xhci: Disable MSI for some Fresco Logic hosts.
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
CommitLineData
66d4eadd
SS
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
0ebbab37 24#include <linux/pci.h>
5a0e3ad6 25#include <linux/slab.h>
527c6d7f 26#include <linux/dmapool.h>
66d4eadd
SS
27
28#include "xhci.h"
29
0ebbab37
SS
30/*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38{
39 struct xhci_segment *seg;
40 dma_addr_t dma;
41
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
326b4810 44 return NULL;
700e2052 45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
0ebbab37
SS
46
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
326b4810 50 return NULL;
0ebbab37 51 }
700e2052
GKH
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
0ebbab37
SS
54
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
58
59 return seg;
60}
61
62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63{
64 if (!seg)
65 return;
66 if (seg->trbs) {
700e2052
GKH
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
0ebbab37
SS
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
700e2052 72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
0ebbab37
SS
73 kfree(seg);
74}
75
76/*
77 * Make the prev segment point to the next segment.
78 *
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 */
83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
85{
86 u32 val;
87
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
28ccd296
ME
92 prev->trbs[TRBS_PER_SEGMENT-1].link.
93 segment_ptr = cpu_to_le64(next->dma);
0ebbab37
SS
94
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
28ccd296 96 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
0ebbab37
SS
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
b0567b3f
SS
99 /* Always set the chain bit with 0.95 hardware */
100 if (xhci_link_trb_quirk(xhci))
101 val |= TRB_CHAIN;
28ccd296 102 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
0ebbab37 103 }
700e2052
GKH
104 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev->dma,
106 (unsigned long long)next->dma);
0ebbab37
SS
107}
108
109/* XXX: Do we need the hcd structure in all these functions? */
f94e0186 110void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
0ebbab37
SS
111{
112 struct xhci_segment *seg;
113 struct xhci_segment *first_seg;
114
115 if (!ring || !ring->first_seg)
116 return;
117 first_seg = ring->first_seg;
118 seg = first_seg->next;
700e2052 119 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
0ebbab37
SS
120 while (seg != first_seg) {
121 struct xhci_segment *next = seg->next;
122 xhci_segment_free(xhci, seg);
123 seg = next;
124 }
125 xhci_segment_free(xhci, first_seg);
126 ring->first_seg = NULL;
127 kfree(ring);
128}
129
74f9fe21
SS
130static void xhci_initialize_ring_info(struct xhci_ring *ring)
131{
132 /* The ring is empty, so the enqueue pointer == dequeue pointer */
133 ring->enqueue = ring->first_seg->trbs;
134 ring->enq_seg = ring->first_seg;
135 ring->dequeue = ring->enqueue;
136 ring->deq_seg = ring->first_seg;
137 /* The ring is initialized to 0. The producer must write 1 to the cycle
138 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
139 * compare CCS to the cycle bit to check ownership, so CCS = 1.
140 */
141 ring->cycle_state = 1;
142 /* Not necessary for new rings, but needed for re-initialized rings */
143 ring->enq_updates = 0;
144 ring->deq_updates = 0;
145}
146
0ebbab37
SS
147/**
148 * Create a new ring with zero or more segments.
149 *
150 * Link each segment together into a ring.
151 * Set the end flag and the cycle toggle bit on the last segment.
152 * See section 4.9.1 and figures 15 and 16.
153 */
154static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
155 unsigned int num_segs, bool link_trbs, gfp_t flags)
156{
157 struct xhci_ring *ring;
158 struct xhci_segment *prev;
159
160 ring = kzalloc(sizeof *(ring), flags);
700e2052 161 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
0ebbab37 162 if (!ring)
326b4810 163 return NULL;
0ebbab37 164
d0e96f5a 165 INIT_LIST_HEAD(&ring->td_list);
0ebbab37
SS
166 if (num_segs == 0)
167 return ring;
168
169 ring->first_seg = xhci_segment_alloc(xhci, flags);
170 if (!ring->first_seg)
171 goto fail;
172 num_segs--;
173
174 prev = ring->first_seg;
175 while (num_segs > 0) {
176 struct xhci_segment *next;
177
178 next = xhci_segment_alloc(xhci, flags);
179 if (!next)
180 goto fail;
181 xhci_link_segments(xhci, prev, next, link_trbs);
182
183 prev = next;
184 num_segs--;
185 }
186 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
187
188 if (link_trbs) {
189 /* See section 4.9.2.1 and 6.4.4.1 */
28ccd296
ME
190 prev->trbs[TRBS_PER_SEGMENT-1].link.
191 control |= cpu_to_le32(LINK_TOGGLE);
0ebbab37 192 xhci_dbg(xhci, "Wrote link toggle flag to"
700e2052
GKH
193 " segment %p (virtual), 0x%llx (DMA)\n",
194 prev, (unsigned long long)prev->dma);
0ebbab37 195 }
74f9fe21 196 xhci_initialize_ring_info(ring);
0ebbab37
SS
197 return ring;
198
199fail:
200 xhci_ring_free(xhci, ring);
326b4810 201 return NULL;
0ebbab37
SS
202}
203
412566bd
SS
204void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
205 struct xhci_virt_device *virt_dev,
206 unsigned int ep_index)
207{
208 int rings_cached;
209
210 rings_cached = virt_dev->num_rings_cached;
211 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
412566bd
SS
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
30f89ca0 214 virt_dev->num_rings_cached++;
412566bd
SS
215 xhci_dbg(xhci, "Cached old ring, "
216 "%d ring%s cached\n",
30f89ca0
SS
217 virt_dev->num_rings_cached,
218 (virt_dev->num_rings_cached > 1) ? "s" : "");
412566bd
SS
219 } else {
220 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
221 xhci_dbg(xhci, "Ring cache full (%d rings), "
222 "freeing ring\n",
223 virt_dev->num_rings_cached);
224 }
225 virt_dev->eps[ep_index].ring = NULL;
226}
227
74f9fe21
SS
228/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229 * pointers to the beginning of the ring.
230 */
231static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
232 struct xhci_ring *ring)
233{
234 struct xhci_segment *seg = ring->first_seg;
235 do {
236 memset(seg->trbs, 0,
237 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
238 /* All endpoint rings have link TRBs */
239 xhci_link_segments(xhci, seg, seg->next, 1);
240 seg = seg->next;
241 } while (seg != ring->first_seg);
242 xhci_initialize_ring_info(ring);
243 /* td list should be empty since all URBs have been cancelled,
244 * but just in case...
245 */
246 INIT_LIST_HEAD(&ring->td_list);
247}
248
d115b048
JY
249#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
250
326b4810 251static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
252 int type, gfp_t flags)
253{
254 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
255 if (!ctx)
256 return NULL;
257
258 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
259 ctx->type = type;
260 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
261 if (type == XHCI_CTX_TYPE_INPUT)
262 ctx->size += CTX_SIZE(xhci->hcc_params);
263
264 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
265 memset(ctx->bytes, 0, ctx->size);
266 return ctx;
267}
268
326b4810 269static void xhci_free_container_ctx(struct xhci_hcd *xhci,
d115b048
JY
270 struct xhci_container_ctx *ctx)
271{
a1d78c16
SS
272 if (!ctx)
273 return;
d115b048
JY
274 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
275 kfree(ctx);
276}
277
278struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
279 struct xhci_container_ctx *ctx)
280{
281 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
282 return (struct xhci_input_control_ctx *)ctx->bytes;
283}
284
285struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
286 struct xhci_container_ctx *ctx)
287{
288 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
289 return (struct xhci_slot_ctx *)ctx->bytes;
290
291 return (struct xhci_slot_ctx *)
292 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
293}
294
295struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
296 struct xhci_container_ctx *ctx,
297 unsigned int ep_index)
298{
299 /* increment ep index by offset of start of ep ctx array */
300 ep_index++;
301 if (ctx->type == XHCI_CTX_TYPE_INPUT)
302 ep_index++;
303
304 return (struct xhci_ep_ctx *)
305 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
306}
307
8df75f42
SS
308
309/***************** Streams structures manipulation *************************/
310
8212a49d 311static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
312 unsigned int num_stream_ctxs,
313 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
314{
315 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
316
317 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
318 pci_free_consistent(pdev,
319 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
320 stream_ctx, dma);
321 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
322 return dma_pool_free(xhci->small_streams_pool,
323 stream_ctx, dma);
324 else
325 return dma_pool_free(xhci->medium_streams_pool,
326 stream_ctx, dma);
327}
328
329/*
330 * The stream context array for each endpoint with bulk streams enabled can
331 * vary in size, based on:
332 * - how many streams the endpoint supports,
333 * - the maximum primary stream array size the host controller supports,
334 * - and how many streams the device driver asks for.
335 *
336 * The stream context array must be a power of 2, and can be as small as
337 * 64 bytes or as large as 1MB.
338 */
8212a49d 339static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
8df75f42
SS
340 unsigned int num_stream_ctxs, dma_addr_t *dma,
341 gfp_t mem_flags)
342{
343 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344
345 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
346 return pci_alloc_consistent(pdev,
347 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
348 dma);
349 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
350 return dma_pool_alloc(xhci->small_streams_pool,
351 mem_flags, dma);
352 else
353 return dma_pool_alloc(xhci->medium_streams_pool,
354 mem_flags, dma);
355}
356
e9df17eb
SS
357struct xhci_ring *xhci_dma_to_transfer_ring(
358 struct xhci_virt_ep *ep,
359 u64 address)
360{
361 if (ep->ep_state & EP_HAS_STREAMS)
362 return radix_tree_lookup(&ep->stream_info->trb_address_map,
363 address >> SEGMENT_SHIFT);
364 return ep->ring;
365}
366
367/* Only use this when you know stream_info is valid */
8df75f42 368#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
e9df17eb 369static struct xhci_ring *dma_to_stream_ring(
8df75f42
SS
370 struct xhci_stream_info *stream_info,
371 u64 address)
372{
373 return radix_tree_lookup(&stream_info->trb_address_map,
374 address >> SEGMENT_SHIFT);
375}
376#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
377
e9df17eb
SS
378struct xhci_ring *xhci_stream_id_to_ring(
379 struct xhci_virt_device *dev,
380 unsigned int ep_index,
381 unsigned int stream_id)
382{
383 struct xhci_virt_ep *ep = &dev->eps[ep_index];
384
385 if (stream_id == 0)
386 return ep->ring;
387 if (!ep->stream_info)
388 return NULL;
389
390 if (stream_id > ep->stream_info->num_streams)
391 return NULL;
392 return ep->stream_info->stream_rings[stream_id];
393}
394
8df75f42
SS
395#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396static int xhci_test_radix_tree(struct xhci_hcd *xhci,
397 unsigned int num_streams,
398 struct xhci_stream_info *stream_info)
399{
400 u32 cur_stream;
401 struct xhci_ring *cur_ring;
402 u64 addr;
403
404 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
405 struct xhci_ring *mapped_ring;
406 int trb_size = sizeof(union xhci_trb);
407
408 cur_ring = stream_info->stream_rings[cur_stream];
409 for (addr = cur_ring->first_seg->dma;
410 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
411 addr += trb_size) {
412 mapped_ring = dma_to_stream_ring(stream_info, addr);
413 if (cur_ring != mapped_ring) {
414 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
415 "didn't map to stream ID %u; "
416 "mapped to ring %p\n",
417 (unsigned long long) addr,
418 cur_stream,
419 mapped_ring);
420 return -EINVAL;
421 }
422 }
423 /* One TRB after the end of the ring segment shouldn't return a
424 * pointer to the current ring (although it may be a part of a
425 * different ring).
426 */
427 mapped_ring = dma_to_stream_ring(stream_info, addr);
428 if (mapped_ring != cur_ring) {
429 /* One TRB before should also fail */
430 addr = cur_ring->first_seg->dma - trb_size;
431 mapped_ring = dma_to_stream_ring(stream_info, addr);
432 }
433 if (mapped_ring == cur_ring) {
434 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
435 "mapped to valid stream ID %u; "
436 "mapped ring = %p\n",
437 (unsigned long long) addr,
438 cur_stream,
439 mapped_ring);
440 return -EINVAL;
441 }
442 }
443 return 0;
444}
445#endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
446
447/*
448 * Change an endpoint's internal structure so it supports stream IDs. The
449 * number of requested streams includes stream 0, which cannot be used by device
450 * drivers.
451 *
452 * The number of stream contexts in the stream context array may be bigger than
453 * the number of streams the driver wants to use. This is because the number of
454 * stream context array entries must be a power of two.
455 *
456 * We need a radix tree for mapping physical addresses of TRBs to which stream
457 * ID they belong to. We need to do this because the host controller won't tell
458 * us which stream ring the TRB came from. We could store the stream ID in an
459 * event data TRB, but that doesn't help us for the cancellation case, since the
460 * endpoint may stop before it reaches that event data TRB.
461 *
462 * The radix tree maps the upper portion of the TRB DMA address to a ring
463 * segment that has the same upper portion of DMA addresses. For example, say I
464 * have segments of size 1KB, that are always 64-byte aligned. A segment may
465 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
466 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
467 * pass the radix tree a key to get the right stream ID:
468 *
469 * 0x10c90fff >> 10 = 0x43243
470 * 0x10c912c0 >> 10 = 0x43244
471 * 0x10c91400 >> 10 = 0x43245
472 *
473 * Obviously, only those TRBs with DMA addresses that are within the segment
474 * will make the radix tree return the stream ID for that ring.
475 *
476 * Caveats for the radix tree:
477 *
478 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
483 * extended systems (where the DMA address can be bigger than 32-bits),
484 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
485 */
486struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
487 unsigned int num_stream_ctxs,
488 unsigned int num_streams, gfp_t mem_flags)
489{
490 struct xhci_stream_info *stream_info;
491 u32 cur_stream;
492 struct xhci_ring *cur_ring;
493 unsigned long key;
494 u64 addr;
495 int ret;
496
497 xhci_dbg(xhci, "Allocating %u streams and %u "
498 "stream context array entries.\n",
499 num_streams, num_stream_ctxs);
500 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
501 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
502 return NULL;
503 }
504 xhci->cmd_ring_reserved_trbs++;
505
506 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
507 if (!stream_info)
508 goto cleanup_trbs;
509
510 stream_info->num_streams = num_streams;
511 stream_info->num_stream_ctxs = num_stream_ctxs;
512
513 /* Initialize the array of virtual pointers to stream rings. */
514 stream_info->stream_rings = kzalloc(
515 sizeof(struct xhci_ring *)*num_streams,
516 mem_flags);
517 if (!stream_info->stream_rings)
518 goto cleanup_info;
519
520 /* Initialize the array of DMA addresses for stream rings for the HW. */
521 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
522 num_stream_ctxs, &stream_info->ctx_array_dma,
523 mem_flags);
524 if (!stream_info->stream_ctx_array)
525 goto cleanup_ctx;
526 memset(stream_info->stream_ctx_array, 0,
527 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
528
529 /* Allocate everything needed to free the stream rings later */
530 stream_info->free_streams_command =
531 xhci_alloc_command(xhci, true, true, mem_flags);
532 if (!stream_info->free_streams_command)
533 goto cleanup_ctx;
534
535 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
536
537 /* Allocate rings for all the streams that the driver will use,
538 * and add their segment DMA addresses to the radix tree.
539 * Stream 0 is reserved.
540 */
541 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
542 stream_info->stream_rings[cur_stream] =
543 xhci_ring_alloc(xhci, 1, true, mem_flags);
544 cur_ring = stream_info->stream_rings[cur_stream];
545 if (!cur_ring)
546 goto cleanup_rings;
e9df17eb 547 cur_ring->stream_id = cur_stream;
8df75f42
SS
548 /* Set deq ptr, cycle bit, and stream context type */
549 addr = cur_ring->first_seg->dma |
550 SCT_FOR_CTX(SCT_PRI_TR) |
551 cur_ring->cycle_state;
28ccd296
ME
552 stream_info->stream_ctx_array[cur_stream].
553 stream_ring = cpu_to_le64(addr);
8df75f42
SS
554 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
555 cur_stream, (unsigned long long) addr);
556
557 key = (unsigned long)
558 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
559 ret = radix_tree_insert(&stream_info->trb_address_map,
560 key, cur_ring);
561 if (ret) {
562 xhci_ring_free(xhci, cur_ring);
563 stream_info->stream_rings[cur_stream] = NULL;
564 goto cleanup_rings;
565 }
566 }
567 /* Leave the other unused stream ring pointers in the stream context
568 * array initialized to zero. This will cause the xHC to give us an
569 * error if the device asks for a stream ID we don't have setup (if it
570 * was any other way, the host controller would assume the ring is
571 * "empty" and wait forever for data to be queued to that stream ID).
572 */
573#if XHCI_DEBUG
574 /* Do a little test on the radix tree to make sure it returns the
575 * correct values.
576 */
577 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
578 goto cleanup_rings;
579#endif
580
581 return stream_info;
582
583cleanup_rings:
584 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
585 cur_ring = stream_info->stream_rings[cur_stream];
586 if (cur_ring) {
587 addr = cur_ring->first_seg->dma;
588 radix_tree_delete(&stream_info->trb_address_map,
589 addr >> SEGMENT_SHIFT);
590 xhci_ring_free(xhci, cur_ring);
591 stream_info->stream_rings[cur_stream] = NULL;
592 }
593 }
594 xhci_free_command(xhci, stream_info->free_streams_command);
595cleanup_ctx:
596 kfree(stream_info->stream_rings);
597cleanup_info:
598 kfree(stream_info);
599cleanup_trbs:
600 xhci->cmd_ring_reserved_trbs--;
601 return NULL;
602}
603/*
604 * Sets the MaxPStreams field and the Linear Stream Array field.
605 * Sets the dequeue pointer to the stream context array.
606 */
607void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
608 struct xhci_ep_ctx *ep_ctx,
609 struct xhci_stream_info *stream_info)
610{
611 u32 max_primary_streams;
612 /* MaxPStreams is the number of stream context array entries, not the
613 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
614 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
615 */
616 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
617 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
618 1 << (max_primary_streams + 1));
28ccd296
ME
619 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
620 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
621 | EP_HAS_LSA);
622 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
8df75f42
SS
623}
624
625/*
626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628 * not at the beginning of the ring).
629 */
630void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
631 struct xhci_ep_ctx *ep_ctx,
632 struct xhci_virt_ep *ep)
633{
634 dma_addr_t addr;
28ccd296 635 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
8df75f42 636 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
28ccd296 637 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
8df75f42
SS
638}
639
640/* Frees all stream contexts associated with the endpoint,
641 *
642 * Caller should fix the endpoint context streams fields.
643 */
644void xhci_free_stream_info(struct xhci_hcd *xhci,
645 struct xhci_stream_info *stream_info)
646{
647 int cur_stream;
648 struct xhci_ring *cur_ring;
649 dma_addr_t addr;
650
651 if (!stream_info)
652 return;
653
654 for (cur_stream = 1; cur_stream < stream_info->num_streams;
655 cur_stream++) {
656 cur_ring = stream_info->stream_rings[cur_stream];
657 if (cur_ring) {
658 addr = cur_ring->first_seg->dma;
659 radix_tree_delete(&stream_info->trb_address_map,
660 addr >> SEGMENT_SHIFT);
661 xhci_ring_free(xhci, cur_ring);
662 stream_info->stream_rings[cur_stream] = NULL;
663 }
664 }
665 xhci_free_command(xhci, stream_info->free_streams_command);
666 xhci->cmd_ring_reserved_trbs--;
667 if (stream_info->stream_ctx_array)
668 xhci_free_stream_ctx(xhci,
669 stream_info->num_stream_ctxs,
670 stream_info->stream_ctx_array,
671 stream_info->ctx_array_dma);
672
673 if (stream_info)
674 kfree(stream_info->stream_rings);
675 kfree(stream_info);
676}
677
678
679/***************** Device context manipulation *************************/
680
6f5165cf
SS
681static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
682 struct xhci_virt_ep *ep)
683{
684 init_timer(&ep->stop_cmd_timer);
685 ep->stop_cmd_timer.data = (unsigned long) ep;
686 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
687 ep->xhci = xhci;
688}
689
d0e96f5a 690/* All the xhci_tds in the ring's TD list should be freed at this point */
3ffbba95
SS
691void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
692{
693 struct xhci_virt_device *dev;
694 int i;
695
696 /* Slot ID 0 is reserved */
697 if (slot_id == 0 || !xhci->devs[slot_id])
698 return;
699
700 dev = xhci->devs[slot_id];
8e595a5d 701 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
3ffbba95
SS
702 if (!dev)
703 return;
704
8df75f42 705 for (i = 0; i < 31; ++i) {
63a0d9ab
SS
706 if (dev->eps[i].ring)
707 xhci_ring_free(xhci, dev->eps[i].ring);
8df75f42
SS
708 if (dev->eps[i].stream_info)
709 xhci_free_stream_info(xhci,
710 dev->eps[i].stream_info);
711 }
3ffbba95 712
74f9fe21
SS
713 if (dev->ring_cache) {
714 for (i = 0; i < dev->num_rings_cached; i++)
715 xhci_ring_free(xhci, dev->ring_cache[i]);
716 kfree(dev->ring_cache);
717 }
718
3ffbba95 719 if (dev->in_ctx)
d115b048 720 xhci_free_container_ctx(xhci, dev->in_ctx);
3ffbba95 721 if (dev->out_ctx)
d115b048
JY
722 xhci_free_container_ctx(xhci, dev->out_ctx);
723
3ffbba95 724 kfree(xhci->devs[slot_id]);
326b4810 725 xhci->devs[slot_id] = NULL;
3ffbba95
SS
726}
727
728int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
729 struct usb_device *udev, gfp_t flags)
730{
3ffbba95 731 struct xhci_virt_device *dev;
63a0d9ab 732 int i;
3ffbba95
SS
733
734 /* Slot ID 0 is reserved */
735 if (slot_id == 0 || xhci->devs[slot_id]) {
736 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
737 return 0;
738 }
739
740 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
741 if (!xhci->devs[slot_id])
742 return 0;
743 dev = xhci->devs[slot_id];
744
d115b048
JY
745 /* Allocate the (output) device context that will be used in the HC. */
746 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
3ffbba95
SS
747 if (!dev->out_ctx)
748 goto fail;
d115b048 749
700e2052 750 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
d115b048 751 (unsigned long long)dev->out_ctx->dma);
3ffbba95
SS
752
753 /* Allocate the (input) device context for address device command */
d115b048 754 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
3ffbba95
SS
755 if (!dev->in_ctx)
756 goto fail;
d115b048 757
700e2052 758 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
d115b048 759 (unsigned long long)dev->in_ctx->dma);
3ffbba95 760
6f5165cf
SS
761 /* Initialize the cancellation list and watchdog timers for each ep */
762 for (i = 0; i < 31; i++) {
763 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
63a0d9ab 764 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
6f5165cf 765 }
63a0d9ab 766
3ffbba95 767 /* Allocate endpoint 0 ring */
63a0d9ab
SS
768 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
769 if (!dev->eps[0].ring)
3ffbba95
SS
770 goto fail;
771
74f9fe21
SS
772 /* Allocate pointers to the ring cache */
773 dev->ring_cache = kzalloc(
774 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
775 flags);
776 if (!dev->ring_cache)
777 goto fail;
778 dev->num_rings_cached = 0;
779
f94e0186 780 init_completion(&dev->cmd_completion);
913a8a34 781 INIT_LIST_HEAD(&dev->cmd_list);
64927730 782 dev->udev = udev;
f94e0186 783
28c2d2ef 784 /* Point to output device context in dcbaa. */
28ccd296 785 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
700e2052 786 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
28ccd296
ME
787 slot_id,
788 &xhci->dcbaa->dev_context_ptrs[slot_id],
789 (unsigned long long) le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
3ffbba95
SS
790
791 return 1;
792fail:
793 xhci_free_virt_device(xhci, slot_id);
794 return 0;
795}
796
2d1ee590
SS
797void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
798 struct usb_device *udev)
799{
800 struct xhci_virt_device *virt_dev;
801 struct xhci_ep_ctx *ep0_ctx;
802 struct xhci_ring *ep_ring;
803
804 virt_dev = xhci->devs[udev->slot_id];
805 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
806 ep_ring = virt_dev->eps[0].ring;
807 /*
808 * FIXME we don't keep track of the dequeue pointer very well after a
809 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
810 * host to our enqueue pointer. This should only be called after a
811 * configured device has reset, so all control transfers should have
812 * been completed or cancelled before the reset.
813 */
28ccd296
ME
814 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
815 ep_ring->enqueue)
816 | ep_ring->cycle_state);
2d1ee590
SS
817}
818
f6ff0ac8
SS
819/*
820 * The xHCI roothub may have ports of differing speeds in any order in the port
821 * status registers. xhci->port_array provides an array of the port speed for
822 * each offset into the port status registers.
823 *
824 * The xHCI hardware wants to know the roothub port number that the USB device
825 * is attached to (or the roothub port its ancestor hub is attached to). All we
826 * know is the index of that port under either the USB 2.0 or the USB 3.0
827 * roothub, but that doesn't give us the real index into the HW port status
828 * registers. Scan through the xHCI roothub port array, looking for the Nth
829 * entry of the correct port speed. Return the port number of that entry.
830 */
831static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
832 struct usb_device *udev)
833{
834 struct usb_device *top_dev;
835 unsigned int num_similar_speed_ports;
836 unsigned int faked_port_num;
837 int i;
838
839 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
840 top_dev = top_dev->parent)
841 /* Found device below root hub */;
842 faked_port_num = top_dev->portnum;
843 for (i = 0, num_similar_speed_ports = 0;
844 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
845 u8 port_speed = xhci->port_array[i];
846
847 /*
848 * Skip ports that don't have known speeds, or have duplicate
849 * Extended Capabilities port speed entries.
850 */
22e04870 851 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
f6ff0ac8
SS
852 continue;
853
854 /*
855 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
856 * 1.1 ports are under the USB 2.0 hub. If the port speed
857 * matches the device speed, it's a similar speed port.
858 */
859 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
860 num_similar_speed_ports++;
861 if (num_similar_speed_ports == faked_port_num)
862 /* Roothub ports are numbered from 1 to N */
863 return i+1;
864 }
865 return 0;
866}
867
3ffbba95
SS
868/* Setup an xHCI virtual device for a Set Address command */
869int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
870{
871 struct xhci_virt_device *dev;
872 struct xhci_ep_ctx *ep0_ctx;
d115b048
JY
873 struct xhci_slot_ctx *slot_ctx;
874 struct xhci_input_control_ctx *ctrl_ctx;
f6ff0ac8
SS
875 u32 port_num;
876 struct usb_device *top_dev;
3ffbba95
SS
877
878 dev = xhci->devs[udev->slot_id];
879 /* Slot ID 0 is reserved */
880 if (udev->slot_id == 0 || !dev) {
881 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
882 udev->slot_id);
883 return -EINVAL;
884 }
d115b048
JY
885 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
886 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
887 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
3ffbba95
SS
888
889 /* 2) New slot context and endpoint 0 context are valid*/
28ccd296 890 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3ffbba95
SS
891
892 /* 3) Only the control endpoint is valid - one endpoint context */
28ccd296 893 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | (u32) udev->route);
3ffbba95
SS
894 switch (udev->speed) {
895 case USB_SPEED_SUPER:
28ccd296 896 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_SS);
3ffbba95
SS
897 break;
898 case USB_SPEED_HIGH:
28ccd296 899 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_HS);
3ffbba95
SS
900 break;
901 case USB_SPEED_FULL:
28ccd296 902 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_FS);
3ffbba95
SS
903 break;
904 case USB_SPEED_LOW:
28ccd296 905 slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_LS);
3ffbba95 906 break;
551cdbbe 907 case USB_SPEED_WIRELESS:
3ffbba95
SS
908 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
909 return -EINVAL;
910 break;
911 default:
912 /* Speed was set earlier, this shouldn't happen. */
913 BUG();
914 }
915 /* Find the root hub port this device is under */
f6ff0ac8
SS
916 port_num = xhci_find_real_port_number(xhci, udev);
917 if (!port_num)
918 return -EINVAL;
28ccd296 919 slot_ctx->dev_info2 |= cpu_to_le32((u32) ROOT_HUB_PORT(port_num));
f6ff0ac8 920 /* Set the port number in the virtual_device to the faked port number */
3ffbba95
SS
921 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
922 top_dev = top_dev->parent)
923 /* Found device below root hub */;
be88fe4f 924 dev->port = top_dev->portnum;
f6ff0ac8
SS
925 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
926 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->port);
3ffbba95 927
aa1b13ef
SS
928 /* Is this a LS/FS device under an external HS hub? */
929 if (udev->tt && udev->tt->hub->parent) {
28ccd296
ME
930 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
931 (udev->ttport << 8));
07b6de10 932 if (udev->tt->multi)
28ccd296 933 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3ffbba95 934 }
700e2052 935 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
3ffbba95
SS
936 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
937
938 /* Step 4 - ring already allocated */
939 /* Step 5 */
28ccd296 940 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
3ffbba95 941 /*
3ffbba95
SS
942 * XXX: Not sure about wireless USB devices.
943 */
47aded8a
SS
944 switch (udev->speed) {
945 case USB_SPEED_SUPER:
28ccd296 946 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
47aded8a
SS
947 break;
948 case USB_SPEED_HIGH:
949 /* USB core guesses at a 64-byte max packet first for FS devices */
950 case USB_SPEED_FULL:
28ccd296 951 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
47aded8a
SS
952 break;
953 case USB_SPEED_LOW:
28ccd296 954 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
47aded8a 955 break;
551cdbbe 956 case USB_SPEED_WIRELESS:
47aded8a
SS
957 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
958 return -EINVAL;
959 break;
960 default:
961 /* New speed? */
962 BUG();
963 }
3ffbba95 964 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
28ccd296 965 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
3ffbba95 966
28ccd296
ME
967 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
968 dev->eps[0].ring->cycle_state);
3ffbba95
SS
969
970 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
971
972 return 0;
973}
974
dfa49c4a
DT
975/*
976 * Convert interval expressed as 2^(bInterval - 1) == interval into
977 * straight exponent value 2^n == interval.
978 *
979 */
980static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
981 struct usb_host_endpoint *ep)
982{
983 unsigned int interval;
984
985 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
986 if (interval != ep->desc.bInterval - 1)
987 dev_warn(&udev->dev,
988 "ep %#x - rounding interval to %d microframes\n",
989 ep->desc.bEndpointAddress,
990 1 << interval);
991
992 return interval;
993}
994
995/*
996 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
997 * microframes, rounded down to nearest power of 2.
998 */
999static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1000 struct usb_host_endpoint *ep)
1001{
1002 unsigned int interval;
1003
1004 interval = fls(8 * ep->desc.bInterval) - 1;
1005 interval = clamp_val(interval, 3, 10);
1006 if ((1 << interval) != 8 * ep->desc.bInterval)
1007 dev_warn(&udev->dev,
1008 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1009 ep->desc.bEndpointAddress,
1010 1 << interval,
1011 8 * ep->desc.bInterval);
1012
1013 return interval;
1014}
1015
f94e0186
SS
1016/* Return the polling or NAK interval.
1017 *
1018 * The polling interval is expressed in "microframes". If xHCI's Interval field
1019 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1020 *
1021 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1022 * is set to 0.
1023 */
575688e1 1024static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
f94e0186
SS
1025 struct usb_host_endpoint *ep)
1026{
1027 unsigned int interval = 0;
1028
1029 switch (udev->speed) {
1030 case USB_SPEED_HIGH:
1031 /* Max NAK rate */
1032 if (usb_endpoint_xfer_control(&ep->desc) ||
dfa49c4a 1033 usb_endpoint_xfer_bulk(&ep->desc)) {
f94e0186 1034 interval = ep->desc.bInterval;
dfa49c4a
DT
1035 break;
1036 }
f94e0186 1037 /* Fall through - SS and HS isoc/int have same decoding */
dfa49c4a 1038
f94e0186
SS
1039 case USB_SPEED_SUPER:
1040 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1041 usb_endpoint_xfer_isoc(&ep->desc)) {
1042 interval = xhci_parse_exponent_interval(udev, ep);
f94e0186
SS
1043 }
1044 break;
dfa49c4a 1045
f94e0186 1046 case USB_SPEED_FULL:
b513d447 1047 if (usb_endpoint_xfer_isoc(&ep->desc)) {
dfa49c4a
DT
1048 interval = xhci_parse_exponent_interval(udev, ep);
1049 break;
1050 }
1051 /*
b513d447 1052 * Fall through for interrupt endpoint interval decoding
dfa49c4a
DT
1053 * since it uses the same rules as low speed interrupt
1054 * endpoints.
1055 */
1056
f94e0186
SS
1057 case USB_SPEED_LOW:
1058 if (usb_endpoint_xfer_int(&ep->desc) ||
dfa49c4a
DT
1059 usb_endpoint_xfer_isoc(&ep->desc)) {
1060
1061 interval = xhci_parse_frame_interval(udev, ep);
f94e0186
SS
1062 }
1063 break;
dfa49c4a 1064
f94e0186
SS
1065 default:
1066 BUG();
1067 }
1068 return EP_INTERVAL(interval);
1069}
1070
c30c791c 1071/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1cf62246
SS
1072 * High speed endpoint descriptors can define "the number of additional
1073 * transaction opportunities per microframe", but that goes in the Max Burst
1074 * endpoint context field.
1075 */
575688e1 1076static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1cf62246
SS
1077 struct usb_host_endpoint *ep)
1078{
c30c791c
SS
1079 if (udev->speed != USB_SPEED_SUPER ||
1080 !usb_endpoint_xfer_isoc(&ep->desc))
1cf62246 1081 return 0;
842f1690 1082 return ep->ss_ep_comp.bmAttributes;
1cf62246
SS
1083}
1084
575688e1 1085static u32 xhci_get_endpoint_type(struct usb_device *udev,
f94e0186
SS
1086 struct usb_host_endpoint *ep)
1087{
1088 int in;
1089 u32 type;
1090
1091 in = usb_endpoint_dir_in(&ep->desc);
1092 if (usb_endpoint_xfer_control(&ep->desc)) {
1093 type = EP_TYPE(CTRL_EP);
1094 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1095 if (in)
1096 type = EP_TYPE(BULK_IN_EP);
1097 else
1098 type = EP_TYPE(BULK_OUT_EP);
1099 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1100 if (in)
1101 type = EP_TYPE(ISOC_IN_EP);
1102 else
1103 type = EP_TYPE(ISOC_OUT_EP);
1104 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1105 if (in)
1106 type = EP_TYPE(INT_IN_EP);
1107 else
1108 type = EP_TYPE(INT_OUT_EP);
1109 } else {
1110 BUG();
1111 }
1112 return type;
1113}
1114
9238f25d
SS
1115/* Return the maximum endpoint service interval time (ESIT) payload.
1116 * Basically, this is the maxpacket size, multiplied by the burst size
1117 * and mult size.
1118 */
575688e1 1119static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
9238f25d
SS
1120 struct usb_device *udev,
1121 struct usb_host_endpoint *ep)
1122{
1123 int max_burst;
1124 int max_packet;
1125
1126 /* Only applies for interrupt or isochronous endpoints */
1127 if (usb_endpoint_xfer_control(&ep->desc) ||
1128 usb_endpoint_xfer_bulk(&ep->desc))
1129 return 0;
1130
842f1690 1131 if (udev->speed == USB_SPEED_SUPER)
64b3c304 1132 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
9238f25d 1133
28ccd296
ME
1134 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1135 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
9238f25d
SS
1136 /* A 0 in max burst means 1 transfer per ESIT */
1137 return max_packet * (max_burst + 1);
1138}
1139
8df75f42
SS
1140/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1141 * Drivers will have to call usb_alloc_streams() to do that.
1142 */
f94e0186
SS
1143int xhci_endpoint_init(struct xhci_hcd *xhci,
1144 struct xhci_virt_device *virt_dev,
1145 struct usb_device *udev,
f88ba78d
SS
1146 struct usb_host_endpoint *ep,
1147 gfp_t mem_flags)
f94e0186
SS
1148{
1149 unsigned int ep_index;
1150 struct xhci_ep_ctx *ep_ctx;
1151 struct xhci_ring *ep_ring;
1152 unsigned int max_packet;
1153 unsigned int max_burst;
9238f25d 1154 u32 max_esit_payload;
f94e0186
SS
1155
1156 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1157 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1158
1159 /* Set up the endpoint ring */
a061a5a0
AX
1160 /*
1161 * Isochronous endpoint ring needs bigger size because one isoc URB
1162 * carries multiple packets and it will insert multiple tds to the
1163 * ring.
1164 * This should be replaced with dynamic ring resizing in the future.
1165 */
1166 if (usb_endpoint_xfer_isoc(&ep->desc))
1167 virt_dev->eps[ep_index].new_ring =
1168 xhci_ring_alloc(xhci, 8, true, mem_flags);
1169 else
1170 virt_dev->eps[ep_index].new_ring =
1171 xhci_ring_alloc(xhci, 1, true, mem_flags);
74f9fe21
SS
1172 if (!virt_dev->eps[ep_index].new_ring) {
1173 /* Attempt to use the ring cache */
1174 if (virt_dev->num_rings_cached == 0)
1175 return -ENOMEM;
1176 virt_dev->eps[ep_index].new_ring =
1177 virt_dev->ring_cache[virt_dev->num_rings_cached];
1178 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1179 virt_dev->num_rings_cached--;
1180 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1181 }
d18240db 1182 virt_dev->eps[ep_index].skip = false;
63a0d9ab 1183 ep_ring = virt_dev->eps[ep_index].new_ring;
28ccd296 1184 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
f94e0186 1185
28ccd296
ME
1186 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1187 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
f94e0186
SS
1188
1189 /* FIXME dig Mult and streams info out of ep companion desc */
1190
47692d17 1191 /* Allow 3 retries for everything but isoc;
7b1fc2ea 1192 * CErr shall be set to 0 for Isoch endpoints.
47692d17 1193 */
f94e0186 1194 if (!usb_endpoint_xfer_isoc(&ep->desc))
28ccd296 1195 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
f94e0186 1196 else
7b1fc2ea 1197 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
f94e0186 1198
28ccd296 1199 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
f94e0186
SS
1200
1201 /* Set the max packet size and max burst */
1202 switch (udev->speed) {
1203 case USB_SPEED_SUPER:
28ccd296
ME
1204 max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
1205 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
b10de142 1206 /* dig out max burst from ep companion desc */
842f1690
AS
1207 max_packet = ep->ss_ep_comp.bMaxBurst;
1208 if (!max_packet)
1209 xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
28ccd296 1210 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
f94e0186
SS
1211 break;
1212 case USB_SPEED_HIGH:
1213 /* bits 11:12 specify the number of additional transaction
1214 * opportunities per microframe (USB 2.0, section 9.6.6)
1215 */
1216 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1217 usb_endpoint_xfer_int(&ep->desc)) {
28ccd296
ME
1218 max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
1219 & 0x1800) >> 11;
1220 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
f94e0186
SS
1221 }
1222 /* Fall through */
1223 case USB_SPEED_FULL:
1224 case USB_SPEED_LOW:
28ccd296
ME
1225 max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
1226 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
f94e0186
SS
1227 break;
1228 default:
1229 BUG();
1230 }
9238f25d 1231 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
28ccd296 1232 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
9238f25d
SS
1233
1234 /*
1235 * XXX no idea how to calculate the average TRB buffer length for bulk
1236 * endpoints, as the driver gives us no clue how big each scatter gather
1237 * list entry (or buffer) is going to be.
1238 *
1239 * For isochronous and interrupt endpoints, we set it to the max
1240 * available, until we have new API in the USB core to allow drivers to
1241 * declare how much bandwidth they actually need.
1242 *
1243 * Normally, it would be calculated by taking the total of the buffer
1244 * lengths in the TD and then dividing by the number of TRBs in a TD,
1245 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1246 * use Event Data TRBs, and we don't chain in a link TRB on short
1247 * transfers, we're basically dividing by 1.
51eb01a7
AX
1248 *
1249 * xHCI 1.0 specification indicates that the Average TRB Length should
1250 * be set to 8 for control endpoints.
9238f25d 1251 */
51eb01a7
AX
1252 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1253 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1254 else
1255 ep_ctx->tx_info |=
1256 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
9238f25d 1257
f94e0186
SS
1258 /* FIXME Debug endpoint context */
1259 return 0;
1260}
1261
1262void xhci_endpoint_zero(struct xhci_hcd *xhci,
1263 struct xhci_virt_device *virt_dev,
1264 struct usb_host_endpoint *ep)
1265{
1266 unsigned int ep_index;
1267 struct xhci_ep_ctx *ep_ctx;
1268
1269 ep_index = xhci_get_endpoint_index(&ep->desc);
d115b048 1270 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
f94e0186
SS
1271
1272 ep_ctx->ep_info = 0;
1273 ep_ctx->ep_info2 = 0;
8e595a5d 1274 ep_ctx->deq = 0;
f94e0186
SS
1275 ep_ctx->tx_info = 0;
1276 /* Don't free the endpoint ring until the set interface or configuration
1277 * request succeeds.
1278 */
1279}
1280
f2217e8e
SS
1281/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1282 * Useful when you want to change one particular aspect of the endpoint and then
1283 * issue a configure endpoint command.
1284 */
1285void xhci_endpoint_copy(struct xhci_hcd *xhci,
913a8a34
SS
1286 struct xhci_container_ctx *in_ctx,
1287 struct xhci_container_ctx *out_ctx,
1288 unsigned int ep_index)
f2217e8e
SS
1289{
1290 struct xhci_ep_ctx *out_ep_ctx;
1291 struct xhci_ep_ctx *in_ep_ctx;
1292
913a8a34
SS
1293 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1294 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
f2217e8e
SS
1295
1296 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1297 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1298 in_ep_ctx->deq = out_ep_ctx->deq;
1299 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1300}
1301
1302/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1303 * Useful when you want to change one particular aspect of the endpoint and then
1304 * issue a configure endpoint command. Only the context entries field matters,
1305 * but we'll copy the whole thing anyway.
1306 */
913a8a34
SS
1307void xhci_slot_copy(struct xhci_hcd *xhci,
1308 struct xhci_container_ctx *in_ctx,
1309 struct xhci_container_ctx *out_ctx)
f2217e8e
SS
1310{
1311 struct xhci_slot_ctx *in_slot_ctx;
1312 struct xhci_slot_ctx *out_slot_ctx;
1313
913a8a34
SS
1314 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1315 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
f2217e8e
SS
1316
1317 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1318 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1319 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1320 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1321}
1322
254c80a3
JY
1323/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1324static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1325{
1326 int i;
1327 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1328 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1329
1330 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1331
1332 if (!num_sp)
1333 return 0;
1334
1335 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1336 if (!xhci->scratchpad)
1337 goto fail_sp;
1338
1339 xhci->scratchpad->sp_array =
1340 pci_alloc_consistent(to_pci_dev(dev),
1341 num_sp * sizeof(u64),
1342 &xhci->scratchpad->sp_dma);
1343 if (!xhci->scratchpad->sp_array)
1344 goto fail_sp2;
1345
1346 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1347 if (!xhci->scratchpad->sp_buffers)
1348 goto fail_sp3;
1349
1350 xhci->scratchpad->sp_dma_buffers =
1351 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1352
1353 if (!xhci->scratchpad->sp_dma_buffers)
1354 goto fail_sp4;
1355
28ccd296 1356 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
254c80a3
JY
1357 for (i = 0; i < num_sp; i++) {
1358 dma_addr_t dma;
1359 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1360 xhci->page_size, &dma);
1361 if (!buf)
1362 goto fail_sp5;
1363
1364 xhci->scratchpad->sp_array[i] = dma;
1365 xhci->scratchpad->sp_buffers[i] = buf;
1366 xhci->scratchpad->sp_dma_buffers[i] = dma;
1367 }
1368
1369 return 0;
1370
1371 fail_sp5:
1372 for (i = i - 1; i >= 0; i--) {
1373 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1374 xhci->scratchpad->sp_buffers[i],
1375 xhci->scratchpad->sp_dma_buffers[i]);
1376 }
1377 kfree(xhci->scratchpad->sp_dma_buffers);
1378
1379 fail_sp4:
1380 kfree(xhci->scratchpad->sp_buffers);
1381
1382 fail_sp3:
1383 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1384 xhci->scratchpad->sp_array,
1385 xhci->scratchpad->sp_dma);
1386
1387 fail_sp2:
1388 kfree(xhci->scratchpad);
1389 xhci->scratchpad = NULL;
1390
1391 fail_sp:
1392 return -ENOMEM;
1393}
1394
1395static void scratchpad_free(struct xhci_hcd *xhci)
1396{
1397 int num_sp;
1398 int i;
1399 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1400
1401 if (!xhci->scratchpad)
1402 return;
1403
1404 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1405
1406 for (i = 0; i < num_sp; i++) {
1407 pci_free_consistent(pdev, xhci->page_size,
1408 xhci->scratchpad->sp_buffers[i],
1409 xhci->scratchpad->sp_dma_buffers[i]);
1410 }
1411 kfree(xhci->scratchpad->sp_dma_buffers);
1412 kfree(xhci->scratchpad->sp_buffers);
1413 pci_free_consistent(pdev, num_sp * sizeof(u64),
1414 xhci->scratchpad->sp_array,
1415 xhci->scratchpad->sp_dma);
1416 kfree(xhci->scratchpad);
1417 xhci->scratchpad = NULL;
1418}
1419
913a8a34 1420struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
a1d78c16
SS
1421 bool allocate_in_ctx, bool allocate_completion,
1422 gfp_t mem_flags)
913a8a34
SS
1423{
1424 struct xhci_command *command;
1425
1426 command = kzalloc(sizeof(*command), mem_flags);
1427 if (!command)
1428 return NULL;
1429
a1d78c16
SS
1430 if (allocate_in_ctx) {
1431 command->in_ctx =
1432 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1433 mem_flags);
1434 if (!command->in_ctx) {
1435 kfree(command);
1436 return NULL;
1437 }
06e18291 1438 }
913a8a34
SS
1439
1440 if (allocate_completion) {
1441 command->completion =
1442 kzalloc(sizeof(struct completion), mem_flags);
1443 if (!command->completion) {
1444 xhci_free_container_ctx(xhci, command->in_ctx);
06e18291 1445 kfree(command);
913a8a34
SS
1446 return NULL;
1447 }
1448 init_completion(command->completion);
1449 }
1450
1451 command->status = 0;
1452 INIT_LIST_HEAD(&command->cmd_list);
1453 return command;
1454}
1455
8e51adcc
AX
1456void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1457{
1458 int last;
1459
1460 if (!urb_priv)
1461 return;
1462
1463 last = urb_priv->length - 1;
1464 if (last >= 0) {
1465 int i;
1466 for (i = 0; i <= last; i++)
1467 kfree(urb_priv->td[i]);
1468 }
1469 kfree(urb_priv);
1470}
1471
913a8a34
SS
1472void xhci_free_command(struct xhci_hcd *xhci,
1473 struct xhci_command *command)
1474{
1475 xhci_free_container_ctx(xhci,
1476 command->in_ctx);
1477 kfree(command->completion);
1478 kfree(command);
1479}
1480
66d4eadd
SS
1481void xhci_mem_cleanup(struct xhci_hcd *xhci)
1482{
0ebbab37
SS
1483 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1484 int size;
3ffbba95 1485 int i;
0ebbab37
SS
1486
1487 /* Free the Event Ring Segment Table and the actual Event Ring */
d94c05e3
SS
1488 if (xhci->ir_set) {
1489 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1490 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1491 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1492 }
0ebbab37
SS
1493 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1494 if (xhci->erst.entries)
1495 pci_free_consistent(pdev, size,
1496 xhci->erst.entries, xhci->erst.erst_dma_addr);
1497 xhci->erst.entries = NULL;
1498 xhci_dbg(xhci, "Freed ERST\n");
1499 if (xhci->event_ring)
1500 xhci_ring_free(xhci, xhci->event_ring);
1501 xhci->event_ring = NULL;
1502 xhci_dbg(xhci, "Freed event ring\n");
1503
8e595a5d 1504 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
0ebbab37
SS
1505 if (xhci->cmd_ring)
1506 xhci_ring_free(xhci, xhci->cmd_ring);
1507 xhci->cmd_ring = NULL;
1508 xhci_dbg(xhci, "Freed command ring\n");
3ffbba95
SS
1509
1510 for (i = 1; i < MAX_HC_SLOTS; ++i)
1511 xhci_free_virt_device(xhci, i);
1512
0ebbab37
SS
1513 if (xhci->segment_pool)
1514 dma_pool_destroy(xhci->segment_pool);
1515 xhci->segment_pool = NULL;
1516 xhci_dbg(xhci, "Freed segment pool\n");
3ffbba95
SS
1517
1518 if (xhci->device_pool)
1519 dma_pool_destroy(xhci->device_pool);
1520 xhci->device_pool = NULL;
1521 xhci_dbg(xhci, "Freed device context pool\n");
1522
8df75f42
SS
1523 if (xhci->small_streams_pool)
1524 dma_pool_destroy(xhci->small_streams_pool);
1525 xhci->small_streams_pool = NULL;
1526 xhci_dbg(xhci, "Freed small stream array pool\n");
1527
1528 if (xhci->medium_streams_pool)
1529 dma_pool_destroy(xhci->medium_streams_pool);
1530 xhci->medium_streams_pool = NULL;
1531 xhci_dbg(xhci, "Freed medium stream array pool\n");
1532
8e595a5d 1533 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
a74588f9
SS
1534 if (xhci->dcbaa)
1535 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1536 xhci->dcbaa, xhci->dcbaa->dma);
1537 xhci->dcbaa = NULL;
3ffbba95 1538
5294bea4 1539 scratchpad_free(xhci);
da6699ce
SS
1540
1541 xhci->num_usb2_ports = 0;
1542 xhci->num_usb3_ports = 0;
1543 kfree(xhci->usb2_ports);
1544 kfree(xhci->usb3_ports);
1545 kfree(xhci->port_array);
1546
66d4eadd
SS
1547 xhci->page_size = 0;
1548 xhci->page_shift = 0;
20b67cf5 1549 xhci->bus_state[0].bus_suspended = 0;
f6ff0ac8 1550 xhci->bus_state[1].bus_suspended = 0;
66d4eadd
SS
1551}
1552
6648f29d
SS
1553static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1554 struct xhci_segment *input_seg,
1555 union xhci_trb *start_trb,
1556 union xhci_trb *end_trb,
1557 dma_addr_t input_dma,
1558 struct xhci_segment *result_seg,
1559 char *test_name, int test_number)
1560{
1561 unsigned long long start_dma;
1562 unsigned long long end_dma;
1563 struct xhci_segment *seg;
1564
1565 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1566 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1567
1568 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1569 if (seg != result_seg) {
1570 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1571 test_name, test_number);
1572 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1573 "input DMA 0x%llx\n",
1574 input_seg,
1575 (unsigned long long) input_dma);
1576 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1577 "ending TRB %p (0x%llx DMA)\n",
1578 start_trb, start_dma,
1579 end_trb, end_dma);
1580 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1581 result_seg, seg);
1582 return -1;
1583 }
1584 return 0;
1585}
1586
1587/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1588static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1589{
1590 struct {
1591 dma_addr_t input_dma;
1592 struct xhci_segment *result_seg;
1593 } simple_test_vector [] = {
1594 /* A zeroed DMA field should fail */
1595 { 0, NULL },
1596 /* One TRB before the ring start should fail */
1597 { xhci->event_ring->first_seg->dma - 16, NULL },
1598 /* One byte before the ring start should fail */
1599 { xhci->event_ring->first_seg->dma - 1, NULL },
1600 /* Starting TRB should succeed */
1601 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1602 /* Ending TRB should succeed */
1603 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1604 xhci->event_ring->first_seg },
1605 /* One byte after the ring end should fail */
1606 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1607 /* One TRB after the ring end should fail */
1608 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1609 /* An address of all ones should fail */
1610 { (dma_addr_t) (~0), NULL },
1611 };
1612 struct {
1613 struct xhci_segment *input_seg;
1614 union xhci_trb *start_trb;
1615 union xhci_trb *end_trb;
1616 dma_addr_t input_dma;
1617 struct xhci_segment *result_seg;
1618 } complex_test_vector [] = {
1619 /* Test feeding a valid DMA address from a different ring */
1620 { .input_seg = xhci->event_ring->first_seg,
1621 .start_trb = xhci->event_ring->first_seg->trbs,
1622 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1623 .input_dma = xhci->cmd_ring->first_seg->dma,
1624 .result_seg = NULL,
1625 },
1626 /* Test feeding a valid end TRB from a different ring */
1627 { .input_seg = xhci->event_ring->first_seg,
1628 .start_trb = xhci->event_ring->first_seg->trbs,
1629 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1630 .input_dma = xhci->cmd_ring->first_seg->dma,
1631 .result_seg = NULL,
1632 },
1633 /* Test feeding a valid start and end TRB from a different ring */
1634 { .input_seg = xhci->event_ring->first_seg,
1635 .start_trb = xhci->cmd_ring->first_seg->trbs,
1636 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1637 .input_dma = xhci->cmd_ring->first_seg->dma,
1638 .result_seg = NULL,
1639 },
1640 /* TRB in this ring, but after this TD */
1641 { .input_seg = xhci->event_ring->first_seg,
1642 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1643 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1644 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1645 .result_seg = NULL,
1646 },
1647 /* TRB in this ring, but before this TD */
1648 { .input_seg = xhci->event_ring->first_seg,
1649 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1650 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1651 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1652 .result_seg = NULL,
1653 },
1654 /* TRB in this ring, but after this wrapped TD */
1655 { .input_seg = xhci->event_ring->first_seg,
1656 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1657 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1658 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1659 .result_seg = NULL,
1660 },
1661 /* TRB in this ring, but before this wrapped TD */
1662 { .input_seg = xhci->event_ring->first_seg,
1663 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1664 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1665 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1666 .result_seg = NULL,
1667 },
1668 /* TRB not in this ring, and we have a wrapped TD */
1669 { .input_seg = xhci->event_ring->first_seg,
1670 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1671 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1672 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1673 .result_seg = NULL,
1674 },
1675 };
1676
1677 unsigned int num_tests;
1678 int i, ret;
1679
e10fa478 1680 num_tests = ARRAY_SIZE(simple_test_vector);
6648f29d
SS
1681 for (i = 0; i < num_tests; i++) {
1682 ret = xhci_test_trb_in_td(xhci,
1683 xhci->event_ring->first_seg,
1684 xhci->event_ring->first_seg->trbs,
1685 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1686 simple_test_vector[i].input_dma,
1687 simple_test_vector[i].result_seg,
1688 "Simple", i);
1689 if (ret < 0)
1690 return ret;
1691 }
1692
e10fa478 1693 num_tests = ARRAY_SIZE(complex_test_vector);
6648f29d
SS
1694 for (i = 0; i < num_tests; i++) {
1695 ret = xhci_test_trb_in_td(xhci,
1696 complex_test_vector[i].input_seg,
1697 complex_test_vector[i].start_trb,
1698 complex_test_vector[i].end_trb,
1699 complex_test_vector[i].input_dma,
1700 complex_test_vector[i].result_seg,
1701 "Complex", i);
1702 if (ret < 0)
1703 return ret;
1704 }
1705 xhci_dbg(xhci, "TRB math tests passed.\n");
1706 return 0;
1707}
1708
257d585a
SS
1709static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1710{
1711 u64 temp;
1712 dma_addr_t deq;
1713
1714 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1715 xhci->event_ring->dequeue);
1716 if (deq == 0 && !in_interrupt())
1717 xhci_warn(xhci, "WARN something wrong with SW event ring "
1718 "dequeue ptr.\n");
1719 /* Update HC event ring dequeue pointer */
1720 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1721 temp &= ERST_PTR_MASK;
1722 /* Don't clear the EHB bit (which is RW1C) because
1723 * there might be more events to service.
1724 */
1725 temp &= ~ERST_EHB;
1726 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1727 "preserving EHB bit\n");
1728 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1729 &xhci->ir_set->erst_dequeue);
1730}
1731
da6699ce 1732static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
28ccd296 1733 __le32 __iomem *addr, u8 major_revision)
da6699ce
SS
1734{
1735 u32 temp, port_offset, port_count;
1736 int i;
1737
1738 if (major_revision > 0x03) {
1739 xhci_warn(xhci, "Ignoring unknown port speed, "
1740 "Ext Cap %p, revision = 0x%x\n",
1741 addr, major_revision);
1742 /* Ignoring port protocol we can't understand. FIXME */
1743 return;
1744 }
1745
1746 /* Port offset and count in the third dword, see section 7.2 */
1747 temp = xhci_readl(xhci, addr + 2);
1748 port_offset = XHCI_EXT_PORT_OFF(temp);
1749 port_count = XHCI_EXT_PORT_COUNT(temp);
1750 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1751 "count = %u, revision = 0x%x\n",
1752 addr, port_offset, port_count, major_revision);
1753 /* Port count includes the current port offset */
1754 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1755 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1756 return;
1757 port_offset--;
1758 for (i = port_offset; i < (port_offset + port_count); i++) {
1759 /* Duplicate entry. Ignore the port if the revisions differ. */
1760 if (xhci->port_array[i] != 0) {
1761 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1762 " port %u\n", addr, i);
1763 xhci_warn(xhci, "Port was marked as USB %u, "
1764 "duplicated as USB %u\n",
1765 xhci->port_array[i], major_revision);
1766 /* Only adjust the roothub port counts if we haven't
1767 * found a similar duplicate.
1768 */
1769 if (xhci->port_array[i] != major_revision &&
22e04870 1770 xhci->port_array[i] != DUPLICATE_ENTRY) {
da6699ce
SS
1771 if (xhci->port_array[i] == 0x03)
1772 xhci->num_usb3_ports--;
1773 else
1774 xhci->num_usb2_ports--;
22e04870 1775 xhci->port_array[i] = DUPLICATE_ENTRY;
da6699ce
SS
1776 }
1777 /* FIXME: Should we disable the port? */
f8bbeabc 1778 continue;
da6699ce
SS
1779 }
1780 xhci->port_array[i] = major_revision;
1781 if (major_revision == 0x03)
1782 xhci->num_usb3_ports++;
1783 else
1784 xhci->num_usb2_ports++;
1785 }
1786 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1787}
1788
1789/*
1790 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1791 * specify what speeds each port is supposed to be. We can't count on the port
1792 * speed bits in the PORTSC register being correct until a device is connected,
1793 * but we need to set up the two fake roothubs with the correct number of USB
1794 * 3.0 and USB 2.0 ports at host controller initialization time.
1795 */
1796static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1797{
28ccd296 1798 __le32 __iomem *addr;
da6699ce
SS
1799 u32 offset;
1800 unsigned int num_ports;
1801 int i, port_index;
1802
1803 addr = &xhci->cap_regs->hcc_params;
1804 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1805 if (offset == 0) {
1806 xhci_err(xhci, "No Extended Capability registers, "
1807 "unable to set up roothub.\n");
1808 return -ENODEV;
1809 }
1810
1811 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1812 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1813 if (!xhci->port_array)
1814 return -ENOMEM;
1815
1816 /*
1817 * For whatever reason, the first capability offset is from the
1818 * capability register base, not from the HCCPARAMS register.
1819 * See section 5.3.6 for offset calculation.
1820 */
1821 addr = &xhci->cap_regs->hc_capbase + offset;
1822 while (1) {
1823 u32 cap_id;
1824
1825 cap_id = xhci_readl(xhci, addr);
1826 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1827 xhci_add_in_port(xhci, num_ports, addr,
1828 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1829 offset = XHCI_EXT_CAPS_NEXT(cap_id);
1830 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1831 == num_ports)
1832 break;
1833 /*
1834 * Once you're into the Extended Capabilities, the offset is
1835 * always relative to the register holding the offset.
1836 */
1837 addr += offset;
1838 }
1839
1840 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1841 xhci_warn(xhci, "No ports on the roothubs?\n");
1842 return -ENODEV;
1843 }
1844 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1845 xhci->num_usb2_ports, xhci->num_usb3_ports);
d30b2a20
SS
1846
1847 /* Place limits on the number of roothub ports so that the hub
1848 * descriptors aren't longer than the USB core will allocate.
1849 */
1850 if (xhci->num_usb3_ports > 15) {
1851 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
1852 xhci->num_usb3_ports = 15;
1853 }
1854 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
1855 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
1856 USB_MAXCHILDREN);
1857 xhci->num_usb2_ports = USB_MAXCHILDREN;
1858 }
1859
da6699ce
SS
1860 /*
1861 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1862 * Not sure how the USB core will handle a hub with no ports...
1863 */
1864 if (xhci->num_usb2_ports) {
1865 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1866 xhci->num_usb2_ports, flags);
1867 if (!xhci->usb2_ports)
1868 return -ENOMEM;
1869
1870 port_index = 0;
f8bbeabc
SS
1871 for (i = 0; i < num_ports; i++) {
1872 if (xhci->port_array[i] == 0x03 ||
1873 xhci->port_array[i] == 0 ||
22e04870 1874 xhci->port_array[i] == DUPLICATE_ENTRY)
f8bbeabc
SS
1875 continue;
1876
1877 xhci->usb2_ports[port_index] =
1878 &xhci->op_regs->port_status_base +
1879 NUM_PORT_REGS*i;
1880 xhci_dbg(xhci, "USB 2.0 port at index %u, "
1881 "addr = %p\n", i,
1882 xhci->usb2_ports[port_index]);
1883 port_index++;
d30b2a20
SS
1884 if (port_index == xhci->num_usb2_ports)
1885 break;
f8bbeabc 1886 }
da6699ce
SS
1887 }
1888 if (xhci->num_usb3_ports) {
1889 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1890 xhci->num_usb3_ports, flags);
1891 if (!xhci->usb3_ports)
1892 return -ENOMEM;
1893
1894 port_index = 0;
1895 for (i = 0; i < num_ports; i++)
1896 if (xhci->port_array[i] == 0x03) {
1897 xhci->usb3_ports[port_index] =
1898 &xhci->op_regs->port_status_base +
1899 NUM_PORT_REGS*i;
1900 xhci_dbg(xhci, "USB 3.0 port at index %u, "
1901 "addr = %p\n", i,
1902 xhci->usb3_ports[port_index]);
1903 port_index++;
d30b2a20
SS
1904 if (port_index == xhci->num_usb3_ports)
1905 break;
da6699ce
SS
1906 }
1907 }
1908 return 0;
1909}
6648f29d 1910
66d4eadd
SS
1911int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1912{
0ebbab37
SS
1913 dma_addr_t dma;
1914 struct device *dev = xhci_to_hcd(xhci)->self.controller;
66d4eadd 1915 unsigned int val, val2;
8e595a5d 1916 u64 val_64;
0ebbab37 1917 struct xhci_segment *seg;
66d4eadd
SS
1918 u32 page_size;
1919 int i;
1920
1921 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1922 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1923 for (i = 0; i < 16; i++) {
1924 if ((0x1 & page_size) != 0)
1925 break;
1926 page_size = page_size >> 1;
1927 }
1928 if (i < 16)
1929 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1930 else
1931 xhci_warn(xhci, "WARN: no supported page size\n");
1932 /* Use 4K pages, since that's common and the minimum the HC supports */
1933 xhci->page_shift = 12;
1934 xhci->page_size = 1 << xhci->page_shift;
1935 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1936
1937 /*
1938 * Program the Number of Device Slots Enabled field in the CONFIG
1939 * register with the max value of slots the HC can handle.
1940 */
1941 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1942 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1943 (unsigned int) val);
1944 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1945 val |= (val2 & ~HCS_SLOTS_MASK);
1946 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1947 (unsigned int) val);
1948 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1949
a74588f9
SS
1950 /*
1951 * Section 5.4.8 - doorbell array must be
1952 * "physically contiguous and 64-byte (cache line) aligned".
1953 */
1954 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1955 sizeof(*xhci->dcbaa), &dma);
1956 if (!xhci->dcbaa)
1957 goto fail;
1958 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1959 xhci->dcbaa->dma = dma;
700e2052
GKH
1960 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1961 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
8e595a5d 1962 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
a74588f9 1963
0ebbab37
SS
1964 /*
1965 * Initialize the ring segment pool. The ring must be a contiguous
1966 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
1967 * however, the command ring segment needs 64-byte aligned segments,
1968 * so we pick the greater alignment need.
1969 */
1970 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1971 SEGMENT_SIZE, 64, xhci->page_size);
d115b048 1972
3ffbba95 1973 /* See Table 46 and Note on Figure 55 */
3ffbba95 1974 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
d115b048 1975 2112, 64, xhci->page_size);
3ffbba95 1976 if (!xhci->segment_pool || !xhci->device_pool)
0ebbab37
SS
1977 goto fail;
1978
8df75f42
SS
1979 /* Linear stream context arrays don't have any boundary restrictions,
1980 * and only need to be 16-byte aligned.
1981 */
1982 xhci->small_streams_pool =
1983 dma_pool_create("xHCI 256 byte stream ctx arrays",
1984 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1985 xhci->medium_streams_pool =
1986 dma_pool_create("xHCI 1KB stream ctx arrays",
1987 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1988 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1989 * will be allocated with pci_alloc_consistent()
1990 */
1991
1992 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1993 goto fail;
1994
0ebbab37
SS
1995 /* Set up the command ring to have one segments for now. */
1996 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1997 if (!xhci->cmd_ring)
1998 goto fail;
700e2052
GKH
1999 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2000 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2001 (unsigned long long)xhci->cmd_ring->first_seg->dma);
0ebbab37
SS
2002
2003 /* Set the address in the Command Ring Control register */
8e595a5d
SS
2004 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2005 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2006 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
0ebbab37 2007 xhci->cmd_ring->cycle_state;
8e595a5d
SS
2008 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2009 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
0ebbab37
SS
2010 xhci_dbg_cmd_ptrs(xhci);
2011
2012 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2013 val &= DBOFF_MASK;
2014 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2015 " from cap regs base addr\n", val);
c50a00f8 2016 xhci->dba = (void __iomem *) xhci->cap_regs + val;
0ebbab37
SS
2017 xhci_dbg_regs(xhci);
2018 xhci_print_run_regs(xhci);
2019 /* Set ir_set to interrupt register set 0 */
c50a00f8 2020 xhci->ir_set = &xhci->run_regs->ir_set[0];
0ebbab37
SS
2021
2022 /*
2023 * Event ring setup: Allocate a normal ring, but also setup
2024 * the event ring segment table (ERST). Section 4.9.3.
2025 */
2026 xhci_dbg(xhci, "// Allocating event ring\n");
2027 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2028 if (!xhci->event_ring)
2029 goto fail;
6648f29d
SS
2030 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2031 goto fail;
0ebbab37
SS
2032
2033 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2034 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2035 if (!xhci->erst.entries)
2036 goto fail;
700e2052
GKH
2037 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2038 (unsigned long long)dma);
0ebbab37
SS
2039
2040 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2041 xhci->erst.num_entries = ERST_NUM_SEGS;
2042 xhci->erst.erst_dma_addr = dma;
700e2052 2043 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
0ebbab37 2044 xhci->erst.num_entries,
700e2052
GKH
2045 xhci->erst.entries,
2046 (unsigned long long)xhci->erst.erst_dma_addr);
0ebbab37
SS
2047
2048 /* set ring base address and size for each segment table entry */
2049 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2050 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
28ccd296
ME
2051 entry->seg_addr = cpu_to_le64(seg->dma);
2052 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
0ebbab37
SS
2053 entry->rsvd = 0;
2054 seg = seg->next;
2055 }
2056
2057 /* set ERST count with the number of entries in the segment table */
2058 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2059 val &= ERST_SIZE_MASK;
2060 val |= ERST_NUM_SEGS;
2061 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2062 val);
2063 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2064
2065 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2066 /* set the segment table base address */
700e2052
GKH
2067 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2068 (unsigned long long)xhci->erst.erst_dma_addr);
8e595a5d
SS
2069 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2070 val_64 &= ERST_PTR_MASK;
2071 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2072 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
0ebbab37
SS
2073
2074 /* Set the event ring dequeue address */
23e3be11 2075 xhci_set_hc_event_deq(xhci);
0ebbab37 2076 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
09ece30e 2077 xhci_print_ir_set(xhci, 0);
0ebbab37
SS
2078
2079 /*
2080 * XXX: Might need to set the Interrupter Moderation Register to
2081 * something other than the default (~1ms minimum between interrupts).
2082 * See section 5.5.1.2.
2083 */
3ffbba95
SS
2084 init_completion(&xhci->addr_dev);
2085 for (i = 0; i < MAX_HC_SLOTS; ++i)
326b4810 2086 xhci->devs[i] = NULL;
f6ff0ac8 2087 for (i = 0; i < USB_MAXCHILDREN; ++i) {
20b67cf5 2088 xhci->bus_state[0].resume_done[i] = 0;
f6ff0ac8
SS
2089 xhci->bus_state[1].resume_done[i] = 0;
2090 }
66d4eadd 2091
254c80a3
JY
2092 if (scratchpad_alloc(xhci, flags))
2093 goto fail;
da6699ce
SS
2094 if (xhci_setup_port_arrays(xhci, flags))
2095 goto fail;
254c80a3 2096
66d4eadd 2097 return 0;
254c80a3 2098
66d4eadd
SS
2099fail:
2100 xhci_warn(xhci, "Couldn't initialize memory\n");
2101 xhci_mem_cleanup(xhci);
2102 return -ENOMEM;
2103}
This page took 0.292259 seconds and 5 git commands to generate.