usb: host: xhci: use __ffs() instead of hardcoding shift
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
29
0ebbab37
SS
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
326b4810 44 return NULL;
0ebbab37
SS
45
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
326b4810 49 return NULL;
0ebbab37 50 }
0ebbab37
SS
51
52 memset(seg->trbs, 0, SEGMENT_SIZE);
53 seg->dma = dma;
54 seg->next = NULL;
55
56 return seg;
57}
58
59static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
60{
0ebbab37 61 if (seg->trbs) {
0ebbab37
SS
62 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
63 seg->trbs = NULL;
64 }
0ebbab37
SS
65 kfree(seg);
66}
67
68/*
69 * Make the prev segment point to the next segment.
70 *
71 * Change the last TRB in the prev segment to be a Link TRB which points to the
72 * DMA address of the next segment. The caller needs to set any Link TRB
73 * related flags, such as End TRB, Toggle Cycle, and no snoop.
74 */
75static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
7e393a83 76 struct xhci_segment *next, bool link_trbs, bool isoc)
0ebbab37
SS
77{
78 u32 val;
79
80 if (!prev || !next)
81 return;
82 prev->next = next;
83 if (link_trbs) {
f5960b69
ME
84 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
85 cpu_to_le64(next->dma);
0ebbab37
SS
86
87 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 88 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
89 val &= ~TRB_TYPE_BITMASK;
90 val |= TRB_TYPE(TRB_LINK);
b0567b3f 91 /* Always set the chain bit with 0.95 hardware */
7e393a83
AX
92 /* Set chain bit for isoc rings on AMD 0.96 host */
93 if (xhci_link_trb_quirk(xhci) ||
94 (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
b0567b3f 95 val |= TRB_CHAIN;
28ccd296 96 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 97 }
0ebbab37
SS
98}
99
100/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 101void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37
SS
102{
103 struct xhci_segment *seg;
104 struct xhci_segment *first_seg;
105
0e6c7f74 106 if (!ring)
0ebbab37 107 return;
0e6c7f74
KC
108 if (ring->first_seg) {
109 first_seg = ring->first_seg;
110 seg = first_seg->next;
0e6c7f74
KC
111 while (seg != first_seg) {
112 struct xhci_segment *next = seg->next;
113 xhci_segment_free(xhci, seg);
114 seg = next;
115 }
116 xhci_segment_free(xhci, first_seg);
117 ring->first_seg = NULL;
0ebbab37 118 }
0ebbab37
SS
119 kfree(ring);
120}
121
74f9fe21
SS
122static void xhci_initialize_ring_info(struct xhci_ring *ring)
123{
124 /* The ring is empty, so the enqueue pointer == dequeue pointer */
125 ring->enqueue = ring->first_seg->trbs;
126 ring->enq_seg = ring->first_seg;
127 ring->dequeue = ring->enqueue;
128 ring->deq_seg = ring->first_seg;
129 /* The ring is initialized to 0. The producer must write 1 to the cycle
130 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
131 * compare CCS to the cycle bit to check ownership, so CCS = 1.
132 */
133 ring->cycle_state = 1;
134 /* Not necessary for new rings, but needed for re-initialized rings */
135 ring->enq_updates = 0;
136 ring->deq_updates = 0;
137}
138
0ebbab37
SS
139/**
140 * Create a new ring with zero or more segments.
141 *
142 * Link each segment together into a ring.
143 * Set the end flag and the cycle toggle bit on the last segment.
144 * See section 4.9.1 and figures 15 and 16.
145 */
146static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
7e393a83 147 unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
0ebbab37
SS
148{
149 struct xhci_ring *ring;
150 struct xhci_segment *prev;
151
152 ring = kzalloc(sizeof *(ring), flags);
0ebbab37 153 if (!ring)
326b4810 154 return NULL;
0ebbab37 155
d0e96f5a 156 INIT_LIST_HEAD(&ring->td_list);
0ebbab37
SS
157 if (num_segs == 0)
158 return ring;
159
160 ring->first_seg = xhci_segment_alloc(xhci, flags);
161 if (!ring->first_seg)
162 goto fail;
163 num_segs--;
164
165 prev = ring->first_seg;
166 while (num_segs > 0) {
167 struct xhci_segment *next;
168
169 next = xhci_segment_alloc(xhci, flags);
170 if (!next)
171 goto fail;
7e393a83 172 xhci_link_segments(xhci, prev, next, link_trbs, isoc);
0ebbab37
SS
173
174 prev = next;
175 num_segs--;
176 }
7e393a83 177 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
0ebbab37
SS
178
179 if (link_trbs) {
180 /* See section 4.9.2.1 and 6.4.4.1 */
f5960b69
ME
181 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
182 cpu_to_le32(LINK_TOGGLE);
0ebbab37 183 }
74f9fe21 184 xhci_initialize_ring_info(ring);
0ebbab37
SS
185 return ring;
186
187fail:
188 xhci_ring_free(xhci, ring);
326b4810 189 return NULL;
0ebbab37
SS
190}
191
412566bd
SS
192void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
193 struct xhci_virt_device *virt_dev,
194 unsigned int ep_index)
195{
196 int rings_cached;
197
198 rings_cached = virt_dev->num_rings_cached;
199 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
412566bd
SS
200 virt_dev->ring_cache[rings_cached] =
201 virt_dev->eps[ep_index].ring;
30f89ca0 202 virt_dev->num_rings_cached++;
412566bd
SS
203 xhci_dbg(xhci, "Cached old ring, "
204 "%d ring%s cached\n",
30f89ca0
SS
205 virt_dev->num_rings_cached,
206 (virt_dev->num_rings_cached > 1) ? "s" : "");
412566bd
SS
207 } else {
208 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
209 xhci_dbg(xhci, "Ring cache full (%d rings), "
210 "freeing ring\n",
211 virt_dev->num_rings_cached);
212 }
213 virt_dev->eps[ep_index].ring = NULL;
214}
215
74f9fe21
SS
216/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
217 * pointers to the beginning of the ring.
218 */
219static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
7e393a83 220 struct xhci_ring *ring, bool isoc)
74f9fe21
SS
221{
222 struct xhci_segment *seg = ring->first_seg;
223 do {
224 memset(seg->trbs, 0,
225 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
226 /* All endpoint rings have link TRBs */
7e393a83 227 xhci_link_segments(xhci, seg, seg->next, 1, isoc);
74f9fe21
SS
228 seg = seg->next;
229 } while (seg != ring->first_seg);
230 xhci_initialize_ring_info(ring);
231 /* td list should be empty since all URBs have been cancelled,
232 * but just in case...
233 */
234 INIT_LIST_HEAD(&ring->td_list);
235}
236
d115b048
JY
237#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
238
326b4810 239static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
240 int type, gfp_t flags)
241{
242 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
243 if (!ctx)
244 return NULL;
245
246 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
247 ctx->type = type;
248 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
249 if (type == XHCI_CTX_TYPE_INPUT)
250 ctx->size += CTX_SIZE(xhci->hcc_params);
251
252 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
253 memset(ctx->bytes, 0, ctx->size);
254 return ctx;
255}
256
326b4810 257static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
258 struct xhci_container_ctx *ctx)
259{
a1d78c16
SS
260 if (!ctx)
261 return;
d115b048
JY
262 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
263 kfree(ctx);
264}
265
266struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
267 struct xhci_container_ctx *ctx)
268{
269 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
270 return (struct xhci_input_control_ctx *)ctx->bytes;
271}
272
273struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
274 struct xhci_container_ctx *ctx)
275{
276 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
277 return (struct xhci_slot_ctx *)ctx->bytes;
278
279 return (struct xhci_slot_ctx *)
280 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
281}
282
283struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
284 struct xhci_container_ctx *ctx,
285 unsigned int ep_index)
286{
287 /* increment ep index by offset of start of ep ctx array */
288 ep_index++;
289 if (ctx->type == XHCI_CTX_TYPE_INPUT)
290 ep_index++;
291
292 return (struct xhci_ep_ctx *)
293 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
294}
295
8df75f42
SS
296
297/***************** Streams structures manipulation *************************/
298
8212a49d 299static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
300 unsigned int num_stream_ctxs,
301 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
302{
303 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
304
305 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 306 dma_free_coherent(&pdev->dev,
8df75f42
SS
307 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
308 stream_ctx, dma);
309 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
310 return dma_pool_free(xhci->small_streams_pool,
311 stream_ctx, dma);
312 else
313 return dma_pool_free(xhci->medium_streams_pool,
314 stream_ctx, dma);
315}
316
317/*
318 * The stream context array for each endpoint with bulk streams enabled can
319 * vary in size, based on:
320 * - how many streams the endpoint supports,
321 * - the maximum primary stream array size the host controller supports,
322 * - and how many streams the device driver asks for.
323 *
324 * The stream context array must be a power of 2, and can be as small as
325 * 64 bytes or as large as 1MB.
326 */
8212a49d 327static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
328 unsigned int num_stream_ctxs, dma_addr_t *dma,
329 gfp_t mem_flags)
330{
331 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332
333 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
22d45f01 334 return dma_alloc_coherent(&pdev->dev,
8df75f42 335 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
22d45f01 336 dma, mem_flags);
8df75f42
SS
337 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
338 return dma_pool_alloc(xhci->small_streams_pool,
339 mem_flags, dma);
340 else
341 return dma_pool_alloc(xhci->medium_streams_pool,
342 mem_flags, dma);
343}
344
e9df17eb
SS
345struct xhci_ring *xhci_dma_to_transfer_ring(
346 struct xhci_virt_ep *ep,
347 u64 address)
348{
349 if (ep->ep_state & EP_HAS_STREAMS)
350 return radix_tree_lookup(&ep->stream_info->trb_address_map,
351 address >> SEGMENT_SHIFT);
352 return ep->ring;
353}
354
355/* Only use this when you know stream_info is valid */
8df75f42 356#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
e9df17eb 357static struct xhci_ring *dma_to_stream_ring(
8df75f42
SS
358 struct xhci_stream_info *stream_info,
359 u64 address)
360{
361 return radix_tree_lookup(&stream_info->trb_address_map,
362 address >> SEGMENT_SHIFT);
363}
364#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
365
e9df17eb
SS
366struct xhci_ring *xhci_stream_id_to_ring(
367 struct xhci_virt_device *dev,
368 unsigned int ep_index,
369 unsigned int stream_id)
370{
371 struct xhci_virt_ep *ep = &dev->eps[ep_index];
372
373 if (stream_id == 0)
374 return ep->ring;
375 if (!ep->stream_info)
376 return NULL;
377
378 if (stream_id > ep->stream_info->num_streams)
379 return NULL;
380 return ep->stream_info->stream_rings[stream_id];
381}
382
8df75f42
SS
383#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
384static int xhci_test_radix_tree(struct xhci_hcd *xhci,
385 unsigned int num_streams,
386 struct xhci_stream_info *stream_info)
387{
388 u32 cur_stream;
389 struct xhci_ring *cur_ring;
390 u64 addr;
391
392 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
393 struct xhci_ring *mapped_ring;
394 int trb_size = sizeof(union xhci_trb);
395
396 cur_ring = stream_info->stream_rings[cur_stream];
397 for (addr = cur_ring->first_seg->dma;
398 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
399 addr += trb_size) {
400 mapped_ring = dma_to_stream_ring(stream_info, addr);
401 if (cur_ring != mapped_ring) {
402 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
403 "didn't map to stream ID %u; "
404 "mapped to ring %p\n",
405 (unsigned long long) addr,
406 cur_stream,
407 mapped_ring);
408 return -EINVAL;
409 }
410 }
411 /* One TRB after the end of the ring segment shouldn't return a
412 * pointer to the current ring (although it may be a part of a
413 * different ring).
414 */
415 mapped_ring = dma_to_stream_ring(stream_info, addr);
416 if (mapped_ring != cur_ring) {
417 /* One TRB before should also fail */
418 addr = cur_ring->first_seg->dma - trb_size;
419 mapped_ring = dma_to_stream_ring(stream_info, addr);
420 }
421 if (mapped_ring == cur_ring) {
422 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
423 "mapped to valid stream ID %u; "
424 "mapped ring = %p\n",
425 (unsigned long long) addr,
426 cur_stream,
427 mapped_ring);
428 return -EINVAL;
429 }
430 }
431 return 0;
432}
433#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
434
435/*
436 * Change an endpoint's internal structure so it supports stream IDs. The
437 * number of requested streams includes stream 0, which cannot be used by device
438 * drivers.
439 *
440 * The number of stream contexts in the stream context array may be bigger than
441 * the number of streams the driver wants to use. This is because the number of
442 * stream context array entries must be a power of two.
443 *
444 * We need a radix tree for mapping physical addresses of TRBs to which stream
445 * ID they belong to. We need to do this because the host controller won't tell
446 * us which stream ring the TRB came from. We could store the stream ID in an
447 * event data TRB, but that doesn't help us for the cancellation case, since the
448 * endpoint may stop before it reaches that event data TRB.
449 *
450 * The radix tree maps the upper portion of the TRB DMA address to a ring
451 * segment that has the same upper portion of DMA addresses. For example, say I
452 * have segments of size 1KB, that are always 64-byte aligned. A segment may
453 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
454 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
455 * pass the radix tree a key to get the right stream ID:
456 *
457 * 0x10c90fff >> 10 = 0x43243
458 * 0x10c912c0 >> 10 = 0x43244
459 * 0x10c91400 >> 10 = 0x43245
460 *
461 * Obviously, only those TRBs with DMA addresses that are within the segment
462 * will make the radix tree return the stream ID for that ring.
463 *
464 * Caveats for the radix tree:
465 *
466 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
467 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
468 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
469 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
470 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
471 * extended systems (where the DMA address can be bigger than 32-bits),
472 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
473 */
474struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
475 unsigned int num_stream_ctxs,
476 unsigned int num_streams, gfp_t mem_flags)
477{
478 struct xhci_stream_info *stream_info;
479 u32 cur_stream;
480 struct xhci_ring *cur_ring;
481 unsigned long key;
482 u64 addr;
483 int ret;
484
485 xhci_dbg(xhci, "Allocating %u streams and %u "
486 "stream context array entries.\n",
487 num_streams, num_stream_ctxs);
488 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
489 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
490 return NULL;
491 }
492 xhci->cmd_ring_reserved_trbs++;
493
494 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
495 if (!stream_info)
496 goto cleanup_trbs;
497
498 stream_info->num_streams = num_streams;
499 stream_info->num_stream_ctxs = num_stream_ctxs;
500
501 /* Initialize the array of virtual pointers to stream rings. */
502 stream_info->stream_rings = kzalloc(
503 sizeof(struct xhci_ring *)*num_streams,
504 mem_flags);
505 if (!stream_info->stream_rings)
506 goto cleanup_info;
507
508 /* Initialize the array of DMA addresses for stream rings for the HW. */
509 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
510 num_stream_ctxs, &stream_info->ctx_array_dma,
511 mem_flags);
512 if (!stream_info->stream_ctx_array)
513 goto cleanup_ctx;
514 memset(stream_info->stream_ctx_array, 0,
515 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
516
517 /* Allocate everything needed to free the stream rings later */
518 stream_info->free_streams_command =
519 xhci_alloc_command(xhci, true, true, mem_flags);
520 if (!stream_info->free_streams_command)
521 goto cleanup_ctx;
522
523 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
524
525 /* Allocate rings for all the streams that the driver will use,
526 * and add their segment DMA addresses to the radix tree.
527 * Stream 0 is reserved.
528 */
529 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
530 stream_info->stream_rings[cur_stream] =
7e393a83 531 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
8df75f42
SS
532 cur_ring = stream_info->stream_rings[cur_stream];
533 if (!cur_ring)
534 goto cleanup_rings;
e9df17eb 535 cur_ring->stream_id = cur_stream;
8df75f42
SS
536 /* Set deq ptr, cycle bit, and stream context type */
537 addr = cur_ring->first_seg->dma |
538 SCT_FOR_CTX(SCT_PRI_TR) |
539 cur_ring->cycle_state;
f5960b69
ME
540 stream_info->stream_ctx_array[cur_stream].stream_ring =
541 cpu_to_le64(addr);
8df75f42
SS
542 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
543 cur_stream, (unsigned long long) addr);
544
545 key = (unsigned long)
546 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
547 ret = radix_tree_insert(&stream_info->trb_address_map,
548 key, cur_ring);
549 if (ret) {
550 xhci_ring_free(xhci, cur_ring);
551 stream_info->stream_rings[cur_stream] = NULL;
552 goto cleanup_rings;
553 }
554 }
555 /* Leave the other unused stream ring pointers in the stream context
556 * array initialized to zero. This will cause the xHC to give us an
557 * error if the device asks for a stream ID we don't have setup (if it
558 * was any other way, the host controller would assume the ring is
559 * "empty" and wait forever for data to be queued to that stream ID).
560 */
561#if XHCI_DEBUG
562 /* Do a little test on the radix tree to make sure it returns the
563 * correct values.
564 */
565 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
566 goto cleanup_rings;
567#endif
568
569 return stream_info;
570
571cleanup_rings:
572 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
573 cur_ring = stream_info->stream_rings[cur_stream];
574 if (cur_ring) {
575 addr = cur_ring->first_seg->dma;
576 radix_tree_delete(&stream_info->trb_address_map,
577 addr >> SEGMENT_SHIFT);
578 xhci_ring_free(xhci, cur_ring);
579 stream_info->stream_rings[cur_stream] = NULL;
580 }
581 }
582 xhci_free_command(xhci, stream_info->free_streams_command);
583cleanup_ctx:
584 kfree(stream_info->stream_rings);
585cleanup_info:
586 kfree(stream_info);
587cleanup_trbs:
588 xhci->cmd_ring_reserved_trbs--;
589 return NULL;
590}
591/*
592 * Sets the MaxPStreams field and the Linear Stream Array field.
593 * Sets the dequeue pointer to the stream context array.
594 */
595void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
596 struct xhci_ep_ctx *ep_ctx,
597 struct xhci_stream_info *stream_info)
598{
599 u32 max_primary_streams;
600 /* MaxPStreams is the number of stream context array entries, not the
601 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
602 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
603 */
604 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
605 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
606 1 << (max_primary_streams + 1));
28ccd296
ME
607 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
608 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
609 | EP_HAS_LSA);
610 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
611}
612
613/*
614 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
615 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
616 * not at the beginning of the ring).
617 */
618void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
619 struct xhci_ep_ctx *ep_ctx,
620 struct xhci_virt_ep *ep)
621{
622 dma_addr_t addr;
28ccd296 623 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 624 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 625 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
626}
627
628/* Frees all stream contexts associated with the endpoint,
629 *
630 * Caller should fix the endpoint context streams fields.
631 */
632void xhci_free_stream_info(struct xhci_hcd *xhci,
633 struct xhci_stream_info *stream_info)
634{
635 int cur_stream;
636 struct xhci_ring *cur_ring;
637 dma_addr_t addr;
638
639 if (!stream_info)
640 return;
641
642 for (cur_stream = 1; cur_stream < stream_info->num_streams;
643 cur_stream++) {
644 cur_ring = stream_info->stream_rings[cur_stream];
645 if (cur_ring) {
646 addr = cur_ring->first_seg->dma;
647 radix_tree_delete(&stream_info->trb_address_map,
648 addr >> SEGMENT_SHIFT);
649 xhci_ring_free(xhci, cur_ring);
650 stream_info->stream_rings[cur_stream] = NULL;
651 }
652 }
653 xhci_free_command(xhci, stream_info->free_streams_command);
654 xhci->cmd_ring_reserved_trbs--;
655 if (stream_info->stream_ctx_array)
656 xhci_free_stream_ctx(xhci,
657 stream_info->num_stream_ctxs,
658 stream_info->stream_ctx_array,
659 stream_info->ctx_array_dma);
660
661 if (stream_info)
662 kfree(stream_info->stream_rings);
663 kfree(stream_info);
664}
665
666
667/***************** Device context manipulation *************************/
668
6f5165cf
SS
669static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
670 struct xhci_virt_ep *ep)
671{
672 init_timer(&ep->stop_cmd_timer);
673 ep->stop_cmd_timer.data = (unsigned long) ep;
674 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
675 ep->xhci = xhci;
676}
677
839c817c
SS
678static void xhci_free_tt_info(struct xhci_hcd *xhci,
679 struct xhci_virt_device *virt_dev,
680 int slot_id)
681{
682 struct list_head *tt;
683 struct list_head *tt_list_head;
684 struct list_head *tt_next;
685 struct xhci_tt_bw_info *tt_info;
686
687 /* If the device never made it past the Set Address stage,
688 * it may not have the real_port set correctly.
689 */
690 if (virt_dev->real_port == 0 ||
691 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
692 xhci_dbg(xhci, "Bad real port.\n");
693 return;
694 }
695
696 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
697 if (list_empty(tt_list_head))
698 return;
699
700 list_for_each(tt, tt_list_head) {
701 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
702 if (tt_info->slot_id == slot_id)
703 break;
704 }
705 /* Cautionary measure in case the hub was disconnected before we
706 * stored the TT information.
707 */
708 if (tt_info->slot_id != slot_id)
709 return;
710
711 tt_next = tt->next;
712 tt_info = list_entry(tt, struct xhci_tt_bw_info,
713 tt_list);
714 /* Multi-TT hubs will have more than one entry */
715 do {
716 list_del(tt);
717 kfree(tt_info);
718 tt = tt_next;
719 if (list_empty(tt_list_head))
720 break;
721 tt_next = tt->next;
722 tt_info = list_entry(tt, struct xhci_tt_bw_info,
723 tt_list);
724 } while (tt_info->slot_id == slot_id);
725}
726
727int xhci_alloc_tt_info(struct xhci_hcd *xhci,
728 struct xhci_virt_device *virt_dev,
729 struct usb_device *hdev,
730 struct usb_tt *tt, gfp_t mem_flags)
731{
732 struct xhci_tt_bw_info *tt_info;
733 unsigned int num_ports;
734 int i, j;
735
736 if (!tt->multi)
737 num_ports = 1;
738 else
739 num_ports = hdev->maxchild;
740
741 for (i = 0; i < num_ports; i++, tt_info++) {
742 struct xhci_interval_bw_table *bw_table;
743
744 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
745 if (!tt_info)
746 goto free_tts;
747 INIT_LIST_HEAD(&tt_info->tt_list);
748 list_add(&tt_info->tt_list,
749 &xhci->rh_bw[virt_dev->real_port - 1].tts);
750 tt_info->slot_id = virt_dev->udev->slot_id;
751 if (tt->multi)
752 tt_info->ttport = i+1;
753 bw_table = &tt_info->bw_table;
754 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
755 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
756 }
757 return 0;
758
759free_tts:
760 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
761 return -ENOMEM;
762}
763
764
765/* All the xhci_tds in the ring's TD list should be freed at this point.
766 * Should be called with xhci->lock held if there is any chance the TT lists
767 * will be manipulated by the configure endpoint, allocate device, or update
768 * hub functions while this function is removing the TT entries from the list.
769 */
3ffbba95
SS
770void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
771{
772 struct xhci_virt_device *dev;
773 int i;
2e27980e 774 int old_active_eps = 0;
3ffbba95
SS
775
776 /* Slot ID 0 is reserved */
777 if (slot_id == 0 || !xhci->devs[slot_id])
778 return;
779
780 dev = xhci->devs[slot_id];
8e595a5d 781 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
782 if (!dev)
783 return;
784
2e27980e
SS
785 if (dev->tt_info)
786 old_active_eps = dev->tt_info->active_eps;
787
8df75f42 788 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
789 if (dev->eps[i].ring)
790 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
791 if (dev->eps[i].stream_info)
792 xhci_free_stream_info(xhci,
793 dev->eps[i].stream_info);
2e27980e
SS
794 /* Endpoints on the TT/root port lists should have been removed
795 * when usb_disable_device() was called for the device.
796 * We can't drop them anyway, because the udev might have gone
797 * away by this point, and we can't tell what speed it was.
798 */
799 if (!list_empty(&dev->eps[i].bw_endpoint_list))
800 xhci_warn(xhci, "Slot %u endpoint %u "
801 "not removed from BW list!\n",
802 slot_id, i);
8df75f42 803 }
839c817c
SS
804 /* If this is a hub, free the TT(s) from the TT list */
805 xhci_free_tt_info(xhci, dev, slot_id);
2e27980e
SS
806 /* If necessary, update the number of active TTs on this root port */
807 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
3ffbba95 808
74f9fe21
SS
809 if (dev->ring_cache) {
810 for (i = 0; i < dev->num_rings_cached; i++)
811 xhci_ring_free(xhci, dev->ring_cache[i]);
812 kfree(dev->ring_cache);
813 }
814
3ffbba95 815 if (dev->in_ctx)
d115b048 816 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 817 if (dev->out_ctx)
d115b048
JY
818 xhci_free_container_ctx(xhci, dev->out_ctx);
819
3ffbba95 820 kfree(xhci->devs[slot_id]);
326b4810 821 xhci->devs[slot_id] = NULL;
3ffbba95
SS
822}
823
824int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
825 struct usb_device *udev, gfp_t flags)
826{
3ffbba95 827 struct xhci_virt_device *dev;
63a0d9ab 828 int i;
3ffbba95
SS
829
830 /* Slot ID 0 is reserved */
831 if (slot_id == 0 || xhci->devs[slot_id]) {
832 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
833 return 0;
834 }
835
836 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
837 if (!xhci->devs[slot_id])
838 return 0;
839 dev = xhci->devs[slot_id];
840
d115b048
JY
841 /* Allocate the (output) device context that will be used in the HC. */
842 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
843 if (!dev->out_ctx)
844 goto fail;
d115b048 845
700e2052 846 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 847 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
848
849 /* Allocate the (input) device context for address device command */
d115b048 850 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
851 if (!dev->in_ctx)
852 goto fail;
d115b048 853
700e2052 854 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 855 (unsigned long long)dev->in_ctx->dma);
3ffbba95 856
6f5165cf
SS
857 /* Initialize the cancellation list and watchdog timers for each ep */
858 for (i = 0; i < 31; i++) {
859 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 860 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
2e27980e 861 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
6f5165cf 862 }
63a0d9ab 863
3ffbba95 864 /* Allocate endpoint 0 ring */
7e393a83 865 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
63a0d9ab 866 if (!dev->eps[0].ring)
3ffbba95
SS
867 goto fail;
868
74f9fe21
SS
869 /* Allocate pointers to the ring cache */
870 dev->ring_cache = kzalloc(
871 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
872 flags);
873 if (!dev->ring_cache)
874 goto fail;
875 dev->num_rings_cached = 0;
876
f94e0186 877 init_completion(&dev->cmd_completion);
913a8a34 878 INIT_LIST_HEAD(&dev->cmd_list);
64927730 879 dev->udev = udev;
f94e0186 880
28c2d2ef 881 /* Point to output device context in dcbaa. */
28ccd296 882 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 883 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
884 slot_id,
885 &xhci->dcbaa->dev_context_ptrs[slot_id],
f5960b69 886 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95
SS
887
888 return 1;
889fail:
890 xhci_free_virt_device(xhci, slot_id);
891 return 0;
892}
893
2d1ee590
SS
894void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
895 struct usb_device *udev)
896{
897 struct xhci_virt_device *virt_dev;
898 struct xhci_ep_ctx *ep0_ctx;
899 struct xhci_ring *ep_ring;
900
901 virt_dev = xhci->devs[udev->slot_id];
902 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
903 ep_ring = virt_dev->eps[0].ring;
904 /*
905 * FIXME we don't keep track of the dequeue pointer very well after a
906 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
907 * host to our enqueue pointer. This should only be called after a
908 * configured device has reset, so all control transfers should have
909 * been completed or cancelled before the reset.
910 */
28ccd296
ME
911 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
912 ep_ring->enqueue)
913 | ep_ring->cycle_state);
2d1ee590
SS
914}
915
f6ff0ac8
SS
916/*
917 * The xHCI roothub may have ports of differing speeds in any order in the port
918 * status registers. xhci->port_array provides an array of the port speed for
919 * each offset into the port status registers.
920 *
921 * The xHCI hardware wants to know the roothub port number that the USB device
922 * is attached to (or the roothub port its ancestor hub is attached to). All we
923 * know is the index of that port under either the USB 2.0 or the USB 3.0
924 * roothub, but that doesn't give us the real index into the HW port status
925 * registers. Scan through the xHCI roothub port array, looking for the Nth
926 * entry of the correct port speed. Return the port number of that entry.
927 */
928static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
929 struct usb_device *udev)
930{
931 struct usb_device *top_dev;
932 unsigned int num_similar_speed_ports;
933 unsigned int faked_port_num;
934 int i;
935
936 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
937 top_dev = top_dev->parent)
938 /* Found device below root hub */;
939 faked_port_num = top_dev->portnum;
940 for (i = 0, num_similar_speed_ports = 0;
941 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
942 u8 port_speed = xhci->port_array[i];
943
944 /*
945 * Skip ports that don't have known speeds, or have duplicate
946 * Extended Capabilities port speed entries.
947 */
22e04870 948 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
f6ff0ac8
SS
949 continue;
950
951 /*
952 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
953 * 1.1 ports are under the USB 2.0 hub. If the port speed
954 * matches the device speed, it's a similar speed port.
955 */
956 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
957 num_similar_speed_ports++;
958 if (num_similar_speed_ports == faked_port_num)
959 /* Roothub ports are numbered from 1 to N */
960 return i+1;
961 }
962 return 0;
963}
964
3ffbba95
SS
965/* Setup an xHCI virtual device for a Set Address command */
966int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
967{
968 struct xhci_virt_device *dev;
969 struct xhci_ep_ctx *ep0_ctx;
d115b048 970 struct xhci_slot_ctx *slot_ctx;
f6ff0ac8
SS
971 u32 port_num;
972 struct usb_device *top_dev;
3ffbba95
SS
973
974 dev = xhci->devs[udev->slot_id];
975 /* Slot ID 0 is reserved */
976 if (udev->slot_id == 0 || !dev) {
977 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
978 udev->slot_id);
979 return -EINVAL;
980 }
d115b048 981 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
d115b048 982 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95 983
3ffbba95 984 /* 3) Only the control endpoint is valid - one endpoint context */
f5960b69 985 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
3ffbba95
SS
986 switch (udev->speed) {
987 case USB_SPEED_SUPER:
f5960b69 988 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
3ffbba95
SS
989 break;
990 case USB_SPEED_HIGH:
f5960b69 991 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
3ffbba95
SS
992 break;
993 case USB_SPEED_FULL:
f5960b69 994 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
3ffbba95
SS
995 break;
996 case USB_SPEED_LOW:
f5960b69 997 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
3ffbba95 998 break;
551cdbbe 999 case USB_SPEED_WIRELESS:
3ffbba95
SS
1000 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1001 return -EINVAL;
1002 break;
1003 default:
1004 /* Speed was set earlier, this shouldn't happen. */
1005 BUG();
1006 }
1007 /* Find the root hub port this device is under */
f6ff0ac8
SS
1008 port_num = xhci_find_real_port_number(xhci, udev);
1009 if (!port_num)
1010 return -EINVAL;
f5960b69 1011 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
f6ff0ac8 1012 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
1013 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1014 top_dev = top_dev->parent)
1015 /* Found device below root hub */;
fe30182c 1016 dev->fake_port = top_dev->portnum;
66381755 1017 dev->real_port = port_num;
f6ff0ac8 1018 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
fe30182c 1019 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
3ffbba95 1020
839c817c
SS
1021 /* Find the right bandwidth table that this device will be a part of.
1022 * If this is a full speed device attached directly to a root port (or a
1023 * decendent of one), it counts as a primary bandwidth domain, not a
1024 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1025 * will never be created for the HS root hub.
1026 */
1027 if (!udev->tt || !udev->tt->hub->parent) {
1028 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1029 } else {
1030 struct xhci_root_port_bw_info *rh_bw;
1031 struct xhci_tt_bw_info *tt_bw;
1032
1033 rh_bw = &xhci->rh_bw[port_num - 1];
1034 /* Find the right TT. */
1035 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1036 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1037 continue;
1038
1039 if (!dev->udev->tt->multi ||
1040 (udev->tt->multi &&
1041 tt_bw->ttport == dev->udev->ttport)) {
1042 dev->bw_table = &tt_bw->bw_table;
1043 dev->tt_info = tt_bw;
1044 break;
1045 }
1046 }
1047 if (!dev->tt_info)
1048 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1049 }
1050
aa1b13ef
SS
1051 /* Is this a LS/FS device under an external HS hub? */
1052 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
1053 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1054 (udev->ttport << 8));
07b6de10 1055 if (udev->tt->multi)
28ccd296 1056 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 1057 }
700e2052 1058 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
1059 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1060
1061 /* Step 4 - ring already allocated */
1062 /* Step 5 */
28ccd296 1063 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
3ffbba95 1064 /*
3ffbba95
SS
1065 * XXX: Not sure about wireless USB devices.
1066 */
47aded8a
SS
1067 switch (udev->speed) {
1068 case USB_SPEED_SUPER:
28ccd296 1069 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
47aded8a
SS
1070 break;
1071 case USB_SPEED_HIGH:
1072 /* USB core guesses at a 64-byte max packet first for FS devices */
1073 case USB_SPEED_FULL:
28ccd296 1074 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
47aded8a
SS
1075 break;
1076 case USB_SPEED_LOW:
28ccd296 1077 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
47aded8a 1078 break;
551cdbbe 1079 case USB_SPEED_WIRELESS:
47aded8a
SS
1080 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1081 return -EINVAL;
1082 break;
1083 default:
1084 /* New speed? */
1085 BUG();
1086 }
3ffbba95 1087 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
28ccd296 1088 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
3ffbba95 1089
28ccd296
ME
1090 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1091 dev->eps[0].ring->cycle_state);
3ffbba95
SS
1092
1093 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1094
1095 return 0;
1096}
1097
dfa49c4a
DT
1098/*
1099 * Convert interval expressed as 2^(bInterval - 1) == interval into
1100 * straight exponent value 2^n == interval.
1101 *
1102 */
1103static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1104 struct usb_host_endpoint *ep)
1105{
1106 unsigned int interval;
1107
1108 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1109 if (interval != ep->desc.bInterval - 1)
1110 dev_warn(&udev->dev,
cd3c18ba 1111 "ep %#x - rounding interval to %d %sframes\n",
dfa49c4a 1112 ep->desc.bEndpointAddress,
cd3c18ba
DT
1113 1 << interval,
1114 udev->speed == USB_SPEED_FULL ? "" : "micro");
1115
1116 if (udev->speed == USB_SPEED_FULL) {
1117 /*
1118 * Full speed isoc endpoints specify interval in frames,
1119 * not microframes. We are using microframes everywhere,
1120 * so adjust accordingly.
1121 */
1122 interval += 3; /* 1 frame = 2^3 uframes */
1123 }
dfa49c4a
DT
1124
1125 return interval;
1126}
1127
1128/*
340a3504 1129 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
dfa49c4a
DT
1130 * microframes, rounded down to nearest power of 2.
1131 */
340a3504
SS
1132static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1133 struct usb_host_endpoint *ep, unsigned int desc_interval,
1134 unsigned int min_exponent, unsigned int max_exponent)
dfa49c4a
DT
1135{
1136 unsigned int interval;
1137
340a3504
SS
1138 interval = fls(desc_interval) - 1;
1139 interval = clamp_val(interval, min_exponent, max_exponent);
1140 if ((1 << interval) != desc_interval)
dfa49c4a
DT
1141 dev_warn(&udev->dev,
1142 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1143 ep->desc.bEndpointAddress,
1144 1 << interval,
340a3504 1145 desc_interval);
dfa49c4a
DT
1146
1147 return interval;
1148}
1149
340a3504
SS
1150static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1151 struct usb_host_endpoint *ep)
1152{
1153 return xhci_microframes_to_exponent(udev, ep,
1154 ep->desc.bInterval, 0, 15);
1155}
1156
1157
1158static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1159 struct usb_host_endpoint *ep)
1160{
1161 return xhci_microframes_to_exponent(udev, ep,
1162 ep->desc.bInterval * 8, 3, 10);
1163}
1164
f94e0186
SS
1165/* Return the polling or NAK interval.
1166 *
1167 * The polling interval is expressed in "microframes". If xHCI's Interval field
1168 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1169 *
1170 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1171 * is set to 0.
1172 */
575688e1 1173static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1174 struct usb_host_endpoint *ep)
1175{
1176 unsigned int interval = 0;
1177
1178 switch (udev->speed) {
1179 case USB_SPEED_HIGH:
1180 /* Max NAK rate */
1181 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1182 usb_endpoint_xfer_bulk(&ep->desc)) {
340a3504 1183 interval = xhci_parse_microframe_interval(udev, ep);
dfa49c4a
DT
1184 break;
1185 }
f94e0186 1186 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1187
f94e0186
SS
1188 case USB_SPEED_SUPER:
1189 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1190 usb_endpoint_xfer_isoc(&ep->desc)) {
1191 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1192 }
1193 break;
dfa49c4a 1194
f94e0186 1195 case USB_SPEED_FULL:
b513d447 1196 if (usb_endpoint_xfer_isoc(&ep->desc)) {
dfa49c4a
DT
1197 interval = xhci_parse_exponent_interval(udev, ep);
1198 break;
1199 }
1200 /*
b513d447 1201 * Fall through for interrupt endpoint interval decoding
dfa49c4a
DT
1202 * since it uses the same rules as low speed interrupt
1203 * endpoints.
1204 */
1205
f94e0186
SS
1206 case USB_SPEED_LOW:
1207 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1208 usb_endpoint_xfer_isoc(&ep->desc)) {
1209
1210 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1211 }
1212 break;
dfa49c4a 1213
f94e0186
SS
1214 default:
1215 BUG();
1216 }
1217 return EP_INTERVAL(interval);
1218}
1219
c30c791c 1220/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1221 * High speed endpoint descriptors can define "the number of additional
1222 * transaction opportunities per microframe", but that goes in the Max Burst
1223 * endpoint context field.
1224 */
575688e1 1225static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1226 struct usb_host_endpoint *ep)
1227{
c30c791c
SS
1228 if (udev->speed != USB_SPEED_SUPER ||
1229 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1230 return 0;
842f1690 1231 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1232}
1233
575688e1 1234static u32 xhci_get_endpoint_type(struct usb_device *udev,
f94e0186
SS
1235 struct usb_host_endpoint *ep)
1236{
1237 int in;
1238 u32 type;
1239
1240 in = usb_endpoint_dir_in(&ep->desc);
1241 if (usb_endpoint_xfer_control(&ep->desc)) {
1242 type = EP_TYPE(CTRL_EP);
1243 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1244 if (in)
1245 type = EP_TYPE(BULK_IN_EP);
1246 else
1247 type = EP_TYPE(BULK_OUT_EP);
1248 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1249 if (in)
1250 type = EP_TYPE(ISOC_IN_EP);
1251 else
1252 type = EP_TYPE(ISOC_OUT_EP);
1253 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1254 if (in)
1255 type = EP_TYPE(INT_IN_EP);
1256 else
1257 type = EP_TYPE(INT_OUT_EP);
1258 } else {
1259 BUG();
1260 }
1261 return type;
1262}
1263
9238f25d
SS
1264/* Return the maximum endpoint service interval time (ESIT) payload.
1265 * Basically, this is the maxpacket size, multiplied by the burst size
1266 * and mult size.
1267 */
575688e1 1268static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
9238f25d
SS
1269 struct usb_device *udev,
1270 struct usb_host_endpoint *ep)
1271{
1272 int max_burst;
1273 int max_packet;
1274
1275 /* Only applies for interrupt or isochronous endpoints */
1276 if (usb_endpoint_xfer_control(&ep->desc) ||
1277 usb_endpoint_xfer_bulk(&ep->desc))
1278 return 0;
1279
842f1690 1280 if (udev->speed == USB_SPEED_SUPER)
64b3c304 1281 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1282
29cc8897
KM
1283 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1284 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
9238f25d
SS
1285 /* A 0 in max burst means 1 transfer per ESIT */
1286 return max_packet * (max_burst + 1);
1287}
1288
8df75f42
SS
1289/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1290 * Drivers will have to call usb_alloc_streams() to do that.
1291 */
f94e0186
SS
1292int xhci_endpoint_init(struct xhci_hcd *xhci,
1293 struct xhci_virt_device *virt_dev,
1294 struct usb_device *udev,
f88ba78d
SS
1295 struct usb_host_endpoint *ep,
1296 gfp_t mem_flags)
f94e0186
SS
1297{
1298 unsigned int ep_index;
1299 struct xhci_ep_ctx *ep_ctx;
1300 struct xhci_ring *ep_ring;
1301 unsigned int max_packet;
1302 unsigned int max_burst;
9238f25d 1303 u32 max_esit_payload;
f94e0186
SS
1304
1305 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1306 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1307
1308 /* Set up the endpoint ring */
a061a5a0
AX
1309 /*
1310 * Isochronous endpoint ring needs bigger size because one isoc URB
1311 * carries multiple packets and it will insert multiple tds to the
1312 * ring.
1313 * This should be replaced with dynamic ring resizing in the future.
1314 */
1315 if (usb_endpoint_xfer_isoc(&ep->desc))
1316 virt_dev->eps[ep_index].new_ring =
7e393a83 1317 xhci_ring_alloc(xhci, 8, true, true, mem_flags);
a061a5a0
AX
1318 else
1319 virt_dev->eps[ep_index].new_ring =
7e393a83 1320 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
74f9fe21
SS
1321 if (!virt_dev->eps[ep_index].new_ring) {
1322 /* Attempt to use the ring cache */
1323 if (virt_dev->num_rings_cached == 0)
1324 return -ENOMEM;
1325 virt_dev->eps[ep_index].new_ring =
1326 virt_dev->ring_cache[virt_dev->num_rings_cached];
1327 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1328 virt_dev->num_rings_cached--;
7e393a83
AX
1329 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1330 usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
74f9fe21 1331 }
d18240db 1332 virt_dev->eps[ep_index].skip = false;
63a0d9ab 1333 ep_ring = virt_dev->eps[ep_index].new_ring;
28ccd296 1334 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
f94e0186 1335
28ccd296
ME
1336 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1337 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
f94e0186
SS
1338
1339 /* FIXME dig Mult and streams info out of ep companion desc */
1340
47692d17 1341 /* Allow 3 retries for everything but isoc;
7b1fc2ea 1342 * CErr shall be set to 0 for Isoch endpoints.
47692d17 1343 */
f94e0186 1344 if (!usb_endpoint_xfer_isoc(&ep->desc))
28ccd296 1345 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
f94e0186 1346 else
7b1fc2ea 1347 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
f94e0186 1348
28ccd296 1349 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
f94e0186
SS
1350
1351 /* Set the max packet size and max burst */
1352 switch (udev->speed) {
1353 case USB_SPEED_SUPER:
29cc8897 1354 max_packet = usb_endpoint_maxp(&ep->desc);
28ccd296 1355 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
b10de142 1356 /* dig out max burst from ep companion desc */
842f1690 1357 max_packet = ep->ss_ep_comp.bMaxBurst;
28ccd296 1358 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
f94e0186
SS
1359 break;
1360 case USB_SPEED_HIGH:
1361 /* bits 11:12 specify the number of additional transaction
1362 * opportunities per microframe (USB 2.0, section 9.6.6)
1363 */
1364 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1365 usb_endpoint_xfer_int(&ep->desc)) {
29cc8897 1366 max_burst = (usb_endpoint_maxp(&ep->desc)
28ccd296
ME
1367 & 0x1800) >> 11;
1368 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
f94e0186
SS
1369 }
1370 /* Fall through */
1371 case USB_SPEED_FULL:
1372 case USB_SPEED_LOW:
29cc8897 1373 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
28ccd296 1374 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
f94e0186
SS
1375 break;
1376 default:
1377 BUG();
1378 }
9238f25d 1379 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
28ccd296 1380 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
9238f25d
SS
1381
1382 /*
1383 * XXX no idea how to calculate the average TRB buffer length for bulk
1384 * endpoints, as the driver gives us no clue how big each scatter gather
1385 * list entry (or buffer) is going to be.
1386 *
1387 * For isochronous and interrupt endpoints, we set it to the max
1388 * available, until we have new API in the USB core to allow drivers to
1389 * declare how much bandwidth they actually need.
1390 *
1391 * Normally, it would be calculated by taking the total of the buffer
1392 * lengths in the TD and then dividing by the number of TRBs in a TD,
1393 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1394 * use Event Data TRBs, and we don't chain in a link TRB on short
1395 * transfers, we're basically dividing by 1.
51eb01a7
AX
1396 *
1397 * xHCI 1.0 specification indicates that the Average TRB Length should
1398 * be set to 8 for control endpoints.
9238f25d 1399 */
51eb01a7
AX
1400 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1401 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1402 else
1403 ep_ctx->tx_info |=
1404 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
9238f25d 1405
f94e0186
SS
1406 /* FIXME Debug endpoint context */
1407 return 0;
1408}
1409
1410void xhci_endpoint_zero(struct xhci_hcd *xhci,
1411 struct xhci_virt_device *virt_dev,
1412 struct usb_host_endpoint *ep)
1413{
1414 unsigned int ep_index;
1415 struct xhci_ep_ctx *ep_ctx;
1416
1417 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1418 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1419
1420 ep_ctx->ep_info = 0;
1421 ep_ctx->ep_info2 = 0;
8e595a5d 1422 ep_ctx->deq = 0;
f94e0186
SS
1423 ep_ctx->tx_info = 0;
1424 /* Don't free the endpoint ring until the set interface or configuration
1425 * request succeeds.
1426 */
1427}
1428
9af5d71d
SS
1429void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1430{
1431 bw_info->ep_interval = 0;
1432 bw_info->mult = 0;
1433 bw_info->num_packets = 0;
1434 bw_info->max_packet_size = 0;
1435 bw_info->type = 0;
1436 bw_info->max_esit_payload = 0;
1437}
1438
1439void xhci_update_bw_info(struct xhci_hcd *xhci,
1440 struct xhci_container_ctx *in_ctx,
1441 struct xhci_input_control_ctx *ctrl_ctx,
1442 struct xhci_virt_device *virt_dev)
1443{
1444 struct xhci_bw_info *bw_info;
1445 struct xhci_ep_ctx *ep_ctx;
1446 unsigned int ep_type;
1447 int i;
1448
1449 for (i = 1; i < 31; ++i) {
1450 bw_info = &virt_dev->eps[i].bw_info;
1451
1452 /* We can't tell what endpoint type is being dropped, but
1453 * unconditionally clearing the bandwidth info for non-periodic
1454 * endpoints should be harmless because the info will never be
1455 * set in the first place.
1456 */
1457 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1458 /* Dropped endpoint */
1459 xhci_clear_endpoint_bw_info(bw_info);
1460 continue;
1461 }
1462
1463 if (EP_IS_ADDED(ctrl_ctx, i)) {
1464 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1465 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1466
1467 /* Ignore non-periodic endpoints */
1468 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1469 ep_type != ISOC_IN_EP &&
1470 ep_type != INT_IN_EP)
1471 continue;
1472
1473 /* Added or changed endpoint */
1474 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1475 le32_to_cpu(ep_ctx->ep_info));
170c0263
SS
1476 /* Number of packets and mult are zero-based in the
1477 * input context, but we want one-based for the
1478 * interval table.
9af5d71d 1479 */
170c0263
SS
1480 bw_info->mult = CTX_TO_EP_MULT(
1481 le32_to_cpu(ep_ctx->ep_info)) + 1;
9af5d71d
SS
1482 bw_info->num_packets = CTX_TO_MAX_BURST(
1483 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1484 bw_info->max_packet_size = MAX_PACKET_DECODED(
1485 le32_to_cpu(ep_ctx->ep_info2));
1486 bw_info->type = ep_type;
1487 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1488 le32_to_cpu(ep_ctx->tx_info));
1489 }
1490 }
1491}
1492
f2217e8e
SS
1493/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1494 * Useful when you want to change one particular aspect of the endpoint and then
1495 * issue a configure endpoint command.
1496 */
1497void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1498 struct xhci_container_ctx *in_ctx,
1499 struct xhci_container_ctx *out_ctx,
1500 unsigned int ep_index)
f2217e8e
SS
1501{
1502 struct xhci_ep_ctx *out_ep_ctx;
1503 struct xhci_ep_ctx *in_ep_ctx;
1504
913a8a34
SS
1505 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1506 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1507
1508 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1509 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1510 in_ep_ctx->deq = out_ep_ctx->deq;
1511 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1512}
1513
1514/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1515 * Useful when you want to change one particular aspect of the endpoint and then
1516 * issue a configure endpoint command. Only the context entries field matters,
1517 * but we'll copy the whole thing anyway.
1518 */
913a8a34
SS
1519void xhci_slot_copy(struct xhci_hcd *xhci,
1520 struct xhci_container_ctx *in_ctx,
1521 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1522{
1523 struct xhci_slot_ctx *in_slot_ctx;
1524 struct xhci_slot_ctx *out_slot_ctx;
1525
913a8a34
SS
1526 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1527 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1528
1529 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1530 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1531 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1532 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1533}
1534
254c80a3
JY
1535/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1536static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1537{
1538 int i;
1539 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1540 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1541
1542 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1543
1544 if (!num_sp)
1545 return 0;
1546
1547 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1548 if (!xhci->scratchpad)
1549 goto fail_sp;
1550
22d45f01 1551 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
254c80a3 1552 num_sp * sizeof(u64),
22d45f01 1553 &xhci->scratchpad->sp_dma, flags);
254c80a3
JY
1554 if (!xhci->scratchpad->sp_array)
1555 goto fail_sp2;
1556
1557 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1558 if (!xhci->scratchpad->sp_buffers)
1559 goto fail_sp3;
1560
1561 xhci->scratchpad->sp_dma_buffers =
1562 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1563
1564 if (!xhci->scratchpad->sp_dma_buffers)
1565 goto fail_sp4;
1566
28ccd296 1567 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1568 for (i = 0; i < num_sp; i++) {
1569 dma_addr_t dma;
22d45f01
SAS
1570 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1571 flags);
254c80a3
JY
1572 if (!buf)
1573 goto fail_sp5;
1574
1575 xhci->scratchpad->sp_array[i] = dma;
1576 xhci->scratchpad->sp_buffers[i] = buf;
1577 xhci->scratchpad->sp_dma_buffers[i] = dma;
1578 }
1579
1580 return 0;
1581
1582 fail_sp5:
1583 for (i = i - 1; i >= 0; i--) {
22d45f01 1584 dma_free_coherent(dev, xhci->page_size,
254c80a3
JY
1585 xhci->scratchpad->sp_buffers[i],
1586 xhci->scratchpad->sp_dma_buffers[i]);
1587 }
1588 kfree(xhci->scratchpad->sp_dma_buffers);
1589
1590 fail_sp4:
1591 kfree(xhci->scratchpad->sp_buffers);
1592
1593 fail_sp3:
22d45f01 1594 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1595 xhci->scratchpad->sp_array,
1596 xhci->scratchpad->sp_dma);
1597
1598 fail_sp2:
1599 kfree(xhci->scratchpad);
1600 xhci->scratchpad = NULL;
1601
1602 fail_sp:
1603 return -ENOMEM;
1604}
1605
1606static void scratchpad_free(struct xhci_hcd *xhci)
1607{
1608 int num_sp;
1609 int i;
1610 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1611
1612 if (!xhci->scratchpad)
1613 return;
1614
1615 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1616
1617 for (i = 0; i < num_sp; i++) {
22d45f01 1618 dma_free_coherent(&pdev->dev, xhci->page_size,
254c80a3
JY
1619 xhci->scratchpad->sp_buffers[i],
1620 xhci->scratchpad->sp_dma_buffers[i]);
1621 }
1622 kfree(xhci->scratchpad->sp_dma_buffers);
1623 kfree(xhci->scratchpad->sp_buffers);
22d45f01 1624 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
254c80a3
JY
1625 xhci->scratchpad->sp_array,
1626 xhci->scratchpad->sp_dma);
1627 kfree(xhci->scratchpad);
1628 xhci->scratchpad = NULL;
1629}
1630
913a8a34 1631struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1632 bool allocate_in_ctx, bool allocate_completion,
1633 gfp_t mem_flags)
913a8a34
SS
1634{
1635 struct xhci_command *command;
1636
1637 command = kzalloc(sizeof(*command), mem_flags);
1638 if (!command)
1639 return NULL;
1640
a1d78c16
SS
1641 if (allocate_in_ctx) {
1642 command->in_ctx =
1643 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1644 mem_flags);
1645 if (!command->in_ctx) {
1646 kfree(command);
1647 return NULL;
1648 }
06e18291 1649 }
913a8a34
SS
1650
1651 if (allocate_completion) {
1652 command->completion =
1653 kzalloc(sizeof(struct completion), mem_flags);
1654 if (!command->completion) {
1655 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1656 kfree(command);
913a8a34
SS
1657 return NULL;
1658 }
1659 init_completion(command->completion);
1660 }
1661
1662 command->status = 0;
1663 INIT_LIST_HEAD(&command->cmd_list);
1664 return command;
1665}
1666
8e51adcc
AX
1667void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1668{
2ffdea25
AX
1669 if (urb_priv) {
1670 kfree(urb_priv->td[0]);
1671 kfree(urb_priv);
8e51adcc 1672 }
8e51adcc
AX
1673}
1674
913a8a34
SS
1675void xhci_free_command(struct xhci_hcd *xhci,
1676 struct xhci_command *command)
1677{
1678 xhci_free_container_ctx(xhci,
1679 command->in_ctx);
1680 kfree(command->completion);
1681 kfree(command);
1682}
1683
66d4eadd
SS
1684void xhci_mem_cleanup(struct xhci_hcd *xhci)
1685{
0ebbab37 1686 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
9574323c
AX
1687 struct dev_info *dev_info, *next;
1688 unsigned long flags;
0ebbab37 1689 int size;
3ffbba95 1690 int i;
0ebbab37
SS
1691
1692 /* Free the Event Ring Segment Table and the actual Event Ring */
d94c05e3
SS
1693 if (xhci->ir_set) {
1694 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1695 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1696 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1697 }
0ebbab37
SS
1698 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1699 if (xhci->erst.entries)
22d45f01 1700 dma_free_coherent(&pdev->dev, size,
0ebbab37
SS
1701 xhci->erst.entries, xhci->erst.erst_dma_addr);
1702 xhci->erst.entries = NULL;
1703 xhci_dbg(xhci, "Freed ERST\n");
1704 if (xhci->event_ring)
1705 xhci_ring_free(xhci, xhci->event_ring);
1706 xhci->event_ring = NULL;
1707 xhci_dbg(xhci, "Freed event ring\n");
1708
8e595a5d 1709 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
0ebbab37
SS
1710 if (xhci->cmd_ring)
1711 xhci_ring_free(xhci, xhci->cmd_ring);
1712 xhci->cmd_ring = NULL;
1713 xhci_dbg(xhci, "Freed command ring\n");
3ffbba95
SS
1714
1715 for (i = 1; i < MAX_HC_SLOTS; ++i)
1716 xhci_free_virt_device(xhci, i);
1717
0ebbab37
SS
1718 if (xhci->segment_pool)
1719 dma_pool_destroy(xhci->segment_pool);
1720 xhci->segment_pool = NULL;
1721 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
1722
1723 if (xhci->device_pool)
1724 dma_pool_destroy(xhci->device_pool);
1725 xhci->device_pool = NULL;
1726 xhci_dbg(xhci, "Freed device context pool\n");
1727
8df75f42
SS
1728 if (xhci->small_streams_pool)
1729 dma_pool_destroy(xhci->small_streams_pool);
1730 xhci->small_streams_pool = NULL;
1731 xhci_dbg(xhci, "Freed small stream array pool\n");
1732
1733 if (xhci->medium_streams_pool)
1734 dma_pool_destroy(xhci->medium_streams_pool);
1735 xhci->medium_streams_pool = NULL;
1736 xhci_dbg(xhci, "Freed medium stream array pool\n");
1737
8e595a5d 1738 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
a74588f9 1739 if (xhci->dcbaa)
22d45f01 1740 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
a74588f9
SS
1741 xhci->dcbaa, xhci->dcbaa->dma);
1742 xhci->dcbaa = NULL;
3ffbba95 1743
5294bea4 1744 scratchpad_free(xhci);
da6699ce 1745
9574323c
AX
1746 spin_lock_irqsave(&xhci->lock, flags);
1747 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1748 list_del(&dev_info->list);
1749 kfree(dev_info);
1750 }
1751 spin_unlock_irqrestore(&xhci->lock, flags);
1752
da6699ce
SS
1753 xhci->num_usb2_ports = 0;
1754 xhci->num_usb3_ports = 0;
1755 kfree(xhci->usb2_ports);
1756 kfree(xhci->usb3_ports);
1757 kfree(xhci->port_array);
839c817c 1758 kfree(xhci->rh_bw);
da6699ce 1759
66d4eadd
SS
1760 xhci->page_size = 0;
1761 xhci->page_shift = 0;
20b67cf5 1762 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1763 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1764}
1765
6648f29d
SS
1766static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1767 struct xhci_segment *input_seg,
1768 union xhci_trb *start_trb,
1769 union xhci_trb *end_trb,
1770 dma_addr_t input_dma,
1771 struct xhci_segment *result_seg,
1772 char *test_name, int test_number)
1773{
1774 unsigned long long start_dma;
1775 unsigned long long end_dma;
1776 struct xhci_segment *seg;
1777
1778 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1779 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1780
1781 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1782 if (seg != result_seg) {
1783 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1784 test_name, test_number);
1785 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1786 "input DMA 0x%llx\n",
1787 input_seg,
1788 (unsigned long long) input_dma);
1789 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1790 "ending TRB %p (0x%llx DMA)\n",
1791 start_trb, start_dma,
1792 end_trb, end_dma);
1793 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1794 result_seg, seg);
1795 return -1;
1796 }
1797 return 0;
1798}
1799
1800/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1801static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1802{
1803 struct {
1804 dma_addr_t input_dma;
1805 struct xhci_segment *result_seg;
1806 } simple_test_vector [] = {
1807 /* A zeroed DMA field should fail */
1808 { 0, NULL },
1809 /* One TRB before the ring start should fail */
1810 { xhci->event_ring->first_seg->dma - 16, NULL },
1811 /* One byte before the ring start should fail */
1812 { xhci->event_ring->first_seg->dma - 1, NULL },
1813 /* Starting TRB should succeed */
1814 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1815 /* Ending TRB should succeed */
1816 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1817 xhci->event_ring->first_seg },
1818 /* One byte after the ring end should fail */
1819 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1820 /* One TRB after the ring end should fail */
1821 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1822 /* An address of all ones should fail */
1823 { (dma_addr_t) (~0), NULL },
1824 };
1825 struct {
1826 struct xhci_segment *input_seg;
1827 union xhci_trb *start_trb;
1828 union xhci_trb *end_trb;
1829 dma_addr_t input_dma;
1830 struct xhci_segment *result_seg;
1831 } complex_test_vector [] = {
1832 /* Test feeding a valid DMA address from a different ring */
1833 { .input_seg = xhci->event_ring->first_seg,
1834 .start_trb = xhci->event_ring->first_seg->trbs,
1835 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1836 .input_dma = xhci->cmd_ring->first_seg->dma,
1837 .result_seg = NULL,
1838 },
1839 /* Test feeding a valid end TRB from a different ring */
1840 { .input_seg = xhci->event_ring->first_seg,
1841 .start_trb = xhci->event_ring->first_seg->trbs,
1842 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1843 .input_dma = xhci->cmd_ring->first_seg->dma,
1844 .result_seg = NULL,
1845 },
1846 /* Test feeding a valid start and end TRB from a different ring */
1847 { .input_seg = xhci->event_ring->first_seg,
1848 .start_trb = xhci->cmd_ring->first_seg->trbs,
1849 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1850 .input_dma = xhci->cmd_ring->first_seg->dma,
1851 .result_seg = NULL,
1852 },
1853 /* TRB in this ring, but after this TD */
1854 { .input_seg = xhci->event_ring->first_seg,
1855 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1856 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1857 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1858 .result_seg = NULL,
1859 },
1860 /* TRB in this ring, but before this TD */
1861 { .input_seg = xhci->event_ring->first_seg,
1862 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1863 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1864 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1865 .result_seg = NULL,
1866 },
1867 /* TRB in this ring, but after this wrapped TD */
1868 { .input_seg = xhci->event_ring->first_seg,
1869 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1870 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1871 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1872 .result_seg = NULL,
1873 },
1874 /* TRB in this ring, but before this wrapped TD */
1875 { .input_seg = xhci->event_ring->first_seg,
1876 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1877 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1878 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1879 .result_seg = NULL,
1880 },
1881 /* TRB not in this ring, and we have a wrapped TD */
1882 { .input_seg = xhci->event_ring->first_seg,
1883 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1884 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1885 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1886 .result_seg = NULL,
1887 },
1888 };
1889
1890 unsigned int num_tests;
1891 int i, ret;
1892
e10fa478 1893 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
1894 for (i = 0; i < num_tests; i++) {
1895 ret = xhci_test_trb_in_td(xhci,
1896 xhci->event_ring->first_seg,
1897 xhci->event_ring->first_seg->trbs,
1898 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1899 simple_test_vector[i].input_dma,
1900 simple_test_vector[i].result_seg,
1901 "Simple", i);
1902 if (ret < 0)
1903 return ret;
1904 }
1905
e10fa478 1906 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
1907 for (i = 0; i < num_tests; i++) {
1908 ret = xhci_test_trb_in_td(xhci,
1909 complex_test_vector[i].input_seg,
1910 complex_test_vector[i].start_trb,
1911 complex_test_vector[i].end_trb,
1912 complex_test_vector[i].input_dma,
1913 complex_test_vector[i].result_seg,
1914 "Complex", i);
1915 if (ret < 0)
1916 return ret;
1917 }
1918 xhci_dbg(xhci, "TRB math tests passed.\n");
1919 return 0;
1920}
1921
257d585a
SS
1922static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1923{
1924 u64 temp;
1925 dma_addr_t deq;
1926
1927 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1928 xhci->event_ring->dequeue);
1929 if (deq == 0 && !in_interrupt())
1930 xhci_warn(xhci, "WARN something wrong with SW event ring "
1931 "dequeue ptr.\n");
1932 /* Update HC event ring dequeue pointer */
1933 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1934 temp &= ERST_PTR_MASK;
1935 /* Don't clear the EHB bit (which is RW1C) because
1936 * there might be more events to service.
1937 */
1938 temp &= ~ERST_EHB;
1939 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1940 "preserving EHB bit\n");
1941 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1942 &xhci->ir_set->erst_dequeue);
1943}
1944
da6699ce 1945static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
28ccd296 1946 __le32 __iomem *addr, u8 major_revision)
da6699ce
SS
1947{
1948 u32 temp, port_offset, port_count;
1949 int i;
1950
1951 if (major_revision > 0x03) {
1952 xhci_warn(xhci, "Ignoring unknown port speed, "
1953 "Ext Cap %p, revision = 0x%x\n",
1954 addr, major_revision);
1955 /* Ignoring port protocol we can't understand. FIXME */
1956 return;
1957 }
1958
1959 /* Port offset and count in the third dword, see section 7.2 */
1960 temp = xhci_readl(xhci, addr + 2);
1961 port_offset = XHCI_EXT_PORT_OFF(temp);
1962 port_count = XHCI_EXT_PORT_COUNT(temp);
1963 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1964 "count = %u, revision = 0x%x\n",
1965 addr, port_offset, port_count, major_revision);
1966 /* Port count includes the current port offset */
1967 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1968 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1969 return;
fc71ff75
AX
1970
1971 /* Check the host's USB2 LPM capability */
1972 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
1973 (temp & XHCI_L1C)) {
1974 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
1975 xhci->sw_lpm_support = 1;
1976 }
1977
1978 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
1979 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
1980 xhci->sw_lpm_support = 1;
1981 if (temp & XHCI_HLC) {
1982 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
1983 xhci->hw_lpm_support = 1;
1984 }
1985 }
1986
da6699ce
SS
1987 port_offset--;
1988 for (i = port_offset; i < (port_offset + port_count); i++) {
1989 /* Duplicate entry. Ignore the port if the revisions differ. */
1990 if (xhci->port_array[i] != 0) {
1991 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1992 " port %u\n", addr, i);
1993 xhci_warn(xhci, "Port was marked as USB %u, "
1994 "duplicated as USB %u\n",
1995 xhci->port_array[i], major_revision);
1996 /* Only adjust the roothub port counts if we haven't
1997 * found a similar duplicate.
1998 */
1999 if (xhci->port_array[i] != major_revision &&
22e04870 2000 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
2001 if (xhci->port_array[i] == 0x03)
2002 xhci->num_usb3_ports--;
2003 else
2004 xhci->num_usb2_ports--;
22e04870 2005 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
2006 }
2007 /* FIXME: Should we disable the port? */
f8bbeabc 2008 continue;
da6699ce
SS
2009 }
2010 xhci->port_array[i] = major_revision;
2011 if (major_revision == 0x03)
2012 xhci->num_usb3_ports++;
2013 else
2014 xhci->num_usb2_ports++;
2015 }
2016 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2017}
2018
2019/*
2020 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2021 * specify what speeds each port is supposed to be. We can't count on the port
2022 * speed bits in the PORTSC register being correct until a device is connected,
2023 * but we need to set up the two fake roothubs with the correct number of USB
2024 * 3.0 and USB 2.0 ports at host controller initialization time.
2025 */
2026static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2027{
28ccd296 2028 __le32 __iomem *addr;
da6699ce
SS
2029 u32 offset;
2030 unsigned int num_ports;
2e27980e 2031 int i, j, port_index;
da6699ce
SS
2032
2033 addr = &xhci->cap_regs->hcc_params;
2034 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2035 if (offset == 0) {
2036 xhci_err(xhci, "No Extended Capability registers, "
2037 "unable to set up roothub.\n");
2038 return -ENODEV;
2039 }
2040
2041 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2042 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2043 if (!xhci->port_array)
2044 return -ENOMEM;
2045
839c817c
SS
2046 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2047 if (!xhci->rh_bw)
2048 return -ENOMEM;
2e27980e
SS
2049 for (i = 0; i < num_ports; i++) {
2050 struct xhci_interval_bw_table *bw_table;
2051
839c817c 2052 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2e27980e
SS
2053 bw_table = &xhci->rh_bw[i].bw_table;
2054 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2055 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2056 }
839c817c 2057
da6699ce
SS
2058 /*
2059 * For whatever reason, the first capability offset is from the
2060 * capability register base, not from the HCCPARAMS register.
2061 * See section 5.3.6 for offset calculation.
2062 */
2063 addr = &xhci->cap_regs->hc_capbase + offset;
2064 while (1) {
2065 u32 cap_id;
2066
2067 cap_id = xhci_readl(xhci, addr);
2068 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2069 xhci_add_in_port(xhci, num_ports, addr,
2070 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2071 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2072 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2073 == num_ports)
2074 break;
2075 /*
2076 * Once you're into the Extended Capabilities, the offset is
2077 * always relative to the register holding the offset.
2078 */
2079 addr += offset;
2080 }
2081
2082 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2083 xhci_warn(xhci, "No ports on the roothubs?\n");
2084 return -ENODEV;
2085 }
2086 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2087 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
2088
2089 /* Place limits on the number of roothub ports so that the hub
2090 * descriptors aren't longer than the USB core will allocate.
2091 */
2092 if (xhci->num_usb3_ports > 15) {
2093 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2094 xhci->num_usb3_ports = 15;
2095 }
2096 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2097 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2098 USB_MAXCHILDREN);
2099 xhci->num_usb2_ports = USB_MAXCHILDREN;
2100 }
2101
da6699ce
SS
2102 /*
2103 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2104 * Not sure how the USB core will handle a hub with no ports...
2105 */
2106 if (xhci->num_usb2_ports) {
2107 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2108 xhci->num_usb2_ports, flags);
2109 if (!xhci->usb2_ports)
2110 return -ENOMEM;
2111
2112 port_index = 0;
f8bbeabc
SS
2113 for (i = 0; i < num_ports; i++) {
2114 if (xhci->port_array[i] == 0x03 ||
2115 xhci->port_array[i] == 0 ||
22e04870 2116 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
2117 continue;
2118
2119 xhci->usb2_ports[port_index] =
2120 &xhci->op_regs->port_status_base +
2121 NUM_PORT_REGS*i;
2122 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2123 "addr = %p\n", i,
2124 xhci->usb2_ports[port_index]);
2125 port_index++;
d30b2a20
SS
2126 if (port_index == xhci->num_usb2_ports)
2127 break;
f8bbeabc 2128 }
da6699ce
SS
2129 }
2130 if (xhci->num_usb3_ports) {
2131 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2132 xhci->num_usb3_ports, flags);
2133 if (!xhci->usb3_ports)
2134 return -ENOMEM;
2135
2136 port_index = 0;
2137 for (i = 0; i < num_ports; i++)
2138 if (xhci->port_array[i] == 0x03) {
2139 xhci->usb3_ports[port_index] =
2140 &xhci->op_regs->port_status_base +
2141 NUM_PORT_REGS*i;
2142 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2143 "addr = %p\n", i,
2144 xhci->usb3_ports[port_index]);
2145 port_index++;
d30b2a20
SS
2146 if (port_index == xhci->num_usb3_ports)
2147 break;
da6699ce
SS
2148 }
2149 }
2150 return 0;
2151}
6648f29d 2152
66d4eadd
SS
2153int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2154{
0ebbab37
SS
2155 dma_addr_t dma;
2156 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 2157 unsigned int val, val2;
8e595a5d 2158 u64 val_64;
0ebbab37 2159 struct xhci_segment *seg;
623bef9e 2160 u32 page_size, temp;
66d4eadd
SS
2161 int i;
2162
2163 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2164 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2165 for (i = 0; i < 16; i++) {
2166 if ((0x1 & page_size) != 0)
2167 break;
2168 page_size = page_size >> 1;
2169 }
2170 if (i < 16)
2171 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2172 else
2173 xhci_warn(xhci, "WARN: no supported page size\n");
2174 /* Use 4K pages, since that's common and the minimum the HC supports */
2175 xhci->page_shift = 12;
2176 xhci->page_size = 1 << xhci->page_shift;
2177 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2178
2179 /*
2180 * Program the Number of Device Slots Enabled field in the CONFIG
2181 * register with the max value of slots the HC can handle.
2182 */
2183 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2184 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2185 (unsigned int) val);
2186 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2187 val |= (val2 & ~HCS_SLOTS_MASK);
2188 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2189 (unsigned int) val);
2190 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2191
a74588f9
SS
2192 /*
2193 * Section 5.4.8 - doorbell array must be
2194 * "physically contiguous and 64-byte (cache line) aligned".
2195 */
22d45f01
SAS
2196 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2197 GFP_KERNEL);
a74588f9
SS
2198 if (!xhci->dcbaa)
2199 goto fail;
2200 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2201 xhci->dcbaa->dma = dma;
700e2052
GKH
2202 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2203 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 2204 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 2205
0ebbab37
SS
2206 /*
2207 * Initialize the ring segment pool. The ring must be a contiguous
2208 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2209 * however, the command ring segment needs 64-byte aligned segments,
2210 * so we pick the greater alignment need.
2211 */
2212 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2213 SEGMENT_SIZE, 64, xhci->page_size);
d115b048 2214
3ffbba95 2215 /* See Table 46 and Note on Figure 55 */
3ffbba95 2216 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 2217 2112, 64, xhci->page_size);
3ffbba95 2218 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
2219 goto fail;
2220
8df75f42
SS
2221 /* Linear stream context arrays don't have any boundary restrictions,
2222 * and only need to be 16-byte aligned.
2223 */
2224 xhci->small_streams_pool =
2225 dma_pool_create("xHCI 256 byte stream ctx arrays",
2226 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2227 xhci->medium_streams_pool =
2228 dma_pool_create("xHCI 1KB stream ctx arrays",
2229 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2230 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
22d45f01 2231 * will be allocated with dma_alloc_coherent()
8df75f42
SS
2232 */
2233
2234 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2235 goto fail;
2236
0ebbab37 2237 /* Set up the command ring to have one segments for now. */
7e393a83 2238 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
0ebbab37
SS
2239 if (!xhci->cmd_ring)
2240 goto fail;
700e2052
GKH
2241 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2242 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2243 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2244
2245 /* Set the address in the Command Ring Control register */
8e595a5d
SS
2246 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2247 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2248 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2249 xhci->cmd_ring->cycle_state;
8e595a5d
SS
2250 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2251 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2252 xhci_dbg_cmd_ptrs(xhci);
2253
2254 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2255 val &= DBOFF_MASK;
2256 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2257 " from cap regs base addr\n", val);
c50a00f8 2258 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2259 xhci_dbg_regs(xhci);
2260 xhci_print_run_regs(xhci);
2261 /* Set ir_set to interrupt register set 0 */
c50a00f8 2262 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2263
2264 /*
2265 * Event ring setup: Allocate a normal ring, but also setup
2266 * the event ring segment table (ERST). Section 4.9.3.
2267 */
2268 xhci_dbg(xhci, "// Allocating event ring\n");
7e393a83
AX
2269 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
2270 flags);
0ebbab37
SS
2271 if (!xhci->event_ring)
2272 goto fail;
6648f29d
SS
2273 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2274 goto fail;
0ebbab37 2275
22d45f01
SAS
2276 xhci->erst.entries = dma_alloc_coherent(dev,
2277 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2278 GFP_KERNEL);
0ebbab37
SS
2279 if (!xhci->erst.entries)
2280 goto fail;
700e2052
GKH
2281 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2282 (unsigned long long)dma);
0ebbab37
SS
2283
2284 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2285 xhci->erst.num_entries = ERST_NUM_SEGS;
2286 xhci->erst.erst_dma_addr = dma;
700e2052 2287 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
0ebbab37 2288 xhci->erst.num_entries,
700e2052
GKH
2289 xhci->erst.entries,
2290 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2291
2292 /* set ring base address and size for each segment table entry */
2293 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2294 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2295 entry->seg_addr = cpu_to_le64(seg->dma);
2296 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2297 entry->rsvd = 0;
2298 seg = seg->next;
2299 }
2300
2301 /* set ERST count with the number of entries in the segment table */
2302 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2303 val &= ERST_SIZE_MASK;
2304 val |= ERST_NUM_SEGS;
2305 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2306 val);
2307 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2308
2309 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2310 /* set the segment table base address */
700e2052
GKH
2311 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2312 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
2313 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2314 val_64 &= ERST_PTR_MASK;
2315 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2316 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2317
2318 /* Set the event ring dequeue address */
23e3be11 2319 xhci_set_hc_event_deq(xhci);
0ebbab37 2320 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
09ece30e 2321 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2322
2323 /*
2324 * XXX: Might need to set the Interrupter Moderation Register to
2325 * something other than the default (~1ms minimum between interrupts).
2326 * See section 5.5.1.2.
2327 */
3ffbba95
SS
2328 init_completion(&xhci->addr_dev);
2329 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 2330 xhci->devs[i] = NULL;
f6ff0ac8 2331 for (i = 0; i < USB_MAXCHILDREN; ++i) {
20b67cf5 2332 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8
SS
2333 xhci->bus_state[1].resume_done[i] = 0;
2334 }
66d4eadd 2335
254c80a3
JY
2336 if (scratchpad_alloc(xhci, flags))
2337 goto fail;
da6699ce
SS
2338 if (xhci_setup_port_arrays(xhci, flags))
2339 goto fail;
254c80a3 2340
9574323c
AX
2341 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2342
623bef9e
SS
2343 /* Enable USB 3.0 device notifications for function remote wake, which
2344 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2345 * U3 (device suspend).
2346 */
2347 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2348 temp &= ~DEV_NOTE_MASK;
2349 temp |= DEV_NOTE_FWAKE;
2350 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2351
66d4eadd 2352 return 0;
254c80a3 2353
66d4eadd
SS
2354fail:
2355 xhci_warn(xhci, "Couldn't initialize memory\n");
2356 xhci_mem_cleanup(xhci);
2357 return -ENOMEM;
2358}
This page took 0.349418 seconds and 5 git commands to generate.