staging/hfi1: Add MMU notifier callback function
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / user_exp_rcv.c
CommitLineData
f727a0c3
MH
1/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50#include <asm/page.h>
51
52#include "user_exp_rcv.h"
53#include "trace.h"
54
b8abe346
MH
55struct tid_group {
56 struct list_head list;
57 unsigned base;
58 u8 size;
59 u8 used;
60 u8 map;
61};
62
f727a0c3
MH
63struct mmu_rb_node {
64 struct rb_node rbnode;
65 unsigned long virt;
66 unsigned long phys;
67 unsigned long len;
68 struct tid_group *grp;
69 u32 rcventry;
70 dma_addr_t dma_addr;
71 bool freed;
72 unsigned npages;
73 struct page *pages[0];
74};
75
76enum mmu_call_types {
77 MMU_INVALIDATE_PAGE = 0,
78 MMU_INVALIDATE_RANGE = 1
79};
80
81static const char * const mmu_types[] = {
82 "PAGE",
83 "RANGE"
84};
85
f88e0c8a
MH
86struct tid_pageset {
87 u16 idx;
88 u16 count;
89};
90
b8abe346
MH
91#define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
92
3abb33ac
MH
93#define num_user_pages(vaddr, len) \
94 (1 + (((((unsigned long)(vaddr) + \
95 (unsigned long)(len) - 1) & PAGE_MASK) - \
96 ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
97
f88e0c8a 98static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
3abb33ac 99 struct rb_root *);
f88e0c8a
MH
100static u32 find_phys_blocks(struct page **, unsigned,
101 struct tid_pageset *) __maybe_unused;
102static int set_rcvarray_entry(struct file *, unsigned long, u32,
3abb33ac 103 struct tid_group *, struct page **, unsigned);
f727a0c3
MH
104static inline int mmu_addr_cmp(struct mmu_rb_node *, unsigned long,
105 unsigned long);
106static struct mmu_rb_node *mmu_rb_search_by_addr(struct rb_root *,
b5eb3b2f 107 unsigned long);
f727a0c3
MH
108static inline struct mmu_rb_node *mmu_rb_search_by_entry(struct rb_root *,
109 u32);
3abb33ac
MH
110static int mmu_rb_insert_by_addr(struct rb_root *, struct mmu_rb_node *);
111static int mmu_rb_insert_by_entry(struct rb_root *, struct mmu_rb_node *);
f727a0c3
MH
112static void mmu_notifier_mem_invalidate(struct mmu_notifier *,
113 unsigned long, unsigned long,
114 enum mmu_call_types);
115static inline void mmu_notifier_page(struct mmu_notifier *, struct mm_struct *,
116 unsigned long);
117static inline void mmu_notifier_range_start(struct mmu_notifier *,
118 struct mm_struct *,
119 unsigned long, unsigned long);
f88e0c8a
MH
120static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
121 struct tid_pageset *, unsigned, u16, struct page **,
122 u32 *, unsigned *, unsigned *) __maybe_unused;
123static int unprogram_rcvarray(struct file *, u32,
124 struct tid_group **) __maybe_unused;
125static void clear_tid_node(struct hfi1_filedata *, u16,
126 struct mmu_rb_node *) __maybe_unused;
127
128static inline u32 rcventry2tidinfo(u32 rcventry)
129{
130 u32 pair = rcventry & ~0x1;
131
132 return EXP_TID_SET(IDX, pair >> 1) |
133 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
134}
f727a0c3 135
b8abe346
MH
136static inline void exp_tid_group_init(struct exp_tid_set *set)
137{
138 INIT_LIST_HEAD(&set->list);
139 set->count = 0;
140}
141
142static inline void tid_group_remove(struct tid_group *grp,
143 struct exp_tid_set *set)
144{
145 list_del_init(&grp->list);
146 set->count--;
147}
148
149static inline void tid_group_add_tail(struct tid_group *grp,
150 struct exp_tid_set *set)
151{
152 list_add_tail(&grp->list, &set->list);
153 set->count++;
154}
155
156static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
157{
158 struct tid_group *grp =
159 list_first_entry(&set->list, struct tid_group, list);
160 list_del_init(&grp->list);
161 set->count--;
162 return grp;
163}
164
165static inline void tid_group_move(struct tid_group *group,
166 struct exp_tid_set *s1,
167 struct exp_tid_set *s2)
168{
169 tid_group_remove(group, s1);
170 tid_group_add_tail(group, s2);
171}
172
3abb33ac 173static struct mmu_notifier_ops mn_opts = {
f727a0c3
MH
174 .invalidate_page = mmu_notifier_page,
175 .invalidate_range_start = mmu_notifier_range_start,
176};
177
178/*
179 * Initialize context and file private data needed for Expected
180 * receive caching. This needs to be done after the context has
181 * been configured with the eager/expected RcvEntry counts.
182 */
183int hfi1_user_exp_rcv_init(struct file *fp)
184{
3abb33ac
MH
185 struct hfi1_filedata *fd = fp->private_data;
186 struct hfi1_ctxtdata *uctxt = fd->uctxt;
187 struct hfi1_devdata *dd = uctxt->dd;
188 unsigned tidbase;
189 int i, ret = 0;
190
191 INIT_HLIST_NODE(&fd->mn.hlist);
192 spin_lock_init(&fd->rb_lock);
193 spin_lock_init(&fd->tid_lock);
194 spin_lock_init(&fd->invalid_lock);
195 fd->mn.ops = &mn_opts;
196 fd->tid_rb_root = RB_ROOT;
197
198 if (!uctxt->subctxt_cnt || !fd->subctxt) {
199 exp_tid_group_init(&uctxt->tid_group_list);
200 exp_tid_group_init(&uctxt->tid_used_list);
201 exp_tid_group_init(&uctxt->tid_full_list);
202
203 tidbase = uctxt->expected_base;
204 for (i = 0; i < uctxt->expected_count /
205 dd->rcv_entries.group_size; i++) {
206 struct tid_group *grp;
207
208 grp = kzalloc(sizeof(*grp), GFP_KERNEL);
209 if (!grp) {
210 /*
211 * If we fail here, the groups already
212 * allocated will be freed by the close
213 * call.
214 */
215 ret = -ENOMEM;
216 goto done;
217 }
218 grp->size = dd->rcv_entries.group_size;
219 grp->base = tidbase;
220 tid_group_add_tail(grp, &uctxt->tid_group_list);
221 tidbase += dd->rcv_entries.group_size;
222 }
223 }
224
225 if (!HFI1_CAP_IS_USET(TID_UNMAP)) {
226 fd->invalid_tid_idx = 0;
227 fd->invalid_tids = kzalloc(uctxt->expected_count *
228 sizeof(u32), GFP_KERNEL);
229 if (!fd->invalid_tids) {
230 ret = -ENOMEM;
231 goto done;
232 } else {
233 /*
234 * Register MMU notifier callbacks. If the registration
235 * fails, continue but turn off the TID caching for
236 * all user contexts.
237 */
238 ret = mmu_notifier_register(&fd->mn, current->mm);
239 if (ret) {
240 dd_dev_info(dd,
241 "Failed MMU notifier registration %d\n",
242 ret);
243 HFI1_CAP_USET(TID_UNMAP);
244 ret = 0;
245 }
246 }
247 }
248
249 if (HFI1_CAP_IS_USET(TID_UNMAP))
250 fd->mmu_rb_insert = mmu_rb_insert_by_entry;
251 else
252 fd->mmu_rb_insert = mmu_rb_insert_by_addr;
253
254 /*
255 * PSM does not have a good way to separate, count, and
256 * effectively enforce a limit on RcvArray entries used by
257 * subctxts (when context sharing is used) when TID caching
258 * is enabled. To help with that, we calculate a per-process
259 * RcvArray entry share and enforce that.
260 * If TID caching is not in use, PSM deals with usage on its
261 * own. In that case, we allow any subctxt to take all of the
262 * entries.
263 *
264 * Make sure that we set the tid counts only after successful
265 * init.
266 */
267 if (uctxt->subctxt_cnt && !HFI1_CAP_IS_USET(TID_UNMAP)) {
268 u16 remainder;
269
270 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
271 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
272 if (remainder && fd->subctxt < remainder)
273 fd->tid_limit++;
274 } else {
275 fd->tid_limit = uctxt->expected_count;
276 }
277done:
278 return ret;
f727a0c3
MH
279}
280
281int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
282{
3abb33ac
MH
283 struct hfi1_ctxtdata *uctxt = fd->uctxt;
284 struct tid_group *grp, *gptr;
285
286 /*
287 * The notifier would have been removed when the process'es mm
288 * was freed.
289 */
290 if (current->mm && !HFI1_CAP_IS_USET(TID_UNMAP))
291 mmu_notifier_unregister(&fd->mn, current->mm);
292
293 kfree(fd->invalid_tids);
294
295 if (!uctxt->cnt) {
296 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
297 unlock_exp_tids(uctxt, &uctxt->tid_full_list,
298 &fd->tid_rb_root);
299 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
300 unlock_exp_tids(uctxt, &uctxt->tid_used_list,
301 &fd->tid_rb_root);
302 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
303 list) {
304 list_del_init(&grp->list);
305 kfree(grp);
306 }
307 spin_lock(&fd->rb_lock);
308 if (!RB_EMPTY_ROOT(&fd->tid_rb_root)) {
309 struct rb_node *node;
310 struct mmu_rb_node *rbnode;
311
312 while ((node = rb_first(&fd->tid_rb_root))) {
313 rbnode = rb_entry(node, struct mmu_rb_node,
314 rbnode);
315 rb_erase(&rbnode->rbnode, &fd->tid_rb_root);
316 kfree(rbnode);
317 }
318 }
319 spin_unlock(&fd->rb_lock);
320 hfi1_clear_tids(uctxt);
321 }
322 return 0;
f727a0c3
MH
323}
324
b8abe346
MH
325/*
326 * Write an "empty" RcvArray entry.
327 * This function exists so the TID registaration code can use it
328 * to write to unused/unneeded entries and still take advantage
329 * of the WC performance improvements. The HFI will ignore this
330 * write to the RcvArray entry.
331 */
332static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
333{
334 /*
335 * Doing the WC fill writes only makes sense if the device is
336 * present and the RcvArray has been mapped as WC memory.
337 */
338 if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
339 writeq(0, dd->rcvarray_wc + (index * 8));
340}
341
f727a0c3
MH
342int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
343{
344 return -EINVAL;
345}
346
347int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
348{
349 return -EINVAL;
350}
351
352int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
353{
354 return -EINVAL;
355}
356
f88e0c8a
MH
357static u32 find_phys_blocks(struct page **pages, unsigned npages,
358 struct tid_pageset *list)
359{
360 unsigned pagecount, pageidx, setcount = 0, i;
361 unsigned long pfn, this_pfn;
362
363 if (!npages)
364 return 0;
365
366 /*
367 * Look for sets of physically contiguous pages in the user buffer.
368 * This will allow us to optimize Expected RcvArray entry usage by
369 * using the bigger supported sizes.
370 */
371 pfn = page_to_pfn(pages[0]);
372 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
373 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
374
375 /*
376 * If the pfn's are not sequential, pages are not physically
377 * contiguous.
378 */
379 if (this_pfn != ++pfn) {
380 /*
381 * At this point we have to loop over the set of
382 * physically contiguous pages and break them down it
383 * sizes supported by the HW.
384 * There are two main constraints:
385 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
386 * If the total set size is bigger than that
387 * program only a MAX_EXPECTED_BUFFER chunk.
388 * 2. The buffer size has to be a power of two. If
389 * it is not, round down to the closes power of
390 * 2 and program that size.
391 */
392 while (pagecount) {
393 int maxpages = pagecount;
394 u32 bufsize = pagecount * PAGE_SIZE;
395
396 if (bufsize > MAX_EXPECTED_BUFFER)
397 maxpages =
398 MAX_EXPECTED_BUFFER >>
399 PAGE_SHIFT;
400 else if (!is_power_of_2(bufsize))
401 maxpages =
402 rounddown_pow_of_two(bufsize) >>
403 PAGE_SHIFT;
404
405 list[setcount].idx = pageidx;
406 list[setcount].count = maxpages;
407 pagecount -= maxpages;
408 pageidx += maxpages;
409 setcount++;
410 }
411 pageidx = i;
412 pagecount = 1;
413 pfn = this_pfn;
414 } else {
415 pagecount++;
416 }
417 }
418 return setcount;
419}
420
421/**
422 * program_rcvarray() - program an RcvArray group with receive buffers
423 * @fp: file pointer
424 * @vaddr: starting user virtual address
425 * @grp: RcvArray group
426 * @sets: array of struct tid_pageset holding information on physically
427 * contiguous chunks from the user buffer
428 * @start: starting index into sets array
429 * @count: number of struct tid_pageset's to program
430 * @pages: an array of struct page * for the user buffer
431 * @tidlist: the array of u32 elements when the information about the
432 * programmed RcvArray entries is to be encoded.
433 * @tididx: starting offset into tidlist
434 * @pmapped: (output parameter) number of pages programmed into the RcvArray
435 * entries.
436 *
437 * This function will program up to 'count' number of RcvArray entries from the
438 * group 'grp'. To make best use of write-combining writes, the function will
439 * perform writes to the unused RcvArray entries which will be ignored by the
440 * HW. Each RcvArray entry will be programmed with a physically contiguous
441 * buffer chunk from the user's virtual buffer.
442 *
443 * Return:
444 * -EINVAL if the requested count is larger than the size of the group,
445 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
446 * number of RcvArray entries programmed.
447 */
448static int program_rcvarray(struct file *fp, unsigned long vaddr,
449 struct tid_group *grp,
450 struct tid_pageset *sets,
451 unsigned start, u16 count, struct page **pages,
452 u32 *tidlist, unsigned *tididx, unsigned *pmapped)
453{
454 struct hfi1_filedata *fd = fp->private_data;
455 struct hfi1_ctxtdata *uctxt = fd->uctxt;
456 struct hfi1_devdata *dd = uctxt->dd;
457 u16 idx;
458 u32 tidinfo = 0, rcventry, useidx = 0;
459 int mapped = 0;
460
461 /* Count should never be larger than the group size */
462 if (count > grp->size)
463 return -EINVAL;
464
465 /* Find the first unused entry in the group */
466 for (idx = 0; idx < grp->size; idx++) {
467 if (!(grp->map & (1 << idx))) {
468 useidx = idx;
469 break;
470 }
471 rcv_array_wc_fill(dd, grp->base + idx);
472 }
473
474 idx = 0;
475 while (idx < count) {
476 u16 npages, pageidx, setidx = start + idx;
477 int ret = 0;
478
479 /*
480 * If this entry in the group is used, move to the next one.
481 * If we go past the end of the group, exit the loop.
482 */
483 if (useidx >= grp->size) {
484 break;
485 } else if (grp->map & (1 << useidx)) {
486 rcv_array_wc_fill(dd, grp->base + useidx);
487 useidx++;
488 continue;
489 }
490
491 rcventry = grp->base + useidx;
492 npages = sets[setidx].count;
493 pageidx = sets[setidx].idx;
494
495 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
496 rcventry, grp, pages + pageidx,
497 npages);
498 if (ret)
499 return ret;
500 mapped += npages;
501
502 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
503 EXP_TID_SET(LEN, npages);
504 tidlist[(*tididx)++] = tidinfo;
505 grp->used++;
506 grp->map |= 1 << useidx++;
507 idx++;
508 }
509
510 /* Fill the rest of the group with "blank" writes */
511 for (; useidx < grp->size; useidx++)
512 rcv_array_wc_fill(dd, grp->base + useidx);
513 *pmapped = mapped;
514 return idx;
515}
516
517static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
518 u32 rcventry, struct tid_group *grp,
519 struct page **pages, unsigned npages)
520{
521 int ret;
522 struct hfi1_filedata *fd = fp->private_data;
523 struct hfi1_ctxtdata *uctxt = fd->uctxt;
524 struct mmu_rb_node *node;
525 struct hfi1_devdata *dd = uctxt->dd;
526 struct rb_root *root = &fd->tid_rb_root;
527 dma_addr_t phys;
528
529 /*
530 * Allocate the node first so we can handle a potential
531 * failure before we've programmed anything.
532 */
533 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
534 GFP_KERNEL);
535 if (!node)
536 return -ENOMEM;
537
538 phys = pci_map_single(dd->pcidev,
539 __va(page_to_phys(pages[0])),
540 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
541 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
542 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
543 phys);
544 kfree(node);
545 return -EFAULT;
546 }
547
548 node->virt = vaddr;
549 node->phys = page_to_phys(pages[0]);
550 node->len = npages * PAGE_SIZE;
551 node->npages = npages;
552 node->rcventry = rcventry;
553 node->dma_addr = phys;
554 node->grp = grp;
555 node->freed = false;
556 memcpy(node->pages, pages, sizeof(struct page *) * npages);
557
558 spin_lock(&fd->rb_lock);
559 ret = fd->mmu_rb_insert(root, node);
560 spin_unlock(&fd->rb_lock);
561
562 if (ret) {
563 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
564 node->rcventry, node->virt, node->phys, ret);
565 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
566 PCI_DMA_FROMDEVICE);
567 kfree(node);
568 return -EFAULT;
569 }
570 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
571 return 0;
572}
573
574static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
575 struct tid_group **grp)
576{
577 struct hfi1_filedata *fd = fp->private_data;
578 struct hfi1_ctxtdata *uctxt = fd->uctxt;
579 struct hfi1_devdata *dd = uctxt->dd;
580 struct mmu_rb_node *node;
581 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
582 u32 tidbase = uctxt->expected_base,
583 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
584
585 if (tididx >= uctxt->expected_count) {
586 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
587 tididx, uctxt->ctxt);
588 return -EINVAL;
589 }
590
591 if (tidctrl == 0x3)
592 return -EINVAL;
593
594 rcventry = tidbase + tididx + (tidctrl - 1);
595
596 spin_lock(&fd->rb_lock);
597 node = mmu_rb_search_by_entry(&fd->tid_rb_root, rcventry);
598 if (!node) {
599 spin_unlock(&fd->rb_lock);
600 return -EBADF;
601 }
602 rb_erase(&node->rbnode, &fd->tid_rb_root);
603 spin_unlock(&fd->rb_lock);
604 if (grp)
605 *grp = node->grp;
606 clear_tid_node(fd, fd->subctxt, node);
607 return 0;
608}
609
610static void clear_tid_node(struct hfi1_filedata *fd, u16 subctxt,
611 struct mmu_rb_node *node)
612{
613 struct hfi1_ctxtdata *uctxt = fd->uctxt;
614 struct hfi1_devdata *dd = uctxt->dd;
615
616 hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
617 /*
618 * Make sure device has seen the write before we unpin the
619 * pages.
620 */
621 flush_wc();
622
623 pci_unmap_single(dd->pcidev, node->dma_addr, node->len,
624 PCI_DMA_FROMDEVICE);
625 hfi1_release_user_pages(node->pages, node->npages, true);
626
627 node->grp->used--;
628 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
629
630 if (node->grp->used == node->grp->size - 1)
631 tid_group_move(node->grp, &uctxt->tid_full_list,
632 &uctxt->tid_used_list);
633 else if (!node->grp->used)
634 tid_group_move(node->grp, &uctxt->tid_used_list,
635 &uctxt->tid_group_list);
636 kfree(node);
637}
638
639static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
640 struct exp_tid_set *set, struct rb_root *root)
641{
642 struct tid_group *grp, *ptr;
643 struct hfi1_filedata *fd = container_of(root, struct hfi1_filedata,
644 tid_rb_root);
645 int i;
646
647 list_for_each_entry_safe(grp, ptr, &set->list, list) {
648 list_del_init(&grp->list);
649
650 spin_lock(&fd->rb_lock);
651 for (i = 0; i < grp->size; i++) {
652 if (grp->map & (1 << i)) {
653 u16 rcventry = grp->base + i;
654 struct mmu_rb_node *node;
655
656 node = mmu_rb_search_by_entry(root, rcventry);
657 if (!node)
658 continue;
659 rb_erase(&node->rbnode, root);
660 clear_tid_node(fd, -1, node);
661 }
662 }
663 spin_unlock(&fd->rb_lock);
664 }
665}
666
f727a0c3
MH
667static inline void mmu_notifier_page(struct mmu_notifier *mn,
668 struct mm_struct *mm, unsigned long addr)
669{
670 mmu_notifier_mem_invalidate(mn, addr, addr + PAGE_SIZE,
671 MMU_INVALIDATE_PAGE);
672}
673
674static inline void mmu_notifier_range_start(struct mmu_notifier *mn,
675 struct mm_struct *mm,
676 unsigned long start,
677 unsigned long end)
678{
679 mmu_notifier_mem_invalidate(mn, start, end, MMU_INVALIDATE_RANGE);
680}
681
682static void mmu_notifier_mem_invalidate(struct mmu_notifier *mn,
683 unsigned long start, unsigned long end,
684 enum mmu_call_types type)
685{
b5eb3b2f
MH
686 struct hfi1_filedata *fd = container_of(mn, struct hfi1_filedata, mn);
687 struct hfi1_ctxtdata *uctxt = fd->uctxt;
688 struct rb_root *root = &fd->tid_rb_root;
689 struct mmu_rb_node *node;
690 unsigned long addr = start;
691
692 spin_lock(&fd->rb_lock);
693 while (addr < end) {
694 node = mmu_rb_search_by_addr(root, addr);
695
696 if (!node) {
697 /*
698 * Didn't find a node at this address. However, the
699 * range could be bigger than what we have registered
700 * so we have to keep looking.
701 */
702 addr += PAGE_SIZE;
703 continue;
704 }
705
706 /*
707 * The next address to be looked up is computed based
708 * on the node's starting address. This is due to the
709 * fact that the range where we start might be in the
710 * middle of the node's buffer so simply incrementing
711 * the address by the node's size would result is a
712 * bad address.
713 */
714 addr = node->virt + (node->npages * PAGE_SIZE);
715 if (node->freed)
716 continue;
717
718 node->freed = true;
719
720 spin_lock(&fd->invalid_lock);
721 if (fd->invalid_tid_idx < uctxt->expected_count) {
722 fd->invalid_tids[fd->invalid_tid_idx] =
723 rcventry2tidinfo(node->rcventry -
724 uctxt->expected_base);
725 fd->invalid_tids[fd->invalid_tid_idx] |=
726 EXP_TID_SET(LEN, node->npages);
727 if (!fd->invalid_tid_idx) {
728 unsigned long *ev;
729
730 /*
731 * hfi1_set_uevent_bits() sets a user event flag
732 * for all processes. Because calling into the
733 * driver to process TID cache invalidations is
734 * expensive and TID cache invalidations are
735 * handled on a per-process basis, we can
736 * optimize this to set the flag only for the
737 * process in question.
738 */
739 ev = uctxt->dd->events +
740 (((uctxt->ctxt -
741 uctxt->dd->first_user_ctxt) *
742 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
743 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
744 }
745 fd->invalid_tid_idx++;
746 }
747 spin_unlock(&fd->invalid_lock);
748 }
749 spin_unlock(&fd->rb_lock);
f727a0c3
MH
750}
751
752static inline int mmu_addr_cmp(struct mmu_rb_node *node, unsigned long addr,
753 unsigned long len)
754{
755 if ((addr + len) <= node->virt)
756 return -1;
757 else if (addr >= node->virt && addr < (node->virt + node->len))
758 return 0;
759 else
760 return 1;
761}
762
763static inline int mmu_entry_cmp(struct mmu_rb_node *node, u32 entry)
764{
765 if (entry < node->rcventry)
766 return -1;
767 else if (entry > node->rcventry)
768 return 1;
769 else
770 return 0;
771}
772
773static struct mmu_rb_node *mmu_rb_search_by_addr(struct rb_root *root,
774 unsigned long addr)
775{
776 struct rb_node *node = root->rb_node;
777
778 while (node) {
779 struct mmu_rb_node *mnode =
780 container_of(node, struct mmu_rb_node, rbnode);
781 /*
782 * When searching, use at least one page length for size. The
783 * MMU notifier will not give us anything less than that. We
784 * also don't need anything more than a page because we are
785 * guaranteed to have non-overlapping buffers in the tree.
786 */
787 int result = mmu_addr_cmp(mnode, addr, PAGE_SIZE);
788
789 if (result < 0)
790 node = node->rb_left;
791 else if (result > 0)
792 node = node->rb_right;
793 else
794 return mnode;
795 }
796 return NULL;
797}
798
799static inline struct mmu_rb_node *mmu_rb_search_by_entry(struct rb_root *root,
800 u32 index)
801{
802 struct mmu_rb_node *rbnode;
803 struct rb_node *node;
804
805 if (root && !RB_EMPTY_ROOT(root))
806 for (node = rb_first(root); node; node = rb_next(node)) {
807 rbnode = rb_entry(node, struct mmu_rb_node, rbnode);
808 if (rbnode->rcventry == index)
809 return rbnode;
810 }
811 return NULL;
812}
813
814static int mmu_rb_insert_by_entry(struct rb_root *root,
815 struct mmu_rb_node *node)
816{
817 struct rb_node **new = &root->rb_node, *parent = NULL;
818
819 while (*new) {
820 struct mmu_rb_node *this =
821 container_of(*new, struct mmu_rb_node, rbnode);
822 int result = mmu_entry_cmp(this, node->rcventry);
823
824 parent = *new;
825 if (result < 0)
826 new = &((*new)->rb_left);
827 else if (result > 0)
828 new = &((*new)->rb_right);
829 else
830 return 1;
831 }
832
833 rb_link_node(&node->rbnode, parent, new);
834 rb_insert_color(&node->rbnode, root);
835 return 0;
836}
837
838static int mmu_rb_insert_by_addr(struct rb_root *root, struct mmu_rb_node *node)
839{
840 struct rb_node **new = &root->rb_node, *parent = NULL;
841
842 /* Figure out where to put new node */
843 while (*new) {
844 struct mmu_rb_node *this =
845 container_of(*new, struct mmu_rb_node, rbnode);
846 int result = mmu_addr_cmp(this, node->virt, node->len);
847
848 parent = *new;
849 if (result < 0)
850 new = &((*new)->rb_left);
851 else if (result > 0)
852 new = &((*new)->rb_right);
853 else
854 return 1;
855 }
856
857 /* Add new node and rebalance tree. */
858 rb_link_node(&node->rbnode, parent, new);
859 rb_insert_color(&node->rbnode, root);
860
861 return 0;
862}
This page took 0.05645 seconds and 5 git commands to generate.