variable.
20346722 2462 * Description:
2463 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2464 * function does. This function is called to stop the device.
2465 * Return Value:
2466 * void.
2467 */
2468
2469static void stop_nic(struct s2io_nic *nic)
2470{
1ee6dd77 2471 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2472 register u64 val64 = 0;
5d3213cc 2473 u16 interruptible;
1da177e4
LT
2474
2475 /* Disable all interrupts */
9caab458 2476 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2477 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2478 interruptible |= TX_PIC_INTR;
1da177e4
LT
2479 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2480
5d3213cc
AR
2481 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482 val64 = readq(&bar0->adapter_control);
2483 val64 &= ~(ADAPTER_CNTL_EN);
2484 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2485}
2486
20346722 2487/**
2488 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2489 * @ring_info: per ring structure
3f78d885
SH
2490 * @from_card_up: If this is true, we will map the buffer to get
2491 * the dma address for buf0 and buf1 to give it to the card.
2492 * Else we will sync the already mapped buffer to give it to the card.
20346722 2493 * Description:
1da177e4
LT
2494 * The function allocates Rx side skbs and puts the physical
2495 * address of these buffers into the RxD buffer pointers, so that the NIC
2496 * can DMA the received frame into these locations.
2497 * The NIC supports 3 receive modes, viz
2498 * 1. single buffer,
2499 * 2. three buffer and
2500 * 3. Five buffer modes.
20346722 2501 * Each mode defines how many fragments the received frame will be split
2502 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2503 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504 * is split into 3 fragments. As of now only single buffer mode is
2505 * supported.
2506 * Return Value:
2507 * SUCCESS on success or an appropriate -ve value on failure.
2508 */
8d8bb39b 2509static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2510 int from_card_up)
1da177e4 2511{
1da177e4 2512 struct sk_buff *skb;
1ee6dd77 2513 struct RxD_t *rxdp;
0425b46a 2514 int off, size, block_no, block_no1;
1da177e4 2515 u32 alloc_tab = 0;
20346722 2516 u32 alloc_cnt;
20346722 2517 u64 tmp;
1ee6dd77 2518 struct buffAdd *ba;
1ee6dd77 2519 struct RxD_t *first_rxdp = NULL;
363dc367 2520 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2521 int rxd_index = 0;
6d517a27
VP
2522 struct RxD1 *rxdp1;
2523 struct RxD3 *rxdp3;
ffb5df6c 2524 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2525
0425b46a 2526 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2527
0425b46a 2528 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2529 while (alloc_tab < alloc_cnt) {
0425b46a 2530 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2531
0425b46a
SH
2532 off = ring->rx_curr_put_info.offset;
2533
2534 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2535
2536 rxd_index = off + 1;
2537 if (block_no)
2538 rxd_index += (block_no * ring->rxd_count);
da6971d8 2539
7d2e3cb7 2540 if ((block_no == block_no1) &&
d44570e4
JP
2541 (off == ring->rx_curr_get_info.offset) &&
2542 (rxdp->Host_Control)) {
9e39f7c5
JP
2543 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2544 ring->dev->name);
1da177e4
LT
2545 goto end;
2546 }
0425b46a
SH
2547 if (off && (off == ring->rxd_count)) {
2548 ring->rx_curr_put_info.block_index++;
2549 if (ring->rx_curr_put_info.block_index ==
d44570e4 2550 ring->block_count)
0425b46a
SH
2551 ring->rx_curr_put_info.block_index = 0;
2552 block_no = ring->rx_curr_put_info.block_index;
2553 off = 0;
2554 ring->rx_curr_put_info.offset = off;
2555 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2556 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2557 ring->dev->name, rxdp);
2558
1da177e4 2559 }
c9fcbf47 2560
da6971d8 2561 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2562 ((ring->rxd_mode == RXD_MODE_3B) &&
2563 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2564 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2565 goto end;
2566 }
da6971d8 2567 /* calculate size of skb based on ring mode */
d44570e4
JP
2568 size = ring->mtu +
2569 HEADER_ETHERNET_II_802_3_SIZE +
2570 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2571 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2572 size += NET_IP_ALIGN;
da6971d8 2573 else
0425b46a 2574 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2575
da6971d8
AR
2576 /* allocate skb */
2577 skb = dev_alloc_skb(size);
d44570e4 2578 if (!skb) {
9e39f7c5
JP
2579 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2580 ring->dev->name);
303bcb4b 2581 if (first_rxdp) {
2582 wmb();
2583 first_rxdp->Control_1 |= RXD_OWN_XENA;
2584 }
ffb5df6c 2585 swstats->mem_alloc_fail_cnt++;
7d2e3cb7 2586
da6971d8
AR
2587 return -ENOMEM ;
2588 }
ffb5df6c 2589 swstats->mem_allocated += skb->truesize;
0425b46a
SH
2590
2591 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2592 /* 1 buffer mode - normal operation mode */
d44570e4 2593 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2594 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2595 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2596 rxdp1->Buffer0_ptr =
2597 pci_map_single(ring->pdev, skb->data,
2598 size - NET_IP_ALIGN,
2599 PCI_DMA_FROMDEVICE);
8d8bb39b 2600 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2601 rxdp1->Buffer0_ptr))
491abf25
VP
2602 goto pci_map_failed;
2603
8a4bdbaa 2604 rxdp->Control_2 =
491976b2 2605 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2606 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2607 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2608 /*
6d517a27
VP
2609 * 2 buffer mode -
2610 * 2 buffer mode provides 128
da6971d8 2611 * byte aligned receive buffers.
da6971d8
AR
2612 */
2613
d44570e4 2614 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2615 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2616 Buffer0_ptr = rxdp3->Buffer0_ptr;
2617 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2618 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2619 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2620 rxdp3->Buffer0_ptr = Buffer0_ptr;
2621 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2622
0425b46a 2623 ba = &ring->ba[block_no][off];
da6971d8 2624 skb_reserve(skb, BUF0_LEN);
d44570e4 2625 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2626 tmp += ALIGN_SIZE;
2627 tmp &= ~ALIGN_SIZE;
2628 skb->data = (void *) (unsigned long)tmp;
27a884dc 2629 skb_reset_tail_pointer(skb);
da6971d8 2630
3f78d885 2631 if (from_card_up) {
6d517a27 2632 rxdp3->Buffer0_ptr =
d44570e4
JP
2633 pci_map_single(ring->pdev, ba->ba_0,
2634 BUF0_LEN,
2635 PCI_DMA_FROMDEVICE);
2636 if (pci_dma_mapping_error(nic->pdev,
2637 rxdp3->Buffer0_ptr))
3f78d885
SH
2638 goto pci_map_failed;
2639 } else
0425b46a 2640 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2641 (dma_addr_t)rxdp3->Buffer0_ptr,
2642 BUF0_LEN,
2643 PCI_DMA_FROMDEVICE);
491abf25 2644
da6971d8 2645 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2646 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2647 /* Two buffer mode */
2648
2649 /*
6aa20a22 2650 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2651 * L4 payload
2652 */
d44570e4
JP
2653 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2654 skb->data,
2655 ring->mtu + 4,
2656 PCI_DMA_FROMDEVICE);
da6971d8 2657
8d8bb39b 2658 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2659 rxdp3->Buffer2_ptr))
491abf25
VP
2660 goto pci_map_failed;
2661
3f78d885 2662 if (from_card_up) {
0425b46a
SH
2663 rxdp3->Buffer1_ptr =
2664 pci_map_single(ring->pdev,
d44570e4
JP
2665 ba->ba_1,
2666 BUF1_LEN,
2667 PCI_DMA_FROMDEVICE);
0425b46a 2668
8d8bb39b 2669 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2670 rxdp3->Buffer1_ptr)) {
2671 pci_unmap_single(ring->pdev,
2672 (dma_addr_t)(unsigned long)
2673 skb->data,
2674 ring->mtu + 4,
2675 PCI_DMA_FROMDEVICE);
3f78d885
SH
2676 goto pci_map_failed;
2677 }
75c30b13 2678 }
da6971d8
AR
2679 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2681 (ring->mtu + 4);
da6971d8 2682 }
b7b5a128 2683 rxdp->Control_2 |= s2BIT(0);
0425b46a 2684 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2685 }
303bcb4b 2686 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2688 off++;
0425b46a 2689 if (off == (ring->rxd_count + 1))
da6971d8 2690 off = 0;
0425b46a 2691 ring->rx_curr_put_info.offset = off;
20346722 2692
da6971d8 2693 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b 2694 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695 if (first_rxdp) {
2696 wmb();
2697 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698 }
2699 first_rxdp = rxdp;
2700 }
0425b46a 2701 ring->rx_bufs_left += 1;
1da177e4
LT
2702 alloc_tab++;
2703 }
2704
d44570e4 2705end:
303bcb4b 2706 /* Transfer ownership of first descriptor to adapter just before
2707 * exiting. Before that, use memory barrier so that ownership
2708 * and other fields are seen by adapter correctly.
2709 */
2710 if (first_rxdp) {
2711 wmb();
2712 first_rxdp->Control_1 |= RXD_OWN_XENA;
2713 }
2714
1da177e4 2715 return SUCCESS;
d44570e4 2716
491abf25 2717pci_map_failed:
ffb5df6c
JP
2718 swstats->pci_map_fail_cnt++;
2719 swstats->mem_freed += skb->truesize;
491abf25
VP
2720 dev_kfree_skb_irq(skb);
2721 return -ENOMEM;
1da177e4
LT
2722}
2723
da6971d8
AR
2724static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725{
2726 struct net_device *dev = sp->dev;
2727 int j;
2728 struct sk_buff *skb;
1ee6dd77 2729 struct RxD_t *rxdp;
1ee6dd77 2730 struct buffAdd *ba;
6d517a27
VP
2731 struct RxD1 *rxdp1;
2732 struct RxD3 *rxdp3;
ffb5df6c
JP
2733 struct mac_info *mac_control = &sp->mac_control;
2734 struct stat_block *stats = mac_control->stats_info;
2735 struct swStat *swstats = &stats->sw_stat;
da6971d8 2736
da6971d8
AR
2737 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2738 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2739 rx_blocks[blk].rxds[j].virt_addr;
2740 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2741 if (!skb)
da6971d8 2742 continue;
da6971d8 2743 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2744 rxdp1 = (struct RxD1 *)rxdp;
2745 pci_unmap_single(sp->pdev,
2746 (dma_addr_t)rxdp1->Buffer0_ptr,
2747 dev->mtu +
2748 HEADER_ETHERNET_II_802_3_SIZE +
2749 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2750 PCI_DMA_FROMDEVICE);
1ee6dd77 2751 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2752 } else if (sp->rxd_mode == RXD_MODE_3B) {
2753 rxdp3 = (struct RxD3 *)rxdp;
2754 ba = &mac_control->rings[ring_no].ba[blk][j];
2755 pci_unmap_single(sp->pdev,
2756 (dma_addr_t)rxdp3->Buffer0_ptr,
2757 BUF0_LEN,
2758 PCI_DMA_FROMDEVICE);
2759 pci_unmap_single(sp->pdev,
2760 (dma_addr_t)rxdp3->Buffer1_ptr,
2761 BUF1_LEN,
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev,
2764 (dma_addr_t)rxdp3->Buffer2_ptr,
2765 dev->mtu + 4,
2766 PCI_DMA_FROMDEVICE);
1ee6dd77 2767 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2768 }
ffb5df6c 2769 swstats->mem_freed += skb->truesize;
da6971d8 2770 dev_kfree_skb(skb);
0425b46a 2771 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2772 }
2773}
2774
1da177e4 2775/**
20346722 2776 * free_rx_buffers - Frees all Rx buffers
1da177e4 2777 * @sp: device private variable.
20346722 2778 * Description:
1da177e4
LT
2779 * This function will free all Rx buffers allocated by host.
2780 * Return Value:
2781 * NONE.
2782 */
2783
2784static void free_rx_buffers(struct s2io_nic *sp)
2785{
2786 struct net_device *dev = sp->dev;
da6971d8 2787 int i, blk = 0, buf_cnt = 0;
ffb5df6c
JP
2788 struct config_param *config = &sp->config;
2789 struct mac_info *mac_control = &sp->mac_control;
1da177e4
LT
2790
2791 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2792 struct ring_info *ring = &mac_control->rings[i];
2793
da6971d8 2794 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2795 free_rxd_blk(sp, i, blk);
1da177e4 2796
13d866a9
JP
2797 ring->rx_curr_put_info.block_index = 0;
2798 ring->rx_curr_get_info.block_index = 0;
2799 ring->rx_curr_put_info.offset = 0;
2800 ring->rx_curr_get_info.offset = 0;
2801 ring->rx_bufs_left = 0;
9e39f7c5 2802 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
1da177e4
LT
2803 dev->name, buf_cnt, i);
2804 }
2805}
2806
8d8bb39b 2807static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2808{
8d8bb39b 2809 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2810 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2811 ring->dev->name);
f61e0a35
SH
2812 }
2813 return 0;
2814}
2815
1da177e4
LT
2816/**
2817 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2818 * @napi : pointer to the napi structure.
20346722 2819 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2820 * during one pass through the 'Poll" function.
2821 * Description:
2822 * Comes into picture only if NAPI support has been incorporated. It does
2823 * the same thing that rx_intr_handler does, but not in a interrupt context
2824 * also It will process only a given number of packets.
2825 * Return value:
2826 * 0 on success and 1 if there are No Rx packets to be processed.
2827 */
2828
f61e0a35 2829static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2830{
f61e0a35
SH
2831 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2832 struct net_device *dev = ring->dev;
f61e0a35 2833 int pkts_processed = 0;
1a79d1c3
AV
2834 u8 __iomem *addr = NULL;
2835 u8 val8 = 0;
4cf1653a 2836 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2837 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2838 int budget_org = budget;
1da177e4 2839
f61e0a35
SH
2840 if (unlikely(!is_s2io_card_up(nic)))
2841 return 0;
1da177e4 2842
f61e0a35 2843 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2844 s2io_chk_rx_buffers(nic, ring);
1da177e4 2845
f61e0a35 2846 if (pkts_processed < budget_org) {
288379f0 2847 napi_complete(napi);
f61e0a35 2848 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2849 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2850 addr += 7 - ring->ring_no;
2851 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2852 writeb(val8, addr);
2853 val8 = readb(addr);
1da177e4 2854 }
f61e0a35
SH
2855 return pkts_processed;
2856}
d44570e4 2857
f61e0a35
SH
2858static int s2io_poll_inta(struct napi_struct *napi, int budget)
2859{
2860 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2861 int pkts_processed = 0;
2862 int ring_pkts_processed, i;
2863 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2864 int budget_org = budget;
ffb5df6c
JP
2865 struct config_param *config = &nic->config;
2866 struct mac_info *mac_control = &nic->mac_control;
1da177e4 2867
f61e0a35
SH
2868 if (unlikely(!is_s2io_card_up(nic)))
2869 return 0;
1da177e4 2870
1da177e4 2871 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2872 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2873 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2874 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2875 pkts_processed += ring_pkts_processed;
2876 budget -= ring_pkts_processed;
2877 if (budget <= 0)
1da177e4 2878 break;
1da177e4 2879 }
f61e0a35 2880 if (pkts_processed < budget_org) {
288379f0 2881 napi_complete(napi);
f61e0a35
SH
2882 /* Re enable the Rx interrupts for the ring */
2883 writeq(0, &bar0->rx_traffic_mask);
2884 readl(&bar0->rx_traffic_mask);
2885 }
2886 return pkts_processed;
1da177e4 2887}
20346722 2888
b41477f3 2889#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2890/**
b41477f3 2891 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2892 * @dev : pointer to the device structure.
2893 * Description:
b41477f3
AR
2894 * This function will be called by upper layer to check for events on the
2895 * interface in situations where interrupts are disabled. It is used for
2896 * specific in-kernel networking tasks, such as remote consoles and kernel
2897 * debugging over the network (example netdump in RedHat).
612eff0e 2898 */
612eff0e
BH
2899static void s2io_netpoll(struct net_device *dev)
2900{
4cf1653a 2901 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2902 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2903 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e 2904 int i;
ffb5df6c
JP
2905 struct config_param *config = &nic->config;
2906 struct mac_info *mac_control = &nic->mac_control;
612eff0e 2907
d796fdb7
LV
2908 if (pci_channel_offline(nic->pdev))
2909 return;
2910
612eff0e
BH
2911 disable_irq(dev->irq);
2912
612eff0e 2913 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2914 writeq(val64, &bar0->tx_traffic_int);
2915
6aa20a22 2916 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2917 * run out of skbs and will fail and eventually netpoll application such
2918 * as netdump will fail.
2919 */
2920 for (i = 0; i < config->tx_fifo_num; i++)
2921 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2922
b41477f3 2923 /* check for received packet and indicate up to network */
13d866a9
JP
2924 for (i = 0; i < config->rx_ring_num; i++) {
2925 struct ring_info *ring = &mac_control->rings[i];
2926
2927 rx_intr_handler(ring, 0);
2928 }
612eff0e
BH
2929
2930 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2931 struct ring_info *ring = &mac_control->rings[i];
2932
2933 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2934 DBG_PRINT(INFO_DBG,
2935 "%s: Out of memory in Rx Netpoll!!\n",
2936 dev->name);
612eff0e
BH
2937 break;
2938 }
2939 }
612eff0e 2940 enable_irq(dev->irq);
612eff0e
BH
2941}
2942#endif
2943
20346722 2944/**
1da177e4 2945 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2946 * @ring_info: per ring structure.
2947 * @budget: budget for napi processing.
20346722 2948 * Description:
2949 * If the interrupt is because of a received frame or if the
1da177e4 2950 * receive ring contains fresh as yet un-processed frames,this function is
20346722 2951 * called. It picks out the RxD at which place the last Rx processing had
2952 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2953 * the offset.
2954 * Return Value:
f61e0a35 2955 * No. of napi packets processed.
1da177e4 2956 */
f61e0a35 2957static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2958{
c9fcbf47 2959 int get_block, put_block;
1ee6dd77
RB
2960 struct rx_curr_get_info get_info, put_info;
2961 struct RxD_t *rxdp;
1da177e4 2962 struct sk_buff *skb;
f61e0a35 2963 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2964 int i;
d44570e4
JP
2965 struct RxD1 *rxdp1;
2966 struct RxD3 *rxdp3;
7d3d0439 2967
20346722 2968 get_info = ring_data->rx_curr_get_info;
2969 get_block = get_info.block_index;
1ee6dd77 2970 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2971 put_block = put_info.block_index;
da6971d8 2972 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2973
da6971d8 2974 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2975 /*
2976 * If your are next to put index then it's
2977 * FIFO full condition
2978 */
da6971d8
AR
2979 if ((get_block == put_block) &&
2980 (get_info.offset + 1) == put_info.offset) {
0425b46a 2981 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 2982 ring_data->dev->name);
da6971d8
AR
2983 break;
2984 }
d44570e4 2985 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722 2986 if (skb == NULL) {
9e39f7c5 2987 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
0425b46a 2988 ring_data->dev->name);
f61e0a35 2989 return 0;
1da177e4 2990 }
0425b46a 2991 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 2992 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 2993 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
2994 rxdp1->Buffer0_ptr,
2995 ring_data->mtu +
2996 HEADER_ETHERNET_II_802_3_SIZE +
2997 HEADER_802_2_SIZE +
2998 HEADER_SNAP_SIZE,
2999 PCI_DMA_FROMDEVICE);
0425b46a 3000 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
3001 rxdp3 = (struct RxD3 *)rxdp;
3002 pci_dma_sync_single_for_cpu(ring_data->pdev,
3003 (dma_addr_t)rxdp3->Buffer0_ptr,
3004 BUF0_LEN,
3005 PCI_DMA_FROMDEVICE);
3006 pci_unmap_single(ring_data->pdev,
3007 (dma_addr_t)rxdp3->Buffer2_ptr,
3008 ring_data->mtu + 4,
3009 PCI_DMA_FROMDEVICE);
da6971d8 3010 }
863c11a9 3011 prefetch(skb->data);
20346722 3012 rx_osm_handler(ring_data, rxdp);
3013 get_info.offset++;
da6971d8
AR
3014 ring_data->rx_curr_get_info.offset = get_info.offset;
3015 rxdp = ring_data->rx_blocks[get_block].
d44570e4 3016 rxds[get_info.offset].virt_addr;
0425b46a 3017 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3018 get_info.offset = 0;
da6971d8 3019 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3020 get_block++;
da6971d8
AR
3021 if (get_block == ring_data->block_count)
3022 get_block = 0;
3023 ring_data->rx_curr_get_info.block_index = get_block;
20346722 3024 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3025 }
1da177e4 3026
f61e0a35
SH
3027 if (ring_data->nic->config.napi) {
3028 budget--;
3029 napi_pkts++;
3030 if (!budget)
0425b46a
SH
3031 break;
3032 }
20346722 3033 pkt_cnt++;
1da177e4
LT
3034 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3035 break;
3036 }
0425b46a 3037 if (ring_data->lro) {
7d3d0439 3038 /* Clear all LRO sessions before exiting */
d44570e4 3039 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 3040 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3041 if (lro->in_use) {
0425b46a 3042 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3043 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3044 clear_lro_session(lro);
3045 }
3046 }
3047 }
d44570e4 3048 return napi_pkts;
1da177e4 3049}
20346722 3050
3051/**
1da177e4
LT
3052 * tx_intr_handler - Transmit interrupt handler
3053 * @nic : device private variable
20346722 3054 * Description:
3055 * If an interrupt was raised to indicate DMA complete of the
3056 * Tx packet, this function is called. It identifies the last TxD
3057 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3058 * DMA'ed into the NICs internal memory.
3059 * Return Value:
3060 * NONE
3061 */
3062
1ee6dd77 3063static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3064{
1ee6dd77 3065 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3066 struct tx_curr_get_info get_info, put_info;
3a3d5756 3067 struct sk_buff *skb = NULL;
1ee6dd77 3068 struct TxD *txdlp;
3a3d5756 3069 int pkt_cnt = 0;
2fda096d 3070 unsigned long flags = 0;
f9046eb3 3071 u8 err_mask;
ffb5df6c
JP
3072 struct stat_block *stats = nic->mac_control.stats_info;
3073 struct swStat *swstats = &stats->sw_stat;
1da177e4 3074
2fda096d 3075 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3076 return;
2fda096d 3077
20346722 3078 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3079 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
d44570e4
JP
3080 txdlp = (struct TxD *)
3081 fifo_data->list_info[get_info.offset].list_virt_addr;
20346722 3082 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3083 (get_info.offset != put_info.offset) &&
3084 (txdlp->Host_Control)) {
3085 /* Check for TxD errors */
3086 if (txdlp->Control_1 & TXD_T_CODE) {
3087 unsigned long long err;
3088 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0 3089 if (err & 0x1) {
ffb5df6c 3090 swstats->parity_err_cnt++;
bd1034f0 3091 }
491976b2
SH
3092
3093 /* update t_code statistics */
f9046eb3 3094 err_mask = err >> 48;
d44570e4
JP
3095 switch (err_mask) {
3096 case 2:
ffb5df6c 3097 swstats->tx_buf_abort_cnt++;
491976b2
SH
3098 break;
3099
d44570e4 3100 case 3:
ffb5df6c 3101 swstats->tx_desc_abort_cnt++;
491976b2
SH
3102 break;
3103
d44570e4 3104 case 7:
ffb5df6c 3105 swstats->tx_parity_err_cnt++;
491976b2
SH
3106 break;
3107
d44570e4 3108 case 10:
ffb5df6c 3109 swstats->tx_link_loss_cnt++;
491976b2
SH
3110 break;
3111
d44570e4 3112 case 15:
ffb5df6c 3113 swstats->tx_list_proc_err_cnt++;
491976b2 3114 break;
d44570e4 3115 }
20346722 3116 }
1da177e4 3117
fed5eccd 3118 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3119 if (skb == NULL) {
2fda096d 3120 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
9e39f7c5
JP
3121 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3122 __func__);
20346722 3123 return;
3124 }
3a3d5756 3125 pkt_cnt++;
20346722 3126
20346722 3127 /* Updating the statistics block */
ffb5df6c 3128 swstats->mem_freed += skb->truesize;
20346722 3129 dev_kfree_skb_irq(skb);
3130
3131 get_info.offset++;
863c11a9
AR
3132 if (get_info.offset == get_info.fifo_len + 1)
3133 get_info.offset = 0;
d44570e4
JP
3134 txdlp = (struct TxD *)
3135 fifo_data->list_info[get_info.offset].list_virt_addr;
3136 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3137 }
3138
3a3d5756 3139 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3140
3141 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3142}
3143
bd1034f0
AR
3144/**
3145 * s2io_mdio_write - Function to write in to MDIO registers
3146 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3147 * @addr : address value
3148 * @value : data value
3149 * @dev : pointer to net_device structure
3150 * Description:
3151 * This function is used to write values to the MDIO registers
3152 * NONE
3153 */
d44570e4
JP
3154static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3155 struct net_device *dev)
bd1034f0 3156{
d44570e4 3157 u64 val64;
4cf1653a 3158 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3159 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3160
d44570e4
JP
3161 /* address transaction */
3162 val64 = MDIO_MMD_INDX_ADDR(addr) |
3163 MDIO_MMD_DEV_ADDR(mmd_type) |
3164 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3165 writeq(val64, &bar0->mdio_control);
3166 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3167 writeq(val64, &bar0->mdio_control);
3168 udelay(100);
3169
d44570e4
JP
3170 /* Data transaction */
3171 val64 = MDIO_MMD_INDX_ADDR(addr) |
3172 MDIO_MMD_DEV_ADDR(mmd_type) |
3173 MDIO_MMS_PRT_ADDR(0x0) |
3174 MDIO_MDIO_DATA(value) |
3175 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3176 writeq(val64, &bar0->mdio_control);
3177 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3178 writeq(val64, &bar0->mdio_control);
3179 udelay(100);
3180
d44570e4
JP
3181 val64 = MDIO_MMD_INDX_ADDR(addr) |
3182 MDIO_MMD_DEV_ADDR(mmd_type) |
3183 MDIO_MMS_PRT_ADDR(0x0) |
3184 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3185 writeq(val64, &bar0->mdio_control);
3186 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3187 writeq(val64, &bar0->mdio_control);
3188 udelay(100);
bd1034f0
AR
3189}
3190
3191/**
3192 * s2io_mdio_read - Function to write in to MDIO registers
3193 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3194 * @addr : address value
3195 * @dev : pointer to net_device structure
3196 * Description:
3197 * This function is used to read values to the MDIO registers
3198 * NONE
3199 */
3200static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3201{
3202 u64 val64 = 0x0;
3203 u64 rval64 = 0x0;
4cf1653a 3204 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3205 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3206
3207 /* address transaction */
d44570e4
JP
3208 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3209 | MDIO_MMD_DEV_ADDR(mmd_type)
3210 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3211 writeq(val64, &bar0->mdio_control);
3212 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64, &bar0->mdio_control);
3214 udelay(100);
3215
3216 /* Data transaction */
d44570e4
JP
3217 val64 = MDIO_MMD_INDX_ADDR(addr) |
3218 MDIO_MMD_DEV_ADDR(mmd_type) |
3219 MDIO_MMS_PRT_ADDR(0x0) |
3220 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3221 writeq(val64, &bar0->mdio_control);
3222 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223 writeq(val64, &bar0->mdio_control);
3224 udelay(100);
3225
3226 /* Read the value from regs */
3227 rval64 = readq(&bar0->mdio_control);
3228 rval64 = rval64 & 0xFFFF0000;
3229 rval64 = rval64 >> 16;
3230 return rval64;
3231}
d44570e4 3232
bd1034f0
AR
3233/**
3234 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
fbfecd37 3235 * @counter : counter value to be updated
bd1034f0
AR
3236 * @flag : flag to indicate the status
3237 * @type : counter type
3238 * Description:
3239 * This function is to check the status of the xpak counters value
3240 * NONE
3241 */
3242
d44570e4
JP
3243static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3244 u16 flag, u16 type)
bd1034f0
AR
3245{
3246 u64 mask = 0x3;
3247 u64 val64;
3248 int i;
d44570e4 3249 for (i = 0; i < index; i++)
bd1034f0
AR
3250 mask = mask << 0x2;
3251
d44570e4 3252 if (flag > 0) {
bd1034f0
AR
3253 *counter = *counter + 1;
3254 val64 = *regs_stat & mask;
3255 val64 = val64 >> (index * 0x2);
3256 val64 = val64 + 1;
d44570e4
JP
3257 if (val64 == 3) {
3258 switch (type) {
bd1034f0 3259 case 1:
9e39f7c5
JP
3260 DBG_PRINT(ERR_DBG,
3261 "Take Xframe NIC out of service.\n");
3262 DBG_PRINT(ERR_DBG,
3263"Excessive temperatures may result in premature transceiver failure.\n");
d44570e4 3264 break;
bd1034f0 3265 case 2:
9e39f7c5
JP
3266 DBG_PRINT(ERR_DBG,
3267 "Take Xframe NIC out of service.\n");
3268 DBG_PRINT(ERR_DBG,
3269"Excessive bias currents may indicate imminent laser diode failure.\n");
d44570e4 3270 break;
bd1034f0 3271 case 3:
9e39f7c5
JP
3272 DBG_PRINT(ERR_DBG,
3273 "Take Xframe NIC out of service.\n");
3274 DBG_PRINT(ERR_DBG,
3275"Excessive laser output power may saturate far-end receiver.\n");
d44570e4 3276 break;
bd1034f0 3277 default:
d44570e4
JP
3278 DBG_PRINT(ERR_DBG,
3279 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3280 }
3281 val64 = 0x0;
3282 }
3283 val64 = val64 << (index * 0x2);
3284 *regs_stat = (*regs_stat & (~mask)) | (val64);
3285
3286 } else {
3287 *regs_stat = *regs_stat & (~mask);
3288 }
3289}
3290
3291/**
3292 * s2io_updt_xpak_counter - Function to update the xpak counters
3293 * @dev : pointer to net_device struct
3294 * Description:
3295 * This function is to upate the status of the xpak counters value
3296 * NONE
3297 */
3298static void s2io_updt_xpak_counter(struct net_device *dev)
3299{
3300 u16 flag = 0x0;
3301 u16 type = 0x0;
3302 u16 val16 = 0x0;
3303 u64 val64 = 0x0;
3304 u64 addr = 0x0;
3305
4cf1653a 3306 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
3307 struct stat_block *stats = sp->mac_control.stats_info;
3308 struct xpakStat *xstats = &stats->xpak_stat;
bd1034f0
AR
3309
3310 /* Check the communication with the MDIO slave */
40239396 3311 addr = MDIO_CTRL1;
bd1034f0 3312 val64 = 0x0;
40239396 3313 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3314 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
9e39f7c5
JP
3315 DBG_PRINT(ERR_DBG,
3316 "ERR: MDIO slave access failed - Returned %llx\n",
3317 (unsigned long long)val64);
bd1034f0
AR
3318 return;
3319 }
3320
40239396 3321 /* Check for the expected value of control reg 1 */
d44570e4 3322 if (val64 != MDIO_CTRL1_SPEED10G) {
9e39f7c5
JP
3323 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3324 "Returned: %llx- Expected: 0x%x\n",
40239396 3325 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3326 return;
3327 }
3328
3329 /* Loading the DOM register to MDIO register */
3330 addr = 0xA100;
40239396
BH
3331 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3332 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3333
3334 /* Reading the Alarm flags */
3335 addr = 0xA070;
3336 val64 = 0x0;
40239396 3337 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3338
3339 flag = CHECKBIT(val64, 0x7);
3340 type = 1;
ffb5df6c
JP
3341 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3342 &xstats->xpak_regs_stat,
d44570e4 3343 0x0, flag, type);
bd1034f0 3344
d44570e4 3345 if (CHECKBIT(val64, 0x6))
ffb5df6c 3346 xstats->alarm_transceiver_temp_low++;
bd1034f0
AR
3347
3348 flag = CHECKBIT(val64, 0x3);
3349 type = 2;
ffb5df6c
JP
3350 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3351 &xstats->xpak_regs_stat,
d44570e4 3352 0x2, flag, type);
bd1034f0 3353
d44570e4 3354 if (CHECKBIT(val64, 0x2))
ffb5df6c 3355 xstats->alarm_laser_bias_current_low++;
bd1034f0
AR
3356
3357 flag = CHECKBIT(val64, 0x1);
3358 type = 3;
ffb5df6c
JP
3359 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3360 &xstats->xpak_regs_stat,
d44570e4 3361 0x4, flag, type);
bd1034f0 3362
d44570e4 3363 if (CHECKBIT(val64, 0x0))
ffb5df6c 3364 xstats->alarm_laser_output_power_low++;
bd1034f0
AR
3365
3366 /* Reading the Warning flags */
3367 addr = 0xA074;
3368 val64 = 0x0;
40239396 3369 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3370
d44570e4 3371 if (CHECKBIT(val64, 0x7))
ffb5df6c 3372 xstats->warn_transceiver_temp_high++;
bd1034f0 3373
d44570e4 3374 if (CHECKBIT(val64, 0x6))
ffb5df6c 3375 xstats->warn_transceiver_temp_low++;
bd1034f0 3376
d44570e4 3377 if (CHECKBIT(val64, 0x3))
ffb5df6c 3378 xstats->warn_laser_bias_current_high++;
bd1034f0 3379
d44570e4 3380 if (CHECKBIT(val64, 0x2))
ffb5df6c 3381 xstats->warn_laser_bias_current_low++;
bd1034f0 3382
d44570e4 3383 if (CHECKBIT(val64, 0x1))
ffb5df6c 3384 xstats->warn_laser_output_power_high++;
bd1034f0 3385
d44570e4 3386 if (CHECKBIT(val64, 0x0))
ffb5df6c 3387 xstats->warn_laser_output_power_low++;
bd1034f0
AR
3388}
3389
20346722 3390/**
1da177e4 3391 * wait_for_cmd_complete - waits for a command to complete.
20346722 3392 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3393 * s2io_nic structure.
20346722 3394 * Description: Function that waits for a command to Write into RMAC
3395 * ADDR DATA registers to be completed and returns either success or
3396 * error depending on whether the command was complete or not.
1da177e4
LT
3397 * Return value:
3398 * SUCCESS on success and FAILURE on failure.
3399 */
3400
9fc93a41 3401static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3402 int bit_state)
1da177e4 3403{
9fc93a41 3404 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3405 u64 val64;
3406
9fc93a41
SS
3407 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3408 return FAILURE;
3409
3410 do {
c92ca04b 3411 val64 = readq(addr);
9fc93a41
SS
3412 if (bit_state == S2IO_BIT_RESET) {
3413 if (!(val64 & busy_bit)) {
3414 ret = SUCCESS;
3415 break;
3416 }
3417 } else {
2d146eb1 3418 if (val64 & busy_bit) {
9fc93a41
SS
3419 ret = SUCCESS;
3420 break;
3421 }
1da177e4 3422 }
c92ca04b 3423
d44570e4 3424 if (in_interrupt())
9fc93a41 3425 mdelay(delay);
c92ca04b 3426 else
9fc93a41 3427 msleep(delay);
c92ca04b 3428
9fc93a41
SS
3429 if (++cnt >= 10)
3430 delay = 50;
3431 } while (cnt < 20);
1da177e4
LT
3432 return ret;
3433}
19a60522
SS
3434/*
3435 * check_pci_device_id - Checks if the device id is supported
3436 * @id : device id
3437 * Description: Function to check if the pci device id is supported by driver.
3438 * Return value: Actual device id if supported else PCI_ANY_ID
3439 */
3440static u16 check_pci_device_id(u16 id)
3441{
3442 switch (id) {
3443 case PCI_DEVICE_ID_HERC_WIN:
3444 case PCI_DEVICE_ID_HERC_UNI:
3445 return XFRAME_II_DEVICE;
3446 case PCI_DEVICE_ID_S2IO_UNI:
3447 case PCI_DEVICE_ID_S2IO_WIN:
3448 return XFRAME_I_DEVICE;
3449 default:
3450 return PCI_ANY_ID;
3451 }
3452}
1da177e4 3453
20346722 3454/**
3455 * s2io_reset - Resets the card.
1da177e4
LT
3456 * @sp : private member of the device structure.
3457 * Description: Function to Reset the card. This function then also
20346722 3458 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3459 * the card reset also resets the configuration space.
3460 * Return value:
3461 * void.
3462 */
3463
d44570e4 3464static void s2io_reset(struct s2io_nic *sp)
1da177e4 3465{
1ee6dd77 3466 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3467 u64 val64;
5e25b9dd 3468 u16 subid, pci_cmd;
19a60522
SS
3469 int i;
3470 u16 val16;
491976b2
SH
3471 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3472 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
ffb5df6c
JP
3473 struct stat_block *stats;
3474 struct swStat *swstats;
491976b2 3475
9e39f7c5 3476 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3a22813a 3477 __func__, pci_name(sp->pdev));
1da177e4 3478
0b1f7ebe 3479 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3480 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3481
1da177e4
LT
3482 val64 = SW_RESET_ALL;
3483 writeq(val64, &bar0->sw_reset);
d44570e4 3484 if (strstr(sp->product_name, "CX4"))
c92ca04b 3485 msleep(750);
19a60522
SS
3486 msleep(250);
3487 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3488
19a60522
SS
3489 /* Restore the PCI state saved during initialization. */
3490 pci_restore_state(sp->pdev);
b8a623bf 3491 pci_save_state(sp->pdev);
19a60522
SS
3492 pci_read_config_word(sp->pdev, 0x2, &val16);
3493 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3494 break;
3495 msleep(200);
3496 }
1da177e4 3497
d44570e4
JP
3498 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3499 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3500
3501 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3502
3503 s2io_init_pci(sp);
1da177e4 3504
20346722 3505 /* Set swapper to enable I/O register access */
3506 s2io_set_swapper(sp);
3507
faa4f796
SH
3508 /* restore mac_addr entries */
3509 do_s2io_restore_unicast_mc(sp);
3510
cc6e7c44
RA
3511 /* Restore the MSIX table entries from local variables */
3512 restore_xmsi_data(sp);
3513
5e25b9dd 3514 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3515 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3516 /* Clear "detected parity error" bit */
303bcb4b 3517 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3518
303bcb4b 3519 /* Clearing PCIX Ecc status register */
3520 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3521
303bcb4b 3522 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3523 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3524 }
5e25b9dd 3525
20346722 3526 /* Reset device statistics maintained by OS */
d44570e4 3527 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3528
ffb5df6c
JP
3529 stats = sp->mac_control.stats_info;
3530 swstats = &stats->sw_stat;
3531
491976b2 3532 /* save link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3533 up_cnt = swstats->link_up_cnt;
3534 down_cnt = swstats->link_down_cnt;
3535 up_time = swstats->link_up_time;
3536 down_time = swstats->link_down_time;
3537 reset_cnt = swstats->soft_reset_cnt;
3538 mem_alloc_cnt = swstats->mem_allocated;
3539 mem_free_cnt = swstats->mem_freed;
3540 watchdog_cnt = swstats->watchdog_timer_cnt;
3541
3542 memset(stats, 0, sizeof(struct stat_block));
3543
491976b2 3544 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3545 swstats->link_up_cnt = up_cnt;
3546 swstats->link_down_cnt = down_cnt;
3547 swstats->link_up_time = up_time;
3548 swstats->link_down_time = down_time;
3549 swstats->soft_reset_cnt = reset_cnt;
3550 swstats->mem_allocated = mem_alloc_cnt;
3551 swstats->mem_freed = mem_free_cnt;
3552 swstats->watchdog_timer_cnt = watchdog_cnt;
20346722 3553
1da177e4
LT
3554 /* SXE-002: Configure link and activity LED to turn it off */
3555 subid = sp->pdev->subsystem_device;
541ae68f 3556 if (((subid & 0xFF) >= 0x07) &&
3557 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3558 val64 = readq(&bar0->gpio_control);
3559 val64 |= 0x0000800000000000ULL;
3560 writeq(val64, &bar0->gpio_control);
3561 val64 = 0x0411040400000000ULL;
509a2671 3562 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3563 }
3564
541ae68f 3565 /*
25985edc 3566 * Clear spurious ECC interrupts that would have occurred on
541ae68f 3567 * XFRAME II cards after reset.
3568 */
3569 if (sp->device_type == XFRAME_II_DEVICE) {
3570 val64 = readq(&bar0->pcc_err_reg);
3571 writeq(val64, &bar0->pcc_err_reg);
3572 }
3573
f957bcf0 3574 sp->device_enabled_once = false;
1da177e4
LT
3575}
3576
3577/**
20346722 3578 * s2io_set_swapper - to set the swapper controle on the card
3579 * @sp : private member of the device structure,
1da177e4 3580 * pointer to the s2io_nic structure.
20346722 3581 * Description: Function to set the swapper control on the card
1da177e4
LT
3582 * correctly depending on the 'endianness' of the system.
3583 * Return value:
3584 * SUCCESS on success and FAILURE on failure.
3585 */
3586
d44570e4 3587static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3588{
3589 struct net_device *dev = sp->dev;
1ee6dd77 3590 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3591 u64 val64, valt, valr;
3592
20346722 3593 /*
1da177e4
LT
3594 * Set proper endian settings and verify the same by reading
3595 * the PIF Feed-back register.
3596 */
3597
3598 val64 = readq(&bar0->pif_rd_swapper_fb);
3599 if (val64 != 0x0123456789ABCDEFULL) {
3600 int i = 0;
85a56498
JM
3601 static const u64 value[] = {
3602 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3603 0x8100008181000081ULL, /* FE=1, SE=0 */
3604 0x4200004242000042ULL, /* FE=0, SE=1 */
3605 0 /* FE=0, SE=0 */
3606 };
1da177e4 3607
d44570e4 3608 while (i < 4) {
1da177e4
LT
3609 writeq(value[i], &bar0->swapper_ctrl);
3610 val64 = readq(&bar0->pif_rd_swapper_fb);
3611 if (val64 == 0x0123456789ABCDEFULL)
3612 break;
3613 i++;
3614 }
3615 if (i == 4) {
9e39f7c5
JP
3616 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3617 "feedback read %llx\n",
3618 dev->name, (unsigned long long)val64);
1da177e4
LT
3619 return FAILURE;
3620 }
3621 valr = value[i];
3622 } else {
3623 valr = readq(&bar0->swapper_ctrl);
3624 }
3625
3626 valt = 0x0123456789ABCDEFULL;
3627 writeq(valt, &bar0->xmsi_address);
3628 val64 = readq(&bar0->xmsi_address);
3629
d44570e4 3630 if (val64 != valt) {
1da177e4 3631 int i = 0;
85a56498
JM
3632 static const u64 value[] = {
3633 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3634 0x0081810000818100ULL, /* FE=1, SE=0 */
3635 0x0042420000424200ULL, /* FE=0, SE=1 */
3636 0 /* FE=0, SE=0 */
3637 };
1da177e4 3638
d44570e4 3639 while (i < 4) {
1da177e4
LT
3640 writeq((value[i] | valr), &bar0->swapper_ctrl);
3641 writeq(valt, &bar0->xmsi_address);
3642 val64 = readq(&bar0->xmsi_address);
d44570e4 3643 if (val64 == valt)
1da177e4
LT
3644 break;
3645 i++;
3646 }
d44570e4 3647 if (i == 4) {
20346722 3648 unsigned long long x = val64;
9e39f7c5
JP
3649 DBG_PRINT(ERR_DBG,
3650 "Write failed, Xmsi_addr reads:0x%llx\n", x);
1da177e4
LT
3651 return FAILURE;
3652 }
3653 }
3654 val64 = readq(&bar0->swapper_ctrl);
3655 val64 &= 0xFFFF000000000000ULL;
3656
d44570e4 3657#ifdef __BIG_ENDIAN
20346722 3658 /*
3659 * The device by default set to a big endian format, so a
1da177e4
LT
3660 * big endian driver need not set anything.
3661 */
3662 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3663 SWAPPER_CTRL_TXP_SE |
3664 SWAPPER_CTRL_TXD_R_FE |
3665 SWAPPER_CTRL_TXD_W_FE |
3666 SWAPPER_CTRL_TXF_R_FE |
3667 SWAPPER_CTRL_RXD_R_FE |
3668 SWAPPER_CTRL_RXD_W_FE |
3669 SWAPPER_CTRL_RXF_W_FE |
3670 SWAPPER_CTRL_XMSI_FE |
3671 SWAPPER_CTRL_STATS_FE |
3672 SWAPPER_CTRL_STATS_SE);
eaae7f72 3673 if (sp->config.intr_type == INTA)
cc6e7c44 3674 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3675 writeq(val64, &bar0->swapper_ctrl);
3676#else
20346722 3677 /*
1da177e4 3678 * Initially we enable all bits to make it accessible by the
20346722 3679 * driver, then we selectively enable only those bits that
1da177e4
LT
3680 * we want to set.
3681 */
3682 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3683 SWAPPER_CTRL_TXP_SE |
3684 SWAPPER_CTRL_TXD_R_FE |
3685 SWAPPER_CTRL_TXD_R_SE |
3686 SWAPPER_CTRL_TXD_W_FE |
3687 SWAPPER_CTRL_TXD_W_SE |
3688 SWAPPER_CTRL_TXF_R_FE |
3689 SWAPPER_CTRL_RXD_R_FE |
3690 SWAPPER_CTRL_RXD_R_SE |
3691 SWAPPER_CTRL_RXD_W_FE |
3692 SWAPPER_CTRL_RXD_W_SE |
3693 SWAPPER_CTRL_RXF_W_FE |
3694 SWAPPER_CTRL_XMSI_FE |
3695 SWAPPER_CTRL_STATS_FE |
3696 SWAPPER_CTRL_STATS_SE);
eaae7f72 3697 if (sp->config.intr_type == INTA)
cc6e7c44 3698 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3699 writeq(val64, &bar0->swapper_ctrl);
3700#endif
3701 val64 = readq(&bar0->swapper_ctrl);
3702
20346722 3703 /*
3704 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3705 * feedback register.
3706 */
3707 val64 = readq(&bar0->pif_rd_swapper_fb);
3708 if (val64 != 0x0123456789ABCDEFULL) {
3709 /* Endian settings are incorrect, calls for another dekko. */
9e39f7c5
JP
3710 DBG_PRINT(ERR_DBG,
3711 "%s: Endian settings are wrong, feedback read %llx\n",
3712 dev->name, (unsigned long long)val64);
1da177e4
LT
3713 return FAILURE;
3714 }
3715
3716 return SUCCESS;
3717}
3718
1ee6dd77 3719static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3720{
1ee6dd77 3721 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3722 u64 val64;
3723 int ret = 0, cnt = 0;
3724
3725 do {
3726 val64 = readq(&bar0->xmsi_access);
b7b5a128 3727 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3728 break;
3729 mdelay(1);
3730 cnt++;
d44570e4 3731 } while (cnt < 5);
cc6e7c44
RA
3732 if (cnt == 5) {
3733 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3734 ret = 1;
3735 }
3736
3737 return ret;
3738}
3739
1ee6dd77 3740static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3741{
1ee6dd77 3742 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3743 u64 val64;
f61e0a35
SH
3744 int i, msix_index;
3745
f61e0a35
SH
3746 if (nic->device_type == XFRAME_I_DEVICE)
3747 return;
cc6e7c44 3748
d44570e4
JP
3749 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3750 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3751 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3752 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3753 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3754 writeq(val64, &bar0->xmsi_access);
f61e0a35 3755 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3756 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3757 __func__, msix_index);
cc6e7c44
RA
3758 continue;
3759 }
3760 }
3761}
3762
1ee6dd77 3763static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3764{
1ee6dd77 3765 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3766 u64 val64, addr, data;
f61e0a35
SH
3767 int i, msix_index;
3768
3769 if (nic->device_type == XFRAME_I_DEVICE)
3770 return;
cc6e7c44
RA
3771
3772 /* Store and display */
d44570e4
JP
3773 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3774 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3775 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3776 writeq(val64, &bar0->xmsi_access);
f61e0a35 3777 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3778 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3779 __func__, msix_index);
cc6e7c44
RA
3780 continue;
3781 }
3782 addr = readq(&bar0->xmsi_address);
3783 data = readq(&bar0->xmsi_data);
3784 if (addr && data) {
3785 nic->msix_info[i].addr = addr;
3786 nic->msix_info[i].data = data;
3787 }
3788 }
3789}
3790
1ee6dd77 3791static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3792{
1ee6dd77 3793 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3794 u64 rx_mat;
cc6e7c44
RA
3795 u16 msi_control; /* Temp variable */
3796 int ret, i, j, msix_indx = 1;
4f870320 3797 int size;
ffb5df6c
JP
3798 struct stat_block *stats = nic->mac_control.stats_info;
3799 struct swStat *swstats = &stats->sw_stat;
cc6e7c44 3800
4f870320 3801 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3802 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3803 if (!nic->entries) {
d44570e4
JP
3804 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3805 __func__);
ffb5df6c 3806 swstats->mem_alloc_fail_cnt++;
cc6e7c44
RA
3807 return -ENOMEM;
3808 }
ffb5df6c 3809 swstats->mem_allocated += size;
f61e0a35 3810
4f870320 3811 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3812 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3813 if (!nic->s2io_entries) {
8a4bdbaa 3814 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3815 __func__);
ffb5df6c 3816 swstats->mem_alloc_fail_cnt++;
cc6e7c44 3817 kfree(nic->entries);
ffb5df6c 3818 swstats->mem_freed
f61e0a35 3819 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3820 return -ENOMEM;
3821 }
ffb5df6c 3822 swstats->mem_allocated += size;
cc6e7c44 3823
ac731ab6
SH
3824 nic->entries[0].entry = 0;
3825 nic->s2io_entries[0].entry = 0;
3826 nic->s2io_entries[0].in_use = MSIX_FLG;
3827 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3828 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3829
f61e0a35
SH
3830 for (i = 1; i < nic->num_entries; i++) {
3831 nic->entries[i].entry = ((i - 1) * 8) + 1;
3832 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3833 nic->s2io_entries[i].arg = NULL;
3834 nic->s2io_entries[i].in_use = 0;
3835 }
3836
8a4bdbaa 3837 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3838 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3839 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3840 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3841 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3842 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3843 msix_indx += 8;
cc6e7c44 3844 }
8a4bdbaa 3845 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3846 readq(&bar0->rx_mat);
cc6e7c44 3847
f61e0a35 3848 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3849 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3850 if (ret) {
9e39f7c5 3851 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
cc6e7c44 3852 kfree(nic->entries);
ffb5df6c
JP
3853 swstats->mem_freed += nic->num_entries *
3854 sizeof(struct msix_entry);
cc6e7c44 3855 kfree(nic->s2io_entries);
ffb5df6c
JP
3856 swstats->mem_freed += nic->num_entries *
3857 sizeof(struct s2io_msix_entry);
cc6e7c44
RA
3858 nic->entries = NULL;
3859 nic->s2io_entries = NULL;
3860 return -ENOMEM;
3861 }
3862
3863 /*
3864 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865 * in the herc NIC. (Temp change, needs to be removed later)
3866 */
3867 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3868 msi_control |= 0x1; /* Enable MSI */
3869 pci_write_config_word(nic->pdev, 0x42, msi_control);
3870
3871 return 0;
3872}
3873
8abc4d5b 3874/* Handle software interrupt used during MSI(X) test */
33390a70 3875static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3876{
3877 struct s2io_nic *sp = dev_id;
3878
3879 sp->msi_detected = 1;
3880 wake_up(&sp->msi_wait);
3881
3882 return IRQ_HANDLED;
3883}
3884
3885/* Test interrupt path by forcing a a software IRQ */
33390a70 3886static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3887{
3888 struct pci_dev *pdev = sp->pdev;
3889 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3890 int err;
3891 u64 val64, saved64;
3892
3893 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3894 sp->name, sp);
8abc4d5b
SS
3895 if (err) {
3896 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3897 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3898 return err;
3899 }
3900
d44570e4 3901 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3902 sp->msi_detected = 0;
3903
3904 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3905 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3906 val64 |= SCHED_INT_CTRL_TIMER_EN;
3907 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3908 writeq(val64, &bar0->scheduled_int_ctrl);
3909
3910 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3911
3912 if (!sp->msi_detected) {
3913 /* MSI(X) test failed, go back to INTx mode */
2450022a 3914 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
9e39f7c5
JP
3915 "using MSI(X) during test\n",
3916 sp->dev->name, pci_name(pdev));
8abc4d5b
SS
3917
3918 err = -EOPNOTSUPP;
3919 }
3920
3921 free_irq(sp->entries[1].vector, sp);
3922
3923 writeq(saved64, &bar0->scheduled_int_ctrl);
3924
3925 return err;
3926}
18b2b7bd
SH
3927
3928static void remove_msix_isr(struct s2io_nic *sp)
3929{
3930 int i;
3931 u16 msi_control;
3932
f61e0a35 3933 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3934 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3935 int vector = sp->entries[i].vector;
3936 void *arg = sp->s2io_entries[i].arg;
3937 free_irq(vector, arg);
3938 }
3939 }
3940
3941 kfree(sp->entries);
3942 kfree(sp->s2io_entries);
3943 sp->entries = NULL;
3944 sp->s2io_entries = NULL;
3945
3946 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3947 msi_control &= 0xFFFE; /* Disable MSI */
3948 pci_write_config_word(sp->pdev, 0x42, msi_control);
3949
3950 pci_disable_msix(sp->pdev);
3951}
3952
3953static void remove_inta_isr(struct s2io_nic *sp)
3954{
3955 struct net_device *dev = sp->dev;
3956
3957 free_irq(sp->pdev->irq, dev);
3958}
3959
1da177e4
LT
3960/* ********************************************************* *
3961 * Functions defined below concern the OS part of the driver *
3962 * ********************************************************* */
3963
20346722 3964/**
1da177e4
LT
3965 * s2io_open - open entry point of the driver
3966 * @dev : pointer to the device structure.
3967 * Description:
3968 * This function is the open entry point of the driver. It mainly calls a
3969 * function to allocate Rx buffers and inserts them into the buffer
20346722 3970 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3971 * Return value:
3972 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3973 * file on failure.
3974 */
3975
ac1f60db 3976static int s2io_open(struct net_device *dev)
1da177e4 3977{
4cf1653a 3978 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 3979 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3980 int err = 0;
3981
20346722 3982 /*
3983 * Make sure you have link off by default every time
1da177e4
LT
3984 * Nic is initialized
3985 */
3986 netif_carrier_off(dev);
0b1f7ebe 3987 sp->last_link_state = 0;
1da177e4
LT
3988
3989 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3990 err = s2io_card_up(sp);
3991 if (err) {
1da177e4
LT
3992 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3993 dev->name);
e6a8fee2 3994 goto hw_init_failed;
1da177e4
LT
3995 }
3996
2fd37688 3997 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 3998 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3999 s2io_card_down(sp);
20346722 4000 err = -ENODEV;
e6a8fee2 4001 goto hw_init_failed;
1da177e4 4002 }
3a3d5756 4003 s2io_start_all_tx_queue(sp);
1da177e4 4004 return 0;
20346722 4005
20346722 4006hw_init_failed:
eaae7f72 4007 if (sp->config.intr_type == MSI_X) {
491976b2 4008 if (sp->entries) {
cc6e7c44 4009 kfree(sp->entries);
ffb5df6c
JP
4010 swstats->mem_freed += sp->num_entries *
4011 sizeof(struct msix_entry);
491976b2
SH
4012 }
4013 if (sp->s2io_entries) {
cc6e7c44 4014 kfree(sp->s2io_entries);
ffb5df6c
JP
4015 swstats->mem_freed += sp->num_entries *
4016 sizeof(struct s2io_msix_entry);
491976b2 4017 }
cc6e7c44 4018 }
20346722 4019 return err;
1da177e4
LT
4020}
4021
4022/**
4023 * s2io_close -close entry point of the driver
4024 * @dev : device pointer.
4025 * Description:
4026 * This is the stop entry point of the driver. It needs to undo exactly
4027 * whatever was done by the open entry point,thus it's usually referred to
4028 * as the close function.Among other things this function mainly stops the
4029 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4030 * Return value:
4031 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4032 * file on failure.
4033 */
4034
ac1f60db 4035static int s2io_close(struct net_device *dev)
1da177e4 4036{
4cf1653a 4037 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
4038 struct config_param *config = &sp->config;
4039 u64 tmp64;
4040 int offset;
cc6e7c44 4041
9f74ffde 4042 /* Return if the device is already closed *
d44570e4
JP
4043 * Can happen when s2io_card_up failed in change_mtu *
4044 */
9f74ffde
SH
4045 if (!is_s2io_card_up(sp))
4046 return 0;
4047
3a3d5756 4048 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4049 /* delete all populated mac entries */
4050 for (offset = 1; offset < config->max_mc_addr; offset++) {
4051 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4052 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4053 do_s2io_delete_unicast_mc(sp, tmp64);
4054 }
4055
e6a8fee2 4056 s2io_card_down(sp);
cc6e7c44 4057
1da177e4
LT
4058 return 0;
4059}
4060
4061/**
4062 * s2io_xmit - Tx entry point of te driver
4063 * @skb : the socket buffer containing the Tx data.
4064 * @dev : device pointer.
4065 * Description :
4066 * This function is the Tx entry point of the driver. S2IO NIC supports
4067 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
25985edc 4068 * NOTE: when device can't queue the pkt,just the trans_start variable will
1da177e4
LT
4069 * not be upadted.
4070 * Return value:
4071 * 0 on success & 1 on failure.
4072 */
4073
61357325 4074static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4075{
4cf1653a 4076 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4077 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4078 register u64 val64;
1ee6dd77
RB
4079 struct TxD *txdp;
4080 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4081 unsigned long flags = 0;
be3a6b02 4082 u16 vlan_tag = 0;
2fda096d 4083 struct fifo_info *fifo = NULL;
6cfc482b 4084 int do_spin_lock = 1;
75c30b13 4085 int offload_type;
6cfc482b 4086 int enable_per_list_interrupt = 0;
ffb5df6c
JP
4087 struct config_param *config = &sp->config;
4088 struct mac_info *mac_control = &sp->mac_control;
4089 struct stat_block *stats = mac_control->stats_info;
4090 struct swStat *swstats = &stats->sw_stat;
1da177e4 4091
20346722 4092 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4093
4094 if (unlikely(skb->len <= 0)) {
9e39f7c5 4095 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
491976b2 4096 dev_kfree_skb_any(skb);
6ed10654 4097 return NETDEV_TX_OK;
2fda096d 4098 }
491976b2 4099
92b84437 4100 if (!is_s2io_card_up(sp)) {
20346722 4101 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4102 dev->name);
20346722 4103 dev_kfree_skb(skb);
6ed10654 4104 return NETDEV_TX_OK;
1da177e4
LT
4105 }
4106
4107 queue = 0;
eab6d18d 4108 if (vlan_tx_tag_present(skb))
be3a6b02 4109 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4110 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4111 if (skb->protocol == htons(ETH_P_IP)) {
4112 struct iphdr *ip;
4113 struct tcphdr *th;
4114 ip = ip_hdr(skb);
4115
4116 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4117 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4118 ip->ihl*4);
6cfc482b
SH
4119
4120 if (ip->protocol == IPPROTO_TCP) {
4121 queue_len = sp->total_tcp_fifos;
4122 queue = (ntohs(th->source) +
d44570e4
JP
4123 ntohs(th->dest)) &
4124 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4125 if (queue >= queue_len)
4126 queue = queue_len - 1;
4127 } else if (ip->protocol == IPPROTO_UDP) {
4128 queue_len = sp->total_udp_fifos;
4129 queue = (ntohs(th->source) +
d44570e4
JP
4130 ntohs(th->dest)) &
4131 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4132 if (queue >= queue_len)
4133 queue = queue_len - 1;
4134 queue += sp->udp_fifo_idx;
4135 if (skb->len > 1024)
4136 enable_per_list_interrupt = 1;
4137 do_spin_lock = 0;
4138 }
4139 }
4140 }
4141 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4142 /* get fifo number based on skb->priority value */
4143 queue = config->fifo_mapping
d44570e4 4144 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4145 fifo = &mac_control->fifos[queue];
3a3d5756 4146
6cfc482b
SH
4147 if (do_spin_lock)
4148 spin_lock_irqsave(&fifo->tx_lock, flags);
4149 else {
4150 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4151 return NETDEV_TX_LOCKED;
4152 }
be3a6b02 4153
3a3d5756
SH
4154 if (sp->config.multiq) {
4155 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4156 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4157 return NETDEV_TX_BUSY;
4158 }
b19fa1fa 4159 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4160 if (netif_queue_stopped(dev)) {
4161 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4162 return NETDEV_TX_BUSY;
4163 }
4164 }
4165
d44570e4
JP
4166 put_off = (u16)fifo->tx_curr_put_info.offset;
4167 get_off = (u16)fifo->tx_curr_get_info.offset;
4168 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
20346722 4169
2fda096d 4170 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4171 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4172 if (txdp->Host_Control ||
d44570e4 4173 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4174 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4175 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4176 dev_kfree_skb(skb);
2fda096d 4177 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4178 return NETDEV_TX_OK;
1da177e4 4179 }
0b1f7ebe 4180
75c30b13 4181 offload_type = s2io_offload_type(skb);
75c30b13 4182 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4183 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4184 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4185 }
84fa7933 4186 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4187 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4188 TXD_TX_CKO_TCP_EN |
4189 TXD_TX_CKO_UDP_EN);
1da177e4 4190 }
fed5eccd
AR
4191 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4192 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4193 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4194 if (enable_per_list_interrupt)
4195 if (put_off & (queue_len >> 5))
4196 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4197 if (vlan_tag) {
be3a6b02 4198 txdp->Control_2 |= TXD_VLAN_ENABLE;
4199 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4200 }
4201
e743d313 4202 frg_len = skb_headlen(skb);
75c30b13 4203 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4204 int ufo_size;
4205
75c30b13 4206 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4207 ufo_size &= ~7;
4208 txdp->Control_1 |= TXD_UFO_EN;
4209 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4210 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4211#ifdef __BIG_ENDIAN
3459feb8 4212 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4213 fifo->ufo_in_band_v[put_off] =
d44570e4 4214 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4215#else
2fda096d 4216 fifo->ufo_in_band_v[put_off] =
d44570e4 4217 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4218#endif
2fda096d 4219 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4220 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4221 fifo->ufo_in_band_v,
4222 sizeof(u64),
4223 PCI_DMA_TODEVICE);
8d8bb39b 4224 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4225 goto pci_map_failed;
fed5eccd 4226 txdp++;
fed5eccd 4227 }
1da177e4 4228
d44570e4
JP
4229 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4230 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4231 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4232 goto pci_map_failed;
4233
d44570e4 4234 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4235 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4236 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4237 txdp->Control_1 |= TXD_UFO_EN;
4238
4239 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4240 /* For fragmented SKB. */
4241 for (i = 0; i < frg_cnt; i++) {
4242 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 4243 /* A '0' length fragment will be ignored */
4244 if (!frag->size)
4245 continue;
1da177e4 4246 txdp++;
d44570e4
JP
4247 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4248 frag->page_offset,
4249 frag->size,
4250 PCI_DMA_TODEVICE);
efd51b5c 4251 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4252 if (offload_type == SKB_GSO_UDP)
fed5eccd 4253 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4254 }
4255 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4256
75c30b13 4257 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4258 frg_cnt++; /* as Txd0 was used for inband header */
4259
1da177e4 4260 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4261 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4262 writeq(val64, &tx_fifo->TxDL_Pointer);
4263
4264 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4265 TX_FIFO_LAST_LIST);
75c30b13 4266 if (offload_type)
fed5eccd 4267 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4268
1da177e4
LT
4269 writeq(val64, &tx_fifo->List_Control);
4270
303bcb4b 4271 mmiowb();
4272
1da177e4 4273 put_off++;
2fda096d 4274 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4275 put_off = 0;
2fda096d 4276 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4277
4278 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4279 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
ffb5df6c 4280 swstats->fifo_full_cnt++;
1da177e4
LT
4281 DBG_PRINT(TX_DBG,
4282 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4283 put_off, get_off);
3a3d5756 4284 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4285 }
ffb5df6c 4286 swstats->mem_allocated += skb->truesize;
2fda096d 4287 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4288
f6f4bfa3
SH
4289 if (sp->config.intr_type == MSI_X)
4290 tx_intr_handler(fifo);
4291
6ed10654 4292 return NETDEV_TX_OK;
ffb5df6c 4293
491abf25 4294pci_map_failed:
ffb5df6c 4295 swstats->pci_map_fail_cnt++;
3a3d5756 4296 s2io_stop_tx_queue(sp, fifo->fifo_no);
ffb5df6c 4297 swstats->mem_freed += skb->truesize;
491abf25 4298 dev_kfree_skb(skb);
2fda096d 4299 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4300 return NETDEV_TX_OK;
1da177e4
LT
4301}
4302
25fff88e 4303static void
4304s2io_alarm_handle(unsigned long data)
4305{
1ee6dd77 4306 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4307 struct net_device *dev = sp->dev;
25fff88e 4308
8116f3cf 4309 s2io_handle_errors(dev);
25fff88e 4310 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4311}
4312
7d12e780 4313static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4314{
1ee6dd77
RB
4315 struct ring_info *ring = (struct ring_info *)dev_id;
4316 struct s2io_nic *sp = ring->nic;
f61e0a35 4317 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4318
f61e0a35 4319 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4320 return IRQ_HANDLED;
92b84437 4321
f61e0a35 4322 if (sp->config.napi) {
1a79d1c3
AV
4323 u8 __iomem *addr = NULL;
4324 u8 val8 = 0;
f61e0a35 4325
1a79d1c3 4326 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4327 addr += (7 - ring->ring_no);
4328 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4329 writeb(val8, addr);
4330 val8 = readb(addr);
288379f0 4331 napi_schedule(&ring->napi);
f61e0a35
SH
4332 } else {
4333 rx_intr_handler(ring, 0);
8d8bb39b 4334 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4335 }
7d3d0439 4336
cc6e7c44
RA
4337 return IRQ_HANDLED;
4338}
4339
7d12e780 4340static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4341{
ac731ab6
SH
4342 int i;
4343 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4344 struct s2io_nic *sp = fifos->nic;
4345 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4346 struct config_param *config = &sp->config;
4347 u64 reason;
cc6e7c44 4348
ac731ab6
SH
4349 if (unlikely(!is_s2io_card_up(sp)))
4350 return IRQ_NONE;
4351
4352 reason = readq(&bar0->general_int_status);
4353 if (unlikely(reason == S2IO_MINUS_ONE))
4354 /* Nothing much can be done. Get out */
92b84437 4355 return IRQ_HANDLED;
92b84437 4356
01e16faa
SH
4357 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4358 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4359
01e16faa
SH
4360 if (reason & GEN_INTR_TXPIC)
4361 s2io_txpic_intr_handle(sp);
ac731ab6 4362
01e16faa
SH
4363 if (reason & GEN_INTR_TXTRAFFIC)
4364 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4365
01e16faa
SH
4366 for (i = 0; i < config->tx_fifo_num; i++)
4367 tx_intr_handler(&fifos[i]);
ac731ab6 4368
01e16faa
SH
4369 writeq(sp->general_int_mask, &bar0->general_int_mask);
4370 readl(&bar0->general_int_status);
4371 return IRQ_HANDLED;
4372 }
4373 /* The interrupt was not raised by us */
4374 return IRQ_NONE;
cc6e7c44 4375}
ac731ab6 4376
1ee6dd77 4377static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4378{
1ee6dd77 4379 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d 4380 u64 val64;
4381
4382 val64 = readq(&bar0->pic_int_status);
4383 if (val64 & PIC_INT_GPIO) {
4384 val64 = readq(&bar0->gpio_int_reg);
4385 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4386 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4387 /*
4388 * This is unstable state so clear both up/down
4389 * interrupt and adapter to re-evaluate the link state.
4390 */
d44570e4 4391 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d 4392 val64 |= GPIO_INT_REG_LINK_UP;
4393 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4394 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4395 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4396 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4397 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4398 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4399 val64 = readq(&bar0->adapter_status);
d44570e4 4400 /* Enable Adapter */
19a60522
SS
4401 val64 = readq(&bar0->adapter_control);
4402 val64 |= ADAPTER_CNTL_EN;
4403 writeq(val64, &bar0->adapter_control);
4404 val64 |= ADAPTER_LED_ON;
4405 writeq(val64, &bar0->adapter_control);
4406 if (!sp->device_enabled_once)
4407 sp->device_enabled_once = 1;
c92ca04b 4408
19a60522
SS
4409 s2io_link(sp, LINK_UP);
4410 /*
4411 * unmask link down interrupt and mask link-up
4412 * intr
4413 */
4414 val64 = readq(&bar0->gpio_int_mask);
4415 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4416 val64 |= GPIO_INT_MASK_LINK_UP;
4417 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4418
d44570e4 4419 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4420 val64 = readq(&bar0->adapter_status);
19a60522
SS
4421 s2io_link(sp, LINK_DOWN);
4422 /* Link is down so unmaks link up interrupt */
4423 val64 = readq(&bar0->gpio_int_mask);
4424 val64 &= ~GPIO_INT_MASK_LINK_UP;
4425 val64 |= GPIO_INT_MASK_LINK_DOWN;
4426 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4427
4428 /* turn off LED */
4429 val64 = readq(&bar0->adapter_control);
d44570e4 4430 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4431 writeq(val64, &bar0->adapter_control);
a371a07d 4432 }
4433 }
c92ca04b 4434 val64 = readq(&bar0->gpio_int_mask);
a371a07d 4435}
4436
8116f3cf
SS
4437/**
4438 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439 * @value: alarm bits
4440 * @addr: address value
4441 * @cnt: counter variable
4442 * Description: Check for alarm and increment the counter
4443 * Return Value:
4444 * 1 - if alarm bit set
4445 * 0 - if alarm bit is not set
4446 */
d44570e4
JP
4447static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4448 unsigned long long *cnt)
8116f3cf
SS
4449{
4450 u64 val64;
4451 val64 = readq(addr);
d44570e4 4452 if (val64 & value) {
8116f3cf
SS
4453 writeq(val64, addr);
4454 (*cnt)++;
4455 return 1;
4456 }
4457 return 0;
4458
4459}
4460
4461/**
4462 * s2io_handle_errors - Xframe error indication handler
4463 * @nic: device private variable
4464 * Description: Handle alarms such as loss of link, single or
4465 * double ECC errors, critical and serious errors.
4466 * Return Value:
4467 * NONE
4468 */
d44570e4 4469static void s2io_handle_errors(void *dev_id)
8116f3cf 4470{
d44570e4 4471 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4472 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4473 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4474 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4475 int i = 0;
4476
4477 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4478 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4479
92b84437 4480 if (!is_s2io_card_up(sp))
8116f3cf
SS
4481 return;
4482
4483 if (pci_channel_offline(sp->pdev))
4484 return;
4485
4486 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4487 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4488
4489 /* Handling the XPAK counters update */
d44570e4 4490 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4491 /* waiting for an hour */
4492 stats->xpak_timer_count++;
4493 } else {
4494 s2io_updt_xpak_counter(dev);
4495 /* reset the count to zero */
4496 stats->xpak_timer_count = 0;
4497 }
4498
4499 /* Handling link status change error Intr */
4500 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4501 val64 = readq(&bar0->mac_rmac_err_reg);
4502 writeq(val64, &bar0->mac_rmac_err_reg);
4503 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4504 schedule_work(&sp->set_link_task);
4505 }
4506
4507 /* In case of a serious error, the device will be Reset. */
4508 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4509 &sw_stat->serious_err_cnt))
8116f3cf
SS
4510 goto reset;
4511
4512 /* Check for data parity error */
4513 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4514 &sw_stat->parity_err_cnt))
8116f3cf
SS
4515 goto reset;
4516
4517 /* Check for ring full counter */
4518 if (sp->device_type == XFRAME_II_DEVICE) {
4519 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4520 for (i = 0; i < 4; i++) {
4521 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4522 temp64 >>= 64 - ((i+1)*16);
4523 sw_stat->ring_full_cnt[i] += temp64;
4524 }
4525
4526 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4527 for (i = 0; i < 4; i++) {
4528 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4529 temp64 >>= 64 - ((i+1)*16);
d44570e4 4530 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4531 }
4532 }
4533
4534 val64 = readq(&bar0->txdma_int_status);
4535 /*check for pfc_err*/
4536 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4537 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4538 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4539 PFC_PCIX_ERR,
4540 &bar0->pfc_err_reg,
4541 &sw_stat->pfc_err_cnt))
8116f3cf 4542 goto reset;
d44570e4
JP
4543 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4544 &bar0->pfc_err_reg,
4545 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4546 }
4547
4548 /*check for tda_err*/
4549 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4550 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4551 TDA_SM0_ERR_ALARM |
4552 TDA_SM1_ERR_ALARM,
4553 &bar0->tda_err_reg,
4554 &sw_stat->tda_err_cnt))
8116f3cf
SS
4555 goto reset;
4556 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4557 &bar0->tda_err_reg,
4558 &sw_stat->tda_err_cnt);
8116f3cf
SS
4559 }
4560 /*check for pcc_err*/
4561 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4562 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4563 PCC_N_SERR | PCC_6_COF_OV_ERR |
4564 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4565 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4566 PCC_TXB_ECC_DB_ERR,
4567 &bar0->pcc_err_reg,
4568 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4569 goto reset;
4570 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4571 &bar0->pcc_err_reg,
4572 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4573 }
4574
4575 /*check for tti_err*/
4576 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4577 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4578 &bar0->tti_err_reg,
4579 &sw_stat->tti_err_cnt))
8116f3cf
SS
4580 goto reset;
4581 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4582 &bar0->tti_err_reg,
4583 &sw_stat->tti_err_cnt);
8116f3cf
SS
4584 }
4585
4586 /*check for lso_err*/
4587 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4588 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4589 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4590 &bar0->lso_err_reg,
4591 &sw_stat->lso_err_cnt))
8116f3cf
SS
4592 goto reset;
4593 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4594 &bar0->lso_err_reg,
4595 &sw_stat->lso_err_cnt);
8116f3cf
SS
4596 }
4597
4598 /*check for tpa_err*/
4599 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4600 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4601 &bar0->tpa_err_reg,
4602 &sw_stat->tpa_err_cnt))
8116f3cf 4603 goto reset;
d44570e4
JP
4604 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4605 &bar0->tpa_err_reg,
4606 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4607 }
4608
4609 /*check for sm_err*/
4610 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4611 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4612 &bar0->sm_err_reg,
4613 &sw_stat->sm_err_cnt))
8116f3cf
SS
4614 goto reset;
4615 }
4616
4617 val64 = readq(&bar0->mac_int_status);
4618 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4619 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4620 &bar0->mac_tmac_err_reg,
4621 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4622 goto reset;
d44570e4
JP
4623 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4624 TMAC_DESC_ECC_SG_ERR |
4625 TMAC_DESC_ECC_DB_ERR,
4626 &bar0->mac_tmac_err_reg,
4627 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4628 }
4629
4630 val64 = readq(&bar0->xgxs_int_status);
4631 if (val64 & XGXS_INT_STATUS_TXGXS) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4633 &bar0->xgxs_txgxs_err_reg,
4634 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4635 goto reset;
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4637 &bar0->xgxs_txgxs_err_reg,
4638 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4639 }
4640
4641 val64 = readq(&bar0->rxdma_int_status);
4642 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4644 RC_FTC_ECC_DB_ERR |
4645 RC_PRCn_SM_ERR_ALARM |
4646 RC_FTC_SM_ERR_ALARM,
4647 &bar0->rc_err_reg,
4648 &sw_stat->rc_err_cnt))
8116f3cf 4649 goto reset;
d44570e4
JP
4650 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4651 RC_FTC_ECC_SG_ERR |
4652 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653 &sw_stat->rc_err_cnt);
4654 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4655 PRC_PCI_AB_WR_Rn |
4656 PRC_PCI_AB_F_WR_Rn,
4657 &bar0->prc_pcix_err_reg,
4658 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4659 goto reset;
d44570e4
JP
4660 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4661 PRC_PCI_DP_WR_Rn |
4662 PRC_PCI_DP_F_WR_Rn,
4663 &bar0->prc_pcix_err_reg,
4664 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4665 }
4666
4667 if (val64 & RXDMA_INT_RPA_INT_M) {
4668 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4669 &bar0->rpa_err_reg,
4670 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4671 goto reset;
4672 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4673 &bar0->rpa_err_reg,
4674 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4675 }
4676
4677 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4678 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4679 RDA_FRM_ECC_DB_N_AERR |
4680 RDA_SM1_ERR_ALARM |
4681 RDA_SM0_ERR_ALARM |
4682 RDA_RXD_ECC_DB_SERR,
4683 &bar0->rda_err_reg,
4684 &sw_stat->rda_err_cnt))
8116f3cf 4685 goto reset;
d44570e4
JP
4686 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4687 RDA_FRM_ECC_SG_ERR |
4688 RDA_MISC_ERR |
4689 RDA_PCIX_ERR,
4690 &bar0->rda_err_reg,
4691 &sw_stat->rda_err_cnt);
8116f3cf
SS
4692 }
4693
4694 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4695 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4696 &bar0->rti_err_reg,
4697 &sw_stat->rti_err_cnt))
8116f3cf
SS
4698 goto reset;
4699 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4700 &bar0->rti_err_reg,
4701 &sw_stat->rti_err_cnt);
8116f3cf
SS
4702 }
4703
4704 val64 = readq(&bar0->mac_int_status);
4705 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4706 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4707 &bar0->mac_rmac_err_reg,
4708 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4709 goto reset;
d44570e4
JP
4710 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4711 RMAC_SINGLE_ECC_ERR |
4712 RMAC_DOUBLE_ECC_ERR,
4713 &bar0->mac_rmac_err_reg,
4714 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4715 }
4716
4717 val64 = readq(&bar0->xgxs_int_status);
4718 if (val64 & XGXS_INT_STATUS_RXGXS) {
4719 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4720 &bar0->xgxs_rxgxs_err_reg,
4721 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4722 goto reset;
4723 }
4724
4725 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4726 if (val64 & MC_INT_STATUS_MC_INT) {
4727 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4728 &bar0->mc_err_reg,
4729 &sw_stat->mc_err_cnt))
8116f3cf
SS
4730 goto reset;
4731
4732 /* Handling Ecc errors */
4733 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4734 writeq(val64, &bar0->mc_err_reg);
4735 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4736 sw_stat->double_ecc_errs++;
4737 if (sp->device_type != XFRAME_II_DEVICE) {
4738 /*
4739 * Reset XframeI only if critical error
4740 */
4741 if (val64 &
d44570e4
JP
4742 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4743 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4744 goto reset;
4745 }
8116f3cf
SS
4746 } else
4747 sw_stat->single_ecc_errs++;
4748 }
4749 }
4750 return;
4751
4752reset:
3a3d5756 4753 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4754 schedule_work(&sp->rst_timer_task);
4755 sw_stat->soft_reset_cnt++;
8116f3cf
SS
4756}
4757
1da177e4
LT
4758/**
4759 * s2io_isr - ISR handler of the device .
4760 * @irq: the irq of the device.
4761 * @dev_id: a void pointer to the dev structure of the NIC.
20346722 4762 * Description: This function is the ISR handler of the device. It
4763 * identifies the reason for the interrupt and calls the relevant
4764 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4765 * recv buffers, if their numbers are below the panic value which is
4766 * presently set to 25% of the original number of rcv buffers allocated.
4767 * Return value:
20346722 4768 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4769 * IRQ_NONE: will be returned if interrupt is not from our device
4770 */
7d12e780 4771static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4772{
d44570e4 4773 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4774 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4775 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4776 int i;
19a60522 4777 u64 reason = 0;
1ee6dd77 4778 struct mac_info *mac_control;
1da177e4
LT
4779 struct config_param *config;
4780
d796fdb7
LV
4781 /* Pretend we handled any irq's from a disconnected card */
4782 if (pci_channel_offline(sp->pdev))
4783 return IRQ_NONE;
4784
596c5c97 4785 if (!is_s2io_card_up(sp))
92b84437 4786 return IRQ_NONE;
92b84437 4787
1da177e4 4788 config = &sp->config;
ffb5df6c 4789 mac_control = &sp->mac_control;
1da177e4 4790
20346722 4791 /*
1da177e4
LT
4792 * Identify the cause for interrupt and call the appropriate
4793 * interrupt handler. Causes for the interrupt could be;
4794 * 1. Rx of packet.
4795 * 2. Tx complete.
4796 * 3. Link down.
1da177e4
LT
4797 */
4798 reason = readq(&bar0->general_int_status);
4799
d44570e4
JP
4800 if (unlikely(reason == S2IO_MINUS_ONE))
4801 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4802
d44570e4
JP
4803 if (reason &
4804 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4805 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4806
4807 if (config->napi) {
4808 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4809 napi_schedule(&sp->napi);
f61e0a35
SH
4810 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4811 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4812 readl(&bar0->rx_traffic_int);
db874e65 4813 }
596c5c97
SS
4814 } else {
4815 /*
4816 * rx_traffic_int reg is an R1 register, writing all 1's
4817 * will ensure that the actual interrupt causing bit
4818 * get's cleared and hence a read can be avoided.
4819 */
4820 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4821 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4822
13d866a9
JP
4823 for (i = 0; i < config->rx_ring_num; i++) {
4824 struct ring_info *ring = &mac_control->rings[i];
4825
4826 rx_intr_handler(ring, 0);
4827 }
db874e65 4828 }
596c5c97 4829
db874e65 4830 /*
596c5c97 4831 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4832 * will ensure that the actual interrupt causing bit get's
4833 * cleared and hence a read can be avoided.
4834 */
596c5c97
SS
4835 if (reason & GEN_INTR_TXTRAFFIC)
4836 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4837
596c5c97
SS
4838 for (i = 0; i < config->tx_fifo_num; i++)
4839 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4840
596c5c97
SS
4841 if (reason & GEN_INTR_TXPIC)
4842 s2io_txpic_intr_handle(sp);
fe113638 4843
596c5c97
SS
4844 /*
4845 * Reallocate the buffers from the interrupt handler itself.
4846 */
4847 if (!config->napi) {
13d866a9
JP
4848 for (i = 0; i < config->rx_ring_num; i++) {
4849 struct ring_info *ring = &mac_control->rings[i];
4850
4851 s2io_chk_rx_buffers(sp, ring);
4852 }
596c5c97
SS
4853 }
4854 writeq(sp->general_int_mask, &bar0->general_int_mask);
4855 readl(&bar0->general_int_status);
20346722 4856
596c5c97 4857 return IRQ_HANDLED;
db874e65 4858
d44570e4 4859 } else if (!reason) {
596c5c97
SS
4860 /* The interrupt was not raised by us */
4861 return IRQ_NONE;
4862 }
db874e65 4863
1da177e4
LT
4864 return IRQ_HANDLED;
4865}
4866
7ba013ac 4867/**
4868 * s2io_updt_stats -
4869 */
1ee6dd77 4870static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4871{
1ee6dd77 4872 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac 4873 u64 val64;
4874 int cnt = 0;
4875
92b84437 4876 if (is_s2io_card_up(sp)) {
7ba013ac 4877 /* Apprx 30us on a 133 MHz bus */
4878 val64 = SET_UPDT_CLICKS(10) |
4879 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4880 writeq(val64, &bar0->stat_cfg);
4881 do {
4882 udelay(100);
4883 val64 = readq(&bar0->stat_cfg);
b7b5a128 4884 if (!(val64 & s2BIT(0)))
7ba013ac 4885 break;
4886 cnt++;
4887 if (cnt == 5)
4888 break; /* Updt failed */
d44570e4 4889 } while (1);
8a4bdbaa 4890 }
7ba013ac 4891}
4892
1da177e4 4893/**
20346722 4894 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4895 * @dev : pointer to the device structure.
4896 * Description:
20346722 4897 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4898 * structure and returns a pointer to the same.
4899 * Return value:
4900 * pointer to the updated net_device_stats structure.
4901 */
ac1f60db 4902static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4903{
4cf1653a 4904 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
4905 struct mac_info *mac_control = &sp->mac_control;
4906 struct stat_block *stats = mac_control->stats_info;
4a490432 4907 u64 delta;
1da177e4 4908
7ba013ac 4909 /* Configure Stats for immediate updt */
4910 s2io_updt_stats(sp);
4911
4a490432
JM
4912 /* A device reset will cause the on-adapter statistics to be zero'ed.
4913 * This can be done while running by changing the MTU. To prevent the
4914 * system from having the stats zero'ed, the driver keeps a copy of the
4915 * last update to the system (which is also zero'ed on reset). This
4916 * enables the driver to accurately know the delta between the last
4917 * update and the current update.
4918 */
4919 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4920 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4921 sp->stats.rx_packets += delta;
4922 dev->stats.rx_packets += delta;
4923
4924 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4925 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4926 sp->stats.tx_packets += delta;
4927 dev->stats.tx_packets += delta;
4928
4929 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4930 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4931 sp->stats.rx_bytes += delta;
4932 dev->stats.rx_bytes += delta;
4933
4934 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4935 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4936 sp->stats.tx_bytes += delta;
4937 dev->stats.tx_bytes += delta;
4938
4939 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4940 sp->stats.rx_errors += delta;
4941 dev->stats.rx_errors += delta;
4942
4943 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4944 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4945 sp->stats.tx_errors += delta;
4946 dev->stats.tx_errors += delta;
4947
4948 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4949 sp->stats.rx_dropped += delta;
4950 dev->stats.rx_dropped += delta;
4951
4952 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4953 sp->stats.tx_dropped += delta;
4954 dev->stats.tx_dropped += delta;
4955
4956 /* The adapter MAC interprets pause frames as multicast packets, but
4957 * does not pass them up. This erroneously increases the multicast
4958 * packet count and needs to be deducted when the multicast frame count
4959 * is queried.
4960 */
4961 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4962 le32_to_cpu(stats->rmac_vld_mcst_frms);
4963 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4964 delta -= sp->stats.multicast;
4965 sp->stats.multicast += delta;
4966 dev->stats.multicast += delta;
1da177e4 4967
4a490432
JM
4968 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4969 le32_to_cpu(stats->rmac_usized_frms)) +
4970 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4971 sp->stats.rx_length_errors += delta;
4972 dev->stats.rx_length_errors += delta;
13d866a9 4973
4a490432
JM
4974 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4975 sp->stats.rx_crc_errors += delta;
4976 dev->stats.rx_crc_errors += delta;
0425b46a 4977
d44570e4 4978 return &dev->stats;
1da177e4
LT
4979}
4980
4981/**
4982 * s2io_set_multicast - entry point for multicast address enable/disable.
4983 * @dev : pointer to the device structure
4984 * Description:
20346722 4985 * This function is a driver entry point which gets called by the kernel
4986 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4987 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4988 * determine, if multicast address must be enabled or if promiscuous mode
4989 * is to be disabled etc.
4990 * Return value:
4991 * void.
4992 */
4993
4994static void s2io_set_multicast(struct net_device *dev)
4995{
4996 int i, j, prev_cnt;
22bedad3 4997 struct netdev_hw_addr *ha;
4cf1653a 4998 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4999 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5000 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 5001 0xfeffffffffffULL;
faa4f796 5002 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 5003 void __iomem *add;
faa4f796 5004 struct config_param *config = &sp->config;
1da177e4
LT
5005
5006 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5007 /* Enable all Multicast addresses */
5008 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5009 &bar0->rmac_addr_data0_mem);
5010 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5011 &bar0->rmac_addr_data1_mem);
5012 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5013 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5014 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
5015 writeq(val64, &bar0->rmac_addr_cmd_mem);
5016 /* Wait till command completes */
c92ca04b 5017 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5018 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5019 S2IO_BIT_RESET);
1da177e4
LT
5020
5021 sp->m_cast_flg = 1;
faa4f796 5022 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
5023 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5024 /* Disable all Multicast addresses */
5025 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5026 &bar0->rmac_addr_data0_mem);
5e25b9dd 5027 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028 &bar0->rmac_addr_data1_mem);
1da177e4 5029 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5030 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
5032 writeq(val64, &bar0->rmac_addr_cmd_mem);
5033 /* Wait till command completes */
c92ca04b 5034 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5035 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5036 S2IO_BIT_RESET);
1da177e4
LT
5037
5038 sp->m_cast_flg = 0;
5039 sp->all_multi_pos = 0;
5040 }
5041
5042 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5043 /* Put the NIC into promiscuous mode */
5044 add = &bar0->mac_cfg;
5045 val64 = readq(&bar0->mac_cfg);
5046 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5047
5048 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5049 writel((u32)val64, add);
1da177e4
LT
5050 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5051 writel((u32) (val64 >> 32), (add + 4));
5052
926930b2
SS
5053 if (vlan_tag_strip != 1) {
5054 val64 = readq(&bar0->rx_pa_cfg);
5055 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5056 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5057 sp->vlan_strip_flag = 0;
926930b2
SS
5058 }
5059
1da177e4
LT
5060 val64 = readq(&bar0->mac_cfg);
5061 sp->promisc_flg = 1;
776bd20f 5062 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5063 dev->name);
5064 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5065 /* Remove the NIC from promiscuous mode */
5066 add = &bar0->mac_cfg;
5067 val64 = readq(&bar0->mac_cfg);
5068 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5069
5070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5071 writel((u32)val64, add);
1da177e4
LT
5072 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5073 writel((u32) (val64 >> 32), (add + 4));
5074
926930b2
SS
5075 if (vlan_tag_strip != 0) {
5076 val64 = readq(&bar0->rx_pa_cfg);
5077 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5078 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5079 sp->vlan_strip_flag = 1;
926930b2
SS
5080 }
5081
1da177e4
LT
5082 val64 = readq(&bar0->mac_cfg);
5083 sp->promisc_flg = 0;
9e39f7c5 5084 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
1da177e4
LT
5085 }
5086
5087 /* Update individual M_CAST address list */
4cd24eaf
JP
5088 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5089 if (netdev_mc_count(dev) >
faa4f796 5090 (config->max_mc_addr - config->max_mac_addr)) {
9e39f7c5
JP
5091 DBG_PRINT(ERR_DBG,
5092 "%s: No more Rx filters can be added - "
5093 "please enable ALL_MULTI instead\n",
1da177e4 5094 dev->name);
1da177e4
LT
5095 return;
5096 }
5097
5098 prev_cnt = sp->mc_addr_count;
4cd24eaf 5099 sp->mc_addr_count = netdev_mc_count(dev);
1da177e4
LT
5100
5101 /* Clear out the previous list of Mc in the H/W. */
5102 for (i = 0; i < prev_cnt; i++) {
5103 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5104 &bar0->rmac_addr_data0_mem);
5105 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5106 &bar0->rmac_addr_data1_mem);
1da177e4 5107 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5108 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109 RMAC_ADDR_CMD_MEM_OFFSET
5110 (config->mc_start_offset + i);
1da177e4
LT
5111 writeq(val64, &bar0->rmac_addr_cmd_mem);
5112
5113 /* Wait for command completes */
c92ca04b 5114 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5115 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116 S2IO_BIT_RESET)) {
9e39f7c5
JP
5117 DBG_PRINT(ERR_DBG,
5118 "%s: Adding Multicasts failed\n",
5119 dev->name);
1da177e4
LT
5120 return;
5121 }
5122 }
5123
5124 /* Create the new Rx filter list and update the same in H/W. */
5508590c 5125 i = 0;
22bedad3 5126 netdev_for_each_mc_addr(ha, dev) {
a7a80d5a 5127 mac_addr = 0;
1da177e4 5128 for (j = 0; j < ETH_ALEN; j++) {
22bedad3 5129 mac_addr |= ha->addr[j];
1da177e4
LT
5130 mac_addr <<= 8;
5131 }
5132 mac_addr >>= 8;
5133 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5134 &bar0->rmac_addr_data0_mem);
5135 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5136 &bar0->rmac_addr_data1_mem);
1da177e4 5137 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5138 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5139 RMAC_ADDR_CMD_MEM_OFFSET
5140 (i + config->mc_start_offset);
1da177e4
LT
5141 writeq(val64, &bar0->rmac_addr_cmd_mem);
5142
5143 /* Wait for command completes */
c92ca04b 5144 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5145 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5146 S2IO_BIT_RESET)) {
9e39f7c5
JP
5147 DBG_PRINT(ERR_DBG,
5148 "%s: Adding Multicasts failed\n",
5149 dev->name);
1da177e4
LT
5150 return;
5151 }
5508590c 5152 i++;
1da177e4
LT
5153 }
5154 }
5155}
5156
faa4f796
SH
5157/* read from CAM unicast & multicast addresses and store it in
5158 * def_mac_addr structure
5159 */
dac499f9 5160static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5161{
5162 int offset;
5163 u64 mac_addr = 0x0;
5164 struct config_param *config = &sp->config;
5165
5166 /* store unicast & multicast mac addresses */
5167 for (offset = 0; offset < config->max_mc_addr; offset++) {
5168 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5169 /* if read fails disable the entry */
5170 if (mac_addr == FAILURE)
5171 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5172 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5173 }
5174}
5175
5176/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5177static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5178{
5179 int offset;
5180 struct config_param *config = &sp->config;
5181 /* restore unicast mac address */
5182 for (offset = 0; offset < config->max_mac_addr; offset++)
5183 do_s2io_prog_unicast(sp->dev,
d44570e4 5184 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5185
5186 /* restore multicast mac address */
5187 for (offset = config->mc_start_offset;
d44570e4 5188 offset < config->max_mc_addr; offset++)
faa4f796
SH
5189 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5190}
5191
5192/* add a multicast MAC address to CAM */
5193static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5194{
5195 int i;
5196 u64 mac_addr = 0;
5197 struct config_param *config = &sp->config;
5198
5199 for (i = 0; i < ETH_ALEN; i++) {
5200 mac_addr <<= 8;
5201 mac_addr |= addr[i];
5202 }
5203 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5204 return SUCCESS;
5205
5206 /* check if the multicast mac already preset in CAM */
5207 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5208 u64 tmp64;
5209 tmp64 = do_s2io_read_unicast_mc(sp, i);
5210 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5211 break;
5212
5213 if (tmp64 == mac_addr)
5214 return SUCCESS;
5215 }
5216 if (i == config->max_mc_addr) {
5217 DBG_PRINT(ERR_DBG,
d44570e4 5218 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5219 return FAILURE;
5220 }
5221 /* Update the internal structure with this new mac address */
5222 do_s2io_copy_mac_addr(sp, i, mac_addr);
5223
d44570e4 5224 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5225}
5226
5227/* add MAC address to CAM */
5228static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5229{
5230 u64 val64;
5231 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5232
5233 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5234 &bar0->rmac_addr_data0_mem);
2fd37688 5235
d44570e4 5236 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5237 RMAC_ADDR_CMD_MEM_OFFSET(off);
5238 writeq(val64, &bar0->rmac_addr_cmd_mem);
5239
5240 /* Wait till command completes */
5241 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5242 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243 S2IO_BIT_RESET)) {
faa4f796 5244 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5245 return FAILURE;
5246 }
5247 return SUCCESS;
5248}
faa4f796
SH
5249/* deletes a specified unicast/multicast mac entry from CAM */
5250static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5251{
5252 int offset;
5253 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5254 struct config_param *config = &sp->config;
5255
5256 for (offset = 1;
d44570e4 5257 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5258 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5259 if (tmp64 == addr) {
5260 /* disable the entry by writing 0xffffffffffffULL */
5261 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5262 return FAILURE;
5263 /* store the new mac list from CAM */
5264 do_s2io_store_unicast_mc(sp);
5265 return SUCCESS;
5266 }
5267 }
5268 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5269 (unsigned long long)addr);
faa4f796
SH
5270 return FAILURE;
5271}
5272
5273/* read mac entries from CAM */
5274static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5275{
5276 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5277 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5278
5279 /* read mac addr */
d44570e4 5280 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5281 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5282 writeq(val64, &bar0->rmac_addr_cmd_mem);
5283
5284 /* Wait till command completes */
5285 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5286 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5287 S2IO_BIT_RESET)) {
faa4f796
SH
5288 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5289 return FAILURE;
5290 }
5291 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5292
5293 return tmp64 >> 16;
faa4f796 5294}
2fd37688
SS
5295
5296/**
5297 * s2io_set_mac_addr driver entry point
5298 */
faa4f796 5299
2fd37688
SS
5300static int s2io_set_mac_addr(struct net_device *dev, void *p)
5301{
5302 struct sockaddr *addr = p;
5303
5304 if (!is_valid_ether_addr(addr->sa_data))
5305 return -EINVAL;
5306
5307 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5308
5309 /* store the MAC address in CAM */
d44570e4 5310 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5311}
1da177e4 5312/**
2fd37688 5313 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5314 * @dev : pointer to the device structure.
5315 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5316 * Description : This procedure will program the Xframe to receive
1da177e4 5317 * frames with new Mac Address
20346722 5318 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5319 * as defined in errno.h file on failure.
5320 */
faa4f796 5321
2fd37688 5322static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5323{
4cf1653a 5324 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5325 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5326 int i;
faa4f796
SH
5327 u64 tmp64;
5328 struct config_param *config = &sp->config;
1da177e4 5329
20346722 5330 /*
d44570e4
JP
5331 * Set the new MAC address as the new unicast filter and reflect this
5332 * change on the device address registered with the OS. It will be
5333 * at offset 0.
5334 */
1da177e4
LT
5335 for (i = 0; i < ETH_ALEN; i++) {
5336 mac_addr <<= 8;
5337 mac_addr |= addr[i];
2fd37688
SS
5338 perm_addr <<= 8;
5339 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5340 }
5341
2fd37688
SS
5342 /* check if the dev_addr is different than perm_addr */
5343 if (mac_addr == perm_addr)
d8d70caf
SS
5344 return SUCCESS;
5345
faa4f796
SH
5346 /* check if the mac already preset in CAM */
5347 for (i = 1; i < config->max_mac_addr; i++) {
5348 tmp64 = do_s2io_read_unicast_mc(sp, i);
5349 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5350 break;
5351
5352 if (tmp64 == mac_addr) {
5353 DBG_PRINT(INFO_DBG,
d44570e4
JP
5354 "MAC addr:0x%llx already present in CAM\n",
5355 (unsigned long long)mac_addr);
faa4f796
SH
5356 return SUCCESS;
5357 }
5358 }
5359 if (i == config->max_mac_addr) {
5360 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5361 return FAILURE;
5362 }
d8d70caf 5363 /* Update the internal structure with this new mac address */
faa4f796 5364 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5365
5366 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5367}
5368
5369/**
20346722 5370 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5371 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5372 * @info: pointer to the structure with parameters given by ethtool to set
5373 * link information.
5374 * Description:
20346722 5375 * The function sets different link parameters provided by the user onto
1da177e4
LT
5376 * the NIC.
5377 * Return value:
5378 * 0 on success.
d44570e4 5379 */
1da177e4
LT
5380
5381static int s2io_ethtool_sset(struct net_device *dev,
5382 struct ethtool_cmd *info)
5383{
4cf1653a 5384 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5385 if ((info->autoneg == AUTONEG_ENABLE) ||
d44570e4
JP
5386 (info->speed != SPEED_10000) ||
5387 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5388 return -EINVAL;
5389 else {
5390 s2io_close(sp->dev);
5391 s2io_open(sp->dev);
5392 }
5393
5394 return 0;
5395}
5396
5397/**
20346722 5398 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5399 * @sp : private member of the device structure, pointer to the
5400 * s2io_nic structure.
5401 * @info : pointer to the structure with parameters given by ethtool
5402 * to return link information.
5403 * Description:
5404 * Returns link specific information like speed, duplex etc.. to ethtool.
5405 * Return value :
5406 * return 0 on success.
5407 */
5408
5409static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5410{
4cf1653a 5411 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5412 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5413 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5414 info->port = PORT_FIBRE;
1a7eb72b
SS
5415
5416 /* info->transceiver */
5417 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5418
5419 if (netif_carrier_ok(sp->dev)) {
5420 info->speed = 10000;
5421 info->duplex = DUPLEX_FULL;
5422 } else {
5423 info->speed = -1;
5424 info->duplex = -1;
5425 }
5426
5427 info->autoneg = AUTONEG_DISABLE;
5428 return 0;
5429}
5430
5431/**
20346722 5432 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5433 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5434 * s2io_nic structure.
5435 * @info : pointer to the structure with parameters given by ethtool to
5436 * return driver information.
5437 * Description:
5438 * Returns driver specefic information like name, version etc.. to ethtool.
5439 * Return value:
5440 * void
5441 */
5442
5443static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5444 struct ethtool_drvinfo *info)
5445{
4cf1653a 5446 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5447
dbc2309d
JL
5448 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5449 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5450 strncpy(info->fw_version, "", sizeof(info->fw_version));
5451 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5452 info->regdump_len = XENA_REG_SPACE;
5453 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5454}
5455
5456/**
5457 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5458 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5459 * s2io_nic structure.
20346722 5460 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5461 * dumping the registers.
5462 * @reg_space: The input argumnet into which all the registers are dumped.
5463 * Description:
5464 * Dumps the entire register space of xFrame NIC into the user given
5465 * buffer area.
5466 * Return value :
5467 * void .
d44570e4 5468 */
1da177e4
LT
5469
5470static void s2io_ethtool_gregs(struct net_device *dev,
5471 struct ethtool_regs *regs, void *space)
5472{
5473 int i;
5474 u64 reg;
d44570e4 5475 u8 *reg_space = (u8 *)space;
4cf1653a 5476 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5477
5478 regs->len = XENA_REG_SPACE;
5479 regs->version = sp->pdev->subsystem_device;
5480
5481 for (i = 0; i < regs->len; i += 8) {
5482 reg = readq(sp->bar0 + i);
5483 memcpy((reg_space + i), &reg, 8);
5484 }
5485}
5486
5487/**
5488 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5489 * @data : address of the private member of the device structure, which
1da177e4 5490 * is a pointer to the s2io_nic structure, provided as an u32.
20346722 5491 * Description: This is actually the timer function that alternates the
5492 * adapter LED bit of the adapter control bit to set/reset every time on
5493 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4 5494 * once every second.
d44570e4 5495 */
1da177e4
LT
5496static void s2io_phy_id(unsigned long data)
5497{
d44570e4 5498 struct s2io_nic *sp = (struct s2io_nic *)data;
1ee6dd77 5499 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5500 u64 val64 = 0;
5501 u16 subid;
5502
5503 subid = sp->pdev->subsystem_device;
541ae68f 5504 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5505 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5506 val64 = readq(&bar0->gpio_control);
5507 val64 ^= GPIO_CTRL_GPIO_0;
5508 writeq(val64, &bar0->gpio_control);
5509 } else {
5510 val64 = readq(&bar0->adapter_control);
5511 val64 ^= ADAPTER_LED_ON;
5512 writeq(val64, &bar0->adapter_control);
5513 }
5514
5515 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5516}
5517
5518/**
5519 * s2io_ethtool_idnic - To physically identify the nic on the system.
5520 * @sp : private member of the device structure, which is a pointer to the
5521 * s2io_nic structure.
20346722 5522 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5523 * ethtool.
5524 * Description: Used to physically identify the NIC on the system.
20346722 5525 * The Link LED will blink for a time specified by the user for
1da177e4 5526 * identification.
20346722 5527 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5528 * identification is possible only if it's link is up.
5529 * Return value:
5530 * int , returns 0 on success
5531 */
5532
5533static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5534{
5535 u64 val64 = 0, last_gpio_ctrl_val;
4cf1653a 5536 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5537 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5538 u16 subid;
5539
5540 subid = sp->pdev->subsystem_device;
5541 last_gpio_ctrl_val = readq(&bar0->gpio_control);
d44570e4 5542 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5543 val64 = readq(&bar0->adapter_control);
5544 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5545 pr_err("Adapter Link down, cannot blink LED\n");
1da177e4
LT
5546 return -EFAULT;
5547 }
5548 }
5549 if (sp->id_timer.function == NULL) {
5550 init_timer(&sp->id_timer);
5551 sp->id_timer.function = s2io_phy_id;
d44570e4 5552 sp->id_timer.data = (unsigned long)sp;
1da177e4
LT
5553 }
5554 mod_timer(&sp->id_timer, jiffies);
5555 if (data)
20346722 5556 msleep_interruptible(data * HZ);
1da177e4 5557 else
20346722 5558 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5559 del_timer_sync(&sp->id_timer);
5560
541ae68f 5561 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5562 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5563 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5564 }
5565
5566 return 0;
5567}
5568
0cec35eb 5569static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5570 struct ethtool_ringparam *ering)
0cec35eb 5571{
4cf1653a 5572 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5573 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb 5574
1853e2e1 5575 if (sp->rxd_mode == RXD_MODE_1) {
0cec35eb 5576 ering->rx_max_pending = MAX_RX_DESC_1;
1853e2e1
JM
5577 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5578 } else {
0cec35eb 5579 ering->rx_max_pending = MAX_RX_DESC_2;
1853e2e1
JM
5580 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5581 }
0cec35eb 5582
1853e2e1 5583 ering->rx_mini_max_pending = 0;
0cec35eb 5584 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5585
1853e2e1 5586 for (i = 0; i < sp->config.rx_ring_num; i++)
0cec35eb 5587 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
0cec35eb 5588 ering->rx_pending = rx_desc_count;
0cec35eb 5589 ering->rx_jumbo_pending = rx_desc_count;
1853e2e1
JM
5590 ering->rx_mini_pending = 0;
5591
5592 for (i = 0; i < sp->config.tx_fifo_num; i++)
5593 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5594 ering->tx_pending = tx_desc_count;
5595 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
0cec35eb
SH
5596}
5597
1da177e4
LT
5598/**
5599 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722 5600 * @sp : private member of the device structure, which is a pointer to the
5601 * s2io_nic structure.
1da177e4
LT
5602 * @ep : pointer to the structure with pause parameters given by ethtool.
5603 * Description:
5604 * Returns the Pause frame generation and reception capability of the NIC.
5605 * Return value:
5606 * void
5607 */
5608static void s2io_ethtool_getpause_data(struct net_device *dev,
5609 struct ethtool_pauseparam *ep)
5610{
5611 u64 val64;
4cf1653a 5612 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5613 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5614
5615 val64 = readq(&bar0->rmac_pause_cfg);
5616 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5617 ep->tx_pause = true;
1da177e4 5618 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5619 ep->rx_pause = true;
5620 ep->autoneg = false;
1da177e4
LT
5621}
5622
5623/**
5624 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5625 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5626 * s2io_nic structure.
5627 * @ep : pointer to the structure with pause parameters given by ethtool.
5628 * Description:
5629 * It can be used to set or reset Pause frame generation or reception
5630 * support of the NIC.
5631 * Return value:
5632 * int, returns 0 on Success
5633 */
5634
5635static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5636 struct ethtool_pauseparam *ep)
1da177e4
LT
5637{
5638 u64 val64;
4cf1653a 5639 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5640 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5641
5642 val64 = readq(&bar0->rmac_pause_cfg);
5643 if (ep->tx_pause)
5644 val64 |= RMAC_PAUSE_GEN_ENABLE;
5645 else
5646 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5647 if (ep->rx_pause)
5648 val64 |= RMAC_PAUSE_RX_ENABLE;
5649 else
5650 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5651 writeq(val64, &bar0->rmac_pause_cfg);
5652 return 0;
5653}
5654
5655/**
5656 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5657 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5658 * s2io_nic structure.
5659 * @off : offset at which the data must be written
5660 * @data : Its an output parameter where the data read at the given
20346722 5661 * offset is stored.
1da177e4 5662 * Description:
20346722 5663 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5664 * read data.
5665 * NOTE: Will allow to read only part of the EEPROM visible through the
5666 * I2C bus.
5667 * Return value:
5668 * -1 on failure and 0 on success.
5669 */
5670
5671#define S2IO_DEV_ID 5
d44570e4 5672static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5673{
5674 int ret = -1;
5675 u32 exit_cnt = 0;
5676 u64 val64;
1ee6dd77 5677 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5678
ad4ebed0 5679 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5680 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5681 I2C_CONTROL_ADDR(off) |
5682 I2C_CONTROL_BYTE_CNT(0x3) |
5683 I2C_CONTROL_READ |
5684 I2C_CONTROL_CNTL_START;
ad4ebed0 5685 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5686
ad4ebed0 5687 while (exit_cnt < 5) {
5688 val64 = readq(&bar0->i2c_control);
5689 if (I2C_CONTROL_CNTL_END(val64)) {
5690 *data = I2C_CONTROL_GET_DATA(val64);
5691 ret = 0;
5692 break;
5693 }
5694 msleep(50);
5695 exit_cnt++;
1da177e4 5696 }
1da177e4
LT
5697 }
5698
ad4ebed0 5699 if (sp->device_type == XFRAME_II_DEVICE) {
5700 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5701 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5702 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5703 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5704 val64 |= SPI_CONTROL_REQ;
5705 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5706 while (exit_cnt < 5) {
5707 val64 = readq(&bar0->spi_control);
5708 if (val64 & SPI_CONTROL_NACK) {
5709 ret = 1;
5710 break;
5711 } else if (val64 & SPI_CONTROL_DONE) {
5712 *data = readq(&bar0->spi_data);
5713 *data &= 0xffffff;
5714 ret = 0;
5715 break;
5716 }
5717 msleep(50);
5718 exit_cnt++;
5719 }
5720 }
1da177e4
LT
5721 return ret;
5722}
5723
5724/**
5725 * write_eeprom - actually writes the relevant part of the data value.
5726 * @sp : private member of the device structure, which is a pointer to the
5727 * s2io_nic structure.
5728 * @off : offset at which the data must be written
5729 * @data : The data that is to be written
20346722 5730 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5731 * the Eeprom. (max of 3)
5732 * Description:
5733 * Actually writes the relevant part of the data value into the Eeprom
5734 * through the I2C bus.
5735 * Return value:
5736 * 0 on success, -1 on failure.
5737 */
5738
d44570e4 5739static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5740{
5741 int exit_cnt = 0, ret = -1;
5742 u64 val64;
1ee6dd77 5743 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5744
ad4ebed0 5745 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5746 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5747 I2C_CONTROL_ADDR(off) |
5748 I2C_CONTROL_BYTE_CNT(cnt) |
5749 I2C_CONTROL_SET_DATA((u32)data) |
5750 I2C_CONTROL_CNTL_START;
ad4ebed0 5751 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5752
5753 while (exit_cnt < 5) {
5754 val64 = readq(&bar0->i2c_control);
5755 if (I2C_CONTROL_CNTL_END(val64)) {
5756 if (!(val64 & I2C_CONTROL_NACK))
5757 ret = 0;
5758 break;
5759 }
5760 msleep(50);
5761 exit_cnt++;
5762 }
5763 }
1da177e4 5764
ad4ebed0 5765 if (sp->device_type == XFRAME_II_DEVICE) {
5766 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5767 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5768
5769 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5770 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5771 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5772 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5773 val64 |= SPI_CONTROL_REQ;
5774 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5775 while (exit_cnt < 5) {
5776 val64 = readq(&bar0->spi_control);
5777 if (val64 & SPI_CONTROL_NACK) {
5778 ret = 1;
5779 break;
5780 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5781 ret = 0;
ad4ebed0 5782 break;
5783 }
5784 msleep(50);
5785 exit_cnt++;
1da177e4 5786 }
1da177e4 5787 }
1da177e4
LT
5788 return ret;
5789}
1ee6dd77 5790static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5791{
b41477f3
AR
5792 u8 *vpd_data;
5793 u8 data;
9c179780 5794 int i = 0, cnt, len, fail = 0;
9dc737a7 5795 int vpd_addr = 0x80;
ffb5df6c 5796 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
9dc737a7
AR
5797
5798 if (nic->device_type == XFRAME_II_DEVICE) {
5799 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5800 vpd_addr = 0x80;
d44570e4 5801 } else {
9dc737a7
AR
5802 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5803 vpd_addr = 0x50;
5804 }
19a60522 5805 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5806
b41477f3 5807 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945 5808 if (!vpd_data) {
ffb5df6c 5809 swstats->mem_alloc_fail_cnt++;
b41477f3 5810 return;
c53d4945 5811 }
ffb5df6c 5812 swstats->mem_allocated += 256;
b41477f3 5813
d44570e4 5814 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5815 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5816 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5817 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5818 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5819 msleep(2);
5820 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5821 if (data == 0x80)
5822 break;
5823 }
5824 if (cnt >= 5) {
5825 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5826 fail = 1;
5827 break;
5828 }
5829 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5830 (u32 *)&vpd_data[i]);
5831 }
19a60522 5832
d44570e4 5833 if (!fail) {
19a60522 5834 /* read serial number of adapter */
9c179780 5835 for (cnt = 0; cnt < 252; cnt++) {
d44570e4 5836 if ((vpd_data[cnt] == 'S') &&
9c179780
KV
5837 (vpd_data[cnt+1] == 'N')) {
5838 len = vpd_data[cnt+2];
5839 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5840 memcpy(nic->serial_num,
5841 &vpd_data[cnt + 3],
5842 len);
5843 memset(nic->serial_num+len,
5844 0,
5845 VPD_STRING_LEN-len);
5846 break;
5847 }
19a60522
SS
5848 }
5849 }
5850 }
5851
9c179780
KV
5852 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5853 len = vpd_data[1];
5854 memcpy(nic->product_name, &vpd_data[3], len);
5855 nic->product_name[len] = 0;
5856 }
b41477f3 5857 kfree(vpd_data);
ffb5df6c 5858 swstats->mem_freed += 256;
9dc737a7
AR
5859}
5860
1da177e4
LT
5861/**
5862 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5863 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5864 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5865 * containing all relevant information.
5866 * @data_buf : user defined value to be written into Eeprom.
5867 * Description: Reads the values stored in the Eeprom at given offset
5868 * for a given length. Stores these values int the input argument data
5869 * buffer 'data_buf' and returns these to the caller (ethtool.)
5870 * Return value:
5871 * int 0 on success
5872 */
5873
5874static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5875 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5876{
ad4ebed0 5877 u32 i, valid;
5878 u64 data;
4cf1653a 5879 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5880
5881 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5882
5883 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5884 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5885
5886 for (i = 0; i < eeprom->len; i += 4) {
5887 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5888 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5889 return -EFAULT;
5890 }
5891 valid = INV(data);
5892 memcpy((data_buf + i), &valid, 4);
5893 }
5894 return 0;
5895}
5896
5897/**
5898 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5899 * @sp : private member of the device structure, which is a pointer to the
5900 * s2io_nic structure.
20346722 5901 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5902 * containing all relevant information.
5903 * @data_buf ; user defined value to be written into Eeprom.
5904 * Description:
5905 * Tries to write the user provided value in the Eeprom, at the offset
5906 * given by the user.
5907 * Return value:
5908 * 0 on success, -EFAULT on failure.
5909 */
5910
5911static int s2io_ethtool_seeprom(struct net_device *dev,
5912 struct ethtool_eeprom *eeprom,
d44570e4 5913 u8 *data_buf)
1da177e4
LT
5914{
5915 int len = eeprom->len, cnt = 0;
ad4ebed0 5916 u64 valid = 0, data;
4cf1653a 5917 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5918
5919 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5920 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5921 "ETHTOOL_WRITE_EEPROM Err: "
5922 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5923 (sp->pdev->vendor | (sp->pdev->device << 16)),
5924 eeprom->magic);
1da177e4
LT
5925 return -EFAULT;
5926 }
5927
5928 while (len) {
d44570e4
JP
5929 data = (u32)data_buf[cnt] & 0x000000FF;
5930 if (data)
5931 valid = (u32)(data << 24);
5932 else
1da177e4
LT
5933 valid = data;
5934
5935 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5936 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5937 "ETHTOOL_WRITE_EEPROM Err: "
5938 "Cannot write into the specified offset\n");
1da177e4
LT
5939 return -EFAULT;
5940 }
5941 cnt++;
5942 len--;
5943 }
5944
5945 return 0;
5946}
5947
5948/**
20346722 5949 * s2io_register_test - reads and writes into all clock domains.
5950 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5951 * s2io_nic structure.
5952 * @data : variable that returns the result of each of the test conducted b
5953 * by the driver.
5954 * Description:
5955 * Read and write into all clock domains. The NIC has 3 clock domains,
5956 * see that registers in all the three regions are accessible.
5957 * Return value:
5958 * 0 on success.
5959 */
5960
d44570e4 5961static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5962{
1ee6dd77 5963 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5964 u64 val64 = 0, exp_val;
1da177e4
LT
5965 int fail = 0;
5966
20346722 5967 val64 = readq(&bar0->pif_rd_swapper_fb);
5968 if (val64 != 0x123456789abcdefULL) {
1da177e4 5969 fail = 1;
9e39f7c5 5970 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
1da177e4
LT
5971 }
5972
5973 val64 = readq(&bar0->rmac_pause_cfg);
5974 if (val64 != 0xc000ffff00000000ULL) {
5975 fail = 1;
9e39f7c5 5976 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
1da177e4
LT
5977 }
5978
5979 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5980 if (sp->device_type == XFRAME_II_DEVICE)
5981 exp_val = 0x0404040404040404ULL;
5982 else
5983 exp_val = 0x0808080808080808ULL;
5984 if (val64 != exp_val) {
1da177e4 5985 fail = 1;
9e39f7c5 5986 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
1da177e4
LT
5987 }
5988
5989 val64 = readq(&bar0->xgxs_efifo_cfg);
5990 if (val64 != 0x000000001923141EULL) {
5991 fail = 1;
9e39f7c5 5992 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
1da177e4
LT
5993 }
5994
5995 val64 = 0x5A5A5A5A5A5A5A5AULL;
5996 writeq(val64, &bar0->xmsi_data);
5997 val64 = readq(&bar0->xmsi_data);
5998 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5999 fail = 1;
9e39f7c5 6000 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
1da177e4
LT
6001 }
6002
6003 val64 = 0xA5A5A5A5A5A5A5A5ULL;
6004 writeq(val64, &bar0->xmsi_data);
6005 val64 = readq(&bar0->xmsi_data);
6006 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6007 fail = 1;
9e39f7c5 6008 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
1da177e4
LT
6009 }
6010
6011 *data = fail;
ad4ebed0 6012 return fail;
1da177e4
LT
6013}
6014
6015/**
20346722 6016 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
6017 * @sp : private member of the device structure, which is a pointer to the
6018 * s2io_nic structure.
6019 * @data:variable that returns the result of each of the test conducted by
6020 * the driver.
6021 * Description:
20346722 6022 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
6023 * register.
6024 * Return value:
6025 * 0 on success.
6026 */
6027
d44570e4 6028static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6029{
6030 int fail = 0;
ad4ebed0 6031 u64 ret_data, org_4F0, org_7F0;
6032 u8 saved_4F0 = 0, saved_7F0 = 0;
6033 struct net_device *dev = sp->dev;
1da177e4
LT
6034
6035 /* Test Write Error at offset 0 */
ad4ebed0 6036 /* Note that SPI interface allows write access to all areas
6037 * of EEPROM. Hence doing all negative testing only for Xframe I.
6038 */
6039 if (sp->device_type == XFRAME_I_DEVICE)
6040 if (!write_eeprom(sp, 0, 0, 3))
6041 fail = 1;
6042
6043 /* Save current values at offsets 0x4F0 and 0x7F0 */
6044 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6045 saved_4F0 = 1;
6046 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6047 saved_7F0 = 1;
1da177e4
LT
6048
6049 /* Test Write at offset 4f0 */
ad4ebed0 6050 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6051 fail = 1;
6052 if (read_eeprom(sp, 0x4F0, &ret_data))
6053 fail = 1;
6054
ad4ebed0 6055 if (ret_data != 0x012345) {
26b7625c 6056 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
6057 "Data written %llx Data read %llx\n",
6058 dev->name, (unsigned long long)0x12345,
6059 (unsigned long long)ret_data);
1da177e4 6060 fail = 1;
ad4ebed0 6061 }
1da177e4
LT
6062
6063 /* Reset the EEPROM data go FFFF */
ad4ebed0 6064 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6065
6066 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6067 if (sp->device_type == XFRAME_I_DEVICE)
6068 if (!write_eeprom(sp, 0x07C, 0, 3))
6069 fail = 1;
1da177e4 6070
ad4ebed0 6071 /* Test Write Request at offset 0x7f0 */
6072 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6073 fail = 1;
ad4ebed0 6074 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6075 fail = 1;
6076
ad4ebed0 6077 if (ret_data != 0x012345) {
26b7625c 6078 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6079 "Data written %llx Data read %llx\n",
6080 dev->name, (unsigned long long)0x12345,
6081 (unsigned long long)ret_data);
1da177e4 6082 fail = 1;
ad4ebed0 6083 }
1da177e4
LT
6084
6085 /* Reset the EEPROM data go FFFF */
ad4ebed0 6086 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6087
ad4ebed0 6088 if (sp->device_type == XFRAME_I_DEVICE) {
6089 /* Test Write Error at offset 0x80 */
6090 if (!write_eeprom(sp, 0x080, 0, 3))
6091 fail = 1;
1da177e4 6092
ad4ebed0 6093 /* Test Write Error at offset 0xfc */
6094 if (!write_eeprom(sp, 0x0FC, 0, 3))
6095 fail = 1;
1da177e4 6096
ad4ebed0 6097 /* Test Write Error at offset 0x100 */
6098 if (!write_eeprom(sp, 0x100, 0, 3))
6099 fail = 1;
1da177e4 6100
ad4ebed0 6101 /* Test Write Error at offset 4ec */
6102 if (!write_eeprom(sp, 0x4EC, 0, 3))
6103 fail = 1;
6104 }
6105
6106 /* Restore values at offsets 0x4F0 and 0x7F0 */
6107 if (saved_4F0)
6108 write_eeprom(sp, 0x4F0, org_4F0, 3);
6109 if (saved_7F0)
6110 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6111
6112 *data = fail;
ad4ebed0 6113 return fail;
1da177e4
LT
6114}
6115
6116/**
6117 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6118 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6119 * s2io_nic structure.
20346722 6120 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6121 * the driver.
6122 * Description:
6123 * This invokes the MemBist test of the card. We give around
6124 * 2 secs time for the Test to complete. If it's still not complete
20346722 6125 * within this peiod, we consider that the test failed.
1da177e4
LT
6126 * Return value:
6127 * 0 on success and -1 on failure.
6128 */
6129
d44570e4 6130static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6131{
6132 u8 bist = 0;
6133 int cnt = 0, ret = -1;
6134
6135 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6136 bist |= PCI_BIST_START;
6137 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6138
6139 while (cnt < 20) {
6140 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6141 if (!(bist & PCI_BIST_START)) {
6142 *data = (bist & PCI_BIST_CODE_MASK);
6143 ret = 0;
6144 break;
6145 }
6146 msleep(100);
6147 cnt++;
6148 }
6149
6150 return ret;
6151}
6152
6153/**
20346722 6154 * s2io-link_test - verifies the link state of the nic
6155 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6156 * s2io_nic structure.
6157 * @data: variable that returns the result of each of the test conducted by
6158 * the driver.
6159 * Description:
20346722 6160 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6161 * argument 'data' appropriately.
6162 * Return value:
6163 * 0 on success.
6164 */
6165
d44570e4 6166static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6167{
1ee6dd77 6168 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6169 u64 val64;
6170
6171 val64 = readq(&bar0->adapter_status);
d44570e4 6172 if (!(LINK_IS_UP(val64)))
1da177e4 6173 *data = 1;
c92ca04b
AR
6174 else
6175 *data = 0;
1da177e4 6176
b41477f3 6177 return *data;
1da177e4
LT
6178}
6179
6180/**
20346722 6181 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6182 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6183 * s2io_nic structure.
20346722 6184 * @data - variable that returns the result of each of the test
1da177e4
LT
6185 * conducted by the driver.
6186 * Description:
20346722 6187 * This is one of the offline test that tests the read and write
1da177e4
LT
6188 * access to the RldRam chip on the NIC.
6189 * Return value:
6190 * 0 on success.
6191 */
6192
d44570e4 6193static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6194{
1ee6dd77 6195 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6196 u64 val64;
ad4ebed0 6197 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6198
6199 val64 = readq(&bar0->adapter_control);
6200 val64 &= ~ADAPTER_ECC_EN;
6201 writeq(val64, &bar0->adapter_control);
6202
6203 val64 = readq(&bar0->mc_rldram_test_ctrl);
6204 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6205 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6206
6207 val64 = readq(&bar0->mc_rldram_mrs);
6208 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6209 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6210
6211 val64 |= MC_RLDRAM_MRS_ENABLE;
6212 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6213
6214 while (iteration < 2) {
6215 val64 = 0x55555555aaaa0000ULL;
d44570e4 6216 if (iteration == 1)
1da177e4 6217 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6218 writeq(val64, &bar0->mc_rldram_test_d0);
6219
6220 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6221 if (iteration == 1)
1da177e4 6222 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6223 writeq(val64, &bar0->mc_rldram_test_d1);
6224
6225 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6226 if (iteration == 1)
1da177e4 6227 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6228 writeq(val64, &bar0->mc_rldram_test_d2);
6229
ad4ebed0 6230 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6231 writeq(val64, &bar0->mc_rldram_test_add);
6232
d44570e4
JP
6233 val64 = MC_RLDRAM_TEST_MODE |
6234 MC_RLDRAM_TEST_WRITE |
6235 MC_RLDRAM_TEST_GO;
ad4ebed0 6236 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6237
6238 for (cnt = 0; cnt < 5; cnt++) {
6239 val64 = readq(&bar0->mc_rldram_test_ctrl);
6240 if (val64 & MC_RLDRAM_TEST_DONE)
6241 break;
6242 msleep(200);
6243 }
6244
6245 if (cnt == 5)
6246 break;
6247
ad4ebed0 6248 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6249 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6250
6251 for (cnt = 0; cnt < 5; cnt++) {
6252 val64 = readq(&bar0->mc_rldram_test_ctrl);
6253 if (val64 & MC_RLDRAM_TEST_DONE)
6254 break;
6255 msleep(500);
6256 }
6257
6258 if (cnt == 5)
6259 break;
6260
6261 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6262 if (!(val64 & MC_RLDRAM_TEST_PASS))
6263 test_fail = 1;
1da177e4
LT
6264
6265 iteration++;
6266 }
6267
ad4ebed0 6268 *data = test_fail;
1da177e4 6269
ad4ebed0 6270 /* Bring the adapter out of test mode */
6271 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6272
6273 return test_fail;
1da177e4
LT
6274}
6275
6276/**
6277 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6278 * @sp : private member of the device structure, which is a pointer to the
6279 * s2io_nic structure.
6280 * @ethtest : pointer to a ethtool command specific structure that will be
6281 * returned to the user.
20346722 6282 * @data : variable that returns the result of each of the test
1da177e4
LT
6283 * conducted by the driver.
6284 * Description:
6285 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6286 * the health of the card.
6287 * Return value:
6288 * void
6289 */
6290
6291static void s2io_ethtool_test(struct net_device *dev,
6292 struct ethtool_test *ethtest,
d44570e4 6293 uint64_t *data)
1da177e4 6294{
4cf1653a 6295 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6296 int orig_state = netif_running(sp->dev);
6297
6298 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6299 /* Offline Tests. */
20346722 6300 if (orig_state)
1da177e4 6301 s2io_close(sp->dev);
1da177e4
LT
6302
6303 if (s2io_register_test(sp, &data[0]))
6304 ethtest->flags |= ETH_TEST_FL_FAILED;
6305
6306 s2io_reset(sp);
1da177e4
LT
6307
6308 if (s2io_rldram_test(sp, &data[3]))
6309 ethtest->flags |= ETH_TEST_FL_FAILED;
6310
6311 s2io_reset(sp);
1da177e4
LT
6312
6313 if (s2io_eeprom_test(sp, &data[1]))
6314 ethtest->flags |= ETH_TEST_FL_FAILED;
6315
6316 if (s2io_bist_test(sp, &data[4]))
6317 ethtest->flags |= ETH_TEST_FL_FAILED;
6318
6319 if (orig_state)
6320 s2io_open(sp->dev);
6321
6322 data[2] = 0;
6323 } else {
6324 /* Online Tests. */
6325 if (!orig_state) {
d44570e4 6326 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6327 dev->name);
6328 data[0] = -1;
6329 data[1] = -1;
6330 data[2] = -1;
6331 data[3] = -1;
6332 data[4] = -1;
6333 }
6334
6335 if (s2io_link_test(sp, &data[2]))
6336 ethtest->flags |= ETH_TEST_FL_FAILED;
6337
6338 data[0] = 0;
6339 data[1] = 0;
6340 data[3] = 0;
6341 data[4] = 0;
6342 }
6343}
6344
6345static void s2io_get_ethtool_stats(struct net_device *dev,
6346 struct ethtool_stats *estats,
d44570e4 6347 u64 *tmp_stats)
1da177e4 6348{
8116f3cf 6349 int i = 0, k;
4cf1653a 6350 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
6351 struct stat_block *stats = sp->mac_control.stats_info;
6352 struct swStat *swstats = &stats->sw_stat;
6353 struct xpakStat *xstats = &stats->xpak_stat;
1da177e4 6354
7ba013ac 6355 s2io_updt_stats(sp);
541ae68f 6356 tmp_stats[i++] =
ffb5df6c
JP
6357 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6358 le32_to_cpu(stats->tmac_frms);
541ae68f 6359 tmp_stats[i++] =
ffb5df6c
JP
6360 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6361 le32_to_cpu(stats->tmac_data_octets);
6362 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
541ae68f 6363 tmp_stats[i++] =
ffb5df6c
JP
6364 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6365 le32_to_cpu(stats->tmac_mcst_frms);
541ae68f 6366 tmp_stats[i++] =
ffb5df6c
JP
6367 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6368 le32_to_cpu(stats->tmac_bcst_frms);
6369 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
bd1034f0 6370 tmp_stats[i++] =
ffb5df6c
JP
6371 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6372 le32_to_cpu(stats->tmac_ttl_octets);
bd1034f0 6373 tmp_stats[i++] =
ffb5df6c
JP
6374 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6375 le32_to_cpu(stats->tmac_ucst_frms);
d44570e4 6376 tmp_stats[i++] =
ffb5df6c
JP
6377 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6378 le32_to_cpu(stats->tmac_nucst_frms);
541ae68f 6379 tmp_stats[i++] =
ffb5df6c
JP
6380 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6381 le32_to_cpu(stats->tmac_any_err_frms);
6382 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6383 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
541ae68f 6384 tmp_stats[i++] =
ffb5df6c
JP
6385 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6386 le32_to_cpu(stats->tmac_vld_ip);
541ae68f 6387 tmp_stats[i++] =
ffb5df6c
JP
6388 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6389 le32_to_cpu(stats->tmac_drop_ip);
541ae68f 6390 tmp_stats[i++] =
ffb5df6c
JP
6391 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6392 le32_to_cpu(stats->tmac_icmp);
541ae68f 6393 tmp_stats[i++] =
ffb5df6c
JP
6394 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6395 le32_to_cpu(stats->tmac_rst_tcp);
6396 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6397 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6398 le32_to_cpu(stats->tmac_udp);
541ae68f 6399 tmp_stats[i++] =
ffb5df6c
JP
6400 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6401 le32_to_cpu(stats->rmac_vld_frms);
541ae68f 6402 tmp_stats[i++] =
ffb5df6c
JP
6403 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6404 le32_to_cpu(stats->rmac_data_octets);
6405 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6406 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
541ae68f 6407 tmp_stats[i++] =
ffb5df6c
JP
6408 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6409 le32_to_cpu(stats->rmac_vld_mcst_frms);
541ae68f 6410 tmp_stats[i++] =
ffb5df6c
JP
6411 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6412 le32_to_cpu(stats->rmac_vld_bcst_frms);
6413 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6414 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
d44570e4 6418 tmp_stats[i++] =
ffb5df6c
JP
6419 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6420 le32_to_cpu(stats->rmac_ttl_octets);
bd1034f0 6421 tmp_stats[i++] =
ffb5df6c
JP
6422 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6423 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
d44570e4 6424 tmp_stats[i++] =
ffb5df6c
JP
6425 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6426 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
541ae68f 6427 tmp_stats[i++] =
ffb5df6c
JP
6428 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6429 le32_to_cpu(stats->rmac_discarded_frms);
d44570e4 6430 tmp_stats[i++] =
ffb5df6c
JP
6431 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6432 << 32 | le32_to_cpu(stats->rmac_drop_events);
6433 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6434 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
541ae68f 6435 tmp_stats[i++] =
ffb5df6c
JP
6436 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6437 le32_to_cpu(stats->rmac_usized_frms);
541ae68f 6438 tmp_stats[i++] =
ffb5df6c
JP
6439 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6440 le32_to_cpu(stats->rmac_osized_frms);
541ae68f 6441 tmp_stats[i++] =
ffb5df6c
JP
6442 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6443 le32_to_cpu(stats->rmac_frag_frms);
541ae68f 6444 tmp_stats[i++] =
ffb5df6c
JP
6445 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6446 le32_to_cpu(stats->rmac_jabber_frms);
6447 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6448 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6449 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6450 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6451 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6452 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
bd1034f0 6453 tmp_stats[i++] =
ffb5df6c
JP
6454 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6455 le32_to_cpu(stats->rmac_ip);
6456 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6457 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
bd1034f0 6458 tmp_stats[i++] =
ffb5df6c
JP
6459 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6460 le32_to_cpu(stats->rmac_drop_ip);
bd1034f0 6461 tmp_stats[i++] =
ffb5df6c
JP
6462 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6463 le32_to_cpu(stats->rmac_icmp);
6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
bd1034f0 6465 tmp_stats[i++] =
ffb5df6c
JP
6466 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6467 le32_to_cpu(stats->rmac_udp);
541ae68f 6468 tmp_stats[i++] =
ffb5df6c
JP
6469 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6470 le32_to_cpu(stats->rmac_err_drp_udp);
6471 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6472 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6473 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6474 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6475 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6476 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6477 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6478 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6479 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6480 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6481 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6482 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6483 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6484 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6485 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6486 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6487 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
541ae68f 6488 tmp_stats[i++] =
ffb5df6c
JP
6489 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6490 le32_to_cpu(stats->rmac_pause_cnt);
6491 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6492 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
541ae68f 6493 tmp_stats[i++] =
ffb5df6c
JP
6494 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6495 le32_to_cpu(stats->rmac_accepted_ip);
6496 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6497 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6498 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6499 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6500 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6501 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6502 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6503 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6504 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6505 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6506 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6507 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6508 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6509 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6510 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6511 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6512 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6513 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6514 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
fa1f0cb3
SS
6515
6516 /* Enhanced statistics exist only for Hercules */
d44570e4 6517 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6518 tmp_stats[i++] =
ffb5df6c 6519 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
fa1f0cb3 6520 tmp_stats[i++] =
ffb5df6c 6521 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
fa1f0cb3 6522 tmp_stats[i++] =
ffb5df6c
JP
6523 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6524 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6525 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6526 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6527 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6528 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6529 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6530 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6531 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6532 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6533 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6534 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6535 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6536 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
fa1f0cb3
SS
6537 }
6538
7ba013ac 6539 tmp_stats[i++] = 0;
ffb5df6c
JP
6540 tmp_stats[i++] = swstats->single_ecc_errs;
6541 tmp_stats[i++] = swstats->double_ecc_errs;
6542 tmp_stats[i++] = swstats->parity_err_cnt;
6543 tmp_stats[i++] = swstats->serious_err_cnt;
6544 tmp_stats[i++] = swstats->soft_reset_cnt;
6545 tmp_stats[i++] = swstats->fifo_full_cnt;
8116f3cf 6546 for (k = 0; k < MAX_RX_RINGS; k++)
ffb5df6c
JP
6547 tmp_stats[i++] = swstats->ring_full_cnt[k];
6548 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6549 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6550 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6551 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6552 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6553 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6554 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6555 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6556 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6557 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6558 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6559 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6560 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6561 tmp_stats[i++] = swstats->sending_both;
6562 tmp_stats[i++] = swstats->outof_sequence_pkts;
6563 tmp_stats[i++] = swstats->flush_max_pkts;
6564 if (swstats->num_aggregations) {
6565 u64 tmp = swstats->sum_avg_pkts_aggregated;
bd1034f0 6566 int count = 0;
6aa20a22 6567 /*
bd1034f0
AR
6568 * Since 64-bit divide does not work on all platforms,
6569 * do repeated subtraction.
6570 */
ffb5df6c
JP
6571 while (tmp >= swstats->num_aggregations) {
6572 tmp -= swstats->num_aggregations;
bd1034f0
AR
6573 count++;
6574 }
6575 tmp_stats[i++] = count;
d44570e4 6576 } else
bd1034f0 6577 tmp_stats[i++] = 0;
ffb5df6c
JP
6578 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6579 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6580 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6581 tmp_stats[i++] = swstats->mem_allocated;
6582 tmp_stats[i++] = swstats->mem_freed;
6583 tmp_stats[i++] = swstats->link_up_cnt;
6584 tmp_stats[i++] = swstats->link_down_cnt;
6585 tmp_stats[i++] = swstats->link_up_time;
6586 tmp_stats[i++] = swstats->link_down_time;
6587
6588 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6589 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6590 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6591 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6592 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6593
6594 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6595 tmp_stats[i++] = swstats->rx_abort_cnt;
6596 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6597 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6598 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6599 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6600 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6601 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6602 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6603 tmp_stats[i++] = swstats->tda_err_cnt;
6604 tmp_stats[i++] = swstats->pfc_err_cnt;
6605 tmp_stats[i++] = swstats->pcc_err_cnt;
6606 tmp_stats[i++] = swstats->tti_err_cnt;
6607 tmp_stats[i++] = swstats->tpa_err_cnt;
6608 tmp_stats[i++] = swstats->sm_err_cnt;
6609 tmp_stats[i++] = swstats->lso_err_cnt;
6610 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6611 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6612 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6613 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6614 tmp_stats[i++] = swstats->rc_err_cnt;
6615 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6616 tmp_stats[i++] = swstats->rpa_err_cnt;
6617 tmp_stats[i++] = swstats->rda_err_cnt;
6618 tmp_stats[i++] = swstats->rti_err_cnt;
6619 tmp_stats[i++] = swstats->mc_err_cnt;
1da177e4
LT
6620}
6621
ac1f60db 6622static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6623{
d44570e4 6624 return XENA_REG_SPACE;
1da177e4
LT
6625}
6626
6627
d44570e4 6628static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
1da177e4 6629{
4cf1653a 6630 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 6631
d44570e4 6632 return sp->rx_csum;
1da177e4 6633}
ac1f60db
AB
6634
6635static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6636{
4cf1653a 6637 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6638
6639 if (data)
6640 sp->rx_csum = 1;
6641 else
6642 sp->rx_csum = 0;
6643
6644 return 0;
6645}
ac1f60db
AB
6646
6647static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6648{
d44570e4 6649 return XENA_EEPROM_SPACE;
1da177e4
LT
6650}
6651
b9f2c044 6652static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6653{
4cf1653a 6654 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6655
6656 switch (sset) {
6657 case ETH_SS_TEST:
6658 return S2IO_TEST_LEN;
6659 case ETH_SS_STATS:
d44570e4 6660 switch (sp->device_type) {
b9f2c044
JG
6661 case XFRAME_I_DEVICE:
6662 return XFRAME_I_STAT_LEN;
6663 case XFRAME_II_DEVICE:
6664 return XFRAME_II_STAT_LEN;
6665 default:
6666 return 0;
6667 }
6668 default:
6669 return -EOPNOTSUPP;
6670 }
1da177e4 6671}
ac1f60db
AB
6672
6673static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6674 u32 stringset, u8 *data)
1da177e4 6675{
fa1f0cb3 6676 int stat_size = 0;
4cf1653a 6677 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6678
1da177e4
LT
6679 switch (stringset) {
6680 case ETH_SS_TEST:
6681 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6682 break;
6683 case ETH_SS_STATS:
fa1f0cb3 6684 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6685 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6686 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6687 memcpy(data + stat_size,
d44570e4
JP
6688 &ethtool_enhanced_stats_keys,
6689 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6690 stat_size += sizeof(ethtool_enhanced_stats_keys);
6691 }
6692
6693 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6694 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6695 }
6696}
1da177e4 6697
ac1f60db 6698static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6699{
6700 if (data)
6701 dev->features |= NETIF_F_IP_CSUM;
6702 else
6703 dev->features &= ~NETIF_F_IP_CSUM;
6704
6705 return 0;
6706}
6707
75c30b13
AR
6708static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6709{
6710 return (dev->features & NETIF_F_TSO) != 0;
6711}
958de193 6712
75c30b13
AR
6713static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6714{
6715 if (data)
6716 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6717 else
6718 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6719
6720 return 0;
6721}
1da177e4 6722
958de193
JM
6723static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6724{
6725 struct s2io_nic *sp = netdev_priv(dev);
6726 int rc = 0;
6727 int changed = 0;
6728
673e63c6 6729 if (ethtool_invalid_flags(dev, data, ETH_FLAG_LRO))
97d1935a 6730 return -EINVAL;
958de193
JM
6731
6732 if (data & ETH_FLAG_LRO) {
f0c54ace
AW
6733 if (!(dev->features & NETIF_F_LRO)) {
6734 dev->features |= NETIF_F_LRO;
6735 changed = 1;
6736 }
958de193
JM
6737 } else if (dev->features & NETIF_F_LRO) {
6738 dev->features &= ~NETIF_F_LRO;
6739 changed = 1;
6740 }
6741
6742 if (changed && netif_running(dev)) {
6743 s2io_stop_all_tx_queue(sp);
6744 s2io_card_down(sp);
958de193
JM
6745 rc = s2io_card_up(sp);
6746 if (rc)
6747 s2io_reset(sp);
6748 else
6749 s2io_start_all_tx_queue(sp);
6750 }
6751
6752 return rc;
6753}
6754
7282d491 6755static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6756 .get_settings = s2io_ethtool_gset,
6757 .set_settings = s2io_ethtool_sset,
6758 .get_drvinfo = s2io_ethtool_gdrvinfo,
6759 .get_regs_len = s2io_ethtool_get_regs_len,
6760 .get_regs = s2io_ethtool_gregs,
6761 .get_link = ethtool_op_get_link,
6762 .get_eeprom_len = s2io_get_eeprom_len,
6763 .get_eeprom = s2io_ethtool_geeprom,
6764 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6765 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6766 .get_pauseparam = s2io_ethtool_getpause_data,
6767 .set_pauseparam = s2io_ethtool_setpause_data,
6768 .get_rx_csum = s2io_ethtool_get_rx_csum,
6769 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6770 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
958de193
JM
6771 .set_flags = s2io_ethtool_set_flags,
6772 .get_flags = ethtool_op_get_flags,
1da177e4 6773 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6774 .get_tso = s2io_ethtool_op_get_tso,
6775 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6776 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6777 .self_test = s2io_ethtool_test,
6778 .get_strings = s2io_ethtool_get_strings,
6779 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6780 .get_ethtool_stats = s2io_get_ethtool_stats,
6781 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6782};
6783
6784/**
20346722 6785 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6786 * @dev : Device pointer.
6787 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6788 * a proprietary structure used to pass information to the driver.
6789 * @cmd : This is used to distinguish between the different commands that
6790 * can be passed to the IOCTL functions.
6791 * Description:
20346722 6792 * Currently there are no special functionality supported in IOCTL, hence
6793 * function always return EOPNOTSUPPORTED
1da177e4
LT
6794 */
6795
ac1f60db 6796static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6797{
6798 return -EOPNOTSUPP;
6799}
6800
6801/**
6802 * s2io_change_mtu - entry point to change MTU size for the device.
6803 * @dev : device pointer.
6804 * @new_mtu : the new MTU size for the device.
6805 * Description: A driver entry point to change MTU size for the device.
6806 * Before changing the MTU the device must be stopped.
6807 * Return value:
6808 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6809 * file on failure.
6810 */
6811
ac1f60db 6812static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6813{
4cf1653a 6814 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6815 int ret = 0;
1da177e4
LT
6816
6817 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6818 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6819 return -EPERM;
6820 }
6821
1da177e4 6822 dev->mtu = new_mtu;
d8892c6e 6823 if (netif_running(dev)) {
3a3d5756 6824 s2io_stop_all_tx_queue(sp);
e6a8fee2 6825 s2io_card_down(sp);
9f74ffde
SH
6826 ret = s2io_card_up(sp);
6827 if (ret) {
d8892c6e 6828 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6829 __func__);
9f74ffde 6830 return ret;
d8892c6e 6831 }
3a3d5756 6832 s2io_wake_all_tx_queue(sp);
d8892c6e 6833 } else { /* Device is down */
1ee6dd77 6834 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e 6835 u64 val64 = new_mtu;
6836
6837 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6838 }
1da177e4 6839
9f74ffde 6840 return ret;
1da177e4
LT
6841}
6842
1da177e4
LT
6843/**
6844 * s2io_set_link - Set the LInk status
6845 * @data: long pointer to device private structue
6846 * Description: Sets the link status for the adapter
6847 */
6848
c4028958 6849static void s2io_set_link(struct work_struct *work)
1da177e4 6850{
d44570e4
JP
6851 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6852 set_link_task);
1da177e4 6853 struct net_device *dev = nic->dev;
1ee6dd77 6854 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6855 register u64 val64;
6856 u16 subid;
6857
22747d6b
FR
6858 rtnl_lock();
6859
6860 if (!netif_running(dev))
6861 goto out_unlock;
6862
92b84437 6863 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6864 /* The card is being reset, no point doing anything */
22747d6b 6865 goto out_unlock;
1da177e4
LT
6866 }
6867
6868 subid = nic->pdev->subsystem_device;
a371a07d 6869 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6870 /*
6871 * Allow a small delay for the NICs self initiated
6872 * cleanup to complete.
6873 */
6874 msleep(100);
6875 }
1da177e4
LT
6876
6877 val64 = readq(&bar0->adapter_status);
19a60522
SS
6878 if (LINK_IS_UP(val64)) {
6879 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6880 if (verify_xena_quiescence(nic)) {
6881 val64 = readq(&bar0->adapter_control);
6882 val64 |= ADAPTER_CNTL_EN;
1da177e4 6883 writeq(val64, &bar0->adapter_control);
19a60522 6884 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6885 nic->device_type, subid)) {
19a60522
SS
6886 val64 = readq(&bar0->gpio_control);
6887 val64 |= GPIO_CTRL_GPIO_0;
6888 writeq(val64, &bar0->gpio_control);
6889 val64 = readq(&bar0->gpio_control);
6890 } else {
6891 val64 |= ADAPTER_LED_ON;
6892 writeq(val64, &bar0->adapter_control);
a371a07d 6893 }
f957bcf0 6894 nic->device_enabled_once = true;
19a60522 6895 } else {
9e39f7c5
JP
6896 DBG_PRINT(ERR_DBG,
6897 "%s: Error: device is not Quiescent\n",
6898 dev->name);
3a3d5756 6899 s2io_stop_all_tx_queue(nic);
1da177e4 6900 }
19a60522 6901 }
92c48799
SS
6902 val64 = readq(&bar0->adapter_control);
6903 val64 |= ADAPTER_LED_ON;
6904 writeq(val64, &bar0->adapter_control);
6905 s2io_link(nic, LINK_UP);
19a60522
SS
6906 } else {
6907 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6908 subid)) {
6909 val64 = readq(&bar0->gpio_control);
6910 val64 &= ~GPIO_CTRL_GPIO_0;
6911 writeq(val64, &bar0->gpio_control);
6912 val64 = readq(&bar0->gpio_control);
1da177e4 6913 }
92c48799
SS
6914 /* turn off LED */
6915 val64 = readq(&bar0->adapter_control);
d44570e4 6916 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6917 writeq(val64, &bar0->adapter_control);
19a60522 6918 s2io_link(nic, LINK_DOWN);
1da177e4 6919 }
92b84437 6920 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6921
6922out_unlock:
d8d70caf 6923 rtnl_unlock();
1da177e4
LT
6924}
6925
1ee6dd77 6926static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6927 struct buffAdd *ba,
6928 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6929 u64 *temp2, int size)
5d3213cc
AR
6930{
6931 struct net_device *dev = sp->dev;
491abf25 6932 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6933
6934 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6935 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6936 /* allocate skb */
6937 if (*skb) {
6938 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6939 /*
6940 * As Rx frame are not going to be processed,
6941 * using same mapped address for the Rxd
6942 * buffer pointer
6943 */
6d517a27 6944 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6945 } else {
6946 *skb = dev_alloc_skb(size);
6947 if (!(*skb)) {
9e39f7c5
JP
6948 DBG_PRINT(INFO_DBG,
6949 "%s: Out of memory to allocate %s\n",
6950 dev->name, "1 buf mode SKBs");
ffb5df6c 6951 stats->mem_alloc_fail_cnt++;
5d3213cc
AR
6952 return -ENOMEM ;
6953 }
ffb5df6c 6954 stats->mem_allocated += (*skb)->truesize;
5d3213cc
AR
6955 /* storing the mapped addr in a temp variable
6956 * such it will be used for next rxd whose
6957 * Host Control is NULL
6958 */
6d517a27 6959 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6960 pci_map_single(sp->pdev, (*skb)->data,
6961 size - NET_IP_ALIGN,
6962 PCI_DMA_FROMDEVICE);
8d8bb39b 6963 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6964 goto memalloc_failed;
5d3213cc
AR
6965 rxdp->Host_Control = (unsigned long) (*skb);
6966 }
6967 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6968 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6969 /* Two buffer Mode */
6970 if (*skb) {
6d517a27
VP
6971 rxdp3->Buffer2_ptr = *temp2;
6972 rxdp3->Buffer0_ptr = *temp0;
6973 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6974 } else {
6975 *skb = dev_alloc_skb(size);
2ceaac75 6976 if (!(*skb)) {
9e39f7c5
JP
6977 DBG_PRINT(INFO_DBG,
6978 "%s: Out of memory to allocate %s\n",
6979 dev->name,
6980 "2 buf mode SKBs");
ffb5df6c 6981 stats->mem_alloc_fail_cnt++;
2ceaac75
DR
6982 return -ENOMEM;
6983 }
ffb5df6c 6984 stats->mem_allocated += (*skb)->truesize;
6d517a27 6985 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6986 pci_map_single(sp->pdev, (*skb)->data,
6987 dev->mtu + 4,
6988 PCI_DMA_FROMDEVICE);
8d8bb39b 6989 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6990 goto memalloc_failed;
6d517a27 6991 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6992 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6993 PCI_DMA_FROMDEVICE);
8d8bb39b 6994 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6995 rxdp3->Buffer0_ptr)) {
6996 pci_unmap_single(sp->pdev,
6997 (dma_addr_t)rxdp3->Buffer2_ptr,
6998 dev->mtu + 4,
6999 PCI_DMA_FROMDEVICE);
491abf25
VP
7000 goto memalloc_failed;
7001 }
5d3213cc
AR
7002 rxdp->Host_Control = (unsigned long) (*skb);
7003
7004 /* Buffer-1 will be dummy buffer not used */
6d517a27 7005 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 7006 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 7007 PCI_DMA_FROMDEVICE);
8d8bb39b 7008 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
7009 rxdp3->Buffer1_ptr)) {
7010 pci_unmap_single(sp->pdev,
7011 (dma_addr_t)rxdp3->Buffer0_ptr,
7012 BUF0_LEN, PCI_DMA_FROMDEVICE);
7013 pci_unmap_single(sp->pdev,
7014 (dma_addr_t)rxdp3->Buffer2_ptr,
7015 dev->mtu + 4,
7016 PCI_DMA_FROMDEVICE);
491abf25
VP
7017 goto memalloc_failed;
7018 }
5d3213cc
AR
7019 }
7020 }
7021 return 0;
d44570e4
JP
7022
7023memalloc_failed:
7024 stats->pci_map_fail_cnt++;
7025 stats->mem_freed += (*skb)->truesize;
7026 dev_kfree_skb(*skb);
7027 return -ENOMEM;
5d3213cc 7028}
491abf25 7029
1ee6dd77
RB
7030static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7031 int size)
5d3213cc
AR
7032{
7033 struct net_device *dev = sp->dev;
7034 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 7035 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
7036 } else if (sp->rxd_mode == RXD_MODE_3B) {
7037 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7038 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 7039 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
7040 }
7041}
7042
1ee6dd77 7043static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
7044{
7045 int i, j, k, blk_cnt = 0, size;
5d3213cc 7046 struct config_param *config = &sp->config;
ffb5df6c 7047 struct mac_info *mac_control = &sp->mac_control;
5d3213cc 7048 struct net_device *dev = sp->dev;
1ee6dd77 7049 struct RxD_t *rxdp = NULL;
5d3213cc 7050 struct sk_buff *skb = NULL;
1ee6dd77 7051 struct buffAdd *ba = NULL;
5d3213cc
AR
7052 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7053
7054 /* Calculate the size based on ring mode */
7055 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7056 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7057 if (sp->rxd_mode == RXD_MODE_1)
7058 size += NET_IP_ALIGN;
7059 else if (sp->rxd_mode == RXD_MODE_3B)
7060 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
7061
7062 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7063 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7064 struct ring_info *ring = &mac_control->rings[i];
7065
d44570e4 7066 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
7067
7068 for (j = 0; j < blk_cnt; j++) {
7069 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
7070 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7071 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 7072 ba = &ring->ba[j][k];
d44570e4
JP
7073 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7074 (u64 *)&temp0_64,
7075 (u64 *)&temp1_64,
7076 (u64 *)&temp2_64,
7077 size) == -ENOMEM) {
ac1f90d6
SS
7078 return 0;
7079 }
5d3213cc
AR
7080
7081 set_rxd_buffer_size(sp, rxdp, size);
7082 wmb();
7083 /* flip the Ownership bit to Hardware */
7084 rxdp->Control_1 |= RXD_OWN_XENA;
7085 }
7086 }
7087 }
7088 return 0;
7089
7090}
7091
d44570e4 7092static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 7093{
e6a8fee2 7094 int ret = 0;
c92ca04b 7095 struct net_device *dev = sp->dev;
e6a8fee2 7096 int err = 0;
1da177e4 7097
eaae7f72 7098 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7099 ret = s2io_enable_msi_x(sp);
7100 if (ret) {
7101 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7102 sp->config.intr_type = INTA;
20346722 7103 }
1da177e4 7104
d44570e4
JP
7105 /*
7106 * Store the values of the MSIX table in
7107 * the struct s2io_nic structure
7108 */
e6a8fee2 7109 store_xmsi_data(sp);
c92ca04b 7110
e6a8fee2 7111 /* After proper initialization of H/W, register ISR */
eaae7f72 7112 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7113 int i, msix_rx_cnt = 0;
7114
f61e0a35
SH
7115 for (i = 0; i < sp->num_entries; i++) {
7116 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7117 if (sp->s2io_entries[i].type ==
d44570e4 7118 MSIX_RING_TYPE) {
ac731ab6
SH
7119 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7120 dev->name, i);
7121 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7122 s2io_msix_ring_handle,
7123 0,
7124 sp->desc[i],
7125 sp->s2io_entries[i].arg);
ac731ab6 7126 } else if (sp->s2io_entries[i].type ==
d44570e4 7127 MSIX_ALARM_TYPE) {
ac731ab6 7128 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7129 dev->name, i);
ac731ab6 7130 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7131 s2io_msix_fifo_handle,
7132 0,
7133 sp->desc[i],
7134 sp->s2io_entries[i].arg);
ac731ab6 7135
fb6a825b 7136 }
ac731ab6
SH
7137 /* if either data or addr is zero print it. */
7138 if (!(sp->msix_info[i].addr &&
d44570e4 7139 sp->msix_info[i].data)) {
ac731ab6 7140 DBG_PRINT(ERR_DBG,
d44570e4
JP
7141 "%s @Addr:0x%llx Data:0x%llx\n",
7142 sp->desc[i],
7143 (unsigned long long)
7144 sp->msix_info[i].addr,
7145 (unsigned long long)
7146 ntohl(sp->msix_info[i].data));
ac731ab6 7147 } else
fb6a825b 7148 msix_rx_cnt++;
ac731ab6
SH
7149 if (err) {
7150 remove_msix_isr(sp);
7151
7152 DBG_PRINT(ERR_DBG,
d44570e4
JP
7153 "%s:MSI-X-%d registration "
7154 "failed\n", dev->name, i);
ac731ab6
SH
7155
7156 DBG_PRINT(ERR_DBG,
d44570e4
JP
7157 "%s: Defaulting to INTA\n",
7158 dev->name);
ac731ab6
SH
7159 sp->config.intr_type = INTA;
7160 break;
fb6a825b 7161 }
ac731ab6
SH
7162 sp->s2io_entries[i].in_use =
7163 MSIX_REGISTERED_SUCCESS;
c92ca04b 7164 }
e6a8fee2 7165 }
18b2b7bd 7166 if (!err) {
6cef2b8e 7167 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
9e39f7c5
JP
7168 DBG_PRINT(INFO_DBG,
7169 "MSI-X-TX entries enabled through alarm vector\n");
18b2b7bd 7170 }
e6a8fee2 7171 }
eaae7f72 7172 if (sp->config.intr_type == INTA) {
d44570e4
JP
7173 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7174 sp->name, dev);
e6a8fee2
AR
7175 if (err) {
7176 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7177 dev->name);
7178 return -1;
7179 }
7180 }
7181 return 0;
7182}
d44570e4
JP
7183
7184static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7185{
18b2b7bd
SH
7186 if (sp->config.intr_type == MSI_X)
7187 remove_msix_isr(sp);
7188 else
7189 remove_inta_isr(sp);
e6a8fee2
AR
7190}
7191
d44570e4 7192static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7193{
7194 int cnt = 0;
1ee6dd77 7195 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7196 register u64 val64 = 0;
5f490c96
SH
7197 struct config_param *config;
7198 config = &sp->config;
e6a8fee2 7199
9f74ffde
SH
7200 if (!is_s2io_card_up(sp))
7201 return;
7202
e6a8fee2
AR
7203 del_timer_sync(&sp->alarm_timer);
7204 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7205 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7206 msleep(50);
92b84437 7207 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7208
5f490c96 7209 /* Disable napi */
f61e0a35
SH
7210 if (sp->config.napi) {
7211 int off = 0;
7212 if (config->intr_type == MSI_X) {
7213 for (; off < sp->config.rx_ring_num; off++)
7214 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7215 }
f61e0a35
SH
7216 else
7217 napi_disable(&sp->napi);
7218 }
5f490c96 7219
e6a8fee2 7220 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7221 if (do_io)
7222 stop_nic(sp);
e6a8fee2
AR
7223
7224 s2io_rem_isr(sp);
1da177e4 7225
01e16faa
SH
7226 /* stop the tx queue, indicate link down */
7227 s2io_link(sp, LINK_DOWN);
7228
1da177e4 7229 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7230 while (do_io) {
5d3213cc
AR
7231 /* As per the HW requirement we need to replenish the
7232 * receive buffer to avoid the ring bump. Since there is
7233 * no intention of processing the Rx frame at this pointwe are
7234 * just settting the ownership bit of rxd in Each Rx
7235 * ring to HW and set the appropriate buffer size
7236 * based on the ring mode
7237 */
7238 rxd_owner_bit_reset(sp);
7239
1da177e4 7240 val64 = readq(&bar0->adapter_status);
19a60522 7241 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7242 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7243 break;
1da177e4
LT
7244 }
7245
7246 msleep(50);
7247 cnt++;
7248 if (cnt == 10) {
9e39f7c5
JP
7249 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7250 "adapter status reads 0x%llx\n",
d44570e4 7251 (unsigned long long)val64);
1da177e4
LT
7252 break;
7253 }
d796fdb7
LV
7254 }
7255 if (do_io)
7256 s2io_reset(sp);
1da177e4 7257
7ba013ac 7258 /* Free all Tx buffers */
1da177e4 7259 free_tx_buffers(sp);
7ba013ac 7260
7261 /* Free all Rx buffers */
1da177e4
LT
7262 free_rx_buffers(sp);
7263
92b84437 7264 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7265}
7266
d44570e4 7267static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7268{
7269 do_s2io_card_down(sp, 1);
7270}
7271
d44570e4 7272static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7273{
cc6e7c44 7274 int i, ret = 0;
1da177e4 7275 struct config_param *config;
ffb5df6c 7276 struct mac_info *mac_control;
d44570e4 7277 struct net_device *dev = (struct net_device *)sp->dev;
e6a8fee2 7278 u16 interruptible;
1da177e4
LT
7279
7280 /* Initialize the H/W I/O registers */
9f74ffde
SH
7281 ret = init_nic(sp);
7282 if (ret != 0) {
1da177e4
LT
7283 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7284 dev->name);
9f74ffde
SH
7285 if (ret != -EIO)
7286 s2io_reset(sp);
7287 return ret;
1da177e4
LT
7288 }
7289
20346722 7290 /*
7291 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7292 * Rx ring and initializing buffers into 30 Rx blocks
7293 */
1da177e4 7294 config = &sp->config;
ffb5df6c 7295 mac_control = &sp->mac_control;
1da177e4
LT
7296
7297 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7298 struct ring_info *ring = &mac_control->rings[i];
7299
7300 ring->mtu = dev->mtu;
f0c54ace 7301 ring->lro = !!(dev->features & NETIF_F_LRO);
13d866a9 7302 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7303 if (ret) {
1da177e4
LT
7304 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7305 dev->name);
7306 s2io_reset(sp);
7307 free_rx_buffers(sp);
7308 return -ENOMEM;
7309 }
7310 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7311 ring->rx_bufs_left);
1da177e4 7312 }
5f490c96
SH
7313
7314 /* Initialise napi */
f61e0a35 7315 if (config->napi) {
f61e0a35
SH
7316 if (config->intr_type == MSI_X) {
7317 for (i = 0; i < sp->config.rx_ring_num; i++)
7318 napi_enable(&sp->mac_control.rings[i].napi);
7319 } else {
7320 napi_enable(&sp->napi);
7321 }
7322 }
5f490c96 7323
19a60522
SS
7324 /* Maintain the state prior to the open */
7325 if (sp->promisc_flg)
7326 sp->promisc_flg = 0;
7327 if (sp->m_cast_flg) {
7328 sp->m_cast_flg = 0;
d44570e4 7329 sp->all_multi_pos = 0;
19a60522 7330 }
1da177e4
LT
7331
7332 /* Setting its receive mode */
7333 s2io_set_multicast(dev);
7334
f0c54ace 7335 if (dev->features & NETIF_F_LRO) {
b41477f3 7336 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7337 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7338 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7339 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7340 sp->lro_max_aggr_per_sess = lro_max_pkts;
7341 }
7342
1da177e4
LT
7343 /* Enable Rx Traffic and interrupts on the NIC */
7344 if (start_nic(sp)) {
7345 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7346 s2io_reset(sp);
e6a8fee2
AR
7347 free_rx_buffers(sp);
7348 return -ENODEV;
7349 }
7350
7351 /* Add interrupt service routine */
7352 if (s2io_add_isr(sp) != 0) {
eaae7f72 7353 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7354 s2io_rem_isr(sp);
7355 s2io_reset(sp);
1da177e4
LT
7356 free_rx_buffers(sp);
7357 return -ENODEV;
7358 }
7359
25fff88e 7360 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7361
01e16faa
SH
7362 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7363
e6a8fee2 7364 /* Enable select interrupts */
9caab458 7365 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7366 if (sp->config.intr_type != INTA) {
7367 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7368 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7369 } else {
e6a8fee2 7370 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7371 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7372 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7373 }
7374
1da177e4
LT
7375 return 0;
7376}
7377
20346722 7378/**
1da177e4
LT
7379 * s2io_restart_nic - Resets the NIC.
7380 * @data : long pointer to the device private structure
7381 * Description:
7382 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7383 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7384 * the run time of the watch dog routine which is run holding a
7385 * spin lock.
7386 */
7387
c4028958 7388static void s2io_restart_nic(struct work_struct *work)
1da177e4 7389{
1ee6dd77 7390 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7391 struct net_device *dev = sp->dev;
1da177e4 7392
22747d6b
FR
7393 rtnl_lock();
7394
7395 if (!netif_running(dev))
7396 goto out_unlock;
7397
e6a8fee2 7398 s2io_card_down(sp);
1da177e4 7399 if (s2io_card_up(sp)) {
d44570e4 7400 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7401 }
3a3d5756 7402 s2io_wake_all_tx_queue(sp);
d44570e4 7403 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7404out_unlock:
7405 rtnl_unlock();
1da177e4
LT
7406}
7407
20346722 7408/**
7409 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7410 * @dev : Pointer to net device structure
7411 * Description:
7412 * This function is triggered if the Tx Queue is stopped
7413 * for a pre-defined amount of time when the Interface is still up.
7414 * If the Interface is jammed in such a situation, the hardware is
7415 * reset (by s2io_close) and restarted again (by s2io_open) to
7416 * overcome any problem that might have been caused in the hardware.
7417 * Return value:
7418 * void
7419 */
7420
7421static void s2io_tx_watchdog(struct net_device *dev)
7422{
4cf1653a 7423 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 7424 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7425
7426 if (netif_carrier_ok(dev)) {
ffb5df6c 7427 swstats->watchdog_timer_cnt++;
1da177e4 7428 schedule_work(&sp->rst_timer_task);
ffb5df6c 7429 swstats->soft_reset_cnt++;
1da177e4
LT
7430 }
7431}
7432
7433/**
7434 * rx_osm_handler - To perform some OS related operations on SKB.
7435 * @sp: private member of the device structure,pointer to s2io_nic structure.
7436 * @skb : the socket buffer pointer.
7437 * @len : length of the packet
7438 * @cksum : FCS checksum of the frame.
7439 * @ring_no : the ring from which this RxD was extracted.
20346722 7440 * Description:
b41477f3 7441 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7442 * some OS related operations on the SKB before passing it to the upper
7443 * layers. It mainly checks if the checksum is OK, if so adds it to the
7444 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7445 * to the upper layer. If the checksum is wrong, it increments the Rx
7446 * packet error count, frees the SKB and returns error.
7447 * Return value:
7448 * SUCCESS on success and -1 on failure.
7449 */
1ee6dd77 7450static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7451{
1ee6dd77 7452 struct s2io_nic *sp = ring_data->nic;
d44570e4 7453 struct net_device *dev = (struct net_device *)ring_data->dev;
20346722 7454 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7455 ((unsigned long)rxdp->Host_Control);
20346722 7456 int ring_no = ring_data->ring_no;
1da177e4 7457 u16 l3_csum, l4_csum;
863c11a9 7458 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7459 struct lro *uninitialized_var(lro);
f9046eb3 7460 u8 err_mask;
ffb5df6c 7461 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
da6971d8 7462
20346722 7463 skb->dev = dev;
c92ca04b 7464
863c11a9 7465 if (err) {
bd1034f0 7466 /* Check for parity error */
d44570e4 7467 if (err & 0x1)
ffb5df6c 7468 swstats->parity_err_cnt++;
d44570e4 7469
f9046eb3 7470 err_mask = err >> 48;
d44570e4
JP
7471 switch (err_mask) {
7472 case 1:
ffb5df6c 7473 swstats->rx_parity_err_cnt++;
491976b2
SH
7474 break;
7475
d44570e4 7476 case 2:
ffb5df6c 7477 swstats->rx_abort_cnt++;
491976b2
SH
7478 break;
7479
d44570e4 7480 case 3:
ffb5df6c 7481 swstats->rx_parity_abort_cnt++;
491976b2
SH
7482 break;
7483
d44570e4 7484 case 4:
ffb5df6c 7485 swstats->rx_rda_fail_cnt++;
491976b2
SH
7486 break;
7487
d44570e4 7488 case 5:
ffb5df6c 7489 swstats->rx_unkn_prot_cnt++;
491976b2
SH
7490 break;
7491
d44570e4 7492 case 6:
ffb5df6c 7493 swstats->rx_fcs_err_cnt++;
491976b2 7494 break;
bd1034f0 7495
d44570e4 7496 case 7:
ffb5df6c 7497 swstats->rx_buf_size_err_cnt++;
491976b2
SH
7498 break;
7499
d44570e4 7500 case 8:
ffb5df6c 7501 swstats->rx_rxd_corrupt_cnt++;
491976b2
SH
7502 break;
7503
d44570e4 7504 case 15:
ffb5df6c 7505 swstats->rx_unkn_err_cnt++;
491976b2
SH
7506 break;
7507 }
863c11a9 7508 /*
d44570e4
JP
7509 * Drop the packet if bad transfer code. Exception being
7510 * 0x5, which could be due to unsupported IPv6 extension header.
7511 * In this case, we let stack handle the packet.
7512 * Note that in this case, since checksum will be incorrect,
7513 * stack will validate the same.
7514 */
f9046eb3
OH
7515 if (err_mask != 0x5) {
7516 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7517 dev->name, err_mask);
dc56e634 7518 dev->stats.rx_crc_errors++;
ffb5df6c 7519 swstats->mem_freed
491976b2 7520 += skb->truesize;
863c11a9 7521 dev_kfree_skb(skb);
0425b46a 7522 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7523 rxdp->Host_Control = 0;
7524 return 0;
7525 }
20346722 7526 }
1da177e4 7527
20346722 7528 rxdp->Host_Control = 0;
da6971d8
AR
7529 if (sp->rxd_mode == RXD_MODE_1) {
7530 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7531
da6971d8 7532 skb_put(skb, len);
6d517a27 7533 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7534 int get_block = ring_data->rx_curr_get_info.block_index;
7535 int get_off = ring_data->rx_curr_get_info.offset;
7536 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7537 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7538 unsigned char *buff = skb_push(skb, buf0_len);
7539
1ee6dd77 7540 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8 7541 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7542 skb_put(skb, buf2_len);
da6971d8 7543 }
20346722 7544
d44570e4
JP
7545 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7546 ((!ring_data->lro) ||
7547 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722 7548 (sp->rx_csum)) {
7549 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7550 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7551 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7552 /*
1da177e4
LT
7553 * NIC verifies if the Checksum of the received
7554 * frame is Ok or not and accordingly returns
7555 * a flag in the RxD.
7556 */
7557 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7558 if (ring_data->lro) {
06f0c139 7559 u32 tcp_len = 0;
7d3d0439
RA
7560 u8 *tcp;
7561 int ret = 0;
7562
0425b46a 7563 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7564 skb->data, &tcp,
7565 &tcp_len, &lro,
7566 rxdp, sp);
7d3d0439 7567 switch (ret) {
d44570e4
JP
7568 case 3: /* Begin anew */
7569 lro->parent = skb;
7570 goto aggregate;
7571 case 1: /* Aggregate */
7572 lro_append_pkt(sp, lro, skb, tcp_len);
7573 goto aggregate;
7574 case 4: /* Flush session */
7575 lro_append_pkt(sp, lro, skb, tcp_len);
7576 queue_rx_frame(lro->parent,
7577 lro->vlan_tag);
7578 clear_lro_session(lro);
ffb5df6c 7579 swstats->flush_max_pkts++;
d44570e4
JP
7580 goto aggregate;
7581 case 2: /* Flush both */
7582 lro->parent->data_len = lro->frags_len;
ffb5df6c 7583 swstats->sending_both++;
d44570e4
JP
7584 queue_rx_frame(lro->parent,
7585 lro->vlan_tag);
7586 clear_lro_session(lro);
7587 goto send_up;
7588 case 0: /* sessions exceeded */
7589 case -1: /* non-TCP or not L2 aggregatable */
7590 case 5: /*
7591 * First pkt in session not
7592 * L3/L4 aggregatable
7593 */
7594 break;
7595 default:
7596 DBG_PRINT(ERR_DBG,
7597 "%s: Samadhana!!\n",
7598 __func__);
7599 BUG();
7d3d0439
RA
7600 }
7601 }
1da177e4 7602 } else {
20346722 7603 /*
7604 * Packet with erroneous checksum, let the
1da177e4
LT
7605 * upper layers deal with it.
7606 */
bc8acf2c 7607 skb_checksum_none_assert(skb);
1da177e4 7608 }
cdb5bf02 7609 } else
bc8acf2c 7610 skb_checksum_none_assert(skb);
cdb5bf02 7611
ffb5df6c 7612 swstats->mem_freed += skb->truesize;
7d3d0439 7613send_up:
0c8dfc83 7614 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7615 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7616aggregate:
0425b46a 7617 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7618 return SUCCESS;
7619}
7620
7621/**
7622 * s2io_link - stops/starts the Tx queue.
7623 * @sp : private member of the device structure, which is a pointer to the
7624 * s2io_nic structure.
7625 * @link : inidicates whether link is UP/DOWN.
7626 * Description:
7627 * This function stops/starts the Tx queue depending on whether the link
20346722 7628 * status of the NIC is is down or up. This is called by the Alarm
7629 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7630 * Return value:
7631 * void.
7632 */
7633
d44570e4 7634static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7635{
d44570e4 7636 struct net_device *dev = (struct net_device *)sp->dev;
ffb5df6c 7637 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7638
7639 if (link != sp->last_link_state) {
b7c5678f 7640 init_tti(sp, link);
1da177e4
LT
7641 if (link == LINK_DOWN) {
7642 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7643 s2io_stop_all_tx_queue(sp);
1da177e4 7644 netif_carrier_off(dev);
ffb5df6c
JP
7645 if (swstats->link_up_cnt)
7646 swstats->link_up_time =
7647 jiffies - sp->start_time;
7648 swstats->link_down_cnt++;
1da177e4
LT
7649 } else {
7650 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
ffb5df6c
JP
7651 if (swstats->link_down_cnt)
7652 swstats->link_down_time =
d44570e4 7653 jiffies - sp->start_time;
ffb5df6c 7654 swstats->link_up_cnt++;
1da177e4 7655 netif_carrier_on(dev);
3a3d5756 7656 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7657 }
7658 }
7659 sp->last_link_state = link;
491976b2 7660 sp->start_time = jiffies;
1da177e4
LT
7661}
7662
20346722 7663/**
7664 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7665 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7666 * s2io_nic structure.
7667 * Description:
7668 * This function initializes a few of the PCI and PCI-X configuration registers
7669 * with recommended values.
7670 * Return value:
7671 * void
7672 */
7673
d44570e4 7674static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7675{
20346722 7676 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7677
7678 /* Enable Data Parity Error Recovery in PCI-X command register. */
7679 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7680 &(pcix_cmd));
1da177e4 7681 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7682 (pcix_cmd | 1));
1da177e4 7683 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7684 &(pcix_cmd));
1da177e4
LT
7685
7686 /* Set the PErr Response bit in PCI command register. */
7687 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7688 pci_write_config_word(sp->pdev, PCI_COMMAND,
7689 (pci_cmd | PCI_COMMAND_PARITY));
7690 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7691}
7692
3a3d5756 7693static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7694 u8 *dev_multiq)
9dc737a7 7695{
1853e2e1
JM
7696 int i;
7697
d44570e4 7698 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
9e39f7c5 7699 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
d44570e4 7700 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7701
7702 if (tx_fifo_num < 1)
7703 tx_fifo_num = 1;
7704 else
7705 tx_fifo_num = MAX_TX_FIFOS;
7706
9e39f7c5 7707 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
9dc737a7 7708 }
2fda096d 7709
6cfc482b 7710 if (multiq)
3a3d5756 7711 *dev_multiq = multiq;
6cfc482b
SH
7712
7713 if (tx_steering_type && (1 == tx_fifo_num)) {
7714 if (tx_steering_type != TX_DEFAULT_STEERING)
7715 DBG_PRINT(ERR_DBG,
9e39f7c5 7716 "Tx steering is not supported with "
d44570e4 7717 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7718 tx_steering_type = NO_STEERING;
7719 }
7720
7721 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7722 (tx_steering_type > TX_DEFAULT_STEERING)) {
7723 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7724 "Requested transmit steering not supported\n");
7725 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
6cfc482b 7726 tx_steering_type = NO_STEERING;
3a3d5756
SH
7727 }
7728
0425b46a 7729 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4 7730 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7731 "Requested number of rx rings not supported\n");
7732 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
d44570e4 7733 MAX_RX_RINGS);
0425b46a 7734 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7735 }
0425b46a 7736
eccb8628 7737 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9e39f7c5 7738 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
9dc737a7
AR
7739 "Defaulting to INTA\n");
7740 *dev_intr_type = INTA;
7741 }
596c5c97 7742
9dc737a7 7743 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7744 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7745 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
9e39f7c5 7746 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
d44570e4 7747 "Defaulting to INTA\n");
9dc737a7
AR
7748 *dev_intr_type = INTA;
7749 }
fb6a825b 7750
6d517a27 7751 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9e39f7c5
JP
7752 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7753 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
6d517a27 7754 rx_ring_mode = 1;
9dc737a7 7755 }
1853e2e1
JM
7756
7757 for (i = 0; i < MAX_RX_RINGS; i++)
7758 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7759 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7760 "supported\nDefaulting to %d\n",
7761 MAX_RX_BLOCKS_PER_RING);
7762 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7763 }
7764
9dc737a7
AR
7765 return SUCCESS;
7766}
7767
9fc93a41
SS
7768/**
7769 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7770 * or Traffic class respectively.
b7c5678f 7771 * @nic: device private variable
9fc93a41
SS
7772 * Description: The function configures the receive steering to
7773 * desired receive ring.
7774 * Return Value: SUCCESS on success and
7775 * '-1' on failure (endian settings incorrect).
7776 */
7777static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7778{
7779 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7780 register u64 val64 = 0;
7781
7782 if (ds_codepoint > 63)
7783 return FAILURE;
7784
7785 val64 = RTS_DS_MEM_DATA(ring);
7786 writeq(val64, &bar0->rts_ds_mem_data);
7787
7788 val64 = RTS_DS_MEM_CTRL_WE |
7789 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7790 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7791
7792 writeq(val64, &bar0->rts_ds_mem_ctrl);
7793
7794 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7795 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7796 S2IO_BIT_RESET);
9fc93a41
SS
7797}
7798
04025095
SH
7799static const struct net_device_ops s2io_netdev_ops = {
7800 .ndo_open = s2io_open,
7801 .ndo_stop = s2io_close,
7802 .ndo_get_stats = s2io_get_stats,
7803 .ndo_start_xmit = s2io_xmit,
7804 .ndo_validate_addr = eth_validate_addr,
7805 .ndo_set_multicast_list = s2io_set_multicast,
7806 .ndo_do_ioctl = s2io_ioctl,
7807 .ndo_set_mac_address = s2io_set_mac_addr,
7808 .ndo_change_mtu = s2io_change_mtu,
7809 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7810 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7811 .ndo_tx_timeout = s2io_tx_watchdog,
7812#ifdef CONFIG_NET_POLL_CONTROLLER
7813 .ndo_poll_controller = s2io_netpoll,
7814#endif
7815};
7816
1da177e4 7817/**
20346722 7818 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7819 * @pdev : structure containing the PCI related information of the device.
7820 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7821 * Description:
7822 * The function initializes an adapter identified by the pci_dec structure.
20346722 7823 * All OS related initialization including memory and device structure and
7824 * initlaization of the device private variable is done. Also the swapper
7825 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7826 * registers of the device.
7827 * Return value:
7828 * returns 0 on success and negative on failure.
7829 */
7830
7831static int __devinit
7832s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7833{
1ee6dd77 7834 struct s2io_nic *sp;
1da177e4 7835 struct net_device *dev;
1da177e4 7836 int i, j, ret;
f957bcf0 7837 int dma_flag = false;
1da177e4
LT
7838 u32 mac_up, mac_down;
7839 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7840 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7841 u16 subid;
1da177e4 7842 struct config_param *config;
ffb5df6c 7843 struct mac_info *mac_control;
541ae68f 7844 int mode;
cc6e7c44 7845 u8 dev_intr_type = intr_type;
3a3d5756 7846 u8 dev_multiq = 0;
1da177e4 7847
3a3d5756
SH
7848 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7849 if (ret)
9dc737a7 7850 return ret;
1da177e4 7851
d44570e4
JP
7852 ret = pci_enable_device(pdev);
7853 if (ret) {
1da177e4 7854 DBG_PRINT(ERR_DBG,
9e39f7c5 7855 "%s: pci_enable_device failed\n", __func__);
1da177e4
LT
7856 return ret;
7857 }
7858
6a35528a 7859 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
9e39f7c5 7860 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
f957bcf0 7861 dma_flag = true;
d44570e4 7862 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7863 DBG_PRINT(ERR_DBG,
d44570e4
JP
7864 "Unable to obtain 64bit DMA "
7865 "for consistent allocations\n");
1da177e4
LT
7866 pci_disable_device(pdev);
7867 return -ENOMEM;
7868 }
284901a9 7869 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
9e39f7c5 7870 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
1da177e4
LT
7871 } else {
7872 pci_disable_device(pdev);
7873 return -ENOMEM;
7874 }
d44570e4
JP
7875 ret = pci_request_regions(pdev, s2io_driver_name);
7876 if (ret) {
9e39f7c5 7877 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
d44570e4 7878 __func__, ret);
eccb8628
VP
7879 pci_disable_device(pdev);
7880 return -ENODEV;
1da177e4 7881 }
3a3d5756 7882 if (dev_multiq)
6cfc482b 7883 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7884 else
b19fa1fa 7885 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7886 if (dev == NULL) {
7887 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7888 pci_disable_device(pdev);
7889 pci_release_regions(pdev);
7890 return -ENODEV;
7891 }
7892
7893 pci_set_master(pdev);
7894 pci_set_drvdata(pdev, dev);
1da177e4
LT
7895 SET_NETDEV_DEV(dev, &pdev->dev);
7896
7897 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7898 sp = netdev_priv(dev);
1da177e4
LT
7899 sp->dev = dev;
7900 sp->pdev = pdev;
1da177e4 7901 sp->high_dma_flag = dma_flag;
f957bcf0 7902 sp->device_enabled_once = false;
da6971d8
AR
7903 if (rx_ring_mode == 1)
7904 sp->rxd_mode = RXD_MODE_1;
7905 if (rx_ring_mode == 2)
7906 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7907
eaae7f72 7908 sp->config.intr_type = dev_intr_type;
1da177e4 7909
541ae68f 7910 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7911 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f 7912 sp->device_type = XFRAME_II_DEVICE;
7913 else
7914 sp->device_type = XFRAME_I_DEVICE;
7915
6aa20a22 7916
1da177e4
LT
7917 /* Initialize some PCI/PCI-X fields of the NIC. */
7918 s2io_init_pci(sp);
7919
20346722 7920 /*
1da177e4 7921 * Setting the device configuration parameters.
20346722 7922 * Most of these parameters can be specified by the user during
7923 * module insertion as they are module loadable parameters. If
7924 * these parameters are not not specified during load time, they
1da177e4
LT
7925 * are initialized with default values.
7926 */
1da177e4 7927 config = &sp->config;
ffb5df6c 7928 mac_control = &sp->mac_control;
1da177e4 7929
596c5c97 7930 config->napi = napi;
6cfc482b 7931 config->tx_steering_type = tx_steering_type;
596c5c97 7932
1da177e4 7933 /* Tx side parameters. */
6cfc482b
SH
7934 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7935 config->tx_fifo_num = MAX_TX_FIFOS;
7936 else
7937 config->tx_fifo_num = tx_fifo_num;
7938
7939 /* Initialize the fifos used for tx steering */
7940 if (config->tx_fifo_num < 5) {
d44570e4
JP
7941 if (config->tx_fifo_num == 1)
7942 sp->total_tcp_fifos = 1;
7943 else
7944 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7945 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7946 sp->total_udp_fifos = 1;
7947 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7948 } else {
7949 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7950 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7951 sp->udp_fifo_idx = sp->total_tcp_fifos;
7952 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7953 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7954 }
7955
3a3d5756 7956 config->multiq = dev_multiq;
6cfc482b 7957 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7958 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7959
7960 tx_cfg->fifo_len = tx_fifo_len[i];
7961 tx_cfg->fifo_priority = i;
1da177e4
LT
7962 }
7963
20346722 7964 /* mapping the QoS priority to the configured fifos */
7965 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7966 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7967
6cfc482b
SH
7968 /* map the hashing selector table to the configured fifos */
7969 for (i = 0; i < config->tx_fifo_num; i++)
7970 sp->fifo_selector[i] = fifo_selector[i];
7971
7972
1da177e4
LT
7973 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7974 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7975 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7976
7977 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7978 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7979 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7980 break;
7981 }
7982 }
fed5eccd
AR
7983 /* + 2 because one Txd for skb->data and one Txd for UFO */
7984 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7985
7986 /* Rx side parameters. */
1da177e4 7987 config->rx_ring_num = rx_ring_num;
0425b46a 7988 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7989 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7990 struct ring_info *ring = &mac_control->rings[i];
7991
7992 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7993 rx_cfg->ring_priority = i;
7994 ring->rx_bufs_left = 0;
7995 ring->rxd_mode = sp->rxd_mode;
7996 ring->rxd_count = rxd_count[sp->rxd_mode];
7997 ring->pdev = sp->pdev;
7998 ring->dev = sp->dev;
1da177e4
LT
7999 }
8000
8001 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
8002 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
8003
8004 rx_cfg->ring_org = RING_ORG_BUFF1;
8005 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
8006 }
8007
8008 /* Setting Mac Control parameters */
8009 mac_control->rmac_pause_time = rmac_pause_time;
8010 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
8011 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
8012
8013
1da177e4
LT
8014 /* initialize the shared memory used by the NIC and the host */
8015 if (init_shared_mem(sp)) {
d44570e4 8016 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
8017 ret = -ENOMEM;
8018 goto mem_alloc_failed;
8019 }
8020
275f165f 8021 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 8022 if (!sp->bar0) {
19a60522 8023 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
8024 dev->name);
8025 ret = -ENOMEM;
8026 goto bar0_remap_failed;
8027 }
8028
275f165f 8029 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 8030 if (!sp->bar1) {
19a60522 8031 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
8032 dev->name);
8033 ret = -ENOMEM;
8034 goto bar1_remap_failed;
8035 }
8036
8037 dev->irq = pdev->irq;
d44570e4 8038 dev->base_addr = (unsigned long)sp->bar0;
1da177e4
LT
8039
8040 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8041 for (j = 0; j < MAX_TX_FIFOS; j++) {
d44570e4
JP
8042 mac_control->tx_FIFO_start[j] =
8043 (struct TxFIFO_element __iomem *)
8044 (sp->bar1 + (j * 0x00020000));
1da177e4
LT
8045 }
8046
8047 /* Driver entry points */
04025095 8048 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 8049 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 8050 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
f0c54ace 8051 dev->features |= NETIF_F_LRO;
1da177e4 8052 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
f957bcf0 8053 if (sp->high_dma_flag == true)
1da177e4 8054 dev->features |= NETIF_F_HIGHDMA;
1da177e4 8055 dev->features |= NETIF_F_TSO;
f83ef8c0 8056 dev->features |= NETIF_F_TSO6;
db874e65 8057 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
8058 dev->features |= NETIF_F_UFO;
8059 dev->features |= NETIF_F_HW_CSUM;
8060 }
1da177e4 8061 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
8062 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8063 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 8064
e960fc5c 8065 pci_save_state(sp->pdev);
1da177e4
LT
8066
8067 /* Setting swapper control on the NIC, for proper reset operation */
8068 if (s2io_set_swapper(sp)) {
9e39f7c5 8069 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
1da177e4
LT
8070 dev->name);
8071 ret = -EAGAIN;
8072 goto set_swap_failed;
8073 }
8074
541ae68f 8075 /* Verify if the Herc works on the slot its placed into */
8076 if (sp->device_type & XFRAME_II_DEVICE) {
8077 mode = s2io_verify_pci_mode(sp);
8078 if (mode < 0) {
9e39f7c5
JP
8079 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8080 __func__);
541ae68f 8081 ret = -EBADSLT;
8082 goto set_swap_failed;
8083 }
8084 }
8085
f61e0a35
SH
8086 if (sp->config.intr_type == MSI_X) {
8087 sp->num_entries = config->rx_ring_num + 1;
8088 ret = s2io_enable_msi_x(sp);
8089
8090 if (!ret) {
8091 ret = s2io_test_msi(sp);
8092 /* rollback MSI-X, will re-enable during add_isr() */
8093 remove_msix_isr(sp);
8094 }
8095 if (ret) {
8096
8097 DBG_PRINT(ERR_DBG,
9e39f7c5 8098 "MSI-X requested but failed to enable\n");
f61e0a35
SH
8099 sp->config.intr_type = INTA;
8100 }
8101 }
8102
8103 if (config->intr_type == MSI_X) {
13d866a9
JP
8104 for (i = 0; i < config->rx_ring_num ; i++) {
8105 struct ring_info *ring = &mac_control->rings[i];
8106
8107 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8108 }
f61e0a35
SH
8109 } else {
8110 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8111 }
8112
541ae68f 8113 /* Not needed for Herc */
8114 if (sp->device_type & XFRAME_I_DEVICE) {
8115 /*
8116 * Fix for all "FFs" MAC address problems observed on
8117 * Alpha platforms
8118 */
8119 fix_mac_address(sp);
8120 s2io_reset(sp);
8121 }
1da177e4
LT
8122
8123 /*
1da177e4
LT
8124 * MAC address initialization.
8125 * For now only one mac address will be read and used.
8126 */
8127 bar0 = sp->bar0;
8128 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 8129 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8130 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8131 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8132 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8133 S2IO_BIT_RESET);
1da177e4 8134 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8135 mac_down = (u32)tmp64;
1da177e4
LT
8136 mac_up = (u32) (tmp64 >> 32);
8137
1da177e4
LT
8138 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8139 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8140 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8141 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8142 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8143 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8144
1da177e4
LT
8145 /* Set the factory defined MAC address initially */
8146 dev->addr_len = ETH_ALEN;
8147 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8148 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8149
faa4f796
SH
8150 /* initialize number of multicast & unicast MAC entries variables */
8151 if (sp->device_type == XFRAME_I_DEVICE) {
8152 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8153 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8154 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8155 } else if (sp->device_type == XFRAME_II_DEVICE) {
8156 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8157 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8158 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8159 }
8160
8161 /* store mac addresses from CAM to s2io_nic structure */
8162 do_s2io_store_unicast_mc(sp);
8163
f61e0a35
SH
8164 /* Configure MSIX vector for number of rings configured plus one */
8165 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8166 (config->intr_type == MSI_X))
f61e0a35
SH
8167 sp->num_entries = config->rx_ring_num + 1;
8168
d44570e4 8169 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8170 store_xmsi_data(sp);
b41477f3
AR
8171 /* reset Nic and bring it to known state */
8172 s2io_reset(sp);
8173
1da177e4 8174 /*
99993af6 8175 * Initialize link state flags
541ae68f 8176 * and the card state parameter
1da177e4 8177 */
92b84437 8178 sp->state = 0;
1da177e4 8179
1da177e4 8180 /* Initialize spinlocks */
13d866a9
JP
8181 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8182 struct fifo_info *fifo = &mac_control->fifos[i];
8183
8184 spin_lock_init(&fifo->tx_lock);
8185 }
db874e65 8186
20346722 8187 /*
8188 * SXE-002: Configure link and activity LED to init state
8189 * on driver load.
1da177e4
LT
8190 */
8191 subid = sp->pdev->subsystem_device;
8192 if ((subid & 0xFF) >= 0x07) {
8193 val64 = readq(&bar0->gpio_control);
8194 val64 |= 0x0000800000000000ULL;
8195 writeq(val64, &bar0->gpio_control);
8196 val64 = 0x0411040400000000ULL;
d44570e4 8197 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8198 val64 = readq(&bar0->gpio_control);
8199 }
8200
8201 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8202
8203 if (register_netdev(dev)) {
8204 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8205 ret = -ENODEV;
8206 goto register_failed;
8207 }
9dc737a7 8208 s2io_vpd_read(sp);
926bd900 8209 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
d44570e4 8210 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8211 sp->product_name, pdev->revision);
b41477f3
AR
8212 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8213 s2io_driver_version);
9e39f7c5
JP
8214 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8215 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
9dc737a7 8216 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8217 mode = s2io_print_pci_mode(sp);
541ae68f 8218 if (mode < 0) {
541ae68f 8219 ret = -EBADSLT;
9dc737a7 8220 unregister_netdev(dev);
541ae68f 8221 goto set_swap_failed;
8222 }
541ae68f 8223 }
d44570e4
JP
8224 switch (sp->rxd_mode) {
8225 case RXD_MODE_1:
8226 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8227 dev->name);
8228 break;
8229 case RXD_MODE_3B:
8230 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8231 dev->name);
8232 break;
9dc737a7 8233 }
db874e65 8234
f61e0a35
SH
8235 switch (sp->config.napi) {
8236 case 0:
8237 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8238 break;
8239 case 1:
db874e65 8240 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8241 break;
8242 }
3a3d5756
SH
8243
8244 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8245 sp->config.tx_fifo_num);
3a3d5756 8246
0425b46a
SH
8247 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8248 sp->config.rx_ring_num);
8249
d44570e4
JP
8250 switch (sp->config.intr_type) {
8251 case INTA:
8252 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8253 break;
8254 case MSI_X:
8255 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8256 break;
9dc737a7 8257 }
3a3d5756 8258 if (sp->config.multiq) {
13d866a9
JP
8259 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8260 struct fifo_info *fifo = &mac_control->fifos[i];
8261
8262 fifo->multiq = config->multiq;
8263 }
3a3d5756 8264 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8265 dev->name);
3a3d5756
SH
8266 } else
8267 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8268 dev->name);
3a3d5756 8269
6cfc482b
SH
8270 switch (sp->config.tx_steering_type) {
8271 case NO_STEERING:
d44570e4
JP
8272 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8273 dev->name);
8274 break;
6cfc482b 8275 case TX_PRIORITY_STEERING:
d44570e4
JP
8276 DBG_PRINT(ERR_DBG,
8277 "%s: Priority steering enabled for transmit\n",
8278 dev->name);
6cfc482b
SH
8279 break;
8280 case TX_DEFAULT_STEERING:
d44570e4
JP
8281 DBG_PRINT(ERR_DBG,
8282 "%s: Default steering enabled for transmit\n",
8283 dev->name);
6cfc482b
SH
8284 }
8285
f0c54ace
AW
8286 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8287 dev->name);
db874e65 8288 if (ufo)
d44570e4
JP
8289 DBG_PRINT(ERR_DBG,
8290 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8291 dev->name);
7ba013ac 8292 /* Initialize device name */
9dc737a7 8293 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8294
cd0fce03
BL
8295 if (vlan_tag_strip)
8296 sp->vlan_strip_flag = 1;
8297 else
8298 sp->vlan_strip_flag = 0;
8299
20346722 8300 /*
8301 * Make Link state as off at this point, when the Link change
8302 * interrupt comes the state will be automatically changed to
1da177e4
LT
8303 * the right state.
8304 */
8305 netif_carrier_off(dev);
1da177e4
LT
8306
8307 return 0;
8308
d44570e4
JP
8309register_failed:
8310set_swap_failed:
1da177e4 8311 iounmap(sp->bar1);
d44570e4 8312bar1_remap_failed:
1da177e4 8313 iounmap(sp->bar0);
d44570e4
JP
8314bar0_remap_failed:
8315mem_alloc_failed:
1da177e4
LT
8316 free_shared_mem(sp);
8317 pci_disable_device(pdev);
eccb8628 8318 pci_release_regions(pdev);
1da177e4
LT
8319 pci_set_drvdata(pdev, NULL);
8320 free_netdev(dev);
8321
8322 return ret;
8323}
8324
8325/**
20346722 8326 * s2io_rem_nic - Free the PCI device
1da177e4 8327 * @pdev: structure containing the PCI related information of the device.
20346722 8328 * Description: This function is called by the Pci subsystem to release a
1da177e4 8329 * PCI device and free up all resource held up by the device. This could
20346722 8330 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8331 * from memory.
8332 */
8333
8334static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8335{
a31ff388 8336 struct net_device *dev = pci_get_drvdata(pdev);
1ee6dd77 8337 struct s2io_nic *sp;
1da177e4
LT
8338
8339 if (dev == NULL) {
8340 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8341 return;
8342 }
8343
4cf1653a 8344 sp = netdev_priv(dev);
23f333a2
TH
8345
8346 cancel_work_sync(&sp->rst_timer_task);
8347 cancel_work_sync(&sp->set_link_task);
8348
1da177e4
LT
8349 unregister_netdev(dev);
8350
8351 free_shared_mem(sp);
8352 iounmap(sp->bar0);
8353 iounmap(sp->bar1);
eccb8628 8354 pci_release_regions(pdev);
1da177e4 8355 pci_set_drvdata(pdev, NULL);
1da177e4 8356 free_netdev(dev);
19a60522 8357 pci_disable_device(pdev);
1da177e4
LT
8358}
8359
8360/**
8361 * s2io_starter - Entry point for the driver
8362 * Description: This function is the entry point for the driver. It verifies
8363 * the module loadable parameters and initializes PCI configuration space.
8364 */
8365
43b7c451 8366static int __init s2io_starter(void)
1da177e4 8367{
29917620 8368 return pci_register_driver(&s2io_driver);
1da177e4
LT
8369}
8370
8371/**
20346722 8372 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8373 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8374 */
8375
372cc597 8376static __exit void s2io_closer(void)
1da177e4
LT
8377{
8378 pci_unregister_driver(&s2io_driver);
8379 DBG_PRINT(INIT_DBG, "cleanup done\n");
8380}
8381
8382module_init(s2io_starter);
8383module_exit(s2io_closer);
7d3d0439 8384
6aa20a22 8385static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8386 struct tcphdr **tcp, struct RxD_t *rxdp,
8387 struct s2io_nic *sp)
7d3d0439
RA
8388{
8389 int ip_off;
8390 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8391
8392 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8393 DBG_PRINT(INIT_DBG,
8394 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8395 __func__);
7d3d0439
RA
8396 return -1;
8397 }
8398
cdb5bf02 8399 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8400 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8401 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8402 /*
8403 * If vlan stripping is disabled and the frame is VLAN tagged,
8404 * shift the offset by the VLAN header size bytes.
8405 */
cd0fce03 8406 if ((!sp->vlan_strip_flag) &&
d44570e4 8407 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8408 ip_off += HEADER_VLAN_SIZE;
8409 } else {
7d3d0439 8410 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8411 return -1;
7d3d0439
RA
8412 }
8413
8414 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8415 ip_len = (u8)((*ip)->ihl);
8416 ip_len <<= 2;
8417 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8418
8419 return 0;
8420}
8421
1ee6dd77 8422static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8423 struct tcphdr *tcp)
8424{
d44570e4
JP
8425 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8426 if ((lro->iph->saddr != ip->saddr) ||
8427 (lro->iph->daddr != ip->daddr) ||
8428 (lro->tcph->source != tcp->source) ||
8429 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8430 return -1;
8431 return 0;
8432}
8433
8434static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8435{
d44570e4 8436 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8437}
8438
1ee6dd77 8439static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8440 struct iphdr *ip, struct tcphdr *tcp,
8441 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8442{
d44570e4 8443 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8444 lro->l2h = l2h;
8445 lro->iph = ip;
8446 lro->tcph = tcp;
8447 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8448 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8449 lro->sg_num = 1;
8450 lro->total_len = ntohs(ip->tot_len);
8451 lro->frags_len = 0;
cdb5bf02 8452 lro->vlan_tag = vlan_tag;
6aa20a22 8453 /*
d44570e4
JP
8454 * Check if we saw TCP timestamp.
8455 * Other consistency checks have already been done.
8456 */
7d3d0439 8457 if (tcp->doff == 8) {
c8855953
SR
8458 __be32 *ptr;
8459 ptr = (__be32 *)(tcp+1);
7d3d0439 8460 lro->saw_ts = 1;
c8855953 8461 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8462 lro->cur_tsecr = *(ptr+2);
8463 }
8464 lro->in_use = 1;
8465}
8466
1ee6dd77 8467static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8468{
8469 struct iphdr *ip = lro->iph;
8470 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8471 __sum16 nchk;
ffb5df6c
JP
8472 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8473
d44570e4 8474 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8475
8476 /* Update L3 header */
8477 ip->tot_len = htons(lro->total_len);
8478 ip->check = 0;
8479 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8480 ip->check = nchk;
8481
8482 /* Update L4 header */
8483 tcp->ack_seq = lro->tcp_ack;
8484 tcp->window = lro->window;
8485
8486 /* Update tsecr field if this session has timestamps enabled */
8487 if (lro->saw_ts) {
c8855953 8488 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8489 *(ptr+2) = lro->cur_tsecr;
8490 }
8491
8492 /* Update counters required for calculation of
8493 * average no. of packets aggregated.
8494 */
ffb5df6c
JP
8495 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8496 swstats->num_aggregations++;
7d3d0439
RA
8497}
8498
1ee6dd77 8499static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8500 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8501{
d44570e4 8502 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8503 lro->total_len += l4_pyld;
8504 lro->frags_len += l4_pyld;
8505 lro->tcp_next_seq += l4_pyld;
8506 lro->sg_num++;
8507
8508 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8509 lro->tcp_ack = tcp->ack_seq;
8510 lro->window = tcp->window;
6aa20a22 8511
7d3d0439 8512 if (lro->saw_ts) {
c8855953 8513 __be32 *ptr;
7d3d0439 8514 /* Update tsecr and tsval from this packet */
c8855953
SR
8515 ptr = (__be32 *)(tcp+1);
8516 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8517 lro->cur_tsecr = *(ptr + 2);
8518 }
8519}
8520
1ee6dd77 8521static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8522 struct tcphdr *tcp, u32 tcp_pyld_len)
8523{
7d3d0439
RA
8524 u8 *ptr;
8525
d44570e4 8526 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8527
7d3d0439
RA
8528 if (!tcp_pyld_len) {
8529 /* Runt frame or a pure ack */
8530 return -1;
8531 }
8532
8533 if (ip->ihl != 5) /* IP has options */
8534 return -1;
8535
75c30b13
AR
8536 /* If we see CE codepoint in IP header, packet is not mergeable */
8537 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8538 return -1;
8539
8540 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8541 if (tcp->urg || tcp->psh || tcp->rst ||
8542 tcp->syn || tcp->fin ||
8543 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8544 /*
8545 * Currently recognize only the ack control word and
8546 * any other control field being set would result in
8547 * flushing the LRO session
8548 */
8549 return -1;
8550 }
8551
6aa20a22 8552 /*
7d3d0439
RA
8553 * Allow only one TCP timestamp option. Don't aggregate if
8554 * any other options are detected.
8555 */
8556 if (tcp->doff != 5 && tcp->doff != 8)
8557 return -1;
8558
8559 if (tcp->doff == 8) {
6aa20a22 8560 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8561 while (*ptr == TCPOPT_NOP)
8562 ptr++;
8563 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8564 return -1;
8565
8566 /* Ensure timestamp value increases monotonically */
8567 if (l_lro)
c8855953 8568 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8569 return -1;
8570
8571 /* timestamp echo reply should be non-zero */
c8855953 8572 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8573 return -1;
8574 }
8575
8576 return 0;
8577}
8578
d44570e4
JP
8579static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8580 u8 **tcp, u32 *tcp_len, struct lro **lro,
8581 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8582{
8583 struct iphdr *ip;
8584 struct tcphdr *tcph;
8585 int ret = 0, i;
cdb5bf02 8586 u16 vlan_tag = 0;
ffb5df6c 8587 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439 8588
d44570e4
JP
8589 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8590 rxdp, sp);
8591 if (ret)
7d3d0439 8592 return ret;
7d3d0439 8593
d44570e4
JP
8594 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8595
cdb5bf02 8596 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8597 tcph = (struct tcphdr *)*tcp;
8598 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8599 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8600 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8601 if (l_lro->in_use) {
8602 if (check_for_socket_match(l_lro, ip, tcph))
8603 continue;
8604 /* Sock pair matched */
8605 *lro = l_lro;
8606
8607 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
9e39f7c5
JP
8608 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8609 "expected 0x%x, actual 0x%x\n",
8610 __func__,
7d3d0439
RA
8611 (*lro)->tcp_next_seq,
8612 ntohl(tcph->seq));
8613
ffb5df6c 8614 swstats->outof_sequence_pkts++;
7d3d0439
RA
8615 ret = 2;
8616 break;
8617 }
8618
d44570e4
JP
8619 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8620 *tcp_len))
7d3d0439
RA
8621 ret = 1; /* Aggregate */
8622 else
8623 ret = 2; /* Flush both */
8624 break;
8625 }
8626 }
8627
8628 if (ret == 0) {
8629 /* Before searching for available LRO objects,
8630 * check if the pkt is L3/L4 aggregatable. If not
8631 * don't create new LRO session. Just send this
8632 * packet up.
8633 */
d44570e4 8634 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8635 return 5;
7d3d0439 8636
d44570e4 8637 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8638 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8639 if (!(l_lro->in_use)) {
8640 *lro = l_lro;
8641 ret = 3; /* Begin anew */
8642 break;
8643 }
8644 }
8645 }
8646
8647 if (ret == 0) { /* sessions exceeded */
9e39f7c5 8648 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
b39d66a8 8649 __func__);
7d3d0439
RA
8650 *lro = NULL;
8651 return ret;
8652 }
8653
8654 switch (ret) {
d44570e4
JP
8655 case 3:
8656 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8657 vlan_tag);
8658 break;
8659 case 2:
8660 update_L3L4_header(sp, *lro);
8661 break;
8662 case 1:
8663 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8664 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8665 update_L3L4_header(sp, *lro);
d44570e4
JP
8666 ret = 4; /* Flush the LRO */
8667 }
8668 break;
8669 default:
9e39f7c5 8670 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
d44570e4 8671 break;
7d3d0439
RA
8672 }
8673
8674 return ret;
8675}
8676
1ee6dd77 8677static void clear_lro_session(struct lro *lro)
7d3d0439 8678{
1ee6dd77 8679 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8680
8681 memset(lro, 0, lro_struct_size);
8682}
8683
cdb5bf02 8684static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8685{
8686 struct net_device *dev = skb->dev;
4cf1653a 8687 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8688
8689 skb->protocol = eth_type_trans(skb, dev);
d44570e4 8690 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
cdb5bf02
SH
8691 /* Queueing the vlan frame to the upper layer */
8692 if (sp->config.napi)
8693 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8694 else
8695 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8696 } else {
8697 if (sp->config.napi)
8698 netif_receive_skb(skb);
8699 else
8700 netif_rx(skb);
8701 }
7d3d0439
RA
8702}
8703
1ee6dd77 8704static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8705 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8706{
75c30b13 8707 struct sk_buff *first = lro->parent;
ffb5df6c 8708 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439
RA
8709
8710 first->len += tcp_len;
8711 first->data_len = lro->frags_len;
8712 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8713 if (skb_shinfo(first)->frag_list)
8714 lro->last_frag->next = skb;
7d3d0439
RA
8715 else
8716 skb_shinfo(first)->frag_list = skb;
372cc597 8717 first->truesize += skb->truesize;
75c30b13 8718 lro->last_frag = skb;
ffb5df6c 8719 swstats->clubbed_frms_cnt++;
7d3d0439 8720}
d796fdb7
LV
8721
8722/**
8723 * s2io_io_error_detected - called when PCI error is detected
8724 * @pdev: Pointer to PCI device
8453d43f 8725 * @state: The current pci connection state
d796fdb7
LV
8726 *
8727 * This function is called after a PCI bus error affecting
8728 * this device has been detected.
8729 */
8730static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8731 pci_channel_state_t state)
d796fdb7
LV
8732{
8733 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8734 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8735
8736 netif_device_detach(netdev);
8737
1e3c8bd6
DN
8738 if (state == pci_channel_io_perm_failure)
8739 return PCI_ERS_RESULT_DISCONNECT;
8740
d796fdb7
LV
8741 if (netif_running(netdev)) {
8742 /* Bring down the card, while avoiding PCI I/O */
8743 do_s2io_card_down(sp, 0);
d796fdb7
LV
8744 }
8745 pci_disable_device(pdev);
8746
8747 return PCI_ERS_RESULT_NEED_RESET;
8748}
8749
8750/**
8751 * s2io_io_slot_reset - called after the pci bus has been reset.
8752 * @pdev: Pointer to PCI device
8753 *
8754 * Restart the card from scratch, as if from a cold-boot.
8755 * At this point, the card has exprienced a hard reset,
8756 * followed by fixups by BIOS, and has its config space
8757 * set up identically to what it was at cold boot.
8758 */
8759static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8760{
8761 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8762 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8763
8764 if (pci_enable_device(pdev)) {
6cef2b8e 8765 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8766 return PCI_ERS_RESULT_DISCONNECT;
8767 }
8768
8769 pci_set_master(pdev);
8770 s2io_reset(sp);
8771
8772 return PCI_ERS_RESULT_RECOVERED;
8773}
8774
8775/**
8776 * s2io_io_resume - called when traffic can start flowing again.
8777 * @pdev: Pointer to PCI device
8778 *
8779 * This callback is called when the error recovery driver tells
8780 * us that its OK to resume normal operation.
8781 */
8782static void s2io_io_resume(struct pci_dev *pdev)
8783{
8784 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8785 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8786
8787 if (netif_running(netdev)) {
8788 if (s2io_card_up(sp)) {
6cef2b8e 8789 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8790 return;
8791 }
8792
8793 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8794 s2io_card_down(sp);
6cef2b8e 8795 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8796 return;
8797 }
8798 }
8799
8800 netif_device_attach(netdev);
fd2ea0a7 8801 netif_tx_wake_all_queues(netdev);
d796fdb7 8802}
This page took 1.548031 seconds and 5 git commands to generate.