thermal: cpu_cooling: Check memory allocation of power_table
[deliverable/linux.git] / drivers / thermal / cpu_cooling.c
CommitLineData
02361418
ADK
1/*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
73904cbc
VK
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
02361418
ADK
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
02361418
ADK
25#include <linux/module.h>
26#include <linux/thermal.h>
02361418
ADK
27#include <linux/cpufreq.h>
28#include <linux/err.h>
c36cf071 29#include <linux/pm_opp.h>
02361418
ADK
30#include <linux/slab.h>
31#include <linux/cpu.h>
32#include <linux/cpu_cooling.h>
33
6828a471
JM
34#include <trace/events/thermal.h>
35
07d888d8
VK
36/*
37 * Cooling state <-> CPUFreq frequency
38 *
39 * Cooling states are translated to frequencies throughout this driver and this
40 * is the relation between them.
41 *
42 * Highest cooling state corresponds to lowest possible frequency.
43 *
44 * i.e.
45 * level 0 --> 1st Max Freq
46 * level 1 --> 2nd Max Freq
47 * ...
48 */
49
c36cf071
JM
50/**
51 * struct power_table - frequency to power conversion
52 * @frequency: frequency in KHz
53 * @power: power in mW
54 *
55 * This structure is built when the cooling device registers and helps
56 * in translating frequency to power and viceversa.
57 */
58struct power_table {
59 u32 frequency;
60 u32 power;
61};
62
02361418 63/**
3b3c0748 64 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
65 * @id: unique integer value corresponding to each cpufreq_cooling_device
66 * registered.
3b3c0748
EV
67 * @cool_dev: thermal_cooling_device pointer to keep track of the
68 * registered cooling device.
02361418
ADK
69 * @cpufreq_state: integer value representing the current state of cpufreq
70 * cooling devices.
71 * @cpufreq_val: integer value representing the absolute value of the clipped
72 * frequency.
dcc6c7fd
VK
73 * @max_level: maximum cooling level. One less than total number of valid
74 * cpufreq frequencies.
02361418 75 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
fc4de356 76 * @node: list_head to link all cpufreq_cooling_device together.
c36cf071
JM
77 * @last_load: load measured by the latest call to cpufreq_get_actual_power()
78 * @time_in_idle: previous reading of the absolute time that this cpu was idle
79 * @time_in_idle_timestamp: wall time of the last invocation of
80 * get_cpu_idle_time_us()
81 * @dyn_power_table: array of struct power_table for frequency to power
82 * conversion, sorted in ascending order.
83 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
84 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
85 * @plat_get_static_power: callback to calculate the static power
02361418 86 *
beca6053
VK
87 * This structure is required for keeping information of each registered
88 * cpufreq_cooling_device.
02361418
ADK
89 */
90struct cpufreq_cooling_device {
91 int id;
92 struct thermal_cooling_device *cool_dev;
93 unsigned int cpufreq_state;
94 unsigned int cpufreq_val;
dcc6c7fd 95 unsigned int max_level;
f6859014 96 unsigned int *freq_table; /* In descending order */
02361418 97 struct cpumask allowed_cpus;
2dcd851f 98 struct list_head node;
c36cf071
JM
99 u32 last_load;
100 u64 *time_in_idle;
101 u64 *time_in_idle_timestamp;
102 struct power_table *dyn_power_table;
103 int dyn_power_table_entries;
104 struct device *cpu_dev;
105 get_static_t plat_get_static_power;
02361418 106};
02361418 107static DEFINE_IDR(cpufreq_idr);
160b7d80 108static DEFINE_MUTEX(cooling_cpufreq_lock);
02361418 109
2dcd851f 110static LIST_HEAD(cpufreq_dev_list);
02361418
ADK
111
112/**
113 * get_idr - function to get a unique id.
114 * @idr: struct idr * handle used to create a id.
115 * @id: int * value generated by this function.
79491e53
EV
116 *
117 * This function will populate @id with an unique
118 * id, using the idr API.
119 *
120 * Return: 0 on success, an error code on failure.
02361418
ADK
121 */
122static int get_idr(struct idr *idr, int *id)
123{
6deb69fa 124 int ret;
02361418
ADK
125
126 mutex_lock(&cooling_cpufreq_lock);
6deb69fa 127 ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
02361418 128 mutex_unlock(&cooling_cpufreq_lock);
6deb69fa
TH
129 if (unlikely(ret < 0))
130 return ret;
131 *id = ret;
79491e53 132
02361418
ADK
133 return 0;
134}
135
136/**
137 * release_idr - function to free the unique id.
138 * @idr: struct idr * handle used for creating the id.
139 * @id: int value representing the unique id.
140 */
141static void release_idr(struct idr *idr, int id)
142{
143 mutex_lock(&cooling_cpufreq_lock);
144 idr_remove(idr, id);
145 mutex_unlock(&cooling_cpufreq_lock);
146}
147
148/* Below code defines functions to be used for cpufreq as cooling device */
149
150/**
4843c4a1 151 * get_level: Find the level for a particular frequency
b9f8b416 152 * @cpufreq_dev: cpufreq_dev for which the property is required
4843c4a1 153 * @freq: Frequency
82b9ee40 154 *
4843c4a1 155 * Return: level on success, THERMAL_CSTATE_INVALID on error.
02361418 156 */
4843c4a1
VK
157static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
158 unsigned int freq)
02361418 159{
4843c4a1 160 unsigned long level;
a116776f 161
4843c4a1
VK
162 for (level = 0; level <= cpufreq_dev->max_level; level++) {
163 if (freq == cpufreq_dev->freq_table[level])
164 return level;
02361418 165
4843c4a1
VK
166 if (freq > cpufreq_dev->freq_table[level])
167 break;
fc35b35c 168 }
02361418 169
4843c4a1 170 return THERMAL_CSTATE_INVALID;
fc35b35c
ZR
171}
172
44952d33 173/**
728c03c9 174 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
44952d33
EV
175 * @cpu: cpu for which the level is required
176 * @freq: the frequency of interest
177 *
178 * This function will match the cooling level corresponding to the
179 * requested @freq and return it.
180 *
181 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
182 * otherwise.
183 */
57df8106
ZR
184unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
185{
b9f8b416 186 struct cpufreq_cooling_device *cpufreq_dev;
02361418 187
b9f8b416
VK
188 mutex_lock(&cooling_cpufreq_lock);
189 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
190 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
b9f8b416 191 mutex_unlock(&cooling_cpufreq_lock);
4843c4a1 192 return get_level(cpufreq_dev, freq);
b9f8b416 193 }
02361418 194 }
b9f8b416 195 mutex_unlock(&cooling_cpufreq_lock);
02361418 196
b9f8b416
VK
197 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
198 return THERMAL_CSTATE_INVALID;
02361418 199}
243dbd9c 200EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
02361418 201
c36cf071
JM
202static void update_cpu_device(int cpu)
203{
204 struct cpufreq_cooling_device *cpufreq_dev;
205
206 mutex_lock(&cooling_cpufreq_lock);
207 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
208 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
209 cpufreq_dev->cpu_dev = get_cpu_device(cpu);
210 if (!cpufreq_dev->cpu_dev) {
211 dev_warn(&cpufreq_dev->cool_dev->device,
212 "No cpu device for new policy cpu %d\n",
213 cpu);
214 }
215 break;
216 }
217 }
218 mutex_unlock(&cooling_cpufreq_lock);
219}
220
221static void remove_cpu_device(int cpu)
222{
223 struct cpufreq_cooling_device *cpufreq_dev;
224
225 mutex_lock(&cooling_cpufreq_lock);
226 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
227 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
228 cpufreq_dev->cpu_dev = NULL;
229 break;
230 }
231 }
232 mutex_unlock(&cooling_cpufreq_lock);
233}
234
02361418
ADK
235/**
236 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
237 * @nb: struct notifier_block * with callback info.
238 * @event: value showing cpufreq event for which this function invoked.
239 * @data: callback-specific data
bab30554 240 *
9746b6e7 241 * Callback to hijack the notification on cpufreq policy transition.
bab30554
EV
242 * Every time there is a change in policy, we will intercept and
243 * update the cpufreq policy with thermal constraints.
244 *
245 * Return: 0 (success)
02361418
ADK
246 */
247static int cpufreq_thermal_notifier(struct notifier_block *nb,
5fda7f68 248 unsigned long event, void *data)
02361418
ADK
249{
250 struct cpufreq_policy *policy = data;
251 unsigned long max_freq = 0;
2dcd851f 252 struct cpufreq_cooling_device *cpufreq_dev;
02361418 253
c36cf071 254 switch (event) {
02361418 255
c36cf071
JM
256 case CPUFREQ_ADJUST:
257 mutex_lock(&cooling_cpufreq_lock);
258 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
259 if (!cpumask_test_cpu(policy->cpu,
260 &cpufreq_dev->allowed_cpus))
261 continue;
262
263 max_freq = cpufreq_dev->cpufreq_val;
264
265 if (policy->max != max_freq)
266 cpufreq_verify_within_limits(policy, 0,
267 max_freq);
268 }
269 mutex_unlock(&cooling_cpufreq_lock);
270 break;
271
272 case CPUFREQ_CREATE_POLICY:
273 update_cpu_device(policy->cpu);
274 break;
275 case CPUFREQ_REMOVE_POLICY:
276 remove_cpu_device(policy->cpu);
277 break;
278 default:
279 return NOTIFY_DONE;
280 }
281
282 return NOTIFY_OK;
283}
284
285/**
286 * build_dyn_power_table() - create a dynamic power to frequency table
287 * @cpufreq_device: the cpufreq cooling device in which to store the table
288 * @capacitance: dynamic power coefficient for these cpus
289 *
290 * Build a dynamic power to frequency table for this cpu and store it
291 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
292 * cpu_freq_to_power() to convert between power and frequency
293 * efficiently. Power is stored in mW, frequency in KHz. The
294 * resulting table is in ascending order.
295 *
296 * Return: 0 on success, -E* on error.
297 */
298static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
299 u32 capacitance)
300{
301 struct power_table *power_table;
302 struct dev_pm_opp *opp;
303 struct device *dev = NULL;
304 int num_opps = 0, cpu, i, ret = 0;
305 unsigned long freq;
306
307 rcu_read_lock();
308
309 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
310 dev = get_cpu_device(cpu);
311 if (!dev) {
312 dev_warn(&cpufreq_device->cool_dev->device,
313 "No cpu device for cpu %d\n", cpu);
2dcd851f 314 continue;
c36cf071 315 }
2dcd851f 316
c36cf071
JM
317 num_opps = dev_pm_opp_get_opp_count(dev);
318 if (num_opps > 0) {
319 break;
320 } else if (num_opps < 0) {
321 ret = num_opps;
322 goto unlock;
323 }
324 }
02361418 325
c36cf071
JM
326 if (num_opps == 0) {
327 ret = -EINVAL;
328 goto unlock;
2dcd851f 329 }
02361418 330
c36cf071 331 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
0cdf97e1
JM
332 if (!power_table) {
333 ret = -ENOMEM;
334 goto unlock;
335 }
c36cf071
JM
336
337 for (freq = 0, i = 0;
338 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
339 freq++, i++) {
340 u32 freq_mhz, voltage_mv;
341 u64 power;
342
343 freq_mhz = freq / 1000000;
344 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
345
346 /*
347 * Do the multiplication with MHz and millivolt so as
348 * to not overflow.
349 */
350 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
351 do_div(power, 1000000000);
352
353 /* frequency is stored in power_table in KHz */
354 power_table[i].frequency = freq / 1000;
355
356 /* power is stored in mW */
357 power_table[i].power = power;
358 }
359
360 if (i == 0) {
361 ret = PTR_ERR(opp);
362 goto unlock;
363 }
364
365 cpufreq_device->cpu_dev = dev;
366 cpufreq_device->dyn_power_table = power_table;
367 cpufreq_device->dyn_power_table_entries = i;
368
369unlock:
370 rcu_read_unlock();
371 return ret;
372}
373
374static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
375 u32 freq)
376{
377 int i;
378 struct power_table *pt = cpufreq_device->dyn_power_table;
379
380 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
381 if (freq < pt[i].frequency)
382 break;
383
384 return pt[i - 1].power;
385}
386
387static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
388 u32 power)
389{
390 int i;
391 struct power_table *pt = cpufreq_device->dyn_power_table;
392
393 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
394 if (power < pt[i].power)
395 break;
396
397 return pt[i - 1].frequency;
398}
399
400/**
401 * get_load() - get load for a cpu since last updated
402 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
403 * @cpu: cpu number
404 *
405 * Return: The average load of cpu @cpu in percentage since this
406 * function was last called.
407 */
408static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu)
409{
410 u32 load;
411 u64 now, now_idle, delta_time, delta_idle;
412
413 now_idle = get_cpu_idle_time(cpu, &now, 0);
414 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu];
415 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu];
416
417 if (delta_time <= delta_idle)
418 load = 0;
419 else
420 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
421
422 cpufreq_device->time_in_idle[cpu] = now_idle;
423 cpufreq_device->time_in_idle_timestamp[cpu] = now;
424
425 return load;
426}
427
428/**
429 * get_static_power() - calculate the static power consumed by the cpus
430 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
431 * @tz: thermal zone device in which we're operating
432 * @freq: frequency in KHz
433 * @power: pointer in which to store the calculated static power
434 *
435 * Calculate the static power consumed by the cpus described by
436 * @cpu_actor running at frequency @freq. This function relies on a
437 * platform specific function that should have been provided when the
438 * actor was registered. If it wasn't, the static power is assumed to
439 * be negligible. The calculated static power is stored in @power.
440 *
441 * Return: 0 on success, -E* on failure.
442 */
443static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
444 struct thermal_zone_device *tz, unsigned long freq,
445 u32 *power)
446{
447 struct dev_pm_opp *opp;
448 unsigned long voltage;
449 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
450 unsigned long freq_hz = freq * 1000;
451
452 if (!cpufreq_device->plat_get_static_power ||
453 !cpufreq_device->cpu_dev) {
454 *power = 0;
455 return 0;
456 }
457
458 rcu_read_lock();
459
460 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
461 true);
462 voltage = dev_pm_opp_get_voltage(opp);
463
464 rcu_read_unlock();
465
466 if (voltage == 0) {
467 dev_warn_ratelimited(cpufreq_device->cpu_dev,
468 "Failed to get voltage for frequency %lu: %ld\n",
469 freq_hz, IS_ERR(opp) ? PTR_ERR(opp) : 0);
470 return -EINVAL;
471 }
472
473 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
474 voltage, power);
475}
476
477/**
478 * get_dynamic_power() - calculate the dynamic power
479 * @cpufreq_device: &cpufreq_cooling_device for this cdev
480 * @freq: current frequency
481 *
482 * Return: the dynamic power consumed by the cpus described by
483 * @cpufreq_device.
484 */
485static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
486 unsigned long freq)
487{
488 u32 raw_cpu_power;
489
490 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
491 return (raw_cpu_power * cpufreq_device->last_load) / 100;
02361418
ADK
492}
493
1b9e3526 494/* cpufreq cooling device callback functions are defined below */
02361418
ADK
495
496/**
497 * cpufreq_get_max_state - callback function to get the max cooling state.
498 * @cdev: thermal cooling device pointer.
499 * @state: fill this variable with the max cooling state.
62c00421
EV
500 *
501 * Callback for the thermal cooling device to return the cpufreq
502 * max cooling state.
503 *
504 * Return: 0 on success, an error code otherwise.
02361418
ADK
505 */
506static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
507 unsigned long *state)
508{
160b7d80 509 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
9c51b05a 510
dcc6c7fd
VK
511 *state = cpufreq_device->max_level;
512 return 0;
02361418
ADK
513}
514
515/**
516 * cpufreq_get_cur_state - callback function to get the current cooling state.
517 * @cdev: thermal cooling device pointer.
518 * @state: fill this variable with the current cooling state.
3672552d
EV
519 *
520 * Callback for the thermal cooling device to return the cpufreq
521 * current cooling state.
522 *
523 * Return: 0 on success, an error code otherwise.
02361418
ADK
524 */
525static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
526 unsigned long *state)
527{
160b7d80 528 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
02361418 529
160b7d80 530 *state = cpufreq_device->cpufreq_state;
79491e53 531
160b7d80 532 return 0;
02361418
ADK
533}
534
535/**
536 * cpufreq_set_cur_state - callback function to set the current cooling state.
537 * @cdev: thermal cooling device pointer.
538 * @state: set this variable to the current cooling state.
56e05fdb
EV
539 *
540 * Callback for the thermal cooling device to change the cpufreq
541 * current cooling state.
542 *
543 * Return: 0 on success, an error code otherwise.
02361418
ADK
544 */
545static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
546 unsigned long state)
547{
160b7d80 548 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
5194fe46
VK
549 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
550 unsigned int clip_freq;
4843c4a1
VK
551
552 /* Request state should be less than max_level */
553 if (WARN_ON(state > cpufreq_device->max_level))
554 return -EINVAL;
5194fe46
VK
555
556 /* Check if the old cooling action is same as new cooling action */
557 if (cpufreq_device->cpufreq_state == state)
558 return 0;
02361418 559
4843c4a1 560 clip_freq = cpufreq_device->freq_table[state];
5194fe46
VK
561 cpufreq_device->cpufreq_state = state;
562 cpufreq_device->cpufreq_val = clip_freq;
563
564 cpufreq_update_policy(cpu);
565
566 return 0;
02361418
ADK
567}
568
c36cf071
JM
569/**
570 * cpufreq_get_requested_power() - get the current power
571 * @cdev: &thermal_cooling_device pointer
572 * @tz: a valid thermal zone device pointer
573 * @power: pointer in which to store the resulting power
574 *
575 * Calculate the current power consumption of the cpus in milliwatts
576 * and store it in @power. This function should actually calculate
577 * the requested power, but it's hard to get the frequency that
578 * cpufreq would have assigned if there were no thermal limits.
579 * Instead, we calculate the current power on the assumption that the
580 * immediate future will look like the immediate past.
581 *
582 * We use the current frequency and the average load since this
583 * function was last called. In reality, there could have been
584 * multiple opps since this function was last called and that affects
585 * the load calculation. While it's not perfectly accurate, this
586 * simplification is good enough and works. REVISIT this, as more
587 * complex code may be needed if experiments show that it's not
588 * accurate enough.
589 *
590 * Return: 0 on success, -E* if getting the static power failed.
591 */
592static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
593 struct thermal_zone_device *tz,
594 u32 *power)
595{
596 unsigned long freq;
6828a471 597 int i = 0, cpu, ret;
c36cf071
JM
598 u32 static_power, dynamic_power, total_load = 0;
599 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
6828a471 600 u32 *load_cpu = NULL;
c36cf071
JM
601
602 freq = cpufreq_quick_get(cpumask_any(&cpufreq_device->allowed_cpus));
603
6828a471
JM
604 if (trace_thermal_power_cpu_get_power_enabled()) {
605 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
606
607 load_cpu = devm_kcalloc(&cdev->device, ncpus, sizeof(*load_cpu),
608 GFP_KERNEL);
609 }
610
c36cf071
JM
611 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
612 u32 load;
613
614 if (cpu_online(cpu))
615 load = get_load(cpufreq_device, cpu);
616 else
617 load = 0;
618
619 total_load += load;
6828a471
JM
620 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
621 load_cpu[i] = load;
622
623 i++;
c36cf071
JM
624 }
625
626 cpufreq_device->last_load = total_load;
627
628 dynamic_power = get_dynamic_power(cpufreq_device, freq);
629 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
6828a471
JM
630 if (ret) {
631 if (load_cpu)
632 devm_kfree(&cdev->device, load_cpu);
c36cf071 633 return ret;
6828a471
JM
634 }
635
636 if (load_cpu) {
637 trace_thermal_power_cpu_get_power(
638 &cpufreq_device->allowed_cpus,
639 freq, load_cpu, i, dynamic_power, static_power);
640
641 devm_kfree(&cdev->device, load_cpu);
642 }
c36cf071
JM
643
644 *power = static_power + dynamic_power;
645 return 0;
646}
647
648/**
649 * cpufreq_state2power() - convert a cpu cdev state to power consumed
650 * @cdev: &thermal_cooling_device pointer
651 * @tz: a valid thermal zone device pointer
652 * @state: cooling device state to be converted
653 * @power: pointer in which to store the resulting power
654 *
655 * Convert cooling device state @state into power consumption in
656 * milliwatts assuming 100% load. Store the calculated power in
657 * @power.
658 *
659 * Return: 0 on success, -EINVAL if the cooling device state could not
660 * be converted into a frequency or other -E* if there was an error
661 * when calculating the static power.
662 */
663static int cpufreq_state2power(struct thermal_cooling_device *cdev,
664 struct thermal_zone_device *tz,
665 unsigned long state, u32 *power)
666{
667 unsigned int freq, num_cpus;
668 cpumask_t cpumask;
669 u32 static_power, dynamic_power;
670 int ret;
671 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
672
673 cpumask_and(&cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
674 num_cpus = cpumask_weight(&cpumask);
675
676 /* None of our cpus are online, so no power */
677 if (num_cpus == 0) {
678 *power = 0;
679 return 0;
680 }
681
682 freq = cpufreq_device->freq_table[state];
683 if (!freq)
684 return -EINVAL;
685
686 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
687 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
688 if (ret)
689 return ret;
690
691 *power = static_power + dynamic_power;
692 return 0;
693}
694
695/**
696 * cpufreq_power2state() - convert power to a cooling device state
697 * @cdev: &thermal_cooling_device pointer
698 * @tz: a valid thermal zone device pointer
699 * @power: power in milliwatts to be converted
700 * @state: pointer in which to store the resulting state
701 *
702 * Calculate a cooling device state for the cpus described by @cdev
703 * that would allow them to consume at most @power mW and store it in
704 * @state. Note that this calculation depends on external factors
705 * such as the cpu load or the current static power. Calling this
706 * function with the same power as input can yield different cooling
707 * device states depending on those external factors.
708 *
709 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
710 * the calculated frequency could not be converted to a valid state.
711 * The latter should not happen unless the frequencies available to
712 * cpufreq have changed since the initialization of the cpu cooling
713 * device.
714 */
715static int cpufreq_power2state(struct thermal_cooling_device *cdev,
716 struct thermal_zone_device *tz, u32 power,
717 unsigned long *state)
718{
719 unsigned int cpu, cur_freq, target_freq;
720 int ret;
721 s32 dyn_power;
722 u32 last_load, normalised_power, static_power;
723 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
724
725 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
726
727 /* None of our cpus are online */
728 if (cpu >= nr_cpu_ids)
729 return -ENODEV;
730
731 cur_freq = cpufreq_quick_get(cpu);
732 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
733 if (ret)
734 return ret;
735
736 dyn_power = power - static_power;
737 dyn_power = dyn_power > 0 ? dyn_power : 0;
738 last_load = cpufreq_device->last_load ?: 1;
739 normalised_power = (dyn_power * 100) / last_load;
740 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
741
742 *state = cpufreq_cooling_get_level(cpu, target_freq);
743 if (*state == THERMAL_CSTATE_INVALID) {
744 dev_warn_ratelimited(&cdev->device,
745 "Failed to convert %dKHz for cpu %d into a cdev state\n",
746 target_freq, cpu);
747 return -EINVAL;
748 }
749
6828a471
JM
750 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
751 target_freq, *state, power);
c36cf071
JM
752 return 0;
753}
754
02361418 755/* Bind cpufreq callbacks to thermal cooling device ops */
c36cf071 756static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
02361418
ADK
757 .get_max_state = cpufreq_get_max_state,
758 .get_cur_state = cpufreq_get_cur_state,
759 .set_cur_state = cpufreq_set_cur_state,
760};
761
762/* Notifier for cpufreq policy change */
763static struct notifier_block thermal_cpufreq_notifier_block = {
764 .notifier_call = cpufreq_thermal_notifier,
765};
766
f6859014
VK
767static unsigned int find_next_max(struct cpufreq_frequency_table *table,
768 unsigned int prev_max)
769{
770 struct cpufreq_frequency_table *pos;
771 unsigned int max = 0;
772
773 cpufreq_for_each_valid_entry(pos, table) {
774 if (pos->frequency > max && pos->frequency < prev_max)
775 max = pos->frequency;
776 }
777
778 return max;
779}
780
02361418 781/**
39d99cff
EV
782 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
783 * @np: a valid struct device_node to the cooling device device tree node
02361418 784 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
405fb825 785 * Normally this should be same as cpufreq policy->related_cpus.
c36cf071
JM
786 * @capacitance: dynamic power coefficient for these cpus
787 * @plat_static_func: function to calculate the static power consumed by these
788 * cpus (optional)
12cb08ba
EV
789 *
790 * This interface function registers the cpufreq cooling device with the name
791 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
792 * cooling devices. It also gives the opportunity to link the cooling device
793 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
794 *
795 * Return: a valid struct thermal_cooling_device pointer on success,
796 * on failure, it returns a corresponding ERR_PTR().
02361418 797 */
39d99cff
EV
798static struct thermal_cooling_device *
799__cpufreq_cooling_register(struct device_node *np,
c36cf071
JM
800 const struct cpumask *clip_cpus, u32 capacitance,
801 get_static_t plat_static_func)
02361418
ADK
802{
803 struct thermal_cooling_device *cool_dev;
5d3bdb89 804 struct cpufreq_cooling_device *cpufreq_dev;
02361418 805 char dev_name[THERMAL_NAME_LENGTH];
dcc6c7fd 806 struct cpufreq_frequency_table *pos, *table;
c36cf071 807 unsigned int freq, i, num_cpus;
405fb825 808 int ret;
02361418 809
dcc6c7fd
VK
810 table = cpufreq_frequency_get_table(cpumask_first(clip_cpus));
811 if (!table) {
0f1be51c
EV
812 pr_debug("%s: CPUFreq table not found\n", __func__);
813 return ERR_PTR(-EPROBE_DEFER);
02361418 814 }
0f1be51c 815
98d522f0 816 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
02361418
ADK
817 if (!cpufreq_dev)
818 return ERR_PTR(-ENOMEM);
819
c36cf071
JM
820 num_cpus = cpumask_weight(clip_cpus);
821 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
822 sizeof(*cpufreq_dev->time_in_idle),
823 GFP_KERNEL);
824 if (!cpufreq_dev->time_in_idle) {
825 cool_dev = ERR_PTR(-ENOMEM);
826 goto free_cdev;
827 }
828
829 cpufreq_dev->time_in_idle_timestamp =
830 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
831 GFP_KERNEL);
832 if (!cpufreq_dev->time_in_idle_timestamp) {
833 cool_dev = ERR_PTR(-ENOMEM);
834 goto free_time_in_idle;
835 }
836
dcc6c7fd
VK
837 /* Find max levels */
838 cpufreq_for_each_valid_entry(pos, table)
839 cpufreq_dev->max_level++;
840
f6859014
VK
841 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
842 cpufreq_dev->max_level, GFP_KERNEL);
843 if (!cpufreq_dev->freq_table) {
f6859014 844 cool_dev = ERR_PTR(-ENOMEM);
c36cf071 845 goto free_time_in_idle_timestamp;
f6859014
VK
846 }
847
dcc6c7fd
VK
848 /* max_level is an index, not a counter */
849 cpufreq_dev->max_level--;
850
02361418
ADK
851 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
852
c36cf071
JM
853 if (capacitance) {
854 cpufreq_cooling_ops.get_requested_power =
855 cpufreq_get_requested_power;
856 cpufreq_cooling_ops.state2power = cpufreq_state2power;
857 cpufreq_cooling_ops.power2state = cpufreq_power2state;
858 cpufreq_dev->plat_get_static_power = plat_static_func;
859
860 ret = build_dyn_power_table(cpufreq_dev, capacitance);
861 if (ret) {
862 cool_dev = ERR_PTR(ret);
863 goto free_table;
864 }
865 }
866
02361418
ADK
867 ret = get_idr(&cpufreq_idr, &cpufreq_dev->id);
868 if (ret) {
730abe06 869 cool_dev = ERR_PTR(ret);
f6859014 870 goto free_table;
02361418
ADK
871 }
872
99871a71
EV
873 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
874 cpufreq_dev->id);
02361418 875
39d99cff
EV
876 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
877 &cpufreq_cooling_ops);
730abe06
VK
878 if (IS_ERR(cool_dev))
879 goto remove_idr;
880
f6859014
VK
881 /* Fill freq-table in descending order of frequencies */
882 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
883 freq = find_next_max(table, freq);
884 cpufreq_dev->freq_table[i] = freq;
885
886 /* Warn for duplicate entries */
887 if (!freq)
888 pr_warn("%s: table has duplicate entries\n", __func__);
889 else
890 pr_debug("%s: freq:%u KHz\n", __func__, freq);
02361418 891 }
f6859014 892
4843c4a1 893 cpufreq_dev->cpufreq_val = cpufreq_dev->freq_table[0];
02361418 894 cpufreq_dev->cool_dev = cool_dev;
92e615ec 895
02361418 896 mutex_lock(&cooling_cpufreq_lock);
02361418
ADK
897
898 /* Register the notifier for first cpufreq cooling device */
2479bb64 899 if (list_empty(&cpufreq_dev_list))
02361418 900 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 901 CPUFREQ_POLICY_NOTIFIER);
2dcd851f 902 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
02361418
ADK
903
904 mutex_unlock(&cooling_cpufreq_lock);
79491e53 905
730abe06
VK
906 return cool_dev;
907
908remove_idr:
909 release_idr(&cpufreq_idr, cpufreq_dev->id);
f6859014
VK
910free_table:
911 kfree(cpufreq_dev->freq_table);
c36cf071
JM
912free_time_in_idle_timestamp:
913 kfree(cpufreq_dev->time_in_idle_timestamp);
914free_time_in_idle:
915 kfree(cpufreq_dev->time_in_idle);
730abe06
VK
916free_cdev:
917 kfree(cpufreq_dev);
918
02361418
ADK
919 return cool_dev;
920}
39d99cff
EV
921
922/**
923 * cpufreq_cooling_register - function to create cpufreq cooling device.
924 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
925 *
926 * This interface function registers the cpufreq cooling device with the name
927 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
928 * cooling devices.
929 *
930 * Return: a valid struct thermal_cooling_device pointer on success,
931 * on failure, it returns a corresponding ERR_PTR().
932 */
933struct thermal_cooling_device *
934cpufreq_cooling_register(const struct cpumask *clip_cpus)
935{
c36cf071 936 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
39d99cff 937}
243dbd9c 938EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 939
39d99cff
EV
940/**
941 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
942 * @np: a valid struct device_node to the cooling device device tree node
943 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
944 *
945 * This interface function registers the cpufreq cooling device with the name
946 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
947 * cooling devices. Using this API, the cpufreq cooling device will be
948 * linked to the device tree node provided.
949 *
950 * Return: a valid struct thermal_cooling_device pointer on success,
951 * on failure, it returns a corresponding ERR_PTR().
952 */
953struct thermal_cooling_device *
954of_cpufreq_cooling_register(struct device_node *np,
955 const struct cpumask *clip_cpus)
956{
957 if (!np)
958 return ERR_PTR(-EINVAL);
959
c36cf071 960 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
39d99cff
EV
961}
962EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
963
c36cf071
JM
964/**
965 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
966 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
967 * @capacitance: dynamic power coefficient for these cpus
968 * @plat_static_func: function to calculate the static power consumed by these
969 * cpus (optional)
970 *
971 * This interface function registers the cpufreq cooling device with
972 * the name "thermal-cpufreq-%x". This api can support multiple
973 * instances of cpufreq cooling devices. Using this function, the
974 * cooling device will implement the power extensions by using a
975 * simple cpu power model. The cpus must have registered their OPPs
976 * using the OPP library.
977 *
978 * An optional @plat_static_func may be provided to calculate the
979 * static power consumed by these cpus. If the platform's static
980 * power consumption is unknown or negligible, make it NULL.
981 *
982 * Return: a valid struct thermal_cooling_device pointer on success,
983 * on failure, it returns a corresponding ERR_PTR().
984 */
985struct thermal_cooling_device *
986cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
987 get_static_t plat_static_func)
988{
989 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
990 plat_static_func);
991}
992EXPORT_SYMBOL(cpufreq_power_cooling_register);
993
994/**
995 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
996 * @np: a valid struct device_node to the cooling device device tree node
997 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
998 * @capacitance: dynamic power coefficient for these cpus
999 * @plat_static_func: function to calculate the static power consumed by these
1000 * cpus (optional)
1001 *
1002 * This interface function registers the cpufreq cooling device with
1003 * the name "thermal-cpufreq-%x". This api can support multiple
1004 * instances of cpufreq cooling devices. Using this API, the cpufreq
1005 * cooling device will be linked to the device tree node provided.
1006 * Using this function, the cooling device will implement the power
1007 * extensions by using a simple cpu power model. The cpus must have
1008 * registered their OPPs using the OPP library.
1009 *
1010 * An optional @plat_static_func may be provided to calculate the
1011 * static power consumed by these cpus. If the platform's static
1012 * power consumption is unknown or negligible, make it NULL.
1013 *
1014 * Return: a valid struct thermal_cooling_device pointer on success,
1015 * on failure, it returns a corresponding ERR_PTR().
1016 */
1017struct thermal_cooling_device *
1018of_cpufreq_power_cooling_register(struct device_node *np,
1019 const struct cpumask *clip_cpus,
1020 u32 capacitance,
1021 get_static_t plat_static_func)
1022{
1023 if (!np)
1024 return ERR_PTR(-EINVAL);
1025
1026 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1027 plat_static_func);
1028}
1029EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1030
02361418
ADK
1031/**
1032 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1033 * @cdev: thermal cooling device pointer.
135266b4
EV
1034 *
1035 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
1036 */
1037void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1038{
50e66c7e 1039 struct cpufreq_cooling_device *cpufreq_dev;
02361418 1040
50e66c7e
EV
1041 if (!cdev)
1042 return;
1043
1044 cpufreq_dev = cdev->devdata;
02361418 1045 mutex_lock(&cooling_cpufreq_lock);
2dcd851f 1046 list_del(&cpufreq_dev->node);
02361418
ADK
1047
1048 /* Unregister the notifier for the last cpufreq cooling device */
2479bb64 1049 if (list_empty(&cpufreq_dev_list))
02361418 1050 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 1051 CPUFREQ_POLICY_NOTIFIER);
02361418 1052 mutex_unlock(&cooling_cpufreq_lock);
160b7d80 1053
02361418
ADK
1054 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1055 release_idr(&cpufreq_idr, cpufreq_dev->id);
c36cf071
JM
1056 kfree(cpufreq_dev->time_in_idle_timestamp);
1057 kfree(cpufreq_dev->time_in_idle);
f6859014 1058 kfree(cpufreq_dev->freq_table);
02361418
ADK
1059 kfree(cpufreq_dev);
1060}
243dbd9c 1061EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);
This page took 0.227582 seconds and 5 git commands to generate.