Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
caf4167a
KO
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/syscalls.h>
b9d128f1 20#include <linux/backing-dev.h>
027445c3 21#include <linux/uio.h>
1da177e4 22
1da177e4
LT
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
3d2d827f 28#include <linux/mmu_context.h>
e1bdd5f2 29#include <linux/percpu.h>
1da177e4
LT
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
9c3060be 36#include <linux/eventfd.h>
cfb1e33e 37#include <linux/blkdev.h>
9d85cba7 38#include <linux/compat.h>
36bc08cc
GZ
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
723be6e3 41#include <linux/percpu-refcount.h>
71ad7490 42#include <linux/mount.h>
1da177e4
LT
43
44#include <asm/kmap_types.h>
45#include <asm/uaccess.h>
1da177e4 46
68d70d03
AV
47#include "internal.h"
48
4e179bca
KO
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
fa8a53c3
BL
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
4e179bca
KO
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
4e179bca 69
db446a08
BL
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74};
75
e1bdd5f2
KO
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
dc48e56d
JA
80struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83};
84
4e179bca 85struct kioctx {
723be6e3 86 struct percpu_ref users;
36f55889 87 atomic_t dead;
4e179bca 88
e34ecee2
KO
89 struct percpu_ref reqs;
90
4e179bca 91 unsigned long user_id;
4e179bca 92
e1bdd5f2
KO
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
3e845ce0
KO
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
58c85dc2 104 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
105 * aio_setup_ring())
106 */
4e179bca
KO
107 unsigned max_reqs;
108
58c85dc2
KO
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
4e179bca 111
58c85dc2
KO
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
723be6e3 118 struct work_struct free_work;
4e23bcae 119
e02ba72a
AP
120 /*
121 * signals when all in-flight requests are done
122 */
dc48e56d 123 struct ctx_rq_wait *rq_wait;
e02ba72a 124
4e23bcae 125 struct {
34e83fc6
KO
126 /*
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
131 *
132 * We batch accesses to it with a percpu version.
34e83fc6
KO
133 */
134 atomic_t reqs_available;
4e23bcae
KO
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
141
58c85dc2
KO
142 struct {
143 struct mutex ring_lock;
4e23bcae
KO
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
58c85dc2
KO
146
147 struct {
148 unsigned tail;
d856f32a 149 unsigned completed_events;
58c85dc2 150 spinlock_t completion_lock;
4e23bcae 151 } ____cacheline_aligned_in_smp;
58c85dc2
KO
152
153 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 154 struct file *aio_ring_file;
db446a08
BL
155
156 unsigned id;
4e179bca
KO
157};
158
04b2fa9f
CH
159/*
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
163 * userspace).
164 *
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169 */
170#define KIOCB_CANCELLED ((void *) (~0ULL))
171
172struct aio_kiocb {
173 struct kiocb common;
174
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
177
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
180
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
183
184 /*
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
187 */
188 struct eventfd_ctx *ki_eventfd;
189};
190
1da177e4 191/*------ sysctl variables----*/
d55b5fda
ZB
192static DEFINE_SPINLOCK(aio_nr_lock);
193unsigned long aio_nr; /* current system wide number of aio requests */
194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
195/*----end sysctl variables---*/
196
e18b890b
CL
197static struct kmem_cache *kiocb_cachep;
198static struct kmem_cache *kioctx_cachep;
1da177e4 199
71ad7490
BL
200static struct vfsmount *aio_mnt;
201
202static const struct file_operations aio_ring_fops;
203static const struct address_space_operations aio_ctx_aops;
204
205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206{
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
71ad7490
BL
213
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
217
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
222 }
223 path.mnt = mntget(aio_mnt);
224
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
230 }
231
232 file->f_flags = O_RDWR;
71ad7490
BL
233 return file;
234}
235
236static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238{
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
241 };
22f6b4d3
JH
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 AIO_RING_MAGIC);
244
245 if (!IS_ERR(root))
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
247 return root;
71ad7490
BL
248}
249
1da177e4
LT
250/* aio_setup
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
253 */
254static int __init aio_setup(void)
255{
71ad7490
BL
256 static struct file_system_type aio_fs = {
257 .name = "aio",
258 .mount = aio_mount,
259 .kill_sb = kill_anon_super,
260 };
261 aio_mnt = kern_mount(&aio_fs);
262 if (IS_ERR(aio_mnt))
263 panic("Failed to create aio fs mount.");
264
04b2fa9f 265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4 267
caf4167a 268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
1da177e4
LT
269
270 return 0;
271}
385773e0 272__initcall(aio_setup);
1da177e4 273
5e9ae2e5
BL
274static void put_aio_ring_file(struct kioctx *ctx)
275{
276 struct file *aio_ring_file = ctx->aio_ring_file;
277 if (aio_ring_file) {
278 truncate_setsize(aio_ring_file->f_inode, 0);
279
280 /* Prevent further access to the kioctx from migratepages */
281 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
282 aio_ring_file->f_inode->i_mapping->private_data = NULL;
283 ctx->aio_ring_file = NULL;
284 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
285
286 fput(aio_ring_file);
287 }
288}
289
1da177e4
LT
290static void aio_free_ring(struct kioctx *ctx)
291{
36bc08cc 292 int i;
1da177e4 293
fa8a53c3
BL
294 /* Disconnect the kiotx from the ring file. This prevents future
295 * accesses to the kioctx from page migration.
296 */
297 put_aio_ring_file(ctx);
298
36bc08cc 299 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 300 struct page *page;
36bc08cc
GZ
301 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
302 page_count(ctx->ring_pages[i]));
8e321fef
BL
303 page = ctx->ring_pages[i];
304 if (!page)
305 continue;
306 ctx->ring_pages[i] = NULL;
307 put_page(page);
36bc08cc 308 }
1da177e4 309
ddb8c45b 310 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 311 kfree(ctx->ring_pages);
ddb8c45b
SL
312 ctx->ring_pages = NULL;
313 }
36bc08cc
GZ
314}
315
5477e70a 316static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 317{
5477e70a 318 struct file *file = vma->vm_file;
e4a0d3e7
PE
319 struct mm_struct *mm = vma->vm_mm;
320 struct kioctx_table *table;
b2edffdd 321 int i, res = -EINVAL;
e4a0d3e7
PE
322
323 spin_lock(&mm->ioctx_lock);
324 rcu_read_lock();
325 table = rcu_dereference(mm->ioctx_table);
326 for (i = 0; i < table->nr; i++) {
327 struct kioctx *ctx;
328
329 ctx = table->table[i];
330 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
331 if (!atomic_read(&ctx->dead)) {
332 ctx->user_id = ctx->mmap_base = vma->vm_start;
333 res = 0;
334 }
e4a0d3e7
PE
335 break;
336 }
337 }
338
339 rcu_read_unlock();
340 spin_unlock(&mm->ioctx_lock);
b2edffdd 341 return res;
e4a0d3e7
PE
342}
343
5477e70a
ON
344static const struct vm_operations_struct aio_ring_vm_ops = {
345 .mremap = aio_ring_mremap,
346#if IS_ENABLED(CONFIG_MMU)
347 .fault = filemap_fault,
348 .map_pages = filemap_map_pages,
349 .page_mkwrite = filemap_page_mkwrite,
350#endif
351};
352
353static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
354{
355 vma->vm_flags |= VM_DONTEXPAND;
356 vma->vm_ops = &aio_ring_vm_ops;
357 return 0;
358}
359
36bc08cc
GZ
360static const struct file_operations aio_ring_fops = {
361 .mmap = aio_ring_mmap,
362};
363
0c45355f 364#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
365static int aio_migratepage(struct address_space *mapping, struct page *new,
366 struct page *old, enum migrate_mode mode)
367{
5e9ae2e5 368 struct kioctx *ctx;
36bc08cc 369 unsigned long flags;
fa8a53c3 370 pgoff_t idx;
36bc08cc
GZ
371 int rc;
372
8e321fef
BL
373 rc = 0;
374
fa8a53c3 375 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
376 spin_lock(&mapping->private_lock);
377 ctx = mapping->private_data;
fa8a53c3
BL
378 if (!ctx) {
379 rc = -EINVAL;
380 goto out;
381 }
382
383 /* The ring_lock mutex. The prevents aio_read_events() from writing
384 * to the ring's head, and prevents page migration from mucking in
385 * a partially initialized kiotx.
386 */
387 if (!mutex_trylock(&ctx->ring_lock)) {
388 rc = -EAGAIN;
389 goto out;
390 }
391
392 idx = old->index;
393 if (idx < (pgoff_t)ctx->nr_pages) {
394 /* Make sure the old page hasn't already been changed */
395 if (ctx->ring_pages[idx] != old)
396 rc = -EAGAIN;
8e321fef
BL
397 } else
398 rc = -EINVAL;
8e321fef
BL
399
400 if (rc != 0)
fa8a53c3 401 goto out_unlock;
8e321fef 402
36bc08cc
GZ
403 /* Writeback must be complete */
404 BUG_ON(PageWriteback(old));
8e321fef 405 get_page(new);
36bc08cc 406
8e321fef 407 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
36bc08cc 408 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 409 put_page(new);
fa8a53c3 410 goto out_unlock;
36bc08cc
GZ
411 }
412
fa8a53c3
BL
413 /* Take completion_lock to prevent other writes to the ring buffer
414 * while the old page is copied to the new. This prevents new
415 * events from being lost.
5e9ae2e5 416 */
fa8a53c3
BL
417 spin_lock_irqsave(&ctx->completion_lock, flags);
418 migrate_page_copy(new, old);
419 BUG_ON(ctx->ring_pages[idx] != old);
420 ctx->ring_pages[idx] = new;
421 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 422
fa8a53c3
BL
423 /* The old page is no longer accessible. */
424 put_page(old);
8e321fef 425
fa8a53c3
BL
426out_unlock:
427 mutex_unlock(&ctx->ring_lock);
428out:
429 spin_unlock(&mapping->private_lock);
36bc08cc 430 return rc;
1da177e4 431}
0c45355f 432#endif
1da177e4 433
36bc08cc 434static const struct address_space_operations aio_ctx_aops = {
835f252c 435 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 436#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 437 .migratepage = aio_migratepage,
0c45355f 438#endif
36bc08cc
GZ
439};
440
1da177e4
LT
441static int aio_setup_ring(struct kioctx *ctx)
442{
443 struct aio_ring *ring;
1da177e4 444 unsigned nr_events = ctx->max_reqs;
41003a7b 445 struct mm_struct *mm = current->mm;
3dc9acb6 446 unsigned long size, unused;
1da177e4 447 int nr_pages;
36bc08cc
GZ
448 int i;
449 struct file *file;
1da177e4
LT
450
451 /* Compensate for the ring buffer's head/tail overlap entry */
452 nr_events += 2; /* 1 is required, 2 for good luck */
453
454 size = sizeof(struct aio_ring);
455 size += sizeof(struct io_event) * nr_events;
1da177e4 456
36bc08cc 457 nr_pages = PFN_UP(size);
1da177e4
LT
458 if (nr_pages < 0)
459 return -EINVAL;
460
71ad7490 461 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
462 if (IS_ERR(file)) {
463 ctx->aio_ring_file = NULL;
fa8a53c3 464 return -ENOMEM;
36bc08cc
GZ
465 }
466
3dc9acb6
LT
467 ctx->aio_ring_file = file;
468 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
469 / sizeof(struct io_event);
470
471 ctx->ring_pages = ctx->internal_pages;
472 if (nr_pages > AIO_RING_PAGES) {
473 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
474 GFP_KERNEL);
475 if (!ctx->ring_pages) {
476 put_aio_ring_file(ctx);
477 return -ENOMEM;
478 }
479 }
480
36bc08cc
GZ
481 for (i = 0; i < nr_pages; i++) {
482 struct page *page;
483 page = find_or_create_page(file->f_inode->i_mapping,
484 i, GFP_HIGHUSER | __GFP_ZERO);
485 if (!page)
486 break;
487 pr_debug("pid(%d) page[%d]->count=%d\n",
488 current->pid, i, page_count(page));
489 SetPageUptodate(page);
36bc08cc 490 unlock_page(page);
3dc9acb6
LT
491
492 ctx->ring_pages[i] = page;
36bc08cc 493 }
3dc9acb6 494 ctx->nr_pages = i;
1da177e4 495
3dc9acb6
LT
496 if (unlikely(i != nr_pages)) {
497 aio_free_ring(ctx);
fa8a53c3 498 return -ENOMEM;
1da177e4
LT
499 }
500
58c85dc2
KO
501 ctx->mmap_size = nr_pages * PAGE_SIZE;
502 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 503
013373e8
MH
504 if (down_write_killable(&mm->mmap_sem)) {
505 ctx->mmap_size = 0;
506 aio_free_ring(ctx);
507 return -EINTR;
508 }
509
36bc08cc
GZ
510 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
511 PROT_READ | PROT_WRITE,
3dc9acb6
LT
512 MAP_SHARED, 0, &unused);
513 up_write(&mm->mmap_sem);
58c85dc2 514 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 515 ctx->mmap_size = 0;
1da177e4 516 aio_free_ring(ctx);
fa8a53c3 517 return -ENOMEM;
1da177e4
LT
518 }
519
58c85dc2 520 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 521
58c85dc2
KO
522 ctx->user_id = ctx->mmap_base;
523 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 524
58c85dc2 525 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 526 ring->nr = nr_events; /* user copy */
db446a08 527 ring->id = ~0U;
1da177e4
LT
528 ring->head = ring->tail = 0;
529 ring->magic = AIO_RING_MAGIC;
530 ring->compat_features = AIO_RING_COMPAT_FEATURES;
531 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
532 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 533 kunmap_atomic(ring);
58c85dc2 534 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
535
536 return 0;
537}
538
1da177e4
LT
539#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
540#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
541#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
542
04b2fa9f 543void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 544{
04b2fa9f 545 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
0460fef2
KO
546 struct kioctx *ctx = req->ki_ctx;
547 unsigned long flags;
548
549 spin_lock_irqsave(&ctx->ctx_lock, flags);
550
551 if (!req->ki_list.next)
552 list_add(&req->ki_list, &ctx->active_reqs);
553
554 req->ki_cancel = cancel;
555
556 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
557}
558EXPORT_SYMBOL(kiocb_set_cancel_fn);
559
04b2fa9f 560static int kiocb_cancel(struct aio_kiocb *kiocb)
906b973c 561{
0460fef2 562 kiocb_cancel_fn *old, *cancel;
906b973c 563
0460fef2
KO
564 /*
565 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
566 * actually has a cancel function, hence the cmpxchg()
567 */
568
569 cancel = ACCESS_ONCE(kiocb->ki_cancel);
570 do {
571 if (!cancel || cancel == KIOCB_CANCELLED)
57282d8f 572 return -EINVAL;
906b973c 573
0460fef2
KO
574 old = cancel;
575 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
576 } while (cancel != old);
906b973c 577
04b2fa9f 578 return cancel(&kiocb->common);
906b973c
KO
579}
580
e34ecee2 581static void free_ioctx(struct work_struct *work)
36f55889 582{
e34ecee2 583 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
e1bdd5f2 584
e34ecee2 585 pr_debug("freeing %p\n", ctx);
e1bdd5f2 586
e34ecee2 587 aio_free_ring(ctx);
e1bdd5f2 588 free_percpu(ctx->cpu);
9a1049da
TH
589 percpu_ref_exit(&ctx->reqs);
590 percpu_ref_exit(&ctx->users);
36f55889
KO
591 kmem_cache_free(kioctx_cachep, ctx);
592}
593
e34ecee2
KO
594static void free_ioctx_reqs(struct percpu_ref *ref)
595{
596 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
597
e02ba72a 598 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
599 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
600 complete(&ctx->rq_wait->comp);
e02ba72a 601
e34ecee2
KO
602 INIT_WORK(&ctx->free_work, free_ioctx);
603 schedule_work(&ctx->free_work);
604}
605
36f55889
KO
606/*
607 * When this function runs, the kioctx has been removed from the "hash table"
608 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
609 * now it's safe to cancel any that need to be.
610 */
e34ecee2 611static void free_ioctx_users(struct percpu_ref *ref)
36f55889 612{
e34ecee2 613 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 614 struct aio_kiocb *req;
36f55889
KO
615
616 spin_lock_irq(&ctx->ctx_lock);
617
618 while (!list_empty(&ctx->active_reqs)) {
619 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 620 struct aio_kiocb, ki_list);
36f55889
KO
621
622 list_del_init(&req->ki_list);
d52a8f9e 623 kiocb_cancel(req);
36f55889
KO
624 }
625
626 spin_unlock_irq(&ctx->ctx_lock);
627
e34ecee2
KO
628 percpu_ref_kill(&ctx->reqs);
629 percpu_ref_put(&ctx->reqs);
36f55889
KO
630}
631
db446a08
BL
632static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
633{
634 unsigned i, new_nr;
635 struct kioctx_table *table, *old;
636 struct aio_ring *ring;
637
638 spin_lock(&mm->ioctx_lock);
855ef0de 639 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
640
641 while (1) {
642 if (table)
643 for (i = 0; i < table->nr; i++)
644 if (!table->table[i]) {
645 ctx->id = i;
646 table->table[i] = ctx;
647 spin_unlock(&mm->ioctx_lock);
648
fa8a53c3
BL
649 /* While kioctx setup is in progress,
650 * we are protected from page migration
651 * changes ring_pages by ->ring_lock.
652 */
db446a08
BL
653 ring = kmap_atomic(ctx->ring_pages[0]);
654 ring->id = ctx->id;
655 kunmap_atomic(ring);
656 return 0;
657 }
658
659 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
660 spin_unlock(&mm->ioctx_lock);
661
662 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
663 new_nr, GFP_KERNEL);
664 if (!table)
665 return -ENOMEM;
666
667 table->nr = new_nr;
668
669 spin_lock(&mm->ioctx_lock);
855ef0de 670 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
671
672 if (!old) {
673 rcu_assign_pointer(mm->ioctx_table, table);
674 } else if (table->nr > old->nr) {
675 memcpy(table->table, old->table,
676 old->nr * sizeof(struct kioctx *));
677
678 rcu_assign_pointer(mm->ioctx_table, table);
679 kfree_rcu(old, rcu);
680 } else {
681 kfree(table);
682 table = old;
683 }
684 }
685}
686
e34ecee2
KO
687static void aio_nr_sub(unsigned nr)
688{
689 spin_lock(&aio_nr_lock);
690 if (WARN_ON(aio_nr - nr > aio_nr))
691 aio_nr = 0;
692 else
693 aio_nr -= nr;
694 spin_unlock(&aio_nr_lock);
695}
696
1da177e4
LT
697/* ioctx_alloc
698 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
699 */
700static struct kioctx *ioctx_alloc(unsigned nr_events)
701{
41003a7b 702 struct mm_struct *mm = current->mm;
1da177e4 703 struct kioctx *ctx;
e23754f8 704 int err = -ENOMEM;
1da177e4 705
e1bdd5f2
KO
706 /*
707 * We keep track of the number of available ringbuffer slots, to prevent
708 * overflow (reqs_available), and we also use percpu counters for this.
709 *
710 * So since up to half the slots might be on other cpu's percpu counters
711 * and unavailable, double nr_events so userspace sees what they
712 * expected: additionally, we move req_batch slots to/from percpu
713 * counters at a time, so make sure that isn't 0:
714 */
715 nr_events = max(nr_events, num_possible_cpus() * 4);
716 nr_events *= 2;
717
1da177e4 718 /* Prevent overflows */
08397acd 719 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
720 pr_debug("ENOMEM: nr_events too high\n");
721 return ERR_PTR(-EINVAL);
722 }
723
4cd81c3d 724 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
1da177e4
LT
725 return ERR_PTR(-EAGAIN);
726
c3762229 727 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
728 if (!ctx)
729 return ERR_PTR(-ENOMEM);
730
1da177e4 731 ctx->max_reqs = nr_events;
1da177e4 732
1da177e4 733 spin_lock_init(&ctx->ctx_lock);
0460fef2 734 spin_lock_init(&ctx->completion_lock);
58c85dc2 735 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
736 /* Protect against page migration throughout kiotx setup by keeping
737 * the ring_lock mutex held until setup is complete. */
738 mutex_lock(&ctx->ring_lock);
1da177e4
LT
739 init_waitqueue_head(&ctx->wait);
740
741 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 742
2aad2a86 743 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
744 goto err;
745
2aad2a86 746 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
747 goto err;
748
e1bdd5f2
KO
749 ctx->cpu = alloc_percpu(struct kioctx_cpu);
750 if (!ctx->cpu)
e34ecee2 751 goto err;
1da177e4 752
fa8a53c3
BL
753 err = aio_setup_ring(ctx);
754 if (err < 0)
e34ecee2 755 goto err;
e1bdd5f2 756
34e83fc6 757 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 758 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
759 if (ctx->req_batch < 1)
760 ctx->req_batch = 1;
34e83fc6 761
1da177e4 762 /* limit the number of system wide aios */
9fa1cb39 763 spin_lock(&aio_nr_lock);
4cd81c3d 764 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
2dd542b7 765 aio_nr + nr_events < aio_nr) {
9fa1cb39 766 spin_unlock(&aio_nr_lock);
e34ecee2 767 err = -EAGAIN;
d1b94327 768 goto err_ctx;
2dd542b7
AV
769 }
770 aio_nr += ctx->max_reqs;
9fa1cb39 771 spin_unlock(&aio_nr_lock);
1da177e4 772
1881686f
BL
773 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
774 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 775
da90382c
BL
776 err = ioctx_add_table(ctx, mm);
777 if (err)
e34ecee2 778 goto err_cleanup;
da90382c 779
fa8a53c3
BL
780 /* Release the ring_lock mutex now that all setup is complete. */
781 mutex_unlock(&ctx->ring_lock);
782
caf4167a 783 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 784 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
785 return ctx;
786
e34ecee2
KO
787err_cleanup:
788 aio_nr_sub(ctx->max_reqs);
d1b94327 789err_ctx:
deeb8525
AV
790 atomic_set(&ctx->dead, 1);
791 if (ctx->mmap_size)
792 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 793 aio_free_ring(ctx);
e34ecee2 794err:
fa8a53c3 795 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 796 free_percpu(ctx->cpu);
9a1049da
TH
797 percpu_ref_exit(&ctx->reqs);
798 percpu_ref_exit(&ctx->users);
1da177e4 799 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 800 pr_debug("error allocating ioctx %d\n", err);
e23754f8 801 return ERR_PTR(err);
1da177e4
LT
802}
803
36f55889
KO
804/* kill_ioctx
805 * Cancels all outstanding aio requests on an aio context. Used
806 * when the processes owning a context have all exited to encourage
807 * the rapid destruction of the kioctx.
808 */
fb2d4483 809static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 810 struct ctx_rq_wait *wait)
36f55889 811{
fa88b6f8 812 struct kioctx_table *table;
db446a08 813
b2edffdd
AV
814 spin_lock(&mm->ioctx_lock);
815 if (atomic_xchg(&ctx->dead, 1)) {
816 spin_unlock(&mm->ioctx_lock);
fa88b6f8 817 return -EINVAL;
b2edffdd 818 }
db446a08 819
855ef0de 820 table = rcu_dereference_raw(mm->ioctx_table);
fa88b6f8
BL
821 WARN_ON(ctx != table->table[ctx->id]);
822 table->table[ctx->id] = NULL;
fa88b6f8 823 spin_unlock(&mm->ioctx_lock);
4fcc712f 824
fa88b6f8
BL
825 /* percpu_ref_kill() will do the necessary call_rcu() */
826 wake_up_all(&ctx->wait);
4fcc712f 827
fa88b6f8
BL
828 /*
829 * It'd be more correct to do this in free_ioctx(), after all
830 * the outstanding kiocbs have finished - but by then io_destroy
831 * has already returned, so io_setup() could potentially return
832 * -EAGAIN with no ioctxs actually in use (as far as userspace
833 * could tell).
834 */
835 aio_nr_sub(ctx->max_reqs);
4fcc712f 836
fa88b6f8
BL
837 if (ctx->mmap_size)
838 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 839
dc48e56d 840 ctx->rq_wait = wait;
fa88b6f8
BL
841 percpu_ref_kill(&ctx->users);
842 return 0;
1da177e4
LT
843}
844
36f55889
KO
845/*
846 * exit_aio: called when the last user of mm goes away. At this point, there is
847 * no way for any new requests to be submited or any of the io_* syscalls to be
848 * called on the context.
849 *
850 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
851 * them.
1da177e4 852 */
fc9b52cd 853void exit_aio(struct mm_struct *mm)
1da177e4 854{
4b70ac5f 855 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
856 struct ctx_rq_wait wait;
857 int i, skipped;
db446a08 858
4b70ac5f
ON
859 if (!table)
860 return;
db446a08 861
dc48e56d
JA
862 atomic_set(&wait.count, table->nr);
863 init_completion(&wait.comp);
864
865 skipped = 0;
4b70ac5f
ON
866 for (i = 0; i < table->nr; ++i) {
867 struct kioctx *ctx = table->table[i];
abf137dd 868
dc48e56d
JA
869 if (!ctx) {
870 skipped++;
4b70ac5f 871 continue;
dc48e56d
JA
872 }
873
936af157 874 /*
4b70ac5f
ON
875 * We don't need to bother with munmap() here - exit_mmap(mm)
876 * is coming and it'll unmap everything. And we simply can't,
877 * this is not necessarily our ->mm.
878 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
879 * that it needs to unmap the area, just set it to 0.
936af157 880 */
58c85dc2 881 ctx->mmap_size = 0;
dc48e56d
JA
882 kill_ioctx(mm, ctx, &wait);
883 }
36f55889 884
dc48e56d 885 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 886 /* Wait until all IO for the context are done. */
dc48e56d 887 wait_for_completion(&wait.comp);
1da177e4 888 }
4b70ac5f
ON
889
890 RCU_INIT_POINTER(mm->ioctx_table, NULL);
891 kfree(table);
1da177e4
LT
892}
893
e1bdd5f2
KO
894static void put_reqs_available(struct kioctx *ctx, unsigned nr)
895{
896 struct kioctx_cpu *kcpu;
263782c1 897 unsigned long flags;
e1bdd5f2 898
263782c1 899 local_irq_save(flags);
be6fb451 900 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 901 kcpu->reqs_available += nr;
263782c1 902
e1bdd5f2
KO
903 while (kcpu->reqs_available >= ctx->req_batch * 2) {
904 kcpu->reqs_available -= ctx->req_batch;
905 atomic_add(ctx->req_batch, &ctx->reqs_available);
906 }
907
263782c1 908 local_irq_restore(flags);
e1bdd5f2
KO
909}
910
911static bool get_reqs_available(struct kioctx *ctx)
912{
913 struct kioctx_cpu *kcpu;
914 bool ret = false;
263782c1 915 unsigned long flags;
e1bdd5f2 916
263782c1 917 local_irq_save(flags);
be6fb451 918 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
919 if (!kcpu->reqs_available) {
920 int old, avail = atomic_read(&ctx->reqs_available);
921
922 do {
923 if (avail < ctx->req_batch)
924 goto out;
925
926 old = avail;
927 avail = atomic_cmpxchg(&ctx->reqs_available,
928 avail, avail - ctx->req_batch);
929 } while (avail != old);
930
931 kcpu->reqs_available += ctx->req_batch;
932 }
933
934 ret = true;
935 kcpu->reqs_available--;
936out:
263782c1 937 local_irq_restore(flags);
e1bdd5f2
KO
938 return ret;
939}
940
d856f32a
BL
941/* refill_reqs_available
942 * Updates the reqs_available reference counts used for tracking the
943 * number of free slots in the completion ring. This can be called
944 * from aio_complete() (to optimistically update reqs_available) or
945 * from aio_get_req() (the we're out of events case). It must be
946 * called holding ctx->completion_lock.
947 */
948static void refill_reqs_available(struct kioctx *ctx, unsigned head,
949 unsigned tail)
950{
951 unsigned events_in_ring, completed;
952
953 /* Clamp head since userland can write to it. */
954 head %= ctx->nr_events;
955 if (head <= tail)
956 events_in_ring = tail - head;
957 else
958 events_in_ring = ctx->nr_events - (head - tail);
959
960 completed = ctx->completed_events;
961 if (events_in_ring < completed)
962 completed -= events_in_ring;
963 else
964 completed = 0;
965
966 if (!completed)
967 return;
968
969 ctx->completed_events -= completed;
970 put_reqs_available(ctx, completed);
971}
972
973/* user_refill_reqs_available
974 * Called to refill reqs_available when aio_get_req() encounters an
975 * out of space in the completion ring.
976 */
977static void user_refill_reqs_available(struct kioctx *ctx)
978{
979 spin_lock_irq(&ctx->completion_lock);
980 if (ctx->completed_events) {
981 struct aio_ring *ring;
982 unsigned head;
983
984 /* Access of ring->head may race with aio_read_events_ring()
985 * here, but that's okay since whether we read the old version
986 * or the new version, and either will be valid. The important
987 * part is that head cannot pass tail since we prevent
988 * aio_complete() from updating tail by holding
989 * ctx->completion_lock. Even if head is invalid, the check
990 * against ctx->completed_events below will make sure we do the
991 * safe/right thing.
992 */
993 ring = kmap_atomic(ctx->ring_pages[0]);
994 head = ring->head;
995 kunmap_atomic(ring);
996
997 refill_reqs_available(ctx, head, ctx->tail);
998 }
999
1000 spin_unlock_irq(&ctx->completion_lock);
1001}
1002
1da177e4 1003/* aio_get_req
57282d8f
KO
1004 * Allocate a slot for an aio request.
1005 * Returns NULL if no requests are free.
1da177e4 1006 */
04b2fa9f 1007static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1008{
04b2fa9f 1009 struct aio_kiocb *req;
a1c8eae7 1010
d856f32a
BL
1011 if (!get_reqs_available(ctx)) {
1012 user_refill_reqs_available(ctx);
1013 if (!get_reqs_available(ctx))
1014 return NULL;
1015 }
a1c8eae7 1016
0460fef2 1017 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1da177e4 1018 if (unlikely(!req))
a1c8eae7 1019 goto out_put;
1da177e4 1020
e34ecee2
KO
1021 percpu_ref_get(&ctx->reqs);
1022
1da177e4 1023 req->ki_ctx = ctx;
080d676d 1024 return req;
a1c8eae7 1025out_put:
e1bdd5f2 1026 put_reqs_available(ctx, 1);
a1c8eae7 1027 return NULL;
1da177e4
LT
1028}
1029
04b2fa9f 1030static void kiocb_free(struct aio_kiocb *req)
1da177e4 1031{
04b2fa9f
CH
1032 if (req->common.ki_filp)
1033 fput(req->common.ki_filp);
13389010
DL
1034 if (req->ki_eventfd != NULL)
1035 eventfd_ctx_put(req->ki_eventfd);
1da177e4 1036 kmem_cache_free(kiocb_cachep, req);
1da177e4
LT
1037}
1038
d5470b59 1039static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1040{
db446a08 1041 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1042 struct mm_struct *mm = current->mm;
65c24491 1043 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1044 struct kioctx_table *table;
1045 unsigned id;
1046
1047 if (get_user(id, &ring->id))
1048 return NULL;
1da177e4 1049
abf137dd 1050 rcu_read_lock();
db446a08 1051 table = rcu_dereference(mm->ioctx_table);
abf137dd 1052
db446a08
BL
1053 if (!table || id >= table->nr)
1054 goto out;
1da177e4 1055
db446a08 1056 ctx = table->table[id];
f30d704f 1057 if (ctx && ctx->user_id == ctx_id) {
db446a08
BL
1058 percpu_ref_get(&ctx->users);
1059 ret = ctx;
1060 }
1061out:
abf137dd 1062 rcu_read_unlock();
65c24491 1063 return ret;
1da177e4
LT
1064}
1065
1da177e4
LT
1066/* aio_complete
1067 * Called when the io request on the given iocb is complete.
1da177e4 1068 */
04b2fa9f 1069static void aio_complete(struct kiocb *kiocb, long res, long res2)
1da177e4 1070{
04b2fa9f 1071 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1da177e4 1072 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1073 struct aio_ring *ring;
21b40200 1074 struct io_event *ev_page, *event;
d856f32a 1075 unsigned tail, pos, head;
1da177e4 1076 unsigned long flags;
1da177e4 1077
20dcae32
ZB
1078 /*
1079 * Special case handling for sync iocbs:
1080 * - events go directly into the iocb for fast handling
1081 * - the sync task with the iocb in its stack holds the single iocb
1082 * ref, no other paths have a way to get another ref
1083 * - the sync task helpfully left a reference to itself in the iocb
1da177e4 1084 */
04b2fa9f 1085 BUG_ON(is_sync_kiocb(kiocb));
1da177e4 1086
0460fef2
KO
1087 if (iocb->ki_list.next) {
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&ctx->ctx_lock, flags);
1091 list_del(&iocb->ki_list);
1092 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1093 }
11599eba 1094
0460fef2
KO
1095 /*
1096 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1097 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1098 * pointer since we might be called from irq context.
1099 */
1100 spin_lock_irqsave(&ctx->completion_lock, flags);
1101
58c85dc2 1102 tail = ctx->tail;
21b40200
KO
1103 pos = tail + AIO_EVENTS_OFFSET;
1104
58c85dc2 1105 if (++tail >= ctx->nr_events)
4bf69b2a 1106 tail = 0;
1da177e4 1107
58c85dc2 1108 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1109 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1110
04b2fa9f 1111 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1da177e4
LT
1112 event->data = iocb->ki_user_data;
1113 event->res = res;
1114 event->res2 = res2;
1115
21b40200 1116 kunmap_atomic(ev_page);
58c85dc2 1117 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1118
1119 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
04b2fa9f 1120 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
caf4167a 1121 res, res2);
1da177e4
LT
1122
1123 /* after flagging the request as done, we
1124 * must never even look at it again
1125 */
1126 smp_wmb(); /* make event visible before updating tail */
1127
58c85dc2 1128 ctx->tail = tail;
1da177e4 1129
58c85dc2 1130 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1131 head = ring->head;
21b40200 1132 ring->tail = tail;
e8e3c3d6 1133 kunmap_atomic(ring);
58c85dc2 1134 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1135
d856f32a
BL
1136 ctx->completed_events++;
1137 if (ctx->completed_events > 1)
1138 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1139 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1140
21b40200 1141 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1142
1143 /*
1144 * Check if the user asked us to deliver the result through an
1145 * eventfd. The eventfd_signal() function is safe to be called
1146 * from IRQ context.
1147 */
87c3a86e 1148 if (iocb->ki_eventfd != NULL)
8d1c98b0
DL
1149 eventfd_signal(iocb->ki_eventfd, 1);
1150
1da177e4 1151 /* everything turned out well, dispose of the aiocb. */
57282d8f 1152 kiocb_free(iocb);
1da177e4 1153
6cb2a210
QB
1154 /*
1155 * We have to order our ring_info tail store above and test
1156 * of the wait list below outside the wait lock. This is
1157 * like in wake_up_bit() where clearing a bit has to be
1158 * ordered with the unlocked test.
1159 */
1160 smp_mb();
1161
1da177e4
LT
1162 if (waitqueue_active(&ctx->wait))
1163 wake_up(&ctx->wait);
1164
e34ecee2 1165 percpu_ref_put(&ctx->reqs);
1da177e4
LT
1166}
1167
2be4e7de 1168/* aio_read_events_ring
a31ad380
KO
1169 * Pull an event off of the ioctx's event ring. Returns the number of
1170 * events fetched
1da177e4 1171 */
a31ad380
KO
1172static long aio_read_events_ring(struct kioctx *ctx,
1173 struct io_event __user *event, long nr)
1da177e4 1174{
1da177e4 1175 struct aio_ring *ring;
5ffac122 1176 unsigned head, tail, pos;
a31ad380
KO
1177 long ret = 0;
1178 int copy_ret;
1179
9c9ce763
DC
1180 /*
1181 * The mutex can block and wake us up and that will cause
1182 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183 * and repeat. This should be rare enough that it doesn't cause
1184 * peformance issues. See the comment in read_events() for more detail.
1185 */
1186 sched_annotate_sleep();
58c85dc2 1187 mutex_lock(&ctx->ring_lock);
1da177e4 1188
fa8a53c3 1189 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1190 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1191 head = ring->head;
5ffac122 1192 tail = ring->tail;
a31ad380
KO
1193 kunmap_atomic(ring);
1194
2ff396be
JM
1195 /*
1196 * Ensure that once we've read the current tail pointer, that
1197 * we also see the events that were stored up to the tail.
1198 */
1199 smp_rmb();
1200
5ffac122 1201 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1202
5ffac122 1203 if (head == tail)
1da177e4
LT
1204 goto out;
1205
edfbbf38
BL
1206 head %= ctx->nr_events;
1207 tail %= ctx->nr_events;
1208
a31ad380
KO
1209 while (ret < nr) {
1210 long avail;
1211 struct io_event *ev;
1212 struct page *page;
1213
5ffac122
KO
1214 avail = (head <= tail ? tail : ctx->nr_events) - head;
1215 if (head == tail)
a31ad380
KO
1216 break;
1217
1218 avail = min(avail, nr - ret);
1219 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1220 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1221
1222 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1223 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1224 pos %= AIO_EVENTS_PER_PAGE;
1225
1226 ev = kmap(page);
1227 copy_ret = copy_to_user(event + ret, ev + pos,
1228 sizeof(*ev) * avail);
1229 kunmap(page);
1230
1231 if (unlikely(copy_ret)) {
1232 ret = -EFAULT;
1233 goto out;
1234 }
1235
1236 ret += avail;
1237 head += avail;
58c85dc2 1238 head %= ctx->nr_events;
1da177e4 1239 }
1da177e4 1240
58c85dc2 1241 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1242 ring->head = head;
91d80a84 1243 kunmap_atomic(ring);
58c85dc2 1244 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1245
5ffac122 1246 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1247out:
58c85dc2 1248 mutex_unlock(&ctx->ring_lock);
a31ad380 1249
1da177e4
LT
1250 return ret;
1251}
1252
a31ad380
KO
1253static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 struct io_event __user *event, long *i)
1da177e4 1255{
a31ad380 1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1257
a31ad380
KO
1258 if (ret > 0)
1259 *i += ret;
1da177e4 1260
a31ad380
KO
1261 if (unlikely(atomic_read(&ctx->dead)))
1262 ret = -EINVAL;
1da177e4 1263
a31ad380
KO
1264 if (!*i)
1265 *i = ret;
1da177e4 1266
a31ad380 1267 return ret < 0 || *i >= min_nr;
1da177e4
LT
1268}
1269
a31ad380 1270static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4
LT
1271 struct io_event __user *event,
1272 struct timespec __user *timeout)
1273{
a31ad380
KO
1274 ktime_t until = { .tv64 = KTIME_MAX };
1275 long ret = 0;
1da177e4 1276
1da177e4
LT
1277 if (timeout) {
1278 struct timespec ts;
a31ad380 1279
1da177e4 1280 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
a31ad380 1281 return -EFAULT;
1da177e4 1282
a31ad380 1283 until = timespec_to_ktime(ts);
1da177e4
LT
1284 }
1285
a31ad380
KO
1286 /*
1287 * Note that aio_read_events() is being called as the conditional - i.e.
1288 * we're calling it after prepare_to_wait() has set task state to
1289 * TASK_INTERRUPTIBLE.
1290 *
1291 * But aio_read_events() can block, and if it blocks it's going to flip
1292 * the task state back to TASK_RUNNING.
1293 *
1294 * This should be ok, provided it doesn't flip the state back to
1295 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1296 * will only happen if the mutex_lock() call blocks, and we then find
1297 * the ringbuffer empty. So in practice we should be ok, but it's
1298 * something to be aware of when touching this code.
1299 */
5f785de5
FZ
1300 if (until.tv64 == 0)
1301 aio_read_events(ctx, min_nr, nr, event, &ret);
1302 else
1303 wait_event_interruptible_hrtimeout(ctx->wait,
1304 aio_read_events(ctx, min_nr, nr, event, &ret),
1305 until);
1da177e4 1306
a31ad380
KO
1307 if (!ret && signal_pending(current))
1308 ret = -EINTR;
1da177e4 1309
a31ad380 1310 return ret;
1da177e4
LT
1311}
1312
1da177e4
LT
1313/* sys_io_setup:
1314 * Create an aio_context capable of receiving at least nr_events.
1315 * ctxp must not point to an aio_context that already exists, and
1316 * must be initialized to 0 prior to the call. On successful
1317 * creation of the aio_context, *ctxp is filled in with the resulting
1318 * handle. May fail with -EINVAL if *ctxp is not initialized,
1319 * if the specified nr_events exceeds internal limits. May fail
1320 * with -EAGAIN if the specified nr_events exceeds the user's limit
1321 * of available events. May fail with -ENOMEM if insufficient kernel
1322 * resources are available. May fail with -EFAULT if an invalid
1323 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1324 * implemented.
1325 */
002c8976 1326SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1327{
1328 struct kioctx *ioctx = NULL;
1329 unsigned long ctx;
1330 long ret;
1331
1332 ret = get_user(ctx, ctxp);
1333 if (unlikely(ret))
1334 goto out;
1335
1336 ret = -EINVAL;
d55b5fda 1337 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1338 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1339 ctx, nr_events);
1da177e4
LT
1340 goto out;
1341 }
1342
1343 ioctx = ioctx_alloc(nr_events);
1344 ret = PTR_ERR(ioctx);
1345 if (!IS_ERR(ioctx)) {
1346 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1347 if (ret)
e02ba72a 1348 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1349 percpu_ref_put(&ioctx->users);
1da177e4
LT
1350 }
1351
1352out:
1353 return ret;
1354}
1355
1356/* sys_io_destroy:
1357 * Destroy the aio_context specified. May cancel any outstanding
1358 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1359 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1360 * is invalid.
1361 */
002c8976 1362SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1363{
1364 struct kioctx *ioctx = lookup_ioctx(ctx);
1365 if (likely(NULL != ioctx)) {
dc48e56d 1366 struct ctx_rq_wait wait;
fb2d4483 1367 int ret;
e02ba72a 1368
dc48e56d
JA
1369 init_completion(&wait.comp);
1370 atomic_set(&wait.count, 1);
1371
e02ba72a
AP
1372 /* Pass requests_done to kill_ioctx() where it can be set
1373 * in a thread-safe way. If we try to set it here then we have
1374 * a race condition if two io_destroy() called simultaneously.
1375 */
dc48e56d 1376 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1377 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1378
1379 /* Wait until all IO for the context are done. Otherwise kernel
1380 * keep using user-space buffers even if user thinks the context
1381 * is destroyed.
1382 */
fb2d4483 1383 if (!ret)
dc48e56d 1384 wait_for_completion(&wait.comp);
e02ba72a 1385
fb2d4483 1386 return ret;
1da177e4 1387 }
acd88d4e 1388 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1389 return -EINVAL;
1390}
1391
293bc982 1392typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
41ef4eb8 1393
a96114fa
AV
1394static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1395 struct iovec **iovec,
1396 bool compat,
1397 struct iov_iter *iter)
eed4e51f 1398{
9d85cba7
JM
1399#ifdef CONFIG_COMPAT
1400 if (compat)
32a56afa 1401 return compat_import_iovec(rw,
8bc92afc 1402 (struct compat_iovec __user *)buf,
32a56afa 1403 len, UIO_FASTIOV, iovec, iter);
9d85cba7 1404#endif
32a56afa
AV
1405 return import_iovec(rw, (struct iovec __user *)buf,
1406 len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1407}
1408
1da177e4 1409/*
2be4e7de
GZ
1410 * aio_run_iocb:
1411 * Performs the initial checks and io submission.
1da177e4 1412 */
8bc92afc 1413static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
66ee59af 1414 char __user *buf, size_t len, bool compat)
1da177e4 1415{
41ef4eb8
KO
1416 struct file *file = req->ki_filp;
1417 ssize_t ret;
1418 int rw;
1419 fmode_t mode;
293bc982 1420 rw_iter_op *iter_op;
00fefb9c 1421 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1422 struct iov_iter iter;
1da177e4 1423
8bc92afc 1424 switch (opcode) {
1da177e4 1425 case IOCB_CMD_PREAD:
eed4e51f 1426 case IOCB_CMD_PREADV:
41ef4eb8
KO
1427 mode = FMODE_READ;
1428 rw = READ;
293bc982 1429 iter_op = file->f_op->read_iter;
41ef4eb8
KO
1430 goto rw_common;
1431
1432 case IOCB_CMD_PWRITE:
eed4e51f 1433 case IOCB_CMD_PWRITEV:
41ef4eb8
KO
1434 mode = FMODE_WRITE;
1435 rw = WRITE;
293bc982 1436 iter_op = file->f_op->write_iter;
41ef4eb8
KO
1437 goto rw_common;
1438rw_common:
1439 if (unlikely(!(file->f_mode & mode)))
1440 return -EBADF;
1441
84363182 1442 if (!iter_op)
41ef4eb8
KO
1443 return -EINVAL;
1444
66ee59af 1445 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
a96114fa
AV
1446 ret = aio_setup_vectored_rw(rw, buf, len,
1447 &iovec, compat, &iter);
32a56afa 1448 else {
d4fb392f 1449 ret = import_single_range(rw, buf, len, iovec, &iter);
32a56afa
AV
1450 iovec = NULL;
1451 }
754320d6 1452 if (!ret)
a96114fa
AV
1453 ret = rw_verify_area(rw, file, &req->ki_pos,
1454 iov_iter_count(&iter));
8bc92afc 1455 if (ret < 0) {
32a56afa 1456 kfree(iovec);
41ef4eb8 1457 return ret;
8bc92afc 1458 }
41ef4eb8 1459
73a7075e
KO
1460 if (rw == WRITE)
1461 file_start_write(file);
1462
84363182 1463 ret = iter_op(req, &iter);
73a7075e
KO
1464
1465 if (rw == WRITE)
1466 file_end_write(file);
32a56afa 1467 kfree(iovec);
1da177e4 1468 break;
41ef4eb8 1469
1da177e4 1470 case IOCB_CMD_FDSYNC:
41ef4eb8
KO
1471 if (!file->f_op->aio_fsync)
1472 return -EINVAL;
1473
1474 ret = file->f_op->aio_fsync(req, 1);
1da177e4 1475 break;
41ef4eb8 1476
1da177e4 1477 case IOCB_CMD_FSYNC:
41ef4eb8
KO
1478 if (!file->f_op->aio_fsync)
1479 return -EINVAL;
1480
1481 ret = file->f_op->aio_fsync(req, 0);
1da177e4 1482 break;
41ef4eb8 1483
1da177e4 1484 default:
caf4167a 1485 pr_debug("EINVAL: no operation provided\n");
41ef4eb8 1486 return -EINVAL;
1da177e4
LT
1487 }
1488
41ef4eb8
KO
1489 if (ret != -EIOCBQUEUED) {
1490 /*
1491 * There's no easy way to restart the syscall since other AIO's
1492 * may be already running. Just fail this IO with EINTR.
1493 */
1494 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1495 ret == -ERESTARTNOHAND ||
1496 ret == -ERESTART_RESTARTBLOCK))
1497 ret = -EINTR;
1498 aio_complete(req, ret, 0);
1499 }
1da177e4
LT
1500
1501 return 0;
1502}
1503
d5470b59 1504static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
a1c8eae7 1505 struct iocb *iocb, bool compat)
1da177e4 1506{
04b2fa9f 1507 struct aio_kiocb *req;
1da177e4
LT
1508 ssize_t ret;
1509
1510 /* enforce forwards compatibility on users */
9c3060be 1511 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
caf4167a 1512 pr_debug("EINVAL: reserve field set\n");
1da177e4
LT
1513 return -EINVAL;
1514 }
1515
1516 /* prevent overflows */
1517 if (unlikely(
1518 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1519 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1520 ((ssize_t)iocb->aio_nbytes < 0)
1521 )) {
acd88d4e 1522 pr_debug("EINVAL: overflow check\n");
1da177e4
LT
1523 return -EINVAL;
1524 }
1525
41ef4eb8 1526 req = aio_get_req(ctx);
1d98ebfc 1527 if (unlikely(!req))
1da177e4 1528 return -EAGAIN;
1d98ebfc 1529
04b2fa9f
CH
1530 req->common.ki_filp = fget(iocb->aio_fildes);
1531 if (unlikely(!req->common.ki_filp)) {
1d98ebfc
KO
1532 ret = -EBADF;
1533 goto out_put_req;
1da177e4 1534 }
04b2fa9f
CH
1535 req->common.ki_pos = iocb->aio_offset;
1536 req->common.ki_complete = aio_complete;
2ba48ce5 1537 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1d98ebfc 1538
9c3060be
DL
1539 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1540 /*
1541 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1542 * instance of the file* now. The file descriptor must be
1543 * an eventfd() fd, and will be signaled for each completed
1544 * event using the eventfd_signal() function.
1545 */
13389010 1546 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
801678c5 1547 if (IS_ERR(req->ki_eventfd)) {
9c3060be 1548 ret = PTR_ERR(req->ki_eventfd);
87c3a86e 1549 req->ki_eventfd = NULL;
9c3060be
DL
1550 goto out_put_req;
1551 }
04b2fa9f
CH
1552
1553 req->common.ki_flags |= IOCB_EVENTFD;
9c3060be 1554 }
1da177e4 1555
8a660890 1556 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1da177e4 1557 if (unlikely(ret)) {
caf4167a 1558 pr_debug("EFAULT: aio_key\n");
1da177e4
LT
1559 goto out_put_req;
1560 }
1561
04b2fa9f 1562 req->ki_user_iocb = user_iocb;
1da177e4 1563 req->ki_user_data = iocb->aio_data;
1da177e4 1564
04b2fa9f 1565 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
8bc92afc 1566 (char __user *)(unsigned long)iocb->aio_buf,
66ee59af 1567 iocb->aio_nbytes,
8bc92afc 1568 compat);
41003a7b 1569 if (ret)
7137c6bd 1570 goto out_put_req;
41003a7b 1571
1da177e4 1572 return 0;
1da177e4 1573out_put_req:
e1bdd5f2 1574 put_reqs_available(ctx, 1);
e34ecee2 1575 percpu_ref_put(&ctx->reqs);
57282d8f 1576 kiocb_free(req);
1da177e4
LT
1577 return ret;
1578}
1579
9d85cba7
JM
1580long do_io_submit(aio_context_t ctx_id, long nr,
1581 struct iocb __user *__user *iocbpp, bool compat)
1da177e4
LT
1582{
1583 struct kioctx *ctx;
1584 long ret = 0;
080d676d 1585 int i = 0;
9f5b9425 1586 struct blk_plug plug;
1da177e4
LT
1587
1588 if (unlikely(nr < 0))
1589 return -EINVAL;
1590
75e1c70f
JM
1591 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1592 nr = LONG_MAX/sizeof(*iocbpp);
1593
1da177e4
LT
1594 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1595 return -EFAULT;
1596
1597 ctx = lookup_ioctx(ctx_id);
1598 if (unlikely(!ctx)) {
caf4167a 1599 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1600 return -EINVAL;
1601 }
1602
9f5b9425
SL
1603 blk_start_plug(&plug);
1604
1da177e4
LT
1605 /*
1606 * AKPM: should this return a partial result if some of the IOs were
1607 * successfully submitted?
1608 */
1609 for (i=0; i<nr; i++) {
1610 struct iocb __user *user_iocb;
1611 struct iocb tmp;
1612
1613 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1614 ret = -EFAULT;
1615 break;
1616 }
1617
1618 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1619 ret = -EFAULT;
1620 break;
1621 }
1622
a1c8eae7 1623 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1da177e4
LT
1624 if (ret)
1625 break;
1626 }
9f5b9425 1627 blk_finish_plug(&plug);
1da177e4 1628
723be6e3 1629 percpu_ref_put(&ctx->users);
1da177e4
LT
1630 return i ? i : ret;
1631}
1632
9d85cba7
JM
1633/* sys_io_submit:
1634 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1635 * the number of iocbs queued. May return -EINVAL if the aio_context
1636 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1637 * *iocbpp[0] is not properly initialized, if the operation specified
1638 * is invalid for the file descriptor in the iocb. May fail with
1639 * -EFAULT if any of the data structures point to invalid data. May
1640 * fail with -EBADF if the file descriptor specified in the first
1641 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1642 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1643 * fail with -ENOSYS if not implemented.
1644 */
1645SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1646 struct iocb __user * __user *, iocbpp)
1647{
1648 return do_io_submit(ctx_id, nr, iocbpp, 0);
1649}
1650
1da177e4
LT
1651/* lookup_kiocb
1652 * Finds a given iocb for cancellation.
1da177e4 1653 */
04b2fa9f
CH
1654static struct aio_kiocb *
1655lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1da177e4 1656{
04b2fa9f 1657 struct aio_kiocb *kiocb;
d00689af
ZB
1658
1659 assert_spin_locked(&ctx->ctx_lock);
1660
8a660890
KO
1661 if (key != KIOCB_KEY)
1662 return NULL;
1663
1da177e4 1664 /* TODO: use a hash or array, this sucks. */
04b2fa9f
CH
1665 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1666 if (kiocb->ki_user_iocb == iocb)
1da177e4
LT
1667 return kiocb;
1668 }
1669 return NULL;
1670}
1671
1672/* sys_io_cancel:
1673 * Attempts to cancel an iocb previously passed to io_submit. If
1674 * the operation is successfully cancelled, the resulting event is
1675 * copied into the memory pointed to by result without being placed
1676 * into the completion queue and 0 is returned. May fail with
1677 * -EFAULT if any of the data structures pointed to are invalid.
1678 * May fail with -EINVAL if aio_context specified by ctx_id is
1679 * invalid. May fail with -EAGAIN if the iocb specified was not
1680 * cancelled. Will fail with -ENOSYS if not implemented.
1681 */
002c8976
HC
1682SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1683 struct io_event __user *, result)
1da177e4 1684{
1da177e4 1685 struct kioctx *ctx;
04b2fa9f 1686 struct aio_kiocb *kiocb;
1da177e4
LT
1687 u32 key;
1688 int ret;
1689
1690 ret = get_user(key, &iocb->aio_key);
1691 if (unlikely(ret))
1692 return -EFAULT;
1693
1694 ctx = lookup_ioctx(ctx_id);
1695 if (unlikely(!ctx))
1696 return -EINVAL;
1697
1698 spin_lock_irq(&ctx->ctx_lock);
906b973c 1699
1da177e4 1700 kiocb = lookup_kiocb(ctx, iocb, key);
906b973c 1701 if (kiocb)
d52a8f9e 1702 ret = kiocb_cancel(kiocb);
906b973c
KO
1703 else
1704 ret = -EINVAL;
1705
1da177e4
LT
1706 spin_unlock_irq(&ctx->ctx_lock);
1707
906b973c 1708 if (!ret) {
bec68faa
KO
1709 /*
1710 * The result argument is no longer used - the io_event is
1711 * always delivered via the ring buffer. -EINPROGRESS indicates
1712 * cancellation is progress:
906b973c 1713 */
bec68faa 1714 ret = -EINPROGRESS;
906b973c 1715 }
1da177e4 1716
723be6e3 1717 percpu_ref_put(&ctx->users);
1da177e4
LT
1718
1719 return ret;
1720}
1721
1722/* io_getevents:
1723 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
1724 * the completion queue for the aio_context specified by ctx_id. If
1725 * it succeeds, the number of read events is returned. May fail with
1726 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1727 * out of range, if timeout is out of range. May fail with -EFAULT
1728 * if any of the memory specified is invalid. May return 0 or
1729 * < min_nr if the timeout specified by timeout has elapsed
1730 * before sufficient events are available, where timeout == NULL
1731 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 1732 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 1733 */
002c8976
HC
1734SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1735 long, min_nr,
1736 long, nr,
1737 struct io_event __user *, events,
1738 struct timespec __user *, timeout)
1da177e4
LT
1739{
1740 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1741 long ret = -EINVAL;
1742
1743 if (likely(ioctx)) {
2e410255 1744 if (likely(min_nr <= nr && min_nr >= 0))
1da177e4 1745 ret = read_events(ioctx, min_nr, nr, events, timeout);
723be6e3 1746 percpu_ref_put(&ioctx->users);
1da177e4 1747 }
1da177e4
LT
1748 return ret;
1749}
This page took 0.909002 seconds and 5 git commands to generate.