xhci: Free streams when they are still allocated on a set_interface call
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
008eb957 27#include <linux/dma-mapping.h>
66d4eadd
SS
28
29#include "xhci.h"
3a7fa5be 30#include "xhci-trace.h"
66d4eadd 31
0ebbab37
SS
32/*
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
35 *
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38 */
186a7ef1
AX
39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state, gfp_t flags)
0ebbab37
SS
41{
42 struct xhci_segment *seg;
43 dma_addr_t dma;
186a7ef1 44 int i;
0ebbab37
SS
45
46 seg = kzalloc(sizeof *seg, flags);
47 if (!seg)
326b4810 48 return NULL;
0ebbab37
SS
49
50 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 if (!seg->trbs) {
52 kfree(seg);
326b4810 53 return NULL;
0ebbab37 54 }
0ebbab37 55
eb8ccd2b 56 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
186a7ef1
AX
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58719487 60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
186a7ef1 61 }
0ebbab37
SS
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66}
67
68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69{
0ebbab37 70 if (seg->trbs) {
0ebbab37
SS
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
0ebbab37
SS
74 kfree(seg);
75}
76
70d43601
AX
77static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 struct xhci_segment *first)
79{
80 struct xhci_segment *seg;
81
82 seg = first->next;
83 while (seg != first) {
84 struct xhci_segment *next = seg->next;
85 xhci_segment_free(xhci, seg);
86 seg = next;
87 }
88 xhci_segment_free(xhci, first);
89}
90
0ebbab37
SS
91/*
92 * Make the prev segment point to the next segment.
93 *
94 * Change the last TRB in the prev segment to be a Link TRB which points to the
95 * DMA address of the next segment. The caller needs to set any Link TRB
96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
97 */
98static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
3b72fca0 99 struct xhci_segment *next, enum xhci_ring_type type)
0ebbab37
SS
100{
101 u32 val;
102
103 if (!prev || !next)
104 return;
105 prev->next = next;
3b72fca0 106 if (type != TYPE_EVENT) {
f5960b69
ME
107 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 cpu_to_le64(next->dma);
0ebbab37
SS
109
110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 111 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
112 val &= ~TRB_TYPE_BITMASK;
113 val |= TRB_TYPE(TRB_LINK);
b0567b3f 114 /* Always set the chain bit with 0.95 hardware */
7e393a83
AX
115 /* Set chain bit for isoc rings on AMD 0.96 host */
116 if (xhci_link_trb_quirk(xhci) ||
3b72fca0
AX
117 (type == TYPE_ISOC &&
118 (xhci->quirks & XHCI_AMD_0x96_HOST)))
b0567b3f 119 val |= TRB_CHAIN;
28ccd296 120 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 121 }
0ebbab37
SS
122}
123
8dfec614
AX
124/*
125 * Link the ring to the new segments.
126 * Set Toggle Cycle for the new ring if needed.
127 */
128static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 struct xhci_segment *first, struct xhci_segment *last,
130 unsigned int num_segs)
131{
132 struct xhci_segment *next;
133
134 if (!ring || !first || !last)
135 return;
136
137 next = ring->enq_seg->next;
138 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139 xhci_link_segments(xhci, last, next, ring->type);
140 ring->num_segs += num_segs;
141 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142
143 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145 &= ~cpu_to_le32(LINK_TOGGLE);
146 last->trbs[TRBS_PER_SEGMENT-1].link.control
147 |= cpu_to_le32(LINK_TOGGLE);
148 ring->last_seg = last;
149 }
150}
151
15341303
GH
152/*
153 * We need a radix tree for mapping physical addresses of TRBs to which stream
154 * ID they belong to. We need to do this because the host controller won't tell
155 * us which stream ring the TRB came from. We could store the stream ID in an
156 * event data TRB, but that doesn't help us for the cancellation case, since the
157 * endpoint may stop before it reaches that event data TRB.
158 *
159 * The radix tree maps the upper portion of the TRB DMA address to a ring
160 * segment that has the same upper portion of DMA addresses. For example, say I
161 * have segments of size 1KB, that are always 64-byte aligned. A segment may
162 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
163 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
164 * pass the radix tree a key to get the right stream ID:
165 *
166 * 0x10c90fff >> 10 = 0x43243
167 * 0x10c912c0 >> 10 = 0x43244
168 * 0x10c91400 >> 10 = 0x43245
169 *
170 * Obviously, only those TRBs with DMA addresses that are within the segment
171 * will make the radix tree return the stream ID for that ring.
172 *
173 * Caveats for the radix tree:
174 *
175 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
180 * extended systems (where the DMA address can be bigger than 32-bits),
181 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
182 */
183static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
184{
185 struct xhci_segment *seg;
186 unsigned long key;
187 int ret;
188
189 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
190 return 0;
191
192 seg = ring->first_seg;
193 do {
194 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
195 /* Skip any segments that were already added. */
196 if (radix_tree_lookup(ring->trb_address_map, key))
197 continue;
198
199 ret = radix_tree_maybe_preload(mem_flags);
200 if (ret)
201 return ret;
202 ret = radix_tree_insert(ring->trb_address_map,
203 key, ring);
204 radix_tree_preload_end();
205 if (ret)
206 return ret;
207 seg = seg->next;
208 } while (seg != ring->first_seg);
209
210 return 0;
211}
212
213static void xhci_remove_stream_mapping(struct xhci_ring *ring)
214{
215 struct xhci_segment *seg;
216 unsigned long key;
217
218 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
219 return;
220
221 seg = ring->first_seg;
222 do {
223 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
224 if (radix_tree_lookup(ring->trb_address_map, key))
225 radix_tree_delete(ring->trb_address_map, key);
226 seg = seg->next;
227 } while (seg != ring->first_seg);
228}
229
0ebbab37 230/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 231void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37 232{
0e6c7f74 233 if (!ring)
0ebbab37 234 return;
70d43601 235
15341303
GH
236 if (ring->first_seg) {
237 if (ring->type == TYPE_STREAM)
238 xhci_remove_stream_mapping(ring);
70d43601 239 xhci_free_segments_for_ring(xhci, ring->first_seg);
15341303 240 }
70d43601 241
0ebbab37
SS
242 kfree(ring);
243}
244
186a7ef1
AX
245static void xhci_initialize_ring_info(struct xhci_ring *ring,
246 unsigned int cycle_state)
74f9fe21
SS
247{
248 /* The ring is empty, so the enqueue pointer == dequeue pointer */
249 ring->enqueue = ring->first_seg->trbs;
250 ring->enq_seg = ring->first_seg;
251 ring->dequeue = ring->enqueue;
252 ring->deq_seg = ring->first_seg;
253 /* The ring is initialized to 0. The producer must write 1 to the cycle
254 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
255 * compare CCS to the cycle bit to check ownership, so CCS = 1.
186a7ef1
AX
256 *
257 * New rings are initialized with cycle state equal to 1; if we are
258 * handling ring expansion, set the cycle state equal to the old ring.
74f9fe21 259 */
186a7ef1 260 ring->cycle_state = cycle_state;
74f9fe21
SS
261 /* Not necessary for new rings, but needed for re-initialized rings */
262 ring->enq_updates = 0;
263 ring->deq_updates = 0;
b008df60
AX
264
265 /*
266 * Each segment has a link TRB, and leave an extra TRB for SW
267 * accounting purpose
268 */
269 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
74f9fe21
SS
270}
271
70d43601
AX
272/* Allocate segments and link them for a ring */
273static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
274 struct xhci_segment **first, struct xhci_segment **last,
186a7ef1
AX
275 unsigned int num_segs, unsigned int cycle_state,
276 enum xhci_ring_type type, gfp_t flags)
70d43601
AX
277{
278 struct xhci_segment *prev;
279
186a7ef1 280 prev = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601
AX
281 if (!prev)
282 return -ENOMEM;
283 num_segs--;
284
285 *first = prev;
286 while (num_segs > 0) {
287 struct xhci_segment *next;
288
186a7ef1 289 next = xhci_segment_alloc(xhci, cycle_state, flags);
70d43601 290 if (!next) {
68e5254a
JW
291 prev = *first;
292 while (prev) {
293 next = prev->next;
294 xhci_segment_free(xhci, prev);
295 prev = next;
296 }
70d43601
AX
297 return -ENOMEM;
298 }
299 xhci_link_segments(xhci, prev, next, type);
300
301 prev = next;
302 num_segs--;
303 }
304 xhci_link_segments(xhci, prev, *first, type);
305 *last = prev;
306
307 return 0;
308}
309
0ebbab37
SS
310/**
311 * Create a new ring with zero or more segments.
312 *
313 * Link each segment together into a ring.
314 * Set the end flag and the cycle toggle bit on the last segment.
315 * See section 4.9.1 and figures 15 and 16.
316 */
317static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
186a7ef1
AX
318 unsigned int num_segs, unsigned int cycle_state,
319 enum xhci_ring_type type, gfp_t flags)
0ebbab37
SS
320{
321 struct xhci_ring *ring;
70d43601 322 int ret;
0ebbab37
SS
323
324 ring = kzalloc(sizeof *(ring), flags);
0ebbab37 325 if (!ring)
326b4810 326 return NULL;
0ebbab37 327
3fe4fe08 328 ring->num_segs = num_segs;
d0e96f5a 329 INIT_LIST_HEAD(&ring->td_list);
3b72fca0 330 ring->type = type;
0ebbab37
SS
331 if (num_segs == 0)
332 return ring;
333
70d43601 334 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
186a7ef1 335 &ring->last_seg, num_segs, cycle_state, type, flags);
70d43601 336 if (ret)
0ebbab37 337 goto fail;
0ebbab37 338
3b72fca0
AX
339 /* Only event ring does not use link TRB */
340 if (type != TYPE_EVENT) {
0ebbab37 341 /* See section 4.9.2.1 and 6.4.4.1 */
70d43601 342 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
f5960b69 343 cpu_to_le32(LINK_TOGGLE);
0ebbab37 344 }
186a7ef1 345 xhci_initialize_ring_info(ring, cycle_state);
0ebbab37
SS
346 return ring;
347
348fail:
68e5254a 349 kfree(ring);
326b4810 350 return NULL;
0ebbab37
SS
351}
352
412566bd
SS
353void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
354 struct xhci_virt_device *virt_dev,
355 unsigned int ep_index)
356{
357 int rings_cached;
358
359 rings_cached = virt_dev->num_rings_cached;
360 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
412566bd
SS
361 virt_dev->ring_cache[rings_cached] =
362 virt_dev->eps[ep_index].ring;
30f89ca0 363 virt_dev->num_rings_cached++;
412566bd
SS
364 xhci_dbg(xhci, "Cached old ring, "
365 "%d ring%s cached\n",
30f89ca0
SS
366 virt_dev->num_rings_cached,
367 (virt_dev->num_rings_cached > 1) ? "s" : "");
412566bd
SS
368 } else {
369 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
370 xhci_dbg(xhci, "Ring cache full (%d rings), "
371 "freeing ring\n",
372 virt_dev->num_rings_cached);
373 }
374 virt_dev->eps[ep_index].ring = NULL;
375}
376
74f9fe21
SS
377/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
378 * pointers to the beginning of the ring.
379 */
380static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
186a7ef1
AX
381 struct xhci_ring *ring, unsigned int cycle_state,
382 enum xhci_ring_type type)
74f9fe21
SS
383{
384 struct xhci_segment *seg = ring->first_seg;
186a7ef1
AX
385 int i;
386
74f9fe21
SS
387 do {
388 memset(seg->trbs, 0,
389 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
186a7ef1
AX
390 if (cycle_state == 0) {
391 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58719487
XR
392 seg->trbs[i].link.control |=
393 cpu_to_le32(TRB_CYCLE);
186a7ef1 394 }
74f9fe21 395 /* All endpoint rings have link TRBs */
3b72fca0 396 xhci_link_segments(xhci, seg, seg->next, type);
74f9fe21
SS
397 seg = seg->next;
398 } while (seg != ring->first_seg);
3b72fca0 399 ring->type = type;
186a7ef1 400 xhci_initialize_ring_info(ring, cycle_state);
74f9fe21
SS
401 /* td list should be empty since all URBs have been cancelled,
402 * but just in case...
403 */
404 INIT_LIST_HEAD(&ring->td_list);
405}
406
8dfec614
AX
407/*
408 * Expand an existing ring.
409 * Look for a cached ring or allocate a new ring which has same segment numbers
410 * and link the two rings.
411 */
412int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
413 unsigned int num_trbs, gfp_t flags)
414{
415 struct xhci_segment *first;
416 struct xhci_segment *last;
417 unsigned int num_segs;
418 unsigned int num_segs_needed;
419 int ret;
420
421 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
422 (TRBS_PER_SEGMENT - 1);
423
424 /* Allocate number of segments we needed, or double the ring size */
425 num_segs = ring->num_segs > num_segs_needed ?
426 ring->num_segs : num_segs_needed;
427
428 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
429 num_segs, ring->cycle_state, ring->type, flags);
430 if (ret)
431 return -ENOMEM;
432
433 xhci_link_rings(xhci, ring, first, last, num_segs);
68ffb011
XR
434 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
435 "ring expansion succeed, now has %d segments",
8dfec614
AX
436 ring->num_segs);
437
15341303
GH
438 if (ring->type == TYPE_STREAM) {
439 ret = xhci_update_stream_mapping(ring, flags);
440 WARN_ON(ret); /* FIXME */
441 }
442
8dfec614
AX
443 return 0;
444}
445
d115b048
JY
446#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
447
326b4810 448static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
449 int type, gfp_t flags)
450{
29f9d54b
SS
451 struct xhci_container_ctx *ctx;
452
453 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
454 return NULL;
455
456 ctx = kzalloc(sizeof(*ctx), flags);
d115b048
JY
457 if (!ctx)
458 return NULL;
459
d115b048
JY
460 ctx->type = type;
461 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
462 if (type == XHCI_CTX_TYPE_INPUT)
463 ctx->size += CTX_SIZE(xhci->hcc_params);
464
465 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
025f880c
MN
466 if (!ctx->bytes) {
467 kfree(ctx);
468 return NULL;
469 }
d115b048
JY
470 memset(ctx->bytes, 0, ctx->size);
471 return ctx;
472}
473
326b4810 474static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
475 struct xhci_container_ctx *ctx)
476{
a1d78c16
SS
477 if (!ctx)
478 return;
d115b048
JY
479 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
480 kfree(ctx);
481}
482
483struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
484 struct xhci_container_ctx *ctx)
485{
92f8e767
SS
486 if (ctx->type != XHCI_CTX_TYPE_INPUT)
487 return NULL;
488
d115b048
JY
489 return (struct xhci_input_control_ctx *)ctx->bytes;
490}
491
492struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
493 struct xhci_container_ctx *ctx)
494{
495 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
496 return (struct xhci_slot_ctx *)ctx->bytes;
497
498 return (struct xhci_slot_ctx *)
499 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
500}
501
502struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
503 struct xhci_container_ctx *ctx,
504 unsigned int ep_index)
505{
506 /* increment ep index by offset of start of ep ctx array */
507 ep_index++;
508 if (ctx->type == XHCI_CTX_TYPE_INPUT)
509 ep_index++;
510
511 return (struct xhci_ep_ctx *)
512 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
513}
514
8df75f42
SS
515
516/***************** Streams structures manipulation *************************/
517
8212a49d 518static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
519 unsigned int num_stream_ctxs,
520 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
521{
2a100047 522 struct device *dev = xhci_to_hcd(xhci)->self.controller;
8df75f42
SS
523
524 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
2a100047 525 dma_free_coherent(dev,
8df75f42
SS
526 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
527 stream_ctx, dma);
528 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
529 return dma_pool_free(xhci->small_streams_pool,
530 stream_ctx, dma);
531 else
532 return dma_pool_free(xhci->medium_streams_pool,
533 stream_ctx, dma);
534}
535
536/*
537 * The stream context array for each endpoint with bulk streams enabled can
538 * vary in size, based on:
539 * - how many streams the endpoint supports,
540 * - the maximum primary stream array size the host controller supports,
541 * - and how many streams the device driver asks for.
542 *
543 * The stream context array must be a power of 2, and can be as small as
544 * 64 bytes or as large as 1MB.
545 */
8212a49d 546static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
547 unsigned int num_stream_ctxs, dma_addr_t *dma,
548 gfp_t mem_flags)
549{
2a100047 550 struct device *dev = xhci_to_hcd(xhci)->self.controller;
8df75f42
SS
551
552 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
2a100047 553 return dma_alloc_coherent(dev,
8df75f42 554 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
22d45f01 555 dma, mem_flags);
8df75f42
SS
556 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
557 return dma_pool_alloc(xhci->small_streams_pool,
558 mem_flags, dma);
559 else
560 return dma_pool_alloc(xhci->medium_streams_pool,
561 mem_flags, dma);
562}
563
e9df17eb
SS
564struct xhci_ring *xhci_dma_to_transfer_ring(
565 struct xhci_virt_ep *ep,
566 u64 address)
567{
568 if (ep->ep_state & EP_HAS_STREAMS)
569 return radix_tree_lookup(&ep->stream_info->trb_address_map,
eb8ccd2b 570 address >> TRB_SEGMENT_SHIFT);
e9df17eb
SS
571 return ep->ring;
572}
573
e9df17eb
SS
574struct xhci_ring *xhci_stream_id_to_ring(
575 struct xhci_virt_device *dev,
576 unsigned int ep_index,
577 unsigned int stream_id)
578{
579 struct xhci_virt_ep *ep = &dev->eps[ep_index];
580
581 if (stream_id == 0)
582 return ep->ring;
583 if (!ep->stream_info)
584 return NULL;
585
586 if (stream_id > ep->stream_info->num_streams)
587 return NULL;
588 return ep->stream_info->stream_rings[stream_id];
589}
590
8df75f42
SS
591/*
592 * Change an endpoint's internal structure so it supports stream IDs. The
593 * number of requested streams includes stream 0, which cannot be used by device
594 * drivers.
595 *
596 * The number of stream contexts in the stream context array may be bigger than
597 * the number of streams the driver wants to use. This is because the number of
598 * stream context array entries must be a power of two.
8df75f42
SS
599 */
600struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
601 unsigned int num_stream_ctxs,
602 unsigned int num_streams, gfp_t mem_flags)
603{
604 struct xhci_stream_info *stream_info;
605 u32 cur_stream;
606 struct xhci_ring *cur_ring;
8df75f42
SS
607 u64 addr;
608 int ret;
609
610 xhci_dbg(xhci, "Allocating %u streams and %u "
611 "stream context array entries.\n",
612 num_streams, num_stream_ctxs);
613 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
614 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
615 return NULL;
616 }
617 xhci->cmd_ring_reserved_trbs++;
618
619 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
620 if (!stream_info)
621 goto cleanup_trbs;
622
623 stream_info->num_streams = num_streams;
624 stream_info->num_stream_ctxs = num_stream_ctxs;
625
626 /* Initialize the array of virtual pointers to stream rings. */
627 stream_info->stream_rings = kzalloc(
628 sizeof(struct xhci_ring *)*num_streams,
629 mem_flags);
630 if (!stream_info->stream_rings)
631 goto cleanup_info;
632
633 /* Initialize the array of DMA addresses for stream rings for the HW. */
634 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
635 num_stream_ctxs, &stream_info->ctx_array_dma,
636 mem_flags);
637 if (!stream_info->stream_ctx_array)
638 goto cleanup_ctx;
639 memset(stream_info->stream_ctx_array, 0,
640 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
641
642 /* Allocate everything needed to free the stream rings later */
643 stream_info->free_streams_command =
644 xhci_alloc_command(xhci, true, true, mem_flags);
645 if (!stream_info->free_streams_command)
646 goto cleanup_ctx;
647
648 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
649
650 /* Allocate rings for all the streams that the driver will use,
651 * and add their segment DMA addresses to the radix tree.
652 * Stream 0 is reserved.
653 */
654 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
655 stream_info->stream_rings[cur_stream] =
2fdcd47b 656 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
8df75f42
SS
657 cur_ring = stream_info->stream_rings[cur_stream];
658 if (!cur_ring)
659 goto cleanup_rings;
e9df17eb 660 cur_ring->stream_id = cur_stream;
15341303 661 cur_ring->trb_address_map = &stream_info->trb_address_map;
8df75f42
SS
662 /* Set deq ptr, cycle bit, and stream context type */
663 addr = cur_ring->first_seg->dma |
664 SCT_FOR_CTX(SCT_PRI_TR) |
665 cur_ring->cycle_state;
f5960b69
ME
666 stream_info->stream_ctx_array[cur_stream].stream_ring =
667 cpu_to_le64(addr);
8df75f42
SS
668 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
669 cur_stream, (unsigned long long) addr);
670
15341303 671 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
8df75f42
SS
672 if (ret) {
673 xhci_ring_free(xhci, cur_ring);
674 stream_info->stream_rings[cur_stream] = NULL;
675 goto cleanup_rings;
676 }
677 }
678 /* Leave the other unused stream ring pointers in the stream context
679 * array initialized to zero. This will cause the xHC to give us an
680 * error if the device asks for a stream ID we don't have setup (if it
681 * was any other way, the host controller would assume the ring is
682 * "empty" and wait forever for data to be queued to that stream ID).
683 */
8df75f42
SS
684
685 return stream_info;
686
687cleanup_rings:
688 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
689 cur_ring = stream_info->stream_rings[cur_stream];
690 if (cur_ring) {
8df75f42
SS
691 xhci_ring_free(xhci, cur_ring);
692 stream_info->stream_rings[cur_stream] = NULL;
693 }
694 }
695 xhci_free_command(xhci, stream_info->free_streams_command);
696cleanup_ctx:
697 kfree(stream_info->stream_rings);
698cleanup_info:
699 kfree(stream_info);
700cleanup_trbs:
701 xhci->cmd_ring_reserved_trbs--;
702 return NULL;
703}
704/*
705 * Sets the MaxPStreams field and the Linear Stream Array field.
706 * Sets the dequeue pointer to the stream context array.
707 */
708void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
709 struct xhci_ep_ctx *ep_ctx,
710 struct xhci_stream_info *stream_info)
711{
712 u32 max_primary_streams;
713 /* MaxPStreams is the number of stream context array entries, not the
714 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
715 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
716 */
717 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
3a7fa5be
XR
718 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
719 "Setting number of stream ctx array entries to %u",
8df75f42 720 1 << (max_primary_streams + 1));
28ccd296
ME
721 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
722 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
723 | EP_HAS_LSA);
724 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
725}
726
727/*
728 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
729 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
730 * not at the beginning of the ring).
731 */
732void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
733 struct xhci_ep_ctx *ep_ctx,
734 struct xhci_virt_ep *ep)
735{
736 dma_addr_t addr;
28ccd296 737 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 738 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 739 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
740}
741
742/* Frees all stream contexts associated with the endpoint,
743 *
744 * Caller should fix the endpoint context streams fields.
745 */
746void xhci_free_stream_info(struct xhci_hcd *xhci,
747 struct xhci_stream_info *stream_info)
748{
749 int cur_stream;
750 struct xhci_ring *cur_ring;
8df75f42
SS
751
752 if (!stream_info)
753 return;
754
755 for (cur_stream = 1; cur_stream < stream_info->num_streams;
756 cur_stream++) {
757 cur_ring = stream_info->stream_rings[cur_stream];
758 if (cur_ring) {
8df75f42
SS
759 xhci_ring_free(xhci, cur_ring);
760 stream_info->stream_rings[cur_stream] = NULL;
761 }
762 }
763 xhci_free_command(xhci, stream_info->free_streams_command);
764 xhci->cmd_ring_reserved_trbs--;
765 if (stream_info->stream_ctx_array)
766 xhci_free_stream_ctx(xhci,
767 stream_info->num_stream_ctxs,
768 stream_info->stream_ctx_array,
769 stream_info->ctx_array_dma);
770
0d3703be 771 kfree(stream_info->stream_rings);
8df75f42
SS
772 kfree(stream_info);
773}
774
775
776/***************** Device context manipulation *************************/
777
6f5165cf
SS
778static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
779 struct xhci_virt_ep *ep)
780{
781 init_timer(&ep->stop_cmd_timer);
782 ep->stop_cmd_timer.data = (unsigned long) ep;
783 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
784 ep->xhci = xhci;
785}
786
839c817c
SS
787static void xhci_free_tt_info(struct xhci_hcd *xhci,
788 struct xhci_virt_device *virt_dev,
789 int slot_id)
790{
839c817c 791 struct list_head *tt_list_head;
46ed8f00
TI
792 struct xhci_tt_bw_info *tt_info, *next;
793 bool slot_found = false;
839c817c
SS
794
795 /* If the device never made it past the Set Address stage,
796 * it may not have the real_port set correctly.
797 */
798 if (virt_dev->real_port == 0 ||
799 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
800 xhci_dbg(xhci, "Bad real port.\n");
801 return;
802 }
803
804 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
46ed8f00
TI
805 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
806 /* Multi-TT hubs will have more than one entry */
807 if (tt_info->slot_id == slot_id) {
808 slot_found = true;
809 list_del(&tt_info->tt_list);
810 kfree(tt_info);
811 } else if (slot_found) {
839c817c 812 break;
46ed8f00 813 }
839c817c 814 }
839c817c
SS
815}
816
817int xhci_alloc_tt_info(struct xhci_hcd *xhci,
818 struct xhci_virt_device *virt_dev,
819 struct usb_device *hdev,
820 struct usb_tt *tt, gfp_t mem_flags)
821{
822 struct xhci_tt_bw_info *tt_info;
823 unsigned int num_ports;
824 int i, j;
825
826 if (!tt->multi)
827 num_ports = 1;
828 else
829 num_ports = hdev->maxchild;
830
831 for (i = 0; i < num_ports; i++, tt_info++) {
832 struct xhci_interval_bw_table *bw_table;
833
834 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
835 if (!tt_info)
836 goto free_tts;
837 INIT_LIST_HEAD(&tt_info->tt_list);
838 list_add(&tt_info->tt_list,
839 &xhci->rh_bw[virt_dev->real_port - 1].tts);
840 tt_info->slot_id = virt_dev->udev->slot_id;
841 if (tt->multi)
842 tt_info->ttport = i+1;
843 bw_table = &tt_info->bw_table;
844 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
845 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
846 }
847 return 0;
848
849free_tts:
850 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
851 return -ENOMEM;
852}
853
854
855/* All the xhci_tds in the ring's TD list should be freed at this point.
856 * Should be called with xhci->lock held if there is any chance the TT lists
857 * will be manipulated by the configure endpoint, allocate device, or update
858 * hub functions while this function is removing the TT entries from the list.
859 */
3ffbba95
SS
860void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
861{
862 struct xhci_virt_device *dev;
863 int i;
2e27980e 864 int old_active_eps = 0;
3ffbba95
SS
865
866 /* Slot ID 0 is reserved */
867 if (slot_id == 0 || !xhci->devs[slot_id])
868 return;
869
870 dev = xhci->devs[slot_id];
8e595a5d 871 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
872 if (!dev)
873 return;
874
2e27980e
SS
875 if (dev->tt_info)
876 old_active_eps = dev->tt_info->active_eps;
877
8df75f42 878 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
879 if (dev->eps[i].ring)
880 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
881 if (dev->eps[i].stream_info)
882 xhci_free_stream_info(xhci,
883 dev->eps[i].stream_info);
2e27980e
SS
884 /* Endpoints on the TT/root port lists should have been removed
885 * when usb_disable_device() was called for the device.
886 * We can't drop them anyway, because the udev might have gone
887 * away by this point, and we can't tell what speed it was.
888 */
889 if (!list_empty(&dev->eps[i].bw_endpoint_list))
890 xhci_warn(xhci, "Slot %u endpoint %u "
891 "not removed from BW list!\n",
892 slot_id, i);
8df75f42 893 }
839c817c
SS
894 /* If this is a hub, free the TT(s) from the TT list */
895 xhci_free_tt_info(xhci, dev, slot_id);
2e27980e
SS
896 /* If necessary, update the number of active TTs on this root port */
897 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
3ffbba95 898
74f9fe21
SS
899 if (dev->ring_cache) {
900 for (i = 0; i < dev->num_rings_cached; i++)
901 xhci_ring_free(xhci, dev->ring_cache[i]);
902 kfree(dev->ring_cache);
903 }
904
3ffbba95 905 if (dev->in_ctx)
d115b048 906 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 907 if (dev->out_ctx)
d115b048
JY
908 xhci_free_container_ctx(xhci, dev->out_ctx);
909
3ffbba95 910 kfree(xhci->devs[slot_id]);
326b4810 911 xhci->devs[slot_id] = NULL;
3ffbba95
SS
912}
913
914int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
915 struct usb_device *udev, gfp_t flags)
916{
3ffbba95 917 struct xhci_virt_device *dev;
63a0d9ab 918 int i;
3ffbba95
SS
919
920 /* Slot ID 0 is reserved */
921 if (slot_id == 0 || xhci->devs[slot_id]) {
922 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
923 return 0;
924 }
925
926 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
927 if (!xhci->devs[slot_id])
928 return 0;
929 dev = xhci->devs[slot_id];
930
d115b048
JY
931 /* Allocate the (output) device context that will be used in the HC. */
932 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
933 if (!dev->out_ctx)
934 goto fail;
d115b048 935
700e2052 936 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 937 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
938
939 /* Allocate the (input) device context for address device command */
d115b048 940 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
941 if (!dev->in_ctx)
942 goto fail;
d115b048 943
700e2052 944 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 945 (unsigned long long)dev->in_ctx->dma);
3ffbba95 946
6f5165cf
SS
947 /* Initialize the cancellation list and watchdog timers for each ep */
948 for (i = 0; i < 31; i++) {
949 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 950 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
2e27980e 951 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
6f5165cf 952 }
63a0d9ab 953
3ffbba95 954 /* Allocate endpoint 0 ring */
2fdcd47b 955 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
63a0d9ab 956 if (!dev->eps[0].ring)
3ffbba95
SS
957 goto fail;
958
74f9fe21
SS
959 /* Allocate pointers to the ring cache */
960 dev->ring_cache = kzalloc(
961 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
962 flags);
963 if (!dev->ring_cache)
964 goto fail;
965 dev->num_rings_cached = 0;
966
f94e0186 967 init_completion(&dev->cmd_completion);
913a8a34 968 INIT_LIST_HEAD(&dev->cmd_list);
64927730 969 dev->udev = udev;
f94e0186 970
28c2d2ef 971 /* Point to output device context in dcbaa. */
28ccd296 972 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 973 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
974 slot_id,
975 &xhci->dcbaa->dev_context_ptrs[slot_id],
f5960b69 976 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95
SS
977
978 return 1;
979fail:
980 xhci_free_virt_device(xhci, slot_id);
981 return 0;
982}
983
2d1ee590
SS
984void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
985 struct usb_device *udev)
986{
987 struct xhci_virt_device *virt_dev;
988 struct xhci_ep_ctx *ep0_ctx;
989 struct xhci_ring *ep_ring;
990
991 virt_dev = xhci->devs[udev->slot_id];
992 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
993 ep_ring = virt_dev->eps[0].ring;
994 /*
995 * FIXME we don't keep track of the dequeue pointer very well after a
996 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
997 * host to our enqueue pointer. This should only be called after a
998 * configured device has reset, so all control transfers should have
999 * been completed or cancelled before the reset.
1000 */
28ccd296
ME
1001 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1002 ep_ring->enqueue)
1003 | ep_ring->cycle_state);
2d1ee590
SS
1004}
1005
f6ff0ac8
SS
1006/*
1007 * The xHCI roothub may have ports of differing speeds in any order in the port
1008 * status registers. xhci->port_array provides an array of the port speed for
1009 * each offset into the port status registers.
1010 *
1011 * The xHCI hardware wants to know the roothub port number that the USB device
1012 * is attached to (or the roothub port its ancestor hub is attached to). All we
1013 * know is the index of that port under either the USB 2.0 or the USB 3.0
1014 * roothub, but that doesn't give us the real index into the HW port status
3f5eb141 1015 * registers. Call xhci_find_raw_port_number() to get real index.
f6ff0ac8
SS
1016 */
1017static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1018 struct usb_device *udev)
1019{
1020 struct usb_device *top_dev;
3f5eb141
LT
1021 struct usb_hcd *hcd;
1022
1023 if (udev->speed == USB_SPEED_SUPER)
1024 hcd = xhci->shared_hcd;
1025 else
1026 hcd = xhci->main_hcd;
f6ff0ac8
SS
1027
1028 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1029 top_dev = top_dev->parent)
1030 /* Found device below root hub */;
f6ff0ac8 1031
3f5eb141 1032 return xhci_find_raw_port_number(hcd, top_dev->portnum);
f6ff0ac8
SS
1033}
1034
3ffbba95
SS
1035/* Setup an xHCI virtual device for a Set Address command */
1036int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1037{
1038 struct xhci_virt_device *dev;
1039 struct xhci_ep_ctx *ep0_ctx;
d115b048 1040 struct xhci_slot_ctx *slot_ctx;
f6ff0ac8 1041 u32 port_num;
bd18fd5c 1042 u32 max_packets;
f6ff0ac8 1043 struct usb_device *top_dev;
3ffbba95
SS
1044
1045 dev = xhci->devs[udev->slot_id];
1046 /* Slot ID 0 is reserved */
1047 if (udev->slot_id == 0 || !dev) {
1048 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1049 udev->slot_id);
1050 return -EINVAL;
1051 }
d115b048 1052 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
d115b048 1053 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95 1054
3ffbba95 1055 /* 3) Only the control endpoint is valid - one endpoint context */
f5960b69 1056 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
3ffbba95
SS
1057 switch (udev->speed) {
1058 case USB_SPEED_SUPER:
f5960b69 1059 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
bd18fd5c 1060 max_packets = MAX_PACKET(512);
3ffbba95
SS
1061 break;
1062 case USB_SPEED_HIGH:
f5960b69 1063 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
bd18fd5c 1064 max_packets = MAX_PACKET(64);
3ffbba95 1065 break;
bd18fd5c 1066 /* USB core guesses at a 64-byte max packet first for FS devices */
3ffbba95 1067 case USB_SPEED_FULL:
f5960b69 1068 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
bd18fd5c 1069 max_packets = MAX_PACKET(64);
3ffbba95
SS
1070 break;
1071 case USB_SPEED_LOW:
f5960b69 1072 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
bd18fd5c 1073 max_packets = MAX_PACKET(8);
3ffbba95 1074 break;
551cdbbe 1075 case USB_SPEED_WIRELESS:
3ffbba95
SS
1076 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1077 return -EINVAL;
1078 break;
1079 default:
1080 /* Speed was set earlier, this shouldn't happen. */
bd18fd5c 1081 return -EINVAL;
3ffbba95
SS
1082 }
1083 /* Find the root hub port this device is under */
f6ff0ac8
SS
1084 port_num = xhci_find_real_port_number(xhci, udev);
1085 if (!port_num)
1086 return -EINVAL;
f5960b69 1087 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
f6ff0ac8 1088 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
1089 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1090 top_dev = top_dev->parent)
1091 /* Found device below root hub */;
fe30182c 1092 dev->fake_port = top_dev->portnum;
66381755 1093 dev->real_port = port_num;
f6ff0ac8 1094 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
fe30182c 1095 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
3ffbba95 1096
839c817c
SS
1097 /* Find the right bandwidth table that this device will be a part of.
1098 * If this is a full speed device attached directly to a root port (or a
1099 * decendent of one), it counts as a primary bandwidth domain, not a
1100 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1101 * will never be created for the HS root hub.
1102 */
1103 if (!udev->tt || !udev->tt->hub->parent) {
1104 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1105 } else {
1106 struct xhci_root_port_bw_info *rh_bw;
1107 struct xhci_tt_bw_info *tt_bw;
1108
1109 rh_bw = &xhci->rh_bw[port_num - 1];
1110 /* Find the right TT. */
1111 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1112 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1113 continue;
1114
1115 if (!dev->udev->tt->multi ||
1116 (udev->tt->multi &&
1117 tt_bw->ttport == dev->udev->ttport)) {
1118 dev->bw_table = &tt_bw->bw_table;
1119 dev->tt_info = tt_bw;
1120 break;
1121 }
1122 }
1123 if (!dev->tt_info)
1124 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1125 }
1126
aa1b13ef
SS
1127 /* Is this a LS/FS device under an external HS hub? */
1128 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
1129 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1130 (udev->ttport << 8));
07b6de10 1131 if (udev->tt->multi)
28ccd296 1132 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 1133 }
700e2052 1134 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
1135 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1136
1137 /* Step 4 - ring already allocated */
1138 /* Step 5 */
28ccd296 1139 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
bd18fd5c 1140
3ffbba95 1141 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
bd18fd5c
MN
1142 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1143 max_packets);
3ffbba95 1144
28ccd296
ME
1145 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1146 dev->eps[0].ring->cycle_state);
3ffbba95
SS
1147
1148 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1149
1150 return 0;
1151}
1152
dfa49c4a
DT
1153/*
1154 * Convert interval expressed as 2^(bInterval - 1) == interval into
1155 * straight exponent value 2^n == interval.
1156 *
1157 */
1158static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1159 struct usb_host_endpoint *ep)
1160{
1161 unsigned int interval;
1162
1163 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1164 if (interval != ep->desc.bInterval - 1)
1165 dev_warn(&udev->dev,
cd3c18ba 1166 "ep %#x - rounding interval to %d %sframes\n",
dfa49c4a 1167 ep->desc.bEndpointAddress,
cd3c18ba
DT
1168 1 << interval,
1169 udev->speed == USB_SPEED_FULL ? "" : "micro");
1170
1171 if (udev->speed == USB_SPEED_FULL) {
1172 /*
1173 * Full speed isoc endpoints specify interval in frames,
1174 * not microframes. We are using microframes everywhere,
1175 * so adjust accordingly.
1176 */
1177 interval += 3; /* 1 frame = 2^3 uframes */
1178 }
dfa49c4a
DT
1179
1180 return interval;
1181}
1182
1183/*
340a3504 1184 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
dfa49c4a
DT
1185 * microframes, rounded down to nearest power of 2.
1186 */
340a3504
SS
1187static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1188 struct usb_host_endpoint *ep, unsigned int desc_interval,
1189 unsigned int min_exponent, unsigned int max_exponent)
dfa49c4a
DT
1190{
1191 unsigned int interval;
1192
340a3504
SS
1193 interval = fls(desc_interval) - 1;
1194 interval = clamp_val(interval, min_exponent, max_exponent);
1195 if ((1 << interval) != desc_interval)
dfa49c4a
DT
1196 dev_warn(&udev->dev,
1197 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1198 ep->desc.bEndpointAddress,
1199 1 << interval,
340a3504 1200 desc_interval);
dfa49c4a
DT
1201
1202 return interval;
1203}
1204
340a3504
SS
1205static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1206 struct usb_host_endpoint *ep)
1207{
55c1945e
SS
1208 if (ep->desc.bInterval == 0)
1209 return 0;
340a3504
SS
1210 return xhci_microframes_to_exponent(udev, ep,
1211 ep->desc.bInterval, 0, 15);
1212}
1213
1214
1215static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1216 struct usb_host_endpoint *ep)
1217{
1218 return xhci_microframes_to_exponent(udev, ep,
1219 ep->desc.bInterval * 8, 3, 10);
1220}
1221
f94e0186
SS
1222/* Return the polling or NAK interval.
1223 *
1224 * The polling interval is expressed in "microframes". If xHCI's Interval field
1225 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1226 *
1227 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1228 * is set to 0.
1229 */
575688e1 1230static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1231 struct usb_host_endpoint *ep)
1232{
1233 unsigned int interval = 0;
1234
1235 switch (udev->speed) {
1236 case USB_SPEED_HIGH:
1237 /* Max NAK rate */
1238 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1239 usb_endpoint_xfer_bulk(&ep->desc)) {
340a3504 1240 interval = xhci_parse_microframe_interval(udev, ep);
dfa49c4a
DT
1241 break;
1242 }
f94e0186 1243 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1244
f94e0186
SS
1245 case USB_SPEED_SUPER:
1246 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1247 usb_endpoint_xfer_isoc(&ep->desc)) {
1248 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1249 }
1250 break;
dfa49c4a 1251
f94e0186 1252 case USB_SPEED_FULL:
b513d447 1253 if (usb_endpoint_xfer_isoc(&ep->desc)) {
dfa49c4a
DT
1254 interval = xhci_parse_exponent_interval(udev, ep);
1255 break;
1256 }
1257 /*
b513d447 1258 * Fall through for interrupt endpoint interval decoding
dfa49c4a
DT
1259 * since it uses the same rules as low speed interrupt
1260 * endpoints.
1261 */
1262
f94e0186
SS
1263 case USB_SPEED_LOW:
1264 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1265 usb_endpoint_xfer_isoc(&ep->desc)) {
1266
1267 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1268 }
1269 break;
dfa49c4a 1270
f94e0186
SS
1271 default:
1272 BUG();
1273 }
1274 return EP_INTERVAL(interval);
1275}
1276
c30c791c 1277/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1278 * High speed endpoint descriptors can define "the number of additional
1279 * transaction opportunities per microframe", but that goes in the Max Burst
1280 * endpoint context field.
1281 */
575688e1 1282static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1283 struct usb_host_endpoint *ep)
1284{
c30c791c
SS
1285 if (udev->speed != USB_SPEED_SUPER ||
1286 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1287 return 0;
842f1690 1288 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1289}
1290
575688e1 1291static u32 xhci_get_endpoint_type(struct usb_device *udev,
f94e0186
SS
1292 struct usb_host_endpoint *ep)
1293{
1294 int in;
1295 u32 type;
1296
1297 in = usb_endpoint_dir_in(&ep->desc);
1298 if (usb_endpoint_xfer_control(&ep->desc)) {
1299 type = EP_TYPE(CTRL_EP);
1300 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1301 if (in)
1302 type = EP_TYPE(BULK_IN_EP);
1303 else
1304 type = EP_TYPE(BULK_OUT_EP);
1305 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1306 if (in)
1307 type = EP_TYPE(ISOC_IN_EP);
1308 else
1309 type = EP_TYPE(ISOC_OUT_EP);
1310 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1311 if (in)
1312 type = EP_TYPE(INT_IN_EP);
1313 else
1314 type = EP_TYPE(INT_OUT_EP);
1315 } else {
17d65554 1316 type = 0;
f94e0186
SS
1317 }
1318 return type;
1319}
1320
9238f25d
SS
1321/* Return the maximum endpoint service interval time (ESIT) payload.
1322 * Basically, this is the maxpacket size, multiplied by the burst size
1323 * and mult size.
1324 */
575688e1 1325static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
9238f25d
SS
1326 struct usb_device *udev,
1327 struct usb_host_endpoint *ep)
1328{
1329 int max_burst;
1330 int max_packet;
1331
1332 /* Only applies for interrupt or isochronous endpoints */
1333 if (usb_endpoint_xfer_control(&ep->desc) ||
1334 usb_endpoint_xfer_bulk(&ep->desc))
1335 return 0;
1336
842f1690 1337 if (udev->speed == USB_SPEED_SUPER)
64b3c304 1338 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1339
29cc8897
KM
1340 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1341 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
9238f25d
SS
1342 /* A 0 in max burst means 1 transfer per ESIT */
1343 return max_packet * (max_burst + 1);
1344}
1345
8df75f42
SS
1346/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1347 * Drivers will have to call usb_alloc_streams() to do that.
1348 */
f94e0186
SS
1349int xhci_endpoint_init(struct xhci_hcd *xhci,
1350 struct xhci_virt_device *virt_dev,
1351 struct usb_device *udev,
f88ba78d
SS
1352 struct usb_host_endpoint *ep,
1353 gfp_t mem_flags)
f94e0186
SS
1354{
1355 unsigned int ep_index;
1356 struct xhci_ep_ctx *ep_ctx;
1357 struct xhci_ring *ep_ring;
1358 unsigned int max_packet;
1359 unsigned int max_burst;
3b72fca0 1360 enum xhci_ring_type type;
9238f25d 1361 u32 max_esit_payload;
17d65554 1362 u32 endpoint_type;
f94e0186
SS
1363
1364 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1365 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186 1366
17d65554
MN
1367 endpoint_type = xhci_get_endpoint_type(udev, ep);
1368 if (!endpoint_type)
1369 return -EINVAL;
1370 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1371
3b72fca0 1372 type = usb_endpoint_type(&ep->desc);
f94e0186 1373 /* Set up the endpoint ring */
8dfec614 1374 virt_dev->eps[ep_index].new_ring =
2fdcd47b 1375 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
74f9fe21
SS
1376 if (!virt_dev->eps[ep_index].new_ring) {
1377 /* Attempt to use the ring cache */
1378 if (virt_dev->num_rings_cached == 0)
1379 return -ENOMEM;
1380 virt_dev->eps[ep_index].new_ring =
1381 virt_dev->ring_cache[virt_dev->num_rings_cached];
1382 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1383 virt_dev->num_rings_cached--;
7e393a83 1384 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
186a7ef1 1385 1, type);
74f9fe21 1386 }
d18240db 1387 virt_dev->eps[ep_index].skip = false;
63a0d9ab 1388 ep_ring = virt_dev->eps[ep_index].new_ring;
28ccd296 1389 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
f94e0186 1390
28ccd296
ME
1391 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1392 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
f94e0186
SS
1393
1394 /* FIXME dig Mult and streams info out of ep companion desc */
1395
47692d17 1396 /* Allow 3 retries for everything but isoc;
7b1fc2ea 1397 * CErr shall be set to 0 for Isoch endpoints.
47692d17 1398 */
f94e0186 1399 if (!usb_endpoint_xfer_isoc(&ep->desc))
17d65554 1400 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
f94e0186 1401 else
17d65554 1402 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
f94e0186
SS
1403
1404 /* Set the max packet size and max burst */
e4f47e36
AS
1405 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1406 max_burst = 0;
f94e0186
SS
1407 switch (udev->speed) {
1408 case USB_SPEED_SUPER:
b10de142 1409 /* dig out max burst from ep companion desc */
e4f47e36 1410 max_burst = ep->ss_ep_comp.bMaxBurst;
f94e0186
SS
1411 break;
1412 case USB_SPEED_HIGH:
e4f47e36
AS
1413 /* Some devices get this wrong */
1414 if (usb_endpoint_xfer_bulk(&ep->desc))
1415 max_packet = 512;
f94e0186
SS
1416 /* bits 11:12 specify the number of additional transaction
1417 * opportunities per microframe (USB 2.0, section 9.6.6)
1418 */
1419 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1420 usb_endpoint_xfer_int(&ep->desc)) {
29cc8897 1421 max_burst = (usb_endpoint_maxp(&ep->desc)
28ccd296 1422 & 0x1800) >> 11;
f94e0186 1423 }
e4f47e36 1424 break;
f94e0186
SS
1425 case USB_SPEED_FULL:
1426 case USB_SPEED_LOW:
f94e0186
SS
1427 break;
1428 default:
1429 BUG();
1430 }
e4f47e36
AS
1431 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1432 MAX_BURST(max_burst));
9238f25d 1433 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
28ccd296 1434 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
9238f25d
SS
1435
1436 /*
1437 * XXX no idea how to calculate the average TRB buffer length for bulk
1438 * endpoints, as the driver gives us no clue how big each scatter gather
1439 * list entry (or buffer) is going to be.
1440 *
1441 * For isochronous and interrupt endpoints, we set it to the max
1442 * available, until we have new API in the USB core to allow drivers to
1443 * declare how much bandwidth they actually need.
1444 *
1445 * Normally, it would be calculated by taking the total of the buffer
1446 * lengths in the TD and then dividing by the number of TRBs in a TD,
1447 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1448 * use Event Data TRBs, and we don't chain in a link TRB on short
1449 * transfers, we're basically dividing by 1.
51eb01a7
AX
1450 *
1451 * xHCI 1.0 specification indicates that the Average TRB Length should
1452 * be set to 8 for control endpoints.
9238f25d 1453 */
51eb01a7
AX
1454 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1455 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1456 else
1457 ep_ctx->tx_info |=
1458 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
9238f25d 1459
f94e0186
SS
1460 /* FIXME Debug endpoint context */
1461 return 0;
1462}
1463
1464void xhci_endpoint_zero(struct xhci_hcd *xhci,
1465 struct xhci_virt_device *virt_dev,
1466 struct usb_host_endpoint *ep)
1467{
1468 unsigned int ep_index;
1469 struct xhci_ep_ctx *ep_ctx;
1470
1471 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1472 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1473
1474 ep_ctx->ep_info = 0;
1475 ep_ctx->ep_info2 = 0;
8e595a5d 1476 ep_ctx->deq = 0;
f94e0186
SS
1477 ep_ctx->tx_info = 0;
1478 /* Don't free the endpoint ring until the set interface or configuration
1479 * request succeeds.
1480 */
1481}
1482
9af5d71d
SS
1483void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1484{
1485 bw_info->ep_interval = 0;
1486 bw_info->mult = 0;
1487 bw_info->num_packets = 0;
1488 bw_info->max_packet_size = 0;
1489 bw_info->type = 0;
1490 bw_info->max_esit_payload = 0;
1491}
1492
1493void xhci_update_bw_info(struct xhci_hcd *xhci,
1494 struct xhci_container_ctx *in_ctx,
1495 struct xhci_input_control_ctx *ctrl_ctx,
1496 struct xhci_virt_device *virt_dev)
1497{
1498 struct xhci_bw_info *bw_info;
1499 struct xhci_ep_ctx *ep_ctx;
1500 unsigned int ep_type;
1501 int i;
1502
1503 for (i = 1; i < 31; ++i) {
1504 bw_info = &virt_dev->eps[i].bw_info;
1505
1506 /* We can't tell what endpoint type is being dropped, but
1507 * unconditionally clearing the bandwidth info for non-periodic
1508 * endpoints should be harmless because the info will never be
1509 * set in the first place.
1510 */
1511 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1512 /* Dropped endpoint */
1513 xhci_clear_endpoint_bw_info(bw_info);
1514 continue;
1515 }
1516
1517 if (EP_IS_ADDED(ctrl_ctx, i)) {
1518 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1519 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1520
1521 /* Ignore non-periodic endpoints */
1522 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1523 ep_type != ISOC_IN_EP &&
1524 ep_type != INT_IN_EP)
1525 continue;
1526
1527 /* Added or changed endpoint */
1528 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1529 le32_to_cpu(ep_ctx->ep_info));
170c0263
SS
1530 /* Number of packets and mult are zero-based in the
1531 * input context, but we want one-based for the
1532 * interval table.
9af5d71d 1533 */
170c0263
SS
1534 bw_info->mult = CTX_TO_EP_MULT(
1535 le32_to_cpu(ep_ctx->ep_info)) + 1;
9af5d71d
SS
1536 bw_info->num_packets = CTX_TO_MAX_BURST(
1537 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1538 bw_info->max_packet_size = MAX_PACKET_DECODED(
1539 le32_to_cpu(ep_ctx->ep_info2));
1540 bw_info->type = ep_type;
1541 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1542 le32_to_cpu(ep_ctx->tx_info));
1543 }
1544 }
1545}
1546
f2217e8e
SS
1547/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1548 * Useful when you want to change one particular aspect of the endpoint and then
1549 * issue a configure endpoint command.
1550 */
1551void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1552 struct xhci_container_ctx *in_ctx,
1553 struct xhci_container_ctx *out_ctx,
1554 unsigned int ep_index)
f2217e8e
SS
1555{
1556 struct xhci_ep_ctx *out_ep_ctx;
1557 struct xhci_ep_ctx *in_ep_ctx;
1558
913a8a34
SS
1559 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1560 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1561
1562 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1563 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1564 in_ep_ctx->deq = out_ep_ctx->deq;
1565 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1566}
1567
1568/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1569 * Useful when you want to change one particular aspect of the endpoint and then
1570 * issue a configure endpoint command. Only the context entries field matters,
1571 * but we'll copy the whole thing anyway.
1572 */
913a8a34
SS
1573void xhci_slot_copy(struct xhci_hcd *xhci,
1574 struct xhci_container_ctx *in_ctx,
1575 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1576{
1577 struct xhci_slot_ctx *in_slot_ctx;
1578 struct xhci_slot_ctx *out_slot_ctx;
1579
913a8a34
SS
1580 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1581 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1582
1583 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1584 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1585 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1586 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1587}
1588
254c80a3
JY
1589/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1590static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1591{
1592 int i;
1593 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1594 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1595
d195fcff
XR
1596 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1597 "Allocating %d scratchpad buffers", num_sp);
254c80a3
JY
1598
1599 if (!num_sp)
1600 return 0;
1601
1602 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1603 if (!xhci->scratchpad)
1604 goto fail_sp;
1605
22d45f01 1606 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
254c80a3 1607 num_sp * sizeof(u64),
22d45f01 1608 &xhci->scratchpad->sp_dma, flags);
254c80a3
JY
1609 if (!xhci->scratchpad->sp_array)
1610 goto fail_sp2;
1611
1612 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1613 if (!xhci->scratchpad->sp_buffers)
1614 goto fail_sp3;
1615
1616 xhci->scratchpad->sp_dma_buffers =
1617 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1618
1619 if (!xhci->scratchpad->sp_dma_buffers)
1620 goto fail_sp4;
1621
28ccd296 1622 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1623 for (i = 0; i < num_sp; i++) {
1624 dma_addr_t dma;
22d45f01
SAS
1625 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1626 flags);
254c80a3
JY
1627 if (!buf)
1628 goto fail_sp5;
1629
1630 xhci->scratchpad->sp_array[i] = dma;
1631 xhci->scratchpad->sp_buffers[i] = buf;
1632 xhci->scratchpad->sp_dma_buffers[i] = dma;
1633 }
1634
1635 return 0;
1636
1637 fail_sp5:
1638 for (i = i - 1; i >= 0; i--) {
22d45f01 1639 dma_free_coherent(dev, xhci->page_size,
254c80a3
JY
1640 xhci->scratchpad->sp_buffers[i],
1641 xhci->scratchpad->sp_dma_buffers[i]);
1642 }
1643 kfree(xhci->scratchpad->sp_dma_buffers);
1644
1645 fail_sp4:
1646 kfree(xhci->scratchpad->sp_buffers);
1647
1648 fail_sp3:
22d45f01 1649 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1650 xhci->scratchpad->sp_array,
1651 xhci->scratchpad->sp_dma);
1652
1653 fail_sp2:
1654 kfree(xhci->scratchpad);
1655 xhci->scratchpad = NULL;
1656
1657 fail_sp:
1658 return -ENOMEM;
1659}
1660
1661static void scratchpad_free(struct xhci_hcd *xhci)
1662{
1663 int num_sp;
1664 int i;
2a100047 1665 struct device *dev = xhci_to_hcd(xhci)->self.controller;
254c80a3
JY
1666
1667 if (!xhci->scratchpad)
1668 return;
1669
1670 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1671
1672 for (i = 0; i < num_sp; i++) {
2a100047 1673 dma_free_coherent(dev, xhci->page_size,
254c80a3
JY
1674 xhci->scratchpad->sp_buffers[i],
1675 xhci->scratchpad->sp_dma_buffers[i]);
1676 }
1677 kfree(xhci->scratchpad->sp_dma_buffers);
1678 kfree(xhci->scratchpad->sp_buffers);
2a100047 1679 dma_free_coherent(dev, num_sp * sizeof(u64),
254c80a3
JY
1680 xhci->scratchpad->sp_array,
1681 xhci->scratchpad->sp_dma);
1682 kfree(xhci->scratchpad);
1683 xhci->scratchpad = NULL;
1684}
1685
913a8a34 1686struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1687 bool allocate_in_ctx, bool allocate_completion,
1688 gfp_t mem_flags)
913a8a34
SS
1689{
1690 struct xhci_command *command;
1691
1692 command = kzalloc(sizeof(*command), mem_flags);
1693 if (!command)
1694 return NULL;
1695
a1d78c16
SS
1696 if (allocate_in_ctx) {
1697 command->in_ctx =
1698 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1699 mem_flags);
1700 if (!command->in_ctx) {
1701 kfree(command);
1702 return NULL;
1703 }
06e18291 1704 }
913a8a34
SS
1705
1706 if (allocate_completion) {
1707 command->completion =
1708 kzalloc(sizeof(struct completion), mem_flags);
1709 if (!command->completion) {
1710 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1711 kfree(command);
913a8a34
SS
1712 return NULL;
1713 }
1714 init_completion(command->completion);
1715 }
1716
1717 command->status = 0;
1718 INIT_LIST_HEAD(&command->cmd_list);
1719 return command;
1720}
1721
8e51adcc
AX
1722void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1723{
2ffdea25
AX
1724 if (urb_priv) {
1725 kfree(urb_priv->td[0]);
1726 kfree(urb_priv);
8e51adcc 1727 }
8e51adcc
AX
1728}
1729
913a8a34
SS
1730void xhci_free_command(struct xhci_hcd *xhci,
1731 struct xhci_command *command)
1732{
1733 xhci_free_container_ctx(xhci,
1734 command->in_ctx);
1735 kfree(command->completion);
1736 kfree(command);
1737}
1738
66d4eadd
SS
1739void xhci_mem_cleanup(struct xhci_hcd *xhci)
1740{
2a100047 1741 struct device *dev = xhci_to_hcd(xhci)->self.controller;
b92cc66c 1742 struct xhci_cd *cur_cd, *next_cd;
0ebbab37 1743 int size;
32f1d2c5 1744 int i, j, num_ports;
0ebbab37
SS
1745
1746 /* Free the Event Ring Segment Table and the actual Event Ring */
0ebbab37
SS
1747 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1748 if (xhci->erst.entries)
2a100047 1749 dma_free_coherent(dev, size,
0ebbab37
SS
1750 xhci->erst.entries, xhci->erst.erst_dma_addr);
1751 xhci->erst.entries = NULL;
d195fcff 1752 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
0ebbab37
SS
1753 if (xhci->event_ring)
1754 xhci_ring_free(xhci, xhci->event_ring);
1755 xhci->event_ring = NULL;
d195fcff 1756 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
0ebbab37 1757
dbc33303
SS
1758 if (xhci->lpm_command)
1759 xhci_free_command(xhci, xhci->lpm_command);
33b2831a 1760 xhci->cmd_ring_reserved_trbs = 0;
0ebbab37
SS
1761 if (xhci->cmd_ring)
1762 xhci_ring_free(xhci, xhci->cmd_ring);
1763 xhci->cmd_ring = NULL;
d195fcff 1764 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
b92cc66c
EF
1765 list_for_each_entry_safe(cur_cd, next_cd,
1766 &xhci->cancel_cmd_list, cancel_cmd_list) {
1767 list_del(&cur_cd->cancel_cmd_list);
1768 kfree(cur_cd);
1769 }
3ffbba95
SS
1770
1771 for (i = 1; i < MAX_HC_SLOTS; ++i)
1772 xhci_free_virt_device(xhci, i);
1773
0ebbab37
SS
1774 if (xhci->segment_pool)
1775 dma_pool_destroy(xhci->segment_pool);
1776 xhci->segment_pool = NULL;
d195fcff 1777 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
3ffbba95
SS
1778
1779 if (xhci->device_pool)
1780 dma_pool_destroy(xhci->device_pool);
1781 xhci->device_pool = NULL;
d195fcff 1782 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
3ffbba95 1783
8df75f42
SS
1784 if (xhci->small_streams_pool)
1785 dma_pool_destroy(xhci->small_streams_pool);
1786 xhci->small_streams_pool = NULL;
d195fcff
XR
1787 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1788 "Freed small stream array pool");
8df75f42
SS
1789
1790 if (xhci->medium_streams_pool)
1791 dma_pool_destroy(xhci->medium_streams_pool);
1792 xhci->medium_streams_pool = NULL;
d195fcff
XR
1793 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1794 "Freed medium stream array pool");
8df75f42 1795
a74588f9 1796 if (xhci->dcbaa)
2a100047 1797 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
a74588f9
SS
1798 xhci->dcbaa, xhci->dcbaa->dma);
1799 xhci->dcbaa = NULL;
3ffbba95 1800
5294bea4 1801 scratchpad_free(xhci);
da6699ce 1802
88696ae4
VM
1803 if (!xhci->rh_bw)
1804 goto no_bw;
1805
32f1d2c5
TI
1806 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1807 for (i = 0; i < num_ports; i++) {
1808 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1809 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1810 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1811 while (!list_empty(ep))
1812 list_del_init(ep->next);
f8a9e72d
ON
1813 }
1814 }
1815
32f1d2c5
TI
1816 for (i = 0; i < num_ports; i++) {
1817 struct xhci_tt_bw_info *tt, *n;
1818 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1819 list_del(&tt->tt_list);
1820 kfree(tt);
1821 }
f8a9e72d
ON
1822 }
1823
88696ae4 1824no_bw:
da6699ce
SS
1825 xhci->num_usb2_ports = 0;
1826 xhci->num_usb3_ports = 0;
f8a9e72d 1827 xhci->num_active_eps = 0;
da6699ce
SS
1828 kfree(xhci->usb2_ports);
1829 kfree(xhci->usb3_ports);
1830 kfree(xhci->port_array);
839c817c 1831 kfree(xhci->rh_bw);
b630d4b9 1832 kfree(xhci->ext_caps);
da6699ce 1833
66d4eadd
SS
1834 xhci->page_size = 0;
1835 xhci->page_shift = 0;
20b67cf5 1836 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1837 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1838}
1839
6648f29d
SS
1840static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1841 struct xhci_segment *input_seg,
1842 union xhci_trb *start_trb,
1843 union xhci_trb *end_trb,
1844 dma_addr_t input_dma,
1845 struct xhci_segment *result_seg,
1846 char *test_name, int test_number)
1847{
1848 unsigned long long start_dma;
1849 unsigned long long end_dma;
1850 struct xhci_segment *seg;
1851
1852 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1853 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1854
1855 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1856 if (seg != result_seg) {
1857 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1858 test_name, test_number);
1859 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1860 "input DMA 0x%llx\n",
1861 input_seg,
1862 (unsigned long long) input_dma);
1863 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1864 "ending TRB %p (0x%llx DMA)\n",
1865 start_trb, start_dma,
1866 end_trb, end_dma);
1867 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1868 result_seg, seg);
1869 return -1;
1870 }
1871 return 0;
1872}
1873
1874/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1875static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1876{
1877 struct {
1878 dma_addr_t input_dma;
1879 struct xhci_segment *result_seg;
1880 } simple_test_vector [] = {
1881 /* A zeroed DMA field should fail */
1882 { 0, NULL },
1883 /* One TRB before the ring start should fail */
1884 { xhci->event_ring->first_seg->dma - 16, NULL },
1885 /* One byte before the ring start should fail */
1886 { xhci->event_ring->first_seg->dma - 1, NULL },
1887 /* Starting TRB should succeed */
1888 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1889 /* Ending TRB should succeed */
1890 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1891 xhci->event_ring->first_seg },
1892 /* One byte after the ring end should fail */
1893 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1894 /* One TRB after the ring end should fail */
1895 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1896 /* An address of all ones should fail */
1897 { (dma_addr_t) (~0), NULL },
1898 };
1899 struct {
1900 struct xhci_segment *input_seg;
1901 union xhci_trb *start_trb;
1902 union xhci_trb *end_trb;
1903 dma_addr_t input_dma;
1904 struct xhci_segment *result_seg;
1905 } complex_test_vector [] = {
1906 /* Test feeding a valid DMA address from a different ring */
1907 { .input_seg = xhci->event_ring->first_seg,
1908 .start_trb = xhci->event_ring->first_seg->trbs,
1909 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1910 .input_dma = xhci->cmd_ring->first_seg->dma,
1911 .result_seg = NULL,
1912 },
1913 /* Test feeding a valid end TRB from a different ring */
1914 { .input_seg = xhci->event_ring->first_seg,
1915 .start_trb = xhci->event_ring->first_seg->trbs,
1916 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1917 .input_dma = xhci->cmd_ring->first_seg->dma,
1918 .result_seg = NULL,
1919 },
1920 /* Test feeding a valid start and end TRB from a different ring */
1921 { .input_seg = xhci->event_ring->first_seg,
1922 .start_trb = xhci->cmd_ring->first_seg->trbs,
1923 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1924 .input_dma = xhci->cmd_ring->first_seg->dma,
1925 .result_seg = NULL,
1926 },
1927 /* TRB in this ring, but after this TD */
1928 { .input_seg = xhci->event_ring->first_seg,
1929 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1930 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1931 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1932 .result_seg = NULL,
1933 },
1934 /* TRB in this ring, but before this TD */
1935 { .input_seg = xhci->event_ring->first_seg,
1936 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1937 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1938 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1939 .result_seg = NULL,
1940 },
1941 /* TRB in this ring, but after this wrapped TD */
1942 { .input_seg = xhci->event_ring->first_seg,
1943 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1944 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1945 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1946 .result_seg = NULL,
1947 },
1948 /* TRB in this ring, but before this wrapped TD */
1949 { .input_seg = xhci->event_ring->first_seg,
1950 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1951 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1952 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1953 .result_seg = NULL,
1954 },
1955 /* TRB not in this ring, and we have a wrapped TD */
1956 { .input_seg = xhci->event_ring->first_seg,
1957 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1958 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1959 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1960 .result_seg = NULL,
1961 },
1962 };
1963
1964 unsigned int num_tests;
1965 int i, ret;
1966
e10fa478 1967 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
1968 for (i = 0; i < num_tests; i++) {
1969 ret = xhci_test_trb_in_td(xhci,
1970 xhci->event_ring->first_seg,
1971 xhci->event_ring->first_seg->trbs,
1972 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1973 simple_test_vector[i].input_dma,
1974 simple_test_vector[i].result_seg,
1975 "Simple", i);
1976 if (ret < 0)
1977 return ret;
1978 }
1979
e10fa478 1980 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
1981 for (i = 0; i < num_tests; i++) {
1982 ret = xhci_test_trb_in_td(xhci,
1983 complex_test_vector[i].input_seg,
1984 complex_test_vector[i].start_trb,
1985 complex_test_vector[i].end_trb,
1986 complex_test_vector[i].input_dma,
1987 complex_test_vector[i].result_seg,
1988 "Complex", i);
1989 if (ret < 0)
1990 return ret;
1991 }
1992 xhci_dbg(xhci, "TRB math tests passed.\n");
1993 return 0;
1994}
1995
257d585a
SS
1996static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1997{
1998 u64 temp;
1999 dma_addr_t deq;
2000
2001 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2002 xhci->event_ring->dequeue);
2003 if (deq == 0 && !in_interrupt())
2004 xhci_warn(xhci, "WARN something wrong with SW event ring "
2005 "dequeue ptr.\n");
2006 /* Update HC event ring dequeue pointer */
f7b2e403 2007 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
257d585a
SS
2008 temp &= ERST_PTR_MASK;
2009 /* Don't clear the EHB bit (which is RW1C) because
2010 * there might be more events to service.
2011 */
2012 temp &= ~ERST_EHB;
d195fcff
XR
2013 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2014 "// Write event ring dequeue pointer, "
2015 "preserving EHB bit");
477632df 2016 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
257d585a
SS
2017 &xhci->ir_set->erst_dequeue);
2018}
2019
da6699ce 2020static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
b630d4b9 2021 __le32 __iomem *addr, u8 major_revision, int max_caps)
da6699ce
SS
2022{
2023 u32 temp, port_offset, port_count;
2024 int i;
2025
2026 if (major_revision > 0x03) {
2027 xhci_warn(xhci, "Ignoring unknown port speed, "
2028 "Ext Cap %p, revision = 0x%x\n",
2029 addr, major_revision);
2030 /* Ignoring port protocol we can't understand. FIXME */
2031 return;
2032 }
2033
2034 /* Port offset and count in the third dword, see section 7.2 */
b0ba9720 2035 temp = readl(addr + 2);
da6699ce
SS
2036 port_offset = XHCI_EXT_PORT_OFF(temp);
2037 port_count = XHCI_EXT_PORT_COUNT(temp);
d195fcff
XR
2038 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2039 "Ext Cap %p, port offset = %u, "
2040 "count = %u, revision = 0x%x",
da6699ce
SS
2041 addr, port_offset, port_count, major_revision);
2042 /* Port count includes the current port offset */
2043 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2044 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2045 return;
fc71ff75 2046
b630d4b9
MN
2047 /* cache usb2 port capabilities */
2048 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2049 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2050
fc71ff75
AX
2051 /* Check the host's USB2 LPM capability */
2052 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2053 (temp & XHCI_L1C)) {
d195fcff
XR
2054 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2055 "xHCI 0.96: support USB2 software lpm");
fc71ff75
AX
2056 xhci->sw_lpm_support = 1;
2057 }
2058
2059 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
d195fcff
XR
2060 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2061 "xHCI 1.0: support USB2 software lpm");
fc71ff75
AX
2062 xhci->sw_lpm_support = 1;
2063 if (temp & XHCI_HLC) {
d195fcff
XR
2064 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2065 "xHCI 1.0: support USB2 hardware lpm");
fc71ff75
AX
2066 xhci->hw_lpm_support = 1;
2067 }
2068 }
2069
da6699ce
SS
2070 port_offset--;
2071 for (i = port_offset; i < (port_offset + port_count); i++) {
2072 /* Duplicate entry. Ignore the port if the revisions differ. */
2073 if (xhci->port_array[i] != 0) {
2074 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2075 " port %u\n", addr, i);
2076 xhci_warn(xhci, "Port was marked as USB %u, "
2077 "duplicated as USB %u\n",
2078 xhci->port_array[i], major_revision);
2079 /* Only adjust the roothub port counts if we haven't
2080 * found a similar duplicate.
2081 */
2082 if (xhci->port_array[i] != major_revision &&
22e04870 2083 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
2084 if (xhci->port_array[i] == 0x03)
2085 xhci->num_usb3_ports--;
2086 else
2087 xhci->num_usb2_ports--;
22e04870 2088 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
2089 }
2090 /* FIXME: Should we disable the port? */
f8bbeabc 2091 continue;
da6699ce
SS
2092 }
2093 xhci->port_array[i] = major_revision;
2094 if (major_revision == 0x03)
2095 xhci->num_usb3_ports++;
2096 else
2097 xhci->num_usb2_ports++;
2098 }
2099 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2100}
2101
2102/*
2103 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2104 * specify what speeds each port is supposed to be. We can't count on the port
2105 * speed bits in the PORTSC register being correct until a device is connected,
2106 * but we need to set up the two fake roothubs with the correct number of USB
2107 * 3.0 and USB 2.0 ports at host controller initialization time.
2108 */
2109static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2110{
b630d4b9
MN
2111 __le32 __iomem *addr, *tmp_addr;
2112 u32 offset, tmp_offset;
da6699ce 2113 unsigned int num_ports;
2e27980e 2114 int i, j, port_index;
b630d4b9 2115 int cap_count = 0;
da6699ce
SS
2116
2117 addr = &xhci->cap_regs->hcc_params;
b0ba9720 2118 offset = XHCI_HCC_EXT_CAPS(readl(addr));
da6699ce
SS
2119 if (offset == 0) {
2120 xhci_err(xhci, "No Extended Capability registers, "
2121 "unable to set up roothub.\n");
2122 return -ENODEV;
2123 }
2124
2125 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2126 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2127 if (!xhci->port_array)
2128 return -ENOMEM;
2129
839c817c
SS
2130 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2131 if (!xhci->rh_bw)
2132 return -ENOMEM;
2e27980e
SS
2133 for (i = 0; i < num_ports; i++) {
2134 struct xhci_interval_bw_table *bw_table;
2135
839c817c 2136 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2e27980e
SS
2137 bw_table = &xhci->rh_bw[i].bw_table;
2138 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2139 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2140 }
839c817c 2141
da6699ce
SS
2142 /*
2143 * For whatever reason, the first capability offset is from the
2144 * capability register base, not from the HCCPARAMS register.
2145 * See section 5.3.6 for offset calculation.
2146 */
2147 addr = &xhci->cap_regs->hc_capbase + offset;
b630d4b9
MN
2148
2149 tmp_addr = addr;
2150 tmp_offset = offset;
2151
2152 /* count extended protocol capability entries for later caching */
2153 do {
2154 u32 cap_id;
b0ba9720 2155 cap_id = readl(tmp_addr);
b630d4b9
MN
2156 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2157 cap_count++;
2158 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2159 tmp_addr += tmp_offset;
2160 } while (tmp_offset);
2161
2162 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2163 if (!xhci->ext_caps)
2164 return -ENOMEM;
2165
da6699ce
SS
2166 while (1) {
2167 u32 cap_id;
2168
b0ba9720 2169 cap_id = readl(addr);
da6699ce
SS
2170 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2171 xhci_add_in_port(xhci, num_ports, addr,
b630d4b9
MN
2172 (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2173 cap_count);
da6699ce
SS
2174 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2175 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2176 == num_ports)
2177 break;
2178 /*
2179 * Once you're into the Extended Capabilities, the offset is
2180 * always relative to the register holding the offset.
2181 */
2182 addr += offset;
2183 }
2184
2185 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2186 xhci_warn(xhci, "No ports on the roothubs?\n");
2187 return -ENODEV;
2188 }
d195fcff
XR
2189 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2190 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
da6699ce 2191 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
2192
2193 /* Place limits on the number of roothub ports so that the hub
2194 * descriptors aren't longer than the USB core will allocate.
2195 */
2196 if (xhci->num_usb3_ports > 15) {
d195fcff
XR
2197 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2198 "Limiting USB 3.0 roothub ports to 15.");
d30b2a20
SS
2199 xhci->num_usb3_ports = 15;
2200 }
2201 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
d195fcff
XR
2202 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2203 "Limiting USB 2.0 roothub ports to %u.",
d30b2a20
SS
2204 USB_MAXCHILDREN);
2205 xhci->num_usb2_ports = USB_MAXCHILDREN;
2206 }
2207
da6699ce
SS
2208 /*
2209 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2210 * Not sure how the USB core will handle a hub with no ports...
2211 */
2212 if (xhci->num_usb2_ports) {
2213 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2214 xhci->num_usb2_ports, flags);
2215 if (!xhci->usb2_ports)
2216 return -ENOMEM;
2217
2218 port_index = 0;
f8bbeabc
SS
2219 for (i = 0; i < num_ports; i++) {
2220 if (xhci->port_array[i] == 0x03 ||
2221 xhci->port_array[i] == 0 ||
22e04870 2222 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
2223 continue;
2224
2225 xhci->usb2_ports[port_index] =
2226 &xhci->op_regs->port_status_base +
2227 NUM_PORT_REGS*i;
d195fcff
XR
2228 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2229 "USB 2.0 port at index %u, "
2230 "addr = %p", i,
f8bbeabc
SS
2231 xhci->usb2_ports[port_index]);
2232 port_index++;
d30b2a20
SS
2233 if (port_index == xhci->num_usb2_ports)
2234 break;
f8bbeabc 2235 }
da6699ce
SS
2236 }
2237 if (xhci->num_usb3_ports) {
2238 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2239 xhci->num_usb3_ports, flags);
2240 if (!xhci->usb3_ports)
2241 return -ENOMEM;
2242
2243 port_index = 0;
2244 for (i = 0; i < num_ports; i++)
2245 if (xhci->port_array[i] == 0x03) {
2246 xhci->usb3_ports[port_index] =
2247 &xhci->op_regs->port_status_base +
2248 NUM_PORT_REGS*i;
d195fcff
XR
2249 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2250 "USB 3.0 port at index %u, "
2251 "addr = %p", i,
da6699ce
SS
2252 xhci->usb3_ports[port_index]);
2253 port_index++;
d30b2a20
SS
2254 if (port_index == xhci->num_usb3_ports)
2255 break;
da6699ce
SS
2256 }
2257 }
2258 return 0;
2259}
6648f29d 2260
66d4eadd
SS
2261int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2262{
0ebbab37
SS
2263 dma_addr_t dma;
2264 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 2265 unsigned int val, val2;
8e595a5d 2266 u64 val_64;
0ebbab37 2267 struct xhci_segment *seg;
623bef9e 2268 u32 page_size, temp;
66d4eadd
SS
2269 int i;
2270
331de00a
SA
2271 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2272
b0ba9720 2273 page_size = readl(&xhci->op_regs->page_size);
d195fcff
XR
2274 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2275 "Supported page size register = 0x%x", page_size);
66d4eadd
SS
2276 for (i = 0; i < 16; i++) {
2277 if ((0x1 & page_size) != 0)
2278 break;
2279 page_size = page_size >> 1;
2280 }
2281 if (i < 16)
d195fcff
XR
2282 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2283 "Supported page size of %iK", (1 << (i+12)) / 1024);
66d4eadd
SS
2284 else
2285 xhci_warn(xhci, "WARN: no supported page size\n");
2286 /* Use 4K pages, since that's common and the minimum the HC supports */
2287 xhci->page_shift = 12;
2288 xhci->page_size = 1 << xhci->page_shift;
d195fcff
XR
2289 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2290 "HCD page size set to %iK", xhci->page_size / 1024);
66d4eadd
SS
2291
2292 /*
2293 * Program the Number of Device Slots Enabled field in the CONFIG
2294 * register with the max value of slots the HC can handle.
2295 */
b0ba9720 2296 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
d195fcff
XR
2297 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2298 "// xHC can handle at most %d device slots.", val);
b0ba9720 2299 val2 = readl(&xhci->op_regs->config_reg);
66d4eadd 2300 val |= (val2 & ~HCS_SLOTS_MASK);
d195fcff
XR
2301 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2302 "// Setting Max device slots reg = 0x%x.", val);
204b7793 2303 writel(val, &xhci->op_regs->config_reg);
66d4eadd 2304
a74588f9
SS
2305 /*
2306 * Section 5.4.8 - doorbell array must be
2307 * "physically contiguous and 64-byte (cache line) aligned".
2308 */
22d45f01
SAS
2309 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2310 GFP_KERNEL);
a74588f9
SS
2311 if (!xhci->dcbaa)
2312 goto fail;
2313 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2314 xhci->dcbaa->dma = dma;
d195fcff
XR
2315 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2316 "// Device context base array address = 0x%llx (DMA), %p (virt)",
700e2052 2317 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
477632df 2318 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 2319
0ebbab37
SS
2320 /*
2321 * Initialize the ring segment pool. The ring must be a contiguous
2322 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2323 * however, the command ring segment needs 64-byte aligned segments,
2324 * so we pick the greater alignment need.
2325 */
2326 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
eb8ccd2b 2327 TRB_SEGMENT_SIZE, 64, xhci->page_size);
d115b048 2328
3ffbba95 2329 /* See Table 46 and Note on Figure 55 */
3ffbba95 2330 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 2331 2112, 64, xhci->page_size);
3ffbba95 2332 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
2333 goto fail;
2334
8df75f42
SS
2335 /* Linear stream context arrays don't have any boundary restrictions,
2336 * and only need to be 16-byte aligned.
2337 */
2338 xhci->small_streams_pool =
2339 dma_pool_create("xHCI 256 byte stream ctx arrays",
2340 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2341 xhci->medium_streams_pool =
2342 dma_pool_create("xHCI 1KB stream ctx arrays",
2343 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2344 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
22d45f01 2345 * will be allocated with dma_alloc_coherent()
8df75f42
SS
2346 */
2347
2348 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2349 goto fail;
2350
0ebbab37 2351 /* Set up the command ring to have one segments for now. */
186a7ef1 2352 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
0ebbab37
SS
2353 if (!xhci->cmd_ring)
2354 goto fail;
d195fcff
XR
2355 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2356 "Allocated command ring at %p", xhci->cmd_ring);
2357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
700e2052 2358 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2359
2360 /* Set the address in the Command Ring Control register */
f7b2e403 2361 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
8e595a5d
SS
2362 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2363 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2364 xhci->cmd_ring->cycle_state;
d195fcff
XR
2365 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2366 "// Setting command ring address to 0x%x", val);
477632df 2367 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2368 xhci_dbg_cmd_ptrs(xhci);
2369
dbc33303
SS
2370 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2371 if (!xhci->lpm_command)
2372 goto fail;
2373
2374 /* Reserve one command ring TRB for disabling LPM.
2375 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2376 * disabling LPM, we only need to reserve one TRB for all devices.
2377 */
2378 xhci->cmd_ring_reserved_trbs++;
2379
b0ba9720 2380 val = readl(&xhci->cap_regs->db_off);
0ebbab37 2381 val &= DBOFF_MASK;
d195fcff
XR
2382 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2383 "// Doorbell array is located at offset 0x%x"
2384 " from cap regs base addr", val);
c50a00f8 2385 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2386 xhci_dbg_regs(xhci);
2387 xhci_print_run_regs(xhci);
2388 /* Set ir_set to interrupt register set 0 */
c50a00f8 2389 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2390
2391 /*
2392 * Event ring setup: Allocate a normal ring, but also setup
2393 * the event ring segment table (ERST). Section 4.9.3.
2394 */
d195fcff 2395 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
186a7ef1 2396 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
7e393a83 2397 flags);
0ebbab37
SS
2398 if (!xhci->event_ring)
2399 goto fail;
6648f29d
SS
2400 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2401 goto fail;
0ebbab37 2402
22d45f01
SAS
2403 xhci->erst.entries = dma_alloc_coherent(dev,
2404 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2405 GFP_KERNEL);
0ebbab37
SS
2406 if (!xhci->erst.entries)
2407 goto fail;
d195fcff
XR
2408 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2409 "// Allocated event ring segment table at 0x%llx",
700e2052 2410 (unsigned long long)dma);
0ebbab37
SS
2411
2412 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2413 xhci->erst.num_entries = ERST_NUM_SEGS;
2414 xhci->erst.erst_dma_addr = dma;
d195fcff
XR
2415 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
0ebbab37 2417 xhci->erst.num_entries,
700e2052
GKH
2418 xhci->erst.entries,
2419 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2420
2421 /* set ring base address and size for each segment table entry */
2422 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2423 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2424 entry->seg_addr = cpu_to_le64(seg->dma);
2425 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2426 entry->rsvd = 0;
2427 seg = seg->next;
2428 }
2429
2430 /* set ERST count with the number of entries in the segment table */
b0ba9720 2431 val = readl(&xhci->ir_set->erst_size);
0ebbab37
SS
2432 val &= ERST_SIZE_MASK;
2433 val |= ERST_NUM_SEGS;
d195fcff
XR
2434 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
0ebbab37 2436 val);
204b7793 2437 writel(val, &xhci->ir_set->erst_size);
0ebbab37 2438
d195fcff
XR
2439 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2440 "// Set ERST entries to point to event ring.");
0ebbab37 2441 /* set the segment table base address */
d195fcff
XR
2442 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2443 "// Set ERST base address for ir_set 0 = 0x%llx",
700e2052 2444 (unsigned long long)xhci->erst.erst_dma_addr);
f7b2e403 2445 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
8e595a5d
SS
2446 val_64 &= ERST_PTR_MASK;
2447 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
477632df 2448 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2449
2450 /* Set the event ring dequeue address */
23e3be11 2451 xhci_set_hc_event_deq(xhci);
d195fcff
XR
2452 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2453 "Wrote ERST address to ir_set 0.");
09ece30e 2454 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2455
2456 /*
2457 * XXX: Might need to set the Interrupter Moderation Register to
2458 * something other than the default (~1ms minimum between interrupts).
2459 * See section 5.5.1.2.
2460 */
3ffbba95
SS
2461 init_completion(&xhci->addr_dev);
2462 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 2463 xhci->devs[i] = NULL;
f6ff0ac8 2464 for (i = 0; i < USB_MAXCHILDREN; ++i) {
20b67cf5 2465 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8 2466 xhci->bus_state[1].resume_done[i] = 0;
8b3d4570
SS
2467 /* Only the USB 2.0 completions will ever be used. */
2468 init_completion(&xhci->bus_state[1].rexit_done[i]);
f6ff0ac8 2469 }
66d4eadd 2470
254c80a3
JY
2471 if (scratchpad_alloc(xhci, flags))
2472 goto fail;
da6699ce
SS
2473 if (xhci_setup_port_arrays(xhci, flags))
2474 goto fail;
254c80a3 2475
623bef9e
SS
2476 /* Enable USB 3.0 device notifications for function remote wake, which
2477 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2478 * U3 (device suspend).
2479 */
b0ba9720 2480 temp = readl(&xhci->op_regs->dev_notification);
623bef9e
SS
2481 temp &= ~DEV_NOTE_MASK;
2482 temp |= DEV_NOTE_FWAKE;
204b7793 2483 writel(temp, &xhci->op_regs->dev_notification);
623bef9e 2484
66d4eadd 2485 return 0;
254c80a3 2486
66d4eadd
SS
2487fail:
2488 xhci_warn(xhci, "Couldn't initialize memory\n");
159e1fcc
SS
2489 xhci_halt(xhci);
2490 xhci_reset(xhci);
66d4eadd
SS
2491 xhci_mem_cleanup(xhci);
2492 return -ENOMEM;
2493}
This page took 0.477599 seconds and 5 git commands to generate.