Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/binfmt_elf.c | |
3 | * | |
4 | * These are the functions used to load ELF format executables as used | |
5 | * on SVr4 machines. Information on the format may be found in the book | |
6 | * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support | |
7 | * Tools". | |
8 | * | |
9 | * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). | |
10 | */ | |
11 | ||
12 | #include <linux/module.h> | |
13 | #include <linux/kernel.h> | |
14 | #include <linux/fs.h> | |
15 | #include <linux/stat.h> | |
16 | #include <linux/time.h> | |
17 | #include <linux/mm.h> | |
18 | #include <linux/mman.h> | |
19 | #include <linux/a.out.h> | |
20 | #include <linux/errno.h> | |
21 | #include <linux/signal.h> | |
22 | #include <linux/binfmts.h> | |
23 | #include <linux/string.h> | |
24 | #include <linux/file.h> | |
25 | #include <linux/fcntl.h> | |
26 | #include <linux/ptrace.h> | |
27 | #include <linux/slab.h> | |
28 | #include <linux/shm.h> | |
29 | #include <linux/personality.h> | |
30 | #include <linux/elfcore.h> | |
31 | #include <linux/init.h> | |
32 | #include <linux/highuid.h> | |
33 | #include <linux/smp.h> | |
1da177e4 LT |
34 | #include <linux/compiler.h> |
35 | #include <linux/highmem.h> | |
36 | #include <linux/pagemap.h> | |
37 | #include <linux/security.h> | |
38 | #include <linux/syscalls.h> | |
39 | #include <linux/random.h> | |
f4e5cc2c | 40 | #include <linux/elf.h> |
7e80d0d0 | 41 | #include <linux/utsname.h> |
1da177e4 LT |
42 | #include <asm/uaccess.h> |
43 | #include <asm/param.h> | |
44 | #include <asm/page.h> | |
45 | ||
f4e5cc2c JJ |
46 | static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); |
47 | static int load_elf_library(struct file *); | |
bb1ad820 AM |
48 | static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, |
49 | int, int, unsigned long); | |
1da177e4 | 50 | |
1da177e4 LT |
51 | /* |
52 | * If we don't support core dumping, then supply a NULL so we | |
53 | * don't even try. | |
54 | */ | |
708e9a79 | 55 | #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) |
7dc0b22e | 56 | static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit); |
1da177e4 LT |
57 | #else |
58 | #define elf_core_dump NULL | |
59 | #endif | |
60 | ||
61 | #if ELF_EXEC_PAGESIZE > PAGE_SIZE | |
f4e5cc2c | 62 | #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE |
1da177e4 | 63 | #else |
f4e5cc2c | 64 | #define ELF_MIN_ALIGN PAGE_SIZE |
1da177e4 LT |
65 | #endif |
66 | ||
67 | #ifndef ELF_CORE_EFLAGS | |
68 | #define ELF_CORE_EFLAGS 0 | |
69 | #endif | |
70 | ||
71 | #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) | |
72 | #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) | |
73 | #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) | |
74 | ||
75 | static struct linux_binfmt elf_format = { | |
76 | .module = THIS_MODULE, | |
77 | .load_binary = load_elf_binary, | |
78 | .load_shlib = load_elf_library, | |
79 | .core_dump = elf_core_dump, | |
9fbbd4dd AK |
80 | .min_coredump = ELF_EXEC_PAGESIZE, |
81 | .hasvdso = 1 | |
1da177e4 LT |
82 | }; |
83 | ||
d4e3cc38 | 84 | #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) |
1da177e4 LT |
85 | |
86 | static int set_brk(unsigned long start, unsigned long end) | |
87 | { | |
88 | start = ELF_PAGEALIGN(start); | |
89 | end = ELF_PAGEALIGN(end); | |
90 | if (end > start) { | |
91 | unsigned long addr; | |
92 | down_write(¤t->mm->mmap_sem); | |
93 | addr = do_brk(start, end - start); | |
94 | up_write(¤t->mm->mmap_sem); | |
95 | if (BAD_ADDR(addr)) | |
96 | return addr; | |
97 | } | |
98 | current->mm->start_brk = current->mm->brk = end; | |
99 | return 0; | |
100 | } | |
101 | ||
1da177e4 LT |
102 | /* We need to explicitly zero any fractional pages |
103 | after the data section (i.e. bss). This would | |
104 | contain the junk from the file that should not | |
f4e5cc2c JJ |
105 | be in memory |
106 | */ | |
1da177e4 LT |
107 | static int padzero(unsigned long elf_bss) |
108 | { | |
109 | unsigned long nbyte; | |
110 | ||
111 | nbyte = ELF_PAGEOFFSET(elf_bss); | |
112 | if (nbyte) { | |
113 | nbyte = ELF_MIN_ALIGN - nbyte; | |
114 | if (clear_user((void __user *) elf_bss, nbyte)) | |
115 | return -EFAULT; | |
116 | } | |
117 | return 0; | |
118 | } | |
119 | ||
09c6dd3c | 120 | /* Let's use some macros to make this stack manipulation a little clearer */ |
1da177e4 LT |
121 | #ifdef CONFIG_STACK_GROWSUP |
122 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) | |
123 | #define STACK_ROUND(sp, items) \ | |
124 | ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) | |
f4e5cc2c JJ |
125 | #define STACK_ALLOC(sp, len) ({ \ |
126 | elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ | |
127 | old_sp; }) | |
1da177e4 LT |
128 | #else |
129 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) | |
130 | #define STACK_ROUND(sp, items) \ | |
131 | (((unsigned long) (sp - items)) &~ 15UL) | |
132 | #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) | |
133 | #endif | |
134 | ||
135 | static int | |
f4e5cc2c | 136 | create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, |
d20894a2 | 137 | unsigned long load_addr, unsigned long interp_load_addr) |
1da177e4 LT |
138 | { |
139 | unsigned long p = bprm->p; | |
140 | int argc = bprm->argc; | |
141 | int envc = bprm->envc; | |
142 | elf_addr_t __user *argv; | |
143 | elf_addr_t __user *envp; | |
144 | elf_addr_t __user *sp; | |
145 | elf_addr_t __user *u_platform; | |
146 | const char *k_platform = ELF_PLATFORM; | |
147 | int items; | |
148 | elf_addr_t *elf_info; | |
149 | int ei_index = 0; | |
150 | struct task_struct *tsk = current; | |
b6a2fea3 | 151 | struct vm_area_struct *vma; |
1da177e4 | 152 | |
d68c9d6a FBH |
153 | /* |
154 | * In some cases (e.g. Hyper-Threading), we want to avoid L1 | |
155 | * evictions by the processes running on the same package. One | |
156 | * thing we can do is to shuffle the initial stack for them. | |
157 | */ | |
158 | ||
159 | p = arch_align_stack(p); | |
160 | ||
1da177e4 LT |
161 | /* |
162 | * If this architecture has a platform capability string, copy it | |
163 | * to userspace. In some cases (Sparc), this info is impossible | |
164 | * for userspace to get any other way, in others (i386) it is | |
165 | * merely difficult. | |
166 | */ | |
1da177e4 LT |
167 | u_platform = NULL; |
168 | if (k_platform) { | |
169 | size_t len = strlen(k_platform) + 1; | |
170 | ||
1da177e4 LT |
171 | u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); |
172 | if (__copy_to_user(u_platform, k_platform, len)) | |
173 | return -EFAULT; | |
174 | } | |
175 | ||
176 | /* Create the ELF interpreter info */ | |
785d5570 | 177 | elf_info = (elf_addr_t *)current->mm->saved_auxv; |
4f9a58d7 | 178 | /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ |
1da177e4 | 179 | #define NEW_AUX_ENT(id, val) \ |
f4e5cc2c | 180 | do { \ |
785d5570 JJ |
181 | elf_info[ei_index++] = id; \ |
182 | elf_info[ei_index++] = val; \ | |
f4e5cc2c | 183 | } while (0) |
1da177e4 LT |
184 | |
185 | #ifdef ARCH_DLINFO | |
186 | /* | |
187 | * ARCH_DLINFO must come first so PPC can do its special alignment of | |
188 | * AUXV. | |
4f9a58d7 OH |
189 | * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in |
190 | * ARCH_DLINFO changes | |
1da177e4 LT |
191 | */ |
192 | ARCH_DLINFO; | |
193 | #endif | |
194 | NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); | |
195 | NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); | |
196 | NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); | |
197 | NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); | |
f4e5cc2c | 198 | NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); |
1da177e4 LT |
199 | NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); |
200 | NEW_AUX_ENT(AT_BASE, interp_load_addr); | |
201 | NEW_AUX_ENT(AT_FLAGS, 0); | |
202 | NEW_AUX_ENT(AT_ENTRY, exec->e_entry); | |
785d5570 JJ |
203 | NEW_AUX_ENT(AT_UID, tsk->uid); |
204 | NEW_AUX_ENT(AT_EUID, tsk->euid); | |
205 | NEW_AUX_ENT(AT_GID, tsk->gid); | |
206 | NEW_AUX_ENT(AT_EGID, tsk->egid); | |
207 | NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); | |
1da177e4 | 208 | if (k_platform) { |
f4e5cc2c | 209 | NEW_AUX_ENT(AT_PLATFORM, |
785d5570 | 210 | (elf_addr_t)(unsigned long)u_platform); |
1da177e4 LT |
211 | } |
212 | if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { | |
785d5570 | 213 | NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); |
1da177e4 LT |
214 | } |
215 | #undef NEW_AUX_ENT | |
216 | /* AT_NULL is zero; clear the rest too */ | |
217 | memset(&elf_info[ei_index], 0, | |
218 | sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); | |
219 | ||
220 | /* And advance past the AT_NULL entry. */ | |
221 | ei_index += 2; | |
222 | ||
223 | sp = STACK_ADD(p, ei_index); | |
224 | ||
d20894a2 | 225 | items = (argc + 1) + (envc + 1) + 1; |
1da177e4 LT |
226 | bprm->p = STACK_ROUND(sp, items); |
227 | ||
228 | /* Point sp at the lowest address on the stack */ | |
229 | #ifdef CONFIG_STACK_GROWSUP | |
230 | sp = (elf_addr_t __user *)bprm->p - items - ei_index; | |
f4e5cc2c | 231 | bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ |
1da177e4 LT |
232 | #else |
233 | sp = (elf_addr_t __user *)bprm->p; | |
234 | #endif | |
235 | ||
b6a2fea3 OW |
236 | |
237 | /* | |
238 | * Grow the stack manually; some architectures have a limit on how | |
239 | * far ahead a user-space access may be in order to grow the stack. | |
240 | */ | |
241 | vma = find_extend_vma(current->mm, bprm->p); | |
242 | if (!vma) | |
243 | return -EFAULT; | |
244 | ||
1da177e4 LT |
245 | /* Now, let's put argc (and argv, envp if appropriate) on the stack */ |
246 | if (__put_user(argc, sp++)) | |
247 | return -EFAULT; | |
d20894a2 AK |
248 | argv = sp; |
249 | envp = argv + argc + 1; | |
1da177e4 LT |
250 | |
251 | /* Populate argv and envp */ | |
a84a5059 | 252 | p = current->mm->arg_end = current->mm->arg_start; |
1da177e4 LT |
253 | while (argc-- > 0) { |
254 | size_t len; | |
841d5fb7 HC |
255 | if (__put_user((elf_addr_t)p, argv++)) |
256 | return -EFAULT; | |
b6a2fea3 OW |
257 | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); |
258 | if (!len || len > MAX_ARG_STRLEN) | |
1da177e4 LT |
259 | return 0; |
260 | p += len; | |
261 | } | |
262 | if (__put_user(0, argv)) | |
263 | return -EFAULT; | |
264 | current->mm->arg_end = current->mm->env_start = p; | |
265 | while (envc-- > 0) { | |
266 | size_t len; | |
841d5fb7 HC |
267 | if (__put_user((elf_addr_t)p, envp++)) |
268 | return -EFAULT; | |
b6a2fea3 OW |
269 | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); |
270 | if (!len || len > MAX_ARG_STRLEN) | |
1da177e4 LT |
271 | return 0; |
272 | p += len; | |
273 | } | |
274 | if (__put_user(0, envp)) | |
275 | return -EFAULT; | |
276 | current->mm->env_end = p; | |
277 | ||
278 | /* Put the elf_info on the stack in the right place. */ | |
279 | sp = (elf_addr_t __user *)envp + 1; | |
280 | if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) | |
281 | return -EFAULT; | |
282 | return 0; | |
283 | } | |
284 | ||
285 | #ifndef elf_map | |
286 | ||
287 | static unsigned long elf_map(struct file *filep, unsigned long addr, | |
cc503c1b JK |
288 | struct elf_phdr *eppnt, int prot, int type, |
289 | unsigned long total_size) | |
1da177e4 LT |
290 | { |
291 | unsigned long map_addr; | |
cc503c1b JK |
292 | unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); |
293 | unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); | |
294 | addr = ELF_PAGESTART(addr); | |
295 | size = ELF_PAGEALIGN(size); | |
1da177e4 | 296 | |
dda6ebde DG |
297 | /* mmap() will return -EINVAL if given a zero size, but a |
298 | * segment with zero filesize is perfectly valid */ | |
cc503c1b JK |
299 | if (!size) |
300 | return addr; | |
301 | ||
302 | down_write(¤t->mm->mmap_sem); | |
303 | /* | |
304 | * total_size is the size of the ELF (interpreter) image. | |
305 | * The _first_ mmap needs to know the full size, otherwise | |
306 | * randomization might put this image into an overlapping | |
307 | * position with the ELF binary image. (since size < total_size) | |
308 | * So we first map the 'big' image - and unmap the remainder at | |
309 | * the end. (which unmap is needed for ELF images with holes.) | |
310 | */ | |
311 | if (total_size) { | |
312 | total_size = ELF_PAGEALIGN(total_size); | |
313 | map_addr = do_mmap(filep, addr, total_size, prot, type, off); | |
314 | if (!BAD_ADDR(map_addr)) | |
315 | do_munmap(current->mm, map_addr+size, total_size-size); | |
316 | } else | |
317 | map_addr = do_mmap(filep, addr, size, prot, type, off); | |
318 | ||
1da177e4 LT |
319 | up_write(¤t->mm->mmap_sem); |
320 | return(map_addr); | |
321 | } | |
322 | ||
323 | #endif /* !elf_map */ | |
324 | ||
cc503c1b JK |
325 | static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) |
326 | { | |
327 | int i, first_idx = -1, last_idx = -1; | |
328 | ||
329 | for (i = 0; i < nr; i++) { | |
330 | if (cmds[i].p_type == PT_LOAD) { | |
331 | last_idx = i; | |
332 | if (first_idx == -1) | |
333 | first_idx = i; | |
334 | } | |
335 | } | |
336 | if (first_idx == -1) | |
337 | return 0; | |
338 | ||
339 | return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - | |
340 | ELF_PAGESTART(cmds[first_idx].p_vaddr); | |
341 | } | |
342 | ||
343 | ||
1da177e4 LT |
344 | /* This is much more generalized than the library routine read function, |
345 | so we keep this separate. Technically the library read function | |
346 | is only provided so that we can read a.out libraries that have | |
347 | an ELF header */ | |
348 | ||
f4e5cc2c | 349 | static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, |
cc503c1b JK |
350 | struct file *interpreter, unsigned long *interp_map_addr, |
351 | unsigned long no_base) | |
1da177e4 LT |
352 | { |
353 | struct elf_phdr *elf_phdata; | |
354 | struct elf_phdr *eppnt; | |
355 | unsigned long load_addr = 0; | |
356 | int load_addr_set = 0; | |
357 | unsigned long last_bss = 0, elf_bss = 0; | |
358 | unsigned long error = ~0UL; | |
cc503c1b | 359 | unsigned long total_size; |
1da177e4 LT |
360 | int retval, i, size; |
361 | ||
362 | /* First of all, some simple consistency checks */ | |
363 | if (interp_elf_ex->e_type != ET_EXEC && | |
364 | interp_elf_ex->e_type != ET_DYN) | |
365 | goto out; | |
366 | if (!elf_check_arch(interp_elf_ex)) | |
367 | goto out; | |
368 | if (!interpreter->f_op || !interpreter->f_op->mmap) | |
369 | goto out; | |
370 | ||
371 | /* | |
372 | * If the size of this structure has changed, then punt, since | |
373 | * we will be doing the wrong thing. | |
374 | */ | |
375 | if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) | |
376 | goto out; | |
377 | if (interp_elf_ex->e_phnum < 1 || | |
378 | interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) | |
379 | goto out; | |
380 | ||
381 | /* Now read in all of the header information */ | |
1da177e4 LT |
382 | size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; |
383 | if (size > ELF_MIN_ALIGN) | |
384 | goto out; | |
f4e5cc2c | 385 | elf_phdata = kmalloc(size, GFP_KERNEL); |
1da177e4 LT |
386 | if (!elf_phdata) |
387 | goto out; | |
388 | ||
f4e5cc2c JJ |
389 | retval = kernel_read(interpreter, interp_elf_ex->e_phoff, |
390 | (char *)elf_phdata,size); | |
1da177e4 LT |
391 | error = -EIO; |
392 | if (retval != size) { | |
393 | if (retval < 0) | |
394 | error = retval; | |
395 | goto out_close; | |
396 | } | |
397 | ||
cc503c1b JK |
398 | total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); |
399 | if (!total_size) { | |
400 | error = -EINVAL; | |
401 | goto out_close; | |
402 | } | |
403 | ||
1da177e4 | 404 | eppnt = elf_phdata; |
f4e5cc2c JJ |
405 | for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { |
406 | if (eppnt->p_type == PT_LOAD) { | |
407 | int elf_type = MAP_PRIVATE | MAP_DENYWRITE; | |
408 | int elf_prot = 0; | |
409 | unsigned long vaddr = 0; | |
410 | unsigned long k, map_addr; | |
411 | ||
412 | if (eppnt->p_flags & PF_R) | |
413 | elf_prot = PROT_READ; | |
414 | if (eppnt->p_flags & PF_W) | |
415 | elf_prot |= PROT_WRITE; | |
416 | if (eppnt->p_flags & PF_X) | |
417 | elf_prot |= PROT_EXEC; | |
418 | vaddr = eppnt->p_vaddr; | |
419 | if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) | |
420 | elf_type |= MAP_FIXED; | |
cc503c1b JK |
421 | else if (no_base && interp_elf_ex->e_type == ET_DYN) |
422 | load_addr = -vaddr; | |
f4e5cc2c JJ |
423 | |
424 | map_addr = elf_map(interpreter, load_addr + vaddr, | |
bb1ad820 | 425 | eppnt, elf_prot, elf_type, total_size); |
cc503c1b JK |
426 | total_size = 0; |
427 | if (!*interp_map_addr) | |
428 | *interp_map_addr = map_addr; | |
f4e5cc2c JJ |
429 | error = map_addr; |
430 | if (BAD_ADDR(map_addr)) | |
431 | goto out_close; | |
432 | ||
433 | if (!load_addr_set && | |
434 | interp_elf_ex->e_type == ET_DYN) { | |
435 | load_addr = map_addr - ELF_PAGESTART(vaddr); | |
436 | load_addr_set = 1; | |
437 | } | |
438 | ||
439 | /* | |
440 | * Check to see if the section's size will overflow the | |
441 | * allowed task size. Note that p_filesz must always be | |
442 | * <= p_memsize so it's only necessary to check p_memsz. | |
443 | */ | |
444 | k = load_addr + eppnt->p_vaddr; | |
ce51059b | 445 | if (BAD_ADDR(k) || |
f4e5cc2c JJ |
446 | eppnt->p_filesz > eppnt->p_memsz || |
447 | eppnt->p_memsz > TASK_SIZE || | |
448 | TASK_SIZE - eppnt->p_memsz < k) { | |
449 | error = -ENOMEM; | |
450 | goto out_close; | |
451 | } | |
452 | ||
453 | /* | |
454 | * Find the end of the file mapping for this phdr, and | |
455 | * keep track of the largest address we see for this. | |
456 | */ | |
457 | k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; | |
458 | if (k > elf_bss) | |
459 | elf_bss = k; | |
460 | ||
461 | /* | |
462 | * Do the same thing for the memory mapping - between | |
463 | * elf_bss and last_bss is the bss section. | |
464 | */ | |
465 | k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; | |
466 | if (k > last_bss) | |
467 | last_bss = k; | |
468 | } | |
1da177e4 LT |
469 | } |
470 | ||
471 | /* | |
472 | * Now fill out the bss section. First pad the last page up | |
473 | * to the page boundary, and then perform a mmap to make sure | |
474 | * that there are zero-mapped pages up to and including the | |
475 | * last bss page. | |
476 | */ | |
477 | if (padzero(elf_bss)) { | |
478 | error = -EFAULT; | |
479 | goto out_close; | |
480 | } | |
481 | ||
f4e5cc2c JJ |
482 | /* What we have mapped so far */ |
483 | elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); | |
1da177e4 LT |
484 | |
485 | /* Map the last of the bss segment */ | |
486 | if (last_bss > elf_bss) { | |
487 | down_write(¤t->mm->mmap_sem); | |
488 | error = do_brk(elf_bss, last_bss - elf_bss); | |
489 | up_write(¤t->mm->mmap_sem); | |
490 | if (BAD_ADDR(error)) | |
491 | goto out_close; | |
492 | } | |
493 | ||
cc503c1b | 494 | error = load_addr; |
1da177e4 LT |
495 | |
496 | out_close: | |
497 | kfree(elf_phdata); | |
498 | out: | |
499 | return error; | |
500 | } | |
501 | ||
1da177e4 LT |
502 | /* |
503 | * These are the functions used to load ELF style executables and shared | |
504 | * libraries. There is no binary dependent code anywhere else. | |
505 | */ | |
506 | ||
507 | #define INTERPRETER_NONE 0 | |
1da177e4 LT |
508 | #define INTERPRETER_ELF 2 |
509 | ||
913bd906 | 510 | #ifndef STACK_RND_MASK |
d1cabd63 | 511 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ |
913bd906 | 512 | #endif |
1da177e4 LT |
513 | |
514 | static unsigned long randomize_stack_top(unsigned long stack_top) | |
515 | { | |
516 | unsigned int random_variable = 0; | |
517 | ||
c16b63e0 AK |
518 | if ((current->flags & PF_RANDOMIZE) && |
519 | !(current->personality & ADDR_NO_RANDOMIZE)) { | |
913bd906 AK |
520 | random_variable = get_random_int() & STACK_RND_MASK; |
521 | random_variable <<= PAGE_SHIFT; | |
522 | } | |
1da177e4 | 523 | #ifdef CONFIG_STACK_GROWSUP |
913bd906 | 524 | return PAGE_ALIGN(stack_top) + random_variable; |
1da177e4 | 525 | #else |
913bd906 | 526 | return PAGE_ALIGN(stack_top) - random_variable; |
1da177e4 LT |
527 | #endif |
528 | } | |
529 | ||
f4e5cc2c | 530 | static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) |
1da177e4 LT |
531 | { |
532 | struct file *interpreter = NULL; /* to shut gcc up */ | |
533 | unsigned long load_addr = 0, load_bias = 0; | |
534 | int load_addr_set = 0; | |
535 | char * elf_interpreter = NULL; | |
1da177e4 | 536 | unsigned long error; |
f4e5cc2c | 537 | struct elf_phdr *elf_ppnt, *elf_phdata; |
1da177e4 LT |
538 | unsigned long elf_bss, elf_brk; |
539 | int elf_exec_fileno; | |
540 | int retval, i; | |
541 | unsigned int size; | |
cc503c1b JK |
542 | unsigned long elf_entry; |
543 | unsigned long interp_load_addr = 0; | |
1da177e4 LT |
544 | unsigned long start_code, end_code, start_data, end_data; |
545 | unsigned long reloc_func_desc = 0; | |
8de61e69 | 546 | int executable_stack = EXSTACK_DEFAULT; |
1da177e4 LT |
547 | unsigned long def_flags = 0; |
548 | struct { | |
549 | struct elfhdr elf_ex; | |
550 | struct elfhdr interp_elf_ex; | |
551 | struct exec interp_ex; | |
552 | } *loc; | |
553 | ||
554 | loc = kmalloc(sizeof(*loc), GFP_KERNEL); | |
555 | if (!loc) { | |
556 | retval = -ENOMEM; | |
557 | goto out_ret; | |
558 | } | |
559 | ||
560 | /* Get the exec-header */ | |
f4e5cc2c | 561 | loc->elf_ex = *((struct elfhdr *)bprm->buf); |
1da177e4 LT |
562 | |
563 | retval = -ENOEXEC; | |
564 | /* First of all, some simple consistency checks */ | |
565 | if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
566 | goto out; | |
567 | ||
568 | if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) | |
569 | goto out; | |
570 | if (!elf_check_arch(&loc->elf_ex)) | |
571 | goto out; | |
572 | if (!bprm->file->f_op||!bprm->file->f_op->mmap) | |
573 | goto out; | |
574 | ||
575 | /* Now read in all of the header information */ | |
1da177e4 LT |
576 | if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) |
577 | goto out; | |
578 | if (loc->elf_ex.e_phnum < 1 || | |
579 | loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) | |
580 | goto out; | |
581 | size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); | |
582 | retval = -ENOMEM; | |
f4e5cc2c | 583 | elf_phdata = kmalloc(size, GFP_KERNEL); |
1da177e4 LT |
584 | if (!elf_phdata) |
585 | goto out; | |
586 | ||
f4e5cc2c JJ |
587 | retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, |
588 | (char *)elf_phdata, size); | |
1da177e4 LT |
589 | if (retval != size) { |
590 | if (retval >= 0) | |
591 | retval = -EIO; | |
592 | goto out_free_ph; | |
593 | } | |
594 | ||
1da177e4 LT |
595 | retval = get_unused_fd(); |
596 | if (retval < 0) | |
fd8328be | 597 | goto out_free_ph; |
1da177e4 LT |
598 | get_file(bprm->file); |
599 | fd_install(elf_exec_fileno = retval, bprm->file); | |
600 | ||
601 | elf_ppnt = elf_phdata; | |
602 | elf_bss = 0; | |
603 | elf_brk = 0; | |
604 | ||
605 | start_code = ~0UL; | |
606 | end_code = 0; | |
607 | start_data = 0; | |
608 | end_data = 0; | |
609 | ||
610 | for (i = 0; i < loc->elf_ex.e_phnum; i++) { | |
611 | if (elf_ppnt->p_type == PT_INTERP) { | |
612 | /* This is the program interpreter used for | |
613 | * shared libraries - for now assume that this | |
614 | * is an a.out format binary | |
615 | */ | |
1da177e4 LT |
616 | retval = -ENOEXEC; |
617 | if (elf_ppnt->p_filesz > PATH_MAX || | |
618 | elf_ppnt->p_filesz < 2) | |
619 | goto out_free_file; | |
620 | ||
621 | retval = -ENOMEM; | |
792db3af | 622 | elf_interpreter = kmalloc(elf_ppnt->p_filesz, |
f4e5cc2c | 623 | GFP_KERNEL); |
1da177e4 LT |
624 | if (!elf_interpreter) |
625 | goto out_free_file; | |
626 | ||
627 | retval = kernel_read(bprm->file, elf_ppnt->p_offset, | |
f4e5cc2c JJ |
628 | elf_interpreter, |
629 | elf_ppnt->p_filesz); | |
1da177e4 LT |
630 | if (retval != elf_ppnt->p_filesz) { |
631 | if (retval >= 0) | |
632 | retval = -EIO; | |
633 | goto out_free_interp; | |
634 | } | |
635 | /* make sure path is NULL terminated */ | |
636 | retval = -ENOEXEC; | |
637 | if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') | |
638 | goto out_free_interp; | |
639 | ||
1da177e4 LT |
640 | /* |
641 | * The early SET_PERSONALITY here is so that the lookup | |
642 | * for the interpreter happens in the namespace of the | |
643 | * to-be-execed image. SET_PERSONALITY can select an | |
644 | * alternate root. | |
645 | * | |
646 | * However, SET_PERSONALITY is NOT allowed to switch | |
647 | * this task into the new images's memory mapping | |
648 | * policy - that is, TASK_SIZE must still evaluate to | |
649 | * that which is appropriate to the execing application. | |
650 | * This is because exit_mmap() needs to have TASK_SIZE | |
651 | * evaluate to the size of the old image. | |
652 | * | |
653 | * So if (say) a 64-bit application is execing a 32-bit | |
654 | * application it is the architecture's responsibility | |
655 | * to defer changing the value of TASK_SIZE until the | |
656 | * switch really is going to happen - do this in | |
657 | * flush_thread(). - akpm | |
658 | */ | |
612a95b4 | 659 | SET_PERSONALITY(loc->elf_ex, 0); |
1da177e4 LT |
660 | |
661 | interpreter = open_exec(elf_interpreter); | |
662 | retval = PTR_ERR(interpreter); | |
663 | if (IS_ERR(interpreter)) | |
664 | goto out_free_interp; | |
1fb84496 AD |
665 | |
666 | /* | |
667 | * If the binary is not readable then enforce | |
668 | * mm->dumpable = 0 regardless of the interpreter's | |
669 | * permissions. | |
670 | */ | |
671 | if (file_permission(interpreter, MAY_READ) < 0) | |
672 | bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; | |
673 | ||
f4e5cc2c JJ |
674 | retval = kernel_read(interpreter, 0, bprm->buf, |
675 | BINPRM_BUF_SIZE); | |
1da177e4 LT |
676 | if (retval != BINPRM_BUF_SIZE) { |
677 | if (retval >= 0) | |
678 | retval = -EIO; | |
679 | goto out_free_dentry; | |
680 | } | |
681 | ||
682 | /* Get the exec headers */ | |
f4e5cc2c JJ |
683 | loc->interp_ex = *((struct exec *)bprm->buf); |
684 | loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); | |
1da177e4 LT |
685 | break; |
686 | } | |
687 | elf_ppnt++; | |
688 | } | |
689 | ||
690 | elf_ppnt = elf_phdata; | |
691 | for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) | |
692 | if (elf_ppnt->p_type == PT_GNU_STACK) { | |
693 | if (elf_ppnt->p_flags & PF_X) | |
694 | executable_stack = EXSTACK_ENABLE_X; | |
695 | else | |
696 | executable_stack = EXSTACK_DISABLE_X; | |
697 | break; | |
698 | } | |
1da177e4 LT |
699 | |
700 | /* Some simple consistency checks for the interpreter */ | |
701 | if (elf_interpreter) { | |
1da177e4 | 702 | retval = -ELIBBAD; |
d20894a2 AK |
703 | /* Not an ELF interpreter */ |
704 | if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
1da177e4 | 705 | goto out_free_dentry; |
1da177e4 | 706 | /* Verify the interpreter has a valid arch */ |
d20894a2 | 707 | if (!elf_check_arch(&loc->interp_elf_ex)) |
1da177e4 LT |
708 | goto out_free_dentry; |
709 | } else { | |
710 | /* Executables without an interpreter also need a personality */ | |
612a95b4 | 711 | SET_PERSONALITY(loc->elf_ex, 0); |
1da177e4 LT |
712 | } |
713 | ||
1da177e4 LT |
714 | /* Flush all traces of the currently running executable */ |
715 | retval = flush_old_exec(bprm); | |
716 | if (retval) | |
717 | goto out_free_dentry; | |
718 | ||
1da177e4 | 719 | /* OK, This is the point of no return */ |
1da177e4 LT |
720 | current->flags &= ~PF_FORKNOEXEC; |
721 | current->mm->def_flags = def_flags; | |
722 | ||
723 | /* Do this immediately, since STACK_TOP as used in setup_arg_pages | |
724 | may depend on the personality. */ | |
612a95b4 | 725 | SET_PERSONALITY(loc->elf_ex, 0); |
1da177e4 LT |
726 | if (elf_read_implies_exec(loc->elf_ex, executable_stack)) |
727 | current->personality |= READ_IMPLIES_EXEC; | |
728 | ||
f4e5cc2c | 729 | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
1da177e4 LT |
730 | current->flags |= PF_RANDOMIZE; |
731 | arch_pick_mmap_layout(current->mm); | |
732 | ||
733 | /* Do this so that we can load the interpreter, if need be. We will | |
734 | change some of these later */ | |
1da177e4 | 735 | current->mm->free_area_cache = current->mm->mmap_base; |
1363c3cd | 736 | current->mm->cached_hole_size = 0; |
1da177e4 LT |
737 | retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), |
738 | executable_stack); | |
739 | if (retval < 0) { | |
740 | send_sig(SIGKILL, current, 0); | |
741 | goto out_free_dentry; | |
742 | } | |
743 | ||
1da177e4 LT |
744 | current->mm->start_stack = bprm->p; |
745 | ||
746 | /* Now we do a little grungy work by mmaping the ELF image into | |
cc503c1b | 747 | the correct location in memory. */ |
f4e5cc2c JJ |
748 | for(i = 0, elf_ppnt = elf_phdata; |
749 | i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { | |
1da177e4 LT |
750 | int elf_prot = 0, elf_flags; |
751 | unsigned long k, vaddr; | |
752 | ||
753 | if (elf_ppnt->p_type != PT_LOAD) | |
754 | continue; | |
755 | ||
756 | if (unlikely (elf_brk > elf_bss)) { | |
757 | unsigned long nbyte; | |
758 | ||
759 | /* There was a PT_LOAD segment with p_memsz > p_filesz | |
760 | before this one. Map anonymous pages, if needed, | |
761 | and clear the area. */ | |
762 | retval = set_brk (elf_bss + load_bias, | |
763 | elf_brk + load_bias); | |
764 | if (retval) { | |
765 | send_sig(SIGKILL, current, 0); | |
766 | goto out_free_dentry; | |
767 | } | |
768 | nbyte = ELF_PAGEOFFSET(elf_bss); | |
769 | if (nbyte) { | |
770 | nbyte = ELF_MIN_ALIGN - nbyte; | |
771 | if (nbyte > elf_brk - elf_bss) | |
772 | nbyte = elf_brk - elf_bss; | |
773 | if (clear_user((void __user *)elf_bss + | |
774 | load_bias, nbyte)) { | |
775 | /* | |
776 | * This bss-zeroing can fail if the ELF | |
f4e5cc2c | 777 | * file specifies odd protections. So |
1da177e4 LT |
778 | * we don't check the return value |
779 | */ | |
780 | } | |
781 | } | |
782 | } | |
783 | ||
f4e5cc2c JJ |
784 | if (elf_ppnt->p_flags & PF_R) |
785 | elf_prot |= PROT_READ; | |
786 | if (elf_ppnt->p_flags & PF_W) | |
787 | elf_prot |= PROT_WRITE; | |
788 | if (elf_ppnt->p_flags & PF_X) | |
789 | elf_prot |= PROT_EXEC; | |
1da177e4 | 790 | |
f4e5cc2c | 791 | elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; |
1da177e4 LT |
792 | |
793 | vaddr = elf_ppnt->p_vaddr; | |
794 | if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { | |
795 | elf_flags |= MAP_FIXED; | |
796 | } else if (loc->elf_ex.e_type == ET_DYN) { | |
f4e5cc2c JJ |
797 | /* Try and get dynamic programs out of the way of the |
798 | * default mmap base, as well as whatever program they | |
799 | * might try to exec. This is because the brk will | |
800 | * follow the loader, and is not movable. */ | |
cc503c1b JK |
801 | #ifdef CONFIG_X86 |
802 | load_bias = 0; | |
803 | #else | |
90cb28e8 | 804 | load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); |
cc503c1b | 805 | #endif |
1da177e4 LT |
806 | } |
807 | ||
f4e5cc2c | 808 | error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, |
bb1ad820 | 809 | elf_prot, elf_flags, 0); |
1da177e4 LT |
810 | if (BAD_ADDR(error)) { |
811 | send_sig(SIGKILL, current, 0); | |
b140f251 AK |
812 | retval = IS_ERR((void *)error) ? |
813 | PTR_ERR((void*)error) : -EINVAL; | |
1da177e4 LT |
814 | goto out_free_dentry; |
815 | } | |
816 | ||
817 | if (!load_addr_set) { | |
818 | load_addr_set = 1; | |
819 | load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); | |
820 | if (loc->elf_ex.e_type == ET_DYN) { | |
821 | load_bias += error - | |
822 | ELF_PAGESTART(load_bias + vaddr); | |
823 | load_addr += load_bias; | |
824 | reloc_func_desc = load_bias; | |
825 | } | |
826 | } | |
827 | k = elf_ppnt->p_vaddr; | |
f4e5cc2c JJ |
828 | if (k < start_code) |
829 | start_code = k; | |
830 | if (start_data < k) | |
831 | start_data = k; | |
1da177e4 LT |
832 | |
833 | /* | |
834 | * Check to see if the section's size will overflow the | |
835 | * allowed task size. Note that p_filesz must always be | |
836 | * <= p_memsz so it is only necessary to check p_memsz. | |
837 | */ | |
ce51059b | 838 | if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || |
1da177e4 LT |
839 | elf_ppnt->p_memsz > TASK_SIZE || |
840 | TASK_SIZE - elf_ppnt->p_memsz < k) { | |
f4e5cc2c | 841 | /* set_brk can never work. Avoid overflows. */ |
1da177e4 | 842 | send_sig(SIGKILL, current, 0); |
b140f251 | 843 | retval = -EINVAL; |
1da177e4 LT |
844 | goto out_free_dentry; |
845 | } | |
846 | ||
847 | k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | |
848 | ||
849 | if (k > elf_bss) | |
850 | elf_bss = k; | |
851 | if ((elf_ppnt->p_flags & PF_X) && end_code < k) | |
852 | end_code = k; | |
853 | if (end_data < k) | |
854 | end_data = k; | |
855 | k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | |
856 | if (k > elf_brk) | |
857 | elf_brk = k; | |
858 | } | |
859 | ||
860 | loc->elf_ex.e_entry += load_bias; | |
861 | elf_bss += load_bias; | |
862 | elf_brk += load_bias; | |
863 | start_code += load_bias; | |
864 | end_code += load_bias; | |
865 | start_data += load_bias; | |
866 | end_data += load_bias; | |
867 | ||
868 | /* Calling set_brk effectively mmaps the pages that we need | |
869 | * for the bss and break sections. We must do this before | |
870 | * mapping in the interpreter, to make sure it doesn't wind | |
871 | * up getting placed where the bss needs to go. | |
872 | */ | |
873 | retval = set_brk(elf_bss, elf_brk); | |
874 | if (retval) { | |
875 | send_sig(SIGKILL, current, 0); | |
876 | goto out_free_dentry; | |
877 | } | |
6de50517 | 878 | if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { |
1da177e4 LT |
879 | send_sig(SIGSEGV, current, 0); |
880 | retval = -EFAULT; /* Nobody gets to see this, but.. */ | |
881 | goto out_free_dentry; | |
882 | } | |
883 | ||
884 | if (elf_interpreter) { | |
d20894a2 AK |
885 | unsigned long uninitialized_var(interp_map_addr); |
886 | ||
887 | elf_entry = load_elf_interp(&loc->interp_elf_ex, | |
888 | interpreter, | |
889 | &interp_map_addr, | |
890 | load_bias); | |
891 | if (!IS_ERR((void *)elf_entry)) { | |
892 | /* | |
893 | * load_elf_interp() returns relocation | |
894 | * adjustment | |
895 | */ | |
896 | interp_load_addr = elf_entry; | |
897 | elf_entry += loc->interp_elf_ex.e_entry; | |
cc503c1b | 898 | } |
1da177e4 | 899 | if (BAD_ADDR(elf_entry)) { |
1da177e4 | 900 | force_sig(SIGSEGV, current); |
ce51059b CE |
901 | retval = IS_ERR((void *)elf_entry) ? |
902 | (int)elf_entry : -EINVAL; | |
1da177e4 LT |
903 | goto out_free_dentry; |
904 | } | |
905 | reloc_func_desc = interp_load_addr; | |
906 | ||
907 | allow_write_access(interpreter); | |
908 | fput(interpreter); | |
909 | kfree(elf_interpreter); | |
910 | } else { | |
911 | elf_entry = loc->elf_ex.e_entry; | |
5342fba5 | 912 | if (BAD_ADDR(elf_entry)) { |
ce51059b CE |
913 | force_sig(SIGSEGV, current); |
914 | retval = -EINVAL; | |
5342fba5 SS |
915 | goto out_free_dentry; |
916 | } | |
1da177e4 LT |
917 | } |
918 | ||
919 | kfree(elf_phdata); | |
920 | ||
d20894a2 | 921 | sys_close(elf_exec_fileno); |
1da177e4 LT |
922 | |
923 | set_binfmt(&elf_format); | |
924 | ||
547ee84c BH |
925 | #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES |
926 | retval = arch_setup_additional_pages(bprm, executable_stack); | |
927 | if (retval < 0) { | |
928 | send_sig(SIGKILL, current, 0); | |
18c8baff | 929 | goto out; |
547ee84c BH |
930 | } |
931 | #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ | |
932 | ||
1da177e4 LT |
933 | compute_creds(bprm); |
934 | current->flags &= ~PF_FORKNOEXEC; | |
b6a2fea3 | 935 | retval = create_elf_tables(bprm, &loc->elf_ex, |
f4e5cc2c | 936 | load_addr, interp_load_addr); |
b6a2fea3 OW |
937 | if (retval < 0) { |
938 | send_sig(SIGKILL, current, 0); | |
939 | goto out; | |
940 | } | |
1da177e4 | 941 | /* N.B. passed_fileno might not be initialized? */ |
1da177e4 LT |
942 | current->mm->end_code = end_code; |
943 | current->mm->start_code = start_code; | |
944 | current->mm->start_data = start_data; | |
945 | current->mm->end_data = end_data; | |
946 | current->mm->start_stack = bprm->p; | |
947 | ||
c1d171a0 | 948 | #ifdef arch_randomize_brk |
32a93233 | 949 | if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) |
c1d171a0 JK |
950 | current->mm->brk = current->mm->start_brk = |
951 | arch_randomize_brk(current->mm); | |
952 | #endif | |
953 | ||
1da177e4 LT |
954 | if (current->personality & MMAP_PAGE_ZERO) { |
955 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, | |
956 | and some applications "depend" upon this behavior. | |
957 | Since we do not have the power to recompile these, we | |
f4e5cc2c | 958 | emulate the SVr4 behavior. Sigh. */ |
1da177e4 LT |
959 | down_write(¤t->mm->mmap_sem); |
960 | error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, | |
961 | MAP_FIXED | MAP_PRIVATE, 0); | |
962 | up_write(¤t->mm->mmap_sem); | |
963 | } | |
964 | ||
965 | #ifdef ELF_PLAT_INIT | |
966 | /* | |
967 | * The ABI may specify that certain registers be set up in special | |
968 | * ways (on i386 %edx is the address of a DT_FINI function, for | |
969 | * example. In addition, it may also specify (eg, PowerPC64 ELF) | |
970 | * that the e_entry field is the address of the function descriptor | |
971 | * for the startup routine, rather than the address of the startup | |
972 | * routine itself. This macro performs whatever initialization to | |
973 | * the regs structure is required as well as any relocations to the | |
974 | * function descriptor entries when executing dynamically links apps. | |
975 | */ | |
976 | ELF_PLAT_INIT(regs, reloc_func_desc); | |
977 | #endif | |
978 | ||
979 | start_thread(regs, elf_entry, bprm->p); | |
980 | if (unlikely(current->ptrace & PT_PTRACED)) { | |
981 | if (current->ptrace & PT_TRACE_EXEC) | |
982 | ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP); | |
983 | else | |
984 | send_sig(SIGTRAP, current, 0); | |
985 | } | |
986 | retval = 0; | |
987 | out: | |
988 | kfree(loc); | |
989 | out_ret: | |
990 | return retval; | |
991 | ||
992 | /* error cleanup */ | |
993 | out_free_dentry: | |
994 | allow_write_access(interpreter); | |
995 | if (interpreter) | |
996 | fput(interpreter); | |
997 | out_free_interp: | |
f99d49ad | 998 | kfree(elf_interpreter); |
1da177e4 LT |
999 | out_free_file: |
1000 | sys_close(elf_exec_fileno); | |
1da177e4 LT |
1001 | out_free_ph: |
1002 | kfree(elf_phdata); | |
1003 | goto out; | |
1004 | } | |
1005 | ||
1006 | /* This is really simpleminded and specialized - we are loading an | |
1007 | a.out library that is given an ELF header. */ | |
1da177e4 LT |
1008 | static int load_elf_library(struct file *file) |
1009 | { | |
1010 | struct elf_phdr *elf_phdata; | |
1011 | struct elf_phdr *eppnt; | |
1012 | unsigned long elf_bss, bss, len; | |
1013 | int retval, error, i, j; | |
1014 | struct elfhdr elf_ex; | |
1015 | ||
1016 | error = -ENOEXEC; | |
f4e5cc2c | 1017 | retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); |
1da177e4 LT |
1018 | if (retval != sizeof(elf_ex)) |
1019 | goto out; | |
1020 | ||
1021 | if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | |
1022 | goto out; | |
1023 | ||
1024 | /* First of all, some simple consistency checks */ | |
1025 | if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || | |
f4e5cc2c | 1026 | !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) |
1da177e4 LT |
1027 | goto out; |
1028 | ||
1029 | /* Now read in all of the header information */ | |
1030 | ||
1031 | j = sizeof(struct elf_phdr) * elf_ex.e_phnum; | |
1032 | /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ | |
1033 | ||
1034 | error = -ENOMEM; | |
1035 | elf_phdata = kmalloc(j, GFP_KERNEL); | |
1036 | if (!elf_phdata) | |
1037 | goto out; | |
1038 | ||
1039 | eppnt = elf_phdata; | |
1040 | error = -ENOEXEC; | |
1041 | retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); | |
1042 | if (retval != j) | |
1043 | goto out_free_ph; | |
1044 | ||
1045 | for (j = 0, i = 0; i<elf_ex.e_phnum; i++) | |
1046 | if ((eppnt + i)->p_type == PT_LOAD) | |
1047 | j++; | |
1048 | if (j != 1) | |
1049 | goto out_free_ph; | |
1050 | ||
1051 | while (eppnt->p_type != PT_LOAD) | |
1052 | eppnt++; | |
1053 | ||
1054 | /* Now use mmap to map the library into memory. */ | |
1055 | down_write(¤t->mm->mmap_sem); | |
1056 | error = do_mmap(file, | |
1057 | ELF_PAGESTART(eppnt->p_vaddr), | |
1058 | (eppnt->p_filesz + | |
1059 | ELF_PAGEOFFSET(eppnt->p_vaddr)), | |
1060 | PROT_READ | PROT_WRITE | PROT_EXEC, | |
1061 | MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, | |
1062 | (eppnt->p_offset - | |
1063 | ELF_PAGEOFFSET(eppnt->p_vaddr))); | |
1064 | up_write(¤t->mm->mmap_sem); | |
1065 | if (error != ELF_PAGESTART(eppnt->p_vaddr)) | |
1066 | goto out_free_ph; | |
1067 | ||
1068 | elf_bss = eppnt->p_vaddr + eppnt->p_filesz; | |
1069 | if (padzero(elf_bss)) { | |
1070 | error = -EFAULT; | |
1071 | goto out_free_ph; | |
1072 | } | |
1073 | ||
f4e5cc2c JJ |
1074 | len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + |
1075 | ELF_MIN_ALIGN - 1); | |
1da177e4 LT |
1076 | bss = eppnt->p_memsz + eppnt->p_vaddr; |
1077 | if (bss > len) { | |
1078 | down_write(¤t->mm->mmap_sem); | |
1079 | do_brk(len, bss - len); | |
1080 | up_write(¤t->mm->mmap_sem); | |
1081 | } | |
1082 | error = 0; | |
1083 | ||
1084 | out_free_ph: | |
1085 | kfree(elf_phdata); | |
1086 | out: | |
1087 | return error; | |
1088 | } | |
1089 | ||
1090 | /* | |
1091 | * Note that some platforms still use traditional core dumps and not | |
1092 | * the ELF core dump. Each platform can select it as appropriate. | |
1093 | */ | |
708e9a79 | 1094 | #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) |
1da177e4 LT |
1095 | |
1096 | /* | |
1097 | * ELF core dumper | |
1098 | * | |
1099 | * Modelled on fs/exec.c:aout_core_dump() | |
1100 | * Jeremy Fitzhardinge <jeremy@sw.oz.au> | |
1101 | */ | |
1102 | /* | |
1103 | * These are the only things you should do on a core-file: use only these | |
1104 | * functions to write out all the necessary info. | |
1105 | */ | |
1106 | static int dump_write(struct file *file, const void *addr, int nr) | |
1107 | { | |
1108 | return file->f_op->write(file, addr, nr, &file->f_pos) == nr; | |
1109 | } | |
1110 | ||
5db92850 | 1111 | static int dump_seek(struct file *file, loff_t off) |
1da177e4 | 1112 | { |
d025c9db | 1113 | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { |
7f14daa1 | 1114 | if (file->f_op->llseek(file, off, SEEK_CUR) < 0) |
1da177e4 | 1115 | return 0; |
d025c9db AK |
1116 | } else { |
1117 | char *buf = (char *)get_zeroed_page(GFP_KERNEL); | |
1118 | if (!buf) | |
1119 | return 0; | |
1120 | while (off > 0) { | |
1121 | unsigned long n = off; | |
1122 | if (n > PAGE_SIZE) | |
1123 | n = PAGE_SIZE; | |
1124 | if (!dump_write(file, buf, n)) | |
1125 | return 0; | |
1126 | off -= n; | |
1127 | } | |
1128 | free_page((unsigned long)buf); | |
1129 | } | |
1da177e4 LT |
1130 | return 1; |
1131 | } | |
1132 | ||
1133 | /* | |
82df3973 | 1134 | * Decide what to dump of a segment, part, all or none. |
1da177e4 | 1135 | */ |
82df3973 RM |
1136 | static unsigned long vma_dump_size(struct vm_area_struct *vma, |
1137 | unsigned long mm_flags) | |
1da177e4 | 1138 | { |
e5b97dde RM |
1139 | /* The vma can be set up to tell us the answer directly. */ |
1140 | if (vma->vm_flags & VM_ALWAYSDUMP) | |
82df3973 | 1141 | goto whole; |
e5b97dde | 1142 | |
1da177e4 LT |
1143 | /* Do not dump I/O mapped devices or special mappings */ |
1144 | if (vma->vm_flags & (VM_IO | VM_RESERVED)) | |
1145 | return 0; | |
1146 | ||
82df3973 RM |
1147 | #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type)) |
1148 | ||
a1b59e80 KH |
1149 | /* By default, dump shared memory if mapped from an anonymous file. */ |
1150 | if (vma->vm_flags & VM_SHARED) { | |
82df3973 RM |
1151 | if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ? |
1152 | FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) | |
1153 | goto whole; | |
1154 | return 0; | |
a1b59e80 | 1155 | } |
1da177e4 | 1156 | |
82df3973 RM |
1157 | /* Dump segments that have been written to. */ |
1158 | if (vma->anon_vma && FILTER(ANON_PRIVATE)) | |
1159 | goto whole; | |
1160 | if (vma->vm_file == NULL) | |
1161 | return 0; | |
1da177e4 | 1162 | |
82df3973 RM |
1163 | if (FILTER(MAPPED_PRIVATE)) |
1164 | goto whole; | |
1165 | ||
1166 | /* | |
1167 | * If this looks like the beginning of a DSO or executable mapping, | |
1168 | * check for an ELF header. If we find one, dump the first page to | |
1169 | * aid in determining what was mapped here. | |
1170 | */ | |
1171 | if (FILTER(ELF_HEADERS) && vma->vm_file != NULL && vma->vm_pgoff == 0) { | |
1172 | u32 __user *header = (u32 __user *) vma->vm_start; | |
1173 | u32 word; | |
1174 | /* | |
1175 | * Doing it this way gets the constant folded by GCC. | |
1176 | */ | |
1177 | union { | |
1178 | u32 cmp; | |
1179 | char elfmag[SELFMAG]; | |
1180 | } magic; | |
1181 | BUILD_BUG_ON(SELFMAG != sizeof word); | |
1182 | magic.elfmag[EI_MAG0] = ELFMAG0; | |
1183 | magic.elfmag[EI_MAG1] = ELFMAG1; | |
1184 | magic.elfmag[EI_MAG2] = ELFMAG2; | |
1185 | magic.elfmag[EI_MAG3] = ELFMAG3; | |
1186 | if (get_user(word, header) == 0 && word == magic.cmp) | |
1187 | return PAGE_SIZE; | |
1188 | } | |
1189 | ||
1190 | #undef FILTER | |
1191 | ||
1192 | return 0; | |
1193 | ||
1194 | whole: | |
1195 | return vma->vm_end - vma->vm_start; | |
1da177e4 LT |
1196 | } |
1197 | ||
1da177e4 LT |
1198 | /* An ELF note in memory */ |
1199 | struct memelfnote | |
1200 | { | |
1201 | const char *name; | |
1202 | int type; | |
1203 | unsigned int datasz; | |
1204 | void *data; | |
1205 | }; | |
1206 | ||
1207 | static int notesize(struct memelfnote *en) | |
1208 | { | |
1209 | int sz; | |
1210 | ||
1211 | sz = sizeof(struct elf_note); | |
1212 | sz += roundup(strlen(en->name) + 1, 4); | |
1213 | sz += roundup(en->datasz, 4); | |
1214 | ||
1215 | return sz; | |
1216 | } | |
1217 | ||
d025c9db AK |
1218 | #define DUMP_WRITE(addr, nr, foffset) \ |
1219 | do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) | |
1da177e4 | 1220 | |
d025c9db | 1221 | static int alignfile(struct file *file, loff_t *foffset) |
1da177e4 | 1222 | { |
a7a0d86f | 1223 | static const char buf[4] = { 0, }; |
d025c9db AK |
1224 | DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); |
1225 | return 1; | |
1226 | } | |
1da177e4 | 1227 | |
d025c9db AK |
1228 | static int writenote(struct memelfnote *men, struct file *file, |
1229 | loff_t *foffset) | |
1230 | { | |
1231 | struct elf_note en; | |
1da177e4 LT |
1232 | en.n_namesz = strlen(men->name) + 1; |
1233 | en.n_descsz = men->datasz; | |
1234 | en.n_type = men->type; | |
1235 | ||
d025c9db AK |
1236 | DUMP_WRITE(&en, sizeof(en), foffset); |
1237 | DUMP_WRITE(men->name, en.n_namesz, foffset); | |
1238 | if (!alignfile(file, foffset)) | |
1239 | return 0; | |
1240 | DUMP_WRITE(men->data, men->datasz, foffset); | |
1241 | if (!alignfile(file, foffset)) | |
1242 | return 0; | |
1da177e4 LT |
1243 | |
1244 | return 1; | |
1245 | } | |
1246 | #undef DUMP_WRITE | |
1da177e4 LT |
1247 | |
1248 | #define DUMP_WRITE(addr, nr) \ | |
1249 | if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \ | |
1250 | goto end_coredump; | |
1251 | #define DUMP_SEEK(off) \ | |
1252 | if (!dump_seek(file, (off))) \ | |
1253 | goto end_coredump; | |
1254 | ||
3aba481f RM |
1255 | static void fill_elf_header(struct elfhdr *elf, int segs, |
1256 | u16 machine, u32 flags, u8 osabi) | |
1da177e4 | 1257 | { |
6970c8ef CG |
1258 | memset(elf, 0, sizeof(*elf)); |
1259 | ||
1da177e4 LT |
1260 | memcpy(elf->e_ident, ELFMAG, SELFMAG); |
1261 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
1262 | elf->e_ident[EI_DATA] = ELF_DATA; | |
1263 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
1264 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
1da177e4 LT |
1265 | |
1266 | elf->e_type = ET_CORE; | |
3aba481f | 1267 | elf->e_machine = machine; |
1da177e4 | 1268 | elf->e_version = EV_CURRENT; |
1da177e4 | 1269 | elf->e_phoff = sizeof(struct elfhdr); |
3aba481f | 1270 | elf->e_flags = flags; |
1da177e4 LT |
1271 | elf->e_ehsize = sizeof(struct elfhdr); |
1272 | elf->e_phentsize = sizeof(struct elf_phdr); | |
1273 | elf->e_phnum = segs; | |
6970c8ef | 1274 | |
1da177e4 LT |
1275 | return; |
1276 | } | |
1277 | ||
8d6b5eee | 1278 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) |
1da177e4 LT |
1279 | { |
1280 | phdr->p_type = PT_NOTE; | |
1281 | phdr->p_offset = offset; | |
1282 | phdr->p_vaddr = 0; | |
1283 | phdr->p_paddr = 0; | |
1284 | phdr->p_filesz = sz; | |
1285 | phdr->p_memsz = 0; | |
1286 | phdr->p_flags = 0; | |
1287 | phdr->p_align = 0; | |
1288 | return; | |
1289 | } | |
1290 | ||
1291 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
1292 | unsigned int sz, void *data) | |
1293 | { | |
1294 | note->name = name; | |
1295 | note->type = type; | |
1296 | note->datasz = sz; | |
1297 | note->data = data; | |
1298 | return; | |
1299 | } | |
1300 | ||
1301 | /* | |
f4e5cc2c JJ |
1302 | * fill up all the fields in prstatus from the given task struct, except |
1303 | * registers which need to be filled up separately. | |
1da177e4 LT |
1304 | */ |
1305 | static void fill_prstatus(struct elf_prstatus *prstatus, | |
f4e5cc2c | 1306 | struct task_struct *p, long signr) |
1da177e4 LT |
1307 | { |
1308 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
1309 | prstatus->pr_sigpend = p->pending.signal.sig[0]; | |
1310 | prstatus->pr_sighold = p->blocked.sig[0]; | |
b488893a | 1311 | prstatus->pr_pid = task_pid_vnr(p); |
45626bb2 | 1312 | prstatus->pr_ppid = task_pid_vnr(p->real_parent); |
b488893a PE |
1313 | prstatus->pr_pgrp = task_pgrp_vnr(p); |
1314 | prstatus->pr_sid = task_session_vnr(p); | |
1da177e4 LT |
1315 | if (thread_group_leader(p)) { |
1316 | /* | |
1317 | * This is the record for the group leader. Add in the | |
1318 | * cumulative times of previous dead threads. This total | |
1319 | * won't include the time of each live thread whose state | |
1320 | * is included in the core dump. The final total reported | |
1321 | * to our parent process when it calls wait4 will include | |
1322 | * those sums as well as the little bit more time it takes | |
1323 | * this and each other thread to finish dying after the | |
1324 | * core dump synchronization phase. | |
1325 | */ | |
1326 | cputime_to_timeval(cputime_add(p->utime, p->signal->utime), | |
1327 | &prstatus->pr_utime); | |
1328 | cputime_to_timeval(cputime_add(p->stime, p->signal->stime), | |
1329 | &prstatus->pr_stime); | |
1330 | } else { | |
1331 | cputime_to_timeval(p->utime, &prstatus->pr_utime); | |
1332 | cputime_to_timeval(p->stime, &prstatus->pr_stime); | |
1333 | } | |
1334 | cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); | |
1335 | cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); | |
1336 | } | |
1337 | ||
1338 | static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, | |
1339 | struct mm_struct *mm) | |
1340 | { | |
a84a5059 | 1341 | unsigned int i, len; |
1da177e4 LT |
1342 | |
1343 | /* first copy the parameters from user space */ | |
1344 | memset(psinfo, 0, sizeof(struct elf_prpsinfo)); | |
1345 | ||
1346 | len = mm->arg_end - mm->arg_start; | |
1347 | if (len >= ELF_PRARGSZ) | |
1348 | len = ELF_PRARGSZ-1; | |
1349 | if (copy_from_user(&psinfo->pr_psargs, | |
1350 | (const char __user *)mm->arg_start, len)) | |
1351 | return -EFAULT; | |
1352 | for(i = 0; i < len; i++) | |
1353 | if (psinfo->pr_psargs[i] == 0) | |
1354 | psinfo->pr_psargs[i] = ' '; | |
1355 | psinfo->pr_psargs[len] = 0; | |
1356 | ||
b488893a | 1357 | psinfo->pr_pid = task_pid_vnr(p); |
45626bb2 | 1358 | psinfo->pr_ppid = task_pid_vnr(p->real_parent); |
b488893a PE |
1359 | psinfo->pr_pgrp = task_pgrp_vnr(p); |
1360 | psinfo->pr_sid = task_session_vnr(p); | |
1da177e4 LT |
1361 | |
1362 | i = p->state ? ffz(~p->state) + 1 : 0; | |
1363 | psinfo->pr_state = i; | |
55148548 | 1364 | psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; |
1da177e4 LT |
1365 | psinfo->pr_zomb = psinfo->pr_sname == 'Z'; |
1366 | psinfo->pr_nice = task_nice(p); | |
1367 | psinfo->pr_flag = p->flags; | |
1368 | SET_UID(psinfo->pr_uid, p->uid); | |
1369 | SET_GID(psinfo->pr_gid, p->gid); | |
1370 | strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); | |
1371 | ||
1372 | return 0; | |
1373 | } | |
1374 | ||
3aba481f RM |
1375 | static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) |
1376 | { | |
1377 | elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; | |
1378 | int i = 0; | |
1379 | do | |
1380 | i += 2; | |
1381 | while (auxv[i - 2] != AT_NULL); | |
1382 | fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); | |
1383 | } | |
1384 | ||
4206d3aa RM |
1385 | #ifdef CORE_DUMP_USE_REGSET |
1386 | #include <linux/regset.h> | |
1387 | ||
1388 | struct elf_thread_core_info { | |
1389 | struct elf_thread_core_info *next; | |
1390 | struct task_struct *task; | |
1391 | struct elf_prstatus prstatus; | |
1392 | struct memelfnote notes[0]; | |
1393 | }; | |
1394 | ||
1395 | struct elf_note_info { | |
1396 | struct elf_thread_core_info *thread; | |
1397 | struct memelfnote psinfo; | |
1398 | struct memelfnote auxv; | |
1399 | size_t size; | |
1400 | int thread_notes; | |
1401 | }; | |
1402 | ||
d31472b6 RM |
1403 | /* |
1404 | * When a regset has a writeback hook, we call it on each thread before | |
1405 | * dumping user memory. On register window machines, this makes sure the | |
1406 | * user memory backing the register data is up to date before we read it. | |
1407 | */ | |
1408 | static void do_thread_regset_writeback(struct task_struct *task, | |
1409 | const struct user_regset *regset) | |
1410 | { | |
1411 | if (regset->writeback) | |
1412 | regset->writeback(task, regset, 1); | |
1413 | } | |
1414 | ||
4206d3aa RM |
1415 | static int fill_thread_core_info(struct elf_thread_core_info *t, |
1416 | const struct user_regset_view *view, | |
1417 | long signr, size_t *total) | |
1418 | { | |
1419 | unsigned int i; | |
1420 | ||
1421 | /* | |
1422 | * NT_PRSTATUS is the one special case, because the regset data | |
1423 | * goes into the pr_reg field inside the note contents, rather | |
1424 | * than being the whole note contents. We fill the reset in here. | |
1425 | * We assume that regset 0 is NT_PRSTATUS. | |
1426 | */ | |
1427 | fill_prstatus(&t->prstatus, t->task, signr); | |
1428 | (void) view->regsets[0].get(t->task, &view->regsets[0], | |
1429 | 0, sizeof(t->prstatus.pr_reg), | |
1430 | &t->prstatus.pr_reg, NULL); | |
1431 | ||
1432 | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, | |
1433 | sizeof(t->prstatus), &t->prstatus); | |
1434 | *total += notesize(&t->notes[0]); | |
1435 | ||
d31472b6 RM |
1436 | do_thread_regset_writeback(t->task, &view->regsets[0]); |
1437 | ||
4206d3aa RM |
1438 | /* |
1439 | * Each other regset might generate a note too. For each regset | |
1440 | * that has no core_note_type or is inactive, we leave t->notes[i] | |
1441 | * all zero and we'll know to skip writing it later. | |
1442 | */ | |
1443 | for (i = 1; i < view->n; ++i) { | |
1444 | const struct user_regset *regset = &view->regsets[i]; | |
d31472b6 | 1445 | do_thread_regset_writeback(t->task, regset); |
4206d3aa RM |
1446 | if (regset->core_note_type && |
1447 | (!regset->active || regset->active(t->task, regset))) { | |
1448 | int ret; | |
1449 | size_t size = regset->n * regset->size; | |
1450 | void *data = kmalloc(size, GFP_KERNEL); | |
1451 | if (unlikely(!data)) | |
1452 | return 0; | |
1453 | ret = regset->get(t->task, regset, | |
1454 | 0, size, data, NULL); | |
1455 | if (unlikely(ret)) | |
1456 | kfree(data); | |
1457 | else { | |
1458 | if (regset->core_note_type != NT_PRFPREG) | |
1459 | fill_note(&t->notes[i], "LINUX", | |
1460 | regset->core_note_type, | |
1461 | size, data); | |
1462 | else { | |
1463 | t->prstatus.pr_fpvalid = 1; | |
1464 | fill_note(&t->notes[i], "CORE", | |
1465 | NT_PRFPREG, size, data); | |
1466 | } | |
1467 | *total += notesize(&t->notes[i]); | |
1468 | } | |
1469 | } | |
1470 | } | |
1471 | ||
1472 | return 1; | |
1473 | } | |
1474 | ||
1475 | static int fill_note_info(struct elfhdr *elf, int phdrs, | |
1476 | struct elf_note_info *info, | |
1477 | long signr, struct pt_regs *regs) | |
1478 | { | |
1479 | struct task_struct *dump_task = current; | |
1480 | const struct user_regset_view *view = task_user_regset_view(dump_task); | |
1481 | struct elf_thread_core_info *t; | |
1482 | struct elf_prpsinfo *psinfo; | |
1483 | struct task_struct *g, *p; | |
1484 | unsigned int i; | |
1485 | ||
1486 | info->size = 0; | |
1487 | info->thread = NULL; | |
1488 | ||
1489 | psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); | |
1490 | fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); | |
1491 | ||
1492 | if (psinfo == NULL) | |
1493 | return 0; | |
1494 | ||
1495 | /* | |
1496 | * Figure out how many notes we're going to need for each thread. | |
1497 | */ | |
1498 | info->thread_notes = 0; | |
1499 | for (i = 0; i < view->n; ++i) | |
1500 | if (view->regsets[i].core_note_type != 0) | |
1501 | ++info->thread_notes; | |
1502 | ||
1503 | /* | |
1504 | * Sanity check. We rely on regset 0 being in NT_PRSTATUS, | |
1505 | * since it is our one special case. | |
1506 | */ | |
1507 | if (unlikely(info->thread_notes == 0) || | |
1508 | unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { | |
1509 | WARN_ON(1); | |
1510 | return 0; | |
1511 | } | |
1512 | ||
1513 | /* | |
1514 | * Initialize the ELF file header. | |
1515 | */ | |
1516 | fill_elf_header(elf, phdrs, | |
1517 | view->e_machine, view->e_flags, view->ei_osabi); | |
1518 | ||
1519 | /* | |
1520 | * Allocate a structure for each thread. | |
1521 | */ | |
1522 | rcu_read_lock(); | |
1523 | do_each_thread(g, p) | |
1524 | if (p->mm == dump_task->mm) { | |
1525 | t = kzalloc(offsetof(struct elf_thread_core_info, | |
1526 | notes[info->thread_notes]), | |
1527 | GFP_ATOMIC); | |
1528 | if (unlikely(!t)) { | |
1529 | rcu_read_unlock(); | |
1530 | return 0; | |
1531 | } | |
1532 | t->task = p; | |
1533 | if (p == dump_task || !info->thread) { | |
1534 | t->next = info->thread; | |
1535 | info->thread = t; | |
1536 | } else { | |
1537 | /* | |
1538 | * Make sure to keep the original task at | |
1539 | * the head of the list. | |
1540 | */ | |
1541 | t->next = info->thread->next; | |
1542 | info->thread->next = t; | |
1543 | } | |
1544 | } | |
1545 | while_each_thread(g, p); | |
1546 | rcu_read_unlock(); | |
1547 | ||
1548 | /* | |
1549 | * Now fill in each thread's information. | |
1550 | */ | |
1551 | for (t = info->thread; t != NULL; t = t->next) | |
1552 | if (!fill_thread_core_info(t, view, signr, &info->size)) | |
1553 | return 0; | |
1554 | ||
1555 | /* | |
1556 | * Fill in the two process-wide notes. | |
1557 | */ | |
1558 | fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); | |
1559 | info->size += notesize(&info->psinfo); | |
1560 | ||
1561 | fill_auxv_note(&info->auxv, current->mm); | |
1562 | info->size += notesize(&info->auxv); | |
1563 | ||
1564 | return 1; | |
1565 | } | |
1566 | ||
1567 | static size_t get_note_info_size(struct elf_note_info *info) | |
1568 | { | |
1569 | return info->size; | |
1570 | } | |
1571 | ||
1572 | /* | |
1573 | * Write all the notes for each thread. When writing the first thread, the | |
1574 | * process-wide notes are interleaved after the first thread-specific note. | |
1575 | */ | |
1576 | static int write_note_info(struct elf_note_info *info, | |
1577 | struct file *file, loff_t *foffset) | |
1578 | { | |
1579 | bool first = 1; | |
1580 | struct elf_thread_core_info *t = info->thread; | |
1581 | ||
1582 | do { | |
1583 | int i; | |
1584 | ||
1585 | if (!writenote(&t->notes[0], file, foffset)) | |
1586 | return 0; | |
1587 | ||
1588 | if (first && !writenote(&info->psinfo, file, foffset)) | |
1589 | return 0; | |
1590 | if (first && !writenote(&info->auxv, file, foffset)) | |
1591 | return 0; | |
1592 | ||
1593 | for (i = 1; i < info->thread_notes; ++i) | |
1594 | if (t->notes[i].data && | |
1595 | !writenote(&t->notes[i], file, foffset)) | |
1596 | return 0; | |
1597 | ||
1598 | first = 0; | |
1599 | t = t->next; | |
1600 | } while (t); | |
1601 | ||
1602 | return 1; | |
1603 | } | |
1604 | ||
1605 | static void free_note_info(struct elf_note_info *info) | |
1606 | { | |
1607 | struct elf_thread_core_info *threads = info->thread; | |
1608 | while (threads) { | |
1609 | unsigned int i; | |
1610 | struct elf_thread_core_info *t = threads; | |
1611 | threads = t->next; | |
1612 | WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); | |
1613 | for (i = 1; i < info->thread_notes; ++i) | |
1614 | kfree(t->notes[i].data); | |
1615 | kfree(t); | |
1616 | } | |
1617 | kfree(info->psinfo.data); | |
1618 | } | |
1619 | ||
1620 | #else | |
1621 | ||
1da177e4 LT |
1622 | /* Here is the structure in which status of each thread is captured. */ |
1623 | struct elf_thread_status | |
1624 | { | |
1625 | struct list_head list; | |
1626 | struct elf_prstatus prstatus; /* NT_PRSTATUS */ | |
1627 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
1628 | struct task_struct *thread; | |
1629 | #ifdef ELF_CORE_COPY_XFPREGS | |
5b20cd80 | 1630 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ |
1da177e4 LT |
1631 | #endif |
1632 | struct memelfnote notes[3]; | |
1633 | int num_notes; | |
1634 | }; | |
1635 | ||
1636 | /* | |
1637 | * In order to add the specific thread information for the elf file format, | |
f4e5cc2c JJ |
1638 | * we need to keep a linked list of every threads pr_status and then create |
1639 | * a single section for them in the final core file. | |
1da177e4 LT |
1640 | */ |
1641 | static int elf_dump_thread_status(long signr, struct elf_thread_status *t) | |
1642 | { | |
1643 | int sz = 0; | |
1644 | struct task_struct *p = t->thread; | |
1645 | t->num_notes = 0; | |
1646 | ||
1647 | fill_prstatus(&t->prstatus, p, signr); | |
1648 | elf_core_copy_task_regs(p, &t->prstatus.pr_reg); | |
1649 | ||
f4e5cc2c JJ |
1650 | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), |
1651 | &(t->prstatus)); | |
1da177e4 LT |
1652 | t->num_notes++; |
1653 | sz += notesize(&t->notes[0]); | |
1654 | ||
f4e5cc2c JJ |
1655 | if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, |
1656 | &t->fpu))) { | |
1657 | fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), | |
1658 | &(t->fpu)); | |
1da177e4 LT |
1659 | t->num_notes++; |
1660 | sz += notesize(&t->notes[1]); | |
1661 | } | |
1662 | ||
1663 | #ifdef ELF_CORE_COPY_XFPREGS | |
1664 | if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { | |
5b20cd80 MN |
1665 | fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, |
1666 | sizeof(t->xfpu), &t->xfpu); | |
1da177e4 LT |
1667 | t->num_notes++; |
1668 | sz += notesize(&t->notes[2]); | |
1669 | } | |
1670 | #endif | |
1671 | return sz; | |
1672 | } | |
1673 | ||
3aba481f RM |
1674 | struct elf_note_info { |
1675 | struct memelfnote *notes; | |
1676 | struct elf_prstatus *prstatus; /* NT_PRSTATUS */ | |
1677 | struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
1678 | struct list_head thread_list; | |
1679 | elf_fpregset_t *fpu; | |
1680 | #ifdef ELF_CORE_COPY_XFPREGS | |
1681 | elf_fpxregset_t *xfpu; | |
1682 | #endif | |
1683 | int thread_status_size; | |
1684 | int numnote; | |
1685 | }; | |
1686 | ||
1687 | static int fill_note_info(struct elfhdr *elf, int phdrs, | |
1688 | struct elf_note_info *info, | |
1689 | long signr, struct pt_regs *regs) | |
1690 | { | |
1691 | #define NUM_NOTES 6 | |
1692 | struct list_head *t; | |
1693 | struct task_struct *g, *p; | |
1694 | ||
1695 | info->notes = NULL; | |
1696 | info->prstatus = NULL; | |
1697 | info->psinfo = NULL; | |
1698 | info->fpu = NULL; | |
1699 | #ifdef ELF_CORE_COPY_XFPREGS | |
1700 | info->xfpu = NULL; | |
1701 | #endif | |
1702 | INIT_LIST_HEAD(&info->thread_list); | |
1703 | ||
1704 | info->notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), | |
1705 | GFP_KERNEL); | |
1706 | if (!info->notes) | |
1707 | return 0; | |
1708 | info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); | |
1709 | if (!info->psinfo) | |
1710 | return 0; | |
1711 | info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); | |
1712 | if (!info->prstatus) | |
1713 | return 0; | |
1714 | info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); | |
1715 | if (!info->fpu) | |
1716 | return 0; | |
1717 | #ifdef ELF_CORE_COPY_XFPREGS | |
1718 | info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); | |
1719 | if (!info->xfpu) | |
1720 | return 0; | |
1721 | #endif | |
1722 | ||
1723 | info->thread_status_size = 0; | |
1724 | if (signr) { | |
4220b7fe | 1725 | struct elf_thread_status *ets; |
3aba481f RM |
1726 | rcu_read_lock(); |
1727 | do_each_thread(g, p) | |
1728 | if (current->mm == p->mm && current != p) { | |
4220b7fe WC |
1729 | ets = kzalloc(sizeof(*ets), GFP_ATOMIC); |
1730 | if (!ets) { | |
3aba481f RM |
1731 | rcu_read_unlock(); |
1732 | return 0; | |
1733 | } | |
4220b7fe WC |
1734 | ets->thread = p; |
1735 | list_add(&ets->list, &info->thread_list); | |
3aba481f RM |
1736 | } |
1737 | while_each_thread(g, p); | |
1738 | rcu_read_unlock(); | |
1739 | list_for_each(t, &info->thread_list) { | |
3aba481f RM |
1740 | int sz; |
1741 | ||
4220b7fe WC |
1742 | ets = list_entry(t, struct elf_thread_status, list); |
1743 | sz = elf_dump_thread_status(signr, ets); | |
3aba481f RM |
1744 | info->thread_status_size += sz; |
1745 | } | |
1746 | } | |
1747 | /* now collect the dump for the current */ | |
1748 | memset(info->prstatus, 0, sizeof(*info->prstatus)); | |
1749 | fill_prstatus(info->prstatus, current, signr); | |
1750 | elf_core_copy_regs(&info->prstatus->pr_reg, regs); | |
1751 | ||
1752 | /* Set up header */ | |
1753 | fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI); | |
1754 | ||
1755 | /* | |
1756 | * Set up the notes in similar form to SVR4 core dumps made | |
1757 | * with info from their /proc. | |
1758 | */ | |
1759 | ||
1760 | fill_note(info->notes + 0, "CORE", NT_PRSTATUS, | |
1761 | sizeof(*info->prstatus), info->prstatus); | |
1762 | fill_psinfo(info->psinfo, current->group_leader, current->mm); | |
1763 | fill_note(info->notes + 1, "CORE", NT_PRPSINFO, | |
1764 | sizeof(*info->psinfo), info->psinfo); | |
1765 | ||
1766 | info->numnote = 2; | |
1767 | ||
1768 | fill_auxv_note(&info->notes[info->numnote++], current->mm); | |
1769 | ||
1770 | /* Try to dump the FPU. */ | |
1771 | info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, | |
1772 | info->fpu); | |
1773 | if (info->prstatus->pr_fpvalid) | |
1774 | fill_note(info->notes + info->numnote++, | |
1775 | "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); | |
1776 | #ifdef ELF_CORE_COPY_XFPREGS | |
1777 | if (elf_core_copy_task_xfpregs(current, info->xfpu)) | |
1778 | fill_note(info->notes + info->numnote++, | |
1779 | "LINUX", ELF_CORE_XFPREG_TYPE, | |
1780 | sizeof(*info->xfpu), info->xfpu); | |
1781 | #endif | |
1782 | ||
1783 | return 1; | |
1784 | ||
1785 | #undef NUM_NOTES | |
1786 | } | |
1787 | ||
1788 | static size_t get_note_info_size(struct elf_note_info *info) | |
1789 | { | |
1790 | int sz = 0; | |
1791 | int i; | |
1792 | ||
1793 | for (i = 0; i < info->numnote; i++) | |
1794 | sz += notesize(info->notes + i); | |
1795 | ||
1796 | sz += info->thread_status_size; | |
1797 | ||
1798 | return sz; | |
1799 | } | |
1800 | ||
1801 | static int write_note_info(struct elf_note_info *info, | |
1802 | struct file *file, loff_t *foffset) | |
1803 | { | |
1804 | int i; | |
1805 | struct list_head *t; | |
1806 | ||
1807 | for (i = 0; i < info->numnote; i++) | |
1808 | if (!writenote(info->notes + i, file, foffset)) | |
1809 | return 0; | |
1810 | ||
1811 | /* write out the thread status notes section */ | |
1812 | list_for_each(t, &info->thread_list) { | |
1813 | struct elf_thread_status *tmp = | |
1814 | list_entry(t, struct elf_thread_status, list); | |
1815 | ||
1816 | for (i = 0; i < tmp->num_notes; i++) | |
1817 | if (!writenote(&tmp->notes[i], file, foffset)) | |
1818 | return 0; | |
1819 | } | |
1820 | ||
1821 | return 1; | |
1822 | } | |
1823 | ||
1824 | static void free_note_info(struct elf_note_info *info) | |
1825 | { | |
1826 | while (!list_empty(&info->thread_list)) { | |
1827 | struct list_head *tmp = info->thread_list.next; | |
1828 | list_del(tmp); | |
1829 | kfree(list_entry(tmp, struct elf_thread_status, list)); | |
1830 | } | |
1831 | ||
1832 | kfree(info->prstatus); | |
1833 | kfree(info->psinfo); | |
1834 | kfree(info->notes); | |
1835 | kfree(info->fpu); | |
1836 | #ifdef ELF_CORE_COPY_XFPREGS | |
1837 | kfree(info->xfpu); | |
1838 | #endif | |
1839 | } | |
1840 | ||
4206d3aa RM |
1841 | #endif |
1842 | ||
f47aef55 RM |
1843 | static struct vm_area_struct *first_vma(struct task_struct *tsk, |
1844 | struct vm_area_struct *gate_vma) | |
1845 | { | |
1846 | struct vm_area_struct *ret = tsk->mm->mmap; | |
1847 | ||
1848 | if (ret) | |
1849 | return ret; | |
1850 | return gate_vma; | |
1851 | } | |
1852 | /* | |
1853 | * Helper function for iterating across a vma list. It ensures that the caller | |
1854 | * will visit `gate_vma' prior to terminating the search. | |
1855 | */ | |
1856 | static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, | |
1857 | struct vm_area_struct *gate_vma) | |
1858 | { | |
1859 | struct vm_area_struct *ret; | |
1860 | ||
1861 | ret = this_vma->vm_next; | |
1862 | if (ret) | |
1863 | return ret; | |
1864 | if (this_vma == gate_vma) | |
1865 | return NULL; | |
1866 | return gate_vma; | |
1867 | } | |
1868 | ||
1da177e4 LT |
1869 | /* |
1870 | * Actual dumper | |
1871 | * | |
1872 | * This is a two-pass process; first we find the offsets of the bits, | |
1873 | * and then they are actually written out. If we run out of core limit | |
1874 | * we just truncate. | |
1875 | */ | |
7dc0b22e | 1876 | static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file, unsigned long limit) |
1da177e4 | 1877 | { |
1da177e4 LT |
1878 | int has_dumped = 0; |
1879 | mm_segment_t fs; | |
1880 | int segs; | |
1881 | size_t size = 0; | |
f47aef55 | 1882 | struct vm_area_struct *vma, *gate_vma; |
1da177e4 | 1883 | struct elfhdr *elf = NULL; |
d025c9db | 1884 | loff_t offset = 0, dataoff, foffset; |
a1b59e80 | 1885 | unsigned long mm_flags; |
3aba481f | 1886 | struct elf_note_info info; |
1da177e4 LT |
1887 | |
1888 | /* | |
1889 | * We no longer stop all VM operations. | |
1890 | * | |
f4e5cc2c JJ |
1891 | * This is because those proceses that could possibly change map_count |
1892 | * or the mmap / vma pages are now blocked in do_exit on current | |
1893 | * finishing this core dump. | |
1da177e4 LT |
1894 | * |
1895 | * Only ptrace can touch these memory addresses, but it doesn't change | |
f4e5cc2c | 1896 | * the map_count or the pages allocated. So no possibility of crashing |
1da177e4 LT |
1897 | * exists while dumping the mm->vm_next areas to the core file. |
1898 | */ | |
1899 | ||
1900 | /* alloc memory for large data structures: too large to be on stack */ | |
1901 | elf = kmalloc(sizeof(*elf), GFP_KERNEL); | |
1902 | if (!elf) | |
5f719558 | 1903 | goto out; |
1da177e4 LT |
1904 | |
1905 | segs = current->mm->map_count; | |
1906 | #ifdef ELF_CORE_EXTRA_PHDRS | |
1907 | segs += ELF_CORE_EXTRA_PHDRS; | |
1908 | #endif | |
1909 | ||
f47aef55 RM |
1910 | gate_vma = get_gate_vma(current); |
1911 | if (gate_vma != NULL) | |
1912 | segs++; | |
1913 | ||
1da177e4 | 1914 | /* |
3aba481f RM |
1915 | * Collect all the non-memory information about the process for the |
1916 | * notes. This also sets up the file header. | |
1da177e4 | 1917 | */ |
3aba481f RM |
1918 | if (!fill_note_info(elf, segs + 1, /* including notes section */ |
1919 | &info, signr, regs)) | |
1920 | goto cleanup; | |
1da177e4 | 1921 | |
3aba481f RM |
1922 | has_dumped = 1; |
1923 | current->flags |= PF_DUMPCORE; | |
1da177e4 LT |
1924 | |
1925 | fs = get_fs(); | |
1926 | set_fs(KERNEL_DS); | |
1927 | ||
1928 | DUMP_WRITE(elf, sizeof(*elf)); | |
1929 | offset += sizeof(*elf); /* Elf header */ | |
a7a0d86f PV |
1930 | offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */ |
1931 | foffset = offset; | |
1da177e4 LT |
1932 | |
1933 | /* Write notes phdr entry */ | |
1934 | { | |
1935 | struct elf_phdr phdr; | |
3aba481f | 1936 | size_t sz = get_note_info_size(&info); |
1da177e4 | 1937 | |
e5501492 | 1938 | sz += elf_coredump_extra_notes_size(); |
bf1ab978 | 1939 | |
1da177e4 LT |
1940 | fill_elf_note_phdr(&phdr, sz, offset); |
1941 | offset += sz; | |
1942 | DUMP_WRITE(&phdr, sizeof(phdr)); | |
1943 | } | |
1944 | ||
1da177e4 LT |
1945 | dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
1946 | ||
a1b59e80 KH |
1947 | /* |
1948 | * We must use the same mm->flags while dumping core to avoid | |
1949 | * inconsistency between the program headers and bodies, otherwise an | |
1950 | * unusable core file can be generated. | |
1951 | */ | |
1952 | mm_flags = current->mm->flags; | |
1953 | ||
1da177e4 | 1954 | /* Write program headers for segments dump */ |
f47aef55 RM |
1955 | for (vma = first_vma(current, gate_vma); vma != NULL; |
1956 | vma = next_vma(vma, gate_vma)) { | |
1da177e4 | 1957 | struct elf_phdr phdr; |
1da177e4 LT |
1958 | |
1959 | phdr.p_type = PT_LOAD; | |
1960 | phdr.p_offset = offset; | |
1961 | phdr.p_vaddr = vma->vm_start; | |
1962 | phdr.p_paddr = 0; | |
82df3973 RM |
1963 | phdr.p_filesz = vma_dump_size(vma, mm_flags); |
1964 | phdr.p_memsz = vma->vm_end - vma->vm_start; | |
1da177e4 LT |
1965 | offset += phdr.p_filesz; |
1966 | phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; | |
f4e5cc2c JJ |
1967 | if (vma->vm_flags & VM_WRITE) |
1968 | phdr.p_flags |= PF_W; | |
1969 | if (vma->vm_flags & VM_EXEC) | |
1970 | phdr.p_flags |= PF_X; | |
1da177e4 LT |
1971 | phdr.p_align = ELF_EXEC_PAGESIZE; |
1972 | ||
1973 | DUMP_WRITE(&phdr, sizeof(phdr)); | |
1974 | } | |
1975 | ||
1976 | #ifdef ELF_CORE_WRITE_EXTRA_PHDRS | |
1977 | ELF_CORE_WRITE_EXTRA_PHDRS; | |
1978 | #endif | |
1979 | ||
1980 | /* write out the notes section */ | |
3aba481f RM |
1981 | if (!write_note_info(&info, file, &foffset)) |
1982 | goto end_coredump; | |
1da177e4 | 1983 | |
e5501492 ME |
1984 | if (elf_coredump_extra_notes_write(file, &foffset)) |
1985 | goto end_coredump; | |
bf1ab978 | 1986 | |
d025c9db AK |
1987 | /* Align to page */ |
1988 | DUMP_SEEK(dataoff - foffset); | |
1da177e4 | 1989 | |
f47aef55 RM |
1990 | for (vma = first_vma(current, gate_vma); vma != NULL; |
1991 | vma = next_vma(vma, gate_vma)) { | |
1da177e4 | 1992 | unsigned long addr; |
82df3973 | 1993 | unsigned long end; |
1da177e4 | 1994 | |
82df3973 | 1995 | end = vma->vm_start + vma_dump_size(vma, mm_flags); |
1da177e4 | 1996 | |
82df3973 | 1997 | for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { |
f4e5cc2c | 1998 | struct page *page; |
4220b7fe | 1999 | struct vm_area_struct *tmp_vma; |
1da177e4 LT |
2000 | |
2001 | if (get_user_pages(current, current->mm, addr, 1, 0, 1, | |
4220b7fe | 2002 | &page, &tmp_vma) <= 0) { |
d025c9db | 2003 | DUMP_SEEK(PAGE_SIZE); |
1da177e4 | 2004 | } else { |
557ed1fa | 2005 | if (page == ZERO_PAGE(0)) { |
03221702 BP |
2006 | if (!dump_seek(file, PAGE_SIZE)) { |
2007 | page_cache_release(page); | |
2008 | goto end_coredump; | |
2009 | } | |
1da177e4 LT |
2010 | } else { |
2011 | void *kaddr; | |
4220b7fe | 2012 | flush_cache_page(tmp_vma, addr, |
f4e5cc2c | 2013 | page_to_pfn(page)); |
1da177e4 LT |
2014 | kaddr = kmap(page); |
2015 | if ((size += PAGE_SIZE) > limit || | |
2016 | !dump_write(file, kaddr, | |
2017 | PAGE_SIZE)) { | |
2018 | kunmap(page); | |
2019 | page_cache_release(page); | |
2020 | goto end_coredump; | |
2021 | } | |
2022 | kunmap(page); | |
2023 | } | |
2024 | page_cache_release(page); | |
2025 | } | |
2026 | } | |
2027 | } | |
2028 | ||
2029 | #ifdef ELF_CORE_WRITE_EXTRA_DATA | |
2030 | ELF_CORE_WRITE_EXTRA_DATA; | |
2031 | #endif | |
2032 | ||
1da177e4 LT |
2033 | end_coredump: |
2034 | set_fs(fs); | |
2035 | ||
2036 | cleanup: | |
3aba481f | 2037 | free_note_info(&info); |
5f719558 WC |
2038 | kfree(elf); |
2039 | out: | |
1da177e4 | 2040 | return has_dumped; |
1da177e4 LT |
2041 | } |
2042 | ||
2043 | #endif /* USE_ELF_CORE_DUMP */ | |
2044 | ||
2045 | static int __init init_elf_binfmt(void) | |
2046 | { | |
2047 | return register_binfmt(&elf_format); | |
2048 | } | |
2049 | ||
2050 | static void __exit exit_elf_binfmt(void) | |
2051 | { | |
2052 | /* Remove the COFF and ELF loaders. */ | |
2053 | unregister_binfmt(&elf_format); | |
2054 | } | |
2055 | ||
2056 | core_initcall(init_elf_binfmt); | |
2057 | module_exit(exit_elf_binfmt); | |
2058 | MODULE_LICENSE("GPL"); |