spi: Pump transfers inside calling context for spi_sync()
[deliverable/linux.git] / drivers / spi / spi.c
CommitLineData
8ae12a0d 1/*
ca632f55 2 * SPI init/core code
8ae12a0d
DB
3 *
4 * Copyright (C) 2005 David Brownell
d57a4282 5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
8ae12a0d
DB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
8ae12a0d 22#include <linux/kernel.h>
d57a4282 23#include <linux/kmod.h>
8ae12a0d
DB
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/cache.h>
99adef31
MB
27#include <linux/dma-mapping.h>
28#include <linux/dmaengine.h>
94040828 29#include <linux/mutex.h>
2b7a32f7 30#include <linux/of_device.h>
d57a4282 31#include <linux/of_irq.h>
86be408b 32#include <linux/clk/clk-conf.h>
5a0e3ad6 33#include <linux/slab.h>
e0626e38 34#include <linux/mod_devicetable.h>
8ae12a0d 35#include <linux/spi/spi.h>
74317984 36#include <linux/of_gpio.h>
3ae22e8c 37#include <linux/pm_runtime.h>
f48c767c 38#include <linux/pm_domain.h>
025ed130 39#include <linux/export.h>
8bd75c77 40#include <linux/sched/rt.h>
ffbbdd21
LW
41#include <linux/delay.h>
42#include <linux/kthread.h>
64bee4d2
MW
43#include <linux/ioport.h>
44#include <linux/acpi.h>
8ae12a0d 45
56ec1978
MB
46#define CREATE_TRACE_POINTS
47#include <trace/events/spi.h>
48
8ae12a0d
DB
49static void spidev_release(struct device *dev)
50{
0ffa0285 51 struct spi_device *spi = to_spi_device(dev);
8ae12a0d
DB
52
53 /* spi masters may cleanup for released devices */
54 if (spi->master->cleanup)
55 spi->master->cleanup(spi);
56
0c868461 57 spi_master_put(spi->master);
07a389fe 58 kfree(spi);
8ae12a0d
DB
59}
60
61static ssize_t
62modalias_show(struct device *dev, struct device_attribute *a, char *buf)
63{
64 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
65 int len;
66
67 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
68 if (len != -ENODEV)
69 return len;
8ae12a0d 70
d8e328b3 71 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d 72}
aa7da564 73static DEVICE_ATTR_RO(modalias);
8ae12a0d 74
aa7da564
GKH
75static struct attribute *spi_dev_attrs[] = {
76 &dev_attr_modalias.attr,
77 NULL,
8ae12a0d 78};
aa7da564 79ATTRIBUTE_GROUPS(spi_dev);
8ae12a0d
DB
80
81/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
82 * and the sysfs version makes coldplug work too.
83 */
84
75368bf6
AV
85static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
86 const struct spi_device *sdev)
87{
88 while (id->name[0]) {
89 if (!strcmp(sdev->modalias, id->name))
90 return id;
91 id++;
92 }
93 return NULL;
94}
95
96const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
97{
98 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
99
100 return spi_match_id(sdrv->id_table, sdev);
101}
102EXPORT_SYMBOL_GPL(spi_get_device_id);
103
8ae12a0d
DB
104static int spi_match_device(struct device *dev, struct device_driver *drv)
105{
106 const struct spi_device *spi = to_spi_device(dev);
75368bf6
AV
107 const struct spi_driver *sdrv = to_spi_driver(drv);
108
2b7a32f7
SA
109 /* Attempt an OF style match */
110 if (of_driver_match_device(dev, drv))
111 return 1;
112
64bee4d2
MW
113 /* Then try ACPI */
114 if (acpi_driver_match_device(dev, drv))
115 return 1;
116
75368bf6
AV
117 if (sdrv->id_table)
118 return !!spi_match_id(sdrv->id_table, spi);
8ae12a0d 119
35f74fca 120 return strcmp(spi->modalias, drv->name) == 0;
8ae12a0d
DB
121}
122
7eff2e7a 123static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
8ae12a0d
DB
124{
125 const struct spi_device *spi = to_spi_device(dev);
8c4ff6d0
ZR
126 int rc;
127
128 rc = acpi_device_uevent_modalias(dev, env);
129 if (rc != -ENODEV)
130 return rc;
8ae12a0d 131
e0626e38 132 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
8ae12a0d
DB
133 return 0;
134}
135
3ae22e8c
MB
136#ifdef CONFIG_PM_SLEEP
137static int spi_legacy_suspend(struct device *dev, pm_message_t message)
8ae12a0d 138{
3c72426f 139 int value = 0;
b885244e 140 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 141
8ae12a0d 142 /* suspend will stop irqs and dma; no more i/o */
3c72426f
DB
143 if (drv) {
144 if (drv->suspend)
145 value = drv->suspend(to_spi_device(dev), message);
146 else
147 dev_dbg(dev, "... can't suspend\n");
148 }
8ae12a0d
DB
149 return value;
150}
151
3ae22e8c 152static int spi_legacy_resume(struct device *dev)
8ae12a0d 153{
3c72426f 154 int value = 0;
b885244e 155 struct spi_driver *drv = to_spi_driver(dev->driver);
8ae12a0d 156
8ae12a0d 157 /* resume may restart the i/o queue */
3c72426f
DB
158 if (drv) {
159 if (drv->resume)
160 value = drv->resume(to_spi_device(dev));
161 else
162 dev_dbg(dev, "... can't resume\n");
163 }
8ae12a0d
DB
164 return value;
165}
166
3ae22e8c
MB
167static int spi_pm_suspend(struct device *dev)
168{
169 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
170
171 if (pm)
172 return pm_generic_suspend(dev);
173 else
174 return spi_legacy_suspend(dev, PMSG_SUSPEND);
175}
176
177static int spi_pm_resume(struct device *dev)
178{
179 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
180
181 if (pm)
182 return pm_generic_resume(dev);
183 else
184 return spi_legacy_resume(dev);
185}
186
187static int spi_pm_freeze(struct device *dev)
188{
189 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
190
191 if (pm)
192 return pm_generic_freeze(dev);
193 else
194 return spi_legacy_suspend(dev, PMSG_FREEZE);
195}
196
197static int spi_pm_thaw(struct device *dev)
198{
199 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
200
201 if (pm)
202 return pm_generic_thaw(dev);
203 else
204 return spi_legacy_resume(dev);
205}
206
207static int spi_pm_poweroff(struct device *dev)
208{
209 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
210
211 if (pm)
212 return pm_generic_poweroff(dev);
213 else
214 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
215}
216
217static int spi_pm_restore(struct device *dev)
218{
219 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
220
221 if (pm)
222 return pm_generic_restore(dev);
223 else
224 return spi_legacy_resume(dev);
225}
8ae12a0d 226#else
3ae22e8c
MB
227#define spi_pm_suspend NULL
228#define spi_pm_resume NULL
229#define spi_pm_freeze NULL
230#define spi_pm_thaw NULL
231#define spi_pm_poweroff NULL
232#define spi_pm_restore NULL
8ae12a0d
DB
233#endif
234
3ae22e8c
MB
235static const struct dev_pm_ops spi_pm = {
236 .suspend = spi_pm_suspend,
237 .resume = spi_pm_resume,
238 .freeze = spi_pm_freeze,
239 .thaw = spi_pm_thaw,
240 .poweroff = spi_pm_poweroff,
241 .restore = spi_pm_restore,
242 SET_RUNTIME_PM_OPS(
243 pm_generic_runtime_suspend,
244 pm_generic_runtime_resume,
45f0a85c 245 NULL
3ae22e8c
MB
246 )
247};
248
8ae12a0d
DB
249struct bus_type spi_bus_type = {
250 .name = "spi",
aa7da564 251 .dev_groups = spi_dev_groups,
8ae12a0d
DB
252 .match = spi_match_device,
253 .uevent = spi_uevent,
3ae22e8c 254 .pm = &spi_pm,
8ae12a0d
DB
255};
256EXPORT_SYMBOL_GPL(spi_bus_type);
257
b885244e
DB
258
259static int spi_drv_probe(struct device *dev)
260{
261 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
262 int ret;
263
86be408b
SN
264 ret = of_clk_set_defaults(dev->of_node, false);
265 if (ret)
266 return ret;
267
676e7c25
UH
268 ret = dev_pm_domain_attach(dev, true);
269 if (ret != -EPROBE_DEFER) {
270 ret = sdrv->probe(to_spi_device(dev));
271 if (ret)
272 dev_pm_domain_detach(dev, true);
273 }
b885244e 274
33cf00e5 275 return ret;
b885244e
DB
276}
277
278static int spi_drv_remove(struct device *dev)
279{
280 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
33cf00e5
MW
281 int ret;
282
aec35f4e 283 ret = sdrv->remove(to_spi_device(dev));
676e7c25 284 dev_pm_domain_detach(dev, true);
b885244e 285
33cf00e5 286 return ret;
b885244e
DB
287}
288
289static void spi_drv_shutdown(struct device *dev)
290{
291 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
292
293 sdrv->shutdown(to_spi_device(dev));
294}
295
33e34dc6
DB
296/**
297 * spi_register_driver - register a SPI driver
298 * @sdrv: the driver to register
299 * Context: can sleep
300 */
b885244e
DB
301int spi_register_driver(struct spi_driver *sdrv)
302{
303 sdrv->driver.bus = &spi_bus_type;
304 if (sdrv->probe)
305 sdrv->driver.probe = spi_drv_probe;
306 if (sdrv->remove)
307 sdrv->driver.remove = spi_drv_remove;
308 if (sdrv->shutdown)
309 sdrv->driver.shutdown = spi_drv_shutdown;
310 return driver_register(&sdrv->driver);
311}
312EXPORT_SYMBOL_GPL(spi_register_driver);
313
8ae12a0d
DB
314/*-------------------------------------------------------------------------*/
315
316/* SPI devices should normally not be created by SPI device drivers; that
317 * would make them board-specific. Similarly with SPI master drivers.
318 * Device registration normally goes into like arch/.../mach.../board-YYY.c
319 * with other readonly (flashable) information about mainboard devices.
320 */
321
322struct boardinfo {
323 struct list_head list;
2b9603a0 324 struct spi_board_info board_info;
8ae12a0d
DB
325};
326
327static LIST_HEAD(board_list);
2b9603a0
FT
328static LIST_HEAD(spi_master_list);
329
330/*
331 * Used to protect add/del opertion for board_info list and
332 * spi_master list, and their matching process
333 */
94040828 334static DEFINE_MUTEX(board_lock);
8ae12a0d 335
dc87c98e
GL
336/**
337 * spi_alloc_device - Allocate a new SPI device
338 * @master: Controller to which device is connected
339 * Context: can sleep
340 *
341 * Allows a driver to allocate and initialize a spi_device without
342 * registering it immediately. This allows a driver to directly
343 * fill the spi_device with device parameters before calling
344 * spi_add_device() on it.
345 *
346 * Caller is responsible to call spi_add_device() on the returned
347 * spi_device structure to add it to the SPI master. If the caller
348 * needs to discard the spi_device without adding it, then it should
349 * call spi_dev_put() on it.
350 *
351 * Returns a pointer to the new device, or NULL.
352 */
353struct spi_device *spi_alloc_device(struct spi_master *master)
354{
355 struct spi_device *spi;
dc87c98e
GL
356
357 if (!spi_master_get(master))
358 return NULL;
359
5fe5f05e 360 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
dc87c98e 361 if (!spi) {
dc87c98e
GL
362 spi_master_put(master);
363 return NULL;
364 }
365
366 spi->master = master;
178db7d3 367 spi->dev.parent = &master->dev;
dc87c98e
GL
368 spi->dev.bus = &spi_bus_type;
369 spi->dev.release = spidev_release;
446411e1 370 spi->cs_gpio = -ENOENT;
dc87c98e
GL
371 device_initialize(&spi->dev);
372 return spi;
373}
374EXPORT_SYMBOL_GPL(spi_alloc_device);
375
e13ac47b
JN
376static void spi_dev_set_name(struct spi_device *spi)
377{
378 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
379
380 if (adev) {
381 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
382 return;
383 }
384
385 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
386 spi->chip_select);
387}
388
b6fb8d3a
MW
389static int spi_dev_check(struct device *dev, void *data)
390{
391 struct spi_device *spi = to_spi_device(dev);
392 struct spi_device *new_spi = data;
393
394 if (spi->master == new_spi->master &&
395 spi->chip_select == new_spi->chip_select)
396 return -EBUSY;
397 return 0;
398}
399
dc87c98e
GL
400/**
401 * spi_add_device - Add spi_device allocated with spi_alloc_device
402 * @spi: spi_device to register
403 *
404 * Companion function to spi_alloc_device. Devices allocated with
405 * spi_alloc_device can be added onto the spi bus with this function.
406 *
e48880e0 407 * Returns 0 on success; negative errno on failure
dc87c98e
GL
408 */
409int spi_add_device(struct spi_device *spi)
410{
e48880e0 411 static DEFINE_MUTEX(spi_add_lock);
74317984
JCPV
412 struct spi_master *master = spi->master;
413 struct device *dev = master->dev.parent;
dc87c98e
GL
414 int status;
415
416 /* Chipselects are numbered 0..max; validate. */
74317984 417 if (spi->chip_select >= master->num_chipselect) {
dc87c98e
GL
418 dev_err(dev, "cs%d >= max %d\n",
419 spi->chip_select,
74317984 420 master->num_chipselect);
dc87c98e
GL
421 return -EINVAL;
422 }
423
424 /* Set the bus ID string */
e13ac47b 425 spi_dev_set_name(spi);
e48880e0
DB
426
427 /* We need to make sure there's no other device with this
428 * chipselect **BEFORE** we call setup(), else we'll trash
429 * its configuration. Lock against concurrent add() calls.
430 */
431 mutex_lock(&spi_add_lock);
432
b6fb8d3a
MW
433 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
434 if (status) {
e48880e0
DB
435 dev_err(dev, "chipselect %d already in use\n",
436 spi->chip_select);
e48880e0
DB
437 goto done;
438 }
439
74317984
JCPV
440 if (master->cs_gpios)
441 spi->cs_gpio = master->cs_gpios[spi->chip_select];
442
e48880e0
DB
443 /* Drivers may modify this initial i/o setup, but will
444 * normally rely on the device being setup. Devices
445 * using SPI_CS_HIGH can't coexist well otherwise...
446 */
7d077197 447 status = spi_setup(spi);
dc87c98e 448 if (status < 0) {
eb288a1f
LW
449 dev_err(dev, "can't setup %s, status %d\n",
450 dev_name(&spi->dev), status);
e48880e0 451 goto done;
dc87c98e
GL
452 }
453
e48880e0 454 /* Device may be bound to an active driver when this returns */
dc87c98e 455 status = device_add(&spi->dev);
e48880e0 456 if (status < 0)
eb288a1f
LW
457 dev_err(dev, "can't add %s, status %d\n",
458 dev_name(&spi->dev), status);
e48880e0 459 else
35f74fca 460 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
dc87c98e 461
e48880e0
DB
462done:
463 mutex_unlock(&spi_add_lock);
464 return status;
dc87c98e
GL
465}
466EXPORT_SYMBOL_GPL(spi_add_device);
8ae12a0d 467
33e34dc6
DB
468/**
469 * spi_new_device - instantiate one new SPI device
470 * @master: Controller to which device is connected
471 * @chip: Describes the SPI device
472 * Context: can sleep
473 *
474 * On typical mainboards, this is purely internal; and it's not needed
8ae12a0d
DB
475 * after board init creates the hard-wired devices. Some development
476 * platforms may not be able to use spi_register_board_info though, and
477 * this is exported so that for example a USB or parport based adapter
478 * driver could add devices (which it would learn about out-of-band).
082c8cb4
DB
479 *
480 * Returns the new device, or NULL.
8ae12a0d 481 */
e9d5a461
AB
482struct spi_device *spi_new_device(struct spi_master *master,
483 struct spi_board_info *chip)
8ae12a0d
DB
484{
485 struct spi_device *proxy;
8ae12a0d
DB
486 int status;
487
082c8cb4
DB
488 /* NOTE: caller did any chip->bus_num checks necessary.
489 *
490 * Also, unless we change the return value convention to use
491 * error-or-pointer (not NULL-or-pointer), troubleshootability
492 * suggests syslogged diagnostics are best here (ugh).
493 */
494
dc87c98e
GL
495 proxy = spi_alloc_device(master);
496 if (!proxy)
8ae12a0d
DB
497 return NULL;
498
102eb975
GL
499 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
500
8ae12a0d
DB
501 proxy->chip_select = chip->chip_select;
502 proxy->max_speed_hz = chip->max_speed_hz;
980a01c9 503 proxy->mode = chip->mode;
8ae12a0d 504 proxy->irq = chip->irq;
102eb975 505 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
8ae12a0d
DB
506 proxy->dev.platform_data = (void *) chip->platform_data;
507 proxy->controller_data = chip->controller_data;
508 proxy->controller_state = NULL;
8ae12a0d 509
dc87c98e 510 status = spi_add_device(proxy);
8ae12a0d 511 if (status < 0) {
dc87c98e
GL
512 spi_dev_put(proxy);
513 return NULL;
8ae12a0d
DB
514 }
515
8ae12a0d
DB
516 return proxy;
517}
518EXPORT_SYMBOL_GPL(spi_new_device);
519
2b9603a0
FT
520static void spi_match_master_to_boardinfo(struct spi_master *master,
521 struct spi_board_info *bi)
522{
523 struct spi_device *dev;
524
525 if (master->bus_num != bi->bus_num)
526 return;
527
528 dev = spi_new_device(master, bi);
529 if (!dev)
530 dev_err(master->dev.parent, "can't create new device for %s\n",
531 bi->modalias);
532}
533
33e34dc6
DB
534/**
535 * spi_register_board_info - register SPI devices for a given board
536 * @info: array of chip descriptors
537 * @n: how many descriptors are provided
538 * Context: can sleep
539 *
8ae12a0d
DB
540 * Board-specific early init code calls this (probably during arch_initcall)
541 * with segments of the SPI device table. Any device nodes are created later,
542 * after the relevant parent SPI controller (bus_num) is defined. We keep
543 * this table of devices forever, so that reloading a controller driver will
544 * not make Linux forget about these hard-wired devices.
545 *
546 * Other code can also call this, e.g. a particular add-on board might provide
547 * SPI devices through its expansion connector, so code initializing that board
548 * would naturally declare its SPI devices.
549 *
550 * The board info passed can safely be __initdata ... but be careful of
551 * any embedded pointers (platform_data, etc), they're copied as-is.
552 */
fd4a319b 553int spi_register_board_info(struct spi_board_info const *info, unsigned n)
8ae12a0d 554{
2b9603a0
FT
555 struct boardinfo *bi;
556 int i;
8ae12a0d 557
c7908a37
XL
558 if (!n)
559 return -EINVAL;
560
2b9603a0 561 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
8ae12a0d
DB
562 if (!bi)
563 return -ENOMEM;
8ae12a0d 564
2b9603a0
FT
565 for (i = 0; i < n; i++, bi++, info++) {
566 struct spi_master *master;
8ae12a0d 567
2b9603a0
FT
568 memcpy(&bi->board_info, info, sizeof(*info));
569 mutex_lock(&board_lock);
570 list_add_tail(&bi->list, &board_list);
571 list_for_each_entry(master, &spi_master_list, list)
572 spi_match_master_to_boardinfo(master, &bi->board_info);
573 mutex_unlock(&board_lock);
8ae12a0d 574 }
2b9603a0
FT
575
576 return 0;
8ae12a0d
DB
577}
578
579/*-------------------------------------------------------------------------*/
580
b158935f
MB
581static void spi_set_cs(struct spi_device *spi, bool enable)
582{
583 if (spi->mode & SPI_CS_HIGH)
584 enable = !enable;
585
586 if (spi->cs_gpio >= 0)
587 gpio_set_value(spi->cs_gpio, !enable);
588 else if (spi->master->set_cs)
589 spi->master->set_cs(spi, !enable);
590}
591
2de440f5 592#ifdef CONFIG_HAS_DMA
6ad45a27
MB
593static int spi_map_buf(struct spi_master *master, struct device *dev,
594 struct sg_table *sgt, void *buf, size_t len,
595 enum dma_data_direction dir)
596{
597 const bool vmalloced_buf = is_vmalloc_addr(buf);
598 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
599 const int sgs = DIV_ROUND_UP(len, desc_len);
600 struct page *vm_page;
601 void *sg_buf;
602 size_t min;
603 int i, ret;
604
605 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
606 if (ret != 0)
607 return ret;
608
609 for (i = 0; i < sgs; i++) {
610 min = min_t(size_t, len, desc_len);
611
612 if (vmalloced_buf) {
613 vm_page = vmalloc_to_page(buf);
614 if (!vm_page) {
615 sg_free_table(sgt);
616 return -ENOMEM;
617 }
c1aefbdd
CK
618 sg_set_page(&sgt->sgl[i], vm_page,
619 min, offset_in_page(buf));
6ad45a27
MB
620 } else {
621 sg_buf = buf;
c1aefbdd 622 sg_set_buf(&sgt->sgl[i], sg_buf, min);
6ad45a27
MB
623 }
624
6ad45a27
MB
625
626 buf += min;
627 len -= min;
628 }
629
630 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
89e4b66a
GU
631 if (!ret)
632 ret = -ENOMEM;
6ad45a27
MB
633 if (ret < 0) {
634 sg_free_table(sgt);
635 return ret;
636 }
637
638 sgt->nents = ret;
639
640 return 0;
641}
642
643static void spi_unmap_buf(struct spi_master *master, struct device *dev,
644 struct sg_table *sgt, enum dma_data_direction dir)
645{
646 if (sgt->orig_nents) {
647 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
648 sg_free_table(sgt);
649 }
650}
651
2de440f5 652static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
99adef31 653{
99adef31
MB
654 struct device *tx_dev, *rx_dev;
655 struct spi_transfer *xfer;
6ad45a27 656 int ret;
3a2eba9b 657
6ad45a27 658 if (!master->can_dma)
99adef31
MB
659 return 0;
660
3fc25421
GU
661 tx_dev = master->dma_tx->device->dev;
662 rx_dev = master->dma_rx->device->dev;
99adef31
MB
663
664 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
665 if (!master->can_dma(master, msg->spi, xfer))
666 continue;
667
668 if (xfer->tx_buf != NULL) {
6ad45a27
MB
669 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
670 (void *)xfer->tx_buf, xfer->len,
671 DMA_TO_DEVICE);
672 if (ret != 0)
673 return ret;
99adef31
MB
674 }
675
676 if (xfer->rx_buf != NULL) {
6ad45a27
MB
677 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
678 xfer->rx_buf, xfer->len,
679 DMA_FROM_DEVICE);
680 if (ret != 0) {
681 spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
682 DMA_TO_DEVICE);
683 return ret;
99adef31
MB
684 }
685 }
686 }
687
688 master->cur_msg_mapped = true;
689
690 return 0;
691}
692
693static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
694{
695 struct spi_transfer *xfer;
696 struct device *tx_dev, *rx_dev;
697
6ad45a27 698 if (!master->cur_msg_mapped || !master->can_dma)
99adef31
MB
699 return 0;
700
3fc25421
GU
701 tx_dev = master->dma_tx->device->dev;
702 rx_dev = master->dma_rx->device->dev;
99adef31
MB
703
704 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
705 if (!master->can_dma(master, msg->spi, xfer))
706 continue;
707
6ad45a27
MB
708 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
709 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
99adef31
MB
710 }
711
712 return 0;
713}
2de440f5
GU
714#else /* !CONFIG_HAS_DMA */
715static inline int __spi_map_msg(struct spi_master *master,
716 struct spi_message *msg)
717{
718 return 0;
719}
720
721static inline int spi_unmap_msg(struct spi_master *master,
722 struct spi_message *msg)
723{
724 return 0;
725}
726#endif /* !CONFIG_HAS_DMA */
727
728static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
729{
730 struct spi_transfer *xfer;
731 void *tmp;
732 unsigned int max_tx, max_rx;
733
734 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
735 max_tx = 0;
736 max_rx = 0;
737
738 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
739 if ((master->flags & SPI_MASTER_MUST_TX) &&
740 !xfer->tx_buf)
741 max_tx = max(xfer->len, max_tx);
742 if ((master->flags & SPI_MASTER_MUST_RX) &&
743 !xfer->rx_buf)
744 max_rx = max(xfer->len, max_rx);
745 }
746
747 if (max_tx) {
748 tmp = krealloc(master->dummy_tx, max_tx,
749 GFP_KERNEL | GFP_DMA);
750 if (!tmp)
751 return -ENOMEM;
752 master->dummy_tx = tmp;
753 memset(tmp, 0, max_tx);
754 }
755
756 if (max_rx) {
757 tmp = krealloc(master->dummy_rx, max_rx,
758 GFP_KERNEL | GFP_DMA);
759 if (!tmp)
760 return -ENOMEM;
761 master->dummy_rx = tmp;
762 }
763
764 if (max_tx || max_rx) {
765 list_for_each_entry(xfer, &msg->transfers,
766 transfer_list) {
767 if (!xfer->tx_buf)
768 xfer->tx_buf = master->dummy_tx;
769 if (!xfer->rx_buf)
770 xfer->rx_buf = master->dummy_rx;
771 }
772 }
773 }
774
775 return __spi_map_msg(master, msg);
776}
99adef31 777
b158935f
MB
778/*
779 * spi_transfer_one_message - Default implementation of transfer_one_message()
780 *
781 * This is a standard implementation of transfer_one_message() for
782 * drivers which impelment a transfer_one() operation. It provides
783 * standard handling of delays and chip select management.
784 */
785static int spi_transfer_one_message(struct spi_master *master,
786 struct spi_message *msg)
787{
788 struct spi_transfer *xfer;
b158935f
MB
789 bool keep_cs = false;
790 int ret = 0;
16a0ce4e 791 int ms = 1;
b158935f
MB
792
793 spi_set_cs(msg->spi, true);
794
795 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
796 trace_spi_transfer_start(msg, xfer);
797
38ec10f6
MB
798 if (xfer->tx_buf || xfer->rx_buf) {
799 reinit_completion(&master->xfer_completion);
b158935f 800
38ec10f6
MB
801 ret = master->transfer_one(master, msg->spi, xfer);
802 if (ret < 0) {
803 dev_err(&msg->spi->dev,
804 "SPI transfer failed: %d\n", ret);
805 goto out;
806 }
b158935f 807
38ec10f6
MB
808 if (ret > 0) {
809 ret = 0;
810 ms = xfer->len * 8 * 1000 / xfer->speed_hz;
811 ms += ms + 100; /* some tolerance */
16a0ce4e 812
38ec10f6
MB
813 ms = wait_for_completion_timeout(&master->xfer_completion,
814 msecs_to_jiffies(ms));
815 }
16a0ce4e 816
38ec10f6
MB
817 if (ms == 0) {
818 dev_err(&msg->spi->dev,
819 "SPI transfer timed out\n");
820 msg->status = -ETIMEDOUT;
821 }
822 } else {
823 if (xfer->len)
824 dev_err(&msg->spi->dev,
825 "Bufferless transfer has length %u\n",
826 xfer->len);
13a42798 827 }
b158935f
MB
828
829 trace_spi_transfer_stop(msg, xfer);
830
831 if (msg->status != -EINPROGRESS)
832 goto out;
833
834 if (xfer->delay_usecs)
835 udelay(xfer->delay_usecs);
836
837 if (xfer->cs_change) {
838 if (list_is_last(&xfer->transfer_list,
839 &msg->transfers)) {
840 keep_cs = true;
841 } else {
0b73aa63
MB
842 spi_set_cs(msg->spi, false);
843 udelay(10);
844 spi_set_cs(msg->spi, true);
b158935f
MB
845 }
846 }
847
848 msg->actual_length += xfer->len;
849 }
850
851out:
852 if (ret != 0 || !keep_cs)
853 spi_set_cs(msg->spi, false);
854
855 if (msg->status == -EINPROGRESS)
856 msg->status = ret;
857
858 spi_finalize_current_message(master);
859
860 return ret;
861}
862
863/**
864 * spi_finalize_current_transfer - report completion of a transfer
2c675689 865 * @master: the master reporting completion
b158935f
MB
866 *
867 * Called by SPI drivers using the core transfer_one_message()
868 * implementation to notify it that the current interrupt driven
9e8f4882 869 * transfer has finished and the next one may be scheduled.
b158935f
MB
870 */
871void spi_finalize_current_transfer(struct spi_master *master)
872{
873 complete(&master->xfer_completion);
874}
875EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
876
ffbbdd21
LW
877/**
878 * spi_pump_messages - kthread work function which processes spi message queue
879 * @work: pointer to kthread work struct contained in the master struct
880 *
881 * This function checks if there is any spi message in the queue that
882 * needs processing and if so call out to the driver to initialize hardware
883 * and transfer each message.
884 *
0461a414
MB
885 * Note that it is called both from the kthread itself and also from
886 * inside spi_sync(); the queue extraction handling at the top of the
887 * function should deal with this safely.
ffbbdd21
LW
888 */
889static void spi_pump_messages(struct kthread_work *work)
890{
891 struct spi_master *master =
892 container_of(work, struct spi_master, pump_messages);
893 unsigned long flags;
894 bool was_busy = false;
895 int ret;
896
983aee5d 897 /* Lock queue */
ffbbdd21 898 spin_lock_irqsave(&master->queue_lock, flags);
983aee5d
MB
899
900 /* Make sure we are not already running a message */
901 if (master->cur_msg) {
902 spin_unlock_irqrestore(&master->queue_lock, flags);
903 return;
904 }
905
0461a414
MB
906 /* If another context is idling the device then defer */
907 if (master->idling) {
908 queue_kthread_work(&master->kworker, &master->pump_messages);
909 spin_unlock_irqrestore(&master->queue_lock, flags);
910 return;
911 }
912
983aee5d 913 /* Check if the queue is idle */
ffbbdd21 914 if (list_empty(&master->queue) || !master->running) {
b0b36b86
BF
915 if (!master->busy) {
916 spin_unlock_irqrestore(&master->queue_lock, flags);
917 return;
ffbbdd21
LW
918 }
919 master->busy = false;
0461a414 920 master->idling = true;
ffbbdd21 921 spin_unlock_irqrestore(&master->queue_lock, flags);
0461a414 922
3a2eba9b
MB
923 kfree(master->dummy_rx);
924 master->dummy_rx = NULL;
925 kfree(master->dummy_tx);
926 master->dummy_tx = NULL;
b0b36b86
BF
927 if (master->unprepare_transfer_hardware &&
928 master->unprepare_transfer_hardware(master))
929 dev_err(&master->dev,
930 "failed to unprepare transfer hardware\n");
49834de2
MB
931 if (master->auto_runtime_pm) {
932 pm_runtime_mark_last_busy(master->dev.parent);
933 pm_runtime_put_autosuspend(master->dev.parent);
934 }
56ec1978 935 trace_spi_master_idle(master);
0461a414
MB
936
937 spin_lock_irqsave(&master->queue_lock, flags);
938 master->idling = false;
939 spin_unlock_irqrestore(&master->queue_lock, flags);
ffbbdd21
LW
940 return;
941 }
942
ffbbdd21
LW
943 /* Extract head of queue */
944 master->cur_msg =
a89e2d27 945 list_first_entry(&master->queue, struct spi_message, queue);
ffbbdd21
LW
946
947 list_del_init(&master->cur_msg->queue);
948 if (master->busy)
949 was_busy = true;
950 else
951 master->busy = true;
952 spin_unlock_irqrestore(&master->queue_lock, flags);
953
49834de2
MB
954 if (!was_busy && master->auto_runtime_pm) {
955 ret = pm_runtime_get_sync(master->dev.parent);
956 if (ret < 0) {
957 dev_err(&master->dev, "Failed to power device: %d\n",
958 ret);
959 return;
960 }
961 }
962
56ec1978
MB
963 if (!was_busy)
964 trace_spi_master_busy(master);
965
7dfd2bd7 966 if (!was_busy && master->prepare_transfer_hardware) {
ffbbdd21
LW
967 ret = master->prepare_transfer_hardware(master);
968 if (ret) {
969 dev_err(&master->dev,
970 "failed to prepare transfer hardware\n");
49834de2
MB
971
972 if (master->auto_runtime_pm)
973 pm_runtime_put(master->dev.parent);
ffbbdd21
LW
974 return;
975 }
976 }
977
56ec1978
MB
978 trace_spi_message_start(master->cur_msg);
979
2841a5fc
MB
980 if (master->prepare_message) {
981 ret = master->prepare_message(master, master->cur_msg);
982 if (ret) {
983 dev_err(&master->dev,
984 "failed to prepare message: %d\n", ret);
985 master->cur_msg->status = ret;
986 spi_finalize_current_message(master);
987 return;
988 }
989 master->cur_msg_prepared = true;
990 }
991
99adef31
MB
992 ret = spi_map_msg(master, master->cur_msg);
993 if (ret) {
994 master->cur_msg->status = ret;
995 spi_finalize_current_message(master);
996 return;
997 }
998
ffbbdd21
LW
999 ret = master->transfer_one_message(master, master->cur_msg);
1000 if (ret) {
1001 dev_err(&master->dev,
1f802f82 1002 "failed to transfer one message from queue\n");
ffbbdd21
LW
1003 return;
1004 }
1005}
1006
1007static int spi_init_queue(struct spi_master *master)
1008{
1009 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1010
ffbbdd21
LW
1011 master->running = false;
1012 master->busy = false;
1013
1014 init_kthread_worker(&master->kworker);
1015 master->kworker_task = kthread_run(kthread_worker_fn,
f170168b 1016 &master->kworker, "%s",
ffbbdd21
LW
1017 dev_name(&master->dev));
1018 if (IS_ERR(master->kworker_task)) {
1019 dev_err(&master->dev, "failed to create message pump task\n");
98a8f5a0 1020 return PTR_ERR(master->kworker_task);
ffbbdd21
LW
1021 }
1022 init_kthread_work(&master->pump_messages, spi_pump_messages);
1023
1024 /*
1025 * Master config will indicate if this controller should run the
1026 * message pump with high (realtime) priority to reduce the transfer
1027 * latency on the bus by minimising the delay between a transfer
1028 * request and the scheduling of the message pump thread. Without this
1029 * setting the message pump thread will remain at default priority.
1030 */
1031 if (master->rt) {
1032 dev_info(&master->dev,
1033 "will run message pump with realtime priority\n");
1034 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1035 }
1036
1037 return 0;
1038}
1039
1040/**
1041 * spi_get_next_queued_message() - called by driver to check for queued
1042 * messages
1043 * @master: the master to check for queued messages
1044 *
1045 * If there are more messages in the queue, the next message is returned from
1046 * this call.
1047 */
1048struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1049{
1050 struct spi_message *next;
1051 unsigned long flags;
1052
1053 /* get a pointer to the next message, if any */
1054 spin_lock_irqsave(&master->queue_lock, flags);
1cfd97f9
AL
1055 next = list_first_entry_or_null(&master->queue, struct spi_message,
1056 queue);
ffbbdd21
LW
1057 spin_unlock_irqrestore(&master->queue_lock, flags);
1058
1059 return next;
1060}
1061EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1062
1063/**
1064 * spi_finalize_current_message() - the current message is complete
1065 * @master: the master to return the message to
1066 *
1067 * Called by the driver to notify the core that the message in the front of the
1068 * queue is complete and can be removed from the queue.
1069 */
1070void spi_finalize_current_message(struct spi_master *master)
1071{
1072 struct spi_message *mesg;
1073 unsigned long flags;
2841a5fc 1074 int ret;
ffbbdd21
LW
1075
1076 spin_lock_irqsave(&master->queue_lock, flags);
1077 mesg = master->cur_msg;
1078 master->cur_msg = NULL;
1079
1080 queue_kthread_work(&master->kworker, &master->pump_messages);
1081 spin_unlock_irqrestore(&master->queue_lock, flags);
1082
99adef31
MB
1083 spi_unmap_msg(master, mesg);
1084
2841a5fc
MB
1085 if (master->cur_msg_prepared && master->unprepare_message) {
1086 ret = master->unprepare_message(master, mesg);
1087 if (ret) {
1088 dev_err(&master->dev,
1089 "failed to unprepare message: %d\n", ret);
1090 }
1091 }
1092 master->cur_msg_prepared = false;
1093
ffbbdd21
LW
1094 mesg->state = NULL;
1095 if (mesg->complete)
1096 mesg->complete(mesg->context);
56ec1978
MB
1097
1098 trace_spi_message_done(mesg);
ffbbdd21
LW
1099}
1100EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1101
1102static int spi_start_queue(struct spi_master *master)
1103{
1104 unsigned long flags;
1105
1106 spin_lock_irqsave(&master->queue_lock, flags);
1107
1108 if (master->running || master->busy) {
1109 spin_unlock_irqrestore(&master->queue_lock, flags);
1110 return -EBUSY;
1111 }
1112
1113 master->running = true;
1114 master->cur_msg = NULL;
1115 spin_unlock_irqrestore(&master->queue_lock, flags);
1116
1117 queue_kthread_work(&master->kworker, &master->pump_messages);
1118
1119 return 0;
1120}
1121
1122static int spi_stop_queue(struct spi_master *master)
1123{
1124 unsigned long flags;
1125 unsigned limit = 500;
1126 int ret = 0;
1127
1128 spin_lock_irqsave(&master->queue_lock, flags);
1129
1130 /*
1131 * This is a bit lame, but is optimized for the common execution path.
1132 * A wait_queue on the master->busy could be used, but then the common
1133 * execution path (pump_messages) would be required to call wake_up or
1134 * friends on every SPI message. Do this instead.
1135 */
1136 while ((!list_empty(&master->queue) || master->busy) && limit--) {
1137 spin_unlock_irqrestore(&master->queue_lock, flags);
f97b26b0 1138 usleep_range(10000, 11000);
ffbbdd21
LW
1139 spin_lock_irqsave(&master->queue_lock, flags);
1140 }
1141
1142 if (!list_empty(&master->queue) || master->busy)
1143 ret = -EBUSY;
1144 else
1145 master->running = false;
1146
1147 spin_unlock_irqrestore(&master->queue_lock, flags);
1148
1149 if (ret) {
1150 dev_warn(&master->dev,
1151 "could not stop message queue\n");
1152 return ret;
1153 }
1154 return ret;
1155}
1156
1157static int spi_destroy_queue(struct spi_master *master)
1158{
1159 int ret;
1160
1161 ret = spi_stop_queue(master);
1162
1163 /*
1164 * flush_kthread_worker will block until all work is done.
1165 * If the reason that stop_queue timed out is that the work will never
1166 * finish, then it does no good to call flush/stop thread, so
1167 * return anyway.
1168 */
1169 if (ret) {
1170 dev_err(&master->dev, "problem destroying queue\n");
1171 return ret;
1172 }
1173
1174 flush_kthread_worker(&master->kworker);
1175 kthread_stop(master->kworker_task);
1176
1177 return 0;
1178}
1179
0461a414
MB
1180static int __spi_queued_transfer(struct spi_device *spi,
1181 struct spi_message *msg,
1182 bool need_pump)
ffbbdd21
LW
1183{
1184 struct spi_master *master = spi->master;
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&master->queue_lock, flags);
1188
1189 if (!master->running) {
1190 spin_unlock_irqrestore(&master->queue_lock, flags);
1191 return -ESHUTDOWN;
1192 }
1193 msg->actual_length = 0;
1194 msg->status = -EINPROGRESS;
1195
1196 list_add_tail(&msg->queue, &master->queue);
0461a414 1197 if (!master->busy && need_pump)
ffbbdd21
LW
1198 queue_kthread_work(&master->kworker, &master->pump_messages);
1199
1200 spin_unlock_irqrestore(&master->queue_lock, flags);
1201 return 0;
1202}
1203
0461a414
MB
1204/**
1205 * spi_queued_transfer - transfer function for queued transfers
1206 * @spi: spi device which is requesting transfer
1207 * @msg: spi message which is to handled is queued to driver queue
1208 */
1209static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1210{
1211 return __spi_queued_transfer(spi, msg, true);
1212}
1213
ffbbdd21
LW
1214static int spi_master_initialize_queue(struct spi_master *master)
1215{
1216 int ret;
1217
ffbbdd21 1218 master->transfer = spi_queued_transfer;
b158935f
MB
1219 if (!master->transfer_one_message)
1220 master->transfer_one_message = spi_transfer_one_message;
ffbbdd21
LW
1221
1222 /* Initialize and start queue */
1223 ret = spi_init_queue(master);
1224 if (ret) {
1225 dev_err(&master->dev, "problem initializing queue\n");
1226 goto err_init_queue;
1227 }
c3676d5c 1228 master->queued = true;
ffbbdd21
LW
1229 ret = spi_start_queue(master);
1230 if (ret) {
1231 dev_err(&master->dev, "problem starting queue\n");
1232 goto err_start_queue;
1233 }
1234
1235 return 0;
1236
1237err_start_queue:
ffbbdd21 1238 spi_destroy_queue(master);
c3676d5c 1239err_init_queue:
ffbbdd21
LW
1240 return ret;
1241}
1242
1243/*-------------------------------------------------------------------------*/
1244
7cb94361 1245#if defined(CONFIG_OF)
d57a4282
GL
1246/**
1247 * of_register_spi_devices() - Register child devices onto the SPI bus
1248 * @master: Pointer to spi_master device
1249 *
1250 * Registers an spi_device for each child node of master node which has a 'reg'
1251 * property.
1252 */
1253static void of_register_spi_devices(struct spi_master *master)
1254{
1255 struct spi_device *spi;
1256 struct device_node *nc;
d57a4282 1257 int rc;
89da4293 1258 u32 value;
d57a4282
GL
1259
1260 if (!master->dev.of_node)
1261 return;
1262
f3b6159e 1263 for_each_available_child_of_node(master->dev.of_node, nc) {
d57a4282
GL
1264 /* Alloc an spi_device */
1265 spi = spi_alloc_device(master);
1266 if (!spi) {
1267 dev_err(&master->dev, "spi_device alloc error for %s\n",
1268 nc->full_name);
1269 spi_dev_put(spi);
1270 continue;
1271 }
1272
1273 /* Select device driver */
1274 if (of_modalias_node(nc, spi->modalias,
1275 sizeof(spi->modalias)) < 0) {
1276 dev_err(&master->dev, "cannot find modalias for %s\n",
1277 nc->full_name);
1278 spi_dev_put(spi);
1279 continue;
1280 }
1281
1282 /* Device address */
89da4293
TP
1283 rc = of_property_read_u32(nc, "reg", &value);
1284 if (rc) {
1285 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1286 nc->full_name, rc);
d57a4282
GL
1287 spi_dev_put(spi);
1288 continue;
1289 }
89da4293 1290 spi->chip_select = value;
d57a4282
GL
1291
1292 /* Mode (clock phase/polarity/etc.) */
1293 if (of_find_property(nc, "spi-cpha", NULL))
1294 spi->mode |= SPI_CPHA;
1295 if (of_find_property(nc, "spi-cpol", NULL))
1296 spi->mode |= SPI_CPOL;
1297 if (of_find_property(nc, "spi-cs-high", NULL))
1298 spi->mode |= SPI_CS_HIGH;
c20151df
LPC
1299 if (of_find_property(nc, "spi-3wire", NULL))
1300 spi->mode |= SPI_3WIRE;
cd6339e6
ZQ
1301 if (of_find_property(nc, "spi-lsb-first", NULL))
1302 spi->mode |= SPI_LSB_FIRST;
d57a4282 1303
f477b7fb 1304 /* Device DUAL/QUAD mode */
89da4293
TP
1305 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1306 switch (value) {
1307 case 1:
a822e99c 1308 break;
89da4293 1309 case 2:
a822e99c
MB
1310 spi->mode |= SPI_TX_DUAL;
1311 break;
89da4293 1312 case 4:
a822e99c
MB
1313 spi->mode |= SPI_TX_QUAD;
1314 break;
1315 default:
80874d8c
GU
1316 dev_warn(&master->dev,
1317 "spi-tx-bus-width %d not supported\n",
1318 value);
1319 break;
a822e99c 1320 }
f477b7fb 1321 }
1322
89da4293
TP
1323 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1324 switch (value) {
1325 case 1:
a822e99c 1326 break;
89da4293 1327 case 2:
a822e99c
MB
1328 spi->mode |= SPI_RX_DUAL;
1329 break;
89da4293 1330 case 4:
a822e99c
MB
1331 spi->mode |= SPI_RX_QUAD;
1332 break;
1333 default:
80874d8c
GU
1334 dev_warn(&master->dev,
1335 "spi-rx-bus-width %d not supported\n",
1336 value);
1337 break;
a822e99c 1338 }
f477b7fb 1339 }
1340
d57a4282 1341 /* Device speed */
89da4293
TP
1342 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1343 if (rc) {
1344 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1345 nc->full_name, rc);
d57a4282
GL
1346 spi_dev_put(spi);
1347 continue;
1348 }
89da4293 1349 spi->max_speed_hz = value;
d57a4282
GL
1350
1351 /* IRQ */
1352 spi->irq = irq_of_parse_and_map(nc, 0);
1353
1354 /* Store a pointer to the node in the device structure */
1355 of_node_get(nc);
1356 spi->dev.of_node = nc;
1357
1358 /* Register the new device */
70fac17c 1359 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
d57a4282
GL
1360 rc = spi_add_device(spi);
1361 if (rc) {
1362 dev_err(&master->dev, "spi_device register error %s\n",
1363 nc->full_name);
1364 spi_dev_put(spi);
1365 }
1366
1367 }
1368}
1369#else
1370static void of_register_spi_devices(struct spi_master *master) { }
1371#endif
1372
64bee4d2
MW
1373#ifdef CONFIG_ACPI
1374static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1375{
1376 struct spi_device *spi = data;
1377
1378 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1379 struct acpi_resource_spi_serialbus *sb;
1380
1381 sb = &ares->data.spi_serial_bus;
1382 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1383 spi->chip_select = sb->device_selection;
1384 spi->max_speed_hz = sb->connection_speed;
1385
1386 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1387 spi->mode |= SPI_CPHA;
1388 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1389 spi->mode |= SPI_CPOL;
1390 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1391 spi->mode |= SPI_CS_HIGH;
1392 }
1393 } else if (spi->irq < 0) {
1394 struct resource r;
1395
1396 if (acpi_dev_resource_interrupt(ares, 0, &r))
1397 spi->irq = r.start;
1398 }
1399
1400 /* Always tell the ACPI core to skip this resource */
1401 return 1;
1402}
1403
1404static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1405 void *data, void **return_value)
1406{
1407 struct spi_master *master = data;
1408 struct list_head resource_list;
1409 struct acpi_device *adev;
1410 struct spi_device *spi;
1411 int ret;
1412
1413 if (acpi_bus_get_device(handle, &adev))
1414 return AE_OK;
1415 if (acpi_bus_get_status(adev) || !adev->status.present)
1416 return AE_OK;
1417
1418 spi = spi_alloc_device(master);
1419 if (!spi) {
1420 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1421 dev_name(&adev->dev));
1422 return AE_NO_MEMORY;
1423 }
1424
7b199811 1425 ACPI_COMPANION_SET(&spi->dev, adev);
64bee4d2
MW
1426 spi->irq = -1;
1427
1428 INIT_LIST_HEAD(&resource_list);
1429 ret = acpi_dev_get_resources(adev, &resource_list,
1430 acpi_spi_add_resource, spi);
1431 acpi_dev_free_resource_list(&resource_list);
1432
1433 if (ret < 0 || !spi->max_speed_hz) {
1434 spi_dev_put(spi);
1435 return AE_OK;
1436 }
1437
33cf00e5 1438 adev->power.flags.ignore_parent = true;
cf9eb39c 1439 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
64bee4d2 1440 if (spi_add_device(spi)) {
33cf00e5 1441 adev->power.flags.ignore_parent = false;
64bee4d2
MW
1442 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1443 dev_name(&adev->dev));
1444 spi_dev_put(spi);
1445 }
1446
1447 return AE_OK;
1448}
1449
1450static void acpi_register_spi_devices(struct spi_master *master)
1451{
1452 acpi_status status;
1453 acpi_handle handle;
1454
29896178 1455 handle = ACPI_HANDLE(master->dev.parent);
64bee4d2
MW
1456 if (!handle)
1457 return;
1458
1459 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1460 acpi_spi_add_device, NULL,
1461 master, NULL);
1462 if (ACPI_FAILURE(status))
1463 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1464}
1465#else
1466static inline void acpi_register_spi_devices(struct spi_master *master) {}
1467#endif /* CONFIG_ACPI */
1468
49dce689 1469static void spi_master_release(struct device *dev)
8ae12a0d
DB
1470{
1471 struct spi_master *master;
1472
49dce689 1473 master = container_of(dev, struct spi_master, dev);
8ae12a0d
DB
1474 kfree(master);
1475}
1476
1477static struct class spi_master_class = {
1478 .name = "spi_master",
1479 .owner = THIS_MODULE,
49dce689 1480 .dev_release = spi_master_release,
8ae12a0d
DB
1481};
1482
1483
ffbbdd21 1484
8ae12a0d
DB
1485/**
1486 * spi_alloc_master - allocate SPI master controller
1487 * @dev: the controller, possibly using the platform_bus
33e34dc6 1488 * @size: how much zeroed driver-private data to allocate; the pointer to this
49dce689 1489 * memory is in the driver_data field of the returned device,
0c868461 1490 * accessible with spi_master_get_devdata().
33e34dc6 1491 * Context: can sleep
8ae12a0d
DB
1492 *
1493 * This call is used only by SPI master controller drivers, which are the
1494 * only ones directly touching chip registers. It's how they allocate
ba1a0513 1495 * an spi_master structure, prior to calling spi_register_master().
8ae12a0d
DB
1496 *
1497 * This must be called from context that can sleep. It returns the SPI
1498 * master structure on success, else NULL.
1499 *
1500 * The caller is responsible for assigning the bus number and initializing
ba1a0513 1501 * the master's methods before calling spi_register_master(); and (after errors
eb4af0f5
UKK
1502 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1503 * leak.
8ae12a0d 1504 */
e9d5a461 1505struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
8ae12a0d
DB
1506{
1507 struct spi_master *master;
1508
0c868461
DB
1509 if (!dev)
1510 return NULL;
1511
5fe5f05e 1512 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
8ae12a0d
DB
1513 if (!master)
1514 return NULL;
1515
49dce689 1516 device_initialize(&master->dev);
1e8a52e1
GL
1517 master->bus_num = -1;
1518 master->num_chipselect = 1;
49dce689
TJ
1519 master->dev.class = &spi_master_class;
1520 master->dev.parent = get_device(dev);
0c868461 1521 spi_master_set_devdata(master, &master[1]);
8ae12a0d
DB
1522
1523 return master;
1524}
1525EXPORT_SYMBOL_GPL(spi_alloc_master);
1526
74317984
JCPV
1527#ifdef CONFIG_OF
1528static int of_spi_register_master(struct spi_master *master)
1529{
e80beb27 1530 int nb, i, *cs;
74317984
JCPV
1531 struct device_node *np = master->dev.of_node;
1532
1533 if (!np)
1534 return 0;
1535
1536 nb = of_gpio_named_count(np, "cs-gpios");
5fe5f05e 1537 master->num_chipselect = max_t(int, nb, master->num_chipselect);
74317984 1538
8ec5d84e
AL
1539 /* Return error only for an incorrectly formed cs-gpios property */
1540 if (nb == 0 || nb == -ENOENT)
74317984 1541 return 0;
8ec5d84e
AL
1542 else if (nb < 0)
1543 return nb;
74317984
JCPV
1544
1545 cs = devm_kzalloc(&master->dev,
1546 sizeof(int) * master->num_chipselect,
1547 GFP_KERNEL);
1548 master->cs_gpios = cs;
1549
1550 if (!master->cs_gpios)
1551 return -ENOMEM;
1552
0da83bb1 1553 for (i = 0; i < master->num_chipselect; i++)
446411e1 1554 cs[i] = -ENOENT;
74317984
JCPV
1555
1556 for (i = 0; i < nb; i++)
1557 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1558
1559 return 0;
1560}
1561#else
1562static int of_spi_register_master(struct spi_master *master)
1563{
1564 return 0;
1565}
1566#endif
1567
8ae12a0d
DB
1568/**
1569 * spi_register_master - register SPI master controller
1570 * @master: initialized master, originally from spi_alloc_master()
33e34dc6 1571 * Context: can sleep
8ae12a0d
DB
1572 *
1573 * SPI master controllers connect to their drivers using some non-SPI bus,
1574 * such as the platform bus. The final stage of probe() in that code
1575 * includes calling spi_register_master() to hook up to this SPI bus glue.
1576 *
1577 * SPI controllers use board specific (often SOC specific) bus numbers,
1578 * and board-specific addressing for SPI devices combines those numbers
1579 * with chip select numbers. Since SPI does not directly support dynamic
1580 * device identification, boards need configuration tables telling which
1581 * chip is at which address.
1582 *
1583 * This must be called from context that can sleep. It returns zero on
1584 * success, else a negative error code (dropping the master's refcount).
0c868461
DB
1585 * After a successful return, the caller is responsible for calling
1586 * spi_unregister_master().
8ae12a0d 1587 */
e9d5a461 1588int spi_register_master(struct spi_master *master)
8ae12a0d 1589{
e44a45ae 1590 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
49dce689 1591 struct device *dev = master->dev.parent;
2b9603a0 1592 struct boardinfo *bi;
8ae12a0d
DB
1593 int status = -ENODEV;
1594 int dynamic = 0;
1595
0c868461
DB
1596 if (!dev)
1597 return -ENODEV;
1598
74317984
JCPV
1599 status = of_spi_register_master(master);
1600 if (status)
1601 return status;
1602
082c8cb4
DB
1603 /* even if it's just one always-selected device, there must
1604 * be at least one chipselect
1605 */
1606 if (master->num_chipselect == 0)
1607 return -EINVAL;
1608
bb29785e
GL
1609 if ((master->bus_num < 0) && master->dev.of_node)
1610 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1611
8ae12a0d 1612 /* convention: dynamically assigned bus IDs count down from the max */
a020ed75 1613 if (master->bus_num < 0) {
082c8cb4
DB
1614 /* FIXME switch to an IDR based scheme, something like
1615 * I2C now uses, so we can't run out of "dynamic" IDs
1616 */
8ae12a0d 1617 master->bus_num = atomic_dec_return(&dyn_bus_id);
b885244e 1618 dynamic = 1;
8ae12a0d
DB
1619 }
1620
5424d43e
MB
1621 INIT_LIST_HEAD(&master->queue);
1622 spin_lock_init(&master->queue_lock);
cf32b71e
ES
1623 spin_lock_init(&master->bus_lock_spinlock);
1624 mutex_init(&master->bus_lock_mutex);
1625 master->bus_lock_flag = 0;
b158935f 1626 init_completion(&master->xfer_completion);
6ad45a27
MB
1627 if (!master->max_dma_len)
1628 master->max_dma_len = INT_MAX;
cf32b71e 1629
8ae12a0d
DB
1630 /* register the device, then userspace will see it.
1631 * registration fails if the bus ID is in use.
1632 */
35f74fca 1633 dev_set_name(&master->dev, "spi%u", master->bus_num);
49dce689 1634 status = device_add(&master->dev);
b885244e 1635 if (status < 0)
8ae12a0d 1636 goto done;
35f74fca 1637 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
8ae12a0d
DB
1638 dynamic ? " (dynamic)" : "");
1639
ffbbdd21
LW
1640 /* If we're using a queued driver, start the queue */
1641 if (master->transfer)
1642 dev_info(dev, "master is unqueued, this is deprecated\n");
1643 else {
1644 status = spi_master_initialize_queue(master);
1645 if (status) {
e93b0724 1646 device_del(&master->dev);
ffbbdd21
LW
1647 goto done;
1648 }
1649 }
1650
2b9603a0
FT
1651 mutex_lock(&board_lock);
1652 list_add_tail(&master->list, &spi_master_list);
1653 list_for_each_entry(bi, &board_list, list)
1654 spi_match_master_to_boardinfo(master, &bi->board_info);
1655 mutex_unlock(&board_lock);
1656
64bee4d2 1657 /* Register devices from the device tree and ACPI */
12b15e83 1658 of_register_spi_devices(master);
64bee4d2 1659 acpi_register_spi_devices(master);
8ae12a0d
DB
1660done:
1661 return status;
1662}
1663EXPORT_SYMBOL_GPL(spi_register_master);
1664
666d5b4c
MB
1665static void devm_spi_unregister(struct device *dev, void *res)
1666{
1667 spi_unregister_master(*(struct spi_master **)res);
1668}
1669
1670/**
1671 * dev_spi_register_master - register managed SPI master controller
1672 * @dev: device managing SPI master
1673 * @master: initialized master, originally from spi_alloc_master()
1674 * Context: can sleep
1675 *
1676 * Register a SPI device as with spi_register_master() which will
1677 * automatically be unregister
1678 */
1679int devm_spi_register_master(struct device *dev, struct spi_master *master)
1680{
1681 struct spi_master **ptr;
1682 int ret;
1683
1684 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1685 if (!ptr)
1686 return -ENOMEM;
1687
1688 ret = spi_register_master(master);
4b92894e 1689 if (!ret) {
666d5b4c
MB
1690 *ptr = master;
1691 devres_add(dev, ptr);
1692 } else {
1693 devres_free(ptr);
1694 }
1695
1696 return ret;
1697}
1698EXPORT_SYMBOL_GPL(devm_spi_register_master);
1699
34860089 1700static int __unregister(struct device *dev, void *null)
8ae12a0d 1701{
34860089 1702 spi_unregister_device(to_spi_device(dev));
8ae12a0d
DB
1703 return 0;
1704}
1705
1706/**
1707 * spi_unregister_master - unregister SPI master controller
1708 * @master: the master being unregistered
33e34dc6 1709 * Context: can sleep
8ae12a0d
DB
1710 *
1711 * This call is used only by SPI master controller drivers, which are the
1712 * only ones directly touching chip registers.
1713 *
1714 * This must be called from context that can sleep.
1715 */
1716void spi_unregister_master(struct spi_master *master)
1717{
89fc9a1a
JG
1718 int dummy;
1719
ffbbdd21
LW
1720 if (master->queued) {
1721 if (spi_destroy_queue(master))
1722 dev_err(&master->dev, "queue remove failed\n");
1723 }
1724
2b9603a0
FT
1725 mutex_lock(&board_lock);
1726 list_del(&master->list);
1727 mutex_unlock(&board_lock);
1728
97dbf37d 1729 dummy = device_for_each_child(&master->dev, NULL, __unregister);
49dce689 1730 device_unregister(&master->dev);
8ae12a0d
DB
1731}
1732EXPORT_SYMBOL_GPL(spi_unregister_master);
1733
ffbbdd21
LW
1734int spi_master_suspend(struct spi_master *master)
1735{
1736 int ret;
1737
1738 /* Basically no-ops for non-queued masters */
1739 if (!master->queued)
1740 return 0;
1741
1742 ret = spi_stop_queue(master);
1743 if (ret)
1744 dev_err(&master->dev, "queue stop failed\n");
1745
1746 return ret;
1747}
1748EXPORT_SYMBOL_GPL(spi_master_suspend);
1749
1750int spi_master_resume(struct spi_master *master)
1751{
1752 int ret;
1753
1754 if (!master->queued)
1755 return 0;
1756
1757 ret = spi_start_queue(master);
1758 if (ret)
1759 dev_err(&master->dev, "queue restart failed\n");
1760
1761 return ret;
1762}
1763EXPORT_SYMBOL_GPL(spi_master_resume);
1764
9f3b795a 1765static int __spi_master_match(struct device *dev, const void *data)
5ed2c832
DY
1766{
1767 struct spi_master *m;
9f3b795a 1768 const u16 *bus_num = data;
5ed2c832
DY
1769
1770 m = container_of(dev, struct spi_master, dev);
1771 return m->bus_num == *bus_num;
1772}
1773
8ae12a0d
DB
1774/**
1775 * spi_busnum_to_master - look up master associated with bus_num
1776 * @bus_num: the master's bus number
33e34dc6 1777 * Context: can sleep
8ae12a0d
DB
1778 *
1779 * This call may be used with devices that are registered after
1780 * arch init time. It returns a refcounted pointer to the relevant
1781 * spi_master (which the caller must release), or NULL if there is
1782 * no such master registered.
1783 */
1784struct spi_master *spi_busnum_to_master(u16 bus_num)
1785{
49dce689 1786 struct device *dev;
1e9a51dc 1787 struct spi_master *master = NULL;
5ed2c832 1788
695794ae 1789 dev = class_find_device(&spi_master_class, NULL, &bus_num,
5ed2c832
DY
1790 __spi_master_match);
1791 if (dev)
1792 master = container_of(dev, struct spi_master, dev);
1793 /* reference got in class_find_device */
1e9a51dc 1794 return master;
8ae12a0d
DB
1795}
1796EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1797
1798
1799/*-------------------------------------------------------------------------*/
1800
7d077197
DB
1801/* Core methods for SPI master protocol drivers. Some of the
1802 * other core methods are currently defined as inline functions.
1803 */
1804
1805/**
1806 * spi_setup - setup SPI mode and clock rate
1807 * @spi: the device whose settings are being modified
1808 * Context: can sleep, and no requests are queued to the device
1809 *
1810 * SPI protocol drivers may need to update the transfer mode if the
1811 * device doesn't work with its default. They may likewise need
1812 * to update clock rates or word sizes from initial values. This function
1813 * changes those settings, and must be called from a context that can sleep.
1814 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1815 * effect the next time the device is selected and data is transferred to
1816 * or from it. When this function returns, the spi device is deselected.
1817 *
1818 * Note that this call will fail if the protocol driver specifies an option
1819 * that the underlying controller or its driver does not support. For
1820 * example, not all hardware supports wire transfers using nine bit words,
1821 * LSB-first wire encoding, or active-high chipselects.
1822 */
1823int spi_setup(struct spi_device *spi)
1824{
83596fbe 1825 unsigned bad_bits, ugly_bits;
caae070c 1826 int status = 0;
7d077197 1827
f477b7fb 1828 /* check mode to prevent that DUAL and QUAD set at the same time
1829 */
1830 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1831 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1832 dev_err(&spi->dev,
1833 "setup: can not select dual and quad at the same time\n");
1834 return -EINVAL;
1835 }
1836 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1837 */
1838 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1839 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1840 return -EINVAL;
e7db06b5
DB
1841 /* help drivers fail *cleanly* when they need options
1842 * that aren't supported with their current master
1843 */
1844 bad_bits = spi->mode & ~spi->master->mode_bits;
83596fbe
GU
1845 ugly_bits = bad_bits &
1846 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1847 if (ugly_bits) {
1848 dev_warn(&spi->dev,
1849 "setup: ignoring unsupported mode bits %x\n",
1850 ugly_bits);
1851 spi->mode &= ~ugly_bits;
1852 bad_bits &= ~ugly_bits;
1853 }
e7db06b5 1854 if (bad_bits) {
eb288a1f 1855 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
e7db06b5
DB
1856 bad_bits);
1857 return -EINVAL;
1858 }
1859
7d077197
DB
1860 if (!spi->bits_per_word)
1861 spi->bits_per_word = 8;
1862
052eb2d4
AL
1863 if (!spi->max_speed_hz)
1864 spi->max_speed_hz = spi->master->max_speed_hz;
1865
caae070c
LD
1866 if (spi->master->setup)
1867 status = spi->master->setup(spi);
7d077197 1868
5fe5f05e 1869 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
7d077197
DB
1870 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1871 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1872 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1873 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1874 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1875 spi->bits_per_word, spi->max_speed_hz,
1876 status);
1877
1878 return status;
1879}
1880EXPORT_SYMBOL_GPL(spi_setup);
1881
90808738 1882static int __spi_validate(struct spi_device *spi, struct spi_message *message)
cf32b71e
ES
1883{
1884 struct spi_master *master = spi->master;
e6811d1d 1885 struct spi_transfer *xfer;
6ea31293 1886 int w_size;
cf32b71e 1887
24a0013a
MB
1888 if (list_empty(&message->transfers))
1889 return -EINVAL;
24a0013a 1890
cf32b71e
ES
1891 /* Half-duplex links include original MicroWire, and ones with
1892 * only one data pin like SPI_3WIRE (switches direction) or where
1893 * either MOSI or MISO is missing. They can also be caused by
1894 * software limitations.
1895 */
1896 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1897 || (spi->mode & SPI_3WIRE)) {
cf32b71e
ES
1898 unsigned flags = master->flags;
1899
1900 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1901 if (xfer->rx_buf && xfer->tx_buf)
1902 return -EINVAL;
1903 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1904 return -EINVAL;
1905 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1906 return -EINVAL;
1907 }
1908 }
1909
e6811d1d 1910 /**
059b8ffe
LD
1911 * Set transfer bits_per_word and max speed as spi device default if
1912 * it is not set for this transfer.
f477b7fb 1913 * Set transfer tx_nbits and rx_nbits as single transfer default
1914 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
e6811d1d
LD
1915 */
1916 list_for_each_entry(xfer, &message->transfers, transfer_list) {
078726ce 1917 message->frame_length += xfer->len;
e6811d1d
LD
1918 if (!xfer->bits_per_word)
1919 xfer->bits_per_word = spi->bits_per_word;
a6f87fad
AL
1920
1921 if (!xfer->speed_hz)
059b8ffe 1922 xfer->speed_hz = spi->max_speed_hz;
a6f87fad
AL
1923
1924 if (master->max_speed_hz &&
1925 xfer->speed_hz > master->max_speed_hz)
1926 xfer->speed_hz = master->max_speed_hz;
56ede94a 1927
543bb255
SW
1928 if (master->bits_per_word_mask) {
1929 /* Only 32 bits fit in the mask */
1930 if (xfer->bits_per_word > 32)
1931 return -EINVAL;
1932 if (!(master->bits_per_word_mask &
1933 BIT(xfer->bits_per_word - 1)))
1934 return -EINVAL;
1935 }
a2fd4f9f 1936
4d94bd21
II
1937 /*
1938 * SPI transfer length should be multiple of SPI word size
1939 * where SPI word size should be power-of-two multiple
1940 */
1941 if (xfer->bits_per_word <= 8)
1942 w_size = 1;
1943 else if (xfer->bits_per_word <= 16)
1944 w_size = 2;
1945 else
1946 w_size = 4;
1947
4d94bd21 1948 /* No partial transfers accepted */
6ea31293 1949 if (xfer->len % w_size)
4d94bd21
II
1950 return -EINVAL;
1951
a2fd4f9f
MB
1952 if (xfer->speed_hz && master->min_speed_hz &&
1953 xfer->speed_hz < master->min_speed_hz)
1954 return -EINVAL;
f477b7fb 1955
1956 if (xfer->tx_buf && !xfer->tx_nbits)
1957 xfer->tx_nbits = SPI_NBITS_SINGLE;
1958 if (xfer->rx_buf && !xfer->rx_nbits)
1959 xfer->rx_nbits = SPI_NBITS_SINGLE;
1960 /* check transfer tx/rx_nbits:
1afd9989
GU
1961 * 1. check the value matches one of single, dual and quad
1962 * 2. check tx/rx_nbits match the mode in spi_device
f477b7fb 1963 */
db90a441
SP
1964 if (xfer->tx_buf) {
1965 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1966 xfer->tx_nbits != SPI_NBITS_DUAL &&
1967 xfer->tx_nbits != SPI_NBITS_QUAD)
1968 return -EINVAL;
1969 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1970 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1971 return -EINVAL;
1972 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1973 !(spi->mode & SPI_TX_QUAD))
1974 return -EINVAL;
db90a441 1975 }
f477b7fb 1976 /* check transfer rx_nbits */
db90a441
SP
1977 if (xfer->rx_buf) {
1978 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1979 xfer->rx_nbits != SPI_NBITS_DUAL &&
1980 xfer->rx_nbits != SPI_NBITS_QUAD)
1981 return -EINVAL;
1982 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1983 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1984 return -EINVAL;
1985 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1986 !(spi->mode & SPI_RX_QUAD))
1987 return -EINVAL;
db90a441 1988 }
e6811d1d
LD
1989 }
1990
cf32b71e 1991 message->status = -EINPROGRESS;
90808738
MB
1992
1993 return 0;
1994}
1995
1996static int __spi_async(struct spi_device *spi, struct spi_message *message)
1997{
1998 struct spi_master *master = spi->master;
1999
2000 message->spi = spi;
2001
2002 trace_spi_message_submit(message);
2003
cf32b71e
ES
2004 return master->transfer(spi, message);
2005}
2006
568d0697
DB
2007/**
2008 * spi_async - asynchronous SPI transfer
2009 * @spi: device with which data will be exchanged
2010 * @message: describes the data transfers, including completion callback
2011 * Context: any (irqs may be blocked, etc)
2012 *
2013 * This call may be used in_irq and other contexts which can't sleep,
2014 * as well as from task contexts which can sleep.
2015 *
2016 * The completion callback is invoked in a context which can't sleep.
2017 * Before that invocation, the value of message->status is undefined.
2018 * When the callback is issued, message->status holds either zero (to
2019 * indicate complete success) or a negative error code. After that
2020 * callback returns, the driver which issued the transfer request may
2021 * deallocate the associated memory; it's no longer in use by any SPI
2022 * core or controller driver code.
2023 *
2024 * Note that although all messages to a spi_device are handled in
2025 * FIFO order, messages may go to different devices in other orders.
2026 * Some device might be higher priority, or have various "hard" access
2027 * time requirements, for example.
2028 *
2029 * On detection of any fault during the transfer, processing of
2030 * the entire message is aborted, and the device is deselected.
2031 * Until returning from the associated message completion callback,
2032 * no other spi_message queued to that device will be processed.
2033 * (This rule applies equally to all the synchronous transfer calls,
2034 * which are wrappers around this core asynchronous primitive.)
2035 */
2036int spi_async(struct spi_device *spi, struct spi_message *message)
2037{
2038 struct spi_master *master = spi->master;
cf32b71e
ES
2039 int ret;
2040 unsigned long flags;
568d0697 2041
90808738
MB
2042 ret = __spi_validate(spi, message);
2043 if (ret != 0)
2044 return ret;
2045
cf32b71e 2046 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
568d0697 2047
cf32b71e
ES
2048 if (master->bus_lock_flag)
2049 ret = -EBUSY;
2050 else
2051 ret = __spi_async(spi, message);
568d0697 2052
cf32b71e
ES
2053 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2054
2055 return ret;
568d0697
DB
2056}
2057EXPORT_SYMBOL_GPL(spi_async);
2058
cf32b71e
ES
2059/**
2060 * spi_async_locked - version of spi_async with exclusive bus usage
2061 * @spi: device with which data will be exchanged
2062 * @message: describes the data transfers, including completion callback
2063 * Context: any (irqs may be blocked, etc)
2064 *
2065 * This call may be used in_irq and other contexts which can't sleep,
2066 * as well as from task contexts which can sleep.
2067 *
2068 * The completion callback is invoked in a context which can't sleep.
2069 * Before that invocation, the value of message->status is undefined.
2070 * When the callback is issued, message->status holds either zero (to
2071 * indicate complete success) or a negative error code. After that
2072 * callback returns, the driver which issued the transfer request may
2073 * deallocate the associated memory; it's no longer in use by any SPI
2074 * core or controller driver code.
2075 *
2076 * Note that although all messages to a spi_device are handled in
2077 * FIFO order, messages may go to different devices in other orders.
2078 * Some device might be higher priority, or have various "hard" access
2079 * time requirements, for example.
2080 *
2081 * On detection of any fault during the transfer, processing of
2082 * the entire message is aborted, and the device is deselected.
2083 * Until returning from the associated message completion callback,
2084 * no other spi_message queued to that device will be processed.
2085 * (This rule applies equally to all the synchronous transfer calls,
2086 * which are wrappers around this core asynchronous primitive.)
2087 */
2088int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2089{
2090 struct spi_master *master = spi->master;
2091 int ret;
2092 unsigned long flags;
2093
90808738
MB
2094 ret = __spi_validate(spi, message);
2095 if (ret != 0)
2096 return ret;
2097
cf32b71e
ES
2098 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2099
2100 ret = __spi_async(spi, message);
2101
2102 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2103
2104 return ret;
2105
2106}
2107EXPORT_SYMBOL_GPL(spi_async_locked);
2108
7d077197
DB
2109
2110/*-------------------------------------------------------------------------*/
2111
2112/* Utility methods for SPI master protocol drivers, layered on
2113 * top of the core. Some other utility methods are defined as
2114 * inline functions.
2115 */
2116
5d870c8e
AM
2117static void spi_complete(void *arg)
2118{
2119 complete(arg);
2120}
2121
cf32b71e
ES
2122static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2123 int bus_locked)
2124{
2125 DECLARE_COMPLETION_ONSTACK(done);
2126 int status;
2127 struct spi_master *master = spi->master;
0461a414
MB
2128 unsigned long flags;
2129
2130 status = __spi_validate(spi, message);
2131 if (status != 0)
2132 return status;
cf32b71e
ES
2133
2134 message->complete = spi_complete;
2135 message->context = &done;
0461a414 2136 message->spi = spi;
cf32b71e
ES
2137
2138 if (!bus_locked)
2139 mutex_lock(&master->bus_lock_mutex);
2140
0461a414
MB
2141 /* If we're not using the legacy transfer method then we will
2142 * try to transfer in the calling context so special case.
2143 * This code would be less tricky if we could remove the
2144 * support for driver implemented message queues.
2145 */
2146 if (master->transfer == spi_queued_transfer) {
2147 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2148
2149 trace_spi_message_submit(message);
2150
2151 status = __spi_queued_transfer(spi, message, false);
2152
2153 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2154 } else {
2155 status = spi_async_locked(spi, message);
2156 }
cf32b71e
ES
2157
2158 if (!bus_locked)
2159 mutex_unlock(&master->bus_lock_mutex);
2160
2161 if (status == 0) {
0461a414
MB
2162 /* Push out the messages in the calling context if we
2163 * can.
2164 */
2165 if (master->transfer == spi_queued_transfer)
2166 spi_pump_messages(&master->pump_messages);
2167
cf32b71e
ES
2168 wait_for_completion(&done);
2169 status = message->status;
2170 }
2171 message->context = NULL;
2172 return status;
2173}
2174
8ae12a0d
DB
2175/**
2176 * spi_sync - blocking/synchronous SPI data transfers
2177 * @spi: device with which data will be exchanged
2178 * @message: describes the data transfers
33e34dc6 2179 * Context: can sleep
8ae12a0d
DB
2180 *
2181 * This call may only be used from a context that may sleep. The sleep
2182 * is non-interruptible, and has no timeout. Low-overhead controller
2183 * drivers may DMA directly into and out of the message buffers.
2184 *
2185 * Note that the SPI device's chip select is active during the message,
2186 * and then is normally disabled between messages. Drivers for some
2187 * frequently-used devices may want to minimize costs of selecting a chip,
2188 * by leaving it selected in anticipation that the next message will go
2189 * to the same chip. (That may increase power usage.)
2190 *
0c868461
DB
2191 * Also, the caller is guaranteeing that the memory associated with the
2192 * message will not be freed before this call returns.
2193 *
9b938b74 2194 * It returns zero on success, else a negative error code.
8ae12a0d
DB
2195 */
2196int spi_sync(struct spi_device *spi, struct spi_message *message)
2197{
cf32b71e 2198 return __spi_sync(spi, message, 0);
8ae12a0d
DB
2199}
2200EXPORT_SYMBOL_GPL(spi_sync);
2201
cf32b71e
ES
2202/**
2203 * spi_sync_locked - version of spi_sync with exclusive bus usage
2204 * @spi: device with which data will be exchanged
2205 * @message: describes the data transfers
2206 * Context: can sleep
2207 *
2208 * This call may only be used from a context that may sleep. The sleep
2209 * is non-interruptible, and has no timeout. Low-overhead controller
2210 * drivers may DMA directly into and out of the message buffers.
2211 *
2212 * This call should be used by drivers that require exclusive access to the
25985edc 2213 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
cf32b71e
ES
2214 * be released by a spi_bus_unlock call when the exclusive access is over.
2215 *
2216 * It returns zero on success, else a negative error code.
2217 */
2218int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2219{
2220 return __spi_sync(spi, message, 1);
2221}
2222EXPORT_SYMBOL_GPL(spi_sync_locked);
2223
2224/**
2225 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2226 * @master: SPI bus master that should be locked for exclusive bus access
2227 * Context: can sleep
2228 *
2229 * This call may only be used from a context that may sleep. The sleep
2230 * is non-interruptible, and has no timeout.
2231 *
2232 * This call should be used by drivers that require exclusive access to the
2233 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2234 * exclusive access is over. Data transfer must be done by spi_sync_locked
2235 * and spi_async_locked calls when the SPI bus lock is held.
2236 *
2237 * It returns zero on success, else a negative error code.
2238 */
2239int spi_bus_lock(struct spi_master *master)
2240{
2241 unsigned long flags;
2242
2243 mutex_lock(&master->bus_lock_mutex);
2244
2245 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2246 master->bus_lock_flag = 1;
2247 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2248
2249 /* mutex remains locked until spi_bus_unlock is called */
2250
2251 return 0;
2252}
2253EXPORT_SYMBOL_GPL(spi_bus_lock);
2254
2255/**
2256 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2257 * @master: SPI bus master that was locked for exclusive bus access
2258 * Context: can sleep
2259 *
2260 * This call may only be used from a context that may sleep. The sleep
2261 * is non-interruptible, and has no timeout.
2262 *
2263 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2264 * call.
2265 *
2266 * It returns zero on success, else a negative error code.
2267 */
2268int spi_bus_unlock(struct spi_master *master)
2269{
2270 master->bus_lock_flag = 0;
2271
2272 mutex_unlock(&master->bus_lock_mutex);
2273
2274 return 0;
2275}
2276EXPORT_SYMBOL_GPL(spi_bus_unlock);
2277
a9948b61 2278/* portable code must never pass more than 32 bytes */
5fe5f05e 2279#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
8ae12a0d
DB
2280
2281static u8 *buf;
2282
2283/**
2284 * spi_write_then_read - SPI synchronous write followed by read
2285 * @spi: device with which data will be exchanged
2286 * @txbuf: data to be written (need not be dma-safe)
2287 * @n_tx: size of txbuf, in bytes
27570497
JP
2288 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2289 * @n_rx: size of rxbuf, in bytes
33e34dc6 2290 * Context: can sleep
8ae12a0d
DB
2291 *
2292 * This performs a half duplex MicroWire style transaction with the
2293 * device, sending txbuf and then reading rxbuf. The return value
2294 * is zero for success, else a negative errno status code.
b885244e 2295 * This call may only be used from a context that may sleep.
8ae12a0d 2296 *
0c868461 2297 * Parameters to this routine are always copied using a small buffer;
33e34dc6
DB
2298 * portable code should never use this for more than 32 bytes.
2299 * Performance-sensitive or bulk transfer code should instead use
0c868461 2300 * spi_{async,sync}() calls with dma-safe buffers.
8ae12a0d
DB
2301 */
2302int spi_write_then_read(struct spi_device *spi,
0c4a1590
MB
2303 const void *txbuf, unsigned n_tx,
2304 void *rxbuf, unsigned n_rx)
8ae12a0d 2305{
068f4070 2306 static DEFINE_MUTEX(lock);
8ae12a0d
DB
2307
2308 int status;
2309 struct spi_message message;
bdff549e 2310 struct spi_transfer x[2];
8ae12a0d
DB
2311 u8 *local_buf;
2312
b3a223ee
MB
2313 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2314 * copying here, (as a pure convenience thing), but we can
2315 * keep heap costs out of the hot path unless someone else is
2316 * using the pre-allocated buffer or the transfer is too large.
8ae12a0d 2317 */
b3a223ee 2318 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2cd94c8a
MB
2319 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2320 GFP_KERNEL | GFP_DMA);
b3a223ee
MB
2321 if (!local_buf)
2322 return -ENOMEM;
2323 } else {
2324 local_buf = buf;
2325 }
8ae12a0d 2326
8275c642 2327 spi_message_init(&message);
5fe5f05e 2328 memset(x, 0, sizeof(x));
bdff549e
DB
2329 if (n_tx) {
2330 x[0].len = n_tx;
2331 spi_message_add_tail(&x[0], &message);
2332 }
2333 if (n_rx) {
2334 x[1].len = n_rx;
2335 spi_message_add_tail(&x[1], &message);
2336 }
8275c642 2337
8ae12a0d 2338 memcpy(local_buf, txbuf, n_tx);
bdff549e
DB
2339 x[0].tx_buf = local_buf;
2340 x[1].rx_buf = local_buf + n_tx;
8ae12a0d
DB
2341
2342 /* do the i/o */
8ae12a0d 2343 status = spi_sync(spi, &message);
9b938b74 2344 if (status == 0)
bdff549e 2345 memcpy(rxbuf, x[1].rx_buf, n_rx);
8ae12a0d 2346
bdff549e 2347 if (x[0].tx_buf == buf)
068f4070 2348 mutex_unlock(&lock);
8ae12a0d
DB
2349 else
2350 kfree(local_buf);
2351
2352 return status;
2353}
2354EXPORT_SYMBOL_GPL(spi_write_then_read);
2355
2356/*-------------------------------------------------------------------------*/
2357
2358static int __init spi_init(void)
2359{
b885244e
DB
2360 int status;
2361
e94b1766 2362 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
b885244e
DB
2363 if (!buf) {
2364 status = -ENOMEM;
2365 goto err0;
2366 }
2367
2368 status = bus_register(&spi_bus_type);
2369 if (status < 0)
2370 goto err1;
8ae12a0d 2371
b885244e
DB
2372 status = class_register(&spi_master_class);
2373 if (status < 0)
2374 goto err2;
8ae12a0d 2375 return 0;
b885244e
DB
2376
2377err2:
2378 bus_unregister(&spi_bus_type);
2379err1:
2380 kfree(buf);
2381 buf = NULL;
2382err0:
2383 return status;
8ae12a0d 2384}
b885244e 2385
8ae12a0d
DB
2386/* board_info is normally registered in arch_initcall(),
2387 * but even essential drivers wait till later
b885244e
DB
2388 *
2389 * REVISIT only boardinfo really needs static linking. the rest (device and
2390 * driver registration) _could_ be dynamically linked (modular) ... costs
2391 * include needing to have boardinfo data structures be much more public.
8ae12a0d 2392 */
673c0c00 2393postcore_initcall(spi_init);
8ae12a0d 2394
This page took 0.90021 seconds and 5 git commands to generate.