Merge remote-tracking branch 'iommu/next'
[deliverable/linux.git] / drivers / perf / arm_pmu.c
CommitLineData
1b8873a0
JI
1#undef DEBUG
2
3/*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
43eab878 7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
796d1295 8 *
1b8873a0 9 * This code is based on the sparc64 perf event code, which is in turn based
d39976f0 10 * on the x86 code.
1b8873a0
JI
11 */
12#define pr_fmt(fmt) "hw perfevents: " fmt
13
74cf0bc7 14#include <linux/bitmap.h>
cc88116d 15#include <linux/cpumask.h>
da4e4f18 16#include <linux/cpu_pm.h>
74cf0bc7 17#include <linux/export.h>
1b8873a0 18#include <linux/kernel.h>
bc1e3c46 19#include <linux/of_device.h>
fa8ad788 20#include <linux/perf/arm_pmu.h>
49c006b9 21#include <linux/platform_device.h>
74cf0bc7
MR
22#include <linux/slab.h>
23#include <linux/spinlock.h>
bbd64559
SB
24#include <linux/irq.h>
25#include <linux/irqdesc.h>
1b8873a0 26
74cf0bc7 27#include <asm/cputype.h>
1b8873a0 28#include <asm/irq_regs.h>
1b8873a0 29
1b8873a0 30static int
e1f431b5
MR
31armpmu_map_cache_event(const unsigned (*cache_map)
32 [PERF_COUNT_HW_CACHE_MAX]
33 [PERF_COUNT_HW_CACHE_OP_MAX]
34 [PERF_COUNT_HW_CACHE_RESULT_MAX],
35 u64 config)
1b8873a0
JI
36{
37 unsigned int cache_type, cache_op, cache_result, ret;
38
39 cache_type = (config >> 0) & 0xff;
40 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
41 return -EINVAL;
42
43 cache_op = (config >> 8) & 0xff;
44 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
45 return -EINVAL;
46
47 cache_result = (config >> 16) & 0xff;
48 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
49 return -EINVAL;
50
e1f431b5 51 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
1b8873a0
JI
52
53 if (ret == CACHE_OP_UNSUPPORTED)
54 return -ENOENT;
55
56 return ret;
57}
58
84fee97a 59static int
6dbc0029 60armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
84fee97a 61{
d9f96635
SB
62 int mapping;
63
64 if (config >= PERF_COUNT_HW_MAX)
65 return -EINVAL;
66
67 mapping = (*event_map)[config];
e1f431b5 68 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
84fee97a
WD
69}
70
71static int
e1f431b5 72armpmu_map_raw_event(u32 raw_event_mask, u64 config)
84fee97a 73{
e1f431b5
MR
74 return (int)(config & raw_event_mask);
75}
76
6dbc0029
WD
77int
78armpmu_map_event(struct perf_event *event,
79 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
80 const unsigned (*cache_map)
81 [PERF_COUNT_HW_CACHE_MAX]
82 [PERF_COUNT_HW_CACHE_OP_MAX]
83 [PERF_COUNT_HW_CACHE_RESULT_MAX],
84 u32 raw_event_mask)
e1f431b5
MR
85{
86 u64 config = event->attr.config;
67b4305a 87 int type = event->attr.type;
e1f431b5 88
67b4305a
MR
89 if (type == event->pmu->type)
90 return armpmu_map_raw_event(raw_event_mask, config);
91
92 switch (type) {
e1f431b5 93 case PERF_TYPE_HARDWARE:
6dbc0029 94 return armpmu_map_hw_event(event_map, config);
e1f431b5
MR
95 case PERF_TYPE_HW_CACHE:
96 return armpmu_map_cache_event(cache_map, config);
97 case PERF_TYPE_RAW:
98 return armpmu_map_raw_event(raw_event_mask, config);
99 }
100
101 return -ENOENT;
84fee97a
WD
102}
103
ed6f2a52 104int armpmu_event_set_period(struct perf_event *event)
1b8873a0 105{
8a16b34e 106 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
ed6f2a52 107 struct hw_perf_event *hwc = &event->hw;
e7850595 108 s64 left = local64_read(&hwc->period_left);
1b8873a0
JI
109 s64 period = hwc->sample_period;
110 int ret = 0;
111
112 if (unlikely(left <= -period)) {
113 left = period;
e7850595 114 local64_set(&hwc->period_left, left);
1b8873a0
JI
115 hwc->last_period = period;
116 ret = 1;
117 }
118
119 if (unlikely(left <= 0)) {
120 left += period;
e7850595 121 local64_set(&hwc->period_left, left);
1b8873a0
JI
122 hwc->last_period = period;
123 ret = 1;
124 }
125
2d9ed740
DT
126 /*
127 * Limit the maximum period to prevent the counter value
128 * from overtaking the one we are about to program. In
129 * effect we are reducing max_period to account for
130 * interrupt latency (and we are being very conservative).
131 */
132 if (left > (armpmu->max_period >> 1))
133 left = armpmu->max_period >> 1;
1b8873a0 134
e7850595 135 local64_set(&hwc->prev_count, (u64)-left);
1b8873a0 136
ed6f2a52 137 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
1b8873a0
JI
138
139 perf_event_update_userpage(event);
140
141 return ret;
142}
143
ed6f2a52 144u64 armpmu_event_update(struct perf_event *event)
1b8873a0 145{
8a16b34e 146 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
ed6f2a52 147 struct hw_perf_event *hwc = &event->hw;
a737823d 148 u64 delta, prev_raw_count, new_raw_count;
1b8873a0
JI
149
150again:
e7850595 151 prev_raw_count = local64_read(&hwc->prev_count);
ed6f2a52 152 new_raw_count = armpmu->read_counter(event);
1b8873a0 153
e7850595 154 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
1b8873a0
JI
155 new_raw_count) != prev_raw_count)
156 goto again;
157
57273471 158 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
1b8873a0 159
e7850595
PZ
160 local64_add(delta, &event->count);
161 local64_sub(delta, &hwc->period_left);
1b8873a0
JI
162
163 return new_raw_count;
164}
165
166static void
a4eaf7f1 167armpmu_read(struct perf_event *event)
1b8873a0 168{
ed6f2a52 169 armpmu_event_update(event);
1b8873a0
JI
170}
171
172static void
a4eaf7f1 173armpmu_stop(struct perf_event *event, int flags)
1b8873a0 174{
8a16b34e 175 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0
JI
176 struct hw_perf_event *hwc = &event->hw;
177
a4eaf7f1
PZ
178 /*
179 * ARM pmu always has to update the counter, so ignore
180 * PERF_EF_UPDATE, see comments in armpmu_start().
181 */
182 if (!(hwc->state & PERF_HES_STOPPED)) {
ed6f2a52
SK
183 armpmu->disable(event);
184 armpmu_event_update(event);
a4eaf7f1
PZ
185 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
186 }
1b8873a0
JI
187}
188
ed6f2a52 189static void armpmu_start(struct perf_event *event, int flags)
1b8873a0 190{
8a16b34e 191 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0
JI
192 struct hw_perf_event *hwc = &event->hw;
193
a4eaf7f1
PZ
194 /*
195 * ARM pmu always has to reprogram the period, so ignore
196 * PERF_EF_RELOAD, see the comment below.
197 */
198 if (flags & PERF_EF_RELOAD)
199 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
200
201 hwc->state = 0;
1b8873a0
JI
202 /*
203 * Set the period again. Some counters can't be stopped, so when we
a4eaf7f1 204 * were stopped we simply disabled the IRQ source and the counter
1b8873a0
JI
205 * may have been left counting. If we don't do this step then we may
206 * get an interrupt too soon or *way* too late if the overflow has
207 * happened since disabling.
208 */
ed6f2a52
SK
209 armpmu_event_set_period(event);
210 armpmu->enable(event);
1b8873a0
JI
211}
212
a4eaf7f1
PZ
213static void
214armpmu_del(struct perf_event *event, int flags)
215{
8a16b34e 216 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
11679250 217 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
a4eaf7f1
PZ
218 struct hw_perf_event *hwc = &event->hw;
219 int idx = hwc->idx;
220
a4eaf7f1 221 armpmu_stop(event, PERF_EF_UPDATE);
8be3f9a2
MR
222 hw_events->events[idx] = NULL;
223 clear_bit(idx, hw_events->used_mask);
eab443ef
SB
224 if (armpmu->clear_event_idx)
225 armpmu->clear_event_idx(hw_events, event);
a4eaf7f1
PZ
226
227 perf_event_update_userpage(event);
228}
229
1b8873a0 230static int
a4eaf7f1 231armpmu_add(struct perf_event *event, int flags)
1b8873a0 232{
8a16b34e 233 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
11679250 234 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
1b8873a0
JI
235 struct hw_perf_event *hwc = &event->hw;
236 int idx;
237 int err = 0;
238
cc88116d
MR
239 /* An event following a process won't be stopped earlier */
240 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
241 return -ENOENT;
242
33696fc0 243 perf_pmu_disable(event->pmu);
24cd7f54 244
1b8873a0 245 /* If we don't have a space for the counter then finish early. */
ed6f2a52 246 idx = armpmu->get_event_idx(hw_events, event);
1b8873a0
JI
247 if (idx < 0) {
248 err = idx;
249 goto out;
250 }
251
252 /*
253 * If there is an event in the counter we are going to use then make
254 * sure it is disabled.
255 */
256 event->hw.idx = idx;
ed6f2a52 257 armpmu->disable(event);
8be3f9a2 258 hw_events->events[idx] = event;
1b8873a0 259
a4eaf7f1
PZ
260 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
261 if (flags & PERF_EF_START)
262 armpmu_start(event, PERF_EF_RELOAD);
1b8873a0
JI
263
264 /* Propagate our changes to the userspace mapping. */
265 perf_event_update_userpage(event);
266
267out:
33696fc0 268 perf_pmu_enable(event->pmu);
1b8873a0
JI
269 return err;
270}
271
1b8873a0 272static int
e429817b
SP
273validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
274 struct perf_event *event)
1b8873a0 275{
e429817b 276 struct arm_pmu *armpmu;
1b8873a0 277
c95eb318
WD
278 if (is_software_event(event))
279 return 1;
280
e429817b
SP
281 /*
282 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283 * core perf code won't check that the pmu->ctx == leader->ctx
284 * until after pmu->event_init(event).
285 */
286 if (event->pmu != pmu)
287 return 0;
288
2dfcb802 289 if (event->state < PERF_EVENT_STATE_OFF)
cb2d8b34
WD
290 return 1;
291
292 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
65b4711f 293 return 1;
1b8873a0 294
e429817b 295 armpmu = to_arm_pmu(event->pmu);
ed6f2a52 296 return armpmu->get_event_idx(hw_events, event) >= 0;
1b8873a0
JI
297}
298
299static int
300validate_group(struct perf_event *event)
301{
302 struct perf_event *sibling, *leader = event->group_leader;
8be3f9a2 303 struct pmu_hw_events fake_pmu;
1b8873a0 304
bce34d14
WD
305 /*
306 * Initialise the fake PMU. We only need to populate the
307 * used_mask for the purposes of validation.
308 */
a4560846 309 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
1b8873a0 310
e429817b 311 if (!validate_event(event->pmu, &fake_pmu, leader))
aa2bc1ad 312 return -EINVAL;
1b8873a0
JI
313
314 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
e429817b 315 if (!validate_event(event->pmu, &fake_pmu, sibling))
aa2bc1ad 316 return -EINVAL;
1b8873a0
JI
317 }
318
e429817b 319 if (!validate_event(event->pmu, &fake_pmu, event))
aa2bc1ad 320 return -EINVAL;
1b8873a0
JI
321
322 return 0;
323}
324
051f1b13 325static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
0e25a5c9 326{
bbd64559
SB
327 struct arm_pmu *armpmu;
328 struct platform_device *plat_device;
329 struct arm_pmu_platdata *plat;
5f5092e7
WD
330 int ret;
331 u64 start_clock, finish_clock;
bbd64559 332
5ebd9200
MR
333 /*
334 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
335 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
336 * do any necessary shifting, we just need to perform the first
337 * dereference.
338 */
339 armpmu = *(void **)dev;
bbd64559
SB
340 plat_device = armpmu->plat_device;
341 plat = dev_get_platdata(&plat_device->dev);
0e25a5c9 342
5f5092e7 343 start_clock = sched_clock();
051f1b13 344 if (plat && plat->handle_irq)
5ebd9200 345 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
051f1b13 346 else
5ebd9200 347 ret = armpmu->handle_irq(irq, armpmu);
5f5092e7
WD
348 finish_clock = sched_clock();
349
350 perf_sample_event_took(finish_clock - start_clock);
351 return ret;
0e25a5c9
RV
352}
353
0b390e21 354static void
8a16b34e 355armpmu_release_hardware(struct arm_pmu *armpmu)
0b390e21 356{
ed6f2a52 357 armpmu->free_irq(armpmu);
0b390e21
WD
358}
359
1b8873a0 360static int
8a16b34e 361armpmu_reserve_hardware(struct arm_pmu *armpmu)
1b8873a0 362{
ed61f985 363 int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
051f1b13
SK
364 if (err) {
365 armpmu_release_hardware(armpmu);
366 return err;
49c006b9 367 }
1b8873a0 368
0b390e21 369 return 0;
1b8873a0
JI
370}
371
1b8873a0
JI
372static void
373hw_perf_event_destroy(struct perf_event *event)
374{
8a16b34e 375 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
03b7898d
MR
376 atomic_t *active_events = &armpmu->active_events;
377 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
378
379 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
8a16b34e 380 armpmu_release_hardware(armpmu);
03b7898d 381 mutex_unlock(pmu_reserve_mutex);
1b8873a0
JI
382 }
383}
384
05d22fde
WD
385static int
386event_requires_mode_exclusion(struct perf_event_attr *attr)
387{
388 return attr->exclude_idle || attr->exclude_user ||
389 attr->exclude_kernel || attr->exclude_hv;
390}
391
1b8873a0
JI
392static int
393__hw_perf_event_init(struct perf_event *event)
394{
8a16b34e 395 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0 396 struct hw_perf_event *hwc = &event->hw;
9dcbf466 397 int mapping;
1b8873a0 398
e1f431b5 399 mapping = armpmu->map_event(event);
1b8873a0
JI
400
401 if (mapping < 0) {
402 pr_debug("event %x:%llx not supported\n", event->attr.type,
403 event->attr.config);
404 return mapping;
405 }
406
05d22fde
WD
407 /*
408 * We don't assign an index until we actually place the event onto
409 * hardware. Use -1 to signify that we haven't decided where to put it
410 * yet. For SMP systems, each core has it's own PMU so we can't do any
411 * clever allocation or constraints checking at this point.
412 */
413 hwc->idx = -1;
414 hwc->config_base = 0;
415 hwc->config = 0;
416 hwc->event_base = 0;
417
1b8873a0
JI
418 /*
419 * Check whether we need to exclude the counter from certain modes.
1b8873a0 420 */
05d22fde
WD
421 if ((!armpmu->set_event_filter ||
422 armpmu->set_event_filter(hwc, &event->attr)) &&
423 event_requires_mode_exclusion(&event->attr)) {
1b8873a0
JI
424 pr_debug("ARM performance counters do not support "
425 "mode exclusion\n");
fdeb8e35 426 return -EOPNOTSUPP;
1b8873a0
JI
427 }
428
429 /*
05d22fde 430 * Store the event encoding into the config_base field.
1b8873a0 431 */
05d22fde 432 hwc->config_base |= (unsigned long)mapping;
1b8873a0 433
edcb4d3c 434 if (!is_sampling_event(event)) {
57273471
WD
435 /*
436 * For non-sampling runs, limit the sample_period to half
437 * of the counter width. That way, the new counter value
438 * is far less likely to overtake the previous one unless
439 * you have some serious IRQ latency issues.
440 */
441 hwc->sample_period = armpmu->max_period >> 1;
1b8873a0 442 hwc->last_period = hwc->sample_period;
e7850595 443 local64_set(&hwc->period_left, hwc->sample_period);
1b8873a0
JI
444 }
445
1b8873a0 446 if (event->group_leader != event) {
e595ede6 447 if (validate_group(event) != 0)
1b8873a0
JI
448 return -EINVAL;
449 }
450
9dcbf466 451 return 0;
1b8873a0
JI
452}
453
b0a873eb 454static int armpmu_event_init(struct perf_event *event)
1b8873a0 455{
8a16b34e 456 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0 457 int err = 0;
03b7898d 458 atomic_t *active_events = &armpmu->active_events;
1b8873a0 459
cc88116d
MR
460 /*
461 * Reject CPU-affine events for CPUs that are of a different class to
462 * that which this PMU handles. Process-following events (where
463 * event->cpu == -1) can be migrated between CPUs, and thus we have to
464 * reject them later (in armpmu_add) if they're scheduled on a
465 * different class of CPU.
466 */
467 if (event->cpu != -1 &&
468 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
469 return -ENOENT;
470
2481c5fa
SE
471 /* does not support taken branch sampling */
472 if (has_branch_stack(event))
473 return -EOPNOTSUPP;
474
e1f431b5 475 if (armpmu->map_event(event) == -ENOENT)
b0a873eb 476 return -ENOENT;
b0a873eb 477
1b8873a0
JI
478 event->destroy = hw_perf_event_destroy;
479
03b7898d
MR
480 if (!atomic_inc_not_zero(active_events)) {
481 mutex_lock(&armpmu->reserve_mutex);
482 if (atomic_read(active_events) == 0)
8a16b34e 483 err = armpmu_reserve_hardware(armpmu);
1b8873a0
JI
484
485 if (!err)
03b7898d
MR
486 atomic_inc(active_events);
487 mutex_unlock(&armpmu->reserve_mutex);
1b8873a0
JI
488 }
489
490 if (err)
b0a873eb 491 return err;
1b8873a0
JI
492
493 err = __hw_perf_event_init(event);
494 if (err)
495 hw_perf_event_destroy(event);
496
b0a873eb 497 return err;
1b8873a0
JI
498}
499
a4eaf7f1 500static void armpmu_enable(struct pmu *pmu)
1b8873a0 501{
8be3f9a2 502 struct arm_pmu *armpmu = to_arm_pmu(pmu);
11679250 503 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
7325eaec 504 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
1b8873a0 505
cc88116d
MR
506 /* For task-bound events we may be called on other CPUs */
507 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
508 return;
509
f4f38430 510 if (enabled)
ed6f2a52 511 armpmu->start(armpmu);
1b8873a0
JI
512}
513
a4eaf7f1 514static void armpmu_disable(struct pmu *pmu)
1b8873a0 515{
8a16b34e 516 struct arm_pmu *armpmu = to_arm_pmu(pmu);
cc88116d
MR
517
518 /* For task-bound events we may be called on other CPUs */
519 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
520 return;
521
ed6f2a52 522 armpmu->stop(armpmu);
1b8873a0
JI
523}
524
c904e32a
MR
525/*
526 * In heterogeneous systems, events are specific to a particular
527 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
528 * the same microarchitecture.
529 */
530static int armpmu_filter_match(struct perf_event *event)
531{
532 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
533 unsigned int cpu = smp_processor_id();
534 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
535}
536
48538b58
MR
537static ssize_t armpmu_cpumask_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539{
540 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
541 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
542}
543
544static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
545
546static struct attribute *armpmu_common_attrs[] = {
547 &dev_attr_cpus.attr,
548 NULL,
549};
550
551static struct attribute_group armpmu_common_attr_group = {
552 .attrs = armpmu_common_attrs,
553};
554
44d6b1fc 555static void armpmu_init(struct arm_pmu *armpmu)
03b7898d
MR
556{
557 atomic_set(&armpmu->active_events, 0);
558 mutex_init(&armpmu->reserve_mutex);
8a16b34e
MR
559
560 armpmu->pmu = (struct pmu) {
561 .pmu_enable = armpmu_enable,
562 .pmu_disable = armpmu_disable,
563 .event_init = armpmu_event_init,
564 .add = armpmu_add,
565 .del = armpmu_del,
566 .start = armpmu_start,
567 .stop = armpmu_stop,
568 .read = armpmu_read,
c904e32a 569 .filter_match = armpmu_filter_match,
1589680d 570 .attr_groups = armpmu->attr_groups,
8a16b34e 571 };
48538b58
MR
572 armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
573 &armpmu_common_attr_group;
8a16b34e
MR
574}
575
74cf0bc7
MR
576/* Set at runtime when we know what CPU type we are. */
577static struct arm_pmu *__oprofile_cpu_pmu;
578
579/*
580 * Despite the names, these two functions are CPU-specific and are used
581 * by the OProfile/perf code.
582 */
583const char *perf_pmu_name(void)
584{
585 if (!__oprofile_cpu_pmu)
586 return NULL;
587
588 return __oprofile_cpu_pmu->name;
589}
590EXPORT_SYMBOL_GPL(perf_pmu_name);
591
592int perf_num_counters(void)
593{
594 int max_events = 0;
595
596 if (__oprofile_cpu_pmu != NULL)
597 max_events = __oprofile_cpu_pmu->num_events;
598
599 return max_events;
600}
601EXPORT_SYMBOL_GPL(perf_num_counters);
602
603static void cpu_pmu_enable_percpu_irq(void *data)
604{
605 int irq = *(int *)data;
606
607 enable_percpu_irq(irq, IRQ_TYPE_NONE);
608}
609
610static void cpu_pmu_disable_percpu_irq(void *data)
611{
612 int irq = *(int *)data;
613
614 disable_percpu_irq(irq);
615}
616
617static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
618{
619 int i, irq, irqs;
620 struct platform_device *pmu_device = cpu_pmu->plat_device;
621 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
622
623 irqs = min(pmu_device->num_resources, num_possible_cpus());
624
625 irq = platform_get_irq(pmu_device, 0);
282b8796 626 if (irq > 0 && irq_is_percpu(irq)) {
19a469a5
MZ
627 on_each_cpu_mask(&cpu_pmu->supported_cpus,
628 cpu_pmu_disable_percpu_irq, &irq, 1);
74cf0bc7
MR
629 free_percpu_irq(irq, &hw_events->percpu_pmu);
630 } else {
631 for (i = 0; i < irqs; ++i) {
632 int cpu = i;
633
634 if (cpu_pmu->irq_affinity)
635 cpu = cpu_pmu->irq_affinity[i];
636
637 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
638 continue;
639 irq = platform_get_irq(pmu_device, i);
282b8796 640 if (irq > 0)
74cf0bc7
MR
641 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
642 }
643 }
644}
645
646static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
647{
648 int i, err, irq, irqs;
649 struct platform_device *pmu_device = cpu_pmu->plat_device;
650 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
651
652 if (!pmu_device)
653 return -ENODEV;
654
655 irqs = min(pmu_device->num_resources, num_possible_cpus());
656 if (irqs < 1) {
657 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
658 return 0;
659 }
660
661 irq = platform_get_irq(pmu_device, 0);
282b8796 662 if (irq > 0 && irq_is_percpu(irq)) {
74cf0bc7
MR
663 err = request_percpu_irq(irq, handler, "arm-pmu",
664 &hw_events->percpu_pmu);
665 if (err) {
666 pr_err("unable to request IRQ%d for ARM PMU counters\n",
667 irq);
668 return err;
669 }
19a469a5
MZ
670
671 on_each_cpu_mask(&cpu_pmu->supported_cpus,
672 cpu_pmu_enable_percpu_irq, &irq, 1);
74cf0bc7
MR
673 } else {
674 for (i = 0; i < irqs; ++i) {
675 int cpu = i;
676
677 err = 0;
678 irq = platform_get_irq(pmu_device, i);
679 if (irq < 0)
680 continue;
681
682 if (cpu_pmu->irq_affinity)
683 cpu = cpu_pmu->irq_affinity[i];
684
685 /*
686 * If we have a single PMU interrupt that we can't shift,
687 * assume that we're running on a uniprocessor machine and
688 * continue. Otherwise, continue without this interrupt.
689 */
690 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
691 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
692 irq, cpu);
693 continue;
694 }
695
696 err = request_irq(irq, handler,
697 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
698 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
699 if (err) {
700 pr_err("unable to request IRQ%d for ARM PMU counters\n",
701 irq);
702 return err;
703 }
704
705 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
706 }
707 }
708
709 return 0;
710}
711
a026bb12 712static DEFINE_SPINLOCK(arm_pmu_lock);
37b502f1
SAS
713static LIST_HEAD(arm_pmu_list);
714
74cf0bc7
MR
715/*
716 * PMU hardware loses all context when a CPU goes offline.
717 * When a CPU is hotplugged back in, since some hardware registers are
718 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
719 * junk values out of them.
720 */
7d88eb69 721static int arm_perf_starting_cpu(unsigned int cpu)
74cf0bc7 722{
37b502f1 723 struct arm_pmu *pmu;
74cf0bc7 724
a026bb12 725 spin_lock(&arm_pmu_lock);
37b502f1 726 list_for_each_entry(pmu, &arm_pmu_list, entry) {
74cf0bc7 727
37b502f1
SAS
728 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
729 continue;
730 if (pmu->reset)
731 pmu->reset(pmu);
732 }
a026bb12 733 spin_unlock(&arm_pmu_lock);
7d88eb69 734 return 0;
74cf0bc7
MR
735}
736
da4e4f18
LP
737#ifdef CONFIG_CPU_PM
738static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
739{
740 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
741 struct perf_event *event;
742 int idx;
743
744 for (idx = 0; idx < armpmu->num_events; idx++) {
745 /*
746 * If the counter is not used skip it, there is no
747 * need of stopping/restarting it.
748 */
749 if (!test_bit(idx, hw_events->used_mask))
750 continue;
751
752 event = hw_events->events[idx];
753
754 switch (cmd) {
755 case CPU_PM_ENTER:
756 /*
757 * Stop and update the counter
758 */
759 armpmu_stop(event, PERF_EF_UPDATE);
760 break;
761 case CPU_PM_EXIT:
762 case CPU_PM_ENTER_FAILED:
cbcc72e0
LP
763 /*
764 * Restore and enable the counter.
765 * armpmu_start() indirectly calls
766 *
767 * perf_event_update_userpage()
768 *
769 * that requires RCU read locking to be functional,
770 * wrap the call within RCU_NONIDLE to make the
771 * RCU subsystem aware this cpu is not idle from
772 * an RCU perspective for the armpmu_start() call
773 * duration.
774 */
775 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
da4e4f18
LP
776 break;
777 default:
778 break;
779 }
780 }
781}
782
783static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
784 void *v)
785{
786 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
787 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
788 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
789
790 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
791 return NOTIFY_DONE;
792
793 /*
794 * Always reset the PMU registers on power-up even if
795 * there are no events running.
796 */
797 if (cmd == CPU_PM_EXIT && armpmu->reset)
798 armpmu->reset(armpmu);
799
800 if (!enabled)
801 return NOTIFY_OK;
802
803 switch (cmd) {
804 case CPU_PM_ENTER:
805 armpmu->stop(armpmu);
806 cpu_pm_pmu_setup(armpmu, cmd);
807 break;
808 case CPU_PM_EXIT:
809 cpu_pm_pmu_setup(armpmu, cmd);
810 case CPU_PM_ENTER_FAILED:
811 armpmu->start(armpmu);
812 break;
813 default:
814 return NOTIFY_DONE;
815 }
816
817 return NOTIFY_OK;
818}
819
820static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
821{
822 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
823 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
824}
825
826static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
827{
828 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
829}
830#else
831static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
832static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
833#endif
834
74cf0bc7
MR
835static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
836{
837 int err;
838 int cpu;
839 struct pmu_hw_events __percpu *cpu_hw_events;
840
841 cpu_hw_events = alloc_percpu(struct pmu_hw_events);
842 if (!cpu_hw_events)
843 return -ENOMEM;
844
a026bb12 845 spin_lock(&arm_pmu_lock);
37b502f1 846 list_add_tail(&cpu_pmu->entry, &arm_pmu_list);
a026bb12 847 spin_unlock(&arm_pmu_lock);
74cf0bc7 848
da4e4f18
LP
849 err = cpu_pm_pmu_register(cpu_pmu);
850 if (err)
851 goto out_unregister;
852
74cf0bc7
MR
853 for_each_possible_cpu(cpu) {
854 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
855 raw_spin_lock_init(&events->pmu_lock);
856 events->percpu_pmu = cpu_pmu;
857 }
858
859 cpu_pmu->hw_events = cpu_hw_events;
860 cpu_pmu->request_irq = cpu_pmu_request_irq;
861 cpu_pmu->free_irq = cpu_pmu_free_irq;
862
863 /* Ensure the PMU has sane values out of reset. */
864 if (cpu_pmu->reset)
865 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
866 cpu_pmu, 1);
867
868 /* If no interrupts available, set the corresponding capability flag */
869 if (!platform_get_irq(cpu_pmu->plat_device, 0))
870 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
871
5101ef20
MR
872 /*
873 * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
874 * big.LITTLE). This is not an uncore PMU, and we have taken ctx
875 * sharing into account (e.g. with our pmu::filter_match callback and
876 * pmu::event_init group validation).
877 */
878 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
879
74cf0bc7
MR
880 return 0;
881
da4e4f18 882out_unregister:
a026bb12 883 spin_lock(&arm_pmu_lock);
37b502f1 884 list_del(&cpu_pmu->entry);
a026bb12 885 spin_unlock(&arm_pmu_lock);
74cf0bc7
MR
886 free_percpu(cpu_hw_events);
887 return err;
888}
889
890static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
891{
da4e4f18 892 cpu_pm_pmu_unregister(cpu_pmu);
a026bb12 893 spin_lock(&arm_pmu_lock);
37b502f1 894 list_del(&cpu_pmu->entry);
a026bb12 895 spin_unlock(&arm_pmu_lock);
74cf0bc7
MR
896 free_percpu(cpu_pmu->hw_events);
897}
898
899/*
900 * CPU PMU identification and probing.
901 */
902static int probe_current_pmu(struct arm_pmu *pmu,
903 const struct pmu_probe_info *info)
904{
905 int cpu = get_cpu();
906 unsigned int cpuid = read_cpuid_id();
907 int ret = -ENODEV;
908
909 pr_info("probing PMU on CPU %d\n", cpu);
910
911 for (; info->init != NULL; info++) {
912 if ((cpuid & info->mask) != info->cpuid)
913 continue;
914 ret = info->init(pmu);
915 break;
916 }
917
918 put_cpu();
919 return ret;
920}
921
922static int of_pmu_irq_cfg(struct arm_pmu *pmu)
923{
b6c084d7
WD
924 int *irqs, i = 0;
925 bool using_spi = false;
74cf0bc7
MR
926 struct platform_device *pdev = pmu->plat_device;
927
74cf0bc7
MR
928 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
929 if (!irqs)
930 return -ENOMEM;
931
b6c084d7 932 do {
74cf0bc7 933 struct device_node *dn;
b6c084d7 934 int cpu, irq;
74cf0bc7 935
b6c084d7
WD
936 /* See if we have an affinity entry */
937 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
938 if (!dn)
74cf0bc7 939 break;
b6c084d7
WD
940
941 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
942 irq = platform_get_irq(pdev, i);
282b8796 943 if (irq > 0) {
b6c084d7
WD
944 bool spi = !irq_is_percpu(irq);
945
946 if (i > 0 && spi != using_spi) {
947 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
948 dn->name);
75324684 949 of_node_put(dn);
b6c084d7
WD
950 kfree(irqs);
951 return -EINVAL;
952 }
953
954 using_spi = spi;
74cf0bc7
MR
955 }
956
b6c084d7 957 /* Now look up the logical CPU number */
fb659882
WD
958 for_each_possible_cpu(cpu) {
959 struct device_node *cpu_dn;
960
961 cpu_dn = of_cpu_device_node_get(cpu);
962 of_node_put(cpu_dn);
963
964 if (dn == cpu_dn)
74cf0bc7 965 break;
fb659882 966 }
74cf0bc7 967
74cf0bc7
MR
968 if (cpu >= nr_cpu_ids) {
969 pr_warn("Failed to find logical CPU for %s\n",
970 dn->name);
8e0c34b0 971 of_node_put(dn);
b6c084d7 972 cpumask_setall(&pmu->supported_cpus);
74cf0bc7
MR
973 break;
974 }
8e0c34b0 975 of_node_put(dn);
74cf0bc7 976
b6c084d7
WD
977 /* For SPIs, we need to track the affinity per IRQ */
978 if (using_spi) {
121323ae 979 if (i >= pdev->num_resources)
b6c084d7 980 break;
b6c084d7
WD
981
982 irqs[i] = cpu;
983 }
984
985 /* Keep track of the CPUs containing this PMU type */
74cf0bc7 986 cpumask_set_cpu(cpu, &pmu->supported_cpus);
b6c084d7
WD
987 i++;
988 } while (1);
74cf0bc7 989
19a469a5
MZ
990 /* If we didn't manage to parse anything, try the interrupt affinity */
991 if (cpumask_weight(&pmu->supported_cpus) == 0) {
7f1d642f
MZ
992 int irq = platform_get_irq(pdev, 0);
993
282b8796 994 if (irq > 0 && irq_is_percpu(irq)) {
7f1d642f 995 int ret;
19a469a5 996
19a469a5
MZ
997 ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
998 if (ret) {
999 kfree(irqs);
1000 return ret;
1001 }
1002 } else {
1003 /* Otherwise default to all CPUs */
1004 cpumask_setall(&pmu->supported_cpus);
1005 }
1006 }
b6c084d7
WD
1007
1008 /* If we matched up the IRQ affinities, use them to route the SPIs */
1009 if (using_spi && i == pdev->num_resources)
74cf0bc7 1010 pmu->irq_affinity = irqs;
b6c084d7 1011 else
74cf0bc7 1012 kfree(irqs);
74cf0bc7
MR
1013
1014 return 0;
1015}
1016
1017int arm_pmu_device_probe(struct platform_device *pdev,
1018 const struct of_device_id *of_table,
1019 const struct pmu_probe_info *probe_table)
1020{
1021 const struct of_device_id *of_id;
1022 const int (*init_fn)(struct arm_pmu *);
1023 struct device_node *node = pdev->dev.of_node;
1024 struct arm_pmu *pmu;
1025 int ret = -ENODEV;
1026
1027 pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
1028 if (!pmu) {
1029 pr_info("failed to allocate PMU device!\n");
1030 return -ENOMEM;
1031 }
1032
b916b785
MR
1033 armpmu_init(pmu);
1034
74cf0bc7
MR
1035 pmu->plat_device = pdev;
1036
1037 if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1038 init_fn = of_id->data;
1039
8d1a0ae7
MF
1040 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1041 "secure-reg-access");
1042
1043 /* arm64 systems boot only as non-secure */
1044 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1045 pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1046 pmu->secure_access = false;
1047 }
1048
74cf0bc7
MR
1049 ret = of_pmu_irq_cfg(pmu);
1050 if (!ret)
1051 ret = init_fn(pmu);
1052 } else {
74cf0bc7 1053 cpumask_setall(&pmu->supported_cpus);
f7a6c149 1054 ret = probe_current_pmu(pmu, probe_table);
74cf0bc7
MR
1055 }
1056
1057 if (ret) {
357b565d 1058 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
74cf0bc7
MR
1059 goto out_free;
1060 }
1061
86cdd72a 1062
74cf0bc7
MR
1063 ret = cpu_pmu_init(pmu);
1064 if (ret)
1065 goto out_free;
1066
b916b785 1067 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
74cf0bc7
MR
1068 if (ret)
1069 goto out_destroy;
1070
0f254c76
JG
1071 if (!__oprofile_cpu_pmu)
1072 __oprofile_cpu_pmu = pmu;
1073
b916b785
MR
1074 pr_info("enabled with %s PMU driver, %d counters available\n",
1075 pmu->name, pmu->num_events);
1076
74cf0bc7
MR
1077 return 0;
1078
1079out_destroy:
1080 cpu_pmu_destroy(pmu);
1081out_free:
357b565d
WD
1082 pr_info("%s: failed to register PMU devices!\n",
1083 of_node_full_name(node));
5988a363 1084 kfree(pmu->irq_affinity);
74cf0bc7
MR
1085 kfree(pmu);
1086 return ret;
1087}
37b502f1
SAS
1088
1089static int arm_pmu_hp_init(void)
1090{
1091 int ret;
1092
1093 ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_STARTING,
1094 "AP_PERF_ARM_STARTING",
1095 arm_perf_starting_cpu, NULL);
1096 if (ret)
1097 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1098 ret);
1099 return ret;
1100}
1101subsys_initcall(arm_pmu_hp_init);
This page took 0.631558 seconds and 5 git commands to generate.