Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / drivers / perf / arm_pmu.c
CommitLineData
1b8873a0
JI
1#undef DEBUG
2
3/*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
43eab878 7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
796d1295 8 *
1b8873a0 9 * This code is based on the sparc64 perf event code, which is in turn based
d39976f0 10 * on the x86 code.
1b8873a0
JI
11 */
12#define pr_fmt(fmt) "hw perfevents: " fmt
13
74cf0bc7 14#include <linux/bitmap.h>
cc88116d 15#include <linux/cpumask.h>
da4e4f18 16#include <linux/cpu_pm.h>
74cf0bc7 17#include <linux/export.h>
1b8873a0 18#include <linux/kernel.h>
bc1e3c46 19#include <linux/of_device.h>
fa8ad788 20#include <linux/perf/arm_pmu.h>
49c006b9 21#include <linux/platform_device.h>
74cf0bc7
MR
22#include <linux/slab.h>
23#include <linux/spinlock.h>
bbd64559
SB
24#include <linux/irq.h>
25#include <linux/irqdesc.h>
1b8873a0 26
74cf0bc7 27#include <asm/cputype.h>
1b8873a0 28#include <asm/irq_regs.h>
1b8873a0 29
1b8873a0 30static int
e1f431b5
MR
31armpmu_map_cache_event(const unsigned (*cache_map)
32 [PERF_COUNT_HW_CACHE_MAX]
33 [PERF_COUNT_HW_CACHE_OP_MAX]
34 [PERF_COUNT_HW_CACHE_RESULT_MAX],
35 u64 config)
1b8873a0
JI
36{
37 unsigned int cache_type, cache_op, cache_result, ret;
38
39 cache_type = (config >> 0) & 0xff;
40 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
41 return -EINVAL;
42
43 cache_op = (config >> 8) & 0xff;
44 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
45 return -EINVAL;
46
47 cache_result = (config >> 16) & 0xff;
48 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
49 return -EINVAL;
50
e1f431b5 51 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
1b8873a0
JI
52
53 if (ret == CACHE_OP_UNSUPPORTED)
54 return -ENOENT;
55
56 return ret;
57}
58
84fee97a 59static int
6dbc0029 60armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
84fee97a 61{
d9f96635
SB
62 int mapping;
63
64 if (config >= PERF_COUNT_HW_MAX)
65 return -EINVAL;
66
67 mapping = (*event_map)[config];
e1f431b5 68 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
84fee97a
WD
69}
70
71static int
e1f431b5 72armpmu_map_raw_event(u32 raw_event_mask, u64 config)
84fee97a 73{
e1f431b5
MR
74 return (int)(config & raw_event_mask);
75}
76
6dbc0029
WD
77int
78armpmu_map_event(struct perf_event *event,
79 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
80 const unsigned (*cache_map)
81 [PERF_COUNT_HW_CACHE_MAX]
82 [PERF_COUNT_HW_CACHE_OP_MAX]
83 [PERF_COUNT_HW_CACHE_RESULT_MAX],
84 u32 raw_event_mask)
e1f431b5
MR
85{
86 u64 config = event->attr.config;
67b4305a 87 int type = event->attr.type;
e1f431b5 88
67b4305a
MR
89 if (type == event->pmu->type)
90 return armpmu_map_raw_event(raw_event_mask, config);
91
92 switch (type) {
e1f431b5 93 case PERF_TYPE_HARDWARE:
6dbc0029 94 return armpmu_map_hw_event(event_map, config);
e1f431b5
MR
95 case PERF_TYPE_HW_CACHE:
96 return armpmu_map_cache_event(cache_map, config);
97 case PERF_TYPE_RAW:
98 return armpmu_map_raw_event(raw_event_mask, config);
99 }
100
101 return -ENOENT;
84fee97a
WD
102}
103
ed6f2a52 104int armpmu_event_set_period(struct perf_event *event)
1b8873a0 105{
8a16b34e 106 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
ed6f2a52 107 struct hw_perf_event *hwc = &event->hw;
e7850595 108 s64 left = local64_read(&hwc->period_left);
1b8873a0
JI
109 s64 period = hwc->sample_period;
110 int ret = 0;
111
112 if (unlikely(left <= -period)) {
113 left = period;
e7850595 114 local64_set(&hwc->period_left, left);
1b8873a0
JI
115 hwc->last_period = period;
116 ret = 1;
117 }
118
119 if (unlikely(left <= 0)) {
120 left += period;
e7850595 121 local64_set(&hwc->period_left, left);
1b8873a0
JI
122 hwc->last_period = period;
123 ret = 1;
124 }
125
2d9ed740
DT
126 /*
127 * Limit the maximum period to prevent the counter value
128 * from overtaking the one we are about to program. In
129 * effect we are reducing max_period to account for
130 * interrupt latency (and we are being very conservative).
131 */
132 if (left > (armpmu->max_period >> 1))
133 left = armpmu->max_period >> 1;
1b8873a0 134
e7850595 135 local64_set(&hwc->prev_count, (u64)-left);
1b8873a0 136
ed6f2a52 137 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
1b8873a0
JI
138
139 perf_event_update_userpage(event);
140
141 return ret;
142}
143
ed6f2a52 144u64 armpmu_event_update(struct perf_event *event)
1b8873a0 145{
8a16b34e 146 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
ed6f2a52 147 struct hw_perf_event *hwc = &event->hw;
a737823d 148 u64 delta, prev_raw_count, new_raw_count;
1b8873a0
JI
149
150again:
e7850595 151 prev_raw_count = local64_read(&hwc->prev_count);
ed6f2a52 152 new_raw_count = armpmu->read_counter(event);
1b8873a0 153
e7850595 154 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
1b8873a0
JI
155 new_raw_count) != prev_raw_count)
156 goto again;
157
57273471 158 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
1b8873a0 159
e7850595
PZ
160 local64_add(delta, &event->count);
161 local64_sub(delta, &hwc->period_left);
1b8873a0
JI
162
163 return new_raw_count;
164}
165
166static void
a4eaf7f1 167armpmu_read(struct perf_event *event)
1b8873a0 168{
ed6f2a52 169 armpmu_event_update(event);
1b8873a0
JI
170}
171
172static void
a4eaf7f1 173armpmu_stop(struct perf_event *event, int flags)
1b8873a0 174{
8a16b34e 175 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0
JI
176 struct hw_perf_event *hwc = &event->hw;
177
a4eaf7f1
PZ
178 /*
179 * ARM pmu always has to update the counter, so ignore
180 * PERF_EF_UPDATE, see comments in armpmu_start().
181 */
182 if (!(hwc->state & PERF_HES_STOPPED)) {
ed6f2a52
SK
183 armpmu->disable(event);
184 armpmu_event_update(event);
a4eaf7f1
PZ
185 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
186 }
1b8873a0
JI
187}
188
ed6f2a52 189static void armpmu_start(struct perf_event *event, int flags)
1b8873a0 190{
8a16b34e 191 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0
JI
192 struct hw_perf_event *hwc = &event->hw;
193
a4eaf7f1
PZ
194 /*
195 * ARM pmu always has to reprogram the period, so ignore
196 * PERF_EF_RELOAD, see the comment below.
197 */
198 if (flags & PERF_EF_RELOAD)
199 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
200
201 hwc->state = 0;
1b8873a0
JI
202 /*
203 * Set the period again. Some counters can't be stopped, so when we
a4eaf7f1 204 * were stopped we simply disabled the IRQ source and the counter
1b8873a0
JI
205 * may have been left counting. If we don't do this step then we may
206 * get an interrupt too soon or *way* too late if the overflow has
207 * happened since disabling.
208 */
ed6f2a52
SK
209 armpmu_event_set_period(event);
210 armpmu->enable(event);
1b8873a0
JI
211}
212
a4eaf7f1
PZ
213static void
214armpmu_del(struct perf_event *event, int flags)
215{
8a16b34e 216 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
11679250 217 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
a4eaf7f1
PZ
218 struct hw_perf_event *hwc = &event->hw;
219 int idx = hwc->idx;
220
a4eaf7f1 221 armpmu_stop(event, PERF_EF_UPDATE);
8be3f9a2
MR
222 hw_events->events[idx] = NULL;
223 clear_bit(idx, hw_events->used_mask);
eab443ef
SB
224 if (armpmu->clear_event_idx)
225 armpmu->clear_event_idx(hw_events, event);
a4eaf7f1
PZ
226
227 perf_event_update_userpage(event);
228}
229
1b8873a0 230static int
a4eaf7f1 231armpmu_add(struct perf_event *event, int flags)
1b8873a0 232{
8a16b34e 233 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
11679250 234 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
1b8873a0
JI
235 struct hw_perf_event *hwc = &event->hw;
236 int idx;
237 int err = 0;
238
cc88116d
MR
239 /* An event following a process won't be stopped earlier */
240 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
241 return -ENOENT;
242
33696fc0 243 perf_pmu_disable(event->pmu);
24cd7f54 244
1b8873a0 245 /* If we don't have a space for the counter then finish early. */
ed6f2a52 246 idx = armpmu->get_event_idx(hw_events, event);
1b8873a0
JI
247 if (idx < 0) {
248 err = idx;
249 goto out;
250 }
251
252 /*
253 * If there is an event in the counter we are going to use then make
254 * sure it is disabled.
255 */
256 event->hw.idx = idx;
ed6f2a52 257 armpmu->disable(event);
8be3f9a2 258 hw_events->events[idx] = event;
1b8873a0 259
a4eaf7f1
PZ
260 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
261 if (flags & PERF_EF_START)
262 armpmu_start(event, PERF_EF_RELOAD);
1b8873a0
JI
263
264 /* Propagate our changes to the userspace mapping. */
265 perf_event_update_userpage(event);
266
267out:
33696fc0 268 perf_pmu_enable(event->pmu);
1b8873a0
JI
269 return err;
270}
271
1b8873a0 272static int
e429817b
SP
273validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
274 struct perf_event *event)
1b8873a0 275{
e429817b 276 struct arm_pmu *armpmu;
1b8873a0 277
c95eb318
WD
278 if (is_software_event(event))
279 return 1;
280
e429817b
SP
281 /*
282 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
283 * core perf code won't check that the pmu->ctx == leader->ctx
284 * until after pmu->event_init(event).
285 */
286 if (event->pmu != pmu)
287 return 0;
288
2dfcb802 289 if (event->state < PERF_EVENT_STATE_OFF)
cb2d8b34
WD
290 return 1;
291
292 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
65b4711f 293 return 1;
1b8873a0 294
e429817b 295 armpmu = to_arm_pmu(event->pmu);
ed6f2a52 296 return armpmu->get_event_idx(hw_events, event) >= 0;
1b8873a0
JI
297}
298
299static int
300validate_group(struct perf_event *event)
301{
302 struct perf_event *sibling, *leader = event->group_leader;
8be3f9a2 303 struct pmu_hw_events fake_pmu;
1b8873a0 304
bce34d14
WD
305 /*
306 * Initialise the fake PMU. We only need to populate the
307 * used_mask for the purposes of validation.
308 */
a4560846 309 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
1b8873a0 310
e429817b 311 if (!validate_event(event->pmu, &fake_pmu, leader))
aa2bc1ad 312 return -EINVAL;
1b8873a0
JI
313
314 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
e429817b 315 if (!validate_event(event->pmu, &fake_pmu, sibling))
aa2bc1ad 316 return -EINVAL;
1b8873a0
JI
317 }
318
e429817b 319 if (!validate_event(event->pmu, &fake_pmu, event))
aa2bc1ad 320 return -EINVAL;
1b8873a0
JI
321
322 return 0;
323}
324
051f1b13 325static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
0e25a5c9 326{
bbd64559
SB
327 struct arm_pmu *armpmu;
328 struct platform_device *plat_device;
329 struct arm_pmu_platdata *plat;
5f5092e7
WD
330 int ret;
331 u64 start_clock, finish_clock;
bbd64559 332
5ebd9200
MR
333 /*
334 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
335 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
336 * do any necessary shifting, we just need to perform the first
337 * dereference.
338 */
339 armpmu = *(void **)dev;
bbd64559
SB
340 plat_device = armpmu->plat_device;
341 plat = dev_get_platdata(&plat_device->dev);
0e25a5c9 342
5f5092e7 343 start_clock = sched_clock();
051f1b13 344 if (plat && plat->handle_irq)
5ebd9200 345 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
051f1b13 346 else
5ebd9200 347 ret = armpmu->handle_irq(irq, armpmu);
5f5092e7
WD
348 finish_clock = sched_clock();
349
350 perf_sample_event_took(finish_clock - start_clock);
351 return ret;
0e25a5c9
RV
352}
353
0b390e21 354static void
8a16b34e 355armpmu_release_hardware(struct arm_pmu *armpmu)
0b390e21 356{
ed6f2a52 357 armpmu->free_irq(armpmu);
0b390e21
WD
358}
359
1b8873a0 360static int
8a16b34e 361armpmu_reserve_hardware(struct arm_pmu *armpmu)
1b8873a0 362{
ed61f985 363 int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
051f1b13
SK
364 if (err) {
365 armpmu_release_hardware(armpmu);
366 return err;
49c006b9 367 }
1b8873a0 368
0b390e21 369 return 0;
1b8873a0
JI
370}
371
1b8873a0
JI
372static void
373hw_perf_event_destroy(struct perf_event *event)
374{
8a16b34e 375 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
03b7898d
MR
376 atomic_t *active_events = &armpmu->active_events;
377 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
378
379 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
8a16b34e 380 armpmu_release_hardware(armpmu);
03b7898d 381 mutex_unlock(pmu_reserve_mutex);
1b8873a0
JI
382 }
383}
384
05d22fde
WD
385static int
386event_requires_mode_exclusion(struct perf_event_attr *attr)
387{
388 return attr->exclude_idle || attr->exclude_user ||
389 attr->exclude_kernel || attr->exclude_hv;
390}
391
1b8873a0
JI
392static int
393__hw_perf_event_init(struct perf_event *event)
394{
8a16b34e 395 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0 396 struct hw_perf_event *hwc = &event->hw;
9dcbf466 397 int mapping;
1b8873a0 398
e1f431b5 399 mapping = armpmu->map_event(event);
1b8873a0
JI
400
401 if (mapping < 0) {
402 pr_debug("event %x:%llx not supported\n", event->attr.type,
403 event->attr.config);
404 return mapping;
405 }
406
05d22fde
WD
407 /*
408 * We don't assign an index until we actually place the event onto
409 * hardware. Use -1 to signify that we haven't decided where to put it
410 * yet. For SMP systems, each core has it's own PMU so we can't do any
411 * clever allocation or constraints checking at this point.
412 */
413 hwc->idx = -1;
414 hwc->config_base = 0;
415 hwc->config = 0;
416 hwc->event_base = 0;
417
1b8873a0
JI
418 /*
419 * Check whether we need to exclude the counter from certain modes.
1b8873a0 420 */
05d22fde
WD
421 if ((!armpmu->set_event_filter ||
422 armpmu->set_event_filter(hwc, &event->attr)) &&
423 event_requires_mode_exclusion(&event->attr)) {
1b8873a0
JI
424 pr_debug("ARM performance counters do not support "
425 "mode exclusion\n");
fdeb8e35 426 return -EOPNOTSUPP;
1b8873a0
JI
427 }
428
429 /*
05d22fde 430 * Store the event encoding into the config_base field.
1b8873a0 431 */
05d22fde 432 hwc->config_base |= (unsigned long)mapping;
1b8873a0 433
edcb4d3c 434 if (!is_sampling_event(event)) {
57273471
WD
435 /*
436 * For non-sampling runs, limit the sample_period to half
437 * of the counter width. That way, the new counter value
438 * is far less likely to overtake the previous one unless
439 * you have some serious IRQ latency issues.
440 */
441 hwc->sample_period = armpmu->max_period >> 1;
1b8873a0 442 hwc->last_period = hwc->sample_period;
e7850595 443 local64_set(&hwc->period_left, hwc->sample_period);
1b8873a0
JI
444 }
445
1b8873a0 446 if (event->group_leader != event) {
e595ede6 447 if (validate_group(event) != 0)
1b8873a0
JI
448 return -EINVAL;
449 }
450
9dcbf466 451 return 0;
1b8873a0
JI
452}
453
b0a873eb 454static int armpmu_event_init(struct perf_event *event)
1b8873a0 455{
8a16b34e 456 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1b8873a0 457 int err = 0;
03b7898d 458 atomic_t *active_events = &armpmu->active_events;
1b8873a0 459
cc88116d
MR
460 /*
461 * Reject CPU-affine events for CPUs that are of a different class to
462 * that which this PMU handles. Process-following events (where
463 * event->cpu == -1) can be migrated between CPUs, and thus we have to
464 * reject them later (in armpmu_add) if they're scheduled on a
465 * different class of CPU.
466 */
467 if (event->cpu != -1 &&
468 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
469 return -ENOENT;
470
2481c5fa
SE
471 /* does not support taken branch sampling */
472 if (has_branch_stack(event))
473 return -EOPNOTSUPP;
474
e1f431b5 475 if (armpmu->map_event(event) == -ENOENT)
b0a873eb 476 return -ENOENT;
b0a873eb 477
1b8873a0
JI
478 event->destroy = hw_perf_event_destroy;
479
03b7898d
MR
480 if (!atomic_inc_not_zero(active_events)) {
481 mutex_lock(&armpmu->reserve_mutex);
482 if (atomic_read(active_events) == 0)
8a16b34e 483 err = armpmu_reserve_hardware(armpmu);
1b8873a0
JI
484
485 if (!err)
03b7898d
MR
486 atomic_inc(active_events);
487 mutex_unlock(&armpmu->reserve_mutex);
1b8873a0
JI
488 }
489
490 if (err)
b0a873eb 491 return err;
1b8873a0
JI
492
493 err = __hw_perf_event_init(event);
494 if (err)
495 hw_perf_event_destroy(event);
496
b0a873eb 497 return err;
1b8873a0
JI
498}
499
a4eaf7f1 500static void armpmu_enable(struct pmu *pmu)
1b8873a0 501{
8be3f9a2 502 struct arm_pmu *armpmu = to_arm_pmu(pmu);
11679250 503 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
7325eaec 504 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
1b8873a0 505
cc88116d
MR
506 /* For task-bound events we may be called on other CPUs */
507 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
508 return;
509
f4f38430 510 if (enabled)
ed6f2a52 511 armpmu->start(armpmu);
1b8873a0
JI
512}
513
a4eaf7f1 514static void armpmu_disable(struct pmu *pmu)
1b8873a0 515{
8a16b34e 516 struct arm_pmu *armpmu = to_arm_pmu(pmu);
cc88116d
MR
517
518 /* For task-bound events we may be called on other CPUs */
519 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
520 return;
521
ed6f2a52 522 armpmu->stop(armpmu);
1b8873a0
JI
523}
524
c904e32a
MR
525/*
526 * In heterogeneous systems, events are specific to a particular
527 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
528 * the same microarchitecture.
529 */
530static int armpmu_filter_match(struct perf_event *event)
531{
532 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
533 unsigned int cpu = smp_processor_id();
534 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
535}
536
44d6b1fc 537static void armpmu_init(struct arm_pmu *armpmu)
03b7898d
MR
538{
539 atomic_set(&armpmu->active_events, 0);
540 mutex_init(&armpmu->reserve_mutex);
8a16b34e
MR
541
542 armpmu->pmu = (struct pmu) {
543 .pmu_enable = armpmu_enable,
544 .pmu_disable = armpmu_disable,
545 .event_init = armpmu_event_init,
546 .add = armpmu_add,
547 .del = armpmu_del,
548 .start = armpmu_start,
549 .stop = armpmu_stop,
550 .read = armpmu_read,
c904e32a 551 .filter_match = armpmu_filter_match,
8a16b34e
MR
552 };
553}
554
74cf0bc7
MR
555/* Set at runtime when we know what CPU type we are. */
556static struct arm_pmu *__oprofile_cpu_pmu;
557
558/*
559 * Despite the names, these two functions are CPU-specific and are used
560 * by the OProfile/perf code.
561 */
562const char *perf_pmu_name(void)
563{
564 if (!__oprofile_cpu_pmu)
565 return NULL;
566
567 return __oprofile_cpu_pmu->name;
568}
569EXPORT_SYMBOL_GPL(perf_pmu_name);
570
571int perf_num_counters(void)
572{
573 int max_events = 0;
574
575 if (__oprofile_cpu_pmu != NULL)
576 max_events = __oprofile_cpu_pmu->num_events;
577
578 return max_events;
579}
580EXPORT_SYMBOL_GPL(perf_num_counters);
581
582static void cpu_pmu_enable_percpu_irq(void *data)
583{
584 int irq = *(int *)data;
585
586 enable_percpu_irq(irq, IRQ_TYPE_NONE);
587}
588
589static void cpu_pmu_disable_percpu_irq(void *data)
590{
591 int irq = *(int *)data;
592
593 disable_percpu_irq(irq);
594}
595
596static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
597{
598 int i, irq, irqs;
599 struct platform_device *pmu_device = cpu_pmu->plat_device;
600 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
601
602 irqs = min(pmu_device->num_resources, num_possible_cpus());
603
604 irq = platform_get_irq(pmu_device, 0);
605 if (irq >= 0 && irq_is_percpu(irq)) {
19a469a5
MZ
606 on_each_cpu_mask(&cpu_pmu->supported_cpus,
607 cpu_pmu_disable_percpu_irq, &irq, 1);
74cf0bc7
MR
608 free_percpu_irq(irq, &hw_events->percpu_pmu);
609 } else {
610 for (i = 0; i < irqs; ++i) {
611 int cpu = i;
612
613 if (cpu_pmu->irq_affinity)
614 cpu = cpu_pmu->irq_affinity[i];
615
616 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
617 continue;
618 irq = platform_get_irq(pmu_device, i);
619 if (irq >= 0)
620 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
621 }
622 }
623}
624
625static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
626{
627 int i, err, irq, irqs;
628 struct platform_device *pmu_device = cpu_pmu->plat_device;
629 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
630
631 if (!pmu_device)
632 return -ENODEV;
633
634 irqs = min(pmu_device->num_resources, num_possible_cpus());
635 if (irqs < 1) {
636 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
637 return 0;
638 }
639
640 irq = platform_get_irq(pmu_device, 0);
641 if (irq >= 0 && irq_is_percpu(irq)) {
642 err = request_percpu_irq(irq, handler, "arm-pmu",
643 &hw_events->percpu_pmu);
644 if (err) {
645 pr_err("unable to request IRQ%d for ARM PMU counters\n",
646 irq);
647 return err;
648 }
19a469a5
MZ
649
650 on_each_cpu_mask(&cpu_pmu->supported_cpus,
651 cpu_pmu_enable_percpu_irq, &irq, 1);
74cf0bc7
MR
652 } else {
653 for (i = 0; i < irqs; ++i) {
654 int cpu = i;
655
656 err = 0;
657 irq = platform_get_irq(pmu_device, i);
658 if (irq < 0)
659 continue;
660
661 if (cpu_pmu->irq_affinity)
662 cpu = cpu_pmu->irq_affinity[i];
663
664 /*
665 * If we have a single PMU interrupt that we can't shift,
666 * assume that we're running on a uniprocessor machine and
667 * continue. Otherwise, continue without this interrupt.
668 */
669 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
670 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
671 irq, cpu);
672 continue;
673 }
674
675 err = request_irq(irq, handler,
676 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
677 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
678 if (err) {
679 pr_err("unable to request IRQ%d for ARM PMU counters\n",
680 irq);
681 return err;
682 }
683
684 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
685 }
686 }
687
688 return 0;
689}
690
a026bb12 691static DEFINE_SPINLOCK(arm_pmu_lock);
37b502f1
SAS
692static LIST_HEAD(arm_pmu_list);
693
74cf0bc7
MR
694/*
695 * PMU hardware loses all context when a CPU goes offline.
696 * When a CPU is hotplugged back in, since some hardware registers are
697 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
698 * junk values out of them.
699 */
7d88eb69 700static int arm_perf_starting_cpu(unsigned int cpu)
74cf0bc7 701{
37b502f1 702 struct arm_pmu *pmu;
74cf0bc7 703
a026bb12 704 spin_lock(&arm_pmu_lock);
37b502f1 705 list_for_each_entry(pmu, &arm_pmu_list, entry) {
74cf0bc7 706
37b502f1
SAS
707 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
708 continue;
709 if (pmu->reset)
710 pmu->reset(pmu);
711 }
a026bb12 712 spin_unlock(&arm_pmu_lock);
7d88eb69 713 return 0;
74cf0bc7
MR
714}
715
da4e4f18
LP
716#ifdef CONFIG_CPU_PM
717static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
718{
719 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
720 struct perf_event *event;
721 int idx;
722
723 for (idx = 0; idx < armpmu->num_events; idx++) {
724 /*
725 * If the counter is not used skip it, there is no
726 * need of stopping/restarting it.
727 */
728 if (!test_bit(idx, hw_events->used_mask))
729 continue;
730
731 event = hw_events->events[idx];
732
733 switch (cmd) {
734 case CPU_PM_ENTER:
735 /*
736 * Stop and update the counter
737 */
738 armpmu_stop(event, PERF_EF_UPDATE);
739 break;
740 case CPU_PM_EXIT:
741 case CPU_PM_ENTER_FAILED:
cbcc72e0
LP
742 /*
743 * Restore and enable the counter.
744 * armpmu_start() indirectly calls
745 *
746 * perf_event_update_userpage()
747 *
748 * that requires RCU read locking to be functional,
749 * wrap the call within RCU_NONIDLE to make the
750 * RCU subsystem aware this cpu is not idle from
751 * an RCU perspective for the armpmu_start() call
752 * duration.
753 */
754 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
da4e4f18
LP
755 break;
756 default:
757 break;
758 }
759 }
760}
761
762static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
763 void *v)
764{
765 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
766 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
767 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
768
769 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
770 return NOTIFY_DONE;
771
772 /*
773 * Always reset the PMU registers on power-up even if
774 * there are no events running.
775 */
776 if (cmd == CPU_PM_EXIT && armpmu->reset)
777 armpmu->reset(armpmu);
778
779 if (!enabled)
780 return NOTIFY_OK;
781
782 switch (cmd) {
783 case CPU_PM_ENTER:
784 armpmu->stop(armpmu);
785 cpu_pm_pmu_setup(armpmu, cmd);
786 break;
787 case CPU_PM_EXIT:
788 cpu_pm_pmu_setup(armpmu, cmd);
789 case CPU_PM_ENTER_FAILED:
790 armpmu->start(armpmu);
791 break;
792 default:
793 return NOTIFY_DONE;
794 }
795
796 return NOTIFY_OK;
797}
798
799static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
800{
801 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
802 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
803}
804
805static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
806{
807 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
808}
809#else
810static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
811static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
812#endif
813
74cf0bc7
MR
814static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
815{
816 int err;
817 int cpu;
818 struct pmu_hw_events __percpu *cpu_hw_events;
819
820 cpu_hw_events = alloc_percpu(struct pmu_hw_events);
821 if (!cpu_hw_events)
822 return -ENOMEM;
823
a026bb12 824 spin_lock(&arm_pmu_lock);
37b502f1 825 list_add_tail(&cpu_pmu->entry, &arm_pmu_list);
a026bb12 826 spin_unlock(&arm_pmu_lock);
74cf0bc7 827
da4e4f18
LP
828 err = cpu_pm_pmu_register(cpu_pmu);
829 if (err)
830 goto out_unregister;
831
74cf0bc7
MR
832 for_each_possible_cpu(cpu) {
833 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
834 raw_spin_lock_init(&events->pmu_lock);
835 events->percpu_pmu = cpu_pmu;
836 }
837
838 cpu_pmu->hw_events = cpu_hw_events;
839 cpu_pmu->request_irq = cpu_pmu_request_irq;
840 cpu_pmu->free_irq = cpu_pmu_free_irq;
841
842 /* Ensure the PMU has sane values out of reset. */
843 if (cpu_pmu->reset)
844 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
845 cpu_pmu, 1);
846
847 /* If no interrupts available, set the corresponding capability flag */
848 if (!platform_get_irq(cpu_pmu->plat_device, 0))
849 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
850
5101ef20
MR
851 /*
852 * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
853 * big.LITTLE). This is not an uncore PMU, and we have taken ctx
854 * sharing into account (e.g. with our pmu::filter_match callback and
855 * pmu::event_init group validation).
856 */
857 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
858
74cf0bc7
MR
859 return 0;
860
da4e4f18 861out_unregister:
a026bb12 862 spin_lock(&arm_pmu_lock);
37b502f1 863 list_del(&cpu_pmu->entry);
a026bb12 864 spin_unlock(&arm_pmu_lock);
74cf0bc7
MR
865 free_percpu(cpu_hw_events);
866 return err;
867}
868
869static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
870{
da4e4f18 871 cpu_pm_pmu_unregister(cpu_pmu);
a026bb12 872 spin_lock(&arm_pmu_lock);
37b502f1 873 list_del(&cpu_pmu->entry);
a026bb12 874 spin_unlock(&arm_pmu_lock);
74cf0bc7
MR
875 free_percpu(cpu_pmu->hw_events);
876}
877
878/*
879 * CPU PMU identification and probing.
880 */
881static int probe_current_pmu(struct arm_pmu *pmu,
882 const struct pmu_probe_info *info)
883{
884 int cpu = get_cpu();
885 unsigned int cpuid = read_cpuid_id();
886 int ret = -ENODEV;
887
888 pr_info("probing PMU on CPU %d\n", cpu);
889
890 for (; info->init != NULL; info++) {
891 if ((cpuid & info->mask) != info->cpuid)
892 continue;
893 ret = info->init(pmu);
894 break;
895 }
896
897 put_cpu();
898 return ret;
899}
900
901static int of_pmu_irq_cfg(struct arm_pmu *pmu)
902{
b6c084d7
WD
903 int *irqs, i = 0;
904 bool using_spi = false;
74cf0bc7
MR
905 struct platform_device *pdev = pmu->plat_device;
906
74cf0bc7
MR
907 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
908 if (!irqs)
909 return -ENOMEM;
910
b6c084d7 911 do {
74cf0bc7 912 struct device_node *dn;
b6c084d7 913 int cpu, irq;
74cf0bc7 914
b6c084d7
WD
915 /* See if we have an affinity entry */
916 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
917 if (!dn)
74cf0bc7 918 break;
b6c084d7
WD
919
920 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
921 irq = platform_get_irq(pdev, i);
922 if (irq >= 0) {
923 bool spi = !irq_is_percpu(irq);
924
925 if (i > 0 && spi != using_spi) {
926 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
927 dn->name);
928 kfree(irqs);
929 return -EINVAL;
930 }
931
932 using_spi = spi;
74cf0bc7
MR
933 }
934
b6c084d7 935 /* Now look up the logical CPU number */
fb659882
WD
936 for_each_possible_cpu(cpu) {
937 struct device_node *cpu_dn;
938
939 cpu_dn = of_cpu_device_node_get(cpu);
940 of_node_put(cpu_dn);
941
942 if (dn == cpu_dn)
74cf0bc7 943 break;
fb659882 944 }
74cf0bc7 945
74cf0bc7
MR
946 if (cpu >= nr_cpu_ids) {
947 pr_warn("Failed to find logical CPU for %s\n",
948 dn->name);
8e0c34b0 949 of_node_put(dn);
b6c084d7 950 cpumask_setall(&pmu->supported_cpus);
74cf0bc7
MR
951 break;
952 }
8e0c34b0 953 of_node_put(dn);
74cf0bc7 954
b6c084d7
WD
955 /* For SPIs, we need to track the affinity per IRQ */
956 if (using_spi) {
121323ae 957 if (i >= pdev->num_resources)
b6c084d7 958 break;
b6c084d7
WD
959
960 irqs[i] = cpu;
961 }
962
963 /* Keep track of the CPUs containing this PMU type */
74cf0bc7 964 cpumask_set_cpu(cpu, &pmu->supported_cpus);
b6c084d7
WD
965 i++;
966 } while (1);
74cf0bc7 967
19a469a5
MZ
968 /* If we didn't manage to parse anything, try the interrupt affinity */
969 if (cpumask_weight(&pmu->supported_cpus) == 0) {
7f1d642f
MZ
970 int irq = platform_get_irq(pdev, 0);
971
972 if (irq_is_percpu(irq)) {
19a469a5 973 /* If using PPIs, check the affinity of the partition */
7f1d642f 974 int ret;
19a469a5 975
19a469a5
MZ
976 ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
977 if (ret) {
978 kfree(irqs);
979 return ret;
980 }
981 } else {
982 /* Otherwise default to all CPUs */
983 cpumask_setall(&pmu->supported_cpus);
984 }
985 }
b6c084d7
WD
986
987 /* If we matched up the IRQ affinities, use them to route the SPIs */
988 if (using_spi && i == pdev->num_resources)
74cf0bc7 989 pmu->irq_affinity = irqs;
b6c084d7 990 else
74cf0bc7 991 kfree(irqs);
74cf0bc7
MR
992
993 return 0;
994}
995
996int arm_pmu_device_probe(struct platform_device *pdev,
997 const struct of_device_id *of_table,
998 const struct pmu_probe_info *probe_table)
999{
1000 const struct of_device_id *of_id;
1001 const int (*init_fn)(struct arm_pmu *);
1002 struct device_node *node = pdev->dev.of_node;
1003 struct arm_pmu *pmu;
1004 int ret = -ENODEV;
1005
1006 pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
1007 if (!pmu) {
1008 pr_info("failed to allocate PMU device!\n");
1009 return -ENOMEM;
1010 }
1011
b916b785
MR
1012 armpmu_init(pmu);
1013
74cf0bc7
MR
1014 pmu->plat_device = pdev;
1015
1016 if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1017 init_fn = of_id->data;
1018
8d1a0ae7
MF
1019 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1020 "secure-reg-access");
1021
1022 /* arm64 systems boot only as non-secure */
1023 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1024 pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1025 pmu->secure_access = false;
1026 }
1027
74cf0bc7
MR
1028 ret = of_pmu_irq_cfg(pmu);
1029 if (!ret)
1030 ret = init_fn(pmu);
1031 } else {
74cf0bc7 1032 cpumask_setall(&pmu->supported_cpus);
f7a6c149 1033 ret = probe_current_pmu(pmu, probe_table);
74cf0bc7
MR
1034 }
1035
1036 if (ret) {
357b565d 1037 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
74cf0bc7
MR
1038 goto out_free;
1039 }
1040
1041 ret = cpu_pmu_init(pmu);
1042 if (ret)
1043 goto out_free;
1044
b916b785 1045 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
74cf0bc7
MR
1046 if (ret)
1047 goto out_destroy;
1048
0f254c76
JG
1049 if (!__oprofile_cpu_pmu)
1050 __oprofile_cpu_pmu = pmu;
1051
b916b785
MR
1052 pr_info("enabled with %s PMU driver, %d counters available\n",
1053 pmu->name, pmu->num_events);
1054
74cf0bc7
MR
1055 return 0;
1056
1057out_destroy:
1058 cpu_pmu_destroy(pmu);
1059out_free:
357b565d
WD
1060 pr_info("%s: failed to register PMU devices!\n",
1061 of_node_full_name(node));
5988a363 1062 kfree(pmu->irq_affinity);
74cf0bc7
MR
1063 kfree(pmu);
1064 return ret;
1065}
37b502f1
SAS
1066
1067static int arm_pmu_hp_init(void)
1068{
1069 int ret;
1070
1071 ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_STARTING,
1072 "AP_PERF_ARM_STARTING",
1073 arm_perf_starting_cpu, NULL);
1074 if (ret)
1075 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1076 ret);
1077 return ret;
1078}
1079subsys_initcall(arm_pmu_hp_init);
This page took 0.388927 seconds and 5 git commands to generate.