staging/rdma/hfi1: Remove else after break
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / user_exp_rcv.c
CommitLineData
f727a0c3
MH
1/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
a92ba6d6 8 * Copyright(c) 2015, 2016 Intel Corporation.
f727a0c3
MH
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
a92ba6d6 21 * Copyright(c) 2015, 2016 Intel Corporation.
f727a0c3
MH
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50#include <asm/page.h>
51
52#include "user_exp_rcv.h"
53#include "trace.h"
54
b8abe346
MH
55struct tid_group {
56 struct list_head list;
57 unsigned base;
58 u8 size;
59 u8 used;
60 u8 map;
61};
62
f727a0c3
MH
63struct mmu_rb_node {
64 struct rb_node rbnode;
65 unsigned long virt;
66 unsigned long phys;
67 unsigned long len;
68 struct tid_group *grp;
69 u32 rcventry;
70 dma_addr_t dma_addr;
71 bool freed;
72 unsigned npages;
73 struct page *pages[0];
74};
75
76enum mmu_call_types {
77 MMU_INVALIDATE_PAGE = 0,
78 MMU_INVALIDATE_RANGE = 1
79};
80
81static const char * const mmu_types[] = {
82 "PAGE",
83 "RANGE"
84};
85
f88e0c8a
MH
86struct tid_pageset {
87 u16 idx;
88 u16 count;
89};
90
b8abe346
MH
91#define EXP_TID_SET_EMPTY(set) (set.count == 0 && list_empty(&set.list))
92
3abb33ac
MH
93#define num_user_pages(vaddr, len) \
94 (1 + (((((unsigned long)(vaddr) + \
95 (unsigned long)(len) - 1) & PAGE_MASK) - \
96 ((unsigned long)vaddr & PAGE_MASK)) >> PAGE_SHIFT))
97
f88e0c8a 98static void unlock_exp_tids(struct hfi1_ctxtdata *, struct exp_tid_set *,
3abb33ac 99 struct rb_root *);
7e7a436e 100static u32 find_phys_blocks(struct page **, unsigned, struct tid_pageset *);
f88e0c8a 101static int set_rcvarray_entry(struct file *, unsigned long, u32,
3abb33ac 102 struct tid_group *, struct page **, unsigned);
f727a0c3
MH
103static inline int mmu_addr_cmp(struct mmu_rb_node *, unsigned long,
104 unsigned long);
a92ba6d6
MH
105static struct mmu_rb_node *mmu_rb_search(struct rb_root *, unsigned long);
106static int mmu_rb_insert_by_addr(struct hfi1_filedata *, struct rb_root *,
107 struct mmu_rb_node *);
108static int mmu_rb_insert_by_entry(struct hfi1_filedata *, struct rb_root *,
109 struct mmu_rb_node *);
110static void mmu_rb_remove_by_addr(struct hfi1_filedata *, struct rb_root *,
111 struct mmu_rb_node *);
112static void mmu_rb_remove_by_entry(struct hfi1_filedata *, struct rb_root *,
113 struct mmu_rb_node *);
f727a0c3
MH
114static void mmu_notifier_mem_invalidate(struct mmu_notifier *,
115 unsigned long, unsigned long,
116 enum mmu_call_types);
117static inline void mmu_notifier_page(struct mmu_notifier *, struct mm_struct *,
118 unsigned long);
119static inline void mmu_notifier_range_start(struct mmu_notifier *,
120 struct mm_struct *,
121 unsigned long, unsigned long);
f88e0c8a
MH
122static int program_rcvarray(struct file *, unsigned long, struct tid_group *,
123 struct tid_pageset *, unsigned, u16, struct page **,
7e7a436e 124 u32 *, unsigned *, unsigned *);
455d7f1a
MH
125static int unprogram_rcvarray(struct file *, u32, struct tid_group **);
126static void clear_tid_node(struct hfi1_filedata *, u16, struct mmu_rb_node *);
f88e0c8a
MH
127
128static inline u32 rcventry2tidinfo(u32 rcventry)
129{
130 u32 pair = rcventry & ~0x1;
131
132 return EXP_TID_SET(IDX, pair >> 1) |
133 EXP_TID_SET(CTRL, 1 << (rcventry - pair));
134}
f727a0c3 135
b8abe346
MH
136static inline void exp_tid_group_init(struct exp_tid_set *set)
137{
138 INIT_LIST_HEAD(&set->list);
139 set->count = 0;
140}
141
142static inline void tid_group_remove(struct tid_group *grp,
143 struct exp_tid_set *set)
144{
145 list_del_init(&grp->list);
146 set->count--;
147}
148
149static inline void tid_group_add_tail(struct tid_group *grp,
150 struct exp_tid_set *set)
151{
152 list_add_tail(&grp->list, &set->list);
153 set->count++;
154}
155
156static inline struct tid_group *tid_group_pop(struct exp_tid_set *set)
157{
158 struct tid_group *grp =
159 list_first_entry(&set->list, struct tid_group, list);
160 list_del_init(&grp->list);
161 set->count--;
162 return grp;
163}
164
165static inline void tid_group_move(struct tid_group *group,
166 struct exp_tid_set *s1,
167 struct exp_tid_set *s2)
168{
169 tid_group_remove(group, s1);
170 tid_group_add_tail(group, s2);
171}
172
3abb33ac 173static struct mmu_notifier_ops mn_opts = {
f727a0c3
MH
174 .invalidate_page = mmu_notifier_page,
175 .invalidate_range_start = mmu_notifier_range_start,
176};
177
178/*
179 * Initialize context and file private data needed for Expected
180 * receive caching. This needs to be done after the context has
181 * been configured with the eager/expected RcvEntry counts.
182 */
183int hfi1_user_exp_rcv_init(struct file *fp)
184{
3abb33ac
MH
185 struct hfi1_filedata *fd = fp->private_data;
186 struct hfi1_ctxtdata *uctxt = fd->uctxt;
187 struct hfi1_devdata *dd = uctxt->dd;
188 unsigned tidbase;
189 int i, ret = 0;
190
191 INIT_HLIST_NODE(&fd->mn.hlist);
192 spin_lock_init(&fd->rb_lock);
193 spin_lock_init(&fd->tid_lock);
194 spin_lock_init(&fd->invalid_lock);
195 fd->mn.ops = &mn_opts;
196 fd->tid_rb_root = RB_ROOT;
197
198 if (!uctxt->subctxt_cnt || !fd->subctxt) {
199 exp_tid_group_init(&uctxt->tid_group_list);
200 exp_tid_group_init(&uctxt->tid_used_list);
201 exp_tid_group_init(&uctxt->tid_full_list);
202
203 tidbase = uctxt->expected_base;
204 for (i = 0; i < uctxt->expected_count /
205 dd->rcv_entries.group_size; i++) {
206 struct tid_group *grp;
207
208 grp = kzalloc(sizeof(*grp), GFP_KERNEL);
209 if (!grp) {
210 /*
211 * If we fail here, the groups already
212 * allocated will be freed by the close
213 * call.
214 */
215 ret = -ENOMEM;
216 goto done;
217 }
218 grp->size = dd->rcv_entries.group_size;
219 grp->base = tidbase;
220 tid_group_add_tail(grp, &uctxt->tid_group_list);
221 tidbase += dd->rcv_entries.group_size;
222 }
223 }
224
a92ba6d6
MH
225 fd->entry_to_rb = kcalloc(uctxt->expected_count,
226 sizeof(struct rb_node *),
227 GFP_KERNEL);
228 if (!fd->entry_to_rb)
229 return -ENOMEM;
230
3abb33ac
MH
231 if (!HFI1_CAP_IS_USET(TID_UNMAP)) {
232 fd->invalid_tid_idx = 0;
233 fd->invalid_tids = kzalloc(uctxt->expected_count *
234 sizeof(u32), GFP_KERNEL);
235 if (!fd->invalid_tids) {
236 ret = -ENOMEM;
237 goto done;
a92ba6d6
MH
238 }
239
240 /*
241 * Register MMU notifier callbacks. If the registration
242 * fails, continue but turn off the TID caching for
243 * all user contexts.
244 */
245 ret = mmu_notifier_register(&fd->mn, current->mm);
246 if (ret) {
247 dd_dev_info(dd,
248 "Failed MMU notifier registration %d\n",
249 ret);
250 HFI1_CAP_USET(TID_UNMAP);
251 ret = 0;
3abb33ac
MH
252 }
253 }
254
a92ba6d6 255 if (HFI1_CAP_IS_USET(TID_UNMAP)) {
3abb33ac 256 fd->mmu_rb_insert = mmu_rb_insert_by_entry;
a92ba6d6
MH
257 fd->mmu_rb_remove = mmu_rb_remove_by_entry;
258 } else {
3abb33ac 259 fd->mmu_rb_insert = mmu_rb_insert_by_addr;
a92ba6d6
MH
260 fd->mmu_rb_remove = mmu_rb_remove_by_addr;
261 }
3abb33ac
MH
262
263 /*
264 * PSM does not have a good way to separate, count, and
265 * effectively enforce a limit on RcvArray entries used by
266 * subctxts (when context sharing is used) when TID caching
267 * is enabled. To help with that, we calculate a per-process
268 * RcvArray entry share and enforce that.
269 * If TID caching is not in use, PSM deals with usage on its
270 * own. In that case, we allow any subctxt to take all of the
271 * entries.
272 *
273 * Make sure that we set the tid counts only after successful
274 * init.
275 */
455d7f1a 276 spin_lock(&fd->tid_lock);
3abb33ac
MH
277 if (uctxt->subctxt_cnt && !HFI1_CAP_IS_USET(TID_UNMAP)) {
278 u16 remainder;
279
280 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
281 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
282 if (remainder && fd->subctxt < remainder)
283 fd->tid_limit++;
284 } else {
285 fd->tid_limit = uctxt->expected_count;
286 }
455d7f1a 287 spin_unlock(&fd->tid_lock);
3abb33ac
MH
288done:
289 return ret;
f727a0c3
MH
290}
291
292int hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
293{
3abb33ac
MH
294 struct hfi1_ctxtdata *uctxt = fd->uctxt;
295 struct tid_group *grp, *gptr;
296
297 /*
298 * The notifier would have been removed when the process'es mm
299 * was freed.
300 */
301 if (current->mm && !HFI1_CAP_IS_USET(TID_UNMAP))
302 mmu_notifier_unregister(&fd->mn, current->mm);
303
304 kfree(fd->invalid_tids);
305
306 if (!uctxt->cnt) {
307 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
308 unlock_exp_tids(uctxt, &uctxt->tid_full_list,
309 &fd->tid_rb_root);
310 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
311 unlock_exp_tids(uctxt, &uctxt->tid_used_list,
312 &fd->tid_rb_root);
313 list_for_each_entry_safe(grp, gptr, &uctxt->tid_group_list.list,
314 list) {
315 list_del_init(&grp->list);
316 kfree(grp);
317 }
318 spin_lock(&fd->rb_lock);
319 if (!RB_EMPTY_ROOT(&fd->tid_rb_root)) {
320 struct rb_node *node;
321 struct mmu_rb_node *rbnode;
322
323 while ((node = rb_first(&fd->tid_rb_root))) {
324 rbnode = rb_entry(node, struct mmu_rb_node,
325 rbnode);
326 rb_erase(&rbnode->rbnode, &fd->tid_rb_root);
327 kfree(rbnode);
328 }
329 }
330 spin_unlock(&fd->rb_lock);
331 hfi1_clear_tids(uctxt);
332 }
a92ba6d6
MH
333
334 kfree(fd->entry_to_rb);
3abb33ac 335 return 0;
f727a0c3
MH
336}
337
b8abe346
MH
338/*
339 * Write an "empty" RcvArray entry.
340 * This function exists so the TID registaration code can use it
341 * to write to unused/unneeded entries and still take advantage
342 * of the WC performance improvements. The HFI will ignore this
343 * write to the RcvArray entry.
344 */
345static inline void rcv_array_wc_fill(struct hfi1_devdata *dd, u32 index)
346{
347 /*
348 * Doing the WC fill writes only makes sense if the device is
349 * present and the RcvArray has been mapped as WC memory.
350 */
351 if ((dd->flags & HFI1_PRESENT) && dd->rcvarray_wc)
352 writeq(0, dd->rcvarray_wc + (index * 8));
353}
354
7e7a436e
MH
355/*
356 * RcvArray entry allocation for Expected Receives is done by the
357 * following algorithm:
358 *
359 * The context keeps 3 lists of groups of RcvArray entries:
360 * 1. List of empty groups - tid_group_list
361 * This list is created during user context creation and
362 * contains elements which describe sets (of 8) of empty
363 * RcvArray entries.
364 * 2. List of partially used groups - tid_used_list
365 * This list contains sets of RcvArray entries which are
366 * not completely used up. Another mapping request could
367 * use some of all of the remaining entries.
368 * 3. List of full groups - tid_full_list
369 * This is the list where sets that are completely used
370 * up go.
371 *
372 * An attempt to optimize the usage of RcvArray entries is
373 * made by finding all sets of physically contiguous pages in a
374 * user's buffer.
375 * These physically contiguous sets are further split into
376 * sizes supported by the receive engine of the HFI. The
377 * resulting sets of pages are stored in struct tid_pageset,
378 * which describes the sets as:
379 * * .count - number of pages in this set
380 * * .idx - starting index into struct page ** array
381 * of this set
382 *
383 * From this point on, the algorithm deals with the page sets
384 * described above. The number of pagesets is divided by the
385 * RcvArray group size to produce the number of full groups
386 * needed.
387 *
388 * Groups from the 3 lists are manipulated using the following
389 * rules:
390 * 1. For each set of 8 pagesets, a complete group from
391 * tid_group_list is taken, programmed, and moved to
392 * the tid_full_list list.
393 * 2. For all remaining pagesets:
394 * 2.1 If the tid_used_list is empty and the tid_group_list
395 * is empty, stop processing pageset and return only
396 * what has been programmed up to this point.
397 * 2.2 If the tid_used_list is empty and the tid_group_list
398 * is not empty, move a group from tid_group_list to
399 * tid_used_list.
400 * 2.3 For each group is tid_used_group, program as much as
401 * can fit into the group. If the group becomes fully
402 * used, move it to tid_full_list.
403 */
f727a0c3
MH
404int hfi1_user_exp_rcv_setup(struct file *fp, struct hfi1_tid_info *tinfo)
405{
7e7a436e
MH
406 int ret = 0, need_group = 0, pinned;
407 struct hfi1_filedata *fd = fp->private_data;
408 struct hfi1_ctxtdata *uctxt = fd->uctxt;
409 struct hfi1_devdata *dd = uctxt->dd;
410 unsigned npages, ngroups, pageidx = 0, pageset_count, npagesets,
411 tididx = 0, mapped, mapped_pages = 0;
412 unsigned long vaddr = tinfo->vaddr;
413 struct page **pages = NULL;
414 u32 *tidlist = NULL;
415 struct tid_pageset *pagesets = NULL;
416
417 /* Get the number of pages the user buffer spans */
418 npages = num_user_pages(vaddr, tinfo->length);
419 if (!npages)
420 return -EINVAL;
421
422 if (npages > uctxt->expected_count) {
423 dd_dev_err(dd, "Expected buffer too big\n");
424 return -EINVAL;
425 }
426
427 /* Verify that access is OK for the user buffer */
428 if (!access_ok(VERIFY_WRITE, (void __user *)vaddr,
429 npages * PAGE_SIZE)) {
430 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
431 (void *)vaddr, npages);
432 return -EFAULT;
433 }
434
435 pagesets = kcalloc(uctxt->expected_count, sizeof(*pagesets),
436 GFP_KERNEL);
437 if (!pagesets)
438 return -ENOMEM;
439
440 /* Allocate the array of struct page pointers needed for pinning */
441 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
442 if (!pages) {
443 ret = -ENOMEM;
444 goto bail;
445 }
446
447 /*
448 * Pin all the pages of the user buffer. If we can't pin all the
449 * pages, accept the amount pinned so far and program only that.
450 * User space knows how to deal with partially programmed buffers.
451 */
452 pinned = hfi1_acquire_user_pages(vaddr, npages, true, pages);
453 if (pinned <= 0) {
454 ret = pinned;
455 goto bail;
456 }
457
458 /* Find sets of physically contiguous pages */
459 npagesets = find_phys_blocks(pages, pinned, pagesets);
460
461 /*
462 * We don't need to access this under a lock since tid_used is per
463 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
464 * and hfi1_user_exp_rcv_setup() at the same time.
465 */
466 spin_lock(&fd->tid_lock);
467 if (fd->tid_used + npagesets > fd->tid_limit)
468 pageset_count = fd->tid_limit - fd->tid_used;
469 else
470 pageset_count = npagesets;
471 spin_unlock(&fd->tid_lock);
472
473 if (!pageset_count)
474 goto bail;
475
476 ngroups = pageset_count / dd->rcv_entries.group_size;
477 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
478 if (!tidlist) {
479 ret = -ENOMEM;
480 goto nomem;
481 }
482
483 tididx = 0;
484
485 /*
486 * From this point on, we are going to be using shared (between master
487 * and subcontexts) context resources. We need to take the lock.
488 */
489 mutex_lock(&uctxt->exp_lock);
490 /*
491 * The first step is to program the RcvArray entries which are complete
492 * groups.
493 */
494 while (ngroups && uctxt->tid_group_list.count) {
495 struct tid_group *grp =
496 tid_group_pop(&uctxt->tid_group_list);
497
498 ret = program_rcvarray(fp, vaddr, grp, pagesets,
499 pageidx, dd->rcv_entries.group_size,
500 pages, tidlist, &tididx, &mapped);
501 /*
502 * If there was a failure to program the RcvArray
503 * entries for the entire group, reset the grp fields
504 * and add the grp back to the free group list.
505 */
506 if (ret <= 0) {
507 tid_group_add_tail(grp, &uctxt->tid_group_list);
508 hfi1_cdbg(TID,
509 "Failed to program RcvArray group %d", ret);
510 goto unlock;
511 }
512
513 tid_group_add_tail(grp, &uctxt->tid_full_list);
514 ngroups--;
515 pageidx += ret;
516 mapped_pages += mapped;
517 }
518
519 while (pageidx < pageset_count) {
520 struct tid_group *grp, *ptr;
521 /*
522 * If we don't have any partially used tid groups, check
523 * if we have empty groups. If so, take one from there and
524 * put in the partially used list.
525 */
526 if (!uctxt->tid_used_list.count || need_group) {
527 if (!uctxt->tid_group_list.count)
528 goto unlock;
529
530 grp = tid_group_pop(&uctxt->tid_group_list);
531 tid_group_add_tail(grp, &uctxt->tid_used_list);
532 need_group = 0;
533 }
534 /*
535 * There is an optimization opportunity here - instead of
536 * fitting as many page sets as we can, check for a group
537 * later on in the list that could fit all of them.
538 */
539 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
540 list) {
541 unsigned use = min_t(unsigned, pageset_count - pageidx,
542 grp->size - grp->used);
543
544 ret = program_rcvarray(fp, vaddr, grp, pagesets,
545 pageidx, use, pages, tidlist,
546 &tididx, &mapped);
547 if (ret < 0) {
548 hfi1_cdbg(TID,
549 "Failed to program RcvArray entries %d",
550 ret);
551 ret = -EFAULT;
552 goto unlock;
553 } else if (ret > 0) {
554 if (grp->used == grp->size)
555 tid_group_move(grp,
556 &uctxt->tid_used_list,
557 &uctxt->tid_full_list);
558 pageidx += ret;
559 mapped_pages += mapped;
560 need_group = 0;
561 /* Check if we are done so we break out early */
562 if (pageidx >= pageset_count)
563 break;
564 } else if (WARN_ON(ret == 0)) {
565 /*
566 * If ret is 0, we did not program any entries
567 * into this group, which can only happen if
568 * we've screwed up the accounting somewhere.
569 * Warn and try to continue.
570 */
571 need_group = 1;
572 }
573 }
574 }
575unlock:
576 mutex_unlock(&uctxt->exp_lock);
577nomem:
578 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
579 mapped_pages, ret);
580 if (tididx) {
581 spin_lock(&fd->tid_lock);
582 fd->tid_used += tididx;
583 spin_unlock(&fd->tid_lock);
584 tinfo->tidcnt = tididx;
585 tinfo->length = mapped_pages * PAGE_SIZE;
586
587 if (copy_to_user((void __user *)(unsigned long)tinfo->tidlist,
588 tidlist, sizeof(tidlist[0]) * tididx)) {
589 /*
590 * On failure to copy to the user level, we need to undo
591 * everything done so far so we don't leak resources.
592 */
593 tinfo->tidlist = (unsigned long)&tidlist;
594 hfi1_user_exp_rcv_clear(fp, tinfo);
595 tinfo->tidlist = 0;
596 ret = -EFAULT;
597 goto bail;
598 }
599 }
600
601 /*
602 * If not everything was mapped (due to insufficient RcvArray entries,
603 * for example), unpin all unmapped pages so we can pin them nex time.
604 */
605 if (mapped_pages != pinned)
606 hfi1_release_user_pages(&pages[mapped_pages],
607 pinned - mapped_pages,
608 false);
609bail:
610 kfree(pagesets);
611 kfree(pages);
612 kfree(tidlist);
613 return ret > 0 ? 0 : ret;
f727a0c3
MH
614}
615
616int hfi1_user_exp_rcv_clear(struct file *fp, struct hfi1_tid_info *tinfo)
617{
455d7f1a
MH
618 int ret = 0;
619 struct hfi1_filedata *fd = fp->private_data;
620 struct hfi1_ctxtdata *uctxt = fd->uctxt;
621 u32 *tidinfo;
622 unsigned tididx;
623
624 tidinfo = kcalloc(tinfo->tidcnt, sizeof(*tidinfo), GFP_KERNEL);
625 if (!tidinfo)
626 return -ENOMEM;
627
628 if (copy_from_user(tidinfo, (void __user *)(unsigned long)
629 tinfo->tidlist, sizeof(tidinfo[0]) *
630 tinfo->tidcnt)) {
631 ret = -EFAULT;
632 goto done;
633 }
634
635 mutex_lock(&uctxt->exp_lock);
636 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
637 ret = unprogram_rcvarray(fp, tidinfo[tididx], NULL);
638 if (ret) {
639 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
640 ret);
641 break;
642 }
643 }
644 spin_lock(&fd->tid_lock);
645 fd->tid_used -= tididx;
646 spin_unlock(&fd->tid_lock);
647 tinfo->tidcnt = tididx;
648 mutex_unlock(&uctxt->exp_lock);
649done:
650 kfree(tidinfo);
651 return ret;
f727a0c3
MH
652}
653
654int hfi1_user_exp_rcv_invalid(struct file *fp, struct hfi1_tid_info *tinfo)
655{
455d7f1a
MH
656 struct hfi1_filedata *fd = fp->private_data;
657 struct hfi1_ctxtdata *uctxt = fd->uctxt;
658 unsigned long *ev = uctxt->dd->events +
659 (((uctxt->ctxt - uctxt->dd->first_user_ctxt) *
660 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
661 u32 *array;
662 int ret = 0;
663
664 if (!fd->invalid_tids)
665 return -EINVAL;
666
667 /*
668 * copy_to_user() can sleep, which will leave the invalid_lock
669 * locked and cause the MMU notifier to be blocked on the lock
670 * for a long time.
671 * Copy the data to a local buffer so we can release the lock.
672 */
673 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
674 if (!array)
675 return -EFAULT;
676
677 spin_lock(&fd->invalid_lock);
678 if (fd->invalid_tid_idx) {
679 memcpy(array, fd->invalid_tids, sizeof(*array) *
680 fd->invalid_tid_idx);
681 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
682 fd->invalid_tid_idx);
683 tinfo->tidcnt = fd->invalid_tid_idx;
684 fd->invalid_tid_idx = 0;
685 /*
686 * Reset the user flag while still holding the lock.
687 * Otherwise, PSM can miss events.
688 */
689 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
690 } else {
691 tinfo->tidcnt = 0;
692 }
693 spin_unlock(&fd->invalid_lock);
694
695 if (tinfo->tidcnt) {
696 if (copy_to_user((void __user *)tinfo->tidlist,
697 array, sizeof(*array) * tinfo->tidcnt))
698 ret = -EFAULT;
699 }
700 kfree(array);
701
702 return ret;
f727a0c3
MH
703}
704
f88e0c8a
MH
705static u32 find_phys_blocks(struct page **pages, unsigned npages,
706 struct tid_pageset *list)
707{
708 unsigned pagecount, pageidx, setcount = 0, i;
709 unsigned long pfn, this_pfn;
710
711 if (!npages)
712 return 0;
713
714 /*
715 * Look for sets of physically contiguous pages in the user buffer.
716 * This will allow us to optimize Expected RcvArray entry usage by
717 * using the bigger supported sizes.
718 */
719 pfn = page_to_pfn(pages[0]);
720 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
721 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
722
723 /*
724 * If the pfn's are not sequential, pages are not physically
725 * contiguous.
726 */
727 if (this_pfn != ++pfn) {
728 /*
729 * At this point we have to loop over the set of
730 * physically contiguous pages and break them down it
731 * sizes supported by the HW.
732 * There are two main constraints:
733 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
734 * If the total set size is bigger than that
735 * program only a MAX_EXPECTED_BUFFER chunk.
736 * 2. The buffer size has to be a power of two. If
737 * it is not, round down to the closes power of
738 * 2 and program that size.
739 */
740 while (pagecount) {
741 int maxpages = pagecount;
742 u32 bufsize = pagecount * PAGE_SIZE;
743
744 if (bufsize > MAX_EXPECTED_BUFFER)
745 maxpages =
746 MAX_EXPECTED_BUFFER >>
747 PAGE_SHIFT;
748 else if (!is_power_of_2(bufsize))
749 maxpages =
750 rounddown_pow_of_two(bufsize) >>
751 PAGE_SHIFT;
752
753 list[setcount].idx = pageidx;
754 list[setcount].count = maxpages;
755 pagecount -= maxpages;
756 pageidx += maxpages;
757 setcount++;
758 }
759 pageidx = i;
760 pagecount = 1;
761 pfn = this_pfn;
762 } else {
763 pagecount++;
764 }
765 }
766 return setcount;
767}
768
769/**
770 * program_rcvarray() - program an RcvArray group with receive buffers
771 * @fp: file pointer
772 * @vaddr: starting user virtual address
773 * @grp: RcvArray group
774 * @sets: array of struct tid_pageset holding information on physically
775 * contiguous chunks from the user buffer
776 * @start: starting index into sets array
777 * @count: number of struct tid_pageset's to program
778 * @pages: an array of struct page * for the user buffer
779 * @tidlist: the array of u32 elements when the information about the
780 * programmed RcvArray entries is to be encoded.
781 * @tididx: starting offset into tidlist
782 * @pmapped: (output parameter) number of pages programmed into the RcvArray
783 * entries.
784 *
785 * This function will program up to 'count' number of RcvArray entries from the
786 * group 'grp'. To make best use of write-combining writes, the function will
787 * perform writes to the unused RcvArray entries which will be ignored by the
788 * HW. Each RcvArray entry will be programmed with a physically contiguous
789 * buffer chunk from the user's virtual buffer.
790 *
791 * Return:
792 * -EINVAL if the requested count is larger than the size of the group,
793 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
794 * number of RcvArray entries programmed.
795 */
796static int program_rcvarray(struct file *fp, unsigned long vaddr,
797 struct tid_group *grp,
798 struct tid_pageset *sets,
799 unsigned start, u16 count, struct page **pages,
800 u32 *tidlist, unsigned *tididx, unsigned *pmapped)
801{
802 struct hfi1_filedata *fd = fp->private_data;
803 struct hfi1_ctxtdata *uctxt = fd->uctxt;
804 struct hfi1_devdata *dd = uctxt->dd;
805 u16 idx;
806 u32 tidinfo = 0, rcventry, useidx = 0;
807 int mapped = 0;
808
809 /* Count should never be larger than the group size */
810 if (count > grp->size)
811 return -EINVAL;
812
813 /* Find the first unused entry in the group */
814 for (idx = 0; idx < grp->size; idx++) {
815 if (!(grp->map & (1 << idx))) {
816 useidx = idx;
817 break;
818 }
819 rcv_array_wc_fill(dd, grp->base + idx);
820 }
821
822 idx = 0;
823 while (idx < count) {
824 u16 npages, pageidx, setidx = start + idx;
825 int ret = 0;
826
827 /*
828 * If this entry in the group is used, move to the next one.
829 * If we go past the end of the group, exit the loop.
830 */
831 if (useidx >= grp->size) {
832 break;
833 } else if (grp->map & (1 << useidx)) {
834 rcv_array_wc_fill(dd, grp->base + useidx);
835 useidx++;
836 continue;
837 }
838
839 rcventry = grp->base + useidx;
840 npages = sets[setidx].count;
841 pageidx = sets[setidx].idx;
842
843 ret = set_rcvarray_entry(fp, vaddr + (pageidx * PAGE_SIZE),
844 rcventry, grp, pages + pageidx,
845 npages);
846 if (ret)
847 return ret;
848 mapped += npages;
849
850 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
851 EXP_TID_SET(LEN, npages);
852 tidlist[(*tididx)++] = tidinfo;
853 grp->used++;
854 grp->map |= 1 << useidx++;
855 idx++;
856 }
857
858 /* Fill the rest of the group with "blank" writes */
859 for (; useidx < grp->size; useidx++)
860 rcv_array_wc_fill(dd, grp->base + useidx);
861 *pmapped = mapped;
862 return idx;
863}
864
865static int set_rcvarray_entry(struct file *fp, unsigned long vaddr,
866 u32 rcventry, struct tid_group *grp,
867 struct page **pages, unsigned npages)
868{
869 int ret;
870 struct hfi1_filedata *fd = fp->private_data;
871 struct hfi1_ctxtdata *uctxt = fd->uctxt;
872 struct mmu_rb_node *node;
873 struct hfi1_devdata *dd = uctxt->dd;
874 struct rb_root *root = &fd->tid_rb_root;
875 dma_addr_t phys;
876
877 /*
878 * Allocate the node first so we can handle a potential
879 * failure before we've programmed anything.
880 */
881 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
882 GFP_KERNEL);
883 if (!node)
884 return -ENOMEM;
885
886 phys = pci_map_single(dd->pcidev,
887 __va(page_to_phys(pages[0])),
888 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
889 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
890 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
891 phys);
892 kfree(node);
893 return -EFAULT;
894 }
895
896 node->virt = vaddr;
897 node->phys = page_to_phys(pages[0]);
898 node->len = npages * PAGE_SIZE;
899 node->npages = npages;
900 node->rcventry = rcventry;
901 node->dma_addr = phys;
902 node->grp = grp;
903 node->freed = false;
904 memcpy(node->pages, pages, sizeof(struct page *) * npages);
905
906 spin_lock(&fd->rb_lock);
a92ba6d6 907 ret = fd->mmu_rb_insert(fd, root, node);
f88e0c8a
MH
908 spin_unlock(&fd->rb_lock);
909
910 if (ret) {
911 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
912 node->rcventry, node->virt, node->phys, ret);
913 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
914 PCI_DMA_FROMDEVICE);
915 kfree(node);
916 return -EFAULT;
917 }
918 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
0b091fb3
MH
919 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry,
920 npages, node->virt, node->phys, phys);
f88e0c8a
MH
921 return 0;
922}
923
924static int unprogram_rcvarray(struct file *fp, u32 tidinfo,
925 struct tid_group **grp)
926{
927 struct hfi1_filedata *fd = fp->private_data;
928 struct hfi1_ctxtdata *uctxt = fd->uctxt;
929 struct hfi1_devdata *dd = uctxt->dd;
930 struct mmu_rb_node *node;
931 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
a92ba6d6 932 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
f88e0c8a
MH
933
934 if (tididx >= uctxt->expected_count) {
935 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
936 tididx, uctxt->ctxt);
937 return -EINVAL;
938 }
939
940 if (tidctrl == 0x3)
941 return -EINVAL;
942
a92ba6d6 943 rcventry = tididx + (tidctrl - 1);
f88e0c8a
MH
944
945 spin_lock(&fd->rb_lock);
a92ba6d6
MH
946 node = fd->entry_to_rb[rcventry];
947 if (!node || node->rcventry != (uctxt->expected_base + rcventry)) {
f88e0c8a
MH
948 spin_unlock(&fd->rb_lock);
949 return -EBADF;
950 }
a92ba6d6 951 fd->mmu_rb_remove(fd, &fd->tid_rb_root, node);
f88e0c8a
MH
952 spin_unlock(&fd->rb_lock);
953 if (grp)
954 *grp = node->grp;
955 clear_tid_node(fd, fd->subctxt, node);
956 return 0;
957}
958
959static void clear_tid_node(struct hfi1_filedata *fd, u16 subctxt,
960 struct mmu_rb_node *node)
961{
962 struct hfi1_ctxtdata *uctxt = fd->uctxt;
963 struct hfi1_devdata *dd = uctxt->dd;
964
0b091fb3
MH
965 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
966 node->npages, node->virt, node->phys,
967 node->dma_addr);
968
f88e0c8a
MH
969 hfi1_put_tid(dd, node->rcventry, PT_INVALID, 0, 0);
970 /*
971 * Make sure device has seen the write before we unpin the
972 * pages.
973 */
974 flush_wc();
975
976 pci_unmap_single(dd->pcidev, node->dma_addr, node->len,
977 PCI_DMA_FROMDEVICE);
978 hfi1_release_user_pages(node->pages, node->npages, true);
979
980 node->grp->used--;
981 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
982
983 if (node->grp->used == node->grp->size - 1)
984 tid_group_move(node->grp, &uctxt->tid_full_list,
985 &uctxt->tid_used_list);
986 else if (!node->grp->used)
987 tid_group_move(node->grp, &uctxt->tid_used_list,
988 &uctxt->tid_group_list);
989 kfree(node);
990}
991
992static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
993 struct exp_tid_set *set, struct rb_root *root)
994{
995 struct tid_group *grp, *ptr;
996 struct hfi1_filedata *fd = container_of(root, struct hfi1_filedata,
997 tid_rb_root);
998 int i;
999
1000 list_for_each_entry_safe(grp, ptr, &set->list, list) {
1001 list_del_init(&grp->list);
1002
1003 spin_lock(&fd->rb_lock);
1004 for (i = 0; i < grp->size; i++) {
1005 if (grp->map & (1 << i)) {
1006 u16 rcventry = grp->base + i;
1007 struct mmu_rb_node *node;
1008
a92ba6d6
MH
1009 node = fd->entry_to_rb[rcventry -
1010 uctxt->expected_base];
1011 if (!node || node->rcventry != rcventry)
f88e0c8a 1012 continue;
a92ba6d6 1013 fd->mmu_rb_remove(fd, root, node);
f88e0c8a
MH
1014 clear_tid_node(fd, -1, node);
1015 }
1016 }
1017 spin_unlock(&fd->rb_lock);
1018 }
1019}
1020
f727a0c3
MH
1021static inline void mmu_notifier_page(struct mmu_notifier *mn,
1022 struct mm_struct *mm, unsigned long addr)
1023{
1024 mmu_notifier_mem_invalidate(mn, addr, addr + PAGE_SIZE,
1025 MMU_INVALIDATE_PAGE);
1026}
1027
1028static inline void mmu_notifier_range_start(struct mmu_notifier *mn,
1029 struct mm_struct *mm,
1030 unsigned long start,
1031 unsigned long end)
1032{
1033 mmu_notifier_mem_invalidate(mn, start, end, MMU_INVALIDATE_RANGE);
1034}
1035
1036static void mmu_notifier_mem_invalidate(struct mmu_notifier *mn,
1037 unsigned long start, unsigned long end,
1038 enum mmu_call_types type)
1039{
b5eb3b2f
MH
1040 struct hfi1_filedata *fd = container_of(mn, struct hfi1_filedata, mn);
1041 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1042 struct rb_root *root = &fd->tid_rb_root;
1043 struct mmu_rb_node *node;
1044 unsigned long addr = start;
1045
0b091fb3
MH
1046 trace_hfi1_mmu_invalidate(uctxt->ctxt, fd->subctxt, mmu_types[type],
1047 start, end);
1048
b5eb3b2f
MH
1049 spin_lock(&fd->rb_lock);
1050 while (addr < end) {
a92ba6d6 1051 node = mmu_rb_search(root, addr);
b5eb3b2f
MH
1052
1053 if (!node) {
1054 /*
1055 * Didn't find a node at this address. However, the
1056 * range could be bigger than what we have registered
1057 * so we have to keep looking.
1058 */
1059 addr += PAGE_SIZE;
1060 continue;
1061 }
1062
1063 /*
1064 * The next address to be looked up is computed based
1065 * on the node's starting address. This is due to the
1066 * fact that the range where we start might be in the
1067 * middle of the node's buffer so simply incrementing
1068 * the address by the node's size would result is a
1069 * bad address.
1070 */
1071 addr = node->virt + (node->npages * PAGE_SIZE);
1072 if (node->freed)
1073 continue;
1074
0b091fb3
MH
1075 trace_hfi1_exp_tid_inval(uctxt->ctxt, fd->subctxt, node->virt,
1076 node->rcventry, node->npages,
1077 node->dma_addr);
b5eb3b2f
MH
1078 node->freed = true;
1079
1080 spin_lock(&fd->invalid_lock);
1081 if (fd->invalid_tid_idx < uctxt->expected_count) {
1082 fd->invalid_tids[fd->invalid_tid_idx] =
1083 rcventry2tidinfo(node->rcventry -
1084 uctxt->expected_base);
1085 fd->invalid_tids[fd->invalid_tid_idx] |=
1086 EXP_TID_SET(LEN, node->npages);
1087 if (!fd->invalid_tid_idx) {
1088 unsigned long *ev;
1089
1090 /*
1091 * hfi1_set_uevent_bits() sets a user event flag
1092 * for all processes. Because calling into the
1093 * driver to process TID cache invalidations is
1094 * expensive and TID cache invalidations are
1095 * handled on a per-process basis, we can
1096 * optimize this to set the flag only for the
1097 * process in question.
1098 */
1099 ev = uctxt->dd->events +
1100 (((uctxt->ctxt -
1101 uctxt->dd->first_user_ctxt) *
1102 HFI1_MAX_SHARED_CTXTS) + fd->subctxt);
1103 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
1104 }
1105 fd->invalid_tid_idx++;
1106 }
1107 spin_unlock(&fd->invalid_lock);
1108 }
1109 spin_unlock(&fd->rb_lock);
f727a0c3
MH
1110}
1111
1112static inline int mmu_addr_cmp(struct mmu_rb_node *node, unsigned long addr,
1113 unsigned long len)
1114{
1115 if ((addr + len) <= node->virt)
1116 return -1;
1117 else if (addr >= node->virt && addr < (node->virt + node->len))
1118 return 0;
1119 else
1120 return 1;
1121}
1122
1123static inline int mmu_entry_cmp(struct mmu_rb_node *node, u32 entry)
1124{
1125 if (entry < node->rcventry)
1126 return -1;
1127 else if (entry > node->rcventry)
1128 return 1;
1129 else
1130 return 0;
1131}
1132
a92ba6d6
MH
1133static struct mmu_rb_node *mmu_rb_search(struct rb_root *root,
1134 unsigned long addr)
f727a0c3
MH
1135{
1136 struct rb_node *node = root->rb_node;
1137
1138 while (node) {
1139 struct mmu_rb_node *mnode =
1140 container_of(node, struct mmu_rb_node, rbnode);
1141 /*
1142 * When searching, use at least one page length for size. The
1143 * MMU notifier will not give us anything less than that. We
1144 * also don't need anything more than a page because we are
1145 * guaranteed to have non-overlapping buffers in the tree.
1146 */
1147 int result = mmu_addr_cmp(mnode, addr, PAGE_SIZE);
1148
1149 if (result < 0)
1150 node = node->rb_left;
1151 else if (result > 0)
1152 node = node->rb_right;
1153 else
1154 return mnode;
1155 }
1156 return NULL;
1157}
1158
a92ba6d6
MH
1159static int mmu_rb_insert_by_entry(struct hfi1_filedata *fdata,
1160 struct rb_root *root,
f727a0c3
MH
1161 struct mmu_rb_node *node)
1162{
a92ba6d6 1163 u32 base = fdata->uctxt->expected_base;
f727a0c3 1164
a92ba6d6 1165 fdata->entry_to_rb[node->rcventry - base] = node;
f727a0c3
MH
1166 return 0;
1167}
1168
a92ba6d6
MH
1169static int mmu_rb_insert_by_addr(struct hfi1_filedata *fdata,
1170 struct rb_root *root, struct mmu_rb_node *node)
f727a0c3
MH
1171{
1172 struct rb_node **new = &root->rb_node, *parent = NULL;
a92ba6d6 1173 u32 base = fdata->uctxt->expected_base;
f727a0c3
MH
1174
1175 /* Figure out where to put new node */
1176 while (*new) {
1177 struct mmu_rb_node *this =
1178 container_of(*new, struct mmu_rb_node, rbnode);
1179 int result = mmu_addr_cmp(this, node->virt, node->len);
1180
1181 parent = *new;
1182 if (result < 0)
1183 new = &((*new)->rb_left);
1184 else if (result > 0)
1185 new = &((*new)->rb_right);
1186 else
1187 return 1;
1188 }
1189
1190 /* Add new node and rebalance tree. */
1191 rb_link_node(&node->rbnode, parent, new);
1192 rb_insert_color(&node->rbnode, root);
1193
a92ba6d6 1194 fdata->entry_to_rb[node->rcventry - base] = node;
f727a0c3
MH
1195 return 0;
1196}
a92ba6d6
MH
1197
1198static void mmu_rb_remove_by_entry(struct hfi1_filedata *fdata,
1199 struct rb_root *root,
1200 struct mmu_rb_node *node)
1201{
1202 u32 base = fdata->uctxt->expected_base;
1203
1204 fdata->entry_to_rb[node->rcventry - base] = NULL;
1205}
1206
1207static void mmu_rb_remove_by_addr(struct hfi1_filedata *fdata,
1208 struct rb_root *root,
1209 struct mmu_rb_node *node)
1210{
1211 u32 base = fdata->uctxt->expected_base;
1212
1213 fdata->entry_to_rb[node->rcventry - base] = NULL;
1214 rb_erase(&node->rbnode, root);
1215}
This page took 0.107493 seconds and 5 git commands to generate.