skge/sky2/mv643xx/pxa168: Move the Marvell Ethernet drivers
[deliverable/linux.git] / drivers / net / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
df4511fe
JP
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
1da177e4 34#define DRV_NAME "via-rhine"
38f49e88
RL
35#define DRV_VERSION "1.5.0"
36#define DRV_RELDATE "2010-10-09"
1da177e4
LT
37
38
39/* A few user-configurable values.
40 These may be modified when a driver module is loaded. */
41
df4511fe 42#define DEBUG
1da177e4
LT
43static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
44static int max_interrupt_work = 20;
45
46/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
8e95a202
JP
48#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
b47157f0
DM
51static int rx_copybreak = 1518;
52#else
1da177e4 53static int rx_copybreak;
b47157f0 54#endif
1da177e4 55
b933b4d9
RL
56/* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58static int avoid_D3;
59
1da177e4
LT
60/*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67static const int multicast_filter_limit = 32;
68
69
70/* Operational parameters that are set at compile time. */
71
72/* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77#define TX_RING_SIZE 16
78#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 79#define RX_RING_SIZE 64
1da177e4
LT
80
81/* Operational parameters that usually are not changed. */
82
83/* Time in jiffies before concluding the transmitter is hung. */
84#define TX_TIMEOUT (2*HZ)
85
86#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88#include <linux/module.h>
89#include <linux/moduleparam.h>
90#include <linux/kernel.h>
91#include <linux/string.h>
92#include <linux/timer.h>
93#include <linux/errno.h>
94#include <linux/ioport.h>
1da177e4
LT
95#include <linux/interrupt.h>
96#include <linux/pci.h>
1e7f0bd8 97#include <linux/dma-mapping.h>
1da177e4
LT
98#include <linux/netdevice.h>
99#include <linux/etherdevice.h>
100#include <linux/skbuff.h>
101#include <linux/init.h>
102#include <linux/delay.h>
103#include <linux/mii.h>
104#include <linux/ethtool.h>
105#include <linux/crc32.h>
38f49e88 106#include <linux/if_vlan.h>
1da177e4 107#include <linux/bitops.h>
c0d7a021 108#include <linux/workqueue.h>
1da177e4
LT
109#include <asm/processor.h> /* Processor type for cache alignment. */
110#include <asm/io.h>
111#include <asm/irq.h>
112#include <asm/uaccess.h>
e84df485 113#include <linux/dmi.h>
1da177e4
LT
114
115/* These identify the driver base version and may not be removed. */
c8de1fce 116static const char version[] __devinitconst =
df4511fe 117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
1da177e4
LT
118
119/* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121#ifdef CONFIG_VIA_RHINE_MMIO
122#define USE_MMIO
123#else
124#endif
125
126MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128MODULE_LICENSE("GPL");
129
130module_param(max_interrupt_work, int, 0);
131module_param(debug, int, 0);
132module_param(rx_copybreak, int, 0);
b933b4d9 133module_param(avoid_D3, bool, 0);
1da177e4
LT
134MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
135MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
136MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 137MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4 138
38f49e88
RL
139#define MCAM_SIZE 32
140#define VCAM_SIZE 32
141
1da177e4
LT
142/*
143 Theory of Operation
144
145I. Board Compatibility
146
147This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
148controller.
149
150II. Board-specific settings
151
152Boards with this chip are functional only in a bus-master PCI slot.
153
154Many operational settings are loaded from the EEPROM to the Config word at
155offset 0x78. For most of these settings, this driver assumes that they are
156correct.
157If this driver is compiled to use PCI memory space operations the EEPROM
158must be configured to enable memory ops.
159
160III. Driver operation
161
162IIIa. Ring buffers
163
164This driver uses two statically allocated fixed-size descriptor lists
165formed into rings by a branch from the final descriptor to the beginning of
166the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
167
168IIIb/c. Transmit/Receive Structure
169
170This driver attempts to use a zero-copy receive and transmit scheme.
171
172Alas, all data buffers are required to start on a 32 bit boundary, so
173the driver must often copy transmit packets into bounce buffers.
174
175The driver allocates full frame size skbuffs for the Rx ring buffers at
176open() time and passes the skb->data field to the chip as receive data
177buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
178a fresh skbuff is allocated and the frame is copied to the new skbuff.
179When the incoming frame is larger, the skbuff is passed directly up the
180protocol stack. Buffers consumed this way are replaced by newly allocated
181skbuffs in the last phase of rhine_rx().
182
183The RX_COPYBREAK value is chosen to trade-off the memory wasted by
184using a full-sized skbuff for small frames vs. the copying costs of larger
185frames. New boards are typically used in generously configured machines
186and the underfilled buffers have negligible impact compared to the benefit of
187a single allocation size, so the default value of zero results in never
188copying packets. When copying is done, the cost is usually mitigated by using
189a combined copy/checksum routine. Copying also preloads the cache, which is
190most useful with small frames.
191
192Since the VIA chips are only able to transfer data to buffers on 32 bit
193boundaries, the IP header at offset 14 in an ethernet frame isn't
194longword aligned for further processing. Copying these unaligned buffers
195has the beneficial effect of 16-byte aligning the IP header.
196
197IIId. Synchronization
198
199The driver runs as two independent, single-threaded flows of control. One
200is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
201netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
202which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
203
204The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
205netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
206the ring is not available it stops the transmit queue by
207calling netif_stop_queue.
1da177e4
LT
208
209The interrupt handler has exclusive control over the Rx ring and records stats
210from the Tx ring. After reaping the stats, it marks the Tx queue entry as
211empty by incrementing the dirty_tx mark. If at least half of the entries in
212the Rx ring are available the transmit queue is woken up if it was stopped.
213
214IV. Notes
215
216IVb. References
217
218Preliminary VT86C100A manual from http://www.via.com.tw/
219http://www.scyld.com/expert/100mbps.html
220http://www.scyld.com/expert/NWay.html
221ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
222ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
223
224
225IVc. Errata
226
227The VT86C100A manual is not reliable information.
228The 3043 chip does not handle unaligned transmit or receive buffers, resulting
229in significant performance degradation for bounce buffer copies on transmit
230and unaligned IP headers on receive.
231The chip does not pad to minimum transmit length.
232
233*/
234
235
236/* This table drives the PCI probe routines. It's mostly boilerplate in all
237 of the drivers, and will likely be provided by some future kernel.
238 Note the matching code -- the first table entry matchs all 56** cards but
239 second only the 1234 card.
240*/
241
242enum rhine_revs {
243 VT86C100A = 0x00,
244 VTunknown0 = 0x20,
245 VT6102 = 0x40,
246 VT8231 = 0x50, /* Integrated MAC */
247 VT8233 = 0x60, /* Integrated MAC */
248 VT8235 = 0x74, /* Integrated MAC */
249 VT8237 = 0x78, /* Integrated MAC */
250 VTunknown1 = 0x7C,
251 VT6105 = 0x80,
252 VT6105_B0 = 0x83,
253 VT6105L = 0x8A,
254 VT6107 = 0x8C,
255 VTunknown2 = 0x8E,
256 VT6105M = 0x90, /* Management adapter */
257};
258
259enum rhine_quirks {
260 rqWOL = 0x0001, /* Wake-On-LAN support */
261 rqForceReset = 0x0002,
262 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
263 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
264 rqRhineI = 0x0100, /* See comment below */
265};
266/*
267 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
268 * MMIO as well as for the collision counter and the Tx FIFO underflow
269 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
270 */
271
272/* Beware of PCI posted writes */
273#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
274
a3aa1884 275static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
46009c8b
JG
276 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
277 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
278 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
279 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
280 { } /* terminate list */
281};
282MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
283
284
285/* Offsets to the device registers. */
286enum register_offsets {
287 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
38f49e88 288 ChipCmd1=0x09, TQWake=0x0A,
1da177e4
LT
289 IntrStatus=0x0C, IntrEnable=0x0E,
290 MulticastFilter0=0x10, MulticastFilter1=0x14,
291 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
38f49e88 292 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
1da177e4
LT
293 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
294 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
295 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
296 StickyHW=0x83, IntrStatus2=0x84,
38f49e88 297 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
1da177e4
LT
298 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
299 WOLcrClr1=0xA6, WOLcgClr=0xA7,
300 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
301};
302
303/* Bits in ConfigD */
304enum backoff_bits {
305 BackOptional=0x01, BackModify=0x02,
306 BackCaptureEffect=0x04, BackRandom=0x08
307};
308
38f49e88
RL
309/* Bits in the TxConfig (TCR) register */
310enum tcr_bits {
311 TCR_PQEN=0x01,
312 TCR_LB0=0x02, /* loopback[0] */
313 TCR_LB1=0x04, /* loopback[1] */
314 TCR_OFSET=0x08,
315 TCR_RTGOPT=0x10,
316 TCR_RTFT0=0x20,
317 TCR_RTFT1=0x40,
318 TCR_RTSF=0x80,
319};
320
321/* Bits in the CamCon (CAMC) register */
322enum camcon_bits {
323 CAMC_CAMEN=0x01,
324 CAMC_VCAMSL=0x02,
325 CAMC_CAMWR=0x04,
326 CAMC_CAMRD=0x08,
327};
328
329/* Bits in the PCIBusConfig1 (BCR1) register */
330enum bcr1_bits {
331 BCR1_POT0=0x01,
332 BCR1_POT1=0x02,
333 BCR1_POT2=0x04,
334 BCR1_CTFT0=0x08,
335 BCR1_CTFT1=0x10,
336 BCR1_CTSF=0x20,
337 BCR1_TXQNOBK=0x40, /* for VT6105 */
338 BCR1_VIDFR=0x80, /* for VT6105 */
339 BCR1_MED0=0x40, /* for VT6102 */
340 BCR1_MED1=0x80, /* for VT6102 */
341};
342
1da177e4
LT
343#ifdef USE_MMIO
344/* Registers we check that mmio and reg are the same. */
345static const int mmio_verify_registers[] = {
346 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
347 0
348};
349#endif
350
351/* Bits in the interrupt status/mask registers. */
352enum intr_status_bits {
353 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
354 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
355 IntrPCIErr=0x0040,
356 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
357 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
358 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
359 IntrRxWakeUp=0x8000,
360 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
361 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
362 IntrTxErrSummary=0x082218,
363};
364
365/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
366enum wol_bits {
367 WOLucast = 0x10,
368 WOLmagic = 0x20,
369 WOLbmcast = 0x30,
370 WOLlnkon = 0x40,
371 WOLlnkoff = 0x80,
372};
373
374/* The Rx and Tx buffer descriptors. */
375struct rx_desc {
53c03f5c
AV
376 __le32 rx_status;
377 __le32 desc_length; /* Chain flag, Buffer/frame length */
378 __le32 addr;
379 __le32 next_desc;
1da177e4
LT
380};
381struct tx_desc {
53c03f5c
AV
382 __le32 tx_status;
383 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
384 __le32 addr;
385 __le32 next_desc;
1da177e4
LT
386};
387
388/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
389#define TXDESC 0x00e08000
390
391enum rx_status_bits {
392 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
393};
394
395/* Bits in *_desc.*_status */
396enum desc_status_bits {
397 DescOwn=0x80000000
398};
399
38f49e88
RL
400/* Bits in *_desc.*_length */
401enum desc_length_bits {
402 DescTag=0x00010000
403};
404
1da177e4
LT
405/* Bits in ChipCmd. */
406enum chip_cmd_bits {
407 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
408 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
409 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
410 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
411};
412
413struct rhine_private {
38f49e88
RL
414 /* Bit mask for configured VLAN ids */
415 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
416
1da177e4
LT
417 /* Descriptor rings */
418 struct rx_desc *rx_ring;
419 struct tx_desc *tx_ring;
420 dma_addr_t rx_ring_dma;
421 dma_addr_t tx_ring_dma;
422
423 /* The addresses of receive-in-place skbuffs. */
424 struct sk_buff *rx_skbuff[RX_RING_SIZE];
425 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
426
427 /* The saved address of a sent-in-place packet/buffer, for later free(). */
428 struct sk_buff *tx_skbuff[TX_RING_SIZE];
429 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
430
4be5de25 431 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
432 unsigned char *tx_buf[TX_RING_SIZE];
433 unsigned char *tx_bufs;
434 dma_addr_t tx_bufs_dma;
435
436 struct pci_dev *pdev;
437 long pioaddr;
bea3348e
SH
438 struct net_device *dev;
439 struct napi_struct napi;
1da177e4 440 spinlock_t lock;
c0d7a021 441 struct work_struct reset_task;
1da177e4
LT
442
443 /* Frequently used values: keep some adjacent for cache effect. */
444 u32 quirks;
445 struct rx_desc *rx_head_desc;
446 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
447 unsigned int cur_tx, dirty_tx;
448 unsigned int rx_buf_sz; /* Based on MTU+slack. */
449 u8 wolopts;
450
451 u8 tx_thresh, rx_thresh;
452
453 struct mii_if_info mii_if;
454 void __iomem *base;
455};
456
38f49e88
RL
457#define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
458#define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
459#define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
460
461#define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
462#define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
463#define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
464
465#define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
466#define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
467#define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
468
469#define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
470#define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
471#define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
472
473
1da177e4
LT
474static int mdio_read(struct net_device *dev, int phy_id, int location);
475static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
476static int rhine_open(struct net_device *dev);
c0d7a021 477static void rhine_reset_task(struct work_struct *work);
1da177e4 478static void rhine_tx_timeout(struct net_device *dev);
61357325
SH
479static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
480 struct net_device *dev);
7d12e780 481static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 482static void rhine_tx(struct net_device *dev);
633949a1 483static int rhine_rx(struct net_device *dev, int limit);
1da177e4
LT
484static void rhine_error(struct net_device *dev, int intr_status);
485static void rhine_set_rx_mode(struct net_device *dev);
486static struct net_device_stats *rhine_get_stats(struct net_device *dev);
487static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 488static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 489static int rhine_close(struct net_device *dev);
d18c3db5 490static void rhine_shutdown (struct pci_dev *pdev);
38f49e88
RL
491static void rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
492static void rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
493static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr);
494static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr);
495static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask);
496static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask);
497static void rhine_init_cam_filter(struct net_device *dev);
498static void rhine_update_vcam(struct net_device *dev);
1da177e4 499
df4511fe
JP
500#define RHINE_WAIT_FOR(condition) \
501do { \
502 int i = 1024; \
503 while (!(condition) && --i) \
504 ; \
505 if (debug > 1 && i < 512) \
506 pr_info("%4d cycles used @ %s:%d\n", \
507 1024 - i, __func__, __LINE__); \
508} while (0)
1da177e4
LT
509
510static inline u32 get_intr_status(struct net_device *dev)
511{
512 struct rhine_private *rp = netdev_priv(dev);
513 void __iomem *ioaddr = rp->base;
514 u32 intr_status;
515
516 intr_status = ioread16(ioaddr + IntrStatus);
517 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
518 if (rp->quirks & rqStatusWBRace)
519 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
520 return intr_status;
521}
522
523/*
524 * Get power related registers into sane state.
525 * Notify user about past WOL event.
526 */
527static void rhine_power_init(struct net_device *dev)
528{
529 struct rhine_private *rp = netdev_priv(dev);
530 void __iomem *ioaddr = rp->base;
531 u16 wolstat;
532
533 if (rp->quirks & rqWOL) {
534 /* Make sure chip is in power state D0 */
535 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
536
537 /* Disable "force PME-enable" */
538 iowrite8(0x80, ioaddr + WOLcgClr);
539
540 /* Clear power-event config bits (WOL) */
541 iowrite8(0xFF, ioaddr + WOLcrClr);
542 /* More recent cards can manage two additional patterns */
543 if (rp->quirks & rq6patterns)
544 iowrite8(0x03, ioaddr + WOLcrClr1);
545
546 /* Save power-event status bits */
547 wolstat = ioread8(ioaddr + PwrcsrSet);
548 if (rp->quirks & rq6patterns)
549 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
550
551 /* Clear power-event status bits */
552 iowrite8(0xFF, ioaddr + PwrcsrClr);
553 if (rp->quirks & rq6patterns)
554 iowrite8(0x03, ioaddr + PwrcsrClr1);
555
556 if (wolstat) {
557 char *reason;
558 switch (wolstat) {
559 case WOLmagic:
560 reason = "Magic packet";
561 break;
562 case WOLlnkon:
563 reason = "Link went up";
564 break;
565 case WOLlnkoff:
566 reason = "Link went down";
567 break;
568 case WOLucast:
569 reason = "Unicast packet";
570 break;
571 case WOLbmcast:
572 reason = "Multicast/broadcast packet";
573 break;
574 default:
575 reason = "Unknown";
576 }
df4511fe
JP
577 netdev_info(dev, "Woke system up. Reason: %s\n",
578 reason);
1da177e4
LT
579 }
580 }
581}
582
583static void rhine_chip_reset(struct net_device *dev)
584{
585 struct rhine_private *rp = netdev_priv(dev);
586 void __iomem *ioaddr = rp->base;
587
588 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
589 IOSYNC;
590
591 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
df4511fe 592 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
1da177e4
LT
593
594 /* Force reset */
595 if (rp->quirks & rqForceReset)
596 iowrite8(0x40, ioaddr + MiscCmd);
597
598 /* Reset can take somewhat longer (rare) */
599 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
600 }
601
602 if (debug > 1)
df4511fe
JP
603 netdev_info(dev, "Reset %s\n",
604 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
605 "failed" : "succeeded");
1da177e4
LT
606}
607
608#ifdef USE_MMIO
609static void enable_mmio(long pioaddr, u32 quirks)
610{
611 int n;
612 if (quirks & rqRhineI) {
613 /* More recent docs say that this bit is reserved ... */
614 n = inb(pioaddr + ConfigA) | 0x20;
615 outb(n, pioaddr + ConfigA);
616 } else {
617 n = inb(pioaddr + ConfigD) | 0x80;
618 outb(n, pioaddr + ConfigD);
619 }
620}
621#endif
622
623/*
624 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
625 * (plus 0x6C for Rhine-I/II)
626 */
627static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
628{
629 struct rhine_private *rp = netdev_priv(dev);
630 void __iomem *ioaddr = rp->base;
631
632 outb(0x20, pioaddr + MACRegEEcsr);
633 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
634
635#ifdef USE_MMIO
636 /*
637 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
638 * MMIO. If reloading EEPROM was done first this could be avoided, but
639 * it is not known if that still works with the "win98-reboot" problem.
640 */
641 enable_mmio(pioaddr, rp->quirks);
642#endif
643
644 /* Turn off EEPROM-controlled wake-up (magic packet) */
645 if (rp->quirks & rqWOL)
646 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
647
648}
649
650#ifdef CONFIG_NET_POLL_CONTROLLER
651static void rhine_poll(struct net_device *dev)
652{
653 disable_irq(dev->irq);
7d12e780 654 rhine_interrupt(dev->irq, (void *)dev);
1da177e4
LT
655 enable_irq(dev->irq);
656}
657#endif
658
bea3348e 659static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 660{
bea3348e
SH
661 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
662 struct net_device *dev = rp->dev;
633949a1 663 void __iomem *ioaddr = rp->base;
bea3348e 664 int work_done;
633949a1 665
bea3348e 666 work_done = rhine_rx(dev, budget);
633949a1 667
bea3348e 668 if (work_done < budget) {
288379f0 669 napi_complete(napi);
633949a1
RL
670
671 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
672 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
673 IntrTxDone | IntrTxError | IntrTxUnderrun |
674 IntrPCIErr | IntrStatsMax | IntrLinkChange,
675 ioaddr + IntrEnable);
633949a1 676 }
bea3348e 677 return work_done;
633949a1 678}
633949a1 679
de4e7c88 680static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
681{
682 struct rhine_private *rp = netdev_priv(dev);
683
684 /* Reset the chip to erase previous misconfiguration. */
685 rhine_chip_reset(dev);
686
687 /* Rhine-I needs extra time to recuperate before EEPROM reload */
688 if (rp->quirks & rqRhineI)
689 msleep(5);
690
691 /* Reload EEPROM controlled bytes cleared by soft reset */
692 rhine_reload_eeprom(pioaddr, dev);
693}
694
5d1d07d8
SH
695static const struct net_device_ops rhine_netdev_ops = {
696 .ndo_open = rhine_open,
697 .ndo_stop = rhine_close,
698 .ndo_start_xmit = rhine_start_tx,
699 .ndo_get_stats = rhine_get_stats,
700 .ndo_set_multicast_list = rhine_set_rx_mode,
635ecaa7 701 .ndo_change_mtu = eth_change_mtu,
5d1d07d8 702 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 703 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
704 .ndo_do_ioctl = netdev_ioctl,
705 .ndo_tx_timeout = rhine_tx_timeout,
38f49e88
RL
706 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
707 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
5d1d07d8
SH
708#ifdef CONFIG_NET_POLL_CONTROLLER
709 .ndo_poll_controller = rhine_poll,
710#endif
711};
712
1da177e4
LT
713static int __devinit rhine_init_one(struct pci_dev *pdev,
714 const struct pci_device_id *ent)
715{
716 struct net_device *dev;
717 struct rhine_private *rp;
718 int i, rc;
1da177e4
LT
719 u32 quirks;
720 long pioaddr;
721 long memaddr;
722 void __iomem *ioaddr;
723 int io_size, phy_id;
724 const char *name;
725#ifdef USE_MMIO
726 int bar = 1;
727#else
728 int bar = 0;
729#endif
730
731/* when built into the kernel, we only print version if device is found */
732#ifndef MODULE
df4511fe 733 pr_info_once("%s\n", version);
1da177e4
LT
734#endif
735
1da177e4
LT
736 io_size = 256;
737 phy_id = 0;
738 quirks = 0;
739 name = "Rhine";
44c10138 740 if (pdev->revision < VTunknown0) {
1da177e4
LT
741 quirks = rqRhineI;
742 io_size = 128;
743 }
44c10138 744 else if (pdev->revision >= VT6102) {
1da177e4 745 quirks = rqWOL | rqForceReset;
44c10138 746 if (pdev->revision < VT6105) {
1da177e4
LT
747 name = "Rhine II";
748 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
749 }
750 else {
751 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 752 if (pdev->revision >= VT6105_B0)
1da177e4 753 quirks |= rq6patterns;
44c10138 754 if (pdev->revision < VT6105M)
1da177e4
LT
755 name = "Rhine III";
756 else
757 name = "Rhine III (Management Adapter)";
758 }
759 }
760
761 rc = pci_enable_device(pdev);
762 if (rc)
763 goto err_out;
764
765 /* this should always be supported */
284901a9 766 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1da177e4 767 if (rc) {
df4511fe
JP
768 dev_err(&pdev->dev,
769 "32-bit PCI DMA addresses not supported by the card!?\n");
1da177e4
LT
770 goto err_out;
771 }
772
773 /* sanity check */
774 if ((pci_resource_len(pdev, 0) < io_size) ||
775 (pci_resource_len(pdev, 1) < io_size)) {
776 rc = -EIO;
df4511fe 777 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
1da177e4
LT
778 goto err_out;
779 }
780
781 pioaddr = pci_resource_start(pdev, 0);
782 memaddr = pci_resource_start(pdev, 1);
783
784 pci_set_master(pdev);
785
786 dev = alloc_etherdev(sizeof(struct rhine_private));
787 if (!dev) {
788 rc = -ENOMEM;
df4511fe 789 dev_err(&pdev->dev, "alloc_etherdev failed\n");
1da177e4
LT
790 goto err_out;
791 }
1da177e4
LT
792 SET_NETDEV_DEV(dev, &pdev->dev);
793
794 rp = netdev_priv(dev);
bea3348e 795 rp->dev = dev;
1da177e4
LT
796 rp->quirks = quirks;
797 rp->pioaddr = pioaddr;
798 rp->pdev = pdev;
799
800 rc = pci_request_regions(pdev, DRV_NAME);
801 if (rc)
802 goto err_out_free_netdev;
803
804 ioaddr = pci_iomap(pdev, bar, io_size);
805 if (!ioaddr) {
806 rc = -EIO;
df4511fe
JP
807 dev_err(&pdev->dev,
808 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
809 pci_name(pdev), io_size, memaddr);
1da177e4
LT
810 goto err_out_free_res;
811 }
812
813#ifdef USE_MMIO
814 enable_mmio(pioaddr, quirks);
815
816 /* Check that selected MMIO registers match the PIO ones */
817 i = 0;
818 while (mmio_verify_registers[i]) {
819 int reg = mmio_verify_registers[i++];
820 unsigned char a = inb(pioaddr+reg);
821 unsigned char b = readb(ioaddr+reg);
822 if (a != b) {
823 rc = -EIO;
df4511fe
JP
824 dev_err(&pdev->dev,
825 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
826 reg, a, b);
1da177e4
LT
827 goto err_out_unmap;
828 }
829 }
830#endif /* USE_MMIO */
831
832 dev->base_addr = (unsigned long)ioaddr;
833 rp->base = ioaddr;
834
835 /* Get chip registers into a sane state */
836 rhine_power_init(dev);
837 rhine_hw_init(dev, pioaddr);
838
839 for (i = 0; i < 6; i++)
840 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
841
482e3feb
JP
842 if (!is_valid_ether_addr(dev->dev_addr)) {
843 /* Report it and use a random ethernet address instead */
844 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
845 random_ether_addr(dev->dev_addr);
846 netdev_info(dev, "Using random MAC address: %pM\n",
847 dev->dev_addr);
1da177e4 848 }
482e3feb 849 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4
LT
850
851 /* For Rhine-I/II, phy_id is loaded from EEPROM */
852 if (!phy_id)
853 phy_id = ioread8(ioaddr + 0x6C);
854
855 dev->irq = pdev->irq;
856
857 spin_lock_init(&rp->lock);
c0d7a021
JP
858 INIT_WORK(&rp->reset_task, rhine_reset_task);
859
1da177e4
LT
860 rp->mii_if.dev = dev;
861 rp->mii_if.mdio_read = mdio_read;
862 rp->mii_if.mdio_write = mdio_write;
863 rp->mii_if.phy_id_mask = 0x1f;
864 rp->mii_if.reg_num_mask = 0x1f;
865
866 /* The chip-specific entries in the device structure. */
5d1d07d8
SH
867 dev->netdev_ops = &rhine_netdev_ops;
868 dev->ethtool_ops = &netdev_ethtool_ops,
1da177e4 869 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 870
bea3348e 871 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 872
1da177e4
LT
873 if (rp->quirks & rqRhineI)
874 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
875
38f49e88
RL
876 if (pdev->revision >= VT6105M)
877 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
878 NETIF_F_HW_VLAN_FILTER;
879
1da177e4
LT
880 /* dev->name not defined before register_netdev()! */
881 rc = register_netdev(dev);
882 if (rc)
883 goto err_out_unmap;
884
df4511fe
JP
885 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
886 name,
1da177e4 887#ifdef USE_MMIO
df4511fe 888 memaddr,
1da177e4 889#else
df4511fe 890 (long)ioaddr,
1da177e4 891#endif
df4511fe 892 dev->dev_addr, pdev->irq);
1da177e4
LT
893
894 pci_set_drvdata(pdev, dev);
895
896 {
897 u16 mii_cmd;
898 int mii_status = mdio_read(dev, phy_id, 1);
899 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
900 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
901 if (mii_status != 0xffff && mii_status != 0x0000) {
902 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
df4511fe
JP
903 netdev_info(dev,
904 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
905 phy_id,
906 mii_status, rp->mii_if.advertising,
907 mdio_read(dev, phy_id, 5));
1da177e4
LT
908
909 /* set IFF_RUNNING */
910 if (mii_status & BMSR_LSTATUS)
911 netif_carrier_on(dev);
912 else
913 netif_carrier_off(dev);
914
915 }
916 }
917 rp->mii_if.phy_id = phy_id;
b933b4d9 918 if (debug > 1 && avoid_D3)
df4511fe 919 netdev_info(dev, "No D3 power state at shutdown\n");
1da177e4
LT
920
921 return 0;
922
923err_out_unmap:
924 pci_iounmap(pdev, ioaddr);
925err_out_free_res:
926 pci_release_regions(pdev);
927err_out_free_netdev:
928 free_netdev(dev);
929err_out:
930 return rc;
931}
932
933static int alloc_ring(struct net_device* dev)
934{
935 struct rhine_private *rp = netdev_priv(dev);
936 void *ring;
937 dma_addr_t ring_dma;
938
939 ring = pci_alloc_consistent(rp->pdev,
940 RX_RING_SIZE * sizeof(struct rx_desc) +
941 TX_RING_SIZE * sizeof(struct tx_desc),
942 &ring_dma);
943 if (!ring) {
df4511fe 944 netdev_err(dev, "Could not allocate DMA memory\n");
1da177e4
LT
945 return -ENOMEM;
946 }
947 if (rp->quirks & rqRhineI) {
948 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
949 PKT_BUF_SZ * TX_RING_SIZE,
950 &rp->tx_bufs_dma);
951 if (rp->tx_bufs == NULL) {
952 pci_free_consistent(rp->pdev,
953 RX_RING_SIZE * sizeof(struct rx_desc) +
954 TX_RING_SIZE * sizeof(struct tx_desc),
955 ring, ring_dma);
956 return -ENOMEM;
957 }
958 }
959
960 rp->rx_ring = ring;
961 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
962 rp->rx_ring_dma = ring_dma;
963 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
964
965 return 0;
966}
967
968static void free_ring(struct net_device* dev)
969{
970 struct rhine_private *rp = netdev_priv(dev);
971
972 pci_free_consistent(rp->pdev,
973 RX_RING_SIZE * sizeof(struct rx_desc) +
974 TX_RING_SIZE * sizeof(struct tx_desc),
975 rp->rx_ring, rp->rx_ring_dma);
976 rp->tx_ring = NULL;
977
978 if (rp->tx_bufs)
979 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
980 rp->tx_bufs, rp->tx_bufs_dma);
981
982 rp->tx_bufs = NULL;
983
984}
985
986static void alloc_rbufs(struct net_device *dev)
987{
988 struct rhine_private *rp = netdev_priv(dev);
989 dma_addr_t next;
990 int i;
991
992 rp->dirty_rx = rp->cur_rx = 0;
993
994 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
995 rp->rx_head_desc = &rp->rx_ring[0];
996 next = rp->rx_ring_dma;
997
998 /* Init the ring entries */
999 for (i = 0; i < RX_RING_SIZE; i++) {
1000 rp->rx_ring[i].rx_status = 0;
1001 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1002 next += sizeof(struct rx_desc);
1003 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1004 rp->rx_skbuff[i] = NULL;
1005 }
1006 /* Mark the last entry as wrapping the ring. */
1007 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1008
1009 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1010 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 1011 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1012 rp->rx_skbuff[i] = skb;
1013 if (skb == NULL)
1014 break;
1015 skb->dev = dev; /* Mark as being used by this device. */
1016
1017 rp->rx_skbuff_dma[i] =
689be439 1018 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4
LT
1019 PCI_DMA_FROMDEVICE);
1020
1021 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1022 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1023 }
1024 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1025}
1026
1027static void free_rbufs(struct net_device* dev)
1028{
1029 struct rhine_private *rp = netdev_priv(dev);
1030 int i;
1031
1032 /* Free all the skbuffs in the Rx queue. */
1033 for (i = 0; i < RX_RING_SIZE; i++) {
1034 rp->rx_ring[i].rx_status = 0;
1035 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1036 if (rp->rx_skbuff[i]) {
1037 pci_unmap_single(rp->pdev,
1038 rp->rx_skbuff_dma[i],
1039 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1040 dev_kfree_skb(rp->rx_skbuff[i]);
1041 }
1042 rp->rx_skbuff[i] = NULL;
1043 }
1044}
1045
1046static void alloc_tbufs(struct net_device* dev)
1047{
1048 struct rhine_private *rp = netdev_priv(dev);
1049 dma_addr_t next;
1050 int i;
1051
1052 rp->dirty_tx = rp->cur_tx = 0;
1053 next = rp->tx_ring_dma;
1054 for (i = 0; i < TX_RING_SIZE; i++) {
1055 rp->tx_skbuff[i] = NULL;
1056 rp->tx_ring[i].tx_status = 0;
1057 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1058 next += sizeof(struct tx_desc);
1059 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
1060 if (rp->quirks & rqRhineI)
1061 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
1062 }
1063 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1064
1065}
1066
1067static void free_tbufs(struct net_device* dev)
1068{
1069 struct rhine_private *rp = netdev_priv(dev);
1070 int i;
1071
1072 for (i = 0; i < TX_RING_SIZE; i++) {
1073 rp->tx_ring[i].tx_status = 0;
1074 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1075 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1076 if (rp->tx_skbuff[i]) {
1077 if (rp->tx_skbuff_dma[i]) {
1078 pci_unmap_single(rp->pdev,
1079 rp->tx_skbuff_dma[i],
1080 rp->tx_skbuff[i]->len,
1081 PCI_DMA_TODEVICE);
1082 }
1083 dev_kfree_skb(rp->tx_skbuff[i]);
1084 }
1085 rp->tx_skbuff[i] = NULL;
1086 rp->tx_buf[i] = NULL;
1087 }
1088}
1089
1090static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1091{
1092 struct rhine_private *rp = netdev_priv(dev);
1093 void __iomem *ioaddr = rp->base;
1094
1095 mii_check_media(&rp->mii_if, debug, init_media);
1096
1097 if (rp->mii_if.full_duplex)
1098 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1099 ioaddr + ChipCmd1);
1100 else
1101 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1102 ioaddr + ChipCmd1);
00b428c2 1103 if (debug > 1)
df4511fe
JP
1104 netdev_info(dev, "force_media %d, carrier %d\n",
1105 rp->mii_if.force_media, netif_carrier_ok(dev));
00b428c2
RL
1106}
1107
1108/* Called after status of force_media possibly changed */
0761be4f 1109static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2
RL
1110{
1111 if (mii->force_media) {
1112 /* autoneg is off: Link is always assumed to be up */
1113 if (!netif_carrier_ok(mii->dev))
1114 netif_carrier_on(mii->dev);
1115 }
1116 else /* Let MMI library update carrier status */
1117 rhine_check_media(mii->dev, 0);
1118 if (debug > 1)
df4511fe
JP
1119 netdev_info(mii->dev, "force_media %d, carrier %d\n",
1120 mii->force_media, netif_carrier_ok(mii->dev));
1da177e4
LT
1121}
1122
38f49e88
RL
1123/**
1124 * rhine_set_cam - set CAM multicast filters
1125 * @ioaddr: register block of this Rhine
1126 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1127 * @addr: multicast address (6 bytes)
1128 *
1129 * Load addresses into multicast filters.
1130 */
1131static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1132{
1133 int i;
1134
1135 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1136 wmb();
1137
1138 /* Paranoid -- idx out of range should never happen */
1139 idx &= (MCAM_SIZE - 1);
1140
1141 iowrite8((u8) idx, ioaddr + CamAddr);
1142
1143 for (i = 0; i < 6; i++, addr++)
1144 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1145 udelay(10);
1146 wmb();
1147
1148 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1149 udelay(10);
1150
1151 iowrite8(0, ioaddr + CamCon);
1152}
1153
1154/**
1155 * rhine_set_vlan_cam - set CAM VLAN filters
1156 * @ioaddr: register block of this Rhine
1157 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1158 * @addr: VLAN ID (2 bytes)
1159 *
1160 * Load addresses into VLAN filters.
1161 */
1162static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1163{
1164 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1165 wmb();
1166
1167 /* Paranoid -- idx out of range should never happen */
1168 idx &= (VCAM_SIZE - 1);
1169
1170 iowrite8((u8) idx, ioaddr + CamAddr);
1171
1172 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1173 udelay(10);
1174 wmb();
1175
1176 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1177 udelay(10);
1178
1179 iowrite8(0, ioaddr + CamCon);
1180}
1181
1182/**
1183 * rhine_set_cam_mask - set multicast CAM mask
1184 * @ioaddr: register block of this Rhine
1185 * @mask: multicast CAM mask
1186 *
1187 * Mask sets multicast filters active/inactive.
1188 */
1189static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1190{
1191 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1192 wmb();
1193
1194 /* write mask */
1195 iowrite32(mask, ioaddr + CamMask);
1196
1197 /* disable CAMEN */
1198 iowrite8(0, ioaddr + CamCon);
1199}
1200
1201/**
1202 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1203 * @ioaddr: register block of this Rhine
1204 * @mask: VLAN CAM mask
1205 *
1206 * Mask sets VLAN filters active/inactive.
1207 */
1208static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1209{
1210 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1211 wmb();
1212
1213 /* write mask */
1214 iowrite32(mask, ioaddr + CamMask);
1215
1216 /* disable CAMEN */
1217 iowrite8(0, ioaddr + CamCon);
1218}
1219
1220/**
1221 * rhine_init_cam_filter - initialize CAM filters
1222 * @dev: network device
1223 *
1224 * Initialize (disable) hardware VLAN and multicast support on this
1225 * Rhine.
1226 */
1227static void rhine_init_cam_filter(struct net_device *dev)
1228{
1229 struct rhine_private *rp = netdev_priv(dev);
1230 void __iomem *ioaddr = rp->base;
1231
1232 /* Disable all CAMs */
1233 rhine_set_vlan_cam_mask(ioaddr, 0);
1234 rhine_set_cam_mask(ioaddr, 0);
1235
1236 /* disable hardware VLAN support */
1237 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1238 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1239}
1240
1241/**
1242 * rhine_update_vcam - update VLAN CAM filters
1243 * @rp: rhine_private data of this Rhine
1244 *
1245 * Update VLAN CAM filters to match configuration change.
1246 */
1247static void rhine_update_vcam(struct net_device *dev)
1248{
1249 struct rhine_private *rp = netdev_priv(dev);
1250 void __iomem *ioaddr = rp->base;
1251 u16 vid;
1252 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1253 unsigned int i = 0;
1254
1255 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1256 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1257 vCAMmask |= 1 << i;
1258 if (++i >= VCAM_SIZE)
1259 break;
1260 }
1261 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1262}
1263
1264static void rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1265{
1266 struct rhine_private *rp = netdev_priv(dev);
1267
1268 spin_lock_irq(&rp->lock);
1269 set_bit(vid, rp->active_vlans);
1270 rhine_update_vcam(dev);
1271 spin_unlock_irq(&rp->lock);
1272}
1273
1274static void rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1275{
1276 struct rhine_private *rp = netdev_priv(dev);
1277
1278 spin_lock_irq(&rp->lock);
1279 clear_bit(vid, rp->active_vlans);
1280 rhine_update_vcam(dev);
1281 spin_unlock_irq(&rp->lock);
1282}
1283
1da177e4
LT
1284static void init_registers(struct net_device *dev)
1285{
1286 struct rhine_private *rp = netdev_priv(dev);
1287 void __iomem *ioaddr = rp->base;
1288 int i;
1289
1290 for (i = 0; i < 6; i++)
1291 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1292
1293 /* Initialize other registers. */
1294 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1295 /* Configure initial FIFO thresholds. */
1296 iowrite8(0x20, ioaddr + TxConfig);
1297 rp->tx_thresh = 0x20;
1298 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1299
1300 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1301 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1302
1303 rhine_set_rx_mode(dev);
1304
38f49e88
RL
1305 if (rp->pdev->revision >= VT6105M)
1306 rhine_init_cam_filter(dev);
1307
bea3348e 1308 napi_enable(&rp->napi);
ab197668 1309
1da177e4
LT
1310 /* Enable interrupts by setting the interrupt mask. */
1311 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1312 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1313 IntrTxDone | IntrTxError | IntrTxUnderrun |
1314 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1315 ioaddr + IntrEnable);
1316
1317 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1318 ioaddr + ChipCmd);
1319 rhine_check_media(dev, 1);
1320}
1321
1322/* Enable MII link status auto-polling (required for IntrLinkChange) */
1323static void rhine_enable_linkmon(void __iomem *ioaddr)
1324{
1325 iowrite8(0, ioaddr + MIICmd);
1326 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1327 iowrite8(0x80, ioaddr + MIICmd);
1328
1329 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1330
1331 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1332}
1333
1334/* Disable MII link status auto-polling (required for MDIO access) */
1335static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1336{
1337 iowrite8(0, ioaddr + MIICmd);
1338
1339 if (quirks & rqRhineI) {
1340 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1341
38bb6b28
JL
1342 /* Can be called from ISR. Evil. */
1343 mdelay(1);
1da177e4
LT
1344
1345 /* 0x80 must be set immediately before turning it off */
1346 iowrite8(0x80, ioaddr + MIICmd);
1347
1348 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1349
1350 /* Heh. Now clear 0x80 again. */
1351 iowrite8(0, ioaddr + MIICmd);
1352 }
1353 else
1354 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1355}
1356
1357/* Read and write over the MII Management Data I/O (MDIO) interface. */
1358
1359static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1360{
1361 struct rhine_private *rp = netdev_priv(dev);
1362 void __iomem *ioaddr = rp->base;
1363 int result;
1364
1365 rhine_disable_linkmon(ioaddr, rp->quirks);
1366
1367 /* rhine_disable_linkmon already cleared MIICmd */
1368 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1369 iowrite8(regnum, ioaddr + MIIRegAddr);
1370 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1371 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1372 result = ioread16(ioaddr + MIIData);
1373
1374 rhine_enable_linkmon(ioaddr);
1375 return result;
1376}
1377
1378static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1379{
1380 struct rhine_private *rp = netdev_priv(dev);
1381 void __iomem *ioaddr = rp->base;
1382
1383 rhine_disable_linkmon(ioaddr, rp->quirks);
1384
1385 /* rhine_disable_linkmon already cleared MIICmd */
1386 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1387 iowrite8(regnum, ioaddr + MIIRegAddr);
1388 iowrite16(value, ioaddr + MIIData);
1389 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1390 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1391
1392 rhine_enable_linkmon(ioaddr);
1393}
1394
1395static int rhine_open(struct net_device *dev)
1396{
1397 struct rhine_private *rp = netdev_priv(dev);
1398 void __iomem *ioaddr = rp->base;
1399 int rc;
1400
76781382 1401 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1402 dev);
1403 if (rc)
1404 return rc;
1405
1406 if (debug > 1)
df4511fe 1407 netdev_dbg(dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1da177e4
LT
1408
1409 rc = alloc_ring(dev);
1410 if (rc) {
1411 free_irq(rp->pdev->irq, dev);
1412 return rc;
1413 }
1414 alloc_rbufs(dev);
1415 alloc_tbufs(dev);
1416 rhine_chip_reset(dev);
1417 init_registers(dev);
1418 if (debug > 2)
df4511fe
JP
1419 netdev_dbg(dev, "%s() Done - status %04x MII status: %04x\n",
1420 __func__, ioread16(ioaddr + ChipCmd),
1421 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1da177e4
LT
1422
1423 netif_start_queue(dev);
1424
1425 return 0;
1426}
1427
c0d7a021 1428static void rhine_reset_task(struct work_struct *work)
1da177e4 1429{
c0d7a021
JP
1430 struct rhine_private *rp = container_of(work, struct rhine_private,
1431 reset_task);
1432 struct net_device *dev = rp->dev;
1da177e4
LT
1433
1434 /* protect against concurrent rx interrupts */
1435 disable_irq(rp->pdev->irq);
1436
bea3348e 1437 napi_disable(&rp->napi);
bea3348e 1438
c0d7a021 1439 spin_lock_bh(&rp->lock);
1da177e4
LT
1440
1441 /* clear all descriptors */
1442 free_tbufs(dev);
1443 free_rbufs(dev);
1444 alloc_tbufs(dev);
1445 alloc_rbufs(dev);
1446
1447 /* Reinitialize the hardware. */
1448 rhine_chip_reset(dev);
1449 init_registers(dev);
1450
c0d7a021 1451 spin_unlock_bh(&rp->lock);
1da177e4
LT
1452 enable_irq(rp->pdev->irq);
1453
1ae5dc34 1454 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 1455 dev->stats.tx_errors++;
1da177e4
LT
1456 netif_wake_queue(dev);
1457}
1458
c0d7a021
JP
1459static void rhine_tx_timeout(struct net_device *dev)
1460{
1461 struct rhine_private *rp = netdev_priv(dev);
1462 void __iomem *ioaddr = rp->base;
1463
df4511fe
JP
1464 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1465 ioread16(ioaddr + IntrStatus),
1466 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
c0d7a021
JP
1467
1468 schedule_work(&rp->reset_task);
1469}
1470
61357325
SH
1471static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1472 struct net_device *dev)
1da177e4
LT
1473{
1474 struct rhine_private *rp = netdev_priv(dev);
1475 void __iomem *ioaddr = rp->base;
1476 unsigned entry;
22580f89 1477 unsigned long flags;
1da177e4
LT
1478
1479 /* Caution: the write order is important here, set the field
1480 with the "ownership" bits last. */
1481
1482 /* Calculate the next Tx descriptor entry. */
1483 entry = rp->cur_tx % TX_RING_SIZE;
1484
5b057c6b 1485 if (skb_padto(skb, ETH_ZLEN))
6ed10654 1486 return NETDEV_TX_OK;
1da177e4
LT
1487
1488 rp->tx_skbuff[entry] = skb;
1489
1490 if ((rp->quirks & rqRhineI) &&
84fa7933 1491 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1492 /* Must use alignment buffer. */
1493 if (skb->len > PKT_BUF_SZ) {
1494 /* packet too long, drop it */
1495 dev_kfree_skb(skb);
1496 rp->tx_skbuff[entry] = NULL;
553e2335 1497 dev->stats.tx_dropped++;
6ed10654 1498 return NETDEV_TX_OK;
1da177e4 1499 }
3e0d167a
CB
1500
1501 /* Padding is not copied and so must be redone. */
1da177e4 1502 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1503 if (skb->len < ETH_ZLEN)
1504 memset(rp->tx_buf[entry] + skb->len, 0,
1505 ETH_ZLEN - skb->len);
1da177e4
LT
1506 rp->tx_skbuff_dma[entry] = 0;
1507 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1508 (rp->tx_buf[entry] -
1509 rp->tx_bufs));
1510 } else {
1511 rp->tx_skbuff_dma[entry] =
1512 pci_map_single(rp->pdev, skb->data, skb->len,
1513 PCI_DMA_TODEVICE);
1514 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1515 }
1516
1517 rp->tx_ring[entry].desc_length =
1518 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1519
38f49e88
RL
1520 if (unlikely(vlan_tx_tag_present(skb))) {
1521 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1522 /* request tagging */
1523 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1524 }
1525 else
1526 rp->tx_ring[entry].tx_status = 0;
1527
1da177e4 1528 /* lock eth irq */
22580f89 1529 spin_lock_irqsave(&rp->lock, flags);
1da177e4 1530 wmb();
38f49e88 1531 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1da177e4
LT
1532 wmb();
1533
1534 rp->cur_tx++;
1535
1536 /* Non-x86 Todo: explicitly flush cache lines here. */
1537
38f49e88
RL
1538 if (vlan_tx_tag_present(skb))
1539 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1540 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1541
1da177e4
LT
1542 /* Wake the potentially-idle transmit channel */
1543 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1544 ioaddr + ChipCmd1);
1545 IOSYNC;
1546
1547 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1548 netif_stop_queue(dev);
1549
22580f89 1550 spin_unlock_irqrestore(&rp->lock, flags);
1da177e4
LT
1551
1552 if (debug > 4) {
df4511fe
JP
1553 netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1554 rp->cur_tx-1, entry);
1da177e4 1555 }
6ed10654 1556 return NETDEV_TX_OK;
1da177e4
LT
1557}
1558
1559/* The interrupt handler does all of the Rx thread work and cleans up
1560 after the Tx thread. */
7d12e780 1561static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1562{
1563 struct net_device *dev = dev_instance;
1564 struct rhine_private *rp = netdev_priv(dev);
1565 void __iomem *ioaddr = rp->base;
1566 u32 intr_status;
1567 int boguscnt = max_interrupt_work;
1568 int handled = 0;
1569
1570 while ((intr_status = get_intr_status(dev))) {
1571 handled = 1;
1572
1573 /* Acknowledge all of the current interrupt sources ASAP. */
1574 if (intr_status & IntrTxDescRace)
1575 iowrite8(0x08, ioaddr + IntrStatus2);
1576 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1577 IOSYNC;
1578
1579 if (debug > 4)
df4511fe
JP
1580 netdev_dbg(dev, "Interrupt, status %08x\n",
1581 intr_status);
1da177e4
LT
1582
1583 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
633949a1 1584 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
633949a1
RL
1585 iowrite16(IntrTxAborted |
1586 IntrTxDone | IntrTxError | IntrTxUnderrun |
1587 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1588 ioaddr + IntrEnable);
1589
288379f0 1590 napi_schedule(&rp->napi);
633949a1 1591 }
1da177e4
LT
1592
1593 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1594 if (intr_status & IntrTxErrSummary) {
1595 /* Avoid scavenging before Tx engine turned off */
1596 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1597 if (debug > 2 &&
1598 ioread8(ioaddr+ChipCmd) & CmdTxOn)
df4511fe
JP
1599 netdev_warn(dev,
1600 "%s: Tx engine still on\n",
1601 __func__);
1da177e4
LT
1602 }
1603 rhine_tx(dev);
1604 }
1605
1606 /* Abnormal error summary/uncommon events handlers. */
1607 if (intr_status & (IntrPCIErr | IntrLinkChange |
1608 IntrStatsMax | IntrTxError | IntrTxAborted |
1609 IntrTxUnderrun | IntrTxDescRace))
1610 rhine_error(dev, intr_status);
1611
1612 if (--boguscnt < 0) {
df4511fe
JP
1613 netdev_warn(dev, "Too much work at interrupt, status=%#08x\n",
1614 intr_status);
1da177e4
LT
1615 break;
1616 }
1617 }
1618
1619 if (debug > 3)
df4511fe
JP
1620 netdev_dbg(dev, "exiting interrupt, status=%08x\n",
1621 ioread16(ioaddr + IntrStatus));
1da177e4
LT
1622 return IRQ_RETVAL(handled);
1623}
1624
1625/* This routine is logically part of the interrupt handler, but isolated
1626 for clarity. */
1627static void rhine_tx(struct net_device *dev)
1628{
1629 struct rhine_private *rp = netdev_priv(dev);
1630 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1631
1632 spin_lock(&rp->lock);
1633
1634 /* find and cleanup dirty tx descriptors */
1635 while (rp->dirty_tx != rp->cur_tx) {
1636 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1637 if (debug > 6)
df4511fe
JP
1638 netdev_dbg(dev, "Tx scavenge %d status %08x\n",
1639 entry, txstatus);
1da177e4
LT
1640 if (txstatus & DescOwn)
1641 break;
1642 if (txstatus & 0x8000) {
1643 if (debug > 1)
df4511fe
JP
1644 netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1645 txstatus);
553e2335
ED
1646 dev->stats.tx_errors++;
1647 if (txstatus & 0x0400)
1648 dev->stats.tx_carrier_errors++;
1649 if (txstatus & 0x0200)
1650 dev->stats.tx_window_errors++;
1651 if (txstatus & 0x0100)
1652 dev->stats.tx_aborted_errors++;
1653 if (txstatus & 0x0080)
1654 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1655 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1656 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1657 dev->stats.tx_fifo_errors++;
1da177e4
LT
1658 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1659 break; /* Keep the skb - we try again */
1660 }
1661 /* Transmitter restarted in 'abnormal' handler. */
1662 } else {
1663 if (rp->quirks & rqRhineI)
553e2335 1664 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1665 else
553e2335 1666 dev->stats.collisions += txstatus & 0x0F;
1da177e4 1667 if (debug > 6)
df4511fe
JP
1668 netdev_dbg(dev, "collisions: %1.1x:%1.1x\n",
1669 (txstatus >> 3) & 0xF,
1670 txstatus & 0xF);
553e2335
ED
1671 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1672 dev->stats.tx_packets++;
1da177e4
LT
1673 }
1674 /* Free the original skb. */
1675 if (rp->tx_skbuff_dma[entry]) {
1676 pci_unmap_single(rp->pdev,
1677 rp->tx_skbuff_dma[entry],
1678 rp->tx_skbuff[entry]->len,
1679 PCI_DMA_TODEVICE);
1680 }
1681 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1682 rp->tx_skbuff[entry] = NULL;
1683 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1684 }
1685 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1686 netif_wake_queue(dev);
1687
1688 spin_unlock(&rp->lock);
1689}
1690
38f49e88
RL
1691/**
1692 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1693 * @skb: pointer to sk_buff
1694 * @data_size: used data area of the buffer including CRC
1695 *
1696 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1697 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1698 * aligned following the CRC.
1699 */
1700static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1701{
1702 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
4562b2fe 1703 return be16_to_cpup((__be16 *)trailer);
38f49e88
RL
1704}
1705
633949a1
RL
1706/* Process up to limit frames from receive ring */
1707static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1708{
1709 struct rhine_private *rp = netdev_priv(dev);
633949a1 1710 int count;
1da177e4 1711 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4
LT
1712
1713 if (debug > 4) {
df4511fe
JP
1714 netdev_dbg(dev, "%s(), entry %d status %08x\n",
1715 __func__, entry,
1716 le32_to_cpu(rp->rx_head_desc->rx_status));
1da177e4
LT
1717 }
1718
1719 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1720 for (count = 0; count < limit; ++count) {
1da177e4
LT
1721 struct rx_desc *desc = rp->rx_head_desc;
1722 u32 desc_status = le32_to_cpu(desc->rx_status);
38f49e88 1723 u32 desc_length = le32_to_cpu(desc->desc_length);
1da177e4
LT
1724 int data_size = desc_status >> 16;
1725
633949a1
RL
1726 if (desc_status & DescOwn)
1727 break;
1728
1da177e4 1729 if (debug > 4)
df4511fe
JP
1730 netdev_dbg(dev, "%s() status is %08x\n",
1731 __func__, desc_status);
633949a1 1732
1da177e4
LT
1733 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1734 if ((desc_status & RxWholePkt) != RxWholePkt) {
df4511fe
JP
1735 netdev_warn(dev,
1736 "Oversized Ethernet frame spanned multiple buffers, "
1737 "entry %#x length %d status %08x!\n",
1738 entry, data_size,
1739 desc_status);
1740 netdev_warn(dev,
1741 "Oversized Ethernet frame %p vs %p\n",
1742 rp->rx_head_desc,
1743 &rp->rx_ring[entry]);
553e2335 1744 dev->stats.rx_length_errors++;
1da177e4
LT
1745 } else if (desc_status & RxErr) {
1746 /* There was a error. */
1747 if (debug > 2)
df4511fe
JP
1748 netdev_dbg(dev, "%s() Rx error was %08x\n",
1749 __func__, desc_status);
553e2335
ED
1750 dev->stats.rx_errors++;
1751 if (desc_status & 0x0030)
1752 dev->stats.rx_length_errors++;
1753 if (desc_status & 0x0048)
1754 dev->stats.rx_fifo_errors++;
1755 if (desc_status & 0x0004)
1756 dev->stats.rx_frame_errors++;
1da177e4
LT
1757 if (desc_status & 0x0002) {
1758 /* this can also be updated outside the interrupt handler */
1759 spin_lock(&rp->lock);
553e2335 1760 dev->stats.rx_crc_errors++;
1da177e4
LT
1761 spin_unlock(&rp->lock);
1762 }
1763 }
1764 } else {
89d71a66 1765 struct sk_buff *skb = NULL;
1da177e4
LT
1766 /* Length should omit the CRC */
1767 int pkt_len = data_size - 4;
38f49e88 1768 u16 vlan_tci = 0;
1da177e4
LT
1769
1770 /* Check if the packet is long enough to accept without
1771 copying to a minimally-sized skbuff. */
89d71a66
ED
1772 if (pkt_len < rx_copybreak)
1773 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1774 if (skb) {
1da177e4
LT
1775 pci_dma_sync_single_for_cpu(rp->pdev,
1776 rp->rx_skbuff_dma[entry],
1777 rp->rx_buf_sz,
1778 PCI_DMA_FROMDEVICE);
1779
8c7b7faa 1780 skb_copy_to_linear_data(skb,
689be439 1781 rp->rx_skbuff[entry]->data,
8c7b7faa 1782 pkt_len);
1da177e4
LT
1783 skb_put(skb, pkt_len);
1784 pci_dma_sync_single_for_device(rp->pdev,
1785 rp->rx_skbuff_dma[entry],
1786 rp->rx_buf_sz,
1787 PCI_DMA_FROMDEVICE);
1788 } else {
1789 skb = rp->rx_skbuff[entry];
1790 if (skb == NULL) {
df4511fe 1791 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1da177e4
LT
1792 break;
1793 }
1794 rp->rx_skbuff[entry] = NULL;
1795 skb_put(skb, pkt_len);
1796 pci_unmap_single(rp->pdev,
1797 rp->rx_skbuff_dma[entry],
1798 rp->rx_buf_sz,
1799 PCI_DMA_FROMDEVICE);
1800 }
38f49e88
RL
1801
1802 if (unlikely(desc_length & DescTag))
1803 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1804
1da177e4 1805 skb->protocol = eth_type_trans(skb, dev);
38f49e88
RL
1806
1807 if (unlikely(desc_length & DescTag))
1808 __vlan_hwaccel_put_tag(skb, vlan_tci);
633949a1 1809 netif_receive_skb(skb);
553e2335
ED
1810 dev->stats.rx_bytes += pkt_len;
1811 dev->stats.rx_packets++;
1da177e4
LT
1812 }
1813 entry = (++rp->cur_rx) % RX_RING_SIZE;
1814 rp->rx_head_desc = &rp->rx_ring[entry];
1815 }
1816
1817 /* Refill the Rx ring buffers. */
1818 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1819 struct sk_buff *skb;
1820 entry = rp->dirty_rx % RX_RING_SIZE;
1821 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1822 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1823 rp->rx_skbuff[entry] = skb;
1824 if (skb == NULL)
1825 break; /* Better luck next round. */
1826 skb->dev = dev; /* Mark as being used by this device. */
1827 rp->rx_skbuff_dma[entry] =
689be439 1828 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1829 rp->rx_buf_sz,
1830 PCI_DMA_FROMDEVICE);
1831 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1832 }
1833 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1834 }
633949a1
RL
1835
1836 return count;
1da177e4
LT
1837}
1838
1839/*
1840 * Clears the "tally counters" for CRC errors and missed frames(?).
1841 * It has been reported that some chips need a write of 0 to clear
1842 * these, for others the counters are set to 1 when written to and
1843 * instead cleared when read. So we clear them both ways ...
1844 */
1845static inline void clear_tally_counters(void __iomem *ioaddr)
1846{
1847 iowrite32(0, ioaddr + RxMissed);
1848 ioread16(ioaddr + RxCRCErrs);
1849 ioread16(ioaddr + RxMissed);
1850}
1851
1852static void rhine_restart_tx(struct net_device *dev) {
1853 struct rhine_private *rp = netdev_priv(dev);
1854 void __iomem *ioaddr = rp->base;
1855 int entry = rp->dirty_tx % TX_RING_SIZE;
1856 u32 intr_status;
1857
1858 /*
25985edc 1859 * If new errors occurred, we need to sort them out before doing Tx.
1da177e4
LT
1860 * In that case the ISR will be back here RSN anyway.
1861 */
1862 intr_status = get_intr_status(dev);
1863
1864 if ((intr_status & IntrTxErrSummary) == 0) {
1865
1866 /* We know better than the chip where it should continue. */
1867 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1868 ioaddr + TxRingPtr);
1869
1870 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1871 ioaddr + ChipCmd);
38f49e88
RL
1872
1873 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
1874 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1875 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1876
1da177e4
LT
1877 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1878 ioaddr + ChipCmd1);
1879 IOSYNC;
1880 }
1881 else {
1882 /* This should never happen */
1883 if (debug > 1)
df4511fe
JP
1884 netdev_warn(dev, "%s() Another error occurred %08x\n",
1885 __func__, intr_status);
1da177e4
LT
1886 }
1887
1888}
1889
1890static void rhine_error(struct net_device *dev, int intr_status)
1891{
1892 struct rhine_private *rp = netdev_priv(dev);
1893 void __iomem *ioaddr = rp->base;
1894
1895 spin_lock(&rp->lock);
1896
1897 if (intr_status & IntrLinkChange)
38bb6b28 1898 rhine_check_media(dev, 0);
1da177e4 1899 if (intr_status & IntrStatsMax) {
553e2335
ED
1900 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1901 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1da177e4
LT
1902 clear_tally_counters(ioaddr);
1903 }
1904 if (intr_status & IntrTxAborted) {
1905 if (debug > 1)
df4511fe
JP
1906 netdev_info(dev, "Abort %08x, frame dropped\n",
1907 intr_status);
1da177e4
LT
1908 }
1909 if (intr_status & IntrTxUnderrun) {
1910 if (rp->tx_thresh < 0xE0)
38f49e88 1911 BYTE_REG_BITS_SET((rp->tx_thresh += 0x20), 0x80, ioaddr + TxConfig);
1da177e4 1912 if (debug > 1)
df4511fe
JP
1913 netdev_info(dev, "Transmitter underrun, Tx threshold now %02x\n",
1914 rp->tx_thresh);
1da177e4
LT
1915 }
1916 if (intr_status & IntrTxDescRace) {
1917 if (debug > 2)
df4511fe 1918 netdev_info(dev, "Tx descriptor write-back race\n");
1da177e4
LT
1919 }
1920 if ((intr_status & IntrTxError) &&
1921 (intr_status & (IntrTxAborted |
1922 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1923 if (rp->tx_thresh < 0xE0) {
38f49e88 1924 BYTE_REG_BITS_SET((rp->tx_thresh += 0x20), 0x80, ioaddr + TxConfig);
1da177e4
LT
1925 }
1926 if (debug > 1)
df4511fe
JP
1927 netdev_info(dev, "Unspecified error. Tx threshold now %02x\n",
1928 rp->tx_thresh);
1da177e4
LT
1929 }
1930 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1931 IntrTxError))
1932 rhine_restart_tx(dev);
1933
1934 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1935 IntrTxError | IntrTxAborted | IntrNormalSummary |
1936 IntrTxDescRace)) {
1937 if (debug > 1)
df4511fe
JP
1938 netdev_err(dev, "Something Wicked happened! %08x\n",
1939 intr_status);
1da177e4
LT
1940 }
1941
1942 spin_unlock(&rp->lock);
1943}
1944
1945static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1946{
1947 struct rhine_private *rp = netdev_priv(dev);
1948 void __iomem *ioaddr = rp->base;
1949 unsigned long flags;
1950
1951 spin_lock_irqsave(&rp->lock, flags);
553e2335
ED
1952 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1953 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1da177e4
LT
1954 clear_tally_counters(ioaddr);
1955 spin_unlock_irqrestore(&rp->lock, flags);
1956
553e2335 1957 return &dev->stats;
1da177e4
LT
1958}
1959
1960static void rhine_set_rx_mode(struct net_device *dev)
1961{
1962 struct rhine_private *rp = netdev_priv(dev);
1963 void __iomem *ioaddr = rp->base;
1964 u32 mc_filter[2]; /* Multicast hash filter */
38f49e88
RL
1965 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
1966 struct netdev_hw_addr *ha;
1da177e4
LT
1967
1968 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1969 rx_mode = 0x1C;
1970 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1971 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
4cd24eaf 1972 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1973 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1974 /* Too many to match, or accept all multicasts. */
1975 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1976 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
38f49e88
RL
1977 } else if (rp->pdev->revision >= VT6105M) {
1978 int i = 0;
1979 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
1980 netdev_for_each_mc_addr(ha, dev) {
1981 if (i == MCAM_SIZE)
1982 break;
1983 rhine_set_cam(ioaddr, i, ha->addr);
1984 mCAMmask |= 1 << i;
1985 i++;
1986 }
1987 rhine_set_cam_mask(ioaddr, mCAMmask);
1da177e4 1988 } else {
1da177e4 1989 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3
JP
1990 netdev_for_each_mc_addr(ha, dev) {
1991 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
1da177e4
LT
1992
1993 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1994 }
1995 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1996 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1da177e4 1997 }
38f49e88
RL
1998 /* enable/disable VLAN receive filtering */
1999 if (rp->pdev->revision >= VT6105M) {
2000 if (dev->flags & IFF_PROMISC)
2001 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2002 else
2003 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2004 }
2005 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
1da177e4
LT
2006}
2007
2008static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2009{
2010 struct rhine_private *rp = netdev_priv(dev);
2011
2012 strcpy(info->driver, DRV_NAME);
2013 strcpy(info->version, DRV_VERSION);
2014 strcpy(info->bus_info, pci_name(rp->pdev));
2015}
2016
2017static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2018{
2019 struct rhine_private *rp = netdev_priv(dev);
2020 int rc;
2021
2022 spin_lock_irq(&rp->lock);
2023 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2024 spin_unlock_irq(&rp->lock);
2025
2026 return rc;
2027}
2028
2029static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2030{
2031 struct rhine_private *rp = netdev_priv(dev);
2032 int rc;
2033
2034 spin_lock_irq(&rp->lock);
2035 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2036 spin_unlock_irq(&rp->lock);
00b428c2 2037 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
2038
2039 return rc;
2040}
2041
2042static int netdev_nway_reset(struct net_device *dev)
2043{
2044 struct rhine_private *rp = netdev_priv(dev);
2045
2046 return mii_nway_restart(&rp->mii_if);
2047}
2048
2049static u32 netdev_get_link(struct net_device *dev)
2050{
2051 struct rhine_private *rp = netdev_priv(dev);
2052
2053 return mii_link_ok(&rp->mii_if);
2054}
2055
2056static u32 netdev_get_msglevel(struct net_device *dev)
2057{
2058 return debug;
2059}
2060
2061static void netdev_set_msglevel(struct net_device *dev, u32 value)
2062{
2063 debug = value;
2064}
2065
2066static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2067{
2068 struct rhine_private *rp = netdev_priv(dev);
2069
2070 if (!(rp->quirks & rqWOL))
2071 return;
2072
2073 spin_lock_irq(&rp->lock);
2074 wol->supported = WAKE_PHY | WAKE_MAGIC |
2075 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2076 wol->wolopts = rp->wolopts;
2077 spin_unlock_irq(&rp->lock);
2078}
2079
2080static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2081{
2082 struct rhine_private *rp = netdev_priv(dev);
2083 u32 support = WAKE_PHY | WAKE_MAGIC |
2084 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2085
2086 if (!(rp->quirks & rqWOL))
2087 return -EINVAL;
2088
2089 if (wol->wolopts & ~support)
2090 return -EINVAL;
2091
2092 spin_lock_irq(&rp->lock);
2093 rp->wolopts = wol->wolopts;
2094 spin_unlock_irq(&rp->lock);
2095
2096 return 0;
2097}
2098
7282d491 2099static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
2100 .get_drvinfo = netdev_get_drvinfo,
2101 .get_settings = netdev_get_settings,
2102 .set_settings = netdev_set_settings,
2103 .nway_reset = netdev_nway_reset,
2104 .get_link = netdev_get_link,
2105 .get_msglevel = netdev_get_msglevel,
2106 .set_msglevel = netdev_set_msglevel,
2107 .get_wol = rhine_get_wol,
2108 .set_wol = rhine_set_wol,
1da177e4
LT
2109};
2110
2111static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2112{
2113 struct rhine_private *rp = netdev_priv(dev);
2114 int rc;
2115
2116 if (!netif_running(dev))
2117 return -EINVAL;
2118
2119 spin_lock_irq(&rp->lock);
2120 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2121 spin_unlock_irq(&rp->lock);
00b428c2 2122 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
2123
2124 return rc;
2125}
2126
2127static int rhine_close(struct net_device *dev)
2128{
2129 struct rhine_private *rp = netdev_priv(dev);
2130 void __iomem *ioaddr = rp->base;
2131
bea3348e 2132 napi_disable(&rp->napi);
c0d7a021
JP
2133 cancel_work_sync(&rp->reset_task);
2134 netif_stop_queue(dev);
2135
2136 spin_lock_irq(&rp->lock);
1da177e4
LT
2137
2138 if (debug > 1)
df4511fe
JP
2139 netdev_dbg(dev, "Shutting down ethercard, status was %04x\n",
2140 ioread16(ioaddr + ChipCmd));
1da177e4
LT
2141
2142 /* Switch to loopback mode to avoid hardware races. */
2143 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2144
2145 /* Disable interrupts by clearing the interrupt mask. */
2146 iowrite16(0x0000, ioaddr + IntrEnable);
2147
2148 /* Stop the chip's Tx and Rx processes. */
2149 iowrite16(CmdStop, ioaddr + ChipCmd);
2150
2151 spin_unlock_irq(&rp->lock);
2152
2153 free_irq(rp->pdev->irq, dev);
2154 free_rbufs(dev);
2155 free_tbufs(dev);
2156 free_ring(dev);
2157
2158 return 0;
2159}
2160
2161
2162static void __devexit rhine_remove_one(struct pci_dev *pdev)
2163{
2164 struct net_device *dev = pci_get_drvdata(pdev);
2165 struct rhine_private *rp = netdev_priv(dev);
2166
2167 unregister_netdev(dev);
2168
2169 pci_iounmap(pdev, rp->base);
2170 pci_release_regions(pdev);
2171
2172 free_netdev(dev);
2173 pci_disable_device(pdev);
2174 pci_set_drvdata(pdev, NULL);
2175}
2176
d18c3db5 2177static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 2178{
1da177e4
LT
2179 struct net_device *dev = pci_get_drvdata(pdev);
2180 struct rhine_private *rp = netdev_priv(dev);
2181 void __iomem *ioaddr = rp->base;
2182
2183 if (!(rp->quirks & rqWOL))
2184 return; /* Nothing to do for non-WOL adapters */
2185
2186 rhine_power_init(dev);
2187
2188 /* Make sure we use pattern 0, 1 and not 4, 5 */
2189 if (rp->quirks & rq6patterns)
f11cf25e 2190 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4
LT
2191
2192 if (rp->wolopts & WAKE_MAGIC) {
2193 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2194 /*
2195 * Turn EEPROM-controlled wake-up back on -- some hardware may
2196 * not cooperate otherwise.
2197 */
2198 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2199 }
2200
2201 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2202 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2203
2204 if (rp->wolopts & WAKE_PHY)
2205 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2206
2207 if (rp->wolopts & WAKE_UCAST)
2208 iowrite8(WOLucast, ioaddr + WOLcrSet);
2209
2210 if (rp->wolopts) {
2211 /* Enable legacy WOL (for old motherboards) */
2212 iowrite8(0x01, ioaddr + PwcfgSet);
2213 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2214 }
2215
2216 /* Hit power state D3 (sleep) */
b933b4d9
RL
2217 if (!avoid_D3)
2218 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4
LT
2219
2220 /* TODO: Check use of pci_enable_wake() */
2221
2222}
2223
2224#ifdef CONFIG_PM
2225static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
2226{
2227 struct net_device *dev = pci_get_drvdata(pdev);
2228 struct rhine_private *rp = netdev_priv(dev);
2229 unsigned long flags;
2230
2231 if (!netif_running(dev))
2232 return 0;
2233
bea3348e 2234 napi_disable(&rp->napi);
32b0f53e 2235
1da177e4
LT
2236 netif_device_detach(dev);
2237 pci_save_state(pdev);
2238
2239 spin_lock_irqsave(&rp->lock, flags);
d18c3db5 2240 rhine_shutdown(pdev);
1da177e4
LT
2241 spin_unlock_irqrestore(&rp->lock, flags);
2242
2243 free_irq(dev->irq, dev);
2244 return 0;
2245}
2246
2247static int rhine_resume(struct pci_dev *pdev)
2248{
2249 struct net_device *dev = pci_get_drvdata(pdev);
2250 struct rhine_private *rp = netdev_priv(dev);
2251 unsigned long flags;
2252 int ret;
2253
2254 if (!netif_running(dev))
2255 return 0;
2256
38f49e88 2257 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
df4511fe 2258 netdev_err(dev, "request_irq failed\n");
1da177e4
LT
2259
2260 ret = pci_set_power_state(pdev, PCI_D0);
2261 if (debug > 1)
df4511fe
JP
2262 netdev_info(dev, "Entering power state D0 %s (%d)\n",
2263 ret ? "failed" : "succeeded", ret);
1da177e4
LT
2264
2265 pci_restore_state(pdev);
2266
2267 spin_lock_irqsave(&rp->lock, flags);
2268#ifdef USE_MMIO
2269 enable_mmio(rp->pioaddr, rp->quirks);
2270#endif
2271 rhine_power_init(dev);
2272 free_tbufs(dev);
2273 free_rbufs(dev);
2274 alloc_tbufs(dev);
2275 alloc_rbufs(dev);
2276 init_registers(dev);
2277 spin_unlock_irqrestore(&rp->lock, flags);
2278
2279 netif_device_attach(dev);
2280
2281 return 0;
2282}
2283#endif /* CONFIG_PM */
2284
2285static struct pci_driver rhine_driver = {
2286 .name = DRV_NAME,
2287 .id_table = rhine_pci_tbl,
2288 .probe = rhine_init_one,
2289 .remove = __devexit_p(rhine_remove_one),
2290#ifdef CONFIG_PM
2291 .suspend = rhine_suspend,
2292 .resume = rhine_resume,
2293#endif /* CONFIG_PM */
d18c3db5 2294 .shutdown = rhine_shutdown,
1da177e4
LT
2295};
2296
e84df485
RL
2297static struct dmi_system_id __initdata rhine_dmi_table[] = {
2298 {
2299 .ident = "EPIA-M",
2300 .matches = {
2301 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2302 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2303 },
2304 },
2305 {
2306 .ident = "KV7",
2307 .matches = {
2308 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2309 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2310 },
2311 },
2312 { NULL }
2313};
1da177e4
LT
2314
2315static int __init rhine_init(void)
2316{
2317/* when a module, this is printed whether or not devices are found in probe */
2318#ifdef MODULE
df4511fe 2319 pr_info("%s\n", version);
1da177e4 2320#endif
e84df485
RL
2321 if (dmi_check_system(rhine_dmi_table)) {
2322 /* these BIOSes fail at PXE boot if chip is in D3 */
2323 avoid_D3 = 1;
df4511fe 2324 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
e84df485
RL
2325 }
2326 else if (avoid_D3)
df4511fe 2327 pr_info("avoid_D3 set\n");
e84df485 2328
29917620 2329 return pci_register_driver(&rhine_driver);
1da177e4
LT
2330}
2331
2332
2333static void __exit rhine_cleanup(void)
2334{
2335 pci_unregister_driver(&rhine_driver);
2336}
2337
2338
2339module_init(rhine_init);
2340module_exit(rhine_cleanup);
This page took 0.952791 seconds and 5 git commands to generate.