ARC: Fix PAE40 boot failures due to PTE truncation
[deliverable/linux.git] / drivers / thermal / cpu_cooling.c
CommitLineData
02361418
ADK
1/*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
73904cbc
VK
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
02361418
ADK
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
02361418
ADK
25#include <linux/module.h>
26#include <linux/thermal.h>
02361418
ADK
27#include <linux/cpufreq.h>
28#include <linux/err.h>
c36cf071 29#include <linux/pm_opp.h>
02361418
ADK
30#include <linux/slab.h>
31#include <linux/cpu.h>
32#include <linux/cpu_cooling.h>
33
6828a471
JM
34#include <trace/events/thermal.h>
35
07d888d8
VK
36/*
37 * Cooling state <-> CPUFreq frequency
38 *
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
41 *
42 * Highest cooling state corresponds to lowest possible frequency.
43 *
44 * i.e.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
47 * ...
48 */
49
c36cf071
JM
50/**
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
53 * @power: power in mW
54 *
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
57 */
58struct power_table {
59 u32 frequency;
60 u32 power;
61};
62
02361418 63/**
3b3c0748 64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
66 * registered.
3b3c0748
EV
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
02361418
ADK
69 * @cpufreq_state: integer value representing the current state of cpufreq
70 * cooling devices.
59f0d218 71 * @clipped_freq: integer value representing the absolute value of the clipped
02361418 72 * frequency.
dcc6c7fd
VK
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
02361418 75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
fc4de356 76 * @node: list_head to link all cpufreq_cooling_device together.
c36cf071
JM
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
02361418 86 *
beca6053
VK
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
02361418
ADK
89 */
90struct cpufreq_cooling_device {
91 int id;
92 struct thermal_cooling_device *cool_dev;
93 unsigned int cpufreq_state;
59f0d218 94 unsigned int clipped_freq;
dcc6c7fd 95 unsigned int max_level;
f6859014 96 unsigned int *freq_table; /* In descending order */
02361418 97 struct cpumask allowed_cpus;
2dcd851f 98 struct list_head node;
c36cf071
JM
99 u32 last_load;
100 u64 *time_in_idle;
101 u64 *time_in_idle_timestamp;
102 struct power_table *dyn_power_table;
103 int dyn_power_table_entries;
104 struct device *cpu_dev;
105 get_static_t plat_get_static_power;
02361418 106};
02361418 107static DEFINE_IDR(cpufreq_idr);
160b7d80 108static DEFINE_MUTEX(cooling_cpufreq_lock);
02361418 109
02373d7c
RK
110static unsigned int cpufreq_dev_count;
111
112static DEFINE_MUTEX(cooling_list_lock);
2dcd851f 113static LIST_HEAD(cpufreq_dev_list);
02361418
ADK
114
115/**
116 * get_idr - function to get a unique id.
117 * @idr: struct idr * handle used to create a id.
118 * @id: int * value generated by this function.
79491e53
EV
119 *
120 * This function will populate @id with an unique
121 * id, using the idr API.
122 *
123 * Return: 0 on success, an error code on failure.
02361418
ADK
124 */
125static int get_idr(struct idr *idr, int *id)
126{
6deb69fa 127 int ret;
02361418
ADK
128
129 mutex_lock(&cooling_cpufreq_lock);
6deb69fa 130 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
02361418 131 mutex_unlock(&cooling_cpufreq_lock);
6deb69fa
TH
132 if (unlikely(ret < 0))
133 return ret;
134 *id = ret;
79491e53 135
02361418
ADK
136 return 0;
137}
138
139/**
140 * release_idr - function to free the unique id.
141 * @idr: struct idr * handle used for creating the id.
142 * @id: int value representing the unique id.
143 */
144static void release_idr(struct idr *idr, int id)
145{
146 mutex_lock(&cooling_cpufreq_lock);
147 idr_remove(idr, id);
148 mutex_unlock(&cooling_cpufreq_lock);
149}
150
151/* Below code defines functions to be used for cpufreq as cooling device */
152
153/**
4843c4a1 154 * get_level: Find the level for a particular frequency
b9f8b416 155 * @cpufreq_dev: cpufreq_dev for which the property is required
4843c4a1 156 * @freq: Frequency
82b9ee40 157 *
4843c4a1 158 * Return: level on success, THERMAL_CSTATE_INVALID on error.
02361418 159 */
4843c4a1
VK
160static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
161 unsigned int freq)
02361418 162{
4843c4a1 163 unsigned long level;
a116776f 164
4843c4a1
VK
165 for (level = 0; level <= cpufreq_dev->max_level; level++) {
166 if (freq == cpufreq_dev->freq_table[level])
167 return level;
02361418 168
4843c4a1
VK
169 if (freq > cpufreq_dev->freq_table[level])
170 break;
fc35b35c 171 }
02361418 172
4843c4a1 173 return THERMAL_CSTATE_INVALID;
fc35b35c
ZR
174}
175
44952d33 176/**
728c03c9 177 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
44952d33
EV
178 * @cpu: cpu for which the level is required
179 * @freq: the frequency of interest
180 *
181 * This function will match the cooling level corresponding to the
182 * requested @freq and return it.
183 *
184 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
185 * otherwise.
186 */
57df8106
ZR
187unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
188{
b9f8b416 189 struct cpufreq_cooling_device *cpufreq_dev;
02361418 190
02373d7c 191 mutex_lock(&cooling_list_lock);
b9f8b416
VK
192 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
193 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
02373d7c 194 mutex_unlock(&cooling_list_lock);
4843c4a1 195 return get_level(cpufreq_dev, freq);
b9f8b416 196 }
02361418 197 }
02373d7c 198 mutex_unlock(&cooling_list_lock);
02361418 199
b9f8b416
VK
200 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
201 return THERMAL_CSTATE_INVALID;
02361418 202}
243dbd9c 203EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
02361418
ADK
204
205/**
206 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
207 * @nb: struct notifier_block * with callback info.
208 * @event: value showing cpufreq event for which this function invoked.
209 * @data: callback-specific data
bab30554 210 *
9746b6e7 211 * Callback to hijack the notification on cpufreq policy transition.
bab30554
EV
212 * Every time there is a change in policy, we will intercept and
213 * update the cpufreq policy with thermal constraints.
214 *
215 * Return: 0 (success)
02361418
ADK
216 */
217static int cpufreq_thermal_notifier(struct notifier_block *nb,
5fda7f68 218 unsigned long event, void *data)
02361418
ADK
219{
220 struct cpufreq_policy *policy = data;
abcbcc25 221 unsigned long clipped_freq;
2dcd851f 222 struct cpufreq_cooling_device *cpufreq_dev;
02361418 223
a24af233
VK
224 if (event != CPUFREQ_ADJUST)
225 return NOTIFY_DONE;
02361418 226
a24af233
VK
227 mutex_lock(&cooling_list_lock);
228 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
229 if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
230 continue;
c36cf071 231
1afb9c53
VK
232 /*
233 * policy->max is the maximum allowed frequency defined by user
234 * and clipped_freq is the maximum that thermal constraints
235 * allow.
236 *
237 * If clipped_freq is lower than policy->max, then we need to
238 * readjust policy->max.
239 *
240 * But, if clipped_freq is greater than policy->max, we don't
241 * need to do anything.
242 */
abcbcc25 243 clipped_freq = cpufreq_dev->clipped_freq;
c36cf071 244
1afb9c53 245 if (policy->max > clipped_freq)
abcbcc25 246 cpufreq_verify_within_limits(policy, 0, clipped_freq);
c36cf071 247 break;
c36cf071 248 }
a24af233 249 mutex_unlock(&cooling_list_lock);
c36cf071
JM
250
251 return NOTIFY_OK;
252}
253
254/**
255 * build_dyn_power_table() - create a dynamic power to frequency table
256 * @cpufreq_device: the cpufreq cooling device in which to store the table
257 * @capacitance: dynamic power coefficient for these cpus
258 *
259 * Build a dynamic power to frequency table for this cpu and store it
260 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
261 * cpu_freq_to_power() to convert between power and frequency
262 * efficiently. Power is stored in mW, frequency in KHz. The
263 * resulting table is in ascending order.
264 *
459ac375
JM
265 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
266 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
267 * added/enabled while the function was executing.
c36cf071
JM
268 */
269static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
270 u32 capacitance)
271{
272 struct power_table *power_table;
273 struct dev_pm_opp *opp;
274 struct device *dev = NULL;
eba4f88d 275 int num_opps = 0, cpu, i, ret = 0;
c36cf071
JM
276 unsigned long freq;
277
c36cf071
JM
278 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
279 dev = get_cpu_device(cpu);
280 if (!dev) {
281 dev_warn(&cpufreq_device->cool_dev->device,
282 "No cpu device for cpu %d\n", cpu);
2dcd851f 283 continue;
c36cf071 284 }
2dcd851f 285
c36cf071 286 num_opps = dev_pm_opp_get_opp_count(dev);
459ac375 287 if (num_opps > 0)
c36cf071 288 break;
459ac375
JM
289 else if (num_opps < 0)
290 return num_opps;
c36cf071 291 }
02361418 292
459ac375
JM
293 if (num_opps == 0)
294 return -EINVAL;
02361418 295
c36cf071 296 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
459ac375
JM
297 if (!power_table)
298 return -ENOMEM;
299
300 rcu_read_lock();
c36cf071
JM
301
302 for (freq = 0, i = 0;
303 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
304 freq++, i++) {
305 u32 freq_mhz, voltage_mv;
306 u64 power;
307
459ac375
JM
308 if (i >= num_opps) {
309 rcu_read_unlock();
eba4f88d
JM
310 ret = -EAGAIN;
311 goto free_power_table;
459ac375
JM
312 }
313
c36cf071
JM
314 freq_mhz = freq / 1000000;
315 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
316
317 /*
318 * Do the multiplication with MHz and millivolt so as
319 * to not overflow.
320 */
321 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
322 do_div(power, 1000000000);
323
324 /* frequency is stored in power_table in KHz */
325 power_table[i].frequency = freq / 1000;
326
327 /* power is stored in mW */
328 power_table[i].power = power;
329 }
330
459ac375
JM
331 rcu_read_unlock();
332
eba4f88d
JM
333 if (i != num_opps) {
334 ret = PTR_ERR(opp);
335 goto free_power_table;
336 }
c36cf071
JM
337
338 cpufreq_device->cpu_dev = dev;
339 cpufreq_device->dyn_power_table = power_table;
340 cpufreq_device->dyn_power_table_entries = i;
341
459ac375 342 return 0;
eba4f88d
JM
343
344free_power_table:
345 kfree(power_table);
346
347 return ret;
c36cf071
JM
348}
349
350static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
351 u32 freq)
352{
353 int i;
354 struct power_table *pt = cpufreq_device->dyn_power_table;
355
356 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
357 if (freq < pt[i].frequency)
358 break;
359
360 return pt[i - 1].power;
361}
362
363static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
364 u32 power)
365{
366 int i;
367 struct power_table *pt = cpufreq_device->dyn_power_table;
368
369 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
370 if (power < pt[i].power)
371 break;
372
373 return pt[i - 1].frequency;
374}
375
376/**
377 * get_load() - get load for a cpu since last updated
378 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
379 * @cpu: cpu number
a53b8394 380 * @cpu_idx: index of the cpu in cpufreq_device->allowed_cpus
c36cf071
JM
381 *
382 * Return: The average load of cpu @cpu in percentage since this
383 * function was last called.
384 */
a53b8394
JM
385static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu,
386 int cpu_idx)
c36cf071
JM
387{
388 u32 load;
389 u64 now, now_idle, delta_time, delta_idle;
390
391 now_idle = get_cpu_idle_time(cpu, &now, 0);
a53b8394
JM
392 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu_idx];
393 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu_idx];
c36cf071
JM
394
395 if (delta_time <= delta_idle)
396 load = 0;
397 else
398 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
399
a53b8394
JM
400 cpufreq_device->time_in_idle[cpu_idx] = now_idle;
401 cpufreq_device->time_in_idle_timestamp[cpu_idx] = now;
c36cf071
JM
402
403 return load;
404}
405
406/**
407 * get_static_power() - calculate the static power consumed by the cpus
408 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
409 * @tz: thermal zone device in which we're operating
410 * @freq: frequency in KHz
411 * @power: pointer in which to store the calculated static power
412 *
413 * Calculate the static power consumed by the cpus described by
414 * @cpu_actor running at frequency @freq. This function relies on a
415 * platform specific function that should have been provided when the
416 * actor was registered. If it wasn't, the static power is assumed to
417 * be negligible. The calculated static power is stored in @power.
418 *
419 * Return: 0 on success, -E* on failure.
420 */
421static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
422 struct thermal_zone_device *tz, unsigned long freq,
423 u32 *power)
424{
425 struct dev_pm_opp *opp;
426 unsigned long voltage;
427 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
428 unsigned long freq_hz = freq * 1000;
429
430 if (!cpufreq_device->plat_get_static_power ||
431 !cpufreq_device->cpu_dev) {
432 *power = 0;
433 return 0;
434 }
435
436 rcu_read_lock();
437
438 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
439 true);
440 voltage = dev_pm_opp_get_voltage(opp);
441
442 rcu_read_unlock();
443
444 if (voltage == 0) {
445 dev_warn_ratelimited(cpufreq_device->cpu_dev,
446 "Failed to get voltage for frequency %lu: %ld\n",
447 freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
448 return -EINVAL;
449 }
450
451 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
452 voltage, power);
453}
454
455/**
456 * get_dynamic_power() - calculate the dynamic power
457 * @cpufreq_device: &cpufreq_cooling_device for this cdev
458 * @freq: current frequency
459 *
460 * Return: the dynamic power consumed by the cpus described by
461 * @cpufreq_device.
462 */
463static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
464 unsigned long freq)
465{
466 u32 raw_cpu_power;
467
468 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
469 return (raw_cpu_power * cpufreq_device->last_load) / 100;
02361418
ADK
470}
471
1b9e3526 472/* cpufreq cooling device callback functions are defined below */
02361418
ADK
473
474/**
475 * cpufreq_get_max_state - callback function to get the max cooling state.
476 * @cdev: thermal cooling device pointer.
477 * @state: fill this variable with the max cooling state.
62c00421
EV
478 *
479 * Callback for the thermal cooling device to return the cpufreq
480 * max cooling state.
481 *
482 * Return: 0 on success, an error code otherwise.
02361418
ADK
483 */
484static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
485 unsigned long *state)
486{
160b7d80 487 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
9c51b05a 488
dcc6c7fd
VK
489 *state = cpufreq_device->max_level;
490 return 0;
02361418
ADK
491}
492
493/**
494 * cpufreq_get_cur_state - callback function to get the current cooling state.
495 * @cdev: thermal cooling device pointer.
496 * @state: fill this variable with the current cooling state.
3672552d
EV
497 *
498 * Callback for the thermal cooling device to return the cpufreq
499 * current cooling state.
500 *
501 * Return: 0 on success, an error code otherwise.
02361418
ADK
502 */
503static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
504 unsigned long *state)
505{
160b7d80 506 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
02361418 507
160b7d80 508 *state = cpufreq_device->cpufreq_state;
79491e53 509
160b7d80 510 return 0;
02361418
ADK
511}
512
513/**
514 * cpufreq_set_cur_state - callback function to set the current cooling state.
515 * @cdev: thermal cooling device pointer.
516 * @state: set this variable to the current cooling state.
56e05fdb
EV
517 *
518 * Callback for the thermal cooling device to change the cpufreq
519 * current cooling state.
520 *
521 * Return: 0 on success, an error code otherwise.
02361418
ADK
522 */
523static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
524 unsigned long state)
525{
160b7d80 526 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
5194fe46
VK
527 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
528 unsigned int clip_freq;
4843c4a1
VK
529
530 /* Request state should be less than max_level */
531 if (WARN_ON(state > cpufreq_device->max_level))
532 return -EINVAL;
5194fe46
VK
533
534 /* Check if the old cooling action is same as new cooling action */
535 if (cpufreq_device->cpufreq_state == state)
536 return 0;
02361418 537
4843c4a1 538 clip_freq = cpufreq_device->freq_table[state];
5194fe46 539 cpufreq_device->cpufreq_state = state;
59f0d218 540 cpufreq_device->clipped_freq = clip_freq;
5194fe46
VK
541
542 cpufreq_update_policy(cpu);
543
544 return 0;
02361418
ADK
545}
546
c36cf071
JM
547/**
548 * cpufreq_get_requested_power() - get the current power
549 * @cdev: &thermal_cooling_device pointer
550 * @tz: a valid thermal zone device pointer
551 * @power: pointer in which to store the resulting power
552 *
553 * Calculate the current power consumption of the cpus in milliwatts
554 * and store it in @power. This function should actually calculate
555 * the requested power, but it's hard to get the frequency that
556 * cpufreq would have assigned if there were no thermal limits.
557 * Instead, we calculate the current power on the assumption that the
558 * immediate future will look like the immediate past.
559 *
560 * We use the current frequency and the average load since this
561 * function was last called. In reality, there could have been
562 * multiple opps since this function was last called and that affects
563 * the load calculation. While it's not perfectly accurate, this
564 * simplification is good enough and works. REVISIT this, as more
565 * complex code may be needed if experiments show that it's not
566 * accurate enough.
567 *
568 * Return: 0 on success, -E* if getting the static power failed.
569 */
570static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
571 struct thermal_zone_device *tz,
572 u32 *power)
573{
574 unsigned long freq;
6828a471 575 int i = 0, cpu, ret;
c36cf071
JM
576 u32 static_power, dynamic_power, total_load = 0;
577 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
6828a471 578 u32 *load_cpu = NULL;
c36cf071 579
dd658e02
KS
580 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
581
582 /*
583 * All the CPUs are offline, thus the requested power by
584 * the cdev is 0
585 */
586 if (cpu >= nr_cpu_ids) {
587 *power = 0;
588 return 0;
589 }
590
591 freq = cpufreq_quick_get(cpu);
c36cf071 592
6828a471
JM
593 if (trace_thermal_power_cpu_get_power_enabled()) {
594 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
595
a71544cd 596 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
6828a471
JM
597 }
598
c36cf071
JM
599 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
600 u32 load;
601
602 if (cpu_online(cpu))
a53b8394 603 load = get_load(cpufreq_device, cpu, i);
c36cf071
JM
604 else
605 load = 0;
606
607 total_load += load;
6828a471
JM
608 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
609 load_cpu[i] = load;
610
611 i++;
c36cf071
JM
612 }
613
614 cpufreq_device->last_load = total_load;
615
616 dynamic_power = get_dynamic_power(cpufreq_device, freq);
617 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
6828a471 618 if (ret) {
a71544cd 619 kfree(load_cpu);
c36cf071 620 return ret;
6828a471
JM
621 }
622
623 if (load_cpu) {
624 trace_thermal_power_cpu_get_power(
625 &cpufreq_device->allowed_cpus,
626 freq, load_cpu, i, dynamic_power, static_power);
627
a71544cd 628 kfree(load_cpu);
6828a471 629 }
c36cf071
JM
630
631 *power = static_power + dynamic_power;
632 return 0;
633}
634
635/**
636 * cpufreq_state2power() - convert a cpu cdev state to power consumed
637 * @cdev: &thermal_cooling_device pointer
638 * @tz: a valid thermal zone device pointer
639 * @state: cooling device state to be converted
640 * @power: pointer in which to store the resulting power
641 *
642 * Convert cooling device state @state into power consumption in
643 * milliwatts assuming 100% load. Store the calculated power in
644 * @power.
645 *
646 * Return: 0 on success, -EINVAL if the cooling device state could not
647 * be converted into a frequency or other -E* if there was an error
648 * when calculating the static power.
649 */
650static int cpufreq_state2power(struct thermal_cooling_device *cdev,
651 struct thermal_zone_device *tz,
652 unsigned long state, u32 *power)
653{
654 unsigned int freq, num_cpus;
655 cpumask_t cpumask;
656 u32 static_power, dynamic_power;
657 int ret;
658 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
659
660 cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
661 num_cpus = cpumask_weight(&cpumask);
662
663 /* None of our cpus are online, so no power */
664 if (num_cpus == 0) {
665 *power = 0;
666 return 0;
667 }
668
669 freq = cpufreq_device->freq_table[state];
670 if (!freq)
671 return -EINVAL;
672
673 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
674 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
675 if (ret)
676 return ret;
677
678 *power = static_power + dynamic_power;
679 return 0;
680}
681
682/**
683 * cpufreq_power2state() - convert power to a cooling device state
684 * @cdev: &thermal_cooling_device pointer
685 * @tz: a valid thermal zone device pointer
686 * @power: power in milliwatts to be converted
687 * @state: pointer in which to store the resulting state
688 *
689 * Calculate a cooling device state for the cpus described by @cdev
690 * that would allow them to consume at most @power mW and store it in
691 * @state. Note that this calculation depends on external factors
692 * such as the cpu load or the current static power. Calling this
693 * function with the same power as input can yield different cooling
694 * device states depending on those external factors.
695 *
696 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
697 * the calculated frequency could not be converted to a valid state.
698 * The latter should not happen unless the frequencies available to
699 * cpufreq have changed since the initialization of the cpu cooling
700 * device.
701 */
702static int cpufreq_power2state(struct thermal_cooling_device *cdev,
703 struct thermal_zone_device *tz, u32 power,
704 unsigned long *state)
705{
706 unsigned int cpu, cur_freq, target_freq;
707 int ret;
708 s32 dyn_power;
709 u32 last_load, normalised_power, static_power;
710 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
711
712 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
713
714 /* None of our cpus are online */
715 if (cpu >= nr_cpu_ids)
716 return -ENODEV;
717
718 cur_freq = cpufreq_quick_get(cpu);
719 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
720 if (ret)
721 return ret;
722
723 dyn_power = power - static_power;
724 dyn_power = dyn_power > 0 ? dyn_power : 0;
725 last_load = cpufreq_device->last_load ?: 1;
726 normalised_power = (dyn_power * 100) / last_load;
727 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
728
729 *state = cpufreq_cooling_get_level(cpu, target_freq);
730 if (*state == THERMAL_CSTATE_INVALID) {
731 dev_warn_ratelimited(&cdev->device,
732 "Failed to convert %dKHz for cpu %d into a cdev state\n",
733 target_freq, cpu);
734 return -EINVAL;
735 }
736
6828a471
JM
737 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
738 target_freq, *state, power);
c36cf071
JM
739 return 0;
740}
741
02361418 742/* Bind cpufreq callbacks to thermal cooling device ops */
c36cf071 743static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
02361418
ADK
744 .get_max_state = cpufreq_get_max_state,
745 .get_cur_state = cpufreq_get_cur_state,
746 .set_cur_state = cpufreq_set_cur_state,
747};
748
749/* Notifier for cpufreq policy change */
750static struct notifier_block thermal_cpufreq_notifier_block = {
751 .notifier_call = cpufreq_thermal_notifier,
752};
753
f6859014
VK
754static unsigned int find_next_max(struct cpufreq_frequency_table *table,
755 unsigned int prev_max)
756{
757 struct cpufreq_frequency_table *pos;
758 unsigned int max = 0;
759
760 cpufreq_for_each_valid_entry(pos, table) {
761 if (pos->frequency > max && pos->frequency < prev_max)
762 max = pos->frequency;
763 }
764
765 return max;
766}
767
02361418 768/**
39d99cff
EV
769 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
770 * @np: a valid struct device_node to the cooling device device tree node
02361418 771 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
405fb825 772 * Normally this should be same as cpufreq policy->related_cpus.
c36cf071
JM
773 * @capacitance: dynamic power coefficient for these cpus
774 * @plat_static_func: function to calculate the static power consumed by these
775 * cpus (optional)
12cb08ba
EV
776 *
777 * This interface function registers the cpufreq cooling device with the name
778 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
779 * cooling devices. It also gives the opportunity to link the cooling device
780 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
781 *
782 * Return: a valid struct thermal_cooling_device pointer on success,
783 * on failure, it returns a corresponding ERR_PTR().
02361418 784 */
39d99cff
EV
785static struct thermal_cooling_device *
786__cpufreq_cooling_register(struct device_node *np,
c36cf071
JM
787 const struct cpumask *clip_cpus, u32 capacitance,
788 get_static_t plat_static_func)
02361418
ADK
789{
790 struct thermal_cooling_device *cool_dev;
5d3bdb89 791 struct cpufreq_cooling_device *cpufreq_dev;
02361418 792 char dev_name[THERMAL_NAME_LENGTH];
dcc6c7fd 793 struct cpufreq_frequency_table *pos, *table;
c36cf071 794 unsigned int freq, i, num_cpus;
405fb825 795 int ret;
02361418 796
dcc6c7fd
VK
797 table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
798 if (!table) {
0f1be51c
EV
799 pr_debug("%s: CPUFreq table not found\n", __func__);
800 return ERR_PTR(-EPROBE_DEFER);
02361418 801 }
0f1be51c 802
98d522f0 803 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
02361418
ADK
804 if (!cpufreq_dev)
805 return ERR_PTR(-ENOMEM);
806
c36cf071
JM
807 num_cpus = cpumask_weight(clip_cpus);
808 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
809 sizeof(*cpufreq_dev->time_in_idle),
810 GFP_KERNEL);
811 if (!cpufreq_dev->time_in_idle) {
812 cool_dev = ERR_PTR(-ENOMEM);
813 goto free_cdev;
814 }
815
816 cpufreq_dev->time_in_idle_timestamp =
817 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
818 GFP_KERNEL);
819 if (!cpufreq_dev->time_in_idle_timestamp) {
820 cool_dev = ERR_PTR(-ENOMEM);
821 goto free_time_in_idle;
822 }
823
dcc6c7fd
VK
824 /* Find max levels */
825 cpufreq_for_each_valid_entry(pos, table)
826 cpufreq_dev->max_level++;
827
f6859014
VK
828 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
829 cpufreq_dev->max_level, GFP_KERNEL);
830 if (!cpufreq_dev->freq_table) {
f6859014 831 cool_dev = ERR_PTR(-ENOMEM);
c36cf071 832 goto free_time_in_idle_timestamp;
f6859014
VK
833 }
834
dcc6c7fd
VK
835 /* max_level is an index, not a counter */
836 cpufreq_dev->max_level--;
837
02361418
ADK
838 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
839
c36cf071
JM
840 if (capacitance) {
841 cpufreq_cooling_ops.get_requested_power =
842 cpufreq_get_requested_power;
843 cpufreq_cooling_ops.state2power = cpufreq_state2power;
844 cpufreq_cooling_ops.power2state = cpufreq_power2state;
845 cpufreq_dev->plat_get_static_power = plat_static_func;
846
847 ret = build_dyn_power_table(cpufreq_dev, capacitance);
848 if (ret) {
849 cool_dev = ERR_PTR(ret);
850 goto free_table;
851 }
852 }
853
02361418
ADK
854 ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
855 if (ret) {
730abe06 856 cool_dev = ERR_PTR(ret);
eba4f88d 857 goto free_power_table;
02361418
ADK
858 }
859
99871a71
EV
860 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
861 cpufreq_dev->id);
02361418 862
39d99cff
EV
863 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
864 &cpufreq_cooling_ops);
730abe06
VK
865 if (IS_ERR(cool_dev))
866 goto remove_idr;
867
f6859014
VK
868 /* Fill freq-table in descending order of frequencies */
869 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
870 freq = find_next_max(table, freq);
871 cpufreq_dev->freq_table[i] = freq;
872
873 /* Warn for duplicate entries */
874 if (!freq)
875 pr_warn("%s: table has duplicate entries\n", __func__);
876 else
877 pr_debug("%s: freq:%u KHz\n", __func__, freq);
02361418 878 }
f6859014 879
59f0d218 880 cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
02361418 881 cpufreq_dev->cool_dev = cool_dev;
92e615ec 882
02361418 883 mutex_lock(&cooling_cpufreq_lock);
02361418 884
02373d7c
RK
885 mutex_lock(&cooling_list_lock);
886 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
887 mutex_unlock(&cooling_list_lock);
888
02361418 889 /* Register the notifier for first cpufreq cooling device */
02373d7c 890 if (!cpufreq_dev_count++)
02361418 891 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 892 CPUFREQ_POLICY_NOTIFIER);
02361418 893 mutex_unlock(&cooling_cpufreq_lock);
79491e53 894
730abe06
VK
895 return cool_dev;
896
897remove_idr:
898 release_idr(&cpufreq_idr, cpufreq_dev->id);
eba4f88d
JM
899free_power_table:
900 kfree(cpufreq_dev->dyn_power_table);
f6859014
VK
901free_table:
902 kfree(cpufreq_dev->freq_table);
c36cf071
JM
903free_time_in_idle_timestamp:
904 kfree(cpufreq_dev->time_in_idle_timestamp);
905free_time_in_idle:
906 kfree(cpufreq_dev->time_in_idle);
730abe06
VK
907free_cdev:
908 kfree(cpufreq_dev);
909
02361418
ADK
910 return cool_dev;
911}
39d99cff
EV
912
913/**
914 * cpufreq_cooling_register - function to create cpufreq cooling device.
915 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
916 *
917 * This interface function registers the cpufreq cooling device with the name
918 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
919 * cooling devices.
920 *
921 * Return: a valid struct thermal_cooling_device pointer on success,
922 * on failure, it returns a corresponding ERR_PTR().
923 */
924struct thermal_cooling_device *
925cpufreq_cooling_register(const struct cpumask *clip_cpus)
926{
c36cf071 927 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
39d99cff 928}
243dbd9c 929EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 930
39d99cff
EV
931/**
932 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
933 * @np: a valid struct device_node to the cooling device device tree node
934 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
935 *
936 * This interface function registers the cpufreq cooling device with the name
937 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
938 * cooling devices. Using this API, the cpufreq cooling device will be
939 * linked to the device tree node provided.
940 *
941 * Return: a valid struct thermal_cooling_device pointer on success,
942 * on failure, it returns a corresponding ERR_PTR().
943 */
944struct thermal_cooling_device *
945of_cpufreq_cooling_register(struct device_node *np,
946 const struct cpumask *clip_cpus)
947{
948 if (!np)
949 return ERR_PTR(-EINVAL);
950
c36cf071 951 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
39d99cff
EV
952}
953EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
954
c36cf071
JM
955/**
956 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
957 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
958 * @capacitance: dynamic power coefficient for these cpus
959 * @plat_static_func: function to calculate the static power consumed by these
960 * cpus (optional)
961 *
962 * This interface function registers the cpufreq cooling device with
963 * the name "thermal-cpufreq-%x". This api can support multiple
964 * instances of cpufreq cooling devices. Using this function, the
965 * cooling device will implement the power extensions by using a
966 * simple cpu power model. The cpus must have registered their OPPs
967 * using the OPP library.
968 *
969 * An optional @plat_static_func may be provided to calculate the
970 * static power consumed by these cpus. If the platform's static
971 * power consumption is unknown or negligible, make it NULL.
972 *
973 * Return: a valid struct thermal_cooling_device pointer on success,
974 * on failure, it returns a corresponding ERR_PTR().
975 */
976struct thermal_cooling_device *
977cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
978 get_static_t plat_static_func)
979{
980 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
981 plat_static_func);
982}
983EXPORT_SYMBOL(cpufreq_power_cooling_register);
984
985/**
986 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
987 * @np: a valid struct device_node to the cooling device device tree node
988 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
989 * @capacitance: dynamic power coefficient for these cpus
990 * @plat_static_func: function to calculate the static power consumed by these
991 * cpus (optional)
992 *
993 * This interface function registers the cpufreq cooling device with
994 * the name "thermal-cpufreq-%x". This api can support multiple
995 * instances of cpufreq cooling devices. Using this API, the cpufreq
996 * cooling device will be linked to the device tree node provided.
997 * Using this function, the cooling device will implement the power
998 * extensions by using a simple cpu power model. The cpus must have
999 * registered their OPPs using the OPP library.
1000 *
1001 * An optional @plat_static_func may be provided to calculate the
1002 * static power consumed by these cpus. If the platform's static
1003 * power consumption is unknown or negligible, make it NULL.
1004 *
1005 * Return: a valid struct thermal_cooling_device pointer on success,
1006 * on failure, it returns a corresponding ERR_PTR().
1007 */
1008struct thermal_cooling_device *
1009of_cpufreq_power_cooling_register(struct device_node *np,
1010 const struct cpumask *clip_cpus,
1011 u32 capacitance,
1012 get_static_t plat_static_func)
1013{
1014 if (!np)
1015 return ERR_PTR(-EINVAL);
1016
1017 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1018 plat_static_func);
1019}
1020EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1021
02361418
ADK
1022/**
1023 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1024 * @cdev: thermal cooling device pointer.
135266b4
EV
1025 *
1026 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
1027 */
1028void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1029{
50e66c7e 1030 struct cpufreq_cooling_device *cpufreq_dev;
02361418 1031
50e66c7e
EV
1032 if (!cdev)
1033 return;
1034
1035 cpufreq_dev = cdev->devdata;
02361418
ADK
1036
1037 /* Unregister the notifier for the last cpufreq cooling device */
02373d7c
RK
1038 mutex_lock(&cooling_cpufreq_lock);
1039 if (!--cpufreq_dev_count)
02361418 1040 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 1041 CPUFREQ_POLICY_NOTIFIER);
02373d7c
RK
1042
1043 mutex_lock(&cooling_list_lock);
1044 list_del(&cpufreq_dev->node);
1045 mutex_unlock(&cooling_list_lock);
1046
02361418 1047 mutex_unlock(&cooling_cpufreq_lock);
160b7d80 1048
02361418
ADK
1049 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1050 release_idr(&cpufreq_idr, cpufreq_dev->id);
eba4f88d 1051 kfree(cpufreq_dev->dyn_power_table);
c36cf071
JM
1052 kfree(cpufreq_dev->time_in_idle_timestamp);
1053 kfree(cpufreq_dev->time_in_idle);
f6859014 1054 kfree(cpufreq_dev->freq_table);
02361418
ADK
1055 kfree(cpufreq_dev);
1056}
243dbd9c 1057EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
This page took 0.209554 seconds and 5 git commands to generate.