USB: export the new ch11.h file to userspce
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
29
0ebbab37
SS
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
326b4810 44 return NULL;
700e2052 45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
0ebbab37
SS
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
326b4810 50 return NULL;
0ebbab37 51 }
700e2052
GKH
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
0ebbab37
SS
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60}
61
62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63{
64 if (!seg)
65 return;
66 if (seg->trbs) {
700e2052
GKH
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
0ebbab37
SS
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
700e2052 72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
0ebbab37
SS
73 kfree(seg);
74}
75
76/*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85{
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
8e595a5d 92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
0ebbab37
SS
93
94 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96 val &= ~TRB_TYPE_BITMASK;
97 val |= TRB_TYPE(TRB_LINK);
b0567b3f
SS
98 /* Always set the chain bit with 0.95 hardware */
99 if (xhci_link_trb_quirk(xhci))
100 val |= TRB_CHAIN;
0ebbab37
SS
101 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102 }
700e2052
GKH
103 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104 (unsigned long long)prev->dma,
105 (unsigned long long)next->dma);
0ebbab37
SS
106}
107
108/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 109void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37
SS
110{
111 struct xhci_segment *seg;
112 struct xhci_segment *first_seg;
113
114 if (!ring || !ring->first_seg)
115 return;
116 first_seg = ring->first_seg;
117 seg = first_seg->next;
700e2052 118 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
0ebbab37
SS
119 while (seg != first_seg) {
120 struct xhci_segment *next = seg->next;
121 xhci_segment_free(xhci, seg);
122 seg = next;
123 }
124 xhci_segment_free(xhci, first_seg);
125 ring->first_seg = NULL;
126 kfree(ring);
127}
128
74f9fe21
SS
129static void xhci_initialize_ring_info(struct xhci_ring *ring)
130{
131 /* The ring is empty, so the enqueue pointer == dequeue pointer */
132 ring->enqueue = ring->first_seg->trbs;
133 ring->enq_seg = ring->first_seg;
134 ring->dequeue = ring->enqueue;
135 ring->deq_seg = ring->first_seg;
136 /* The ring is initialized to 0. The producer must write 1 to the cycle
137 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
138 * compare CCS to the cycle bit to check ownership, so CCS = 1.
139 */
140 ring->cycle_state = 1;
141 /* Not necessary for new rings, but needed for re-initialized rings */
142 ring->enq_updates = 0;
143 ring->deq_updates = 0;
144}
145
0ebbab37
SS
146/**
147 * Create a new ring with zero or more segments.
148 *
149 * Link each segment together into a ring.
150 * Set the end flag and the cycle toggle bit on the last segment.
151 * See section 4.9.1 and figures 15 and 16.
152 */
153static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154 unsigned int num_segs, bool link_trbs, gfp_t flags)
155{
156 struct xhci_ring *ring;
157 struct xhci_segment *prev;
158
159 ring = kzalloc(sizeof *(ring), flags);
700e2052 160 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
0ebbab37 161 if (!ring)
326b4810 162 return NULL;
0ebbab37 163
d0e96f5a 164 INIT_LIST_HEAD(&ring->td_list);
0ebbab37
SS
165 if (num_segs == 0)
166 return ring;
167
168 ring->first_seg = xhci_segment_alloc(xhci, flags);
169 if (!ring->first_seg)
170 goto fail;
171 num_segs--;
172
173 prev = ring->first_seg;
174 while (num_segs > 0) {
175 struct xhci_segment *next;
176
177 next = xhci_segment_alloc(xhci, flags);
178 if (!next)
179 goto fail;
180 xhci_link_segments(xhci, prev, next, link_trbs);
181
182 prev = next;
183 num_segs--;
184 }
185 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187 if (link_trbs) {
188 /* See section 4.9.2.1 and 6.4.4.1 */
189 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190 xhci_dbg(xhci, "Wrote link toggle flag to"
700e2052
GKH
191 " segment %p (virtual), 0x%llx (DMA)\n",
192 prev, (unsigned long long)prev->dma);
0ebbab37 193 }
74f9fe21 194 xhci_initialize_ring_info(ring);
0ebbab37
SS
195 return ring;
196
197fail:
198 xhci_ring_free(xhci, ring);
326b4810 199 return NULL;
0ebbab37
SS
200}
201
412566bd
SS
202void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203 struct xhci_virt_device *virt_dev,
204 unsigned int ep_index)
205{
206 int rings_cached;
207
208 rings_cached = virt_dev->num_rings_cached;
209 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210 virt_dev->num_rings_cached++;
211 rings_cached = virt_dev->num_rings_cached;
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 xhci_dbg(xhci, "Cached old ring, "
215 "%d ring%s cached\n",
216 rings_cached,
217 (rings_cached > 1) ? "s" : "");
218 } else {
219 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220 xhci_dbg(xhci, "Ring cache full (%d rings), "
221 "freeing ring\n",
222 virt_dev->num_rings_cached);
223 }
224 virt_dev->eps[ep_index].ring = NULL;
225}
226
74f9fe21
SS
227/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228 * pointers to the beginning of the ring.
229 */
230static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231 struct xhci_ring *ring)
232{
233 struct xhci_segment *seg = ring->first_seg;
234 do {
235 memset(seg->trbs, 0,
236 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237 /* All endpoint rings have link TRBs */
238 xhci_link_segments(xhci, seg, seg->next, 1);
239 seg = seg->next;
240 } while (seg != ring->first_seg);
241 xhci_initialize_ring_info(ring);
242 /* td list should be empty since all URBs have been cancelled,
243 * but just in case...
244 */
245 INIT_LIST_HEAD(&ring->td_list);
246}
247
d115b048
JY
248#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
326b4810 250static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
251 int type, gfp_t flags)
252{
253 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254 if (!ctx)
255 return NULL;
256
257 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258 ctx->type = type;
259 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260 if (type == XHCI_CTX_TYPE_INPUT)
261 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264 memset(ctx->bytes, 0, ctx->size);
265 return ctx;
266}
267
326b4810 268static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
269 struct xhci_container_ctx *ctx)
270{
a1d78c16
SS
271 if (!ctx)
272 return;
d115b048
JY
273 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274 kfree(ctx);
275}
276
277struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278 struct xhci_container_ctx *ctx)
279{
280 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281 return (struct xhci_input_control_ctx *)ctx->bytes;
282}
283
284struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285 struct xhci_container_ctx *ctx)
286{
287 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288 return (struct xhci_slot_ctx *)ctx->bytes;
289
290 return (struct xhci_slot_ctx *)
291 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292}
293
294struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295 struct xhci_container_ctx *ctx,
296 unsigned int ep_index)
297{
298 /* increment ep index by offset of start of ep ctx array */
299 ep_index++;
300 if (ctx->type == XHCI_CTX_TYPE_INPUT)
301 ep_index++;
302
303 return (struct xhci_ep_ctx *)
304 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305}
306
8df75f42
SS
307
308/***************** Streams structures manipulation *************************/
309
310void xhci_free_stream_ctx(struct xhci_hcd *xhci,
311 unsigned int num_stream_ctxs,
312 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
313{
314 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
315
316 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
317 pci_free_consistent(pdev,
318 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
319 stream_ctx, dma);
320 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
321 return dma_pool_free(xhci->small_streams_pool,
322 stream_ctx, dma);
323 else
324 return dma_pool_free(xhci->medium_streams_pool,
325 stream_ctx, dma);
326}
327
328/*
329 * The stream context array for each endpoint with bulk streams enabled can
330 * vary in size, based on:
331 * - how many streams the endpoint supports,
332 * - the maximum primary stream array size the host controller supports,
333 * - and how many streams the device driver asks for.
334 *
335 * The stream context array must be a power of 2, and can be as small as
336 * 64 bytes or as large as 1MB.
337 */
338struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
339 unsigned int num_stream_ctxs, dma_addr_t *dma,
340 gfp_t mem_flags)
341{
342 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
343
344 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
345 return pci_alloc_consistent(pdev,
346 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
347 dma);
348 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
349 return dma_pool_alloc(xhci->small_streams_pool,
350 mem_flags, dma);
351 else
352 return dma_pool_alloc(xhci->medium_streams_pool,
353 mem_flags, dma);
354}
355
e9df17eb
SS
356struct xhci_ring *xhci_dma_to_transfer_ring(
357 struct xhci_virt_ep *ep,
358 u64 address)
359{
360 if (ep->ep_state & EP_HAS_STREAMS)
361 return radix_tree_lookup(&ep->stream_info->trb_address_map,
362 address >> SEGMENT_SHIFT);
363 return ep->ring;
364}
365
366/* Only use this when you know stream_info is valid */
8df75f42 367#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
e9df17eb 368static struct xhci_ring *dma_to_stream_ring(
8df75f42
SS
369 struct xhci_stream_info *stream_info,
370 u64 address)
371{
372 return radix_tree_lookup(&stream_info->trb_address_map,
373 address >> SEGMENT_SHIFT);
374}
375#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
376
e9df17eb
SS
377struct xhci_ring *xhci_stream_id_to_ring(
378 struct xhci_virt_device *dev,
379 unsigned int ep_index,
380 unsigned int stream_id)
381{
382 struct xhci_virt_ep *ep = &dev->eps[ep_index];
383
384 if (stream_id == 0)
385 return ep->ring;
386 if (!ep->stream_info)
387 return NULL;
388
389 if (stream_id > ep->stream_info->num_streams)
390 return NULL;
391 return ep->stream_info->stream_rings[stream_id];
392}
393
394struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
395 unsigned int slot_id, unsigned int ep_index,
396 unsigned int stream_id)
397{
398 struct xhci_virt_ep *ep;
399
400 ep = &xhci->devs[slot_id]->eps[ep_index];
401 /* Common case: no streams */
402 if (!(ep->ep_state & EP_HAS_STREAMS))
403 return ep->ring;
404
405 if (stream_id == 0) {
406 xhci_warn(xhci,
407 "WARN: Slot ID %u, ep index %u has streams, "
408 "but URB has no stream ID.\n",
409 slot_id, ep_index);
410 return NULL;
411 }
412
413 if (stream_id < ep->stream_info->num_streams)
414 return ep->stream_info->stream_rings[stream_id];
415
416 xhci_warn(xhci,
417 "WARN: Slot ID %u, ep index %u has "
418 "stream IDs 1 to %u allocated, "
419 "but stream ID %u is requested.\n",
420 slot_id, ep_index,
421 ep->stream_info->num_streams - 1,
422 stream_id);
423 return NULL;
424}
425
426/* Get the right ring for the given URB.
427 * If the endpoint supports streams, boundary check the URB's stream ID.
428 * If the endpoint doesn't support streams, return the singular endpoint ring.
429 */
430struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
431 struct urb *urb)
432{
433 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
434 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
435}
436
8df75f42
SS
437#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
438static int xhci_test_radix_tree(struct xhci_hcd *xhci,
439 unsigned int num_streams,
440 struct xhci_stream_info *stream_info)
441{
442 u32 cur_stream;
443 struct xhci_ring *cur_ring;
444 u64 addr;
445
446 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
447 struct xhci_ring *mapped_ring;
448 int trb_size = sizeof(union xhci_trb);
449
450 cur_ring = stream_info->stream_rings[cur_stream];
451 for (addr = cur_ring->first_seg->dma;
452 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
453 addr += trb_size) {
454 mapped_ring = dma_to_stream_ring(stream_info, addr);
455 if (cur_ring != mapped_ring) {
456 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
457 "didn't map to stream ID %u; "
458 "mapped to ring %p\n",
459 (unsigned long long) addr,
460 cur_stream,
461 mapped_ring);
462 return -EINVAL;
463 }
464 }
465 /* One TRB after the end of the ring segment shouldn't return a
466 * pointer to the current ring (although it may be a part of a
467 * different ring).
468 */
469 mapped_ring = dma_to_stream_ring(stream_info, addr);
470 if (mapped_ring != cur_ring) {
471 /* One TRB before should also fail */
472 addr = cur_ring->first_seg->dma - trb_size;
473 mapped_ring = dma_to_stream_ring(stream_info, addr);
474 }
475 if (mapped_ring == cur_ring) {
476 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
477 "mapped to valid stream ID %u; "
478 "mapped ring = %p\n",
479 (unsigned long long) addr,
480 cur_stream,
481 mapped_ring);
482 return -EINVAL;
483 }
484 }
485 return 0;
486}
487#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
488
489/*
490 * Change an endpoint's internal structure so it supports stream IDs. The
491 * number of requested streams includes stream 0, which cannot be used by device
492 * drivers.
493 *
494 * The number of stream contexts in the stream context array may be bigger than
495 * the number of streams the driver wants to use. This is because the number of
496 * stream context array entries must be a power of two.
497 *
498 * We need a radix tree for mapping physical addresses of TRBs to which stream
499 * ID they belong to. We need to do this because the host controller won't tell
500 * us which stream ring the TRB came from. We could store the stream ID in an
501 * event data TRB, but that doesn't help us for the cancellation case, since the
502 * endpoint may stop before it reaches that event data TRB.
503 *
504 * The radix tree maps the upper portion of the TRB DMA address to a ring
505 * segment that has the same upper portion of DMA addresses. For example, say I
506 * have segments of size 1KB, that are always 64-byte aligned. A segment may
507 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
508 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
509 * pass the radix tree a key to get the right stream ID:
510 *
511 * 0x10c90fff >> 10 = 0x43243
512 * 0x10c912c0 >> 10 = 0x43244
513 * 0x10c91400 >> 10 = 0x43245
514 *
515 * Obviously, only those TRBs with DMA addresses that are within the segment
516 * will make the radix tree return the stream ID for that ring.
517 *
518 * Caveats for the radix tree:
519 *
520 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
521 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
522 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
523 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
524 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
525 * extended systems (where the DMA address can be bigger than 32-bits),
526 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
527 */
528struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
529 unsigned int num_stream_ctxs,
530 unsigned int num_streams, gfp_t mem_flags)
531{
532 struct xhci_stream_info *stream_info;
533 u32 cur_stream;
534 struct xhci_ring *cur_ring;
535 unsigned long key;
536 u64 addr;
537 int ret;
538
539 xhci_dbg(xhci, "Allocating %u streams and %u "
540 "stream context array entries.\n",
541 num_streams, num_stream_ctxs);
542 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
543 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
544 return NULL;
545 }
546 xhci->cmd_ring_reserved_trbs++;
547
548 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
549 if (!stream_info)
550 goto cleanup_trbs;
551
552 stream_info->num_streams = num_streams;
553 stream_info->num_stream_ctxs = num_stream_ctxs;
554
555 /* Initialize the array of virtual pointers to stream rings. */
556 stream_info->stream_rings = kzalloc(
557 sizeof(struct xhci_ring *)*num_streams,
558 mem_flags);
559 if (!stream_info->stream_rings)
560 goto cleanup_info;
561
562 /* Initialize the array of DMA addresses for stream rings for the HW. */
563 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
564 num_stream_ctxs, &stream_info->ctx_array_dma,
565 mem_flags);
566 if (!stream_info->stream_ctx_array)
567 goto cleanup_ctx;
568 memset(stream_info->stream_ctx_array, 0,
569 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
570
571 /* Allocate everything needed to free the stream rings later */
572 stream_info->free_streams_command =
573 xhci_alloc_command(xhci, true, true, mem_flags);
574 if (!stream_info->free_streams_command)
575 goto cleanup_ctx;
576
577 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
578
579 /* Allocate rings for all the streams that the driver will use,
580 * and add their segment DMA addresses to the radix tree.
581 * Stream 0 is reserved.
582 */
583 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
584 stream_info->stream_rings[cur_stream] =
585 xhci_ring_alloc(xhci, 1, true, mem_flags);
586 cur_ring = stream_info->stream_rings[cur_stream];
587 if (!cur_ring)
588 goto cleanup_rings;
e9df17eb 589 cur_ring->stream_id = cur_stream;
8df75f42
SS
590 /* Set deq ptr, cycle bit, and stream context type */
591 addr = cur_ring->first_seg->dma |
592 SCT_FOR_CTX(SCT_PRI_TR) |
593 cur_ring->cycle_state;
594 stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
595 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
596 cur_stream, (unsigned long long) addr);
597
598 key = (unsigned long)
599 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
600 ret = radix_tree_insert(&stream_info->trb_address_map,
601 key, cur_ring);
602 if (ret) {
603 xhci_ring_free(xhci, cur_ring);
604 stream_info->stream_rings[cur_stream] = NULL;
605 goto cleanup_rings;
606 }
607 }
608 /* Leave the other unused stream ring pointers in the stream context
609 * array initialized to zero. This will cause the xHC to give us an
610 * error if the device asks for a stream ID we don't have setup (if it
611 * was any other way, the host controller would assume the ring is
612 * "empty" and wait forever for data to be queued to that stream ID).
613 */
614#if XHCI_DEBUG
615 /* Do a little test on the radix tree to make sure it returns the
616 * correct values.
617 */
618 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
619 goto cleanup_rings;
620#endif
621
622 return stream_info;
623
624cleanup_rings:
625 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
626 cur_ring = stream_info->stream_rings[cur_stream];
627 if (cur_ring) {
628 addr = cur_ring->first_seg->dma;
629 radix_tree_delete(&stream_info->trb_address_map,
630 addr >> SEGMENT_SHIFT);
631 xhci_ring_free(xhci, cur_ring);
632 stream_info->stream_rings[cur_stream] = NULL;
633 }
634 }
635 xhci_free_command(xhci, stream_info->free_streams_command);
636cleanup_ctx:
637 kfree(stream_info->stream_rings);
638cleanup_info:
639 kfree(stream_info);
640cleanup_trbs:
641 xhci->cmd_ring_reserved_trbs--;
642 return NULL;
643}
644/*
645 * Sets the MaxPStreams field and the Linear Stream Array field.
646 * Sets the dequeue pointer to the stream context array.
647 */
648void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
649 struct xhci_ep_ctx *ep_ctx,
650 struct xhci_stream_info *stream_info)
651{
652 u32 max_primary_streams;
653 /* MaxPStreams is the number of stream context array entries, not the
654 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
655 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
656 */
657 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
658 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
659 1 << (max_primary_streams + 1));
660 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
661 ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
662 ep_ctx->ep_info |= EP_HAS_LSA;
663 ep_ctx->deq = stream_info->ctx_array_dma;
664}
665
666/*
667 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
668 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
669 * not at the beginning of the ring).
670 */
671void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
672 struct xhci_ep_ctx *ep_ctx,
673 struct xhci_virt_ep *ep)
674{
675 dma_addr_t addr;
676 ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
677 ep_ctx->ep_info &= ~EP_HAS_LSA;
678 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
679 ep_ctx->deq = addr | ep->ring->cycle_state;
680}
681
682/* Frees all stream contexts associated with the endpoint,
683 *
684 * Caller should fix the endpoint context streams fields.
685 */
686void xhci_free_stream_info(struct xhci_hcd *xhci,
687 struct xhci_stream_info *stream_info)
688{
689 int cur_stream;
690 struct xhci_ring *cur_ring;
691 dma_addr_t addr;
692
693 if (!stream_info)
694 return;
695
696 for (cur_stream = 1; cur_stream < stream_info->num_streams;
697 cur_stream++) {
698 cur_ring = stream_info->stream_rings[cur_stream];
699 if (cur_ring) {
700 addr = cur_ring->first_seg->dma;
701 radix_tree_delete(&stream_info->trb_address_map,
702 addr >> SEGMENT_SHIFT);
703 xhci_ring_free(xhci, cur_ring);
704 stream_info->stream_rings[cur_stream] = NULL;
705 }
706 }
707 xhci_free_command(xhci, stream_info->free_streams_command);
708 xhci->cmd_ring_reserved_trbs--;
709 if (stream_info->stream_ctx_array)
710 xhci_free_stream_ctx(xhci,
711 stream_info->num_stream_ctxs,
712 stream_info->stream_ctx_array,
713 stream_info->ctx_array_dma);
714
715 if (stream_info)
716 kfree(stream_info->stream_rings);
717 kfree(stream_info);
718}
719
720
721/***************** Device context manipulation *************************/
722
6f5165cf
SS
723static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
724 struct xhci_virt_ep *ep)
725{
726 init_timer(&ep->stop_cmd_timer);
727 ep->stop_cmd_timer.data = (unsigned long) ep;
728 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
729 ep->xhci = xhci;
730}
731
d0e96f5a 732/* All the xhci_tds in the ring's TD list should be freed at this point */
3ffbba95
SS
733void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
734{
735 struct xhci_virt_device *dev;
736 int i;
737
738 /* Slot ID 0 is reserved */
739 if (slot_id == 0 || !xhci->devs[slot_id])
740 return;
741
742 dev = xhci->devs[slot_id];
8e595a5d 743 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
744 if (!dev)
745 return;
746
8df75f42 747 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
748 if (dev->eps[i].ring)
749 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
750 if (dev->eps[i].stream_info)
751 xhci_free_stream_info(xhci,
752 dev->eps[i].stream_info);
753 }
3ffbba95 754
74f9fe21
SS
755 if (dev->ring_cache) {
756 for (i = 0; i < dev->num_rings_cached; i++)
757 xhci_ring_free(xhci, dev->ring_cache[i]);
758 kfree(dev->ring_cache);
759 }
760
3ffbba95 761 if (dev->in_ctx)
d115b048 762 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 763 if (dev->out_ctx)
d115b048
JY
764 xhci_free_container_ctx(xhci, dev->out_ctx);
765
3ffbba95 766 kfree(xhci->devs[slot_id]);
326b4810 767 xhci->devs[slot_id] = NULL;
3ffbba95
SS
768}
769
770int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
771 struct usb_device *udev, gfp_t flags)
772{
3ffbba95 773 struct xhci_virt_device *dev;
63a0d9ab 774 int i;
3ffbba95
SS
775
776 /* Slot ID 0 is reserved */
777 if (slot_id == 0 || xhci->devs[slot_id]) {
778 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
779 return 0;
780 }
781
782 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
783 if (!xhci->devs[slot_id])
784 return 0;
785 dev = xhci->devs[slot_id];
786
d115b048
JY
787 /* Allocate the (output) device context that will be used in the HC. */
788 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
789 if (!dev->out_ctx)
790 goto fail;
d115b048 791
700e2052 792 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 793 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
794
795 /* Allocate the (input) device context for address device command */
d115b048 796 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
797 if (!dev->in_ctx)
798 goto fail;
d115b048 799
700e2052 800 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 801 (unsigned long long)dev->in_ctx->dma);
3ffbba95 802
6f5165cf
SS
803 /* Initialize the cancellation list and watchdog timers for each ep */
804 for (i = 0; i < 31; i++) {
805 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 806 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
6f5165cf 807 }
63a0d9ab 808
3ffbba95 809 /* Allocate endpoint 0 ring */
63a0d9ab
SS
810 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
811 if (!dev->eps[0].ring)
3ffbba95
SS
812 goto fail;
813
74f9fe21
SS
814 /* Allocate pointers to the ring cache */
815 dev->ring_cache = kzalloc(
816 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
817 flags);
818 if (!dev->ring_cache)
819 goto fail;
820 dev->num_rings_cached = 0;
821
f94e0186 822 init_completion(&dev->cmd_completion);
913a8a34 823 INIT_LIST_HEAD(&dev->cmd_list);
f94e0186 824
28c2d2ef 825 /* Point to output device context in dcbaa. */
d115b048 826 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
700e2052 827 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
3ffbba95 828 slot_id,
8e595a5d 829 &xhci->dcbaa->dev_context_ptrs[slot_id],
28c2d2ef 830 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
3ffbba95
SS
831
832 return 1;
833fail:
834 xhci_free_virt_device(xhci, slot_id);
835 return 0;
836}
837
838/* Setup an xHCI virtual device for a Set Address command */
839int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
840{
841 struct xhci_virt_device *dev;
842 struct xhci_ep_ctx *ep0_ctx;
843 struct usb_device *top_dev;
d115b048
JY
844 struct xhci_slot_ctx *slot_ctx;
845 struct xhci_input_control_ctx *ctrl_ctx;
3ffbba95
SS
846
847 dev = xhci->devs[udev->slot_id];
848 /* Slot ID 0 is reserved */
849 if (udev->slot_id == 0 || !dev) {
850 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
851 udev->slot_id);
852 return -EINVAL;
853 }
d115b048
JY
854 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
855 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
856 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95
SS
857
858 /* 2) New slot context and endpoint 0 context are valid*/
d115b048 859 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
3ffbba95
SS
860
861 /* 3) Only the control endpoint is valid - one endpoint context */
d115b048 862 slot_ctx->dev_info |= LAST_CTX(1);
3ffbba95 863
4a0cd967 864 slot_ctx->dev_info |= (u32) udev->route;
3ffbba95
SS
865 switch (udev->speed) {
866 case USB_SPEED_SUPER:
d115b048 867 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
3ffbba95
SS
868 break;
869 case USB_SPEED_HIGH:
d115b048 870 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
3ffbba95
SS
871 break;
872 case USB_SPEED_FULL:
d115b048 873 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
3ffbba95
SS
874 break;
875 case USB_SPEED_LOW:
d115b048 876 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
3ffbba95 877 break;
551cdbbe 878 case USB_SPEED_WIRELESS:
3ffbba95
SS
879 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
880 return -EINVAL;
881 break;
882 default:
883 /* Speed was set earlier, this shouldn't happen. */
884 BUG();
885 }
886 /* Find the root hub port this device is under */
887 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
888 top_dev = top_dev->parent)
889 /* Found device below root hub */;
d115b048 890 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
3ffbba95
SS
891 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
892
893 /* Is this a LS/FS device under a HS hub? */
3ffbba95
SS
894 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
895 udev->tt) {
d115b048
JY
896 slot_ctx->tt_info = udev->tt->hub->slot_id;
897 slot_ctx->tt_info |= udev->ttport << 8;
07b6de10
SS
898 if (udev->tt->multi)
899 slot_ctx->dev_info |= DEV_MTT;
3ffbba95 900 }
700e2052 901 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
902 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
903
904 /* Step 4 - ring already allocated */
905 /* Step 5 */
906 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
907 /*
3ffbba95
SS
908 * XXX: Not sure about wireless USB devices.
909 */
47aded8a
SS
910 switch (udev->speed) {
911 case USB_SPEED_SUPER:
3ffbba95 912 ep0_ctx->ep_info2 |= MAX_PACKET(512);
47aded8a
SS
913 break;
914 case USB_SPEED_HIGH:
915 /* USB core guesses at a 64-byte max packet first for FS devices */
916 case USB_SPEED_FULL:
917 ep0_ctx->ep_info2 |= MAX_PACKET(64);
918 break;
919 case USB_SPEED_LOW:
3ffbba95 920 ep0_ctx->ep_info2 |= MAX_PACKET(8);
47aded8a 921 break;
551cdbbe 922 case USB_SPEED_WIRELESS:
47aded8a
SS
923 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
924 return -EINVAL;
925 break;
926 default:
927 /* New speed? */
928 BUG();
929 }
3ffbba95
SS
930 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
931 ep0_ctx->ep_info2 |= MAX_BURST(0);
932 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
933
8e595a5d 934 ep0_ctx->deq =
63a0d9ab
SS
935 dev->eps[0].ring->first_seg->dma;
936 ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
3ffbba95
SS
937
938 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
939
940 return 0;
941}
942
f94e0186
SS
943/* Return the polling or NAK interval.
944 *
945 * The polling interval is expressed in "microframes". If xHCI's Interval field
946 * is set to N, it will service the endpoint every 2^(Interval)*125us.
947 *
948 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
949 * is set to 0.
950 */
951static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
952 struct usb_host_endpoint *ep)
953{
954 unsigned int interval = 0;
955
956 switch (udev->speed) {
957 case USB_SPEED_HIGH:
958 /* Max NAK rate */
959 if (usb_endpoint_xfer_control(&ep->desc) ||
960 usb_endpoint_xfer_bulk(&ep->desc))
961 interval = ep->desc.bInterval;
962 /* Fall through - SS and HS isoc/int have same decoding */
963 case USB_SPEED_SUPER:
964 if (usb_endpoint_xfer_int(&ep->desc) ||
965 usb_endpoint_xfer_isoc(&ep->desc)) {
966 if (ep->desc.bInterval == 0)
967 interval = 0;
968 else
969 interval = ep->desc.bInterval - 1;
970 if (interval > 15)
971 interval = 15;
972 if (interval != ep->desc.bInterval + 1)
973 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
974 ep->desc.bEndpointAddress, 1 << interval);
975 }
976 break;
977 /* Convert bInterval (in 1-255 frames) to microframes and round down to
978 * nearest power of 2.
979 */
980 case USB_SPEED_FULL:
981 case USB_SPEED_LOW:
982 if (usb_endpoint_xfer_int(&ep->desc) ||
983 usb_endpoint_xfer_isoc(&ep->desc)) {
984 interval = fls(8*ep->desc.bInterval) - 1;
985 if (interval > 10)
986 interval = 10;
987 if (interval < 3)
988 interval = 3;
989 if ((1 << interval) != 8*ep->desc.bInterval)
9ce669a8
SS
990 dev_warn(&udev->dev,
991 "ep %#x - rounding interval"
992 " to %d microframes, "
993 "ep desc says %d microframes\n",
994 ep->desc.bEndpointAddress,
995 1 << interval,
996 8*ep->desc.bInterval);
f94e0186
SS
997 }
998 break;
999 default:
1000 BUG();
1001 }
1002 return EP_INTERVAL(interval);
1003}
1004
1cf62246
SS
1005/* The "Mult" field in the endpoint context is only set for SuperSpeed devices.
1006 * High speed endpoint descriptors can define "the number of additional
1007 * transaction opportunities per microframe", but that goes in the Max Burst
1008 * endpoint context field.
1009 */
1010static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
1011 struct usb_host_endpoint *ep)
1012{
1013 if (udev->speed != USB_SPEED_SUPER || !ep->ss_ep_comp)
1014 return 0;
1015 return ep->ss_ep_comp->desc.bmAttributes;
1016}
1017
f94e0186
SS
1018static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1019 struct usb_host_endpoint *ep)
1020{
1021 int in;
1022 u32 type;
1023
1024 in = usb_endpoint_dir_in(&ep->desc);
1025 if (usb_endpoint_xfer_control(&ep->desc)) {
1026 type = EP_TYPE(CTRL_EP);
1027 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1028 if (in)
1029 type = EP_TYPE(BULK_IN_EP);
1030 else
1031 type = EP_TYPE(BULK_OUT_EP);
1032 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1033 if (in)
1034 type = EP_TYPE(ISOC_IN_EP);
1035 else
1036 type = EP_TYPE(ISOC_OUT_EP);
1037 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1038 if (in)
1039 type = EP_TYPE(INT_IN_EP);
1040 else
1041 type = EP_TYPE(INT_OUT_EP);
1042 } else {
1043 BUG();
1044 }
1045 return type;
1046}
1047
9238f25d
SS
1048/* Return the maximum endpoint service interval time (ESIT) payload.
1049 * Basically, this is the maxpacket size, multiplied by the burst size
1050 * and mult size.
1051 */
1052static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1053 struct usb_device *udev,
1054 struct usb_host_endpoint *ep)
1055{
1056 int max_burst;
1057 int max_packet;
1058
1059 /* Only applies for interrupt or isochronous endpoints */
1060 if (usb_endpoint_xfer_control(&ep->desc) ||
1061 usb_endpoint_xfer_bulk(&ep->desc))
1062 return 0;
1063
1064 if (udev->speed == USB_SPEED_SUPER) {
1065 if (ep->ss_ep_comp)
1066 return ep->ss_ep_comp->desc.wBytesPerInterval;
1067 xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
1068 /* Assume no bursts, no multiple opportunities to send. */
1069 return ep->desc.wMaxPacketSize;
1070 }
1071
1072 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
1073 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1074 /* A 0 in max burst means 1 transfer per ESIT */
1075 return max_packet * (max_burst + 1);
1076}
1077
8df75f42
SS
1078/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1079 * Drivers will have to call usb_alloc_streams() to do that.
1080 */
f94e0186
SS
1081int xhci_endpoint_init(struct xhci_hcd *xhci,
1082 struct xhci_virt_device *virt_dev,
1083 struct usb_device *udev,
f88ba78d
SS
1084 struct usb_host_endpoint *ep,
1085 gfp_t mem_flags)
f94e0186
SS
1086{
1087 unsigned int ep_index;
1088 struct xhci_ep_ctx *ep_ctx;
1089 struct xhci_ring *ep_ring;
1090 unsigned int max_packet;
1091 unsigned int max_burst;
9238f25d 1092 u32 max_esit_payload;
f94e0186
SS
1093
1094 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1095 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1096
1097 /* Set up the endpoint ring */
63a0d9ab
SS
1098 virt_dev->eps[ep_index].new_ring =
1099 xhci_ring_alloc(xhci, 1, true, mem_flags);
74f9fe21
SS
1100 if (!virt_dev->eps[ep_index].new_ring) {
1101 /* Attempt to use the ring cache */
1102 if (virt_dev->num_rings_cached == 0)
1103 return -ENOMEM;
1104 virt_dev->eps[ep_index].new_ring =
1105 virt_dev->ring_cache[virt_dev->num_rings_cached];
1106 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1107 virt_dev->num_rings_cached--;
1108 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1109 }
63a0d9ab 1110 ep_ring = virt_dev->eps[ep_index].new_ring;
8e595a5d 1111 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
f94e0186
SS
1112
1113 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1cf62246 1114 ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
f94e0186
SS
1115
1116 /* FIXME dig Mult and streams info out of ep companion desc */
1117
47692d17
SS
1118 /* Allow 3 retries for everything but isoc;
1119 * error count = 0 means infinite retries.
1120 */
f94e0186
SS
1121 if (!usb_endpoint_xfer_isoc(&ep->desc))
1122 ep_ctx->ep_info2 = ERROR_COUNT(3);
1123 else
47692d17 1124 ep_ctx->ep_info2 = ERROR_COUNT(1);
f94e0186
SS
1125
1126 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1127
1128 /* Set the max packet size and max burst */
1129 switch (udev->speed) {
1130 case USB_SPEED_SUPER:
1131 max_packet = ep->desc.wMaxPacketSize;
1132 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
b10de142 1133 /* dig out max burst from ep companion desc */
b7d6d998
SS
1134 if (!ep->ss_ep_comp) {
1135 xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
1136 max_packet = 0;
1137 } else {
1138 max_packet = ep->ss_ep_comp->desc.bMaxBurst;
1139 }
b10de142 1140 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
f94e0186
SS
1141 break;
1142 case USB_SPEED_HIGH:
1143 /* bits 11:12 specify the number of additional transaction
1144 * opportunities per microframe (USB 2.0, section 9.6.6)
1145 */
1146 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1147 usb_endpoint_xfer_int(&ep->desc)) {
1148 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1149 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1150 }
1151 /* Fall through */
1152 case USB_SPEED_FULL:
1153 case USB_SPEED_LOW:
1154 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
1155 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1156 break;
1157 default:
1158 BUG();
1159 }
9238f25d
SS
1160 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1161 ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1162
1163 /*
1164 * XXX no idea how to calculate the average TRB buffer length for bulk
1165 * endpoints, as the driver gives us no clue how big each scatter gather
1166 * list entry (or buffer) is going to be.
1167 *
1168 * For isochronous and interrupt endpoints, we set it to the max
1169 * available, until we have new API in the USB core to allow drivers to
1170 * declare how much bandwidth they actually need.
1171 *
1172 * Normally, it would be calculated by taking the total of the buffer
1173 * lengths in the TD and then dividing by the number of TRBs in a TD,
1174 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1175 * use Event Data TRBs, and we don't chain in a link TRB on short
1176 * transfers, we're basically dividing by 1.
1177 */
1178 ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1179
f94e0186
SS
1180 /* FIXME Debug endpoint context */
1181 return 0;
1182}
1183
1184void xhci_endpoint_zero(struct xhci_hcd *xhci,
1185 struct xhci_virt_device *virt_dev,
1186 struct usb_host_endpoint *ep)
1187{
1188 unsigned int ep_index;
1189 struct xhci_ep_ctx *ep_ctx;
1190
1191 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1192 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1193
1194 ep_ctx->ep_info = 0;
1195 ep_ctx->ep_info2 = 0;
8e595a5d 1196 ep_ctx->deq = 0;
f94e0186
SS
1197 ep_ctx->tx_info = 0;
1198 /* Don't free the endpoint ring until the set interface or configuration
1199 * request succeeds.
1200 */
1201}
1202
f2217e8e
SS
1203/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1204 * Useful when you want to change one particular aspect of the endpoint and then
1205 * issue a configure endpoint command.
1206 */
1207void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1208 struct xhci_container_ctx *in_ctx,
1209 struct xhci_container_ctx *out_ctx,
1210 unsigned int ep_index)
f2217e8e
SS
1211{
1212 struct xhci_ep_ctx *out_ep_ctx;
1213 struct xhci_ep_ctx *in_ep_ctx;
1214
913a8a34
SS
1215 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1216 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1217
1218 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1219 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1220 in_ep_ctx->deq = out_ep_ctx->deq;
1221 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1222}
1223
1224/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1225 * Useful when you want to change one particular aspect of the endpoint and then
1226 * issue a configure endpoint command. Only the context entries field matters,
1227 * but we'll copy the whole thing anyway.
1228 */
913a8a34
SS
1229void xhci_slot_copy(struct xhci_hcd *xhci,
1230 struct xhci_container_ctx *in_ctx,
1231 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1232{
1233 struct xhci_slot_ctx *in_slot_ctx;
1234 struct xhci_slot_ctx *out_slot_ctx;
1235
913a8a34
SS
1236 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1237 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1238
1239 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1240 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1241 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1242 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1243}
1244
254c80a3
JY
1245/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1246static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1247{
1248 int i;
1249 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1250 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1251
1252 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1253
1254 if (!num_sp)
1255 return 0;
1256
1257 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1258 if (!xhci->scratchpad)
1259 goto fail_sp;
1260
1261 xhci->scratchpad->sp_array =
1262 pci_alloc_consistent(to_pci_dev(dev),
1263 num_sp * sizeof(u64),
1264 &xhci->scratchpad->sp_dma);
1265 if (!xhci->scratchpad->sp_array)
1266 goto fail_sp2;
1267
1268 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1269 if (!xhci->scratchpad->sp_buffers)
1270 goto fail_sp3;
1271
1272 xhci->scratchpad->sp_dma_buffers =
1273 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1274
1275 if (!xhci->scratchpad->sp_dma_buffers)
1276 goto fail_sp4;
1277
1278 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1279 for (i = 0; i < num_sp; i++) {
1280 dma_addr_t dma;
1281 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1282 xhci->page_size, &dma);
1283 if (!buf)
1284 goto fail_sp5;
1285
1286 xhci->scratchpad->sp_array[i] = dma;
1287 xhci->scratchpad->sp_buffers[i] = buf;
1288 xhci->scratchpad->sp_dma_buffers[i] = dma;
1289 }
1290
1291 return 0;
1292
1293 fail_sp5:
1294 for (i = i - 1; i >= 0; i--) {
1295 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1296 xhci->scratchpad->sp_buffers[i],
1297 xhci->scratchpad->sp_dma_buffers[i]);
1298 }
1299 kfree(xhci->scratchpad->sp_dma_buffers);
1300
1301 fail_sp4:
1302 kfree(xhci->scratchpad->sp_buffers);
1303
1304 fail_sp3:
1305 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1306 xhci->scratchpad->sp_array,
1307 xhci->scratchpad->sp_dma);
1308
1309 fail_sp2:
1310 kfree(xhci->scratchpad);
1311 xhci->scratchpad = NULL;
1312
1313 fail_sp:
1314 return -ENOMEM;
1315}
1316
1317static void scratchpad_free(struct xhci_hcd *xhci)
1318{
1319 int num_sp;
1320 int i;
1321 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1322
1323 if (!xhci->scratchpad)
1324 return;
1325
1326 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1327
1328 for (i = 0; i < num_sp; i++) {
1329 pci_free_consistent(pdev, xhci->page_size,
1330 xhci->scratchpad->sp_buffers[i],
1331 xhci->scratchpad->sp_dma_buffers[i]);
1332 }
1333 kfree(xhci->scratchpad->sp_dma_buffers);
1334 kfree(xhci->scratchpad->sp_buffers);
1335 pci_free_consistent(pdev, num_sp * sizeof(u64),
1336 xhci->scratchpad->sp_array,
1337 xhci->scratchpad->sp_dma);
1338 kfree(xhci->scratchpad);
1339 xhci->scratchpad = NULL;
1340}
1341
913a8a34 1342struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1343 bool allocate_in_ctx, bool allocate_completion,
1344 gfp_t mem_flags)
913a8a34
SS
1345{
1346 struct xhci_command *command;
1347
1348 command = kzalloc(sizeof(*command), mem_flags);
1349 if (!command)
1350 return NULL;
1351
a1d78c16
SS
1352 if (allocate_in_ctx) {
1353 command->in_ctx =
1354 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1355 mem_flags);
1356 if (!command->in_ctx) {
1357 kfree(command);
1358 return NULL;
1359 }
06e18291 1360 }
913a8a34
SS
1361
1362 if (allocate_completion) {
1363 command->completion =
1364 kzalloc(sizeof(struct completion), mem_flags);
1365 if (!command->completion) {
1366 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1367 kfree(command);
913a8a34
SS
1368 return NULL;
1369 }
1370 init_completion(command->completion);
1371 }
1372
1373 command->status = 0;
1374 INIT_LIST_HEAD(&command->cmd_list);
1375 return command;
1376}
1377
1378void xhci_free_command(struct xhci_hcd *xhci,
1379 struct xhci_command *command)
1380{
1381 xhci_free_container_ctx(xhci,
1382 command->in_ctx);
1383 kfree(command->completion);
1384 kfree(command);
1385}
1386
66d4eadd
SS
1387void xhci_mem_cleanup(struct xhci_hcd *xhci)
1388{
0ebbab37
SS
1389 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1390 int size;
3ffbba95 1391 int i;
0ebbab37
SS
1392
1393 /* Free the Event Ring Segment Table and the actual Event Ring */
d94c05e3
SS
1394 if (xhci->ir_set) {
1395 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1396 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1397 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1398 }
0ebbab37
SS
1399 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1400 if (xhci->erst.entries)
1401 pci_free_consistent(pdev, size,
1402 xhci->erst.entries, xhci->erst.erst_dma_addr);
1403 xhci->erst.entries = NULL;
1404 xhci_dbg(xhci, "Freed ERST\n");
1405 if (xhci->event_ring)
1406 xhci_ring_free(xhci, xhci->event_ring);
1407 xhci->event_ring = NULL;
1408 xhci_dbg(xhci, "Freed event ring\n");
1409
8e595a5d 1410 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
0ebbab37
SS
1411 if (xhci->cmd_ring)
1412 xhci_ring_free(xhci, xhci->cmd_ring);
1413 xhci->cmd_ring = NULL;
1414 xhci_dbg(xhci, "Freed command ring\n");
3ffbba95
SS
1415
1416 for (i = 1; i < MAX_HC_SLOTS; ++i)
1417 xhci_free_virt_device(xhci, i);
1418
0ebbab37
SS
1419 if (xhci->segment_pool)
1420 dma_pool_destroy(xhci->segment_pool);
1421 xhci->segment_pool = NULL;
1422 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
1423
1424 if (xhci->device_pool)
1425 dma_pool_destroy(xhci->device_pool);
1426 xhci->device_pool = NULL;
1427 xhci_dbg(xhci, "Freed device context pool\n");
1428
8df75f42
SS
1429 if (xhci->small_streams_pool)
1430 dma_pool_destroy(xhci->small_streams_pool);
1431 xhci->small_streams_pool = NULL;
1432 xhci_dbg(xhci, "Freed small stream array pool\n");
1433
1434 if (xhci->medium_streams_pool)
1435 dma_pool_destroy(xhci->medium_streams_pool);
1436 xhci->medium_streams_pool = NULL;
1437 xhci_dbg(xhci, "Freed medium stream array pool\n");
1438
8e595a5d 1439 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
a74588f9
SS
1440 if (xhci->dcbaa)
1441 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1442 xhci->dcbaa, xhci->dcbaa->dma);
1443 xhci->dcbaa = NULL;
3ffbba95 1444
5294bea4 1445 scratchpad_free(xhci);
66d4eadd
SS
1446 xhci->page_size = 0;
1447 xhci->page_shift = 0;
1448}
1449
6648f29d
SS
1450static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1451 struct xhci_segment *input_seg,
1452 union xhci_trb *start_trb,
1453 union xhci_trb *end_trb,
1454 dma_addr_t input_dma,
1455 struct xhci_segment *result_seg,
1456 char *test_name, int test_number)
1457{
1458 unsigned long long start_dma;
1459 unsigned long long end_dma;
1460 struct xhci_segment *seg;
1461
1462 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1463 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1464
1465 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1466 if (seg != result_seg) {
1467 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1468 test_name, test_number);
1469 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1470 "input DMA 0x%llx\n",
1471 input_seg,
1472 (unsigned long long) input_dma);
1473 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1474 "ending TRB %p (0x%llx DMA)\n",
1475 start_trb, start_dma,
1476 end_trb, end_dma);
1477 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1478 result_seg, seg);
1479 return -1;
1480 }
1481 return 0;
1482}
1483
1484/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1485static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1486{
1487 struct {
1488 dma_addr_t input_dma;
1489 struct xhci_segment *result_seg;
1490 } simple_test_vector [] = {
1491 /* A zeroed DMA field should fail */
1492 { 0, NULL },
1493 /* One TRB before the ring start should fail */
1494 { xhci->event_ring->first_seg->dma - 16, NULL },
1495 /* One byte before the ring start should fail */
1496 { xhci->event_ring->first_seg->dma - 1, NULL },
1497 /* Starting TRB should succeed */
1498 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1499 /* Ending TRB should succeed */
1500 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1501 xhci->event_ring->first_seg },
1502 /* One byte after the ring end should fail */
1503 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1504 /* One TRB after the ring end should fail */
1505 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1506 /* An address of all ones should fail */
1507 { (dma_addr_t) (~0), NULL },
1508 };
1509 struct {
1510 struct xhci_segment *input_seg;
1511 union xhci_trb *start_trb;
1512 union xhci_trb *end_trb;
1513 dma_addr_t input_dma;
1514 struct xhci_segment *result_seg;
1515 } complex_test_vector [] = {
1516 /* Test feeding a valid DMA address from a different ring */
1517 { .input_seg = xhci->event_ring->first_seg,
1518 .start_trb = xhci->event_ring->first_seg->trbs,
1519 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1520 .input_dma = xhci->cmd_ring->first_seg->dma,
1521 .result_seg = NULL,
1522 },
1523 /* Test feeding a valid end TRB from a different ring */
1524 { .input_seg = xhci->event_ring->first_seg,
1525 .start_trb = xhci->event_ring->first_seg->trbs,
1526 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1527 .input_dma = xhci->cmd_ring->first_seg->dma,
1528 .result_seg = NULL,
1529 },
1530 /* Test feeding a valid start and end TRB from a different ring */
1531 { .input_seg = xhci->event_ring->first_seg,
1532 .start_trb = xhci->cmd_ring->first_seg->trbs,
1533 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1534 .input_dma = xhci->cmd_ring->first_seg->dma,
1535 .result_seg = NULL,
1536 },
1537 /* TRB in this ring, but after this TD */
1538 { .input_seg = xhci->event_ring->first_seg,
1539 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1540 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1541 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1542 .result_seg = NULL,
1543 },
1544 /* TRB in this ring, but before this TD */
1545 { .input_seg = xhci->event_ring->first_seg,
1546 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1547 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1548 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1549 .result_seg = NULL,
1550 },
1551 /* TRB in this ring, but after this wrapped TD */
1552 { .input_seg = xhci->event_ring->first_seg,
1553 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1554 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1555 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1556 .result_seg = NULL,
1557 },
1558 /* TRB in this ring, but before this wrapped TD */
1559 { .input_seg = xhci->event_ring->first_seg,
1560 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1561 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1562 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1563 .result_seg = NULL,
1564 },
1565 /* TRB not in this ring, and we have a wrapped TD */
1566 { .input_seg = xhci->event_ring->first_seg,
1567 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1568 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1569 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1570 .result_seg = NULL,
1571 },
1572 };
1573
1574 unsigned int num_tests;
1575 int i, ret;
1576
1577 num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1578 for (i = 0; i < num_tests; i++) {
1579 ret = xhci_test_trb_in_td(xhci,
1580 xhci->event_ring->first_seg,
1581 xhci->event_ring->first_seg->trbs,
1582 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1583 simple_test_vector[i].input_dma,
1584 simple_test_vector[i].result_seg,
1585 "Simple", i);
1586 if (ret < 0)
1587 return ret;
1588 }
1589
1590 num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1591 for (i = 0; i < num_tests; i++) {
1592 ret = xhci_test_trb_in_td(xhci,
1593 complex_test_vector[i].input_seg,
1594 complex_test_vector[i].start_trb,
1595 complex_test_vector[i].end_trb,
1596 complex_test_vector[i].input_dma,
1597 complex_test_vector[i].result_seg,
1598 "Complex", i);
1599 if (ret < 0)
1600 return ret;
1601 }
1602 xhci_dbg(xhci, "TRB math tests passed.\n");
1603 return 0;
1604}
1605
1606
66d4eadd
SS
1607int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1608{
0ebbab37
SS
1609 dma_addr_t dma;
1610 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 1611 unsigned int val, val2;
8e595a5d 1612 u64 val_64;
0ebbab37 1613 struct xhci_segment *seg;
66d4eadd
SS
1614 u32 page_size;
1615 int i;
1616
1617 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1618 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1619 for (i = 0; i < 16; i++) {
1620 if ((0x1 & page_size) != 0)
1621 break;
1622 page_size = page_size >> 1;
1623 }
1624 if (i < 16)
1625 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1626 else
1627 xhci_warn(xhci, "WARN: no supported page size\n");
1628 /* Use 4K pages, since that's common and the minimum the HC supports */
1629 xhci->page_shift = 12;
1630 xhci->page_size = 1 << xhci->page_shift;
1631 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1632
1633 /*
1634 * Program the Number of Device Slots Enabled field in the CONFIG
1635 * register with the max value of slots the HC can handle.
1636 */
1637 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1638 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1639 (unsigned int) val);
1640 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1641 val |= (val2 & ~HCS_SLOTS_MASK);
1642 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1643 (unsigned int) val);
1644 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1645
a74588f9
SS
1646 /*
1647 * Section 5.4.8 - doorbell array must be
1648 * "physically contiguous and 64-byte (cache line) aligned".
1649 */
1650 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1651 sizeof(*xhci->dcbaa), &dma);
1652 if (!xhci->dcbaa)
1653 goto fail;
1654 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1655 xhci->dcbaa->dma = dma;
700e2052
GKH
1656 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1657 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 1658 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 1659
0ebbab37
SS
1660 /*
1661 * Initialize the ring segment pool. The ring must be a contiguous
1662 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1663 * however, the command ring segment needs 64-byte aligned segments,
1664 * so we pick the greater alignment need.
1665 */
1666 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1667 SEGMENT_SIZE, 64, xhci->page_size);
d115b048 1668
3ffbba95 1669 /* See Table 46 and Note on Figure 55 */
3ffbba95 1670 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 1671 2112, 64, xhci->page_size);
3ffbba95 1672 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
1673 goto fail;
1674
8df75f42
SS
1675 /* Linear stream context arrays don't have any boundary restrictions,
1676 * and only need to be 16-byte aligned.
1677 */
1678 xhci->small_streams_pool =
1679 dma_pool_create("xHCI 256 byte stream ctx arrays",
1680 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1681 xhci->medium_streams_pool =
1682 dma_pool_create("xHCI 1KB stream ctx arrays",
1683 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1684 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1685 * will be allocated with pci_alloc_consistent()
1686 */
1687
1688 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1689 goto fail;
1690
0ebbab37
SS
1691 /* Set up the command ring to have one segments for now. */
1692 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1693 if (!xhci->cmd_ring)
1694 goto fail;
700e2052
GKH
1695 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1696 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1697 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
1698
1699 /* Set the address in the Command Ring Control register */
8e595a5d
SS
1700 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1701 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1702 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 1703 xhci->cmd_ring->cycle_state;
8e595a5d
SS
1704 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1705 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
1706 xhci_dbg_cmd_ptrs(xhci);
1707
1708 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1709 val &= DBOFF_MASK;
1710 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1711 " from cap regs base addr\n", val);
1712 xhci->dba = (void *) xhci->cap_regs + val;
1713 xhci_dbg_regs(xhci);
1714 xhci_print_run_regs(xhci);
1715 /* Set ir_set to interrupt register set 0 */
1716 xhci->ir_set = (void *) xhci->run_regs->ir_set;
1717
1718 /*
1719 * Event ring setup: Allocate a normal ring, but also setup
1720 * the event ring segment table (ERST). Section 4.9.3.
1721 */
1722 xhci_dbg(xhci, "// Allocating event ring\n");
1723 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1724 if (!xhci->event_ring)
1725 goto fail;
6648f29d
SS
1726 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1727 goto fail;
0ebbab37
SS
1728
1729 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1730 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1731 if (!xhci->erst.entries)
1732 goto fail;
700e2052
GKH
1733 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1734 (unsigned long long)dma);
0ebbab37
SS
1735
1736 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1737 xhci->erst.num_entries = ERST_NUM_SEGS;
1738 xhci->erst.erst_dma_addr = dma;
700e2052 1739 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
0ebbab37 1740 xhci->erst.num_entries,
700e2052
GKH
1741 xhci->erst.entries,
1742 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
1743
1744 /* set ring base address and size for each segment table entry */
1745 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1746 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
8e595a5d 1747 entry->seg_addr = seg->dma;
0ebbab37
SS
1748 entry->seg_size = TRBS_PER_SEGMENT;
1749 entry->rsvd = 0;
1750 seg = seg->next;
1751 }
1752
1753 /* set ERST count with the number of entries in the segment table */
1754 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1755 val &= ERST_SIZE_MASK;
1756 val |= ERST_NUM_SEGS;
1757 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1758 val);
1759 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1760
1761 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1762 /* set the segment table base address */
700e2052
GKH
1763 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1764 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
1765 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1766 val_64 &= ERST_PTR_MASK;
1767 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1768 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
1769
1770 /* Set the event ring dequeue address */
23e3be11 1771 xhci_set_hc_event_deq(xhci);
0ebbab37
SS
1772 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1773 xhci_print_ir_set(xhci, xhci->ir_set, 0);
1774
1775 /*
1776 * XXX: Might need to set the Interrupter Moderation Register to
1777 * something other than the default (~1ms minimum between interrupts).
1778 * See section 5.5.1.2.
1779 */
3ffbba95
SS
1780 init_completion(&xhci->addr_dev);
1781 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 1782 xhci->devs[i] = NULL;
66d4eadd 1783
254c80a3
JY
1784 if (scratchpad_alloc(xhci, flags))
1785 goto fail;
1786
66d4eadd 1787 return 0;
254c80a3 1788
66d4eadd
SS
1789fail:
1790 xhci_warn(xhci, "Couldn't initialize memory\n");
1791 xhci_mem_cleanup(xhci);
1792 return -ENOMEM;
1793}
This page took 0.183721 seconds and 5 git commands to generate.