staging/lustre: fix build error
[deliverable/linux.git] / drivers / staging / lustre / lustre / ldlm / ldlm_pool.c
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2010, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/ldlm/ldlm_pool.c
37 *
38 * Author: Yury Umanets <umka@clusterfs.com>
39 */
40
41/*
42 * Idea of this code is rather simple. Each second, for each server namespace
43 * we have SLV - server lock volume which is calculated on current number of
44 * granted locks, grant speed for past period, etc - that is, locking load.
45 * This SLV number may be thought as a flow definition for simplicity. It is
46 * sent to clients with each occasion to let them know what is current load
47 * situation on the server. By default, at the beginning, SLV on server is
48 * set max value which is calculated as the following: allow to one client
49 * have all locks of limit ->pl_limit for 10h.
50 *
51 * Next, on clients, number of cached locks is not limited artificially in any
52 * way as it was before. Instead, client calculates CLV, that is, client lock
53 * volume for each lock and compares it with last SLV from the server. CLV is
54 * calculated as the number of locks in LRU * lock live time in seconds. If
55 * CLV > SLV - lock is canceled.
56 *
57 * Client has LVF, that is, lock volume factor which regulates how much sensitive
58 * client should be about last SLV from server. The higher LVF is the more locks
59 * will be canceled on client. Default value for it is 1. Setting LVF to 2 means
60 * that client will cancel locks 2 times faster.
61 *
62 * Locks on a client will be canceled more intensively in these cases:
63 * (1) if SLV is smaller, that is, load is higher on the server;
64 * (2) client has a lot of locks (the more locks are held by client, the bigger
65 * chances that some of them should be canceled);
66 * (3) client has old locks (taken some time ago);
67 *
68 * Thus, according to flow paradigm that we use for better understanding SLV,
69 * CLV is the volume of particle in flow described by SLV. According to this,
70 * if flow is getting thinner, more and more particles become outside of it and
71 * as particles are locks, they should be canceled.
72 *
73 * General idea of this belongs to Vitaly Fertman (vitaly@clusterfs.com). Andreas
74 * Dilger (adilger@clusterfs.com) proposed few nice ideas like using LVF and many
75 * cleanups. Flow definition to allow more easy understanding of the logic belongs
76 * to Nikita Danilov (nikita@clusterfs.com) as well as many cleanups and fixes.
77 * And design and implementation are done by Yury Umanets (umka@clusterfs.com).
78 *
79 * Glossary for terms used:
80 *
81 * pl_limit - Number of allowed locks in pool. Applies to server and client
82 * side (tunable);
83 *
84 * pl_granted - Number of granted locks (calculated);
85 * pl_grant_rate - Number of granted locks for last T (calculated);
86 * pl_cancel_rate - Number of canceled locks for last T (calculated);
87 * pl_grant_speed - Grant speed (GR - CR) for last T (calculated);
88 * pl_grant_plan - Planned number of granted locks for next T (calculated);
89 * pl_server_lock_volume - Current server lock volume (calculated);
90 *
91 * As it may be seen from list above, we have few possible tunables which may
92 * affect behavior much. They all may be modified via proc. However, they also
93 * give a possibility for constructing few pre-defined behavior policies. If
94 * none of predefines is suitable for a working pattern being used, new one may
95 * be "constructed" via proc tunables.
96 */
97
98#define DEBUG_SUBSYSTEM S_LDLM
99
100# include <lustre_dlm.h>
101
102#include <cl_object.h>
103
104#include <obd_class.h>
105#include <obd_support.h>
106#include "ldlm_internal.h"
107
108
109/*
110 * 50 ldlm locks for 1MB of RAM.
111 */
112#define LDLM_POOL_HOST_L ((NUM_CACHEPAGES >> (20 - PAGE_CACHE_SHIFT)) * 50)
113
114/*
115 * Maximal possible grant step plan in %.
116 */
117#define LDLM_POOL_MAX_GSP (30)
118
119/*
120 * Minimal possible grant step plan in %.
121 */
122#define LDLM_POOL_MIN_GSP (1)
123
124/*
125 * This controls the speed of reaching LDLM_POOL_MAX_GSP
126 * with increasing thread period.
127 */
128#define LDLM_POOL_GSP_STEP_SHIFT (2)
129
130/*
131 * LDLM_POOL_GSP% of all locks is default GP.
132 */
133#define LDLM_POOL_GP(L) (((L) * LDLM_POOL_MAX_GSP) / 100)
134
135/*
136 * Max age for locks on clients.
137 */
138#define LDLM_POOL_MAX_AGE (36000)
139
140/*
141 * The granularity of SLV calculation.
142 */
143#define LDLM_POOL_SLV_SHIFT (10)
144
145extern proc_dir_entry_t *ldlm_ns_proc_dir;
146
147static inline __u64 dru(__u64 val, __u32 shift, int round_up)
148{
149 return (val + (round_up ? (1 << shift) - 1 : 0)) >> shift;
150}
151
152static inline __u64 ldlm_pool_slv_max(__u32 L)
153{
154 /*
155 * Allow to have all locks for 1 client for 10 hrs.
156 * Formula is the following: limit * 10h / 1 client.
157 */
158 __u64 lim = (__u64)L * LDLM_POOL_MAX_AGE / 1;
159 return lim;
160}
161
162static inline __u64 ldlm_pool_slv_min(__u32 L)
163{
164 return 1;
165}
166
167enum {
168 LDLM_POOL_FIRST_STAT = 0,
169 LDLM_POOL_GRANTED_STAT = LDLM_POOL_FIRST_STAT,
170 LDLM_POOL_GRANT_STAT,
171 LDLM_POOL_CANCEL_STAT,
172 LDLM_POOL_GRANT_RATE_STAT,
173 LDLM_POOL_CANCEL_RATE_STAT,
174 LDLM_POOL_GRANT_PLAN_STAT,
175 LDLM_POOL_SLV_STAT,
176 LDLM_POOL_SHRINK_REQTD_STAT,
177 LDLM_POOL_SHRINK_FREED_STAT,
178 LDLM_POOL_RECALC_STAT,
179 LDLM_POOL_TIMING_STAT,
180 LDLM_POOL_LAST_STAT
181};
182
183static inline struct ldlm_namespace *ldlm_pl2ns(struct ldlm_pool *pl)
184{
185 return container_of(pl, struct ldlm_namespace, ns_pool);
186}
187
188/**
189 * Calculates suggested grant_step in % of available locks for passed
190 * \a period. This is later used in grant_plan calculations.
191 */
192static inline int ldlm_pool_t2gsp(unsigned int t)
193{
194 /*
195 * This yields 1% grant step for anything below LDLM_POOL_GSP_STEP
196 * and up to 30% for anything higher than LDLM_POOL_GSP_STEP.
197 *
198 * How this will affect execution is the following:
199 *
200 * - for thread period 1s we will have grant_step 1% which good from
201 * pov of taking some load off from server and push it out to clients.
202 * This is like that because 1% for grant_step means that server will
203 * not allow clients to get lots of locks in short period of time and
204 * keep all old locks in their caches. Clients will always have to
205 * get some locks back if they want to take some new;
206 *
207 * - for thread period 10s (which is default) we will have 23% which
208 * means that clients will have enough of room to take some new locks
209 * without getting some back. All locks from this 23% which were not
210 * taken by clients in current period will contribute in SLV growing.
211 * SLV growing means more locks cached on clients until limit or grant
212 * plan is reached.
213 */
214 return LDLM_POOL_MAX_GSP -
215 ((LDLM_POOL_MAX_GSP - LDLM_POOL_MIN_GSP) >>
216 (t >> LDLM_POOL_GSP_STEP_SHIFT));
217}
218
219/**
220 * Recalculates next grant limit on passed \a pl.
221 *
222 * \pre ->pl_lock is locked.
223 */
224static void ldlm_pool_recalc_grant_plan(struct ldlm_pool *pl)
225{
226 int granted, grant_step, limit;
227
228 limit = ldlm_pool_get_limit(pl);
229 granted = atomic_read(&pl->pl_granted);
230
231 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
232 grant_step = ((limit - granted) * grant_step) / 100;
233 pl->pl_grant_plan = granted + grant_step;
234 limit = (limit * 5) >> 2;
235 if (pl->pl_grant_plan > limit)
236 pl->pl_grant_plan = limit;
237}
238
239/**
240 * Recalculates next SLV on passed \a pl.
241 *
242 * \pre ->pl_lock is locked.
243 */
244static void ldlm_pool_recalc_slv(struct ldlm_pool *pl)
245{
246 int granted;
247 int grant_plan;
248 int round_up;
249 __u64 slv;
250 __u64 slv_factor;
251 __u64 grant_usage;
252 __u32 limit;
253
254 slv = pl->pl_server_lock_volume;
255 grant_plan = pl->pl_grant_plan;
256 limit = ldlm_pool_get_limit(pl);
257 granted = atomic_read(&pl->pl_granted);
258 round_up = granted < limit;
259
260 grant_usage = max_t(int, limit - (granted - grant_plan), 1);
261
262 /*
263 * Find out SLV change factor which is the ratio of grant usage
264 * from limit. SLV changes as fast as the ratio of grant plan
265 * consumption. The more locks from grant plan are not consumed
266 * by clients in last interval (idle time), the faster grows
267 * SLV. And the opposite, the more grant plan is over-consumed
268 * (load time) the faster drops SLV.
269 */
270 slv_factor = (grant_usage << LDLM_POOL_SLV_SHIFT);
271 do_div(slv_factor, limit);
272 slv = slv * slv_factor;
273 slv = dru(slv, LDLM_POOL_SLV_SHIFT, round_up);
274
275 if (slv > ldlm_pool_slv_max(limit)) {
276 slv = ldlm_pool_slv_max(limit);
277 } else if (slv < ldlm_pool_slv_min(limit)) {
278 slv = ldlm_pool_slv_min(limit);
279 }
280
281 pl->pl_server_lock_volume = slv;
282}
283
284/**
285 * Recalculates next stats on passed \a pl.
286 *
287 * \pre ->pl_lock is locked.
288 */
289static void ldlm_pool_recalc_stats(struct ldlm_pool *pl)
290{
291 int grant_plan = pl->pl_grant_plan;
292 __u64 slv = pl->pl_server_lock_volume;
293 int granted = atomic_read(&pl->pl_granted);
294 int grant_rate = atomic_read(&pl->pl_grant_rate);
295 int cancel_rate = atomic_read(&pl->pl_cancel_rate);
296
297 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_SLV_STAT,
298 slv);
299 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
300 granted);
301 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
302 grant_rate);
303 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
304 grant_plan);
305 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
306 cancel_rate);
307}
308
309/**
310 * Sets current SLV into obd accessible via ldlm_pl2ns(pl)->ns_obd.
311 */
312static void ldlm_srv_pool_push_slv(struct ldlm_pool *pl)
313{
314 struct obd_device *obd;
315
316 /*
317 * Set new SLV in obd field for using it later without accessing the
318 * pool. This is required to avoid race between sending reply to client
319 * with new SLV and cleanup server stack in which we can't guarantee
320 * that namespace is still alive. We know only that obd is alive as
321 * long as valid export is alive.
322 */
323 obd = ldlm_pl2ns(pl)->ns_obd;
324 LASSERT(obd != NULL);
325 write_lock(&obd->obd_pool_lock);
326 obd->obd_pool_slv = pl->pl_server_lock_volume;
327 write_unlock(&obd->obd_pool_lock);
328}
329
330/**
331 * Recalculates all pool fields on passed \a pl.
332 *
333 * \pre ->pl_lock is not locked.
334 */
335static int ldlm_srv_pool_recalc(struct ldlm_pool *pl)
336{
337 time_t recalc_interval_sec;
338 ENTRY;
339
340 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
341 if (recalc_interval_sec < pl->pl_recalc_period)
342 RETURN(0);
343
344 spin_lock(&pl->pl_lock);
345 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
346 if (recalc_interval_sec < pl->pl_recalc_period) {
347 spin_unlock(&pl->pl_lock);
348 RETURN(0);
349 }
350 /*
351 * Recalc SLV after last period. This should be done
352 * _before_ recalculating new grant plan.
353 */
354 ldlm_pool_recalc_slv(pl);
355
356 /*
357 * Make sure that pool informed obd of last SLV changes.
358 */
359 ldlm_srv_pool_push_slv(pl);
360
361 /*
362 * Update grant_plan for new period.
363 */
364 ldlm_pool_recalc_grant_plan(pl);
365
366 pl->pl_recalc_time = cfs_time_current_sec();
367 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
368 recalc_interval_sec);
369 spin_unlock(&pl->pl_lock);
370 RETURN(0);
371}
372
373/**
374 * This function is used on server side as main entry point for memory
375 * pressure handling. It decreases SLV on \a pl according to passed
376 * \a nr and \a gfp_mask.
377 *
378 * Our goal here is to decrease SLV such a way that clients hold \a nr
379 * locks smaller in next 10h.
380 */
381static int ldlm_srv_pool_shrink(struct ldlm_pool *pl,
382 int nr, unsigned int gfp_mask)
383{
384 __u32 limit;
385
386 /*
387 * VM is asking how many entries may be potentially freed.
388 */
389 if (nr == 0)
390 return atomic_read(&pl->pl_granted);
391
392 /*
393 * Client already canceled locks but server is already in shrinker
394 * and can't cancel anything. Let's catch this race.
395 */
396 if (atomic_read(&pl->pl_granted) == 0)
397 RETURN(0);
398
399 spin_lock(&pl->pl_lock);
400
401 /*
402 * We want shrinker to possibly cause cancellation of @nr locks from
403 * clients or grant approximately @nr locks smaller next intervals.
404 *
405 * This is why we decreased SLV by @nr. This effect will only be as
406 * long as one re-calc interval (1s these days) and this should be
407 * enough to pass this decreased SLV to all clients. On next recalc
408 * interval pool will either increase SLV if locks load is not high
409 * or will keep on same level or even decrease again, thus, shrinker
410 * decreased SLV will affect next recalc intervals and this way will
411 * make locking load lower.
412 */
413 if (nr < pl->pl_server_lock_volume) {
414 pl->pl_server_lock_volume = pl->pl_server_lock_volume - nr;
415 } else {
416 limit = ldlm_pool_get_limit(pl);
417 pl->pl_server_lock_volume = ldlm_pool_slv_min(limit);
418 }
419
420 /*
421 * Make sure that pool informed obd of last SLV changes.
422 */
423 ldlm_srv_pool_push_slv(pl);
424 spin_unlock(&pl->pl_lock);
425
426 /*
427 * We did not really free any memory here so far, it only will be
428 * freed later may be, so that we return 0 to not confuse VM.
429 */
430 return 0;
431}
432
433/**
434 * Setup server side pool \a pl with passed \a limit.
435 */
436static int ldlm_srv_pool_setup(struct ldlm_pool *pl, int limit)
437{
438 struct obd_device *obd;
439
440 obd = ldlm_pl2ns(pl)->ns_obd;
441 LASSERT(obd != NULL && obd != LP_POISON);
442 LASSERT(obd->obd_type != LP_POISON);
443 write_lock(&obd->obd_pool_lock);
444 obd->obd_pool_limit = limit;
445 write_unlock(&obd->obd_pool_lock);
446
447 ldlm_pool_set_limit(pl, limit);
448 return 0;
449}
450
451/**
452 * Sets SLV and Limit from ldlm_pl2ns(pl)->ns_obd tp passed \a pl.
453 */
454static void ldlm_cli_pool_pop_slv(struct ldlm_pool *pl)
455{
456 struct obd_device *obd;
457
458 /*
459 * Get new SLV and Limit from obd which is updated with coming
460 * RPCs.
461 */
462 obd = ldlm_pl2ns(pl)->ns_obd;
463 LASSERT(obd != NULL);
464 read_lock(&obd->obd_pool_lock);
465 pl->pl_server_lock_volume = obd->obd_pool_slv;
466 ldlm_pool_set_limit(pl, obd->obd_pool_limit);
467 read_unlock(&obd->obd_pool_lock);
468}
469
470/**
471 * Recalculates client size pool \a pl according to current SLV and Limit.
472 */
473static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
474{
475 time_t recalc_interval_sec;
476 ENTRY;
477
478 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
479 if (recalc_interval_sec < pl->pl_recalc_period)
480 RETURN(0);
481
482 spin_lock(&pl->pl_lock);
483 /*
484 * Check if we need to recalc lists now.
485 */
486 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
487 if (recalc_interval_sec < pl->pl_recalc_period) {
488 spin_unlock(&pl->pl_lock);
489 RETURN(0);
490 }
491
492 /*
493 * Make sure that pool knows last SLV and Limit from obd.
494 */
495 ldlm_cli_pool_pop_slv(pl);
496
497 pl->pl_recalc_time = cfs_time_current_sec();
498 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
499 recalc_interval_sec);
500 spin_unlock(&pl->pl_lock);
501
502 /*
503 * Do not cancel locks in case lru resize is disabled for this ns.
504 */
505 if (!ns_connect_lru_resize(ldlm_pl2ns(pl)))
506 RETURN(0);
507
508 /*
509 * In the time of canceling locks on client we do not need to maintain
510 * sharp timing, we only want to cancel locks asap according to new SLV.
511 * It may be called when SLV has changed much, this is why we do not
512 * take into account pl->pl_recalc_time here.
513 */
514 RETURN(ldlm_cancel_lru(ldlm_pl2ns(pl), 0, LCF_ASYNC,
515 LDLM_CANCEL_LRUR));
516}
517
518/**
519 * This function is main entry point for memory pressure handling on client
520 * side. Main goal of this function is to cancel some number of locks on
521 * passed \a pl according to \a nr and \a gfp_mask.
522 */
523static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
524 int nr, unsigned int gfp_mask)
525{
526 struct ldlm_namespace *ns;
527 int canceled = 0, unused;
528
529 ns = ldlm_pl2ns(pl);
530
531 /*
532 * Do not cancel locks in case lru resize is disabled for this ns.
533 */
534 if (!ns_connect_lru_resize(ns))
535 RETURN(0);
536
537 /*
538 * Make sure that pool knows last SLV and Limit from obd.
539 */
540 ldlm_cli_pool_pop_slv(pl);
541
542 spin_lock(&ns->ns_lock);
543 unused = ns->ns_nr_unused;
544 spin_unlock(&ns->ns_lock);
545
546 if (nr) {
547 canceled = ldlm_cancel_lru(ns, nr, LCF_ASYNC,
548 LDLM_CANCEL_SHRINK);
549 }
550 /*
551 * Return the number of potentially reclaimable locks.
552 */
553 return ((unused - canceled) / 100) * sysctl_vfs_cache_pressure;
554}
555
556struct ldlm_pool_ops ldlm_srv_pool_ops = {
557 .po_recalc = ldlm_srv_pool_recalc,
558 .po_shrink = ldlm_srv_pool_shrink,
559 .po_setup = ldlm_srv_pool_setup
560};
561
562struct ldlm_pool_ops ldlm_cli_pool_ops = {
563 .po_recalc = ldlm_cli_pool_recalc,
564 .po_shrink = ldlm_cli_pool_shrink
565};
566
567/**
568 * Pool recalc wrapper. Will call either client or server pool recalc callback
569 * depending what pool \a pl is used.
570 */
571int ldlm_pool_recalc(struct ldlm_pool *pl)
572{
573 time_t recalc_interval_sec;
574 int count;
575
576 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
577 if (recalc_interval_sec <= 0)
578 goto recalc;
579
580 spin_lock(&pl->pl_lock);
581 recalc_interval_sec = cfs_time_current_sec() - pl->pl_recalc_time;
582 if (recalc_interval_sec > 0) {
583 /*
584 * Update pool statistics every 1s.
585 */
586 ldlm_pool_recalc_stats(pl);
587
588 /*
589 * Zero out all rates and speed for the last period.
590 */
591 atomic_set(&pl->pl_grant_rate, 0);
592 atomic_set(&pl->pl_cancel_rate, 0);
593 }
594 spin_unlock(&pl->pl_lock);
595
596 recalc:
597 if (pl->pl_ops->po_recalc != NULL) {
598 count = pl->pl_ops->po_recalc(pl);
599 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_RECALC_STAT,
600 count);
601 return count;
602 }
603
604 return 0;
605}
606EXPORT_SYMBOL(ldlm_pool_recalc);
607
608/**
609 * Pool shrink wrapper. Will call either client or server pool recalc callback
610 * depending what pool \a pl is used.
611 */
612int ldlm_pool_shrink(struct ldlm_pool *pl, int nr,
613 unsigned int gfp_mask)
614{
615 int cancel = 0;
616
617 if (pl->pl_ops->po_shrink != NULL) {
618 cancel = pl->pl_ops->po_shrink(pl, nr, gfp_mask);
619 if (nr > 0) {
620 lprocfs_counter_add(pl->pl_stats,
621 LDLM_POOL_SHRINK_REQTD_STAT,
622 nr);
623 lprocfs_counter_add(pl->pl_stats,
624 LDLM_POOL_SHRINK_FREED_STAT,
625 cancel);
626 CDEBUG(D_DLMTRACE, "%s: request to shrink %d locks, "
627 "shrunk %d\n", pl->pl_name, nr, cancel);
628 }
629 }
630 return cancel;
631}
632EXPORT_SYMBOL(ldlm_pool_shrink);
633
634/**
635 * Pool setup wrapper. Will call either client or server pool recalc callback
636 * depending what pool \a pl is used.
637 *
638 * Sets passed \a limit into pool \a pl.
639 */
640int ldlm_pool_setup(struct ldlm_pool *pl, int limit)
641{
642 if (pl->pl_ops->po_setup != NULL)
643 return(pl->pl_ops->po_setup(pl, limit));
644 return 0;
645}
646EXPORT_SYMBOL(ldlm_pool_setup);
647
648static int lprocfs_rd_pool_state(char *page, char **start, off_t off,
649 int count, int *eof, void *data)
650{
651 int granted, grant_rate, cancel_rate, grant_step;
652 int nr = 0, grant_speed, grant_plan, lvf;
653 struct ldlm_pool *pl = data;
654 __u64 slv, clv;
655 __u32 limit;
656
657 spin_lock(&pl->pl_lock);
658 slv = pl->pl_server_lock_volume;
659 clv = pl->pl_client_lock_volume;
660 limit = ldlm_pool_get_limit(pl);
661 grant_plan = pl->pl_grant_plan;
662 granted = atomic_read(&pl->pl_granted);
663 grant_rate = atomic_read(&pl->pl_grant_rate);
664 cancel_rate = atomic_read(&pl->pl_cancel_rate);
665 grant_speed = grant_rate - cancel_rate;
666 lvf = atomic_read(&pl->pl_lock_volume_factor);
667 grant_step = ldlm_pool_t2gsp(pl->pl_recalc_period);
668 spin_unlock(&pl->pl_lock);
669
670 nr += snprintf(page + nr, count - nr, "LDLM pool state (%s):\n",
671 pl->pl_name);
672 nr += snprintf(page + nr, count - nr, " SLV: "LPU64"\n", slv);
673 nr += snprintf(page + nr, count - nr, " CLV: "LPU64"\n", clv);
674 nr += snprintf(page + nr, count - nr, " LVF: %d\n", lvf);
675
676 if (ns_is_server(ldlm_pl2ns(pl))) {
677 nr += snprintf(page + nr, count - nr, " GSP: %d%%\n",
678 grant_step);
679 nr += snprintf(page + nr, count - nr, " GP: %d\n",
680 grant_plan);
681 }
682 nr += snprintf(page + nr, count - nr, " GR: %d\n",
683 grant_rate);
684 nr += snprintf(page + nr, count - nr, " CR: %d\n",
685 cancel_rate);
686 nr += snprintf(page + nr, count - nr, " GS: %d\n",
687 grant_speed);
688 nr += snprintf(page + nr, count - nr, " G: %d\n",
689 granted);
690 nr += snprintf(page + nr, count - nr, " L: %d\n",
691 limit);
692 return nr;
693}
694
695static int lprocfs_rd_grant_speed(char *page, char **start, off_t off,
696 int count, int *eof, void *data)
697{
698 struct ldlm_pool *pl = data;
699 int grant_speed;
700
701 spin_lock(&pl->pl_lock);
702 /* serialize with ldlm_pool_recalc */
703 grant_speed = atomic_read(&pl->pl_grant_rate) -
704 atomic_read(&pl->pl_cancel_rate);
705 spin_unlock(&pl->pl_lock);
706 return lprocfs_rd_uint(page, start, off, count, eof, &grant_speed);
707}
708
709LDLM_POOL_PROC_READER(grant_plan, int);
710LDLM_POOL_PROC_READER(recalc_period, int);
711LDLM_POOL_PROC_WRITER(recalc_period, int);
712
713static int ldlm_pool_proc_init(struct ldlm_pool *pl)
714{
715 struct ldlm_namespace *ns = ldlm_pl2ns(pl);
716 struct proc_dir_entry *parent_ns_proc;
717 struct lprocfs_vars pool_vars[2];
718 char *var_name = NULL;
719 int rc = 0;
720 ENTRY;
721
722 OBD_ALLOC(var_name, MAX_STRING_SIZE + 1);
723 if (!var_name)
724 RETURN(-ENOMEM);
725
726 parent_ns_proc = lprocfs_srch(ldlm_ns_proc_dir,
727 ldlm_ns_name(ns));
728 if (parent_ns_proc == NULL) {
729 CERROR("%s: proc entry is not initialized\n",
730 ldlm_ns_name(ns));
731 GOTO(out_free_name, rc = -EINVAL);
732 }
733 pl->pl_proc_dir = lprocfs_register("pool", parent_ns_proc,
734 NULL, NULL);
735 if (IS_ERR(pl->pl_proc_dir)) {
736 CERROR("LProcFS failed in ldlm-pool-init\n");
737 rc = PTR_ERR(pl->pl_proc_dir);
738 GOTO(out_free_name, rc);
739 }
740
741 var_name[MAX_STRING_SIZE] = '\0';
742 memset(pool_vars, 0, sizeof(pool_vars));
743 pool_vars[0].name = var_name;
744
745 snprintf(var_name, MAX_STRING_SIZE, "server_lock_volume");
746 pool_vars[0].data = &pl->pl_server_lock_volume;
747 pool_vars[0].read_fptr = lprocfs_rd_u64;
748 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
749
750 snprintf(var_name, MAX_STRING_SIZE, "limit");
751 pool_vars[0].data = &pl->pl_limit;
752 pool_vars[0].read_fptr = lprocfs_rd_atomic;
753 pool_vars[0].write_fptr = lprocfs_wr_atomic;
754 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
755
756 snprintf(var_name, MAX_STRING_SIZE, "granted");
757 pool_vars[0].data = &pl->pl_granted;
758 pool_vars[0].read_fptr = lprocfs_rd_atomic;
759 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
760
761 snprintf(var_name, MAX_STRING_SIZE, "grant_speed");
762 pool_vars[0].data = pl;
763 pool_vars[0].read_fptr = lprocfs_rd_grant_speed;
764 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
765
766 snprintf(var_name, MAX_STRING_SIZE, "cancel_rate");
767 pool_vars[0].data = &pl->pl_cancel_rate;
768 pool_vars[0].read_fptr = lprocfs_rd_atomic;
769 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
770
771 snprintf(var_name, MAX_STRING_SIZE, "grant_rate");
772 pool_vars[0].data = &pl->pl_grant_rate;
773 pool_vars[0].read_fptr = lprocfs_rd_atomic;
774 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
775
776 snprintf(var_name, MAX_STRING_SIZE, "grant_plan");
777 pool_vars[0].data = pl;
778 pool_vars[0].read_fptr = lprocfs_rd_grant_plan;
779 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
780
781 snprintf(var_name, MAX_STRING_SIZE, "recalc_period");
782 pool_vars[0].data = pl;
783 pool_vars[0].read_fptr = lprocfs_rd_recalc_period;
784 pool_vars[0].write_fptr = lprocfs_wr_recalc_period;
785 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
786
787 snprintf(var_name, MAX_STRING_SIZE, "lock_volume_factor");
788 pool_vars[0].data = &pl->pl_lock_volume_factor;
789 pool_vars[0].read_fptr = lprocfs_rd_atomic;
790 pool_vars[0].write_fptr = lprocfs_wr_atomic;
791 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
792
793 snprintf(var_name, MAX_STRING_SIZE, "state");
794 pool_vars[0].data = pl;
795 pool_vars[0].read_fptr = lprocfs_rd_pool_state;
796 lprocfs_add_vars(pl->pl_proc_dir, pool_vars, 0);
797
798 pl->pl_stats = lprocfs_alloc_stats(LDLM_POOL_LAST_STAT -
799 LDLM_POOL_FIRST_STAT, 0);
800 if (!pl->pl_stats)
801 GOTO(out_free_name, rc = -ENOMEM);
802
803 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
804 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
805 "granted", "locks");
806 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_STAT,
807 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
808 "grant", "locks");
809 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_STAT,
810 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
811 "cancel", "locks");
812 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
813 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
814 "grant_rate", "locks/s");
815 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
816 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
817 "cancel_rate", "locks/s");
818 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
819 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
820 "grant_plan", "locks/s");
821 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SLV_STAT,
822 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
823 "slv", "slv");
824 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_REQTD_STAT,
825 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
826 "shrink_request", "locks");
827 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_FREED_STAT,
828 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
829 "shrink_freed", "locks");
830 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_RECALC_STAT,
831 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
832 "recalc_freed", "locks");
833 lprocfs_counter_init(pl->pl_stats, LDLM_POOL_TIMING_STAT,
834 LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
835 "recalc_timing", "sec");
836 rc = lprocfs_register_stats(pl->pl_proc_dir, "stats", pl->pl_stats);
837
838 EXIT;
839out_free_name:
840 OBD_FREE(var_name, MAX_STRING_SIZE + 1);
841 return rc;
842}
843
844static void ldlm_pool_proc_fini(struct ldlm_pool *pl)
845{
846 if (pl->pl_stats != NULL) {
847 lprocfs_free_stats(&pl->pl_stats);
848 pl->pl_stats = NULL;
849 }
850 if (pl->pl_proc_dir != NULL) {
851 lprocfs_remove(&pl->pl_proc_dir);
852 pl->pl_proc_dir = NULL;
853 }
854}
855
856int ldlm_pool_init(struct ldlm_pool *pl, struct ldlm_namespace *ns,
857 int idx, ldlm_side_t client)
858{
859 int rc;
860 ENTRY;
861
862 spin_lock_init(&pl->pl_lock);
863 atomic_set(&pl->pl_granted, 0);
864 pl->pl_recalc_time = cfs_time_current_sec();
865 atomic_set(&pl->pl_lock_volume_factor, 1);
866
867 atomic_set(&pl->pl_grant_rate, 0);
868 atomic_set(&pl->pl_cancel_rate, 0);
869 pl->pl_grant_plan = LDLM_POOL_GP(LDLM_POOL_HOST_L);
870
871 snprintf(pl->pl_name, sizeof(pl->pl_name), "ldlm-pool-%s-%d",
872 ldlm_ns_name(ns), idx);
873
874 if (client == LDLM_NAMESPACE_SERVER) {
875 pl->pl_ops = &ldlm_srv_pool_ops;
876 ldlm_pool_set_limit(pl, LDLM_POOL_HOST_L);
877 pl->pl_recalc_period = LDLM_POOL_SRV_DEF_RECALC_PERIOD;
878 pl->pl_server_lock_volume = ldlm_pool_slv_max(LDLM_POOL_HOST_L);
879 } else {
880 ldlm_pool_set_limit(pl, 1);
881 pl->pl_server_lock_volume = 0;
882 pl->pl_ops = &ldlm_cli_pool_ops;
883 pl->pl_recalc_period = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
884 }
885 pl->pl_client_lock_volume = 0;
886 rc = ldlm_pool_proc_init(pl);
887 if (rc)
888 RETURN(rc);
889
890 CDEBUG(D_DLMTRACE, "Lock pool %s is initialized\n", pl->pl_name);
891
892 RETURN(rc);
893}
894EXPORT_SYMBOL(ldlm_pool_init);
895
896void ldlm_pool_fini(struct ldlm_pool *pl)
897{
898 ENTRY;
899 ldlm_pool_proc_fini(pl);
900
901 /*
902 * Pool should not be used after this point. We can't free it here as
903 * it lives in struct ldlm_namespace, but still interested in catching
904 * any abnormal using cases.
905 */
906 POISON(pl, 0x5a, sizeof(*pl));
907 EXIT;
908}
909EXPORT_SYMBOL(ldlm_pool_fini);
910
911/**
912 * Add new taken ldlm lock \a lock into pool \a pl accounting.
913 */
914void ldlm_pool_add(struct ldlm_pool *pl, struct ldlm_lock *lock)
915{
916 /*
917 * FLOCK locks are special in a sense that they are almost never
918 * cancelled, instead special kind of lock is used to drop them.
919 * also there is no LRU for flock locks, so no point in tracking
920 * them anyway.
921 */
922 if (lock->l_resource->lr_type == LDLM_FLOCK)
923 return;
924
925 atomic_inc(&pl->pl_granted);
926 atomic_inc(&pl->pl_grant_rate);
927 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_GRANT_STAT);
928 /*
929 * Do not do pool recalc for client side as all locks which
930 * potentially may be canceled has already been packed into
931 * enqueue/cancel rpc. Also we do not want to run out of stack
932 * with too long call paths.
933 */
934 if (ns_is_server(ldlm_pl2ns(pl)))
935 ldlm_pool_recalc(pl);
936}
937EXPORT_SYMBOL(ldlm_pool_add);
938
939/**
940 * Remove ldlm lock \a lock from pool \a pl accounting.
941 */
942void ldlm_pool_del(struct ldlm_pool *pl, struct ldlm_lock *lock)
943{
944 /*
945 * Filter out FLOCK locks. Read above comment in ldlm_pool_add().
946 */
947 if (lock->l_resource->lr_type == LDLM_FLOCK)
948 return;
949
950 LASSERT(atomic_read(&pl->pl_granted) > 0);
951 atomic_dec(&pl->pl_granted);
952 atomic_inc(&pl->pl_cancel_rate);
953
954 lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_CANCEL_STAT);
955
956 if (ns_is_server(ldlm_pl2ns(pl)))
957 ldlm_pool_recalc(pl);
958}
959EXPORT_SYMBOL(ldlm_pool_del);
960
961/**
962 * Returns current \a pl SLV.
963 *
964 * \pre ->pl_lock is not locked.
965 */
966__u64 ldlm_pool_get_slv(struct ldlm_pool *pl)
967{
968 __u64 slv;
969 spin_lock(&pl->pl_lock);
970 slv = pl->pl_server_lock_volume;
971 spin_unlock(&pl->pl_lock);
972 return slv;
973}
974EXPORT_SYMBOL(ldlm_pool_get_slv);
975
976/**
977 * Sets passed \a slv to \a pl.
978 *
979 * \pre ->pl_lock is not locked.
980 */
981void ldlm_pool_set_slv(struct ldlm_pool *pl, __u64 slv)
982{
983 spin_lock(&pl->pl_lock);
984 pl->pl_server_lock_volume = slv;
985 spin_unlock(&pl->pl_lock);
986}
987EXPORT_SYMBOL(ldlm_pool_set_slv);
988
989/**
990 * Returns current \a pl CLV.
991 *
992 * \pre ->pl_lock is not locked.
993 */
994__u64 ldlm_pool_get_clv(struct ldlm_pool *pl)
995{
996 __u64 slv;
997 spin_lock(&pl->pl_lock);
998 slv = pl->pl_client_lock_volume;
999 spin_unlock(&pl->pl_lock);
1000 return slv;
1001}
1002EXPORT_SYMBOL(ldlm_pool_get_clv);
1003
1004/**
1005 * Sets passed \a clv to \a pl.
1006 *
1007 * \pre ->pl_lock is not locked.
1008 */
1009void ldlm_pool_set_clv(struct ldlm_pool *pl, __u64 clv)
1010{
1011 spin_lock(&pl->pl_lock);
1012 pl->pl_client_lock_volume = clv;
1013 spin_unlock(&pl->pl_lock);
1014}
1015EXPORT_SYMBOL(ldlm_pool_set_clv);
1016
1017/**
1018 * Returns current \a pl limit.
1019 */
1020__u32 ldlm_pool_get_limit(struct ldlm_pool *pl)
1021{
1022 return atomic_read(&pl->pl_limit);
1023}
1024EXPORT_SYMBOL(ldlm_pool_get_limit);
1025
1026/**
1027 * Sets passed \a limit to \a pl.
1028 */
1029void ldlm_pool_set_limit(struct ldlm_pool *pl, __u32 limit)
1030{
1031 atomic_set(&pl->pl_limit, limit);
1032}
1033EXPORT_SYMBOL(ldlm_pool_set_limit);
1034
1035/**
1036 * Returns current LVF from \a pl.
1037 */
1038__u32 ldlm_pool_get_lvf(struct ldlm_pool *pl)
1039{
1040 return atomic_read(&pl->pl_lock_volume_factor);
1041}
1042EXPORT_SYMBOL(ldlm_pool_get_lvf);
1043
1044static int ldlm_pool_granted(struct ldlm_pool *pl)
1045{
1046 return atomic_read(&pl->pl_granted);
1047}
1048
1049static struct ptlrpc_thread *ldlm_pools_thread;
1050static struct shrinker *ldlm_pools_srv_shrinker;
1051static struct shrinker *ldlm_pools_cli_shrinker;
1052static struct completion ldlm_pools_comp;
1053
1054/*
1055 * Cancel \a nr locks from all namespaces (if possible). Returns number of
1056 * cached locks after shrink is finished. All namespaces are asked to
1057 * cancel approximately equal amount of locks to keep balancing.
1058 */
1059static int ldlm_pools_shrink(ldlm_side_t client, int nr,
1060 unsigned int gfp_mask)
1061{
1062 int total = 0, cached = 0, nr_ns;
1063 struct ldlm_namespace *ns;
1064 void *cookie;
1065
1066 if (client == LDLM_NAMESPACE_CLIENT && nr != 0 &&
1067 !(gfp_mask & __GFP_FS))
1068 return -1;
1069
1070 CDEBUG(D_DLMTRACE, "Request to shrink %d %s locks from all pools\n",
1071 nr, client == LDLM_NAMESPACE_CLIENT ? "client" : "server");
1072
1073 cookie = cl_env_reenter();
1074
1075 /*
1076 * Find out how many resources we may release.
1077 */
1078 for (nr_ns = atomic_read(ldlm_namespace_nr(client));
1079 nr_ns > 0; nr_ns--)
1080 {
1081 mutex_lock(ldlm_namespace_lock(client));
1082 if (list_empty(ldlm_namespace_list(client))) {
1083 mutex_unlock(ldlm_namespace_lock(client));
1084 cl_env_reexit(cookie);
1085 return 0;
1086 }
1087 ns = ldlm_namespace_first_locked(client);
1088 ldlm_namespace_get(ns);
1089 ldlm_namespace_move_locked(ns, client);
1090 mutex_unlock(ldlm_namespace_lock(client));
1091 total += ldlm_pool_shrink(&ns->ns_pool, 0, gfp_mask);
1092 ldlm_namespace_put(ns);
1093 }
1094
1095 if (nr == 0 || total == 0) {
1096 cl_env_reexit(cookie);
1097 return total;
1098 }
1099
1100 /*
1101 * Shrink at least ldlm_namespace_nr(client) namespaces.
1102 */
1103 for (nr_ns = atomic_read(ldlm_namespace_nr(client));
1104 nr_ns > 0; nr_ns--)
1105 {
1106 int cancel, nr_locks;
1107
1108 /*
1109 * Do not call shrink under ldlm_namespace_lock(client)
1110 */
1111 mutex_lock(ldlm_namespace_lock(client));
1112 if (list_empty(ldlm_namespace_list(client))) {
1113 mutex_unlock(ldlm_namespace_lock(client));
1114 /*
1115 * If list is empty, we can't return any @cached > 0,
1116 * that probably would cause needless shrinker
1117 * call.
1118 */
1119 cached = 0;
1120 break;
1121 }
1122 ns = ldlm_namespace_first_locked(client);
1123 ldlm_namespace_get(ns);
1124 ldlm_namespace_move_locked(ns, client);
1125 mutex_unlock(ldlm_namespace_lock(client));
1126
1127 nr_locks = ldlm_pool_granted(&ns->ns_pool);
1128 cancel = 1 + nr_locks * nr / total;
1129 ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
1130 cached += ldlm_pool_granted(&ns->ns_pool);
1131 ldlm_namespace_put(ns);
1132 }
1133 cl_env_reexit(cookie);
1134 /* we only decrease the SLV in server pools shrinker, return -1 to
1135 * kernel to avoid needless loop. LU-1128 */
1136 return (client == LDLM_NAMESPACE_SERVER) ? -1 : cached;
1137}
1138
1139static int ldlm_pools_srv_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1140{
1141 return ldlm_pools_shrink(LDLM_NAMESPACE_SERVER,
1142 shrink_param(sc, nr_to_scan),
1143 shrink_param(sc, gfp_mask));
1144}
1145
1146static int ldlm_pools_cli_shrink(SHRINKER_ARGS(sc, nr_to_scan, gfp_mask))
1147{
1148 return ldlm_pools_shrink(LDLM_NAMESPACE_CLIENT,
1149 shrink_param(sc, nr_to_scan),
1150 shrink_param(sc, gfp_mask));
1151}
1152
1153void ldlm_pools_recalc(ldlm_side_t client)
1154{
1155 __u32 nr_l = 0, nr_p = 0, l;
1156 struct ldlm_namespace *ns;
1157 int nr, equal = 0;
1158
1159 /*
1160 * No need to setup pool limit for client pools.
1161 */
1162 if (client == LDLM_NAMESPACE_SERVER) {
1163 /*
1164 * Check all modest namespaces first.
1165 */
1166 mutex_lock(ldlm_namespace_lock(client));
1167 list_for_each_entry(ns, ldlm_namespace_list(client),
1168 ns_list_chain)
1169 {
1170 if (ns->ns_appetite != LDLM_NAMESPACE_MODEST)
1171 continue;
1172
1173 l = ldlm_pool_granted(&ns->ns_pool);
1174 if (l == 0)
1175 l = 1;
1176
1177 /*
1178 * Set the modest pools limit equal to their avg granted
1179 * locks + ~6%.
1180 */
1181 l += dru(l, LDLM_POOLS_MODEST_MARGIN_SHIFT, 0);
1182 ldlm_pool_setup(&ns->ns_pool, l);
1183 nr_l += l;
1184 nr_p++;
1185 }
1186
1187 /*
1188 * Make sure that modest namespaces did not eat more that 2/3
1189 * of limit.
1190 */
1191 if (nr_l >= 2 * (LDLM_POOL_HOST_L / 3)) {
1192 CWARN("\"Modest\" pools eat out 2/3 of server locks "
1193 "limit (%d of %lu). This means that you have too "
1194 "many clients for this amount of server RAM. "
1195 "Upgrade server!\n", nr_l, LDLM_POOL_HOST_L);
1196 equal = 1;
1197 }
1198
1199 /*
1200 * The rest is given to greedy namespaces.
1201 */
1202 list_for_each_entry(ns, ldlm_namespace_list(client),
1203 ns_list_chain)
1204 {
1205 if (!equal && ns->ns_appetite != LDLM_NAMESPACE_GREEDY)
1206 continue;
1207
1208 if (equal) {
1209 /*
1210 * In the case 2/3 locks are eaten out by
1211 * modest pools, we re-setup equal limit
1212 * for _all_ pools.
1213 */
1214 l = LDLM_POOL_HOST_L /
1215 atomic_read(
1216 ldlm_namespace_nr(client));
1217 } else {
1218 /*
1219 * All the rest of greedy pools will have
1220 * all locks in equal parts.
1221 */
1222 l = (LDLM_POOL_HOST_L - nr_l) /
1223 (atomic_read(
1224 ldlm_namespace_nr(client)) -
1225 nr_p);
1226 }
1227 ldlm_pool_setup(&ns->ns_pool, l);
1228 }
1229 mutex_unlock(ldlm_namespace_lock(client));
1230 }
1231
1232 /*
1233 * Recalc at least ldlm_namespace_nr(client) namespaces.
1234 */
1235 for (nr = atomic_read(ldlm_namespace_nr(client)); nr > 0; nr--) {
1236 int skip;
1237 /*
1238 * Lock the list, get first @ns in the list, getref, move it
1239 * to the tail, unlock and call pool recalc. This way we avoid
1240 * calling recalc under @ns lock what is really good as we get
1241 * rid of potential deadlock on client nodes when canceling
1242 * locks synchronously.
1243 */
1244 mutex_lock(ldlm_namespace_lock(client));
1245 if (list_empty(ldlm_namespace_list(client))) {
1246 mutex_unlock(ldlm_namespace_lock(client));
1247 break;
1248 }
1249 ns = ldlm_namespace_first_locked(client);
1250
1251 spin_lock(&ns->ns_lock);
1252 /*
1253 * skip ns which is being freed, and we don't want to increase
1254 * its refcount again, not even temporarily. bz21519 & LU-499.
1255 */
1256 if (ns->ns_stopping) {
1257 skip = 1;
1258 } else {
1259 skip = 0;
1260 ldlm_namespace_get(ns);
1261 }
1262 spin_unlock(&ns->ns_lock);
1263
1264 ldlm_namespace_move_locked(ns, client);
1265 mutex_unlock(ldlm_namespace_lock(client));
1266
1267 /*
1268 * After setup is done - recalc the pool.
1269 */
1270 if (!skip) {
1271 ldlm_pool_recalc(&ns->ns_pool);
1272 ldlm_namespace_put(ns);
1273 }
1274 }
1275}
1276EXPORT_SYMBOL(ldlm_pools_recalc);
1277
1278static int ldlm_pools_thread_main(void *arg)
1279{
1280 struct ptlrpc_thread *thread = (struct ptlrpc_thread *)arg;
1281 ENTRY;
1282
1283 thread_set_flags(thread, SVC_RUNNING);
1284 wake_up(&thread->t_ctl_waitq);
1285
1286 CDEBUG(D_DLMTRACE, "%s: pool thread starting, process %d\n",
1287 "ldlm_poold", current_pid());
1288
1289 while (1) {
1290 struct l_wait_info lwi;
1291
1292 /*
1293 * Recal all pools on this tick.
1294 */
1295 ldlm_pools_recalc(LDLM_NAMESPACE_SERVER);
1296 ldlm_pools_recalc(LDLM_NAMESPACE_CLIENT);
1297
1298 /*
1299 * Wait until the next check time, or until we're
1300 * stopped.
1301 */
1302 lwi = LWI_TIMEOUT(cfs_time_seconds(LDLM_POOLS_THREAD_PERIOD),
1303 NULL, NULL);
1304 l_wait_event(thread->t_ctl_waitq,
1305 thread_is_stopping(thread) ||
1306 thread_is_event(thread),
1307 &lwi);
1308
1309 if (thread_test_and_clear_flags(thread, SVC_STOPPING))
1310 break;
1311 else
1312 thread_test_and_clear_flags(thread, SVC_EVENT);
1313 }
1314
1315 thread_set_flags(thread, SVC_STOPPED);
1316 wake_up(&thread->t_ctl_waitq);
1317
1318 CDEBUG(D_DLMTRACE, "%s: pool thread exiting, process %d\n",
1319 "ldlm_poold", current_pid());
1320
1321 complete_and_exit(&ldlm_pools_comp, 0);
1322}
1323
1324static int ldlm_pools_thread_start(void)
1325{
1326 struct l_wait_info lwi = { 0 };
1327 task_t *task;
1328 ENTRY;
1329
1330 if (ldlm_pools_thread != NULL)
1331 RETURN(-EALREADY);
1332
1333 OBD_ALLOC_PTR(ldlm_pools_thread);
1334 if (ldlm_pools_thread == NULL)
1335 RETURN(-ENOMEM);
1336
1337 init_completion(&ldlm_pools_comp);
1338 init_waitqueue_head(&ldlm_pools_thread->t_ctl_waitq);
1339
1340 task = kthread_run(ldlm_pools_thread_main, ldlm_pools_thread,
1341 "ldlm_poold");
1342 if (IS_ERR(task)) {
1343 CERROR("Can't start pool thread, error %ld\n", PTR_ERR(task));
1344 OBD_FREE(ldlm_pools_thread, sizeof(*ldlm_pools_thread));
1345 ldlm_pools_thread = NULL;
1346 RETURN(PTR_ERR(task));
1347 }
1348 l_wait_event(ldlm_pools_thread->t_ctl_waitq,
1349 thread_is_running(ldlm_pools_thread), &lwi);
1350 RETURN(0);
1351}
1352
1353static void ldlm_pools_thread_stop(void)
1354{
1355 ENTRY;
1356
1357 if (ldlm_pools_thread == NULL) {
1358 EXIT;
1359 return;
1360 }
1361
1362 thread_set_flags(ldlm_pools_thread, SVC_STOPPING);
1363 wake_up(&ldlm_pools_thread->t_ctl_waitq);
1364
1365 /*
1366 * Make sure that pools thread is finished before freeing @thread.
1367 * This fixes possible race and oops due to accessing freed memory
1368 * in pools thread.
1369 */
1370 wait_for_completion(&ldlm_pools_comp);
1371 OBD_FREE_PTR(ldlm_pools_thread);
1372 ldlm_pools_thread = NULL;
1373 EXIT;
1374}
1375
1376int ldlm_pools_init(void)
1377{
1378 int rc;
1379 ENTRY;
1380
1381 rc = ldlm_pools_thread_start();
1382 if (rc == 0) {
1383 ldlm_pools_srv_shrinker =
1384 set_shrinker(DEFAULT_SEEKS,
1385 ldlm_pools_srv_shrink);
1386 ldlm_pools_cli_shrinker =
1387 set_shrinker(DEFAULT_SEEKS,
1388 ldlm_pools_cli_shrink);
1389 }
1390 RETURN(rc);
1391}
1392EXPORT_SYMBOL(ldlm_pools_init);
1393
1394void ldlm_pools_fini(void)
1395{
1396 if (ldlm_pools_srv_shrinker != NULL) {
1397 remove_shrinker(ldlm_pools_srv_shrinker);
1398 ldlm_pools_srv_shrinker = NULL;
1399 }
1400 if (ldlm_pools_cli_shrinker != NULL) {
1401 remove_shrinker(ldlm_pools_cli_shrinker);
1402 ldlm_pools_cli_shrinker = NULL;
1403 }
1404 ldlm_pools_thread_stop();
1405}
1406EXPORT_SYMBOL(ldlm_pools_fini);
This page took 0.109528 seconds and 5 git commands to generate.